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Abstract For an arbitrary transient random walk (Sn)n≥0 in Zd , d ≥ 1, we prove a
strong law of large numbers for the spatial sum ∑x∈Zd f (l(n,x)) of a function f of the
local times l(n,x) = ∑

n
i=0 I{Si = x}. Particular cases are the number of

(a) visited sites (first time considered by Dvoretzky and Erdős in [8]), which cor-
responds to a function f (i) = I{i≥ 1};

(b) α-fold self-intersections of the random walk (studied by Becker and König in
[1]), which corresponds to f (i) = iα ;

(c) sites visited by the random walk exactly j times (considered by Erdős and
Taylor in [4] and by Pitt [13]), where f (i) = I{i = j}.
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1 Introduction and main results

Let X1, X2, . . . be a sequence of independent identically distributed random vectors
valued in Zd , d ≥ 1. Consider a random walk generated by Xn’s, S0 := 0, Sn := X1 +
. . .+Xn, and the number of visits to a site x ∈ Zd up to time n which is called the
local time of x,

l(n,x) :=
n

∑
i=0

I{Si = x}. (1)
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Define random variables

Ln(α) := ∑
x∈Zd : l(n,x)>0

lα(n,x), α ≥ 0. (2)

In particular, the Ln(0) = |{S0, ...,Sn}| represents the number of distinct sites visited
by the random walk up to time n, called the range of (Sn)n≥1. The case α = 1 is
trivial because Ln(1) = n+ 1. The value of Ln(2) is the number of so called self-
intersections of a random walk. For an integer α the value of Ln(α) is the number of
α-fold self-intersections up to time n.

It is known that for a recurrent random walk the quotient Ln(0)/n tends to 0 as
n→ ∞ (see, e.g. Spitzer [12, Ch. 1, Sect. 4, Theorem 1]), which assumes a slower
growing normalising sequence for a proper limit in the law of large numbers. As
shown in Dvoretzky and Erdős [8, Theorem 3] for a simple random walk and in
Černý [3] for a general one with zero drift and finite covariance matrix, it is n/ logn
in 2 dimensions.

In present article we show that the law of large numbers for Ln(α) with a non-zero
limit and normalising sequence n holds in any dimension d for any transient random
walk, that is, when the probability of its return to the origin,

γ := P{Sn 6= 0 for all n≥ 1},

is strictly positive, γ > 0. We assume in addition that γ < 1 which excludes a trivial
case where either l(n,x) = 1 or 0 for all x with probability 1, and hence Ln(α) = n+1.

The result for Ln(α) we are interested in follows from the following more general
result. Consider a function f : Z+→ R and a spatial sum

Gn( f ) := ∑
x∈Zd

f (l(n,x)).

In particular, for a power function f (i) = iα , we get Ln(α) = Gn( f ).

Theorem 1 Let the random walk (Sn)n≥0 be transient and f : Z+→ R be a function
satisfying

∞

∑
j=1

f 2( j) j(1− γ) j < ∞. (3)

Then

Gn( f )
n
→ γ

2
∞

∑
j=1

f ( j)(1− γ) j−1 as n→ ∞ (4)

in mean square and with probability 1.

The proof of Theorem 1 is given in Section 4. In Sections 2 and 3 we discuss an
asymptotic behaviour of the expectation and variance of Gn( f ) as n→∞ respectively,
needed further in the proofs.

The following corollaries are immediate.
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Corollary 2 For any α ≥ 0, it holds that

Ln(α)

n
→ γ

2
∞

∑
j=1

jα(1− γ) j−1 as n→ ∞ (5)

in mean square and with probability 1.

The case α = 0 was considered by Spitzer in [12, Theorem 1.4.1] where conver-
gence in probability is proven. Before then a strong law of large numbers for α = 0
was proven for a simple random walk by Dvoretzky and Erdős in [8]. In Becker and
König [1] the strong convergence (5) is proven for all α ≥ 0 (up to a gap in the proof
of Proposition 2.1, see a comment on it in the proof of Lemma 5 following equation
(13)) without any further conditions in the case d ≥ 3, however in the cases d ∈ {1,2}
it is assumed there that either the steps Xi are square integrable or, for some η > 0
and C < ∞,

∞

∑
k=n

P{Sk = 0} ≤ C
nη

for all n. (6)

Corollary 3 Let J ⊂ N. Then, with probability 1,

1
n ∑

x∈Zd

I{l(n,x) ∈ J} → ∑
j∈J

γ
2(1− γ) j−1 as n→ ∞.

If J is a singleton { j}, then we get the strong law of large numbers for the number
of sites visited exactly j times up to time n. For these statistics, the last corollary
generalises Theorem 12 in Erdős and Taylor [4] from a simple random walk in d ≥
3 dimensions to an arbitrary transient random walk; a general result for transient
random walks on a countable Abelian group was proven by induction on j by Pitt in
[13]. Notice that, for an arbitrary J, say J the set of all odd numbers, Corollary 3 can
be reduced to the singleton case, once we know the strong law of large numbers for
the range of Sn.

The growth condition (3) is satisfied for all subexponential functions f (i) of order
eo(i) as i→ ∞, and also for exponentially growing functions of order O(eci) with
exponent coefficient c < λ∗/2 where

λ∗ := log
1

1− γ
.

It is very likely that the condition (3) may be relaxed to the condition (9) below
because under the latter condition we have

E| f (l(∞,0))| =
∞

∑
k=1
| f (k)|(1− γ)k−1

γ < ∞,

and since the number of visited sites up to time n is not greater than n, it clearly
indicates that the family {Gn( f )/n,n ≥ 1} is stochastically bounded. But if we only
assume (9), then it requires a much more delicate analysis compared to the estimation
of the variance carried out in Lemma 6, as it happens when we prove a strong law
of large numbers for a random walk where existence of the second moment of jumps
essentially simplifies proving technique. In the result below we show how it can be
done under some additional technical assumptions.
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Theorem 4 Let, for some C < ∞ and ε > 0,
(i) either the condition

n

∑
k=1

kP{Sk = 0} ≤ Cn1−η for all n (7)

hold for some η ∈ (0,1) and | f (i)| ≤Ceiλ∗/i2+ε for all i,
(ii) or the condition

n

∑
k=1

kP{Sk = 0} ≤ C logn for all n (8)

hold and | f (i)| ≤Ceiλ∗/i log2+ε i for all i > 0.
Then the convergence (4) holds with probability 1.

For the proof, see Section 5. It is based on truncation technique and on a strong
limit theorem for the maximal local time, l(n) := max{l(n,x), x ∈ Zd}, see Proposi-
tion 8 there.

Notice that the condition (7) is equivalent to (6). Indeed, on the one hand, it
follows from (6) that

n

∑
k=1

kP{Sk = 0} =
n

∑
j=1

n

∑
k= j

P{Sk = 0} ≤ C
n

∑
j=1

j−η ≤ C
1−η

n1−η .

On the other hand, it follows from (7) that, for all m,

C(2m)1−η ≥
2m−1

∑
k=m

kP{Sk = 0} ≥ m
2m−1

∑
k=m

P{Sk = 0},

hence

∞

∑
k=n

P{Sk = 0} =
∞

∑
j=0

n2 j+1−1

∑
k=n2 j

P{Sk = 0} ≤ C21−η
∞

∑
j=0

(n2 j)−η =
2C

2η −1
n−η .

Also notice that, in d ≥ 3 dimensions, if a random walk is not concentrated in some 3-
dimensional subspace, then the condition (7) is valid because P{Sn = 0}=O(1/nd/2),
due to an upper bound for the concentration function of a sum of random vectors,
see e.g. Corollary of Theorem 6.2 in Esseen [6]. For the same reason, in d ≥ 4 di-
mensions, the condition (8) is valid for any random walk not concentrated in some
3-dimensional subspace.

If the function f grows faster than assumed in Theorem 4, say if the condition (9)
fails, then Gn( f ) would require stronger normalisation than just n, in order to have a
proper limit as n→∞. The answer may be conjectured as follows: let τ = inf{n≥ 1 :
Sn = S0} be the first return time to the origin, then

E| f (l(n,0))| =
n

∑
k=1
| f (k)|P{τ̃1 + . . .+ τ̃k−1 ≤ n}(1− γ)k−1

γ,
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where τ̃1, τ̃2, . . . are independent copies of τ conditioned on {τ < ∞}. For example,
consider f such that f (k)∼ c1/(1− γ)k, then

E f (l(n,0)) ∼ c2

∞

∑
k=1

P{τ̃1 + . . .+ τ̃k−1 ≤ n} as n→ ∞.

As shown in [7, Theorem 4], in the case where EX1 = 0, E‖X1‖2 < ∞ and d ≥ 3, we
have an asymptotic relation P{τ̃ = n} ∼ c3/nd/2 as n→ ∞.

Hence, in the case d ≥ 5, Eτ̃1 < ∞ and it follows from the renewal theorem
that then E f (l(n,0))∼ c2n/Eτ̃1, which together with asymptotic size of the range—
which is of order O(n)—indicates that the right normalisation for Gn( f ) should be
n2.

In the cases d = 3 and d = 4, Eτ̃1 = ∞ and it follows from Erickson’s renewal
theorem [5, Theorem 5] that then E f (l(n,0)) ∼ c4n1/2 and c5n/ logn respectively,
which in turn indicates that the right normalisation for Gn( f ) should be n3/2 and
n2/ logn respectively.

2 Asymptotics for expectation of Gn( f )

In this section we discuss the asymptotic behaviour of EGn( f ) as n→ ∞. We prove
the following result.

Lemma 5 Let f : Z+→ R be a function satisfying
∞

∑
j=1
| f ( j)|(1− γ) j < ∞. (9)

Then

EGn( f )
n

→ γ
2

∞

∑
j=1

f ( j)(1− γ) j−1 as n→ ∞. (10)

Proof Following Dvoretzky and Erdős [8], we introduce

γn := P{Sn 6= Sk for all 0≤ k ≤ n−1},

the probability that the site visited by random walk in the nth step has not been visited
before then; γ0 = 1. As noticed in [8],

1− γn = P{Sn = Sk for some 0≤ k ≤ n−1}
= P{Sn−k = S0 for some 0≤ k ≤ n−1},

so γn equals the probability that the random walk does not return to the origin in n
steps:

γn = P{Sk 6= S0 for all 1≤ k ≤ n} = P{τ ≥ n+1}.

We observe the following monotone convergence

γn− γ = P{n+1≤ τ < ∞} ↓ 0 as n→ ∞. (11)
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Consider the following spatial sum

Qn( j) := ∑
x∈Zd

I{l(n,x) = j},

which represents the number of sites visited exactly j times up to time n, hence

Gn( f ) =
n

∑
j=1

f ( j)Qn( j). (12)

As Becker and König [1, Eq. (2.2)] do, we use the following equality, for j ≥ 1:

EQn( j)

= ∑
x∈Zd

P{l(n,x) = j}

= ∑
x∈Zd

0≤k1<...<k j≤n

P{Sk1 = ...= Sk j = x,Sk 6= x for all k ≤ n,k 6∈ {k1, . . . ,k j}}

= ∑
0≤k1<...<k j≤n

γk1

[ j−1

∏
i=1

P{τ = ki+1− ki}
]

γn−k j , (13)

due to the Markov property of the random walk. In [1], the asymptotic behaviour of
EQn( j) as n→ ∞ is argued by considering the generating function of {EQn( j),n ≥
1} and then referring to the Tauberian theorem, [9, Theorem XIII.5]. Notice that
this approach requires the sequence {EQn( j),n≥ 1} to be ultimately increasing (see
Sections 1.7.3 and 1.7.4 in [2]) which is not granted from the beginning and probably
fails; at least such a discussion is missing in [1]. Notice that this problem can be fixed
by first looking at the sum of Q j(n) over j ≥ j̃ for some j̃ (this is now monotonic in
n) and then looking at the differences. See also Pitt [13] for an alternative proof.

Below we suggest another argument which does not require the Tauberian the-
orem and is only based on the transience of the random walk. It follows from (13)
that

EQn( j) = ∑
n0 ,n j≥0

n1 ,...,n j−1≥1
n0+...+n j=n

γn0γn j

j−1

∏
i=1

P{τ = ni}

= ∑
n0,n j : 0≤n0+n j≤n− j+1

γn0γn jP{τ1 + . . .+ τ j−1 = n− (n0 +n j)},

where τ1, τ2, . . . are independent copies of τ , the first return time to the origin. Thus

EQn( j) =
n− j+1

∑
s=0

P{τ1 + ...+ τ j−1 = n− s}
s

∑
n0=0

γn0γs−n0 ,

hence

EQn( j)
n

=
n

∑
s= j−1

P{τ1 + ...+ τ j−1 = s}1
n

n−s

∑
n0=0

γn0γn−s−n0 . (14)
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In view of the convergence (11), for any fixed s≥ j−1,

1
n

n−s

∑
n0=0

γn0γn−s−n0 → γ
2 as n→ ∞,

and, moreover,

1
n

n−s

∑
n0=0

γn0γn−s−n0 ≤
n− s+1

n
≤ 1 for all n and s≥ 1.

Therefore, by the dominated convergence theorem, as n→ ∞,

EQn( j)
n

→ γ
2P{τ1 + ...+ τ j−1 < ∞}

= γ
2

j−1

∏
k=1

P{τk < ∞} = γ
2(1− γ) j−1,

owing to independence of τk’s. In addition,

EQn( j)
n

≤ P{τ1 + ...+ τ j−1 < ∞} = (1− γ) j−1 for all n. (15)

Then the condition (9) makes it possible to apply dominated convergence again and
to conclude that

EGn( f )
n

=
∞

∑
j=1

f ( j)
EQn( j)

n
→ γ

2
∞

∑
j=1

f ( j)(1− γ) j−1 as n→ ∞,

which completes the proof of (10). Also notice that (15) implies an upper bound

EGn( f ) ≤ n
n

∑
j=1

f ( j)(1− γ) j−1. (16)

ut

3 Estimation of variance of Gn( f )

The proof of the strong law of large numbers for Ln(α) for a transient random walk
given by Becker and König in [1] is based on the following upper bound for the
variance of Ln(α):

VarLn(α) ≤ Cn ∑
x∈Zd

n

∑
i, j=0

P{Si = x}P{S j =−x} for all n,

where C = C(α) is a constant. Notice that the proof of this bound provided in [1]
starts with an analysis of some representation for the variance of Ln(α), which is only
available for integer α’s, implication of which is necessary for further arguments for
the strong law of large numbers for Ln(α) in the case of a non-integer α .

For this reason we suggest below a different bound which works not only for
Ln(α) with a non-integer α , but also for Gn( f ) with a function f other than power.
This bound provides a straightforward way for proving the strong law of large num-
bers for Gn( f ) with f satisfying the growth condition (3).
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Lemma 6 For any non-decreasing function f with f (0) = 0,

VarGn( f ) ≤ EGn( f 2)+4
n

∑
i=1

f (i)∆ f (i)(1− γ)i−1
n

∑
r=1

r(n− r)P{Sr = 0}

for all n where ∆ f (i) := f (i)− f (i−1)≥ 0.

Proof In view of the representation (12),

Gn( f ) = ∑
x∈Zd

n

∑
i=1

f (i)I{l(n,x) = i},

hence

VarGn( f )

= ∑
x,y∈Zd

n

∑
i, j=1

f (i) f ( j)
(
P{l(n,x) = i, l(n,y) = j}−P{l(n,x) = i}P{l(n,y) = j}

)
= ∑

x∈Zd

n

∑
i=1

f 2(i)P{l(n,x) = i}+ ∑
x 6=y

n

∑
i, j=1

f (i) f ( j)P{l(n,x) = i, l(n,y) = j}

− ∑
x,y∈Zd

n

∑
i, j=1

f (i) f ( j)P{l(n,x) = i}P{l(n,y) = j},

because P{l(n,x) = i, l(n,y) = j}= 0 if x = y and i 6= j. Thus, due to f ≥ 0,

VarGn( f ) ≤ EGn( f 2)+
n

∑
i, j=1

f (i) f ( j)
(
∑
x 6=y

P{l(n,x) = i, l(n,y) = j}

−∑
x,y

P{l(n,x) = i}P{l(n,y− x) = j}
)

=: EGn( f 2)+Σ
1
n −Σ

2
n , (17)

and it only remains to estimate the difference of sums Σ 1
n −Σ 2

n on the right hand side.
Since f (0) = 0,

n

∑
i, j=1

f (i) f ( j)P{l(n,x) = i, l(n,y) = j}

=
n

∑
i, j=1

P{l(n,x) = i, l(n,y) = j}
i

∑
i1=1

j

∑
j1=1

∆ f (i1)∆ f ( j1)

=
n

∑
i1, j1=1

∆ f (i1)∆ f ( j1)
n

∑
i=i1

n

∑
j= j1

P{l(n,x) = i, l(n,y) = j}

=
n

∑
i, j=1

∆ f (i)∆ f ( j)P{l(n,x)≥ i, l(n,y)≥ j},
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and similar equalities hold for ordinary sums. Therefore,

Σ
1
n −Σ

2
n =

n

∑
i, j=1

∆ f (i)∆ f ( j)
(

∑
x 6=y

P{l(n,x)≥ i, l(n,y)≥ j}

−∑
x,y

P{l(n,x)≥ i}P{l(n,y)≥ j}
)
,

where ∆ f (i) ≥ 0 for all i because f is non-decreasing, and the tail probabilities do
not decrease as n grows, which makes it possible to perform a required analysis of the
double sum. Let us decompose the event B = B(x,y, i, j) := {l(n,x) ≥ i, l(n,y) ≥ j}
for x 6= y as a union of four disjoint events B∩Bxy, B∩Byx, B∩Bxyx and B∩Byxy,
where

Bxyx := {Sn1 = x,Sn2 = y,Sn3 = x for some n1 < n2 < n3 ≤ n},
Bxy := {all visits to x occur before all visits to y}.

Denote by τx(i) the time of ith visit to x by the random walk (Sn)n≥0. Then the event
B∩Bxy implies the event:

Bxy(i, j) := {no visits to y before τx(i)

and not less than j visits to y after τx(i)}.

Altogether these imply the following upper bound

P{B(x,y, i, j)} ≤ P{B∩Bxyx}+P{B∩Byxy}
+P{B∩Bxy(i, j)}+P{B∩Byx( j, i)}. (18)

Let us estimate every probability on the right hand side here. Since τx(i) is a Markov
time,

P{B∩Bxy(i, j)}
= ∑

k≤n
P{τx(i) = k,not less than j visits to y within time interval [k+1,n]}

= ∑
k≤n

P{τx(i) = k}P{l(n− k,y− x)≥ j}

≤ ∑
k≤n

P{τx(i) = k}P{l(n,y− x)≥ j},

because the event {l(n,y− x)≥ j} can only increase as n grows. Therefore,

P{B∩Bxy(i, j)} ≤ P{τx(i)≤ n}P{l(n,y− x)≥ j}
= P{l(n,x)≥ i}P{l(n,y− x)≥ j}.

Then summation over all x 6= y implies that

∑
x 6=y

(
P{B∩Bxy(i, j)}+P{B∩Byx( j, i)}

)
≤ ∑

x 6=y

(
P{l(n,x)≥ i}P{l(n,y− x)≥ j}+P{l(n,y)≥ j}P{l(n,x− y)≥ i}

)
≤∑

x,y
P{l(n,x)≥ i}P{l(n,y)≥ j}.
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Together with non-negativity of increments of the function f it implies that

n

∑
i, j=1

∆ f (i)∆ f ( j)
(

∑
x 6=y

(
P{B∩Bxy(i, j)}+P{B∩Byx( j, i)}

)
−∑

x,y
P{l(n,x)≥ i}P{l(n,y)≥ j}

)
≤ 0. (19)

Further, the event Bxyx may be described as follows: firstly the site x is visited at least
once, say t ≥ 1 times, then the site y is visited one or more times, say s≥ 1 times, and
then again the site x is visited, which is followed by visits to x and y in an arbitrary
order. Thus, for i≥ j,

P{B∩Bxyx}
≤ ∑

t,s,k1<...<kt+s+1≤n
P{Sk1 = . . .= Skt = x,Skt+1 = . . .= Skt+s = y,

Skt+s+1 = x, there are no other visits to x and y up to kt+s+1,

Sk = x at least i− t−1 times past kt+s+1}.

and similarly for j ≥ i

P{B∩Bxyx}
≤ ∑

t,s,k1<...<kt+s+1≤n
P{Sk1 = . . .= Skt = x,Skt+1 = . . .= Skt+s = y,

Skt+s+1 = x, there are no other visits to x and y up to kt+s+1,

Sk = y at least j− s times past kt+s+1}.

Summing up for all x and y we arrive at the following upper bound

∑
x 6=y

P{B∩Bxyx}

≤ Pi−1{τ < ∞} ∑
z∈Zd , r1<r2<r3≤n

P{Sr2 −Sr1 = z,Sr3 −Sr2 =−z}

= (1− γ)i−1
∑

z∈Zd , r1<r2<r3≤n

P{Sr2 −Sr1 = z,Sr3 −Sr2 =−z}

in the case i≥ j and similarly with coefficient (1− γ) j−1 in the case j ≥ i. Since

∑
z∈Zd

P{Sr2 −Sr1 = z,Sr3 −Sr2 =−z} = P{Sr3 −Sr1 = 0},

we get, for i≥ j,

∑
x 6=y

P{B∩Bxyx} ≤ (1− γ)i−1
∑

r1<r3≤n
(r3− r1)P{Sr3 −Sr1 = 0}

= (1− γ)i−1
n

∑
r=1

r(n− r)P{Sr = 0},
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which together with (17), (18) and (19) shows that the variance of Gn( f ) does not
exceed

EGn( f 2)+4
n

∑
j≤i, i, j=1

∆ f (i)∆ f ( j)(1− γ)i−1
n

∑
r=1

r(n− r)P{Sr = 0}.

The sum of ∆ f ( j) from j = 1 to i equals f (i), hence the desired upper bound for
VarGn( f ). ut

4 Proof of Theorem 1

Without loss of generality we assume f (0)= 0. Any function f :Z+→R with f (0)=
0 is decomposable into a difference of two non-decreasing functions, f = f1− f2,
where

f1( j) =
j

∑
i=1

( f (i)− f (i−1))+, f2( j) =
j

∑
i=1

( f (i)− f (i−1))−. (20)

Since

fk( j) ≤
j

∑
i=1
| f (i)− f (i−1)| ≤ 2

j

∑
i=1
| f (i)|, k = 1, 2,

we get the following upper bound

∞

∑
j=1

f 2
k ( j)(1− γ) j ≤ 4

∞

∑
j=1

(1− γ) j
( j

∑
i=1
| f (i)|

)2

≤ 4
∞

∑
j=1

(1− γ) j j
j

∑
i=1

f 2(i)

= 4
∞

∑
i=1

f 2(i)
∞

∑
j=i

(1− γ) j j ≤ 4
γ2

∞

∑
i=1

f 2(i)(i+1)(1− γ)i.

Therefore, the condition (3) implies that

∞

∑
j=1

f 2
k ( j)(1− γ) j < ∞, k = 1, 2. (21)

Hence, without loss of generality we assume that f is a non-decreasing function sat-
isfying (21) and f (0) = 0.

The transience of the random walk (Sn)n≥0 is equivalent to the convergence of
the series

∞

∑
n=1

P{Sn = 0} < ∞. (22)
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The condition (21) allows us to apply the upper bound (16) to f 2 and to conclude that
EGn( f 2) ≤ c1n for some c1 < ∞. Since f is non-decreasing and f (0) = 0, ∆ f (i) ≤
f (i). Therefore, by Lemma 6,

VarGn( f ) ≤ c1n+ c2n
n

∑
i=1

f 2(i)(1− γ)i−1
n

∑
r=1

rP{Sr = 0}

≤ c1n+ c3n
n

∑
r=1

rP{Sr = 0},

again by the condition (21). In view of (22),

an :=
1
n

n

∑
r=1

rP{Sr = 0} → 0 as n→ ∞

and hence

Var
Gn( f )

n
≤ c1

n
+ c3an→ 0 as n→ ∞, (23)

which is equivalent to the convergence (Gn( f )−EGn( f ))/n→ 0 in L2. Together with
the convergence (10) this completes the proof of L2-convergence stated in Theorem
1.

For the proof of the almost sure convergence, first let us notice that (22) yields

∞

∑
n=1

an

n
=

∞

∑
n=1

1
n2

n

∑
r=1

rP{Sr = 0}

≤
∞

∑
r=1

P{Sr = 0} r
∞

∑
n=r

1
n2 ≤ 2

∞

∑
r=1

P{Sr = 0} < ∞.

Hence we can apply Lemma 7 proven below to the sequence {an}n≥1, so, for any
fixed δ > 0, there is an increasing subsequence {nr}r≥1 such that ∑

∞
r=1 anr < ∞ and√

1+δnr−1 ≤ nr+1 ≤ (1+δ )nr for all r.
Using Chebyshev’s inequality, the upper bound (23) and the convergence (10) we

conclude that, for any ε > 0,

∞

∑
r=1

P
{∣∣∣ Gnr( f )

EGnr( f )
−1
∣∣∣> ε

}
≤

∞

∑
r=1

VarGnr( f )
ε2(EGnr( f ))2

≤ C
ε2

∞

∑
r=1

(1/nr +anr)< ∞.

Then it follows from the Borel–Cantelli lemma that

Gnr( f )
EGnr( f )

a.s.→ 1 as r→ ∞. (24)

Further, for any n there exists r such that nr ≤ n≤ nr+1 and, hence

Gnr( f )
EGnr+1( f )

≤ Gn( f )
EGn( f )

≤
Gnr+1( f )
EGnr( f )

. (25)
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It follows from (10) that

EGnr+1( f )
EGnr( f )

∼ nr+1

nr
as r→ ∞.

Moreover, nr < nr+1 ≤ (1+δ )nr for all r. Then (24) and (25) imply that

1
1+δ

≤ liminf
n→∞

Gn( f )
EGn( f )

≤ limsup
n→∞

Gn( f )
EGn( f )

≤ 1+δ a.s.

Due to arbitrary choice of δ > 0, the a.s. convergence Gn( f )/EGn( f )→ 1 follows.
ut

In the last proof, we have made use of the following auxiliary result.

Lemma 7 Let vn ≥ 0 and ∑
∞
n=1

vn
n < ∞. Then, for any fixed δ > 0, there exists an

increasing subsequence {nr}r≥1 such that ∑
∞
r=1 vnr < ∞ and

√
1+δnr−1 ≤ nr+1 ≤

(1+δ )nr for all r ≥ 1.

Proof Let us fix an arbitrary b ∈ (1,2) and identify a K = K(b) such that [bK ]−
[bK−1]≥ 2. For r ≥ 1, choose

nr ∈ [[bK+r−2]+1, [bK+r−1]] such that vnr = min
[bK+r−2]+1≤n≤[bK+r−1]

vn.

By this construction,

∞

∑
n=1

vn

n
≥ vn1

[bK ]

∑
n=1

1
n
+ vn2

[bK+1]

∑
n=[bK ]+1

1
n
+ . . .+ vnr

[bK+r−1]

∑
n=[bK+r−2]+1

1
n
+ . . .

Since

[bK+r−1]

∑
n=[bK+r−2]+1

1
n
→ logb > 0 as r→ ∞,

the convergence of the series ∑n
vn
n guarantees convergence of the series ∑r vnr . Also,

for all r,

nr+1

nr−1
≥ bK+r−1

bK+r−2 = b and
nr+1

nr
≤ bK+r

bK+r−2 = b2,

so the lemma conclusion follows if we take b =
√

1+δ . ut
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5 Proof of Theorem 4

To prove Theorem 4, let us first consider the maximal local time, l(n) :=max{l(n,x), x∈
Zd}. Theorem 13 in Erdős and Taylor [4] states a strong limit theorem for l(n): for a
simple random walk in d ≥ 3 dimensions,

l(n)
logn

→ 1
log 1

1−γ

=:
1
λ∗

as n→ ∞ with probability 1. (26)

The proof in [4] is split into two parts, dealing with upper and lower bounds. There
is some issue with the proof of the upper bound, that is,

limsup
n→∞

l(n)
logn

≤ 1
λ∗

with probability 1. (27)

The proof suggested in [4] is based on the inequality for tails

P{l(n)> t} ≤ nP{l(n,0)> t} for all t > 0, (28)

and on the observation that the number of returns to the origin, l(n,0), is dominated
by a geometrically distributed random variable with parameter 1− γ . Notice that
justification of (28) in [4] is not complete because it is based there on the assumption
that all sites visited by the random walk—clearly not more than n—can be treated
in the same way as the origin. This point requires further justification because the
set of visited sites is random. The same issue occurs is the proof of Theorem 1 in
Revesz [11]. Notice that this set is contained in the ball of radius n, which leads to
the coefficient nd instead of n on the right hand side of (28) which in its turn leads to
the constant d/λ∗ on the right hand side of (27) instead of 1/λ∗.

The last issue may be resolved in different ways, particularly, we may condition
on the non-zero value of S1,

P{l(n)> t} ≤ P{l(n,0)> t}+ ∑
x 6=0

P{l(n−1,x)> t | S1 = x}P{S1 = x},

followed by an induction argument on n. Hence, the upper bound (28) holds for any
transient random walk in any dimensions. Therefore,

P{l(n)> t} ≤ nP{l(∞,0)> t} ≤ n(1− γ)t−1 = ne−(t−1)λ∗ ,

which implies, for all ε > 0 and m ∈ {0,1,2, . . .}, the following upper bound

P{C(n,ε,m)} ≤ 2
logn . . . log(m−2) n log1+ε

(m−1) n
,

for the events

C(n,ε,m) :=
{

l(2n)> 1+
1
λ∗

(logn+ . . .+ log(m−1) n+(1+ ε) log(m) n)
}

;

hereinafter log(m) x denotes the m-fold iterated logarithms, that is,

log(0)(x) = x, log(m)(x) = log log(m−1) x for all m≥ 1.
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Therefore, the series ∑
∞
k=1P{C(2k,ε,m)} converges, hence by the Borel-Cantelli

lemma, only finitely many of C(2k,ε,m) occur, with probability 1. For any n ∈
[2k,2k+1) and the event

B(n,ε,m) :=
{

l(n)> 1+
1
λ∗

(logn+ . . .+ log(m−1) n+(1+ ε) log(m) n)
}
,

we have inclusion B(n,ε,m)⊆C(2k,ε,m), and thus only finitely many of B(2k,ε,m)
occur, with probability 1. In other words, we arrive at the following result.

Proposition 8 For all ε > 0 and m ∈ {0,1,2, . . .},

l(n) ≤ 1
λ∗

(
logn+ . . .+ log(m−1) n+(1+ ε) log(m) n

)
,

for all n≥ N where N is finite with probability 1.

Notice that, for a simple random walk in Zd , d≥ 3, an upper a.s. bound λ−1
∗ (logn+

(1+ ε) log logn) and—in the case of d ≥ 4—a lower a.s. bound λ−1
∗ (logn− (3+

ε) log logn) is derived by Revesz in [11] following a different technique; he has also
proved that l(n)≥ λ−1

∗ (logn+(1−2/(d−2)− ε) log logn) infinitely often a.s. The
maximal local time for a zero drift random walk on Z with finite variance—which is
clearly recurrent—was studied by Kesten in [10].

Let us proceed with the proof of Theorem 4, we start with the case (ii). In-
troducing two non-decreasing functions, f1 and f2 as in (20), we notice that then
fk(i)≤ C̃eiλ∗/i log2+ε i for k = 1, 2, because

n

∑
i=1

eiλ∗

i log2+ε i
= O

( enλ∗

n log2+ε n

)
as n→ ∞.

Hence, without loss of generality we assume that f is non-decreasing with f (0) = 0.
The function f satisfies the condition (9), but not (21), and this generates a cer-

tain difficulty we need to overcome. To this end, let us introduce two sequences of
truncated functions

fn(i) := f (i)I
{

i≤ λ
−1
∗ logn

}
,

f+n (i) := f (i)I
{

λ
−1
∗ logn < i≤ λ

−1
∗ (logn+bn)

}
,

where bn = log(2) n+2log(3) n and make use of the following decomposition

Gn( f ) = Gn( fn)+Gn( f+n )+Gn( f − fn− f+n ).

Since f satisfies the condition (9), we get equivalences

EGn( fn) ∼ EGn( f ) ∼ nγ
2

∞

∑
j=1

f ( j)(1− γ) j−1 as n→ ∞, (29)

and, by (16), the following upper bound

EGn( f 2
n ) ≤ c1

n
logn log2+ε

(2) n
EGn( fn) ≤ c2

n2

logn log2
(2) n

.
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Further, it follows from the condition (8) that

n

∑
r=1

r(n− r)P{Sr = 0} ≤ n
n

∑
r=1

rP{Sr = 0} ≤ c3n logn.

In addition,

n

∑
i=1

fn(i)∆ fn(i)(1− γ)i−1 ≤
λ−1
∗ logn

∑
i=1

f 2(i)e−(i−1)λ∗

≤ c4
eiλ∗

i2 log4 i

∣∣∣
i=λ

−1
∗ logn

≤ c5
n

log2 n log4
(2) n

.

Substituting the last three bounds into the right hand side of the inequality provided
by Lemma 6, we derive that

VarGn( fn) ≤ c6n2/ logn log2
(2) n.

Choose a subsequence nr = [er/ log1/4 r], then, by Chebyshev’s inequality, the last up-
per bound and (29), we conclude that

∞

∑
r=1

P
{∣∣∣ Gnr( fnr)

EGnr( fnr)
−1
∣∣∣> 1

log1/8 r

}
≤

∞

∑
r=1

log1/4 rVarGnr( fnr)

(EGnr( fnr))
2

≤ c7

∞

∑
r=1

1

r log3/2 r
< ∞,

which allows us to apply the Borel–Cantelli lemma, hence obtaining

Gnr( fnr)

EGnr( fnr)

a.s.→ 1 as r→ ∞.

Similar to (25), if nr ≤ n≤ nr+1 then

Gnr( fnr)

EGnr+1( fnr+1)
≤ Gn( fn)

EGn( fn)
≤

Gnr+1( fnr+1)

EGnr( fnr)
.

In addition, by (29),

EGnr+1( fnr+1)

EGnr( fnr)
∼ nr+1

nr
∼ e

r+1
log1/4(r+1)

− r
log1/4 r → 1 as r→ ∞.

Therefore,
Gn( fn)

EGn( fn)

a.s.→ 1 as n→ ∞. (30)
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Further, it follows from (16) that, for all m≤ n,

E
Gn( f+m )

n
≤

[λ−1
∗ (logm+bm)]

∑
j=[λ−1

∗ logm]

f ( j)(1− γ) j−1

≤ c7

[λ−1
∗ (logm+bm)]

∑
j=[λ−1

∗ logm]

1
j log2+ε j

= O
(

bm

logm log2+ε

(2) m

)
= O

(
1

logn log1+ε

(2) n

)
,

if m≥ n/2. Applying Chebyshev’s inequality to non-negative random variables Gnk+1( f+nk
)/nk+1

with nk = 2k, we get the following series convergence

∞

∑
k=1

P
{Gnk+1( f+nk

)

nk+1
≥ 1

logε/2 k

}
≤

∞

∑
k=1

c8/k log1+ε k

1/ logε/2 k
< ∞,

which in its turn implies by the Borel–Cantelli lemma that

Gnk+1( f+nk
)

nk+1
→ 0 as k→ ∞ with probability 1.

In addition, for nk ≤ n≤ nk+1,

Gn( f+n )

n
≤

Gnk+1( f+nk
)

nk
= 2

Gnk+1( f+nk
)

nk+1
,

hence

Gn( f+n )

n
→ 0 as n→ ∞ with probability 1. (31)

Finally, since l(n) is the largest local time,

{Gn( f − fn− f+n )> 0} ⊆ {l(n)> λ
−1
∗
(
logn+ log(2) n+2log(3) n

)
},

which implies a.e. convergence Gn( f − fn− f+n )→ 0 as n→ ∞, due to Proposition 8
with m = 3. Together with (30), (31) and (29) it implies the desired convergence (4)
in the case (ii).

In the case (i), the proof requires some alterations. Consider a sequence of trun-
cated functions

fn(i) := f (i)I
{

i≤ λ−1
∗ η

2
logn

}
,

and make use of the following decomposition

Gn( f ) = Gn( fn)+Gn( f − fn).
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As above, the equivalences (29) hold and, by (16),

EGn( f 2
n ) ≤ c9nη/2EGn( fn) ≤ c10n1+η/2.

Further, it follows from the condition (7) that

n

∑
r=1

r(n− r)P{Sr = 0} ≤ n
n

∑
r=1

rP{Sr = 0} ≤ c11n2−η .

In addition,

n

∑
i=1

fn(i)∆ fn(i)(1− γ)i−1 ≤
λ
−1
∗ η

2 logn

∑
i=1

f 2(i)e−(i−1)λ∗ ≤ c12nη/2.

Substituting the last three bounds into the right hand side of the inequality provided
by Lemma 6, we derive that

VarGn( fn) ≤ c13n2−η/2,

since η < 1. Then similar to the case (ii) we deduce (30). Further, it follows from
(16) that, for all m≤ n,

E
Gn( f − fm)

n
≤

n

∑

j=[
λ
−1
∗ η

2 logm]

f ( j)(1− γ) j−1

≤ c14

∞

∑

j=[
λ
−1
∗ η

2 logm]

1
j2+ε

= O
(

1
log1+ε n

)
,

if m≥ n/2. Again similar to the case (ii), we deduce from the last bound that

Gn( f − fn)

n
→ 0 as n→ ∞ with probability 1,

which together with (30) and equality Gn( f ) = Gn( fn)+Gn( f − fn) implies (4) in
the case (i). The proof of Theorem 4 is complete. ut
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