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Abstract

Multi-tenancy enables e�cient resource utilization by sharing application resources

across multiple customers (i.e., tenants). Hence, applications built using this pat-

tern can be o↵ered at a lower price and reduce maintenance e↵ort as less application

instances and supporting cloud resources must be maintained. These properties en-

courage cloud application providers to adopt multi-tenancy to their existing appli-

cations, yet introducing this pattern requires significant changes in the application

structure to address multi-tenancy requirements such as isolation of tenants, exten-

sibility of the application, and scalability of the solution. In cloud applications, the

data layer is often the prime candidate for multi-tenancy, and it usually comprises

a combination of di↵erent cloud storage solutions such as blob storage, relational

and non-relational databases. These storage types are conceptually and tangibly di-

vergent, each requiring its own partitioning schemes to meet multi-tenancy require-

ments. Currently, multi-tenant data architectures are implemented using manual

coding methods, at times following guidance and patterns o↵ered by cloud prov-

iders. However, such manual implementation approach tends to be time consum-

ing and error prone. Several modeling methods based on Model-Driven Engineer-

ing (MDE) and Software Product Line Engineering (SPLE) have been proposed to

capture multi-tenancy in cloud applications. These methods mainly generate cloud

deployment configurations from an application model, though they do not automate

implementation or evolution of applications.

This thesis aims to facilitate development of multi-tenant cloud data architec-

tures using model-driven engineering techniques. This is achieved by designing and

implementing a novel modeling language, CadaML, that provides concepts and nota-

tions to model multi-tenant cloud data architectures in an abstract way. CadaML also

provides a set of tools to validate the data architecture and automatically produce

corresponding data access layer code. The thesis demonstrates the feasibility of the

modeling language in a practical setting and adequacy of multi-tenancy implemen-

tation by the generated code on an industrial business process analyzing application.

Moreover, the modeling language is empirically compared against manual implemen-

tation methods to inspect its e↵ect on developer productivity, development e↵ort,

reliability of the application code, and usability of the language. These outcomes
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provide a strong argument that the CadaML modeling language e↵ectively mitigates

the high overhead of manual implementation of multi-tenant cloud data layers, sig-

nificantly reducing the required development complexity and time.
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Chapter 1

Introduction

Cloud computing has become a major service provisioning paradigm as it provides

powerful, reliable, and e�cient platform to build and deploy cloud applications. It

delivers on-demand, flexible and configurable computing resources over the Inter-

net. Hence, instead of purchasing their own hardware and software infrastructure,

cloud customers exploit computing resources over the network, and pay only for the

resources they actually need and use. With the rapid growth of more e�cient and

a↵ordable services o↵ered by major cloud service providers such as Amazon, Google,

and Microsoft, application providers are shifting to cloud environments.

Cloud computing resources can be provisioned as a virtual infrastructure, a plat-

form, or predefined services. Most commonly application providers use computing

resources delivered as a platform to develop and host their predefined services. These

services range from email services to business oriented applications. Moreover, ap-

plication providers tend to deploy multiple customers to a shared service with each

customer enabled to configure or even customize the service based on its needs.

Nevertheless, customers must be able to access and use a shared service as it it

is a dedicated one. Therefore, this thesis considers the challenges associated with

sharing a single application across multiple customers. In particular, the thesis in-

vestigates the concerns related to sharing data, and propose a solution to address

these concerns.

The remainder of this chapter is organized as follows. Section 1.1 defines the con-

cept of cloud computing, explains di↵erent service models o↵ered by cloud providers,

discusses multi-tenancy patterns, and outlines how cloud computing could benefit

from DSLs. Section 1.2 highlights evolution motivations that trigger adoption of

multi-tenancy, and Section 1.3 presents challenges associated with multi-tenancy.

Sections 1.4 and 1.5 identifies the problem statement, and the research aim with

objectives of the thesis, respectively. Meanwhile, Section 1.6 describes the followed

research phases and methodology. Finally Section 1.7 emphasizes the contributions

of the thesis, and Section 1.8 presents its structure.
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1.1 Cloud Computing

In recent years, cloud computing has been widely exploited to deliver services over

the Internet as it o↵ers many advantages in comparison with existing traditional

service providers. By definition, cloud computing is a paradigm that provides on-

demand access to configurable computing resources to develop and deploy cloud

applications [90]. The main factors that trigger application providers moving their

applications to the cloud are the flexibility in resource provisioning and payment

on the usage basis which lead to significant reduction in initial costs and transition

from capital investments to operational expenses [90].

1.1.1 Cloud Service Models

As illustrated in Figure 1.1, there are three di↵erent service models [90] that allow

outsourcing varying degrees of computing resources and hardware maintenance to

a cloud provider. These models have their own benefits as well as di↵erences in the

amount of control over hardware and software resources they provide, and in the

level of responsibility in managing them. The following describes each service model

and its characteristics.

Figure 1.1: Separation of responsibilities in di↵erent cloud service models [61].
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• Infrastructure as a Service (IaaS) model provides a pool of infrastructural

resources such as servers, storage, and networking that are provisioned using

virtualization technologies. In this model, cloud customers typically install a

software stack which consists of an operating system, middleware and runtime

environment to deploy their applications. Managing and maintaining the soft-

ware stack is the responsibility of the customer, while managing the underlying

infrastructure is handled by the cloud provider. The examples of IaaS provi-

sioning services include AWS, Cisco Metacloud, DigitalOcean, Google Compute

Engine (GCE), Linode, Microsoft Azure, and Rackspace.

• Platform as a Service (PaaS) model delivers operating systems and associ-

ated application services that facilitate development, testing, deployment and

maintenance of applications without the need for investment in infrastructure

and software environment. PaaS provides an environment to run cloud applica-

tions, services for data storage, and a number of additional services to fully sup-

port deployment of cloud applications. In order to benefit from the capabilities

of the cloud platform, it is necessary to significantly evolve existing applications,

or even implement a new one. As the evolution we refer to the modification of

the application to adapt for the cloud environment. Most commonly exploited

PaaS services comprise Apache Stratos, AWS Elastic Beanstalk, Force.com,

Google App Engine (GAE), Heroku, OpenShift and Windows Azure.

• Software as a Service (SaaS) model enables customers to access applications

running on a cloud infrastructure (e.g., Cisco WebEx, Concur, GoToMeeting,

Dropbox, and Salesforce). In this model, the application and associated data

are hosted in the cloud and customers subscribe to the application over the

Internet. This, in turn, eliminates the need to install and maintain the appli-

cation, and it also removes the necessity to manage and control the underlying

cloud infrastructure. Nevertheless, customers have no control over individual

application capabilities, they are only enabled with limited user-specific appli-

cation configuration settings.

Among these service models, IaaS has been mostly investigated to deploy and

run cloud applications (e.g., [100,121]), though maintaining a virtual infrastructure

with supporting software stack incurs additional costs for application providers, and

requires system administrators with su�cient skills [131]. In contrast, PaaS delivers

a platform to develop and deploy SaaS applications while managing performance,

availability, scalability and other infrastructure related concerns of computing re-

sources. The combination of a full software stack and a managed platform sig-

nificantly reduces the maintenance e↵ort and upfront infrastructure investment for
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application providers [115], and makes PaaS the most commonly used service model

to develop and run SaaS applications [131]. Moreover, the demand for PaaS ser-

vices is rapidly growing [33], and cloud service providers encourage building SaaS

applications using PaaS services by o↵ering a complete set of tools and design guide-

lines [17, 58, 105, 125]. Based on this, we investigate how SaaS applications can be

implemented using services of the PaaS provisioning model and deployed on top of

them.

1.1.2 Multi-tenancy in SaaS

In traditional application provisioning models each customer is deoployed to its own

independent application, database and software stack that are customized based

on customer’s requirements. However, this model has many drawbacks, such as

ine�cient resource utilization, limited scalability, and high maintenance e↵ort and

deployment costs [18,19,126]. In order to address these drawbacks, application pro-

viders have been adopting multi-tenancy pattern, where multiple tenants share an

application with its supporting infrastructure while being able to configure the appli-

cation for their needs [68]. In this context, a tenant is a group of users that belongs

to an organization who has access with specific privileges to an application [74].

Figure 1.2: Multi-tenancy patterns to deploy tenants and their resources.

As illustrated in Figure 1.2, there are generally two resource sharing approaches

in multi-tenancy [26]: multiple instances multi-tenancy and single instance multi-

tenancy. In multiple instances multi-tenancy, each tenant has a dedicated applica-

tion instance on a shared hardware, operating system, or middleware. Whereas in

single instance multi-tenancy, tenants are served by a single application instance

that runs on shared hardware and software infrastructure while the application dis-

tinguishes the requests and data of each tenant. However, in the latter approach
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tenants must be able to configure and extend the application to their needs as it

runs in a dedicated environment.

Multi-tenancy approaches o↵er di↵erent benefits and drawbacks, and choosing

one approach over another depends on application requirements and architectural

considerations. The multiple instances pattern (i.e., Shared Hardware and Shared

Operating System (OS)) provides more security compared to the single instance

pattern as each tenant’s application and data are completely separate from each

other. The chance of accidental access other tenant’s data is essentially eliminated.

This type of isolation also prevents performance degradation which leads to higher

reliability and provides tenants with full control over the environment. Nevertheless,

cloud providers have limits on the number of application and database instances

that can be created. Moreover, the multiple instances approach is usually costly

and labor-intensive as it requires maintenance of multiple application and database

instances, and it is ine�cient in terms of resource utilization.

In contrast, the single instance approach addresses the limitations of the multiple

instances technique. Primarily, tenants share the same application and database in-

stances that dynamically scale on demand, hence, this approach can support a much

larger number of tenants [17, 26, 29, 105], and maximizes resource usage. Further-

more, application and database maintenance becomes easier since a single instance of

each has to be maintained. All these factors significantly reduce overall operational

and energy costs of resource provisioning and software maintenance [1,21,37,52,123],

and encourage application providers to adopt this pattern for their existing applica-

tions. Throughout this thesis, we focus on the single instance multi-tenancy pattern,

explore the key requirements, and consider the challenges introduced by this pattern.

1.1.3 Domain-Specific Languages (DSLs)

Multi-tenancy in cloud applications introduces a set of concerns that could be en-

capsulated into DSLs, specifically, to generate and/or maintain cloud application

implementations [1]. A DSL is a concise, simple and expressive language that is fo-

cused on addressing problems of a particular domain [43]. DSLs can raise the level

of abstraction by enabling specification of a model of an application directly using

domain concepts, and improve productivity of developers during the application

development by generating an application from the high-level model [85].

In software engineering, DSLs typically have a graphical interface, and provide

notations and concepts to model a solution of a particular domain by domain ex-

perts [77]. DSLs can be implemented for interpretation or code generation [43]. In-

terpretation executes DSL models by simulating a runtime environment, while code

generation produces high level language source code from a model. For example,
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the Entity Framework (EF) designer from Microsoft 1 is used for visual modeling of

persistent classes, generating a database schema from a model, and producing code

in C# to interact with SQL Server databases.

In this thesis, we aim to implement a DSL to address multi-tenancy concerns

in cloud applications. A DSL for multi-tenancy would possibly comprise concepts

to represent tenants, their configurations, cloud providers, tenant database, tenant

schema, and deployment specifications.

1.2 Motivation

Software evolution is an inevitable process in any software system that requires

modification of software to adapt to changes [120]. The reasons that call for evolution

to multi-tenancy include changes in business requirements, changes in hardware and

software platforms, improving resource provisioning and application maintenance,

or changes in the application delivery model. In this section, we describe some of the

evolution motivations that typically lead to introducing multi-tenancy in existing

applications.

Most importantly, provisioning and deploying dedicated application and database

instances for each tenant is time consuming and labor-intensive [18]. Providing an

application and a database for new tenants usually requires preparation of the de-

ployment infrastructure, configuration of networks, installation of all necessary soft-

ware, and ensuring proper functioning of the infrastructure. Nevertheless, tenant

demands need to be met more quickly and e�ciently than the traditional deployment

procedures allow.

Another issue with traditional application provisioning is that much of the in-

frastructure is used ine�ciently. As it is di�cult to predict an application workload,

application and database instances are deployed on servers that are configured to

provide enough resources during high workload. Thus, the majority of servers are

underutilized during normal workload [18, 19, 21, 37, 52, 73, 123]. This ine�ciency

could be optimized using better application deployment solutions.

A final issue is that maintenance and support of several web application and

database instances require additional e↵ort. For application providers, it is impor-

tant to fix tenants’ problems before they become expensive to resolve. Moreover,

providing on-time and su�cient support is crucial to keep tenants satisfied with the

application. The nature of cloud environments along with multi-tenancy patterns

could address these issues by providing lower costs through economies of scale and

resource sharing, automated management of the application resources, centralized

1https://docs.microsoft.com/en-us/ef/ef6/
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control over the application with its supporting infrastructure, and dynamic scala-

bility.

1.3 Challenges

Despite its benefits, introducing multi-tenancy a↵ects the overall application stru-

cture which requires application providers to address multiple challenges and find

a balance between several architectural trade-o↵s [74]. The following multi-tenancy

concerns along with design factors influence the application design, and they are

listed in the order of importance.

• Transparent tenant isolation: When multiple tenants share the same application

instance with its supporting infrastructure, isolation among di↵erent tenants is

the highest priority. In a shared environment, each tenant must be able to

access and use the application as if it is a dedicated one. Nevertheless, tenants

must be able to view and edit only their own data. Hence, tenant isolation

must be carefully considered in all layers of the application architecture from

both functional and non-functional perspectives.

• Configurability and extensibility: In the traditional application provisioning

model, each tenant is able to be served by customized application and database

instances based on its requirements. In multi-tenancy, such customization is

not applicable since customization of one tenant will impact the whole appli-

cation. As a result, multi-tenant applications must provide a mean for tenants

to configure and extend the application and database at run-time to cater for

their needs without a↵ecting other tenants sharing the application.

• Scalability: In multi-tenancy the application and database workload varies as

several customers of multiple tenants interact with a single application and

database. To avoid disruption and enable smooth running of the services, appli-

cation providers must ensure scalability of the solution by dynamically creating

and releasing application resources to match the performance requirements [59].

• Ease of development and maintenance: The transformation of an existing appli-

cation into a multi-tenant SaaS service requires re-engineering the application

architecture to support multi-tenancy concerns. This transformation process is

seen as a major barrier by application providers [17, 26, 32, 127], thus, they are

concerned that development and maintenance of multi-tenant applications will

require a vast amount of e↵ort.
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These challenges influence all layers of an application architecture. This is espe-

cially true in the case of the data layer which is often the prime candidate for multi-

tenancy [52], as other layers are typically stateless in cloud applications [11, 38].

Stateless layers do not store any tenant data since they are provided with each re-

quest [40]. Therefore, throughout this thesis, we focus on the data layer, analyze

how these challenges influence the data layer of multi-tenant cloud applications that

usually consists of di↵erent cloud data storage types, and investigate how these

challenges can be addressed using modeling techniques.

1.4 Problem Statement

When building a multi-tenant application, one of the highest priorities for developers

is to design a configurable and scalable data architecture that maximizes resource

sharing across tenants, and one that is also e�cient and cost-e↵ective to implement

and maintain [28]. However, cloud applications usually have a variety of data storage

requirements and are often best served by a combination of multiple data storage

options [110, 116, 125]. These storage options di↵er in storing and organizing data.

Moreover, each storage option has its own partitioning and extensibility approaches

to support multi-tenancy.

Cloud providers o↵er relational databases, non-relational databases and blob/ob-

ject storage at the PaaS provisioning level for storing application data. Relational

databases are appropriate for structured data with a well-defined schema where

data is organized in tables, rows and columns, and a primary key identifies each row

in a table. Relationships among tables, columns and other database elements are

strongly defined in the data model. On the contrary, non-relational databases (also

called NoSQL) are suitable for flexible data schemas and they support key-value

store models. Data is also stored in tables, where a partition key determines the

partition in which data will be stored, and a row key identifies data within each

partition. In turn, Blob/Object storage is ideal for completely unstructured data

such as documents, media files, or binary data. Data is stored in buckets as a blob,

where a key uniquely identifies each blob (i.e., object or item) within a bucket.

In order to ensure isolation of tenant data, and scalability of the solution, a

partitioning scheme is crucial when sharing application code and data across all

tenants. Typically, each cloud storage type has its own partitioning techniques. For

example, relational databases can be partitioned using one of the following ways.

(i) Separate databases : each tenant is served by a dedicated database. (ii) Shared

database, separate tables : all tenants are hosted by a single database with separate

tables per tenant. (iii) Shared database, shared tables : all tenants share tables in

a single database, with a tenant identifier is used to associate their records in each
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table. Similarly, non-relational databases can be partitioned by either deploying

separate tables per tenant, or sharing tables across all tenants. Whereas for blob

storage all blobs belonging to a specific tenant can be stored in a dedicated bucket,

or all tenant data can be stored in shared buckets.

Furthermore, cloud providers o↵er similar data storage services, though they

provide di↵erent libraries and APIs to implement the data layer. For example, Al-

ibaba Cloud requires manually creating an instance of a non-relational database,

meanwhile for other cloud providers a database instance can be created using their

APIs. In addition, cloud providers use their own annotations for mapping classes

and properties to tables and attributes in actual non-relational databases. As an-

other example, a deployment region for blob storage can be assigned at run-time for

Alibaba and AWS, but for Azure and Google this must be specified when creating a

storage credentials and creating a project in GAE, respectively. More detailed char-

acteristics of di↵erent cloud data storage types and comparison of APIs provided by

major cloud providers are presented in Appendices A and B.

Given these varying cloud data storage solutions, partitioning schemes and APIs,

manually implementing a multi-tenant data architecture can be highly time-consuming

and error-prone [23,45], especially for architectures utilizing more than one storage

type. Recent research has aimed to generate multi-tenant cloud applications from

high-level models in order to hide cloud-specific implementation details, e.g., [20,

41, 88, 94, 97, 103]. Several modeling languages have been proposed in this direc-

tion. As an example, an eXtensible Markup Language (XML)-based modeling

language is provided by Topology and Orchestration Specification for Cloud Ap-

plications (TOSCA) to define application components and their relationships [8].

Another example, Cloud Application Modeling Language (CAML) is proposed to

express cloud-based deployments directly in an application model [15]. However,

these modeling languages tend to focus less on managing multi-tenancy in the data

layer, and instead focus on other aspects such as enabling configurable application

functionality, capturing di↵erent functional and quality-of-service tenant require-

ments, and modeling variation of business logic implementation and deployment

alternatives. Although there is a few approaches that tackle multi-tenancy at the

data layer, none of them allow to capture multi-tenancy patterns in the data layer,

produce the data access code from the model, or consider di↵erent cloud storage

types with their partitioning peculiarities.

In conclusion, we come up with the following research areas that need improve-

ments:

• Current modeling approaches should consider and capture conceptual di↵er-

ences of available cloud data storage solutions.
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• Current modeling approaches should capture varying data architecture parti-

tioning and extensibility alternatives of di↵erent cloud data storage types.

• Current modeling approaches should provide a way to build a multi-tenant

data architecture that abstracts from the implementation di↵erences of di↵erent

cloud data storage types.

• Current modeling approaches should expedite data layer implementation by

reducing the development overhead and minimizing errors in the application

code.

1.5 Research Aim & Objectives

This thesis aims to facilitate implementation of multi-tenancy at the data layer of

cloud applications. Specifically, we investigate how applying MDE techniques could

benefit to raise the level of abstraction when building multi-tenant data architec-

tures, expedite the development process, and increase the productivity of developers.

In MDE, models are the key artifacts throughout the engineering lifecycle and they

represent abstract description of an application from a certain viewpoint. As the

main contribution of the thesis, we propose a cloud data architecture modeling

language (CadaML) to design a multi-tenant data architecture and generate source

code from the model that is suitable for di↵erent cloud storage types. We set the

following objectives to achieve our aim.

RO1: Analyze existing approaches that consider multi-tenancy challenges at the

data layer of cloud applications. This will help to assess the previous and

current research in multi-tenancy, gain insights into the practical challenges

of implementing multi-tenancy at the data layer, and explore methods for

data collection and evaluation of modeling languages.

RO2: Provide a way to describe a multi-tenant cloud data architecture at an abstract

level. This is based on the realization that cloud providers o↵er their own

libraries and APIs to implement the data layer. Hence, a data architecture

designed using the modeling language should hide the implementation details

by only representing data layer related components while also capturing data

partitioning and extensibility to address the multi-tenancy challenges. From

the data architecture, the modeling language should be able to produce the

data access layer code that can be deployed to services of di↵erent cloud

providers.

RO3: Reduce the development e↵ort during the implementation of a multi-tenant

cloud data architecture. Since manual implementation of multi-tenancy is
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time-consuming and error-prone, the modeling language should mitigate and

reduce the development e↵ort by (semi-)automating the data layer imple-

mentation process.

RO4: Improve reliability of the application code (specifically at the data layer). For

the same reason as in RO3, the modeling language should reduce the number

of errors in the application code by means of model validation and automated

code generation.

RO5: Provide developers with a reasonable level of usability. By proposing a mod-

eling language, we aim to increase the productivity of developers, reduce the

development e↵ort and improve the quality of the data access layer code.

However, the modeling language needs to be intuitive to exploit, suitable to

implement multi-tenancy, and it should not require much e↵ort or time to

learn it.

1.6 Research Methodology

We divide the work in this thesis into three main research phases in order to sys-

tematically achieve the above research objectives, and aim.

• Phase 1: Literature survey of existing manual approaches along with model-

based and model-driven modeling languages, tools and frameworks in order to

define the overlap and identify the gap in the current research (Supportive of

RO1).

• Phase 2: Development of a modeling language which simplifies and expedites

the implementation of multi-tenant data architectures of cloud applications

(Supportive of RO2 and RO5).

• Phase 3: Evaluation of the modeling language in terms of its applicability

to evolve an industrial single-tenant web application into a multi-tenant SaaS,

productivity of real developers with varying abilities, reliability of the generated

code, and usability of the language (Supportive of RO3, RO4, and RO5).

As we propose a new modeling language that requires quantitative evaluation

to investigate interaction of developers with the language, this thesis adopts a com-

bination of constructive and empirical research, and it is designed based on the

research phases as shown in Figure 1.3. We explore existing academic and indus-

trial approaches that focus on addressing multi-tenancy concerns at the data layer

by means of manual and modeling techniques (Phase 1: Literature Review). This is
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followed by the implementation of the modeling language (Phase 2: Development),

and subsequent evaluation (Phase 3: Evaluation).

Figure 1.3: Overview of the thesis design where chapters are mapped to research
phases.

Phase 1 reviews relevant approaches that tackle multi-tenancy in cloud applica-

tions to (i) outline the importance of the research scope being considered; (ii) iden-

tify weaknesses and limitations of the current research; and (iii) analyze di↵erent

methodological approaches that have been applied for investigation of multi-tenancy

concerns, data collection and evaluation of modeling languages.

Phase 2 involves identifying requirements for concepts and terminology that

must be included in the modeling language, and meta-modeling language for the

implementation of the language. It also involves defining the methodology for the

development of the language which includes domain analysis, design and implemen-

tation. The requirements and methodology are based on the findings of Phase 1

and analysis of the literature to develop DSLs.

Phase 3 evaluates the modeling language in terms of its application in a real-

world application, e↵ectiveness at facilitating productivity of developers and relia-

bility of the data layer code, and usability of the language. The evaluation is carried

out in two stages. The first stage inspects the applicability of the modeling language

to design and implement multi-tenancy at the data layer using qualitative evalua-

tion. This includes conducting a case study to evolve a data layer of an industrial

web application to adopt multi-tenancy, and demonstration of the correctness of

multi-tenancy implementation through a combination of manual review and JUnit

testing. The second stage evaluates the benefits and drawbacks of the language

through a controlled experiment with task analysis. This approach involves ob-

serving interaction of real developers with the modeling language, analyzing their

performance and productivity, and collecting their experience through a structured

questionnaire, an exit interview and open-ended questions.

1.7 Contributions

In this thesis, we propose CadaML that provides concepts and notations to design

and implement the data layer of multi-tenant cloud applications as a combination

of di↵erent cloud data storage solutions. Major contributions are grouped according

to the three research phases and mapped to the research objectives they reflect.
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Literature review

C1. A literature search that covers current manual and modeling approaches, and

patterns for developing multi-tenant cloud data architectures (RO1).

C2. Comparison of existing approaches to outline the overlap and gap in the state

of the art (RO1).

Development

C3. A set of requirements for concepts and terminology for the modeling language

formulated based on design methodology on DSL development (RO2).

C4. A set of requirements for a meta-modeling language to implement the mod-

eling language (RO2).

C5. A domain model that includes common vocabulary of available cloud data

storage solutions at the PaaS service level o↵ered by four major public cloud

providers and their partitioning alternatives (RO2).

C6. A meta-model of the language, its design and implementation that support

the requirements specified in C3 and C4 and integrates them into a graphical

modeling language to build multi-tenant data architectures (RO2).

C7. A set of deterministic validation rules to ensure consistency of a model created

using the modeling language, and reliability of the model-to-code transfor-

mation (RO3 and RO4).

C8. A code generation tool that uses a validated model to synthesize a data layer

implementation with multi-tenancy management logic that corresponds to

the specific data storage types and policies selected by the developer (RO3

and RO4).

Evaluation

C9. A qualitative evaluation of the modeling language through a case study of

an industrial web application. The aim of the evaluation is to assess the

feasibility of the modeling language to design and implement the data layer

of multi-tenant cloud applications (RO3 and RO5).

C10. An empirical evaluation of the modeling language through an experimental

user study. The case study of an industrial application is reused to further

evolve the data layer as a combination of di↵erent cloud storage solutions to

reduce the costs. We specifically observe the productivity of developers of

varying abilities, the reliability of the generated code, and usability of the

modeling language (RO3, RO4 and RO5).
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1.8 Thesis Organization

The thesis consists of six chapters. The following gives an overview of chapters and

associates each chapter with resulted contributions.

• Chapter 1 - Introduction outlines the work of the thesis.

• Chapter 2 - Related Work

Chapter 2 presents and discusses current academic and industrial research works

that are geared towards addressing multi-tenancy challenges at the data layer.

The related researches are covered by dividing them under four categories: man-

ual methods, MDE based techniques, SPLE based techniques, and other modeling

approaches. This chapter also analyzes the overlap and identifies the gap in the

state of the art (C1 and C2).

• Chapter 3 - Proposed Solution

Chapter 3 proposes CadaML to fill the gap in the current research. The chap-

ter starts with specifying the requirements for the concepts and meta-modeling

language, and it introduces the methodology for the development of CadaML.

This is followed by domain analysis, design and implementation of the mod-

eling language. Finally, the chapter validates the language implementation by

reflecting on the specified requirements (C3-C8).

• Chapter 4 - Application & Qualitative Evaluation of CadaML

Chapter 4 describes the application of CadaML and presents a qualitative eval-

uation of the language through a case study. The application demonstrates

the transformation of a data layer from single- to a multi-tenancy using the

modeling environment of the language, and highlights the capability of the lan-

guage to design di↵erent multi-tenancy options at the abstract level, and to

produce the corresponding data access layer code from the model. The qualita-

tive evaluation shows the evolution of an industrial business process analyzing

web application from single-tenant on-premises to a multi-tenant service de-

ployed to a public cloud. This chapter also discusses reflection on evolution

challenges, and comments on the limitations of the performed case study (C9).

• Chapter 5 - Experimental Evaluation

Chapter 5 further evaluates CadaML through an experimental user study where

real developers are asked to evolve the data layer of the use case application

to deploy it on di↵erent cloud data storage. The aim of the evaluation is to

assess productivity of developers against the manual method, reliability of the

generated code, and usability of the modeling language. Primarily, the chapter

defines the experimental design and evaluation methods that are exploited to
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conduct the experiment. The chapter continues by describing the expertise level

of participants in programming, cloud application development, cloud data layer

development, modeling tools and their allocation. Further, the modeling process

of the data layer using CadaML is explained. The chapter, then, illustrates the

evaluation results, discusses the limitations of the experiment, and analyzes

threats to validity (C10).

• Chapter 6 - Discussions & Conclusions

Chapter 6 summarizes the chapters with overall discussions and conclusions of

the thesis.

1.9 Publications

The following presents my major contributions that are published in peer reviewed

workshops and conferences. The publications are listed in chronological order and

mapped to chapters of this thesis they most relate to.

1. Assylbek Jumagaliyev and Jon Whittle. Model-Driven Engineering for Multi-

tenant SaaS Application Development. In Proceedings of the 3rd Workshop on

CrossCloud Infrastructure & Platforms co-organized with Eurosys Conference

2016, pages 1–2, 18-21 April 2016 [65] (Chapter 2)

2. Assylbek Jumagaliyev, Jon Whittle, and Yehia Elkhatib. Evolving Multi-

tenant SaaS Cloud Applications Using Model-driven Engineering, In Proceed-

ings of 10th International Workshop on Models and Evolution co-organized with

MODELS Conference 2016, pages 60-64, 2-7 October 2016 [66] (Chapter 3)
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Related Work

This chapter provides detailed discussion of the previous and current approaches

that consider multi-tenancy at the data layer. First, section 2.1 gives a high level

overview of the approaches and their application to di↵erent cloud storage solu-

tions. Then, manual approaches are described in section 2.2, followed by modeling

techniques based on Model-Driven Engineering (MDE) and Software Product Line

Engineering (SPLE) in sections 2.3 and 2.4, respectively. Section 2.5 presents mod-

eling techniques that combine MDE and SPLE, and those that use other modeling

approaches. Finally, section 2.6 concludes the chapter by analyzing the overlap and

identifying the gap in current approaches.

2.1 Overview

Several approaches have been proposed so far to address multi-tenancy challenges

in cloud applications. These approaches have very similar goals but tackle multi-

tenancy concerns in di↵erent ways. They can be classified as manual implemen-

tations and modeling techniques based on MDE, SPLE, and other modeling

approaches.

Manual implementations are aimed at partitioning and isolating tenant data

through manual development. In turn, modeling techniques are geared towards

expressing customization and configuration alternatives in an application structure,

and describing deployment of application components on cloud services. Generally,

MDE based techniques have been implemented as extensions for general purpose

modeling languages or standalone DSLs. Meanwhile, SPLE based techniques have

exploited well known modeling techniques such as feature modeling and Orthogonal

Variability Modeling (OVM).

For the literature survey, the electronic databases (namely Association for Com-
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Table 2.1: Total number of approaches and their application to di↵erent cloud stor-
age types

Total number
of related work

SQL NoSQL Blob

Manual approaches 13 12 1 1
MDE based modeling languages 13 13 13 11
SPLE based modeling techniques 9 6 3 3
Other modeling approaches 8 8 3 3

TOTAL 43 39 20 18

puting Machinery (ACM) Digital Library, SpringerLink 1, IEEE Xplore 2, Central

Europe (CEUR) Workshop Proceedings 3, Google Scholar 4, ScienceDirect 5, Sco-

pus 6, and ResearchGate 7) have been used as primary searching sources. The search

for publications was filtered from 2006 onward as cloud providers such as AWS,

Google Cloud Platform (GCP) and Alibaba Cloud started o�cially launching their

services from this year. The following terms were included in the search queries:

‘multi-tenancy’, ‘data architecture’, ‘data layer’, ‘modeling’, ‘domain-specific lan-

guage’, ‘model-driven engineering’. The search was also limited to studies that are

indexed by the keyword ‘cloud computing’. The publications from the search results

were further filtered for relevance by reading their abstract and conclusion sections.

As presented in Table 2.1, in total 43 academic and industrial studies have been

identified as relevant during the literature survey. Among these studies, manual

approaches and MDE based modeling languages have 13 papers related to each, 9

papers refer to SPLE based modeling techniques, and the remaining 8 papers are

based on other modeling approaches. Table 2.1 also emphasizes the application of

approaches to di↵erent cloud storage types. Specifically, a total of 39 papers discuss

multi-tenancy in relational databases, 20 cover non-relational databases, and 18

capture blob storage.

2.2 Manual Approaches

Enabling multi-tenancy in relational databases has been commonly achieved thro-

ugh manual implementation. In some approaches, multi-tenancy is implemented by

means of schema-extension techniques and the use of metadata. Other approaches

propose an additional layer to ensure data isolation of tenants and customizability

1http://www.springerlink.com
2http://ieeexplore.ieee.org
3http://ceur-ws.org/
4https://scholar.google.co.uk/
5http://www.sciencedirect.com
6http://www.scopus.com
7https://www.researchgate.net
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of the data layer.

2.2.1 Schema-extension Techniques

Schema-extension techniques have been introduced to extend the base schema in

a database in order to support customization of the data layer. The base schema

contains a set of core tables that is shared across all tenants, and extension schemas

define extensions and specify the purpose of extension elements.

Three generic structures have been described in [9] to achieve customization of a

single shared relational database: (i) Universal table, (ii) Pivot table, and (iii) Chunk

table. A universal table stores a large number of generic data columns, a tenant col-

umn, and a table column. The data columns have a flexible type (i.e., VARCHAR)

that can be converted into other types during the runtime. The tenant column

identifies a tenant that owns columns, while the table column defines a logical table.

Thus, tenants can extend the same table in di↵erent ways. The same approach is

also adopted by Salesforece.com [132]. However, one significant drawback of this

approach is that the generic table has to store many null values that may lead

to misinterpretation of these values, and ine�cient usage of the database storage

space [136].

A pivot table eliminates the need to handle many null values. In a pivot table,

each field of the logical tables is mapped into a physical row. In addition to tenant

and table columns, a pivot table includes row and col columns to specify a source

field that a row represents and a value stored in that field. Nevertheless, a pivot table

has more columns to store meta-data than actual data that also requires additional

storage space.

A chunk table is an alternative to pivot tables but the col column is replaced

by a chunk column. In a chunk table, a data is partitioned into chunks, and a

chunk identifier is assigned to each chunk. In all three cases, query transformation

is required to produce appropriate queries that operate over the generic structures.

Similarly, a database design technique proposes using common tenant tables, ex-

tension tables, and virtual extension tables in a single shared relational database [135].

Common tenant tables are physical tables that are shared across all tenants. In con-

trast, extension tables store meta-data to extend an existing physical multi-tenant

database schema. Further, virtual extension tables are created at run-time from

extension tables. It is worth to note that tenants can also create their own vir-

tual database schema to meet their requirements that does not extend the existing

schema. A combination of these three tables can be used to enable multi-tenancy

at certain levels: (i) a tenant identifier can be used in common tenant tables to

di↵erentiate tenants rows, (ii) common tenant tables with virtual extension tables
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can be combined to extend the physical database schema, or (iii) virtual extension

tables can be used to create a tenant-specific virtual database schema.

In another approach [112], a tenant-aware schema inheritance concept has been

presented. The schema inheritance defines shared schema, virtual schema and tenant

schema types. A shared schema is static and all tenants share this schema. In turn,

a virtual schema defines a core application schema that can be extended by each

tenant through inheritance. As a result of extension, a tenant schema is driven from

the virtual schema. Furthermore, a tenant context is introduced to associate each

tenant schema with a corresponding tenant.

2.2.2 Metadata-Driven Techniques

In metadata-driven techniques, metadata is used to store configurations and exten-

sions that are specific to each tenant. At run-time, an application retrieves these

metadata and applies required configurations on a per-tenant basis.

In [87], an additional database is created to persist metadata that describes

tenant-specific information such as tenant name, tenant domain, billing and tenant

identifier. In this approach, a single shared database with shared schema has been

adopted to support multi-tenancy at the data layer. Furthermore, a tenant resolver

and a data partitioner are implemented. The tenant resolver is implemented as a

filter that intercepts web requests, analyzes the requests and extracts the tenant

identity from the requests. Next, the tenant resolver determines the tenant from

the extracted tenant identity by querying the database, and stores the tenant on

the user session. In turn, the data partitioner is implemented using object mapper

frameworks, and it defines parameterized default scopes for database operations

(i.e., Create, Read, Update, and Delete (CRUD) operations). As a parameter the

tenant identifier is set from the user session.

On the contrary, an existing application’s data layer has been evolved into a sin-

gle shared database with separate schemas per tenant [134]. This partitioning model

is chosen as it requires less manual modifications and lowers operational costs com-

pared to other data partitioning models for relational databases. As in [87], an addi-

tional database instance is deployed that is shared among all tenants. This database

stores tenant information and configurations such as a tenant-specific schema ad-

dress. When a tenant sends a request, the application connects to the additional

database to retrieve the corresponding value of the schema address for that tenant

and pushes it to a tenant’s session.

Interestingly, both separate databases and a shared database with shared schema

partitioning models for relational databases are supported by a metadata driven ar-

chitecture called Cloudio [63]. The architecture also requires an additional database
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(i.e., Multi-tenant Database Index ) that stores the data of which database corre-

sponds to each tenant. Furthermore, a tenant identifier column is added to every

existing table in the actual database to associate records in tables with an appropri-

ate tenant. The data access layer also requires modifications to read configuration

data from the Multi-tenant Database Index in order to route tenant requests to

an associated database or records within. Finally, re-implementation of queries is

needed to inject the tenant identifier.

Partitioning and tenant isolation in all three di↵erent cloud storage types have

been discussed in [17]. Specifically, relational databases can be partitioned either

by deploying: (i) a dedicated database per tenant with metadata associating each

database with a corresponding tenant; (ii) a shared database with per tenant ta-

bles where table name contains tenant identifier, or each tenant is assigned with a

di↵erent schema; or (iii) single shared database with shared schema where tenant

identifier is added to rows in all tables. In non-relational databases, each tenant may

have its own set of tables with tenant identifier included in table name, or tenants

share all tables with tenant identifier included in the partition key. Meanwhile, blob

storage can be partitioned either by creating a bucket per tenant where a bucket

name comprises the tenant identifier, or all tenants sharing the same buckets with

the tenant identifier included in the blob name.

2.2.3 Multi-tenancy Enablement Layer

A multi-tenancy enablement layer [24] includes a tenant context and an interceptor.

A tenant context is an object that stores tenant information (e.g., tenant identifier),

whilst an interceptor is a web filter that captures tenant information from the tenant

context. The tenant context is also used to propagate tenant information to perform

data operations on a single shared database.

Another multi-tenancy enablement layer [26] has been proposed to provide on-

demand customization and ensure isolation in security, performance, availability, and

administration aspects in shared application and database by all tenants. Isolation

of data is achieved by inserting the tenant-oriented filter into requests that require

access to database. Hence, SQL queries are modified with a sub-statement (i.e.,

‘WHERE tenant id IS xxx’) to retrieve tenant-specific data.

A data middleware has been described in [86] to enable tenant isolation and cus-

tomization of a single shared database with shared schema. The main components

of the middleware are the abstract data model, query interceptor and parser, SQL

request router, and data cloud node. The abstract data model consists of the same

set of tables and views from the actual physical database and it provides logical data

isolation for tenants. When a tenant requests data from an application, the query
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interceptor and parser intercepts queries, and formulates new queries with tenant

information to interact with the abstract data model. Then, a SQL request router

sends SQL request to di↵erent data cloud nodes to retrieve appropriate data from

the database pool.

An additional data access layer [32] has been inserted between the business logic

and the application’s database pool to enable multi-tenancy at the data layer. Ide-

ally, the additional layer is responsible for creation of new tenants in the database,

query adaptation to isolate tenants’ requests and load balancing to meet the chang-

ing application workload. A property is added to the data model to identify whether

a table is multi-tenant, and a tenant identifier is included to multi-tenant tables. To

achieve tenant isolation, the query generator module needs to be extended to filter

tenants’ requests by a tenant identifier. However, this approach only supports query

adaptation.

An abstraction layer [98] has been implemented for back-end customization thr-

ough injection of custom business logic. The abstraction layer separates business

objects from the actual database, where a business object encapsulates business data

and associated business logic. When a tenant requests a business object from an ap-

plication, the abstraction layer intercepts a tenant identifier from the request, and

retrieves a corresponding model from tenant-specific models. Note that each busi-

ness object is mapped to exactly one tenant-specific model that consists of attributes,

methods and relationships to other business objects. Then, a run-time object is cre-

ated for the requested business object. During and after processing the request,

business objects are stored in a relational database by a data mapper. However, it

is not clear how tenant data are isolated and which multi-tenant data architecture

is applied.

Unlike other approaches, a middleware architecture PERSIST [104] has been

implemented to enable dynamic configuration of NoSQL storage requirements for

multiple cloud storage providers. The middleware consists of four di↵erent layers

where the core layer is the data management middleware layer. This layer uses Java

Persistence Application Programming Interface (JPA) and Java Persistence Query

Language (JPQL) to provide a data access in a cloud storage provider agnostic

way. It also plays a role of a communication interface between SaaS applications

and the middleware. Moreover, the middleware is capable of selecting the most

suitable data storage solution based on tenant-specific meta-information regarding

data storage policies. Nevertheless, the middelware incurs the same limitations as

previous approaches, hence, it neither considers other cloud storage solutions nor

di↵erent data partitioning alternatives to isolate tenants in non-relational storage.

On top of the lamented implementation overhead, manual approaches are quite

limited. Despite the fact that most real-world cloud applications exploit di↵erent
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cloud storage solutions [125], almost all manual approaches we surveyed implement

multi-tenancy in relational databases. Particularly, these approaches address multi-

tenancy in a single shared database without considering other multi-tenant data

architectures for relational databases. Surprisingly, only one approach [17] considers

partitioning and tenant isolation in all three cloud storage options.

2.3 MDE Based Approaches

Modeling multi-tenancy at the data layer of cloud applications has been proposed

in MDE based modeling languages. Most of these languages aim to automate the

provisioning and deployment of cloud services. A few languages are geared towards

portability and interoperability of cloud applications across di↵erent cloud prov-

iders, and migration of existing applications to the cloud by generating deployment

specification models. In general, modeling languages have been implemented as

extensions for general propose modeling languages, or as independent DSLs.

2.3.1 Unified Modeling Language Extensions

CAML [15] has been proposed as an extension for Unified Modeling Language (UML)

to express cloud-based deployments directly in UML models. Using this extension,

a deployment topology is described in terms of CAML Library. Then, the deploy-

ment topology is refined by applying a dedicated CAML Profile to map deployments

with cloud provider specific o↵erings. CAML Library uses common cloud modeling

concepts that capture computing services (e.g., operating system, web server, ap-

plication container), cloud storage options, and cloud services (e.g., load balancer,

queue). CAML Profile comprises services from GAE and AWS. In CAML, di↵erent

cloud storage options (i.e., block storage, blob storage, relational databases, and

key-value storage) with consistency kinds (i.e., strict or eventual) are captured in

CAML Library.

Another UML profile [49] has been designed for modeling multi-cloud applica-

tions. Cloud artifacts are introduced in the profile to represent application com-

ponents that can be deployed in a cloud platform. During the application model-

ing process, each cloud artifact requires a cloud-agnostic service type. The profile

also allows to represent non-functional requirements for application components in

terms of property, operator, and value. The model is later refined to represent cloud

provider specific service instances, and processed by a model transformation engine

to generate deployment plan with all cloud-related information. Using this UML

profile, the data layer can be represented as a cloud artifact with a cloud storage

option (i.e., file storage, relational storage, and NoSQL storage) assigned as a service
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type.

2.3.2 Domain-Specific Languages

An XML-based modeling language [8] has been provided by TOSCA to define

application components and their relationships. Similarly, Cloud Modeling Lan-

guage (CloudML)-Stiftelsen for Industriell og Teknisk Forskning (SINTEF) [14] has

been proposed as a standalone DSL in the PaaSage8 project to express deploy-

ment specification of application components. In both approaches, the data layer of

an application can be described as a separate component with database properties.

Specifically, TOSCA XML enables to specify a database engine, a virtual machine to

deploy the database, and an operating system that runs on the virtual machine. In

contrast, CloudML-SINTEF captures other database properties such as a database

engine, a data structure type associated with the database engine, and consistency

of the storage type.

Furthermore, CloudML-SINTEF has been evolved in Model-Driven Approach for

Clouds (MODA-Clouds) 9 project to allow describing a data architecture associated

with the applications data layer. The data architecture is expressed in terms of

an Entity Relationship (ER) diagram and refined by a meta-model that specifies

functional and non-functional data properties. Then, the data architecture is refined

by cloud storage types (i.e., distributed file system, NoSQL databases, and blob

storage) o↵ered by cloud providers in a cloud provider independent way. Later, the

data architecture can be further refined by cloud provider-specific data structures

to generate data definition scripts.

Cloudify DSL 10 is also based on TOSCA to describe an application with its

resources (e.g., infrastructure, middleware, application code, scripts, tool configu-

ration, metrics, and logs). The application descriptions are stored as blueprints in

Yet Another Markup Language (YAML) documents. In addition to database re-

lated properties, CloudifyDSL allows to specify life cycle operations (e.g., configure,

create, start and stop) in a generic manner. Similarly, using Zephyrus [34] the data

layer can be specified as an application component with quality constraints (e.g.,

maximum number of components, minimum number of replicas).

Another XML-based modeling language, CloudML-Universidade Federal de Per-

nambuco (UFPE) [47], allows to describe the data layer in terms of cloud resources

and services with their requirements. Stratus Modeling Language (StratusML) [51]

also captures an application structure as a composition of cloud services. In StratusML,

a developer can specify a storage group that will be used to persist application’s data

8http://www.paasage.eu
9http://www.modaclouds.eu

10https://docs.cloudify.co/4.1.0/blueprints/spec-dsl-definitions/
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and describe di↵erent data partitioning strategies. The similar approaches are also

supported by Holmes [57] and Blueprint [99]. Though the latter approach enables

expressing service-based applications from a combination of di↵erent services from

di↵erent cloud service models (i.e., IaaS, PaaS, and SaaS). Thus, an application

can be hosted by a combination of di↵erent cloud storage types from di↵erent cloud

providers.

Move to Clouds for Composite Applications (MOCCA) [79] and CloudDSL [119]

have been proposed to create deployment models to support migration of existing

application to the cloud. MOCCA [79] provides a way to re-architect application

components into groups of components where each group can be provisioned sepa-

rately by di↵erent cloud providers. Whilst, CloudDSL [119] uses a common cloud

vocabulary, for describing cloud IaaS services, to model an application architecture

as an interconnection of cloud services. In both approaches, cloud storages are cap-

tured as services with storage related configurations such as region to deploy the

storage, storage type and security rules to access the storage.

Almost all of the proposed modeling languages allow to capture di↵erent cloud

storage services to generate deployment configurations. This certainly helps to au-

tomate deployment of application components to the cloud. However, none of the

approaches explicitly enable to model a multi-tenant data architecture, or to pro-

duce source code from it. In addition, partitioning and implementation peculiarities

of di↵erent cloud storage types have not been considered.

2.4 SPLE Based Approaches

SPLE is another commonly adopted software engineering paradigm to model multi-

tenancy in cloud applications that focuses on the development of software products

from reusable core assets [78]. In SPLE based approaches, feature modeling [69] and

OVM [102] techniques have been widely exploited to express di↵erent functional

and quality requirements of tenants in an application structure. The main focus

of these approaches is to support multi-tenancy by enabling customizability and

configurability of application components.

2.4.1 Feature Modeling Based Techniques

Feature modeling is a domain analysis technique to identify common and variable

aspects of an applications [69]. It provides concepts to visually represent an appli-

cation as a hierarchy tree of features. A feature is a functionality or characteristic

of an application, and it can be identified as a common, optional, alternative or

at-least-one-of (OR). Common features compose a core of an application, and the
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rest features represent variable functionality or quality that can be included in an

application.

Feature modeling has been applied in [96], to capture configurable and customiz-

able parts of an application. From a feature model, an application can be imple-

mented as (i) application-based binary, or (ii) feature-based binary. In the former

approach, multiple application instances are developed where each instance groups

tenants with a di↵erent set of configurations and customizations. Whereas in the lat-

ter approach, an application is built using Service-Oriented Architecture (SOA) and

application components are configurable to support multi-tenancy. In addition, a

hybrid approach has been proposed that leverages benefits of both application-based

and feature-based approaches.

A similar approach has also integrated feature modeling with SOA to re-architect

an existing application to support multi-tenancy [124]. Feature modeling is applied

to represent common core artifacts and customizable features of an application dur-

ing domain analysis. While SOA is exploited to implement and deploy application

components as microservices to support scalability. The data layer multi-tenancy

is achieved by deploying a separate database instance per tenant, where a tenant

parameter is added to requests to specify a tenant-specific database. The signifi-

cant drawback of these approaches is that feature modeling is only used to analyze

and classify configuration and customization options, while the application itself is

manually implemented after the analysis and classification. Moreover, data layer

related configurability and customizability alternatives have not been captured in

an application structure.

Feature modeling has been extended in [25] to complement features with at-

tributes. An attribute is a measurable characteristic such as price, cloud provider,

and availability. The main goal of the extension is to allow selection of cost-e↵ective

cloud services for deployment. In this approach, relational and non-relational cloud

storage services are grouped into a persistence feature, and blob storage services are

captured as a file storage feature. Though, di↵erent partitioning and extensibility

options of di↵erent cloud storage types have not been considered.

In another approach, Dynamic Software Product Line (DSPL) techniques [75]

have been applied to realize a single shared multi-tenant SaaS application. In gen-

eral, DSPL allows to implement an application that adapts its behavior at runtime

through configurations [54]. In this approach, a structural model of the application

is represented using service-oriented DSPL. A structural model provides a general

abstraction of the services and their relationships that compose an application. In

addition, feature model is exploited to enable creation and reconfiguration of services

for each tenant. However, the data layer has been considered in neither structural

model nor feature model.
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Service Line Engineering (SLE) method has been described in [130] to model

customizable multi-tenant applications. SLE is based on SPLE techniques, but, it

proposes a single shared customizable application instance to meet di↵erent tenant-

specific requirements. In SLE, functional and non-functional application require-

ments are initially modeled using feature modeling. From the feature model, a

service line architecture is designed to describe all possible variations in the multi-

tenant application. These variations are presented to tenants during the provisioning

process. Thus, tenants select and parametrize features which are transformed into

tenant-specific software configurations. In this method, a data layer could poten-

tially be represented in a feature model with all di↵erent cloud storage types and

their partitioning alternatives.

2.4.2 OVM Based Techniques

OVM is similar to feature modeling, except that it only captures variable func-

tional and quality requirements of an application in terms of variation points with

variants [102]. A variation point is a configurable functionality or quality, and a

variant is an available variation option. As in feature modeling, variation points

and variants can be either mandatory, optional or alternative.

In [94], OVM technique has been suggested to explicitly model di↵erent func-

tional and quality features of an application in a separate view. The features are

classified as external and internal features. The external features represent di↵erent

requirements introduced by tenants, whereas the internal features are alternatives

to implement di↵erent requirements imposed by the external features. In this ap-

proach, data segmentation patterns (i.e., shared database and separate database per

tenant) are captured as quality features and presented as configuration options for

tenants during tenant on-boarding process. Based on selected configuration options,

the application performs necessary deployments actions for each tenant.

OVM technique has also been exploited in [118] to define customizability al-

ternatives in a separate model. The main di↵erence of this approach from [94]

is that the OVM is combined with Service-Oriented Architecture Modeling Lan-

guage (SoaML). The role of the OVM model is to represent di↵erent application

configuration options for tenants at run-time, where SoaML is used to define imple-

mentation alternatives during the application development. Such approach allows

modeling di↵erent business process workflows, services that perform business pro-

cesses and components that implement services. However, multi-tenancy at data

layer was neglected because the author does not consider it as a customization point

at run-time.

Another approach [128] that proposes OVM technique allows tenants to cus-
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tomize application’s user interface, workflow, data layer, quality of service require-

ments, and services associated with the application. Multi-tenant data architectures

for relational databases (i.e., separate databases, shared database with separate

schemas, and shared database with shared schema), and other database related

options (e.g., data storages, encryption, and schema enhancement) are captured as

data layer customizability alternatives. During on-boarding process, a tenant selects

from available customizability options and an application stores this information as

a tenant-specific configuration.

Similarly, a multi-tenant application is modeled from three perspectives using

OVM [62]: (i) functional specification, (ii) realization and deployment alternatives,

and (iii) device accessibility options. Tenants select preferred options from these

models, and a configuration descriptor is generated for each tenant that is used for

deployment. In this approach, data layer related configurations are captured in re-

alization and deployment alternatives perspective. The configurations include cloud

storage types and deployment alternatives (i.e., single instance, multiple instance,

geo-specific).

OVM technique has been extended in [6] to model applications at the meta- and

base-levels. Meta-level represents metadata associated with available configuration

options, while base-level reflects functional and implementation alternatives within

an application. Using this technique, multi-tenant data schemes could potentially

be captured in a meta-level model, and implementation details of each storage type

can be expressed in a base-level model. However, the extension mainly focuses on

other application layers than the data layer.

In general, the presented modeling techniques are aimed to generate a tenant

configuration by expressing application’s di↵erent functional and quality require-

ments as configuration options during tenant on-boarding process. Nonetheless,

these techniques require manual application implementation from a model. Fur-

thermore, di↵erent cloud storage options and multi-tenant data partitioning models

are only captured by a few approaches.

2.5 Hybrid & Other Modeling Approaches

Although MDE and SPLE provide well-known techniques to model an application

structure, some modeling approaches integrate the strengths of both to model multi-

tenancy. In contrast, a few approaches exploit other modeling techniques to express

customizability options in an application and validate their compatibility.

A framework for modeling multi-tenant cloud services from multiple architectural

perspectives has been described in [88]. The framework is based on MDE principles

and combines the strength of feature modeling, UML and SoaML. Feature modeling
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is used to capture application functionality and quality requirements. Meanwhile,

UML and SoaML are exploited to define di↵erent implementation and deployment

options. Firstly, a core model is created that contains common architectural artifacts

that must be present for every tenant. Then, a tenant model is created for each

tenant that consists of the core model with tenant-specific artifacts. As a result of

merging the core model with the tenant models, a multi-tenant model is generated

that is capable to meet requirements of all tenants. However, the framework does

not consider the implementation of multi-tenancy from the data layer perspective.

The framework has been implemented in [97] with a set of evolution rules and

model-to-model transformations to manage the evolution process. The evolution

process comprises on-boarding a new tenant, customizing existing tenants, and re-

moving tenants. The implementation extends the framework by expressing di↵erent

multi-tenant data partitioning options for every functional part of an application

that interacts with the data layer. Moreover, the extension includes model-to-text

transformations to produce a source code from the multi-tenant model. One of the

main drawbacks of this approach is that a tenant can choose preferred workflows

and multi-tenant data models for each selected application functionality. This re-

quires more development e↵ort to implement such application code. Furthermore,

the implementation details of data partitioning alternatives and di↵erent storage

types that can be potentially used in cloud applications have not been described.

In [105], an application is modeled as a combination of web services based on

SOA and orchestrated by a Business Process Execution Language (BPEL). To sup-

port multi-tenancy, configuration options are introduced for tenants, and a tenant

context is used to keep tenant-specific information (i.e., tenant identifier, or authen-

tication information). In addition, services are distinguished as non-configurable

and configurable services. Non-configurable services behave in the same way for all

tenants, while configurable services can be customized on a per tenant basis to meet

tenant requirements. Services are further classified in three instance types: single

instance, arbitrary instance, and multiple instance. The database services o↵ered by

cloud providers can also be modeled following this approach. Nevertheless, authors

aim to generated tenant-specific deployment scripts from the application model.

A metagraph modeling tool has been proposed to manage di↵erent configuration

and customization alternatives of multi-tenant SaaS applications [82]. A metagraph

is a graphical structure that represents relationships between sets of elements. Using

this tool, a multi-tenant application is described as a metagraph that comprises

component units and their relationships, where a component unit can be elements

of data schema, application logic and user interface. Similar approach has been

described in [117]. Despite the fact that metagraph tool is beneficial to analyze and

validate relationships between component units, it does not allow to generate other
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artifacts from the application model.

Customization of application services, business processes and data layer has been

modeled based on Temporal Logic of Actions [84]. Another approach [81] has ex-

ploited directed graphs to model customization of relationships in data layer, ser-

vices, business processes and user interface components. The data layer customiza-

tion is modeled in terms of data objects with data fields and their interrelations. The

main contribution of these approaches is that they verify compatibility of tenant-

specific customizations and compliance with rules imposed by SaaS provider.

2.6 Summary

Figure 2.1: Overlap of approaches between SQL databases, NoSQL databases, and
blob storage.

Current approaches pursue very similar goals but di↵er in scope, thus, provide

partial overlapping as presented in Figure 2.1. In particular, manual approaches

dominantly discuss multi-tenancy concerns in relational databases. Similarly, nearly

half of the modeling techniques based on SPLE and other modeling approaches sup-
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ports relational databases. Whereas the other half captures all three cloud storage

options. Most of the MDE based modeling languages also cover di↵erent cloud

storage types. Note that three modeling approaches comprise only relational and

non-relational databases.

The majority of the manual implementation proposals partition a single shared

database and isolate tenant data in it. On the contrary, MDE based modeling lan-

guages allow to describe di↵erent cloud storage types as application components

and their deployment configurations. Meanwhile, SPLE based modeling techniques

capture di↵erent customization and configuration alternatives in an application.

Modeling techniques based on other modeling approaches also tackle defining cus-

tomization and configuration options in an application, but also provide a way to

validate their compatibility.

Figure 2.1 also emphasizes that non-relational databases and blob storage have

not at all been considered separately. There are a few reasons that may contribute

to this. First, non-relational databases are captured as an alternative for relational

databases. Second, blob storage services are commonly used as a supplementary

storage to persist backup and media files. Finally, non-relational databases and

blob storage are presented as available cloud storage types in addition to relational

databases. Nevertheless, most real-world cloud applications are implemented using

a combination of various data storage solutions as each cloud data storage type

works better and more e�ciently for di↵erent tasks [125].

Interestingly, most of the latest approaches propose modeling techniques. This

is due to the fact that modeling techniques provide an abstraction layer that allows

to model application components in a cloud provider independent way. Further-

more, modeling techniques o↵er model-to-model and model-to-text transformations

to enable (semi-)automation of cloud application development and deployment [22].

Nevertheless, all of the proposed approaches require manual implementation.

Even in modeling techniques, a model of an application is only used to represent

di↵erent configuration and customization alternatives during tenant on-boarding

process, or to describe deployment of application components on cloud services.

Moreover, none of the existing modeling languages consider conceptual and imple-

mentation di↵erences, or partitioning and tenant isolation in available cloud storage

types. This was also emphasized in [68] as an important issue that requires wider

research discussions. Hence, there is a strong need for a modeling language that

would enable modeling a multi-tenant data architecture as a combination of dif-

ferent cloud storage solutions in an abstract way. The modeling language should

also provide tools to transform a data architecture into application code to (semi-

)automate application development process.
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Proposed Solution

Introducing multi-tenancy a↵ects all layers of the application structure, particularly,

in terms of development and evolution overheads, and the data layer is no exception.

Multi-tenancy at the data layer requires a data architecture to maintain data separa-

tion of di↵erent tenants. The data architecture typically also needs to be extensible

to support tenant-specific customizations. A further complication is the tendency

to store data in several storage types [125], i.e., relational databases, non-relational

databases, and blob storage. These di↵erent storage types are conceptually diverse,

with each having its own partitioning and extensibility approaches to support multi-

tenancy. In essence, these concerns can be encapsulated into a DSL for generating

and/or maintaining cloud application implementation [1].

There have been some approaches in this direction that are discussed in Chap-

ter 2. In brief, existing DSLs allow to model deployment specification of the data

layer on cloud storage services, and to generate deployment descriptors from the

model. However, none of the modeling languages provide a way to model a multi-

tenant data architecture as a combination of di↵erent cloud storage types, or produce

data access layer code from the data architecture.

Therefore, Cloud Application Modeling Language (CadaML) has been proposed

as the main contribution of this thesis to fill the gap in the current research. CadaML

provides concepts and notations to design a data architecture of multi-tenant cloud

applications in a cloud provider independent manner. Moreover, the concepts and

notations enable to explicitly define di↵erent cloud data storage solutions o↵ered

at the PaaS service level in a single data architecture model, and to specify data

partitioning options for each data storage. CadaML also provides model validation

and code generation capabilities. The model validation ensures compliance of a

model created using CadaML with semantics of the meta-model and additional custom

constraints. While the code generation produces executable data access layer code

for three major cloud service providers.

This chapter, firstly, describes requirement specifications in Section 3.1 regarding
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CadaML concepts and a meta-modeling language that will be used to implement

it. Then, Section 3.2 presents the methodology applied to develop CadaML. The

methodology proposes domain analysis, design and implementation phases that are

presented in Sections 3.3, 3.4, 3.5, respectively. Finally, Section 3.6 validates the

implementation of CadaML against the requirements presented in Section 3.1, and

Section 3.7 concludes this chapter.

3.1 Requirements

While the development of CadaML requires a thorough analysis of the problem do-

main, there are also requirements that should be identified and specified beforehand.

In particular, it is important to specify two sets of requirements, one regarding con-

cepts and terminology that will be used in CadaML, and another related to a meta-

modeling language to develop and deploy CadaML. The former requirements are ap-

plied when capturing domain concepts, while the latter requirements are considered

when selecting a meta-modeling language to implement CadaML. The requirements

are defined based on the requirements analysis and design guidelines [44] that are

formulated through the experiences for enterprise modeling, and motivated to fill

the gap identified in Chapter 2.

3.1.1 Concepts and Terminology Requirements

The prospective applications and users of CadaML are multi-tenant cloud applica-

tions, and cloud data layer architects and developers, respectively. Thus, CadaML

should o↵er concepts and notations that are simple, comprehensive and convenient

to model a data architecture of multi-tenant cloud applications.

In general, concepts and notations of a modeling language should provide onto-

logical clarity and ontological completeness [44]. Ontological clarity demands that

each concept maps to exactly one concept of the ontology. While ontological com-

pleteness demands that a modeling language covers all basic concepts to represent

elements of the target domain. In correspondence with these ontological demands,

the following requirements related to concepts and notations of CadaML are com-

posed.

CR1: The concepts and notations of CadaML should correspond to terminology that

cloud data layer architects and developers are familiar with. Commonly,

existing terminology of the target domain are reconstructed, and graphical

notations are used to illustrate corresponding meaning of concepts. Using

familiar domain concepts and their representations in CadaML will help the
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prospective users to ease understanding and applying them properly when

exploiting the language.

CR2: Semantics of the concepts and notations of CadaML must be invariant within

the scope of the language’s application. Semantic invariance eliminates am-

biguity and ensures explicitness of concepts and notations of CadaML.

CR3: The concepts and notations of CadaML should be expressive enough to extract

other target representations from the model. The target representations may

include application code, documentations or any textual artifact that are

characterized by various semantic distinctiveness. Hence, the model should

contain all the required information by the target representations in order to

generate complete artifacts.

3.1.2 Meta-modeling Language Requirements

There are many meta-modeling languages and tools that support implementation

and exploitation of DSLs. For CadaML, choosing one meta-modeling language over

another needs consideration of the following requirements.

MR1: Ameta-modeling language should support implementation of graphical DSLs.

In essence, a DSL can be implemented with either graphical or textual inter-

face [43]. For CadaML, a graphical interface is preferred as visual represen-

tation eases the understanding and modeling a data architecture. However,

a graphical interface requires mapping domain concepts to corresponding

graphical notations that can be e�ciently handled by a meta-modeling lan-

guage.

MR2: A meta-modeling language should provide a meta-modeling environment that

supports realization of a model editor for CadaML. The implementation of a

model editor requires a major development e↵ort which can be facilitated by

an e↵ective support from a meta-modeling environment.

MR3: A meta-modeling language should provide a model validation tool to keep a

model consistent by enforcing constraints and validation rules. A validation

tool allows specifying additional constraints to resolve ambiguities at the

model level, and to ensure semantic correspondence of generated artifacts

with target representations.

MR4: A meta-modeling language should provide a model-to-text transformation

tool to generate code from a model. Code generation requires parsing a model

to an application code which can be implemented in a general-purpose pro-

gramming language such as Java, or in a model transformation tool provided
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by a meta-modeling environment. Compared to general-purpose program-

ming languages, model transformation tools can o↵er advantages, such as

syntax, to e�ciently manipulate model elements which eases the implemen-

tation of the code generator.

These requirements are important to guide the design of concepts, and selection

of a suitable meta-modeling language for CadaML. They will also be revisited to

validate the CadaML implementation decisions.

3.2 Methodology

DSL development requires defining an abstract syntax, semantics and a concrete

syntax of a modeling language [48]. The abstract syntax describes elements that

compose a modeling language, and composition rules of those elements. The se-

mantics of the language define the meaning of elements and their relationships. The

concrete syntax, in turn, determines a language interface for language users which

can be either graphical or textual [43]. The abstract syntax for graphical DSLs are

defined by meta-models, whereas for textual DSL it is defined by grammars.

For CadaML, once the requirements are specified, the implementation is planned

by following the DSL development methodology provided in [91] as it enfolds existing

literature on DSL development methodologies (i.e., [31,60,109,122]), and provides

generic patterns and approaches to systematically develop and deploy DSLs. The

development methodology includes domain analysis, design, and implementation

phases as presented in Figure 3.1. This section describes these phases in regards

with implementation of CadaML.

Figure 3.1: The development phases of CadaML following the methodology presented
in [91].

During the domain analysis phase, the domain knowledge related to di↵erent

cloud storage types and multi-tenancy patterns are collected, which are then com-

posed into concepts and notations that will be used in the design phase. The domain

knowledge are gathered from various resources such as technical literature, existing
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implementations, and current and future requirements. As an outcome of the do-

main analysis phase, a domain model is produced that consists of the concepts and

terminology used in the target domain.

The design phase includes identifying the relationship of CadaML to existing

modeling languages and specifying its design. The relationship identification is

needed to figure out whether to implement CadaML based on an existing language

or to build it as an independent modeling language. The design specification is

important to formulate domain concepts used in CadaML. Then, the meta-model and

semantics of CadaML are defined, being derived from the domain model composed

during the domain analysis phase.

In the implementation phase, firstly, the meta-model of CadaML is mapped to a

graphical concrete syntax. For CadaML, the graphical interface is preferred because of

the following benefits. First, visual representation of a data architecture makes de-

signing database elements and relationships among them more convenient. Second,

it is easier to find and correct errors in a graphical model [55]. Finally, visualization

of a model allows non-developers to get an overview of a data architecture and in-

tuitively develop an understanding of the data layer design. Then, constraints and

validation rules are specified to ensure consistency of a model in CadaML. Finally,

model-to-text transformation is defined to produce data access layer code from the

model.

3.3 Domain Analysis

The objective of the domain analysis phase is to capture concepts and notations

that are abstract enough to provide a unified representation of di↵erent types of

cloud data storage services o↵ered by major cloud service providers. To achieve

this, primarily, the commonality and variability in concepts and terminology to

describe available cloud data storage solutions by public cloud service providers

are analyzed. Then, peculiarities of cloud data storage partitioning techniques by

industrial and academic studies are considered. Finally, characteristics of current

modeling languages that support cloud application development are investigated.

3.3.1 Cloud Data Storage Types

As a first step of the domain analysis, available storage types of widely used cloud

providers (namely Alibaba Cloud, AWS, GAE, and Microsoft Azure) have been

compared and analyzed. Specifically, storage services at the PaaS provisioning level

are considered because they provide on-demand scalability, and they are the most

commonly exploited by developers [131].
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In general, cloud providers o↵er similar data storage solutions under di↵erent

names that can be grouped into relational databases, non-relational databases and

blob storage. Table 3.1 presents a high-level mapping of these storage types to

available storage services of each cloud provider.

Table 3.1: Mapping cloud storage types to storage services of public cloud providers

Relational Databases Non-relational Databases Blob Storage
Alibaba ApsaraDB for RDS Table Store Object Storage Service
AWS Amazon RDS DynamoDB S3
Azure Azure SQL Databases Table Storage Blob Storage
GAE Cloud SQL Cloud Datastore Cloud Storage

Despite o↵ering varying services, cloud providers adhere to the same core prin-

ciples of storage organization, but use di↵erent terminology and concepts. As an

example, analyzed non-relational databases support schemaless data model, though

a concept that defines a single data in a database di↵ers based on the cloud provider.

As another example, cloud providers exploit various terms to represent an unstruc-

tured data item in a blob storage.

Relational Database Services

Relational database services o↵ered by cloud providers have all the capabilities and

functionality of a traditional relational database, with a few additional features. Like

a traditional relational database, these services are appropriate for structured data

with a well-defined schema. Data is organized in tables, rows and columns/fields, and

a primary key identifies each row in a table. Relationships among tables, columns

and other database elements are strongly defined in the data model. As opposed to

a traditional database, cloud based relational databases are fully managed by cloud

providers that makes them easy to set up, maintain, manage, and scale.

Non-relational Database Services

While non-relational database services have many of the same characteristics as

relational database services, they di↵er from them in the way they describe rela-

tionships between data objects. A comparison of concepts of non-relational cloud

services and relational databases are presented in Table 3.2.

As in relational databases, most of the non-relational databases organize data in

tables. However, non-relational databases are schemaless as they do not require rows

of the same table to have a consistent set of columns except a primary key. Hence,

rows of the same table can have di↵erent columns, and di↵erent rows can have
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Table 3.2: Comparing concepts of non-relational databases to relational database

Cloud Providers
SQL Concepts Alibaba AWS Azure GAE
Table Table Table Table Kind
Row Row Item Entity Entity
Column Column Attribute Column Property
Primary Key Primary Key Partition Key Partition Key Key

Composite Primary Key Primary Keys
Partition Key
and Sort Key

Partition Key
and Row Key

Does not support

columns with the same name but di↵erent value types. A primary key (also called

partition key) determines the partition in which data will be stored. In addition,

most of the cloud providers support a composite primary key as a combination of

partition key and row key, where row key identifies data within each partition.

Non-relational databases also provide on-demand scaling to maintain high per-

formance when they receive more tra�c. On the contrary, queries that can be

executed are more restrictive than those allowed on a relational database. Specif-

ically, non-relational databases do not support join operations, inequality filtering

on multiple columns, or filtering on data based on results of a subquery.

Blob Storage Services

Blob storage services allow to store unstructured data such as documents, media

files, or binary data, in the cloud. Blob storage is also referred to as object storage,

and it can be compared to filesystem. The comparison is presented in Table 3.3.

Table 3.3: Comparing concepts of blob storage to filesystem

Cloud Providers
Concepts of Filesystem Alibaba AWS Azure GAE
Folder Bucket Bucket Container Bucket
File Object Object Blob Object
File name Object name Key Blob Name Key

In blob storage, buckets are the basic containers to store and organize data. Data

is stored as blobs or objects, where an object/blob name or a key uniquely identifies

each blob within a bucket. Unlike directories and folders, buckets cannot be nested.
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3.3.2 Data Architecture Partitioning Schemes

A partitioning scheme is crucial to ensure isolation of tenant data, and scalability of

the solution when sharing application code and data across all tenants. Typically,

each cloud storage type has its own partitioning techniques that are described in

this subsection.

Relational database partitioning schemes are summarized through analyzing

academic and industrial work. Meanwhile, partitioning schemes for non-relational

databases and blob storage are classified based on guidance and patterns from cloud

providers (e.g., [17, 58]).

In general, relational databases can be partitioned using one of the following

three ways. (i) Separate databases : each tenant is served by a dedicated database;

(ii) Shared database, separate tables : all tenants are hosted by a single database with

separate tables per tenant. A tenant identifier can be included in the table name,

or a di↵erent database schema can be used for each tenant; (iii) Shared database,

shared tables : all tenants share tables in a single database, with a tenant identifier

is used to associate their records in each table.

Non-relational databases can be partitioned in one of two ways: separate tables

or shared tables. In the former, each tenant’s data is stored in tenant-specific tables

with a tenant identifier as part of table names. In the latter, all tenant data is stored

in shared tables and a tenant identifier is included in partition keys to associate rows

with a tenant.

Separate buckets and shared buckets are the main partitioning techniques for

blob storage. In separate buckets, all blobs belonging to a specific tenant are stored

in a single bucket where a tenant identifier is included in the bucket name. In

contrast, shared buckets stores all tenant data in the same buckets, but includes

tenant identifiers in the blob names.

3.3.3 Current Cloud Application Modeling Languages

Current modeling languages that support cloud applications usually allow to de-

scribe a deployment specification of the data layer to di↵erent cloud storage types.

However, concepts and terminology used by modeling languages di↵er from each

other. Consequently, there are no standardized concepts to represent di↵erent cloud

storage services. For example, a UML profile [49] comprises file storage, relational

storage and NoSQL storage as available cloud storage services, whilst a UML ex-

tension CAML [15] captures two types of data structures (namely, key value and

relational) that are further refined by cloud storage services of GAE and AWS.

As another example, a few DSLs (e.g., CloudifyDSL1 and CloudML-UFPE [47]) use

1https://docs.cloudify.co/4.1.0/blueprints/spec-dsl-definitions/
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distributed file system, NoSQL databases, and blob storage concepts to define storage

components of an application. Interestingly, CloudML-SINTEF [14] exploits con-

cepts of entity relationship diagram to allow modeling a data architecture of cloud

applications. Among those various terminology that represent di↵erent cloud stor-

age services, most commonly used concepts are relational database/storage, NoSQL

database/storage, and blob storage.

3.3.4 Domain Analysis Output

As a result of analyzing the above state of the art in the domain of cloud data storage,

di↵erent types of data storage solutions and their partitioning alternatives have been

composed into a domain model which is illustrated in Figure 3.2. The domain model

presents a unified modeling view across di↵erent data services from the surveyed four

major cloud service providers. In the domain model, the existing cloud data storage

terminology is reused and reconstructed, where needed, to provide unambiguous and

expressive concepts that correspond to the requirements described in Section 3.1.1.

This model forms the basis of CadaML implementation as a meta-model is derived

from it, subsequently, a graphical syntax is generated from the meta-model.

Figure 3.2: Selected concepts and terminology for CadaML.

Because all public cloud providers use a common vocabulary to describe a rela-

tional database, existing terminology is adopted to capture elements of a relational

database in the modeling language. SQL database represents a relational database

with its partitioning schemes (i.e., SQL partitioning), and it consists of instances of

SQL table. A SQL table is a collection of related data entries that contains fields,

and it must have at least one primary key.

On the contrary, cloud providers exploit di↵erent concepts to define a non-

relational database. Thus, concepts that are used only in the non-relational database
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are selected. Specifically, NoSQL table is associated with a non-relational table, and

it contains fundamental data elements called properties. Partition key is mapped

to primary key, and row key is captured to produce a composite primary key. In

the meantime, partitioning options for non-relational databases are grouped into

NoSQL partitioning.

For blob storage, the most commonly used terminology in all four cloud blob

storage are chosen. The concepts include bucket which is the basic container to

store objects, key that identifies each object within a bucket, and bucket partitioning

to express available partitioning alternatives.

It is worth mentioning that tenants have not been included in the domain model

as a first-class entity. The rationale behind this design decision comes from a real-

ization that tenants could be represented as an independent entity in a higher level

of abstraction but not in the data architecture. Nevertheless, tenants implicitly ex-

ist in a form of partitioning options for each storage type. Moreover, the designed

domain model provides modelers a flexibility to implement tenants in any form in

any cloud data storage solution.

3.4 Design

Current cloud application modeling languages cannot be extended or reused to im-

plement CadaML, as they do not support modeling a data architecture of cloud

applications and particularly multi-tenancy therein. Thus, CadaML requires a novel

meta-model which is derived from the domain model that captures concepts and ter-

minology of di↵erent cloud storage types and their partitioning schemes. In order to

design a meta-model, firstly, the relationships between CadaML and existing modeling

languages are identified. Then, the design of CadaML is specified in accordance with

the requirements imposed in Section 3.1.2. Finally, a meta-model and semantics of

CadaML are produced.

3.4.1 Language Exploitation versus Language Invention

A modeling language can be designed by either exploiting an existing language

or inventing a new one [91]. In the former, a modeling language is based on an

existing language where notations and semantic concepts of the existing language

are used, restricted or extended. In the latter, a modeling language is created with

no commonality with existing modeling languages.

Both of these design patterns have advantages and drawbacks. In particular,

when a language exploits an existing one, the notations and concepts are consistent

with the host language with provided compiling and parsing. Though, the modeling
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language is constrained by the host language. On the other hand, creating a new

modeling language is more flexible in terms of deciding language concepts, termi-

nology, and structure. However, a meta-model of the language must be defined, as

well as a compiler to parse and process the meta-model, and to map the meta-model

to the expected semantics.

Because none of the existing modeling languages that are described in Sec-

tions 2.3 and 2.4 support modeling a data architecture of cloud applications, there is

no way to design CadaML based on concepts of these modeling languages. Therefore,

it is decided to implement CadaML as an independent modeling language. This, in

turn, requires a meta-model that covers the domain concepts and terminology that

are deemed necessary based on the analysis in Section 3.3.

3.4.2 Design Specification

After the relationship to existing languages has been determined, the design of

CadaML must be specified before implementation. The design specification can be

distinguished between informal and formal designs [91]. In the informal design, the

specification is typically written in natural language. Subsequently in the formal

design, the specification is produced in a form of a meta-model.

The informal design is easier to perform compared to the formal design, though

it can contain imprecisions that cause problems in the implementation phase. In

contrast, formal specification of both meta-model and semantics can capture prob-

lems before implementation. Furthermore, formal design is commonly implemented

by tools that significantly reduce implementation e↵ort. As a result, formal design

is applied to formulate meta-model and semantics for CadaML.

3.4.3 CadaML Meta-model

At the heart of a graphical DSL is the definition of a meta-model that captures

concepts and relationships of the problem domain. Based on the formal design

specification, a meta-model is commonly specified using a meta-modeling language.

Most of the current meta-modeling languages are provided as a part of a framework

or tool suite that supports development and deployment of modeling languages.

There are a few widely exploited frameworks that are described and compared in

Section 3.5.1.

As a result of thorough consideration and analysis of existing frameworks, and

requirements regarding a meta-modeling language specified in Section 3.1.2, the

meta-model of CadaML is defined in Ecore2 model that is depicted in Figure 3.3.

The meta-model is derived from the domain model presented in Section 3.3.4, and it

2The justification of this selection is given in Appendix C
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Figure 3.3: CadaML meta-model in UML class diagram.

is divided into three parts that cover domain concepts and the interrelations there

in of a) relational databases; b) non-relational databases; and c) blob storage.

The main element of the meta-model is DatabaseDiagram that represents a di-

agram in a graphical editor where a cloud data layer architect or developer (here-

after modeler) designs a data architecture. A diagram may include SQL Database,

NoSQL Database and Object Storage.

Relational databases are expressed by SQL database. SQL Partition of a rela-

tion database is classified according to partitioning schemes that were described in

Section 3.3.2. A SQL database is composed of tables and their relationships that

are represented by SQL table and SQL reference, respectively. A SQL table con-

sists of fields, and each field has name, data type and isPrimaryKey parameters

where the last parameter defines whether the field is a primary key. In addition,

autoGeneratePrimaryKey parameter allows to automatically generate primary key

values of a table by the application. The source and target parameters of SQL ref-

erence refer to tables in a relationship, and reference key indicates to a foreign key

in a target table. Where multiplicity between tables are expressed by source table

and target table parameters.

NoSQL Database represents non-relational databases with its partitioning schemes,

and it consists of tables (i.e., instances of NoSQL table) and their interrelations.

A NoSQL table is a collection of properties, where a property is a fundamental

data element with name and data type. A NoSQL table must have a partition

key and a row key with their data types (i.e., STRING or NUMERIC ), where

partition key values can be automatically generated by the application by setting
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partitionKeyAutoGenerated parameter to true. In the meantime, the relationships

among tables are represented by NoSQL reference, where source table and target ta-

ble parameters refer to multiplicity (i.e., ZERO, ONE, and MANY ) between tables.

Object Storage is associated with Blob storage type. In blob storage, data is

stored in buckets. A developer can specify partition of a bucket to one of the

described in Section 3.3.2 partitioning schemes. Object represents a blob that is

persisted in a bucket. An object is a set of attributes, where each attribute has

name, data type and isKey parameters. The isKey parameter determines whether

an attribute is a key that will be associated with the object. A key for a blob can

be automatically generated by setting autoGenerateKey parameter of an object to

true. An object can be in relationships with other objects which are expressed by

object reference. The source and target parameters refer to blobs in a relationship,

while multiplicity between blobs are expressed by source object and target object

parameters.

It can be clearly seen from Figure 3.3 that reference elements (i.e., SQLRef-

erence, NoSQLReference, and ObjectRefernce) in each storage type have the same

attributes and relationships with storage elements. This formulates a recurring pat-

tern that could be refactored using the concepts of inheritance. However, we decided

to create a separate reference element for each storage type for the following two rea-

sons: (i) mitigate the representation and comprehensibility of the meta-model; and

(ii) minimize the complexity of implementing model validation and code generation

capabilities.

3.5 Implementation

The aim of the implementation phase is to develop a modeling environment for

CadaML that supports model validation and code generation. Model validation is

important to ensure consistency of a model with the semantics of the meta-model

and additional custom constraints, while code generation is necessary to produce

data access layer code to (semi-)automate data layer implementation.

During this implementation phase, current frameworks and tools to implement

DSLs are considered to select a most suitable one for CadaML (Section 3.5.1). Then,

the frameworks and tools are analyzed and compared regarding the availability of the

framework as an open source and the meta-modeling language requirements specified

earlier (Section 3.5.2). Once a framework is selected, a meta-model of CadaML is

designed, a graphical editor is generated from the meta-model (Section 3.5.3), and

additional capabilities, such as model validation (Section 3.5.4) and code generator

(Section 3.5.5), are implemented.

Hence, the full implementation process of CadaML consists of the following steps:
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(i) the meta-model is created using Emfatic3 which o↵ers textual notations for defin-

ing Ecore models; (ii) the meta-model is annotated using the EuGENia tool that

provides annotations to automatically transform the notations from the meta-model

into a concrete graphical modeling editor; (iii) the graphical editor is generated

from the meta-model ; (iv) custom constraints and validation rules are specified us-

ing Epsilon Validation Language (EVL); and (v) the code generator is defined using

Epsilon Generation Language (EGL).

Overall 4684 Lines of Code (LoC) has been written to implement CadaML. This

is broken down to 203 for the implementation of the meta-model, 106 for adjusting

the graphical editor, 315 for validation, and 4,060 for code generation.

3.5.1 Graphical DSL Implementation Frameworks and Tools

DSL development is typically supported by frameworks that provide tools to cre-

ate a meta-model, produce a modeling editor from the meta-model, specify model

validation, and implement code generation. There are some widely used frame-

works, such as Eclipse Modeling Framework (EMF), Eclipse Graphical Modeling

Framework (GMF), Epsilon Framework, MetaEdit+ and Modeling SDK for Visual

Studio (MSDK). These frameworks are briefly described individually before being

compared against each other in Section 3.5.2. The aim of the comparison is to guide

the selection of a suitable meta-modeling language to implement CadaML.

EMF and GMF

EMF4 is an Eclipse-based modeling framework and code generator facility to spec-

ify, construct and manage DSLs. EMF provides Ecore meta-modeling language to

define a meta-model of a modeling language which can be described through var-

ious methods such as XML Metadata Interchange (XMI), Java annotations, UML

and an XML scheme. From a meta-model, EMF generates a set of generic classes

to construct a domain-specific modeling editor. In turn, the EMF code generator

facility produces all necessary classes and a structured editor to build a complete

modeling environment.

Nevertheless, EMF requires extensions or manual refactoring of the generated

classes to create custom domain-specific visualizations. Moreover, neither Ecore

nor EMF supports specification of additional domain constraints. To address these

problems, Eclipse GMF5 is proposed to manually implement a custom editor, and

Java-based Object Constraint Language (OCL) library [129] is introduced to specify

constraints into the generated classes.

3https://www.eclipse.org/emfatic/
4https://www.eclipse.org/modeling/emf/
5http://www.eclipse.org/modeling/gmp/
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GMF is a framework for developing graphical modeling editors using EMF. The

main components of GMF are the tooling and the run-time. The tooling includes

editors to specify and manage models that describe notations, semantics and tooling

aspects of a graphical editor. It also includes a generator to produce the implementa-

tion of graphical editors, from which the run-time produces an extensible graphical

editor.

Epsilon

Epsilon [72] o↵ers a set of languages and tools for implementing DSLs. EuGENia6

is one of these tools that generates all necessary models to produce a GMF editor

from an annotated meta-model. As in EMF, EuGENia uses Ecore meta-modeling

language to define meta-models, and it provides high-level annotations to facilitate

the complexity of implementing a GMF editor.

Epsilon also provides Epsilon Validation Langauge (EVL) [72] to specify con-

straints and validation rules. EVL is based on Eclipse Object Language (EOL) [72]

which is an imperative programming language for constructing and managing EMF

models. Despite the similarities of EVL constraints with OCL constraints, EVL al-

lows defining dependencies between constraints, displaying custom error messages,

and specifying fixes that can be invoked to repair inconsistencies in a model.

When using Epsilon, model-to-text transformation is implemented using Epsilon

Generation Langauge (EGL) [72]. EGL is a template-based language for generating

code, documentation and other textual artifacts from models. EGL uses a mixture of

static and dynamic sections to manipulate the output of the transformation. Static

sections include hand-written text or code, whereas dynamic sections can contain

EOL statements. Furthermore, EGL provides several features, such as generating

text to a variety of sources, formatting algorithms, and linking generated text with

source models, to simplify and support the generation of texts from models.

MetaEdit+

MetaEdit+7 is a commercial domain-specific modeling environment that supports

both development and exploitations of graphical DSLs. A modeling language is de-

signed with MetaEdit+Workbench, and the modeling language is used in MetaEdit+

Modeler.

In MetaEdit+ Workbench, a meta-model is described as a set of objects us-

ing the Graph, Object, Property, Port, Relationship and Role (GOPPRR) [92]

meta-modeling framework. The meta-modeling process includes the following steps.

6https://www.eclipse.org/epsilon/doc/eugenia/
7https://www.metacase.com/

45



CHAPTER 3 PROPOSED SOLUTION

Firstly, language concepts and their composition rules are defined either graphi-

cally or using form-based meta-modeling tools. Then, the concepts are associated

with visual notations. The notations can be drawn in Symbol Editor or imported

from existing graphical elements. Model validation is based on the semantics of the

specified meta-model which is automatically supported by the framework. Finally,

model-to-text transformation is specified to produce required artifacts such as code,

configuration, or testing data. Following the meta-modeling process, MetaEdit+

Modeler provides a modeling environment to create a model using the graphical

DSL, and generate corresponding artifacts from the model.

Modeling Software Development Kit (SDK) for Visual Studio

Modeling and Visualition SDK (MSDK) [56] provides tools and templates for build-

ing DSLs that can be integrated into Visual Studio. It allows the creation of a

meta-model using built-in meta-modeling language, graphical representation of each

component in the meta-model, validation of a model, and generation of code, doc-

uments, configuration files and other artifacts from the model.

A meta-model together with a graphical notation are defined in terms of domain

classes and their relationships to represent concepts of the problem domain. From

the meta-model a graphical editor and a tree-based model explorer are generated.

Although, Modeling SDK ensures compliance of a model with the semantics of the

meta-model, it includes a validation framework to specify additional constraints and

validation rules. The ability to generate code and other artifacts from a model

are supported using T4 Text Templates [93], which is a mixture of text blocks and

control logic. Both model validation and code generator are specified in Visual

C#. The implemented graphical DSL is integrated with Visual Studio Integrated

Development Environment (IDE), and can be distributed as a plugin.

3.5.2 Comparing Graphical DSL Frameworks

In essence, a framework for implementing CadaML must provide a way to express the

concepts and relationships of the modeled domain, and describe specific function-

ality of the modeling tool. Because all of the described frameworks use a common

core set of meta-modeling constructs derived from UML class diagrams, they of-

fer similar power to define the meta-model. However, each framework is supported

by corresponding tool suites that exploit di↵erent mechanism to specify the con-

crete syntax. Moreover, some frameworks support special language features such

as custom constraint specification, meta-model composition, model-to-model and

model-to-text transformation.

Table 3.4 summarizes the modeling capabilities of the described frameworks
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based on the requirements related to a meta-modeling language specified in Sec-

tion 3.1.2 with an additional requirement regarding the availability of each frame-

work.

Table 3.4: Comparing the DSL implementation frameworks

EMF & GMF Epsilon MetaEdit+ MSDK
Support implementation of graphical DSLs (MR1) + + + +
Support generation of a model editor (MR2) + + + +
Provide a model validation tool (MR3) - + - +
Provide a model-to-text transformation tool (MR4) + + + +
Open source availability of the framework + + - -

All of the frameworks provide capabilities to implement graphical DSLs (MR1),

create a model editor for DSLs (MR2), and to generate code from the model (MR3).

On the other hand, only Epsilon and MSDK support defining custom constraints

and validation rules in addition to default validation of a model with the semantics

in the meta-model (MR4). Specifying custom constraints is crucial to guarantee

the compliance of generated artifacts with the syntax and semantics of the target

domain.

EMF & GMF and Epsilon are open source frameworks for Eclipse IDE, while,

MetaEdit+ and MSDK are commercial products. MetaEdit+ requires purchasing

MetaEdit+ Workbench and Modeler, and MSDK requires Visual Studio Community

or other paid versions of Visual Studio. Note that Visual Studio Community has

substantial limitations compare to other versions8. Furthermore, MetaEdit+ does

not provide an integrated development environment to support cloud application

implementation and deployment.

As a result of comparing the current frameworks to develop and deploy graphical

DSLs, CadaML is designed using the Epsilon framework. The choice of the framework

is also supported by the design and implementation preferences that are identified in

the design phase (i.e., Section 3.4). In particular, Epsilon is preferred as it provides

the following capabilities: (i) defining a meta-model in Ecore9 meta-modeling lan-

guage, (ii) producing a model editor from the meta-model using the EuGENia10 tool,

(iii) specifying constraints and validation rules in EVL, and (iv) implementation of

the model-to-text transformation in EGL.

8https://visualstudio.microsoft.com/vs/compare/
9https://www.eclipse.org/modeling/emf/

10http://www.eclipse.org/epsilon/doc/eugenia/
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3.5.3 Graphical Editor for CadaML

A graphical editor for CadaML is crucial to provide a modeling environment. Using

the editor, cloud data architects and developers should be able to create a model,

validate the model and generate data access layer code from the model.

@gmf
package databaseDSML;

@gmf.diagram
class DatabaseDiagram{

attr String projectName;
val SqlDatabase[0..*] sqlDbs;
val NoSqlDatabase[0..1] noSqlDb;
val ObjectStorage[0..1] objStorage; }

@gmf.node(label="name, partitioning", label.pattern="{0} ({1})",
tool.name="SQL Database", color="252,252,252")
class SqlDatabase{

attr String name = "SQL Database";
attr Partitioning partitioning;
@gmf.compartment
val SqlTable[1..*] tables;}

enum Partitioning{
SingleShared;
SingleSharedMutlipleSchema;
SeparateDatabasePerTenant;}

@gmf.node(label="name", tool.name="SQL Table", color="242,248,255")
class SqlTable{

attr String name;
attr Boolean isPublic = false;
attr Boolean autoGeneratePrimaryKey = false;
@gmf.compartment(layout="list")
val Field[1..*] fields;
val SqlReference[*] references;}

@gmf.node(label="name, dataType", label.pattern="{0}:{1}")
class Field{

attr String name = "Name";
attr String dataType = "Data Type";
attr Boolean isPrimaryKey = false;}

Listing 1: Defining a database diagram and concepts for relational databases in
Ecore

An editor for CadaML is generated from the Ecore meta-model which is annotated

using the EuGENia tool. An excerpt of the meta-model that describes a database

diagram is presented in Listing 1. The @gmf annotation is applied to a package,

and it indicates that GMF-related annotations are expected in the package. In

the meantime, the database diagram is denoted with the @gmf.diagram annotation

which represents a root element of the meta-model. The database diagram is an
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environment in which a modeler constructs a model of a data architecture, and it

can contain instances of relational databases, non-relational database and object

storage.

Listing 1 also shows that SqlDatabase, SqlTable, and Field are expressed us-

ing @gmf.node annotation since they represent elements of the model within the

database diagram. Thus, these model elements appear on the diagram as nodes.

In turn, SqlDatabase contains a collection of SqlTable instances, where SqlTable

comprises a list of Field instances as a compartment. Lastly, di↵erent partitioning

schemes for relational databases are composed into Partitioning enumeration.

A node can include several parameters to describe graphical styling (e.g., color,

shape, label, and size) of the node, and to specify properties for an associated

tool (e.g., name, description, and icon) with the node. A label for SqlDatabase

contains its name and partitioning attributes that are shown in the editor following

the defined label pattern (i.e., name (partitioning)). For SqlTable, only the name

attribute is displayed as a label, where for Field, both name and dataType attributes

are included in a label that are presented according to the label pattern. Each of the

model elements has the corresponding tool name, and distinctive color for intuitive

visual di↵erentiation. Note that for Field the associated tool will have the same

name as the model element because no custom tool name is defined for it.

...
@gmf.link(label="name, sourceTable, targetTable", label.pattern="{0}[{1}...{2}]",
source="source", target="target", target.decoration="filledclosedarrow",
style="dot", width="2", tool.name="SQL Relationship", tool.color="0,0,255")
class SqlReference{

attr String name="Name";
attr Multiplicity sourceTable;
attr Multiplicity targetTable;
ref SqlTable source;
ref SqlTable target;
ref Field referenceKey; }

enum Multiplicity{
Zero;
One;
Many; }

...

Listing 2: Defining relationships between tables for relational databases in Ecore

SqlReference is described using the @gmf.link annotation as shown in Listing 2.

Thus, it appears on the diagram as a link that connects two tables (i.e., source and

target). The name of the link and its multiplicity are included in the link label which

are displayed as specified in the label pattern. A value for multiplicity is selected

from an enumeration which can be either Zero, One or Many. Moreover, the link is

represented as a dotted line with filled closed arrow at the end, and it is associated
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with SQL Relationship tool.

The concepts of the rest storage types and their interrelations are annotated with

their configuration parameters following the same principles. When the meta-model

is complete, the EuGENia tool is used to produce necessary models from it, and

to generate a graphical editor for CadaML. The editor consists of three parts as

illustrated in Figure 3.4: ¨ a canvas represents DatabaseDiagram from the meta-

model in which a modeler creates model elements, and the relationships that define

links between model elements; ≠ the Palette comprises tools associated with the

model elements specified in the meta-model ; and Æ the Properties tab that shows

properties of each selected model element in the canvas.

Figure 3.4: The concrete syntax of CadaML implemented as the graphical editor with
three parts: ¨ canvas ≠ palette, and Æ properties tab.

An illustrative example of a multi-tenant data architecture is depicted in the

canvas. The data architecture is divided into three separate diagrams that represent

di↵erent cloud data storage types, and data storage type specific model elements

with their relationships are defined in each diagram. Moreover, each data storage

type is highlighted with a di↵erent color, and its model elements are represented

with distinctive graphical notations.

When a model element is selected in the canvas, information about it is dis-

played in the Properties tab. Information regarding model elements varies based

on the meta-model. Specifically, the Properties tab includes attributes of a model
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element specified in the meta-model. For example, projectName attribute of the

DatabaseDiagram is shown in Figure 3.4 as a property.

Tools in the Palette are grouped into Cloud Storage Services, SQL Database,

NoSQL Database, and Object Storage categories. Cloud Storage Services category

includes three di↵erent cloud data storage solutions. While, the rest categories

comprise model elements that represent concepts of each data storage solution. In

addition, di↵erent icons are used to illustrate model elements in each category.

3.5.4 Validation Rules and Constraints

EuGENia allows to specify the meta-model, and to generate a graphical editor for

CadaML. Nevertheless, there are some subtle constraints need to be specified to

ensure consistency of a model that is created using CadaML. For example, no table

should have an empty name, and a table name must be a valid identifier. These

are examples of custom constraints. Hence, using the graphical editor a modeler

can temporarily create a data architecture with constraints violations. However,

these violations must be captured and fixed before the modeler saves the model, or

produces other artifacts from it. To help with this, Epsilon provides EVL.

In CadaML, there are common and data storage type specific validation rules

and constraints. The common constraints and validation rules are applicable to all

data storage types. The data storage type specific ones are required by each data

storage solution. The validation rules and constraints are based on principles of Java

programming language as the target representation is the data access layer code in

Java, and peculiarities of di↵erent cloud data storage types.

As every model element has the name attribute, constraints related to this at-

tribute are common for most of the model elements. As an example, Listing 3 illus-

trates a specification of the common constraints for SqlTable. Primarily, the name

attribute must be defined in a model, and it should be a valid identifier. Thus, a

name must be composed of letters, digits and underscore, and it may only begin

with a letter. Moreover, the name of a model element cannot be repeated within a

compartment. Therefore, table names must be unique in a relational database, and

fields must have di↵erent names in a relational table.

Apart from the common constraints, each data storage type imposes additional

constraints. In the relational and non-relational databases, a table cannot contain

a field/property that matches with the name of the table. Likewise, in the object

storage, an object name and names of attributes within the object must be di↵erent.

Furthermore, a relational table must have at least one primary key, whereas both

partition key and row key must be defined for a non-relational table.

Once the constraints are specified, they are bound to the graphical editor as an
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context SqlTable{
constraint HasName {
check : self.name.isDefined()
message: self.name + ' must have a name.'
}

constraint NameValidIdentifier{
guard: self.satisfies('HasName')
check : self.name.matches("^[_0-9a-zA-Z]+")
message : self.name + ' name "' + self.name

+ '" may contain letters, digits, and underscore.'
}

constraint NameMustStartWithLetter{
guard: self.satisfies('HasName')
check : self.name.characterAt(0).matches("^[a-zA-z]+")
message: self.name + ' name "' + self.name + '" must start with a letter.'
}

constraint HasUniqueIdentifier {
check: SqlTable.allInstances().forAll(i|i.name = self.name implies i=self)
message: 'The ' + self.name + ' must have a unique name.'
}

constraint HasUniqueFieldNamesInTable {
check: self.checkFields()
message: 'The ' + self.name + ' must have unique field names.'
}

}

Listing 3: An excerpt of the constraints for relational tables in EVL

extension. When a modeler attempts to save the model in the graphical editor, the

constraints are automatically checked for violations. In case of any violation, model

elements that does not comply with the validation rules are highlighted with an error

mark, and the cause of the violation is displayed in the Problems tab underneath

the canvas.

3.5.5 Code Generation

The main objectives of CadaML are to increase developer productivity and improve

code reliability by (semi-)automating data architecture implementation. To achieve

these objectives, CadaML includes a code generator that transforms a multi-tenant

data architecture designed by a modeler to executable Java code for Alibaba Cloud,

AWS, and Azure. We had to exclude Google from supported cloud service providers

due to the lack of implementation commonalities with other cloud service providers.

The code generator is implemented using EGL which is a template-based language

that allows to generate any kind of textual artifacts from models. For CadaML, the

code generator produces di↵erent set of Java interfaces and classes for each data
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Figure 3.5: CadaML code generation process.

storage solution.

The high level overview of the code generation process is illustrated in Figure 3.5.

The code generator tool produces data models, storage context classes, Java inter-

faces and cloud provider specific classes. A data model is a Java class that contains

fields with corresponding getters and setters for each field. A storage context class

contains storage related fields, such as provider name, storage credentials, region,

and replication to initialize a storage connection. Finally, a Java interface contains

generic method signatures that are further implemented by cloud provider specific

classes.

All code that is specific to each storage type are located in di↵erent packages.

In addition, the generated code decouples the data access logic from other layers of

the application. This separation, crucially, provides ease of code maintenance, and

allows to independently scale the data layer.

Data Model Generation

Objects and relational tables are directly transformed into data models that are

shared among all cloud providers. In contrast, non-relational tables are transformed

into Java interfaces, where for each interface cloud provider specific data models are

generated. The reason for this is the design of non-relational data models varies

depending on a cloud provider, and interfaces provide an abstract representation of
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@DynamoDBTable(tableName="Artist")
public class Artist implements ArtistInterface {
private String artistId;
private String artistName;
private String genres;
private String biography;
private List<AlbumInterface> albums;

@DynamoDBHashKey(attributeName="ArtistId")
@DynamoDBAutoGeneratedKey
public String getArtistId(){ return artistId; }
public void setArtistId(String artistId){ this.artistId = artistId; }

@DynamoDBRangeKey(attributeName="ArtistName")
public String getArtistName(){ return artistName; }
public void setArtistName(String artistName){ this.artistName = artistName; }

@DynamoDBAttribute(attributeName = "Genres")
public String getGenres() { return genres; }
public void setGenres(String genres) { this.genres = genres; }

@DynamoDBAttribute(attributeName = "Biography")
public String getBiography() { return biography; }
public void setBiography(String biography) { this.biography = biography; }

@DynamoDBIgnore
public List<AlbumInterface> getAlbums() { return albums; }
public void setAlbums(List<AlbumInterface> albums) { this.albums = albums; }

}

Listing 4: ‘Artist’ data model for DynamoDB generated by CadaML

di↵erent data models.

Data models for object storage are generated as plain Java data models. Whereas,

relational and non-relational data models require annotations in order to map fields

of a data model to actual attribute names in database tables. Specifically, relational

data models are annotated using JPA, where cloud provider specific non-relational

data models for Alibaba Cloud and AWS are denoted using JPA and DynamoDB

Java Annotations, respectively. In the meantime, the generated non-relational data

models for Azure extends the base object type provided by Azure Storage Services.

Listing 4 presents ‘Artist’ data model that is generated by CadaML for AWS.

The data model is annotated using DynamoDB annotations, and it is mapped to

‘Artist’ table in DynamoDB database. The class properties are associated to their

corresponding columns in the table, where ‘artistId’ and ‘artistName’ refer to the

partition key and row key of the table, respectively. However, the ‘albums’ property

is ignored as it references data in another table. Generated data models for Alibaba

Clouds11 are annotated in the same manner with explicit mappings, and specification

of a composite key.

11The data model for Alibaba Table Store is presented in Appendix D
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public class Artist extends TableServiceEntity implements ArtistInterface {
private String genres;
private String biography;
private List<AlbumInterface> albums;

public String getArtistId() { return this.partitionKey; }
public void setArtistId(String artistId) { this.partitionKey = artistId; }

public String getArtistName() { return this.rowKey; }
public void setArtistName(String artistName) { this.rowKey = artistName; }

public String getGenres() { return genres; }
public void setGenres(String genres) { this.genres = genres; }

public String getBiography() { return biography; }
public void setBiography(String biography) { this.biography = biography; }

@Ignore
public List<AlbumInterface> getAlbums() { return albums; }
public void setAlbums(List<AlbumInterface> albums) { this.albums = albums; }
}

Listing 5: ‘Artist’ data model for Table Storage generated by CadaML

The generated data model for Azure from the same table is shown in Listing 5.

Compared to AWS, Azure automatically maps class properties to table columns that

require persistence in a table, whilst referenced data are denoted with @Ignore an-

notation. Moreover, there is no need to declare partition key and row key in the data

model as they are inherited from the base object type (i.e., ‘TableServiceEntity’ ).

Storage Context Generation

A storage context class is important to specify configuration information in order

to establish a storage connection. In CadaML, a storage context is produced for

each data storage solution. Typically, configuration information required by each

data storage type di↵ers. In particular, object storage and non-relational databases

require cloud provider, region, storage credentials, and replication mode for the stor-

age. On the contrary, a relational database needs database engine, database name,

database credentials, hostname and port to initialize a connection to a database in-

stance. In both cases, the storage context class needs data storage type specific im-

plementation to initialize a connection with the provided configuration information.

Java Interfaces and Implementation Classes Generation

For every cloud data storage type, a Java interface and cloud provider specific im-

plementation classes are generated. The former contains generic method signatures

to initialize a storage and to perform database related operations. Where, the latter

implements these methods for each cloud provider.
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For relational databases, an interface comprises abstract methods for storage

initialization and Create, Read, Update, and Delete (CRUD) operations. In addition

to these methods, interfaces for object storage and non-relational databases include

creation of a bucket/table and specification of a region where buckets/table will be

created.

public interface BlobStorage {
void initializeStorage();
void createBucket(String bucketName);
void setRegion(String region, Boolean replication);
<T> void uploadBlob(T blob, String bucket, String key);
<T> T getBlob(String bucket, String key, Class clazz);
<T> List<T> getBlobList(String bucket, Class clazz);
void deleteBlob(String bucket, String key);

}

Listing 6: Object Storage Interface generated by CadaML

Listing 6 presents an interface for object storage that contains all necessary ab-

stract methods, namely, storage initialization, bucket creation, region specification,

object upload, retrieval of a single object, retrieval of a list of objects, and deletion

of an object. The implementation of storage initialization and object upload for

Amazon S3 are shown in Listing 7. The storage initialization method establishes a

new Amazon S3 client using AWS credentials to access Amazon S3 in a specified

region. In turn, the blob upload method serializes a Java object to a JavaScript

Object Notation (JSON), and stores it in a bucket. It is worth noting that cloud

provider specific classes implement methods in a generic way that work on di↵erent

data models.

3.6 Reflection on Requirements

The concepts and notations included in CadaML are obtained through analyzing

di↵erent cloud data storage solutions o↵ered by widely used cloud providers, in-

vestigating current cloud modeling languages that allow developing and deploying

cloud applications, and exploring available data partitioning patterns.

Since analyzed cloud providers and modeling languages share a common vocabu-

lary to describe relational databases, the existing terminology is reused in CadaML to

represent a relational database and its components. In contrast, each cloud provider

uses di↵erent concepts to describe non-relational databases and blob storage solu-

tions. Moreover, some cloud providers exploit the same concepts that are used in

relational databases to define particular elements of non-relational databases. For

CadaML, in order to provide explicitness and eliminate ambiguity, concepts that

are only specific to non-relational databases are chosen to depict elements of a non-
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public class BlobStorageAmazonImpl implements BlobStorage {
private AmazonS3 client;
private String accessKey;
private String secretKey;
private Regions region;
...
public void initializeStorage() {
BasicAWSCredentials awsCreds =
new BasicAWSCredentials(accessKey, secretKey);

client = AmazonS3ClientBuilder
.standard()
.withCredentials(new AWSStaticCredentialsProvider(awsCreds))
.withRegion(region)
.build();

}

public <T> void uploadBlob(T blob, String bucket,
String key) {

ObjectMapper mapper = new ObjectMapper();
String jsonInString = mapper.writeValueAsString(blob);
byte[] content = jsonInString.getBytes();
ByteArrayInputStream contentsAsStream =
new ByteArrayInputStream(content);
ObjectMetadata md = new ObjectMetadata();
md.setContentLength(content.length);
client.putObject(new PutObjectRequest(bucket, key, content, md));

}
...
}

Listing 7: The code generate by CadaML that implements storage initialization and
object upload methods for the Amazon S3 object storage service.

relational database. Whilst, most commonly used terminology among di↵erent cloud

providers is captured to describe a blob storage. Hence, CR1 and CR2 requirements

are supported by reusing existing terminology and providing invariance of concepts

to represent di↵erent cloud data storage types and their components.

Once the concepts are defined, the implementation of CadaML is achieved by

leveraging tools and languages o↵ered by the Epsilon framework. Specifically, the

EuGENia tool is used to design the CadaML meta-model, and to generate an editor

from the meta-model. Thus, MR1 and MR2 requirements are satisfied as Epsilon

e↵ectively supports implementation of CadaML as a graphical modeling language,

and it reduces the development e↵ort to produce a modeling environment. Epsilon

also provides EVL to define and evaluate custom constraints on models. This, in

turn, certainly fulfills MR3 requirement by enabling validation of custom constraints

in addition to ensuring compliance of a model with the semantics of the meta-model.

In the meantime, MR4 requirement is achieved by generating the data access layer

code from a model using EGL. This also supports CR3 requirement as a model

contains all the necessary information to produce the su�cient data access layer
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code.

3.7 Summary

This chapter introduced CadaML, a modeling language that enables designing a multi-

tenant data architecture of cloud applications as a combination of di↵erent cloud

data storage solutions in a cloud provider agnostic manner. CadaML also provides

the model validation to keep a data architecture consistent with the semantics of

the CadaML meta-model and additional custom constraints. Moreover, it produces

data access layer code from a data architecture that are executable on three major

cloud service providers.

In order to design and implement CadaML, first of all, requirements related to

CadaML concepts, and a meta-modeling language to develop CadaML are specified.

These requirements are crucial to support design and evaluation of CadaML, and to

alleviate the complexity and risk to the CadaML development.

Then, the CadaML development methodology is described which includes domain

analysis, design and implementation phases. During the domain analysis phase,

di↵erent cloud data storage types, o↵ered by four widely used cloud service providers,

with their partitioning schemes, and characteristics of existing cloud application

modeling languages are explored to formulate a domain model. The domain model

presents unified concepts and terminology to represent di↵erent data services in an

abstract way. While in the design phase, the relationship of CadaML to current cloud

application modeling languages is identified, and the design specification for CadaML

is defined. As an outcome of the design phase, the CadaML meta-model is derived

from the domain model. Following the design phase, frameworks to develop and

deploy DSLs are analyzed and compared in the implementation phase to select a

suitable one for CadaML. With the chosen framework, a modeling environment is

produced from the meta-model, validation rules and constraints are specified, and

code generation is implemented.

Finally, the implementation decisions are validated against the requirements re-

garding the concepts of CadaML, and the meta-modeling language exploited to deliver

CadaML.
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Chapter 4

Application & Qualitative

Evaluation of CadaML

This chapter describes the exploitation of CadaML and presents our qualitative eval-

uation of the modeling language through a case study. The exploitation explains the

process of evolution from single- to multi-tenancy using the modeling environment

of CadaML. It also demonstrates the capability of the modeling language to design

di↵erent multi-tenancy patterns at the abstract level, and generate the correspond-

ing data access layer code. As a case study, an industrial business process analyzing

web application is evolved from single-tenant on-premises to a multi-tenant service

deployed to a public cloud. During the case study, we evaluate the feasibility of

the language and the adequacy of multi-tenancy implementation by the generated

code. The feasibility is examined through qualitative evaluation methods, while the

adequacy of multi-tenancy implementation is assessed by combining manual code

reviewing and automated unit testing approaches.

The chapter starts with a comparison of the evolution process from single- to

multi-tenancy using the manual approach and the modeling environment of CadaML

in Section 4.1. Then, Section 4.2 presents the experimental use case, and describes

its evolution motivation along with challenges. Section 4.3 follows these with the

comparison of the existing data partitioning schemes regarding the requirements

of the use case application. This section also presents the implementation of the

selected data partitioning pattern using CadaML and re-architecting the application

structure. The evaluation methodology and results of applying CadaML are inter-

preted in Section 4.4. While Section 4.5 discusses reflection on evolution challenges,

and comments on the limitations of the performed case study. Finally, Section 4.6

provides conclusion of the chapter.
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4.1 Evolving from Single- to Multi-tenancy

Multi-tenancy is an attractive pattern for e�ciently utilizing cloud resources by

sharing them across multiple tenants. Hence, applications built using this pattern

can be o↵ered at a lower price, and reduce maintenance e↵ort as less application

instances and supporting cloud resources must be maintained (e.g., [17, 28, 32]).

However, evolving a single-tenant application to a multi-tenant cloud service needs

re-engineering all layers of an application, and the data layer is no exception.

In this context, evolution refers to the modification of the application to reflect

multi-tenancy requirements. Currently, introducing multi-tenancy to existing single-

tenant applications is predominantly achieved using manual approaches (e.g., [17,

26,32,76]). Nevertheless, manual implementation is usually time-consuming and er-

ror prone (e.g., [23,45]). In this section, we describe the manual implementation of

multi-tenancy at the data layer, and compare it against implementing with CadaML.

4.1.1 Manual Evolution

A traditional manual implementation process based on the software development

life-cycle [120] covers the following steps as illustrated in Figure 4.1a: (i) data layer

requirements are gathered and captured in a requirement specification document;

(ii) the requirements are analyzed into models, schemes and business rules; (iii) a

data architecture is typically designed in a form of entity relationship diagram;

(iv) developers implement a data access layer from the data architecture model; and

(v) developers systematically discover and debug errors in the code.

Figure 4.1: Comparing the implementation processes of the manual approach and
that of CadaML.

During the data layer implementation, developers implement a collection of

classes and interfaces with their methods and properties. The implementation should

provide features to connect to the database, establish and terminate connections, and
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perform CRUD operations. Moreover, the implementation must be cloud provider

independent to o↵er the flexibility of exploiting multiple cloud providers as data

storage services, or to enable quick and easy switching from services of one cloud

provider to another when needed.

In this manual approach, whenever the data layer requirements change, develop-

ers have to go through all the subsequent steps and, eventually, modify the existing

code. For example, a multi-tenant data architecture can be implemented by either

sharing a single database by all tenants, deploying a separate scheme for each tenant

in a shared database, or deploying a separate database instance per tenant. Initially,

developers might implement a single shared database for all tenants. Later, secu-

rity requirements of tenants may require a more isolated approach that cannot be

provided in a single database instance. Thus, developers need to consider these re-

quirements, change the data architecture model, modify the data access layer code,

and verify the changes.

Although the data architecture model is validated at the design level against

requirement specifications, transformation from data architecture models to imple-

mentations is generally performed in ad-hoc manner without any formal guidelines

or process. As such, some important implementation actions may be neglected

since application implementation process usually changes as the implementation

progresses. This will negatively a↵ect the quality of the application. Moreover, this

type of transformation neither ensures the correctness of the implementation nor

guarantees the reflection of requirements in the implemented code [4]. Therefore,

manual implementation tends to be time-consuming and error prone (e.g., [23,45]).

4.1.2 Modeling using CadaML

In order to mitigate such design and implementation processes, model-driven ap-

proaches have been successfully applied both in academia and industry for building

service-oriented applications, developing autonomic enterprise applications, and au-

tomating industrial management processes (e.g., [10, 39, 53, 70, 133]), but not for

implementing multi-tenant cloud applications. These approaches have resulted in

reduced e↵ort on development, increased productivity of developers, improved qual-

ity and maintainability of the application. Inspired by this, we propose CadaML

to enable describing a data architecture in an abstract level by hiding the imple-

mentation details of the underlying storage type. As shown in Figure 4.1b, a data

layer implementation workflow using CadaML involves four steps: (i) first, as in the

manual approach, data layer requirements are gathered; (ii) the requirements are

analyzed and a data architecture model is designed using the graphical editor of

CadaML; (iii) the model is validated for constraints and validation rules imposed by

61



CHAPTER 4 APPLICATION & QUALITATIVE EVALUATION OF CADAML

CadaML; and (iv) the data access layer source code is produced from the model.

...
public SQLDatabaseImpl(String className, String jdbcURL, String schema) {
this.className = className;
this.URL = jdbcURL;
this.schema = schema;

}

public void initializeDatabase() {
try {
Class.forName(className);
System.out.println("Initializing SQL connection...");
conn = DriverManager.getConnection(URL);
conn.setSchema(schema);
}
catch (ClassNotFoundException e) { ... }
catch (SQLException e) { ... }

}
...

Listing 8: The generated Java code by CadaML for establishing a database connection
for a shared database with separate schemas

When using the modeling environment of CadaML, developers design a multi-

tenant data architecture in terms of tables and their interrelations. Since CadaML

captures di↵erent data partitioning patterns as configuration options for each avail-

able cloud data storage type, developers can specify a suitable data partitioning

scheme at the abstract level. In this scenario, changes in the requirements can be

directly reflected in the model by selecting an appropriate data partitioning option.

Compared to the manual approach, CadaML automates the data layer implementa-

tion by producing a corresponding data access layer code from the data architec-

ture model. Specifically, CadaML produces di↵erent code for each data partitioning

pattern. For both separate databases and a shared database with separate schemas

approaches, the queries do not require filtering as the data access layer enables isola-

tion of tenant data by connecting to a tenant-specific database and a tenant-specific

schema, respectively. Listing 8 presents a code excerpt produced by CadaML that

implements establishing a connection to a SQL database and specifying a tenant-

specific schema. The constructor accepts three parameters to initialize a class name

for a database engine, a database connection Uniform Resource Locator (URL), and

a schema name, where the last is used to set a tenant-specific schema when creating

a database connection. This information is typically stored as part of the tenant

configuration.

In contrast, when tenants share a schema in a shared database, filtering queries to

perform CRUD operations is mandatory to provide logical isolation of tenant data.

CadaML implements filtering in a generic manner. For example, Listing 9 presents a

code fragment that filters retrieval queries with the WHERE clause. This method can
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...
public <T, F> T selectList(String table, String fkName, F fk, Class clazz) {
List<T> list = new ArrayList<>();
String selectQuery = null;

if (fk instanceof String)
selectQuery = String.format("SELECT * FROM %s WHERE %s = '%s'",

table, fkName, fk);
else
selectQuery = String.format("SELECT * FROM %s WHERE %s = %d",

table, fkName, fk);

try {
Statement st = conn.createStatement();
ResultSet rs = st.executeQuery(selectQuery);
...

} catch (SQLException e) {...}

return (T) list;
}
...

Listing 9: A generic method generated by CadaML for retrieving data from a shared
database with a shared schema

be used to retrieve data from any table filtered by any field. This implementation

is based on industrial and academic work [17, 32, 58] that proved to be e�cient in

enabling tenant isolation.

In addition to the capability of producing corresponding data access layer code

for di↵erent data partitioning patterns, the generated code is cloud provider inde-

pendent. More concretely, a connection to a relational database is implemented

using a JDBC API driver which is supported by almost all cloud service providers.

As a result, the generated code only requires a database URL that consists of the

server name hosting the database, port number, database name, database user, and

password. For non-relational databases and blob storage, the generated code is

implemented by exploiting the concept of polymorphism to dynamically interact

with an appropriate data storage service of the three major cloud service providers

(i.e., Alibaba Cloud, AWS, and Azure) based on the configuration information.

Listing 10 demonstrates the creation of a connection to a blob storage service

hosted by a cloud provider. In the code fragment, blobStorage is an instance of an

interface that is initialized to an implementation of a particular cloud provider at

run-time. Hence, this instance is used to perform data operations over any blob

storage. In the same manner, the generated code implements methods to interact

with non-relational databases.
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...
public BlobStorage getBlobStorage() {
if (cloudProvider.equalsIgnoreCase("aws")

|| cloudProvider.equalsIgnoreCase("amazon")) {
blobStorage = new BlobStorageAmazonImpl(identity, credential);
blobStorage.setRegion(region, replication);
} else if (cloudProvider.equalsIgnoreCase("azure")) {
blobStorage = new BlobStorageAzureImpl(identity, credential);
} else if (cloudProvider.equalsIgnoreCase("alibaba")) {
blobStorage = new BlobStorageAlibabaImpl(identity, credential);
blobStorage.setRegion(region, replication);
}
return blobStorage;

}
...

Listing 10: A method generated by CadaML for initializing a connection to an ap-
propriate blob storage service based on a cloud provider

4.2 Industrial Case Study: Background

To investigate the practical feasibility and evaluate the utility of applying CadaML,

a case study has been conducted. As an experimental use case, an industrial web

application is evolved to introduce multi-tenancy, and to deploy the application in

a cloud environment. The application is owned by a research center of a major

international telecommunication provider operating in 150+ countries (name of the

research center is redacted). The aims of the research center are to re-architect

the application as a multi-tenant cloud service, centralize the management of the

application, and reduce the associated development and maintenance e↵ort.

The application is distributed to many subsidiaries (hereafter, tenants) of a hold-

ing company, and the purpose of the application is to ensure compliance of business

processes of each subsidiary with the policies imposed by the holding company.

Figure 4.2: The business process application architecture.
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4.2.1 Overview

A high-level view of the original application architecture is illustrated in Figure 4.2.

The architecture is straightforward, and is one that many other applications use:

the application is a three-tier Java web service with an SQL database (Oracle in

this case) for data storage. The application with its components are deployed to

the servers of each tenant, allowing tenant employees to interact with it over the

Intranet using a browser.

The application itself is developed using Google Web Toolkit (GWT) 1, and it

consists of the presentation layer, business logic layer, and data layer. This sepa-

ration helps to manage complexity during development and enable loose coupling

between the application layers.

Figure 4.3: The ER diagram of the business process application.

The actual data architecture of the application is designed for a relational database

that contains 18 entities with their interrelations. For the experiment, only a set of

core entities is used to demonstrate the feasibility of CadaML. An ER diagram of the

experimental data architecture is presented in Figure 4.3.

1http://www.gwtproject.org/
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The process definition entity defines a business process, and it comprises process

and task definition entities. The process entity describes a job, order, or process

execution, such as service fulfillment or fault repair process, where the task definition

defines a description for a task in a business process. The remaining entities, namely,

process attribute, task attribute, and attribute value, hold additional attributes to

provide extensibility of the data architecture.

Currently, for each tenant an application and a database instance are deployed

on tenant premises. Tenants regularly upload log files of business processes to the

application, the application generates reports from the uploaded files, and at the

end of each month tenants send reports to the holding company. The reports are

analyzed by the holding company for conformance to its business regulations.

4.2.2 Evolution Motivation & Challenges

For the holding company, provisioning and deploying a new tenant requires prepa-

ration of the deployment infrastructure, configuration of networks, installation of

all necessary software, and ensuring proper functioning of the infrastructure. These

processes are time consuming and labor-intensive. Moreover, maintenance of multi-

ple applications with their supporting software and hardware infrastructure require

additional e↵ort, and most of the provisioned resources are underutilized. All these

factors also incur additional costs.

Figure 4.4: The evolution of the use case application from single- to multi-tenancy.

The holding company wants to change this allocation and focus on the applica-

tion rather than on the infrastructure, hence, it decided to evolve the application into

a multi-tenant cloud service as illustrated in Figure 4.4. In multi-tenancy, tenants

can subscribe to the application, upload log files, generate reports, and arrange the

analysis with the holding company without the need to send their reports. Adopt-

ing multi-tenancy and deploying the application and database to a public cloud

can also bring advantages of economies of scale, promote the centralized control of
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its application and database, and automate processes for managing the application

resources.

Nevertheless, there are several challenges that the holding company needs to

address when introducing multi-tenancy. These challenges a↵ect all layers of the

application structure, and, especially the data layer as other layers are typically

stateless in cloud applications [11, 38]. In particular, the following multi-tenancy

concerns along with design factors influence the application design:

CH1: Configurability and extensibility : Before introducing multi-tenancy, every

tenant has its own, possibly customized, database instance. In multi-tenancy,

the holding company may consider either to deploy each tenant to a dedicated

database instance, or to deploy a single database instance for all tenants. For

the single shared approach, tenants must be able to configure and extend the

database to cater for their specific needs.

CH2: Tenant isolation: When sharing a database, one of the highest priorities is

to ensure that tenants only view and edit their own data. This requirement

must also guarantee that tenant-specific configurations and extensions do not

directly a↵ect the data layer for other tenants.

CH3: Scalability : The database workload varies when employees of multiple ten-

ants interact with a multi-tenant database instance. Thus, the data layer

should be able to horizontally scale as the workload changes. During hori-

zontal scaling, database resources are created or released to match database

performance requirements [59].

CH4: Ease of development and maintenance: The holding company is concerned

that introducing multi-tenancy may increase the complexity in development

and maintenance processes. This, in turn, may lead to increase in the appli-

cation cost.

4.3 Industrial Case Study: Implementation

During the adoption of multi-tenancy, several modifications are required to address

the challenges described in the previous section. In essence, the evolution pro-

cess requires re-architecting the database schema and re-designing the application

structure. Primarily, we compare benefits and drawbacks of the current data par-

titioning options for relational databases. Then, we evolve the data architecture of

the use case based on the most suitable data partitioning scheme. Subsequently, we

re-architect the application structure to make the solution scalable.
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4.3.1 Comparing the Data Partitioning Schemes

Providing tenant isolation, extensibility, and scalability of the data layer requires a

partition scheme. The following three approaches have been proposed for data seg-

mentation in relational databases (see Section 3.3.2): (i) separate databases where

each tenant is deployed to a dedicated database instance; (ii) a shared database with

separate schemas for each tenant; and (iii) a shared database with a shared schema.

For the use case application, pros and cons of these three approaches are considered

regarding tenant isolation, customizability, development and maintenance e↵ort, and

are now discussed.

A separate database per tenant is the simplest approach to ensure isolation and

customizability at the data layer. Although this approach does not incur changes

to the existing database schema, an additional database is needed to store tenant

configuration information. This can be solved by applying an external configuration

store pattern [59], where the configuration information are stored in a separate

storage. The application reads configuration settings from the external storage, and

associates each tenant with its database instance. However, this approach does not

solve the concerns of the holding company, as it leads to higher maintenance e↵ort

to manage and support multiple database instances for each tenant.

On the contrary, in the shared database with multiple schemas pattern, each

tenant is hosted with its own separate set of tables in a single database. A tenant-

specific schema is created when a tenant is first deployed to the application. This

ensures isolation and customizability at the schema level. Similarly, in the separate

databases approach, additional tables are needed to store tenant configuration info-

rmation to map each tenant with a correct schema. This pattern is relatively easy

to implement, but it also requires additional e↵ort to manage and maintain multiple

schemas in the database.

Finally, tenants share a database and a set of tables to store their data in the

last approach. An identifier, commonly TenantID, is used to associate rows in the

tables with a specific tenant. Among three patterns, the shared database approach

has the lowest costs as it allows to deploy more tenants per database server [29].

A significant drawback of this approach is that additional development e↵ort is

required to ensure tenant isolation at the application level.

Through analyzing and discussing the three approaches described above, the

research center decided to model the data architecture of the use case application

following the single shared database with a shared schema approach for two main

reasons. First, this partitioning approach can serve more tenants with a small

number of servers. Secondly, it o↵ers low costs and more ease of management as

opposed to other partitioning schemes. As a result, data of tenants are combined
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into a single database instance.

4.3.2 Evolving the Data Architecture

In this section, we describe how to enable multi-tenancy in a single-tenant data

architecture using CadaML. During the evolution, the existing data model is reused

with minor modifications to address the evolution challenges.

Figure 4.5: The evolved multi-tenant data architecture modeled in CadaML.

The evolved data architecture of the use case is depicted in Figure 4.5. Firstly, a

relational database model for configuration data is designed. In this model, tenant,

tenant configuration, and tenant user entities are created using SQL tables. The

tenant and tenant configuration entities describe a tenant who has subscribed to

the application with its configuration information. The tenant user entity is intro-

duced to represent an employee of a tenant. Both tenant configuration and tenant

user tables contain the tenant identifier (i.e., ‘TenantID’ ) as the foreign key in or-

der to map a tenant with its configuration data and employees. In addition, the

partitioning scheme for this storage is specified as ‘Single Shared’ since the external

storage is shared across all tenants.

The application data presented in the ER diagram (see Figure 4.3) is designed

in another relational database model with ‘Single Shared’ data partitioning scheme.

All entities are modeled as SQL tables with collections of fields. In a shared database,

each tenant has its own set of processes and tasks with their definitions. Thus, the

tenant entity has relationships with process definition and task definition entities.

Because all tenants share one database, a straightforward solution to ensure logical

isolation will be including the tenant identifier to all entities. However, to prevent

unnecessary duplication of data, the tenant identifier is only added to process def-

inition and task definition tables as data from other tables are retrieved based on

the primary keys of these two tables.
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After this, the model has been checked for violation of constraints by means

of the validation tool. Then, the data access layer code in Java is produced from

the model. Although, CadaML generates source code for Alibaba, AWS, and Azure,

the application code for AWS is exploited to deploy the given use case. Specifi-

cally, CadaML produced data models for each tables and implementation of CRUD

operations for all tables.

4.3.3 Evolving the Application Architecture

In all three data partitioning schemes for relational databases, additional tables are

required to store tenant-specific configuration information. Therefore, the applica-

tion architecture is evolved based on the external configuration store pattern [59].

This pattern provides easier management and control of configuration data, and

it enables sharing configuration data across other applications and application in-

stances.

Figure 4.6: The first deployment scenario: the evolved architecture of the business
process application that is deployed to services of AWS.

We come up with two deployment scenarios for the holding company to host its

application and databases. The first scenario is depicted in Figure 4.6 where both

application and database instances are hosted in services of AWS. More concretely,

an instance of Elastic Compute Cloud (EC2) is created to deploy an application,

while two instances of Amazon RDS for Oracle are launched for data store (i.e., first

instance for configuration data and second instance for application data). This

type of deployment is preferred as both EC2 and Amazon RDS provide dynamic

scalability to maintain with changing demands of the application and database.

As shown in Figure 4.6, the configuration information of tenants are deployed

to a centralized external storage following the external configuration store pattern.
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When a tenant employee interacts with the application, configuration data of the

corresponding tenant are retrieved from the external storage. According to the

configuration data, the application loads tenant-specific user interface, and maps

tenant employees to their corresponding fields in the shared database.

Figure 4.7: The second deployment scenario: the evolved architecture of the business
process application where the application is deployed to services of AWS and the
databases are deployed to a private cloud of the holding company.

In the second scenario, as is illustrated in Figure 4.7, the application instance

is deployed to AWS, while the database instances are hosted in the private servers

of the holding company due to the concerns of the holding company to surrender

the control of its tenant data to a public cloud service provider. The application

works as in the previous scenario except it needs to connect to database instances

that are running on-premises of the holding company. Although this scenario meets

the security requirements of the holding company, it requires implementation of the

scalability of the data layer.

For this use case, CadaML provides a significant advantage as it produces the

data access layer code that supports both deployment scenarios regardless of the

service provider. Compared to the manual approach, CadaML removes the need

to change the code in order to cater for di↵erent deployment specifications or to

correctly interact with services of di↵erent providers as long as the configuration

data is provided correctly.

The running prototypes of both evolved application architectures have been

demonstrated to the research center for consideration. The main concerns of the

research center was that the holding company was reluctant to deploy its databases

to the services of AWS due to their data privacy and security regulations. They

were also worried about the deployment region of their application and databases

as AWS does not support the region where the holding company resides. After few
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meetings and discussions, the research center approved the proposed prototypes in

November 2017 in order to evaluate the potential benefits of moving the application

and databases to services of a public cloud provider.

4.4 Qualitative Evaluation

The case study involved modeling the data architecture of the use case application,

validation of the model for constraints and validation rules imposed by the language,

and generation of the data access layer code from the validated model. After evolving

the application, we analyze the utility of applying CadaML. Specifically, through this

case study we aim to characterize and interpret the application of CadaML from the

following perspectives since there is no DSL to compare against that also allows

modeling multi-tenant data architectures.

• Evaluation of the feasibility : When exploiting CadaML in real-world contexts

and settings, we expect that the modeling language improves the productivity

of developers, reduces the development e↵ort and provides an appropriate level

of usability. However, the e↵ort of applying the modeling language should be

reasonable in terms of time to familiarize with the language, convenience of

using the modeling environment, and suitability to implement multi-tenancy at

the data layer.

• Evaluation of the adequacy of multi-tenancy implementation: Although CadaML

(semi-)automates multi-tenancy implementation at the data layer by means of

the code generation, we must demonstrate that the generated code implements

tenant-isolation and extensibility correctly.

The evaluation was conducted in collaboration with a representative of the re-

search center who has experience in enabling configurability of multi-tenant appli-

cations using model-driven engineering approaches, in October 2017.

4.4.1 Evaluation Methodology

The case study was organized based on the guidelines for conducting and reporting

case research in software engineering [108], and it involved (i) planning and executing

the case study; (ii) collecting and analyzing data; and (iii) reporting the results.

In the planning and executing phase, we gathered goals and concerns of the

company, and analyzed the data layer of the application that are presented in pre-

vious sections. Then, we compared partitioning schemes for relational databases

to identify the most appropriate one that supports the evolution motivation of the
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holding company. Based on the selected partitioning scheme, the data architecture

was designed using CadaML with tenant-isolation, configurability and extensibility

requirements captured in the model. Finally, the data architecture model was vali-

dated, and the data access layer code was produced from the model.

Following the planning and conducting phase, we collected data to evaluate and

discuss the application of CadaML, and adequacy of multi-tenancy implementation

by the generated code. The feasibility was assessed through a qualitative evaluation

where we analyzed CadaML, its graphical editor and code generation capability. The

questions that are considered to evaluate the feasibility are:

FQ1: Is CadaML easily usable by the intended domain experts?

(a) Is the user interface of CadaML intuitive to exploit?

(b) Are the tools provided by CadaML descriptive?

FQ2: Does CadaML provide an appropriate level of abstraction and notations for

building the data layer of multi-tenant cloud applications?

(a) Does the model created using CadaML hide implementation details of the

underlying storage type?

(b) Are the notations used in the model expressive and self-explanatory

enough?

FQ3: Does CadaML serve the purpose of the development such as generating relevant

artifacts?

(a) Does CadaML generate appropriate code that represents business entities

of the data architecture?

(b) Does CadaML generate appropriate code to connect to the database?

(c) Does CadaML generate appropriate code to perform CRUD operations in

the application?

(d) Is the generated code provider independent?

FQ4: Does CadaML appropriately capture and implement multi-tenancy at the data

layer?

(a) Does CadaML enable modeling tenant isolation?

(b) Does CadaML generate code that ensures tenant isolation?

(c) Does CadaML enable modeling extensibility?

(d) Does CadaML generate code that ensures management of extensions?
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In the meantime, the adequacy of multi-tenancy implementation was investigated

based on code reviewing [2, 3] and unit testing techniques. In code reviewing, we

manually inspected the generated code to reduce application defects and improve the

quality of the code. While in unit testing, we run several test cases on the method

level using JUnit framework 2. We inspected whether data operations are correctly

performed when employees interact with the application. To ensure this, we added

three di↵erent tenants with several employees, generated business processes and

tasks with definitions for each tenant, and stored them in the database.

Once we set up the database, we specified the following test cases to examine

methods of each entity in the data architecture. The test cases are grouped based on

CRUD operations and marked with a related concern under testing. We identified

three testing concerns which are operations that require isolation of tenants (I),

operations to manipulate extensions (E), and operations to manipulate referencing

data (R).

TC1: Viewing tenant-specific data.

(a) Retrieve an item from a shared table (I).

(b) Retrieve an item with extensions from shared tables (I, E).

(c) Retrieve an item with referencing items from shared tables (I, R).

(d) Retrieve a list of items from a shared table (I).

TC2: Storing tenant-specific data.

(a) Store a single item in a shared table (I).

(b) Store a single item with extensions in shared tables (I, E).

(c) Store a single item with referencing items in shared tables (I, R).

(d) Store a list of items in a shared table (I).

TC3: Updating tenant-specific data.

(a) Update a single item in a shared table (I).

(b) Update a single item and extensions in shared tables (I, E).

(c) Update a single item and referencing items in shared tables (I, R).

(d) Update a list of items in a shared table (I).

TC4: Deleting tenant-specific data.

2https://junit.org/junit5/
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(a) Delete a single item from a shared table (I).

(b) Delete a single item with extensions from shared tables (I, E).

(c) Delete a single item with referencing items from shared tables (I, R).

(d) Delete a list of items from a shared table (I).

4.4.2 Evaluation of the Feasibility

CadaML has a graphical user interface and provides click and create feature to model

a data architecture which makes it simple and convenient to use (FQ1a). In addition,

it o↵ers descriptive tools and notations since the current concepts of available cloud

storage solutions are reused to represent them (FQ1b). Meanwhile, the expressiveness

of the model is validated by mapping the notations from the model to the source code

that interacts with the actual storage type (FQ2b). CadaML also allows modeling the

data architecture in an abstract way, thus, it only represents the essential elements

of the data layer in terms of tables and their interrelations (FQ2a). This enabled

us to focus on the data layer rather than on implementation details. These factors

conclude that the user interface of the modeling language is simple and convenient to

exploit, the tools and notations are descriptive, and the modeled data architecture is

self-explanatory and expressive. Therefore, we can claim that CadaML is easily usable

by intended domain experts (FQ1) and provides an appropriate level of abstraction

and notations (FQ2).

When modeling the data architecture, we were able to specify the data parti-

tioning option through the user interface of CadaML. As we decided to deploy all

tenants in a shared database with a shared schema, we included the tenant-identifier

to logically isolate rows of each tenant in shared tables in both databases (FQ4a).

In order to enable extensibility of the solution, we used additional tables to hold

custom data (FQ4c). After we modeled the data architecture, we validated it using

the model validation tool provided by CadaML. As the final step, we used the code

generation capability of the language to produce the data access layer code.

The code generator, firstly, transformed all tables into data models. Then, it

produced a class to establish and manage a connection to the database. The class is

implemented in a generic manner, hence, it can interact with any database engine

running on any server. Furthermore, the code generator created an interface with

its implementations for each data model to perform CRUD operations. It is worth

mentioning that tenant isolation and extensions modeled in the data architecture

were appropriately reflected in the generated code. Specifically, tenant isolation is

implemented by adjusting queries to filter by the tenant identifier (FQ4b), and ex-

tensibility is implemented in forms of aggregation and composition (FQ4d). This
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demonstrates that CadaML enables addressing and designing the multi-tenancy con-

cerns at the abstract level (FQ4), gives modelers a freedom to implement extensibility

strategies that best suit their application requirements, and it serves the purpose

of the development by producing the corresponding data access layer code from the

model (FQ3). The involved representative of the research center highlighted these

facts, and confirmed that CadaML would be feasible to apply in a practical setting.

Nevertheless, there are a few factors that turned out to be crucial to evolve the

existing use case application into a multi-tenant web service using such modeling

approach. Most importantly, the participation of the representative of the research

center was beneficial as he was consulted to gather knowledge about the data layer,

and to select the desired data partitioning scheme. In addition, we haven’t spent

much time and e↵ort on enabling extensibility of the data layer since the existing

database diagram already supported extensions of each table by providing additional

tables to store custom data. Besides, the proficiency in modeling and code generation

was also important to expedite learning and exploitation of the modeling language.

Because not all cloud application and data layer developers have such expertise level

on a regular basis, developers may require time and e↵ort to familiarize with the

modeling environment of CadaML. This is something we will investigate in Chapter 5.

4.4.3 Evaluation of the Adequacy of Multi-tenancy Imple-

mentation

To evaluate the quality of the generated code and adequacy of multi-tenancy imple-

mentation we combined code reviewing and unit testing techniques. As such, during

code reviewing we selected snippets of the generated code, and investigated its read-

ability, maintainability, correctness and vulnerabilities. Firstly, we validated that

tables were appropriately encapsulated into the data model. Second, we ensured

that relationships between tables were transformed in a form of aggregation or com-

position in data models. Third, a code excerpt that is responsible for establishing

connection to a database was reviewed for logical errors, and queries were inspected

to ensure that data operations isolate tenant-specific data appropriately. Finally,

we reviewed the implementation of storing and retrieving custom data to/from ad-

ditional tables.

The test cases listed in the previous section were expanded for individual methods

of process definition, task definition, process and task entities. We come up with 56

test cases in total which are presented in Appendix E. All of these test cases are

geared to support tenant isolation as shown in Table 4.1. Among them, 16 and 8 test

cases also cover management of custom extensions and referencing data, respectively.

The expanded test cases for process definition and process entities are presented
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Table 4.1: The distribution of test cases based on concerns under investigation per
entity

Process Definition Task Definition Process Task TOTAL
Tenant Isolation 16 16 12 12 56
Extensibility 4 4 4 4 16
Reference Data 4 4 0 0 8

in Table 4.2. Specifically, firstly, methods to manage a single process definition and

a list of process definitions without any referencing data and custom attributes were

tested. Then, methods to manipulate custom attributes of a single process definition

were inspected. Finally, methods that operate over referencing data were investi-

gated. For process entity, all methods expect those that manipulate referencing

data were examined. Test cases to manage referencing data were not extended for

process and task entities since these entities do not refer to other entities in the data

architecture. In the same manner, we tested methods to manage task definition and

task entities.

All methods successfully passed all test cases without violating any of the con-

cerns under the investigation. This might be due to the model validation tool that

captures major errors in the model before generating the code. Based on this com-

bined code reviewing and unit testing results, we can confirm that CadaML produces

a valid data access layer code that meets multi-tenancy requirements in terms of

tenant isolation and extensibility. Although these evaluation methods were su�-

cient for this particular case study due to the support from the research center,

we acknowledge that automated methodology for testing multi-tenant applications

would provide more quantitative validation. This is something we plan to do in the

future.

4.5 Discussion

The findings of the case study certainly demonstrates feasibility of CadaML to imple-

ment and evolve the data layer of the given use case. We now discuss if the evolution

challenges that are set in Section 4.2.2 have been addressed, and comment on the

limitations of the performed case study.

4.5.1 Reflection on Challenges

When introducing multi-tenancy it is important to provide configurability or cus-

tomizability of the data layer to support tenant-specific extensions. This require-
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Table 4.2: The expanded test cases for ProcessDefinition and Process entities
Process Definition Process

TC1 (a) Retrieve a process definition Retrieve a process

TC1 (b)
Retrieve a process definition
with custom attributes

Retrieve a process
with custom attributes

TC1 (c)
Retrieve a process definition with
corresponding task definitions and
processes

-

TC1 (d) Retrieve a list of process definitions Retrieve a list of processes
TC2 (a) Store a process definition Store a process

TC2 (b)
Store a process definition
with custom attributes

Store a process with
custom attributes

TC2 (c)
Store a process definition with
corresponding task definitions and
processes

-

TC2 (d) Store a list of process definitions Store a list of processes
TC3 (a) Update a process definition Update a process

TC3 (b)
Update a process definition
and its custom attributes

Update a process and
its custom attributes

TC3 (c)
Update a process definition and
corresponding task definitions and
processes

-

TC3 (d) Update a list of process definitions Update a list of processes
TC4 (a) Delete a process definition Delete a process

TC4 (b)
Delete a process definition with
corresponding custom attributes

Delete a process with
corresponding custom attributes

TC4 (c)
Delete a process definition and
corresponding task definitions and
processes

-

TC4 (d) Delete a list of process definitions Delete a list of processes

ment is already supported by the actual data architecture of the use case where

additional tables hold custom attributes. As a result, tenants can include additional

information regarding their processes, tasks and their definitions. During the evo-

lution, we adopted the same approach to address CH1 concern, although it provides

limited flexibility of the data architecture.

Another main concern in multi-tenancy is isolation of tenants in the database.

For the use case, all tenants are deployed to a shared database with a shared schema

after analyzing the existing partitioning patterns for relational databases. To asso-

ciate tenants with their data in a shared database, the tenant identifier is included in

tables. Hence, CH2 challenge is solved as using the tenant-specific identifier provides

logical isolation of tenant data. Furthermore, the evaluation confirms that CH1 and

CH2 challenges are correctly addressed by testing methods of the generated code for

tenant isolation and extensibility of the data architecture.
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It is also important to make database access scalable since a single database

instance is exploited across multiple tenants. A requirement for scalability is that

new database servers should be added to the database pool when needed. Fortu-

nately, current cloud providers eliminates the necessity to manually implement such

scalability requirement by o↵ering auto scaling capability of their services at the

PaaS level. Subsequently, we deployed the data layer of the use case to an instance

of Amazon RDS. This, in turn, supports CH3 concern by provisioning on-demand

resources to meet the database workload.

Finally, we confirm that CadaML as a proposed solution addresses CH4 challenge

by mitigating the evolution process and maintenance e↵ort of the data layer. The

evolution process is alleviated as CadaML removed most of the manual implementa-

tions due to the following capabilities. Firstly, it allows implementation of database

partitioning in a model. Secondly, errors are captured by the validation tool in the

model. Lastly, the model is transformed to the corresponding data access layer code

using the code generator tool. Meanwhile, maintenance e↵ort is reduced by deploy-

ing data of all tenants to a single database. This also leads to higher utilization of

database resources and lower overall costs.

4.5.2 Limitations

The case study describes the advantages of applying CadaML through evolving a

data architecture of an industrial web application. However, we could not fully

demonstrate applicability of the modeling language. The reason for this is the data

layer of the use case is designed for relational databases, although CadaML supports

di↵erent cloud data storage types o↵ered at the PaaS service model. This limitation

requires another study where we need to model a multi-tenant data architecture as

a combination of multiple cloud storage solutions.

Moreover, we did not compare CadaML against other DSLs or modeling techniques

due to the lack of other works that tackle multi-tenancy at the data layer. This is

discussed and highlighted in more detail in Chapter 2. We also did not compare

CadaML against manual code re-factoring, as a baseline due to its common use for

implementation of multi-tenancy. Therefore, we need a more in-depth study to

quantify the benefits of the modeling language. More concretely, we need to identify

how CadaML a↵ects productivity of developers compared to the manual method,

assess quality of the generated code, and evaluate usability of the language. Such

evaluation requires conducting an experimental user study with real developers who

are familiar with Java programming language, cloud application and data layer

implementation. In order to address these limitations, we performed a controlled

experiment with task analysis technique that is described in Chapter 5.
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4.6 Summary

This chapter described the application of CadaML and our qualitative evaluation of

the modeling language. The application demonstrates how the modeling environ-

ment of the language can facilitate designing di↵erent data partitioning patterns,

and generating source code that corresponds to each data partitioning option. Mean-

while, the evaluation shows the feasibility of CadaML in practical settings and the

correctness of multi-tenancy implementation by the generated code through a case

study. The feasibility is investigated by qualitatively assessing CadaML, its model-

ing environment and code generation tool. While, the adequacy of multi-tenancy

implementation is assessed by applying double approach of code reviewing and unit

testing. Although the evaluation outcome validates the applicability of CadaML in an

industrial setting, and emphasizes the su�ciency of multi-tenancy implementation,

we conducted a more in-depth study with real developers to further evaluate the

modeling language. The study is presented in the next chapter.
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Experimental Evaluation

In order to quantify benefits of CadaML, the experimental use case described in Sec-

tion 4.2 is exploited. The purpose of the evaluation is to assess the productivity of

developers, reliability of the generated code, and usability of CadaML. The produc-

tivity is measured in terms of time required to design the data layer and completion

rate of the experiment tasks. The reliability is calculated by debugging the generated

code against several test cases. Meanwhile, the usability is evaluated through an

interview regarding the concepts and graphical editor of CadaML. Moreover, CadaML

is compared against manual code re-factoring where developers implement the data

layer of the given use case for AWS.

This chapter starts with the description of the application’s data layer evolution

in Section 5.1. Then, Section 5.2 presents the experimental design and evaluation

methods that are adopted to assess the modeling language. The proficiency levels

of participants in programming languages, cloud application/data layer implemen-

tation, and modeling tools are interpreted in Section 5.3, while their allocation is

presented in Section 5.4. Section 5.5 explains the modeling process of the data

architecture using CadaML. The evaluation results of productivity, reliability, and

exit interviews are illustrated in Sections 5.6, 5.7, and 5.8, respectively. Section 5.9

discusses the findings and limitations of the experiment, and Section 5.10 analyzes

threats to validity. Finally, Section 5.11 summarizes this chapter.

5.1 Evolving the Application

During the evolution process, the data architecture of the use case is re-designed

to use a combination of di↵erent cloud storage solutions. This, in turn, provides

scalability, customizability and extensibility of the data layer, and reduces the costs

for data storage. Figure 5.1 shows, at a high level, which data is stored in the

di↵erent types of storage.

The application collects most of the tenant information with configuration data
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Figure 5.1: Data storage in the business process application.

during on-boarding process, and stores them as a single object in a public bucket

named ‘tenants’. A tenant and its configuration are modeled as separate entities to

enable customization and management of each entity independently. These entities

will be deployed to Amazon S3.

In the meantime, the application stores process definitions, processes, task defi-

nitions and tasks entities in separate non-relational tables in Amazon DynamoDB.

Storing these entities in non-relational tables simplifies the implementation of cus-

tomizability and extensibility of the application. To extend these tables in a rela-

tional database, additional tables are used to hold custom attributes (see Figure 4.3).

Fortunately, non-relational tables allow to use multiple schemes in the same table,

thus, each tenant can have its own custom attributes.

Nevertheless, non-relational databases support limited operations which restricts

execution of complex queries. Therefore, for tenants who need complex analysis

and management of their own custom reporting requirement, the application will

provision a new relational database instance of Amazon RDS during the on-boarding

process. For tenants with such requirements, the provisioning process will create

necessary tables in the database. Ideally, the actual database scheme should be

remained unchanged. For the experiment, the same set of entities that are used for

non-relational databases but with di↵erent organizational structure are constructed.

5.2 Experimental Design

The experiment strategy is to employ real developers and quantify their experience

in using CadaML. In order to systematically conduct the evaluation, it is important

to carefully plan the experiment procedure. Therefore, the evaluation of CadaML is

carried out in adherence to the controlled experiment design with the task analysis

technique. Such analysis allows us to observe how participants interact with CadaML

in order to identify advantages CadaML could bring, understand di�culties partici-

pants might face when using the modeling language, and determine improvements

that might be needed.
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5.2.1 Experiment Procedure

Figure 5.2: The flowchart of the experiment procedure.

The experiment procedure lasts for a maximum of an hour, and it takes place

according to the flowchart illustrated in Figure 5.2. (i) Firstly, a participant fills

a questionnaire about his/her experience in programming languages, cloud appli-

cation/data layer development and modeling tools. (ii) Then, the participant is

assigned to implement the data architecture either through manual coding or using

CadaML. The allocation is performed in an alternating order. This type of alloca-

tion is based on the between-group design to avoid interaction e↵ects, and to ensure

equal number of participants for both approaches. (iii) For participants who are

assigned to manually implement the experiment tasks, code samples annotated with

comments and Amazon APIs documentations are provided. Similarly, participants

using CadaML are given a very brief quickstart guide. Moreover, additional guidance

is o↵ered upon request for participants who have trouble interacting with CadaML or

Amazon APIs. (iv) The participant is given an experiment task which di↵ers based

on participant’s allocation. More detailed description of the experiment tasks are

presented in Section 5.2.3. It is worth noting that the participants work indepen-

dently and are unaware of each other’s work. (v) After completing the experiment

task, participants who are allocated to use CadaML are interviewed regarding reli-

ability of the code, usability of the modeling language, and how CadaML a↵ected
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their productivity. The interview questions are listed in Section 5.2.4. (vi) Finally,

open-ended questions are included towards the end of the experiment to solicit feed-

back on struggles participants had while manually implementing the experiment

tasks, and things to improve in CadaML. Answering these questions is optional.

5.2.2 Participant Recruitment

Based on the experiment design and goals of the evaluation, we recruited real de-

velopers to participate in the experiment. The recruitment involved a series of

activities including identifying eligible participants, explaining the experiment to

the potential participants, acquiring informed consent, ensuring ethical standards,

and supporting participants throughout the experiment.

Participants for the experiment were employed from the body of Computer Sci-

ence researchers and graduate students (i.e., Masters and PhD students) at the

School of Computing and Communications, Lancaster University. The recruitment

process took place between May and July 2018. The main requirements for partici-

pants were knowledge in Java programming language, and, preferably, experience in

cloud application or data layer implementation. As an incentive for participation,

an Amazon online shopping voucher was o↵ered (£10 in value) that was given upon

completion of the experiment task.

In total 24 developers showed interest in participating in the experiment. Un-

fortunately, one developer who was allocated for the manual method withdrew after

reading the experiment task due to the lack of experience in cloud applications and

data layer implementation.

5.2.3 Experimental Task

Once participants are recruited, they are allocated to evolve the data layer of the

use case using either manual approach or CadaML. Depending on the allocation,

participants are given an experiment task. In general, an experiment task is divided

into separate sections for each storage type where each section contains a list of

implementation tasks. These implementation tasks are then used as a checkpoint

system to gauge the level of completion of each participant.

For the manual approach, sections of each storage type consist of two groups

of implementation tasks. The first group covers creation of data models, and the

second group comprises of interaction with the storage solution. Specifically, there

are 20 tasks in the relational database section, 18 in the non-relational database

section, and 8 the in blob storage section.

The implementation tasks for CadaML include modeling elements of each storage

type, defining relationships between storage elements, validation of the modeled
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elements and their relationships, and generation of the data access layer code from

the model. The modeling specification contains 34 tasks for the relational database,

26 tasks for the non-relational database, and 18 tasks related to the blob storage.

5.2.4 Exit Interview Questions

The participants who use CadaML for modeling the data architecture of the use case

are interviewed after finishing the experiment tasks. They are asked a set of inter-

view questions on three di↵erent themes, and asked to respond using a 5-point Likert

scale (‘Strongly disagree’, . . . , ‘Strongly agree’). Furthermore, additional follow up

questions may be asked to clarify the reason behind certain responses. For example,

if a participant agreed that CadaML makes the data layer implementation easier,

a rationale that supports the participant’s response is requested. The interview

questions with additional follow up questions in brackets are as follows.

• Productivity

a) I spent less time to come up with source code. (How much time would it take

to manually write the code?)

b) CadaML makes the data layer implementation easier. (What made you dis-

agree/agree/be neutral about this statement?)

c) Extra manual coding [other than custom code for business logic] is required to

implement the data layer. (What extra code did you add?)

• Quality of Generated Code

a) The generated code is easy to read. (What makes the generated code easy/not

easy to read?)

b) Fewer errors occur compared to manual coding.(If disagreed, what types of

errors did you encounter in the generated code?)

c) It is harder to find errors in the generated code compared to manually written

code. (If agreed, what makes it harder to identify errors?)

• Usability

a) CadaML is di�cult to use. (What makes CadaML di�cult/easy to use?)

b) CadaML restricts my freedom as a programmer. (What did you find restrictive?)

c) The concepts and notations are intuitive to use. (What makes it intuitive/non-

intuitive?)
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The described experimental design and experimental tasks have been reviewed

and approved by the Faculty of Science and Technology Research Ethics Committee

(FSTREC) which is an Institutional Review Board (IRB) at Lancaster University.

5.3 Participant Expertise

Overall 23 developers participated in the experiment with varying expertise levels

in Java, cloud application/data layer development, and modeling tools.

Figure 5.3: The participants’ self-reported programming experience in years.

As illustrated in Figure 5.3, the majority of participants are proficient program-

mers who have been using various languages for years. Specifically, around 85%

of participants have coding experience for at least 4 years. While, the remaining

participants (4.35%(1) and 8.70% (2)) have been using programming languages for

up to 3 years.

Figure 5.4: The number of participants based on self-reported experience in cloud
application development and modeling.

Of all 23 developers who took part in the experiment, 7 participants have cloud

applications implementation background as shown in Figure 5.4. Only 5 among

them have experience in data layer implementation of cloud applications. Nearly
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same number of developers (8) have used modeling tools such as UML, Microsoft

Visio, MySQL Workbench and feature modeling tools.

Table 5.1: The participants’ self-reported expertise level in cloud APIs and storage
services.

Low
(1-2)

Medium
(3-5)

High
(6-7) TOTAL

APIs - 1 6 7
SQL Databases - - 5 5
NoSQL Storage 1 1 3 5
Blob Storage 1 2 2 5

Meanwhile, Table 5.1 presents that nearly all of the participants who have im-

plemented cloud applications are highly competent in applying APIs provided by

cloud service providers. Similarly, the majority of the experienced participants in

cloud data layer implementation have medium and high expertise level in using

di↵erent cloud storage services. Only one participant reported low proficiency in

implementing a data layer using NoSQL and blob storage.

Figure 5.5: The number of participants based on self-reported experience in exploit-
ing cloud service providers, and their allocation.

Figure 5.5 demonstrates that AWS and Azure are mostly exploited cloud service

providers by the participants. More precisely, 5 participants have developed and

deployed cloud applications using services of these cloud providers. The number

of participants who have used GAE (3) is slightly less. The reason for this might

be that AWS and Azure are current market leaders, while GAE is a relatively new

provider. Interestingly, 3 participants mentioned that they have also implemented

cloud applications using other cloud service providers, namely International Business
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Machines (IBM) SoftLayer 1, eApps 2, and Vultr 3.

5.4 Participation Allocation

The allocation of the participants with their self-reported expertise level in Java

is presented in Table 5.2. Among the participants, 11 developers manually imple-

mented the data layer, while 12 developers used CadaML. In general, most of the

participants have medium (9) and high (12) level expertise in Java, and one partic-

ipant in each approach at a beginner’s level.

Table 5.2: The participants’ self-reported expertise level in programming with Java.

Low
(1-3)

Medium
(4-6)

High
(7-9) TOTAL

Manual 1 5 5 11
CadaML 1 4 7 12

Total 2 9 12 23

Figure 5.6 shows that among the participants who are allocated to the manual

approach, 4 participants have cloud applications development background. Most of

these participants (3) also have experience in data layer implementation of cloud ap-

plications and exploiting modeling tools. Moreover, these participants have medium

and high level proficiency in cloud application and data layer implementation.

Figure 5.6: The number of participants based on self-reported expertise level in
years in cloud application development and modeling tools, and their allocation.

In the meantime, of all the participants who are assigned to use CadaML, 3 partic-

ipants have experience in cloud applications implementation, where 2 of them have

also developed the data layer. Finally, 5 participants have used di↵erent modeling

tools for more than 4 years.

1http://www.softlayer.com/
2https://www.eapps.com/
3https://www.vultr.com/
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Both the table and the figure emphasize that developers are as fairly allocated

for both approaches as possible, without taking skills into consideration.

5.5 Modeling in CadaML

CadaML is exploited by participants who are allocated to model the data architecture

of the experimental use case. Modeling the architecture starts with a creation of a

database diagram using the graphical editor. Then, instances of the corresponding

cloud data storage types, specifically, Object Storage, NoSQL Database, and SQL

Database, are created in the diagram. It is worth mentioning that all participants

came up with relatively the same model but with slight di↵erences in the layout, and

the provided figures represent a summary of the typical data architecture models by

most participants.

Figure 5.7: Object storage data architecture modeled in CadaML.

As shown in Figure 5.7, a single bucket is created in the object storage. The

‘Shared’ partitioning scheme is specified for the bucket since the bucket is used

as a central storage for tenant-specific configuration data, and it is shared across

all tenants. Within the bucket, Tenant and Configuration entities are modeled as

objects with attributes, and the relationship between these objects are defined by the

object reference.

The Tenant object has ‘Name’ and ‘SubscriptionKind’ attributes where the

first attribute is set as the key that will be associated with an instance of the object

when storing it in the bucket. Meanwhile, ‘Configuration’ object holds configuration

information that is used to provision a new relational database instance, and it is

bound to the Tenant object.

A NoSQL database instance is modeled with ‘Shared Tables’ partitioning scheme

as illustrated in Figure 5.8. In the database, non-relational entities are modeled as

NoSQL tables with their partition keys and row keys. However, the partition keys

and row keys are not shown in the diagram because they are specified as attributes
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Figure 5.8: Non-relational data architecture modeled in CadaML.

in the CadaML meta-model, thus, they can be seen in the Properties tab in the

graphical editor.

The partition key of the ProcessDefinition table contains the tenant identifier.

This value allows filtering by tenant identifier, and ensuring the isolation of process

definitions by tenant. While the row key comprises the process definition identifier to

make sure that tenants cannot create two process definitions with the same identifier.

The partition key for the Process and TaskDefinition tables contain the row key from

the ProcessDefinition table, which is the process definition identifier. This enables

the application to insert all processes and task definitions for a process definition in

a single transaction, and to retrieve them from a single partition. In the meantime,

the Process and TaskDefinition tables hold the process identifier and task definition

identifier, respectively, in their row keys.

Similarly, the row key of the TaskDefinition table (i.e., task definition identifier)

is set as the partition key for the Task table, and the task identifier is included in

the row key. Other elements of entities are added as properties, and the relationships

between entities are captured by NoSQL reference.

As illustrated in Figure 5.9, a SQL database instance is created with ‘Separate

Database Per Tenant’ partitioning scheme, as the application will provide an in-

stance of SQL database for tenants who require additional reporting capabilities.

Relational entities are created as SQL tables with their fields. For primary key

fields, isPrimaryKey property is set to true. The relationships are specified using

SQL reference, where a foreign key serves as a link between entities.

When the design of the data architecture is complete, CadaML checks the model

for errors, and validates the model before generating other artifacts from it. If there

is no violation of constraints and validation rules, a modeler can transform the model
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Figure 5.9: Relational data architecture modeled in CadaML.

to the data access layer code in Java for Alibaba Cloud, AWS, and Azure.

5.6 Evaluation of Productivity

Defining right metrics is important to measure productivity of developers. In gen-

eral, developer productivity can be determined based on measurement of work com-

pleted, and quality of the completed work. Therefore, the productivity of partici-

pants is evaluated by the completion rate of tasks through testing and debugging the

generated/written code, and recording the implementation time per storage type.

Table 5.3: Time spent (in h:min:s) and completion rate (CR) by participants for
each storage type through manual implementation

Blob Storage NoSQL SQL
CR Time CR Time CR Time

P1 50.0% 31:39 25.0% 29:07 0.0% -
P2 62.5% 25:48 40.0% 35:02 0.0% -
P3 62.5% 36:26 20.0% 23:41 0.0% -
P4 87.5% 39:12 20.0% 21:02 0.0% -
P5 0.0% - 25.0% 25:22 30.0% 34:44
P6 0.0% - 52.0% 01:00:09 0.0% -
P7 0.0% - 60.0% 01:00:23 0.0% -
P8 100.0% 38:54 20.0% 21:06 0.0% -
P9 62.5% 41:23 20.0% 18:38 0.0% -

P10 100.0% 36:24 25.0% 23:36 0.0% -
P11 75.0% 24:48 25.0% 20:55 0.0% -

Median 62.5% 36:25 25.0% 23:41 0.0% 34:44

Table 5.3 shows the completion rate of the implementation tasks for each storage
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type, as well as the associated time required to develop the data architecture through

manual coding. Before starting, participants are shown tutorials including brief code

samples, the time of which is not included in the demonstrated figure. On average,

participants spent 30-35 minutes for each storage type, with a median completion

rate of 62.5% for blob storage, 25.0% for non-relational database, and 0.0% for

relational database. Using median gives a much more representative value for our

results, as some participants could not accomplish tasks for particular storage types

in an hour.

Within the hour of time given for the experiment, none of the participants could

fully accomplish all experiment tasks using manual methods. Two participants

(i.e., P8 and P10) showed 100% completion rate for blob storage, with the best

completion rate for non-relational data architecture being 60% (i.e., P7). Nev-

ertheless, the latter participants spent the given time for implementing only the

non-relational data architecture. Meanwhile, only one participant could manually

implement 30% of the data layer for relational database. This clearly demonstrates

the complexity of successfully completing the required task using manual methods

in under an hour.

Table 5.4: Time spent (in h:min:s) and completion rate (CR) by participants for
each storage type using CadaML

Blob Storage NoSQL SQL
CR Time CR Time CR Time

P12 100.0% 15:28 100.0% 14:55 100.0% 20:05
P13 100.0% 13:40 100.0% 11:48 100.0% 15:57
P14 100.0% 13:26 100.0% 08:24 100.0% 11:03
P15 100.0% 08:41 100.0% 06:07 100.0% 10:19
P16 100.0% 13:08 100.0% 12:11 100.0% 16:36
P17 100.0% 16:46 100.0% 15:54 100.0% 19:40
P18 100.0% 16:09 100.0% 19:07 100.0% 12:41
P19 100.0% 10:18 100.0% 11:32 100.0% 09:08
P20 100.0% 16:18 100.0% 18:06 100.0% 17:12
P21 100.0% 11:27 100.0% 11:36 100.0% 12:43
P22 100.0% 22:17 100.0% 19:53 100.0% 16:23
P23 100.0% 09:54 100.0% 12:16 100.0% 08:07

Median 100.0% 13:33 100.0% 12:14 100.0% 14:20

In stark contrast to the manual method, it can clearly be seen that using CadaML

significantly improves the completion rate and development time as demonstrated

in Table 5.4. Similarly to the manual approach, the time spent to familiarize the

participants with the user interface of CadaML (around 2-3 minutes) is not included

in the figure.

The data here provides interesting results. Participants spent around 14 minutes

on average to model the data architecture of each storage option. The minimum time
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required for blob storage, non-relational and relational databases are about 9, 6, and

8 minutes, respectively. Meanwhile, the maximum times were 22 minutes for blob

storage, and 20 minutes for non-relational and relational databases. Moreover, all

participants fully completed all three experiment tasks within an hour, and produced

code that successfully passed all test cases.

Figure 5.10: The distribution (median and interquartile range) of time taken by
participants to finish the data layer implementation tasks using the 3 di↵erent data-
store types. Using CadaML significantly reduces the development time. Note that
only one participant attempted to accomplish any progress on SQL using manual
implementation, hence the very narrow box on the far right.

To further expand on this, the general distribution of time taken by the partic-

ipants in both experiments is depicted using boxplots in Figure 5.10. In general,

30-40 minutes were required to manually implement the blob storage architecture,

and 20-35 minutes for the non-relational database structure. The majority of the

participants started the implementation with the blob storage, and spent any re-

maining time developing other storage types. Therefore, the time for the implemen-

tation of non-relational data access layer is less, but with lower completion rates

(as discussed before, and in Table 5.3). Unfortunately, implementation time for

relational databases could not be generalized, as only one participant attempted to

accomplish the experiment task for this storage type. On the other hand, most par-

ticipants using CadaML were able to finish the data layer implementation in 10–17

minutes.
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5.7 Error Analysis

It is critical to ensure that the application code consistently performs according to

its specification. For this purpose, the written/generated data access layer code by

each participant is evaluated using JUnit4 testing framework. The data access layer

code is tested and debugged on a method level against several test cases that are

similar to those that are described in Section 4.4.3, Chapter 4. The test cases are

designed to demonstrate the implementation correctness of the experiment tasks,

and the results of the evaluation are presented in this section.

Table 5.5: The distribution of test cases planned for each storage type per partici-
pant.

Blob Storage NoSQL Database SQL Database TOTAL
Test Cases 5 17 17 39

As shown in Table 5.5, in total 39 test cases per participant were formulated

based on the experiment tasks to demonstrate the correctness of the written meth-

ods. The test cases are designed to verify storage initialization and data manip-

ulation operations. For example, tenant and its configuration are considered as a

single entity, hence, the test cases are written to check establishing a connection to

AWS S3, creating a bucket in a storage, uploading, retrieving, and deleting a tenant

with its configuration. Similarly, the test cases for NoSQL and SQL databases are

designed in the same manner except CRUD operations were tested for each entity

in the data architecture.

Table 5.6: The distribution of test cases that were planned and execute with their
success and failure status.

Planned Executed Passed Failed
Blob Storage 55 40 26 14
NoSQL Database 187 187 56 131
SQL Database 187 17 6 11
TOTAL 429 244 88 156

The overall number of the planned test cases was 429 as demonstrated in Ta-

ble 5.6. However, we only executed 244 as not all of the participants were able to

4https://junit.org/junit5/
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fully implement the experiment tasks in an hour of given time. Although the suc-

cess rate of test cases for blob storage showed 65%, the remaining test cases failed

with the approximate success rates for NoSQL and SQL databases 30% and 35%,

respectively. In contrast, the generated code by CadaML passed all the test cases

without any major errors in the code.

Noticeably more errors were encountered in the application code by participants

who manually implemented the data access layer. Specifically, errors were discovered

in the code of 9 (out of 11) participants. On the contrary, CadaML users fared much

better: only 5 (out of 12) participants made errors in the data architecture model,

most of which were captured (as discussed below) by the validation tool of CadaML.

During the manual implementation experiment, the most common errors were

incorrect implementation of: (i) object serialization and de-serialization to upload

and retrieve a blob; (ii) non-relational table creation; and (iii) storing referenced

entities in a non-relational database. The reason for these errors seem to stem

from some participants perceiving the provided code samples as prescriptive rather

than illustrative. For example, in the Amazon S3 tutorial, an example is given of

uploading a file as a blob, not as a Java object. Some participants simply ignored

this fact, and blindly followed the tutorial when instead they needed to upload as

a Java object, which caused errors. Another possible reason is the time constraint.

Some participants may have felt the need to fully finish the experiment tasks in the

allocated time of an hour without ensuring the validity of their code.

Conversely, there were no fundamental errors in the code generated by CadaML.

Moreover, most of these errors were captured and fixed by the validation tool. Ex-

amples of such errors include: (i) missing primary keys for relational tables; (ii) in-

correct multiplicity specification for a relationship between non-relational tables;

and (iii) creation of relationships between wrong tables. The participants who en-

countered such errors admitted that they were made because of lack of attention

while following the experiment tasks. This might be suggest too much reliance on

CadaML, although it is di�cult to tell if this is indicative without conducting a much

wider study.

5.8 Exit Interview Results

After completing the experiment tasks, participants who are assigned to model using

CadaML are interviewed about their experience in exploiting the modeling language.

The first three interview questions are aimed to find out how CadaML a↵ects the

productivity. The next three questions are related to the reliability of the gen-

erated code, and the remaining questions focus on the usability of CadaML (see

Section 5.2.4).
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5.8.1 Productivity

The productivity-related questions are geared to solicit comments on time spent to

implement the data layer, whether CadaML eases or complicates the development

process, and adequacy of the generated code to accomplish the implementation of

the data layer. The participants’ feedback regarding these questions are depicted in

Figure 5.11.

All participants admitted that using CadaML reduces the time required to come

up with source code for the use case. The participants who are experienced in Java

and cloud application/data layer implementation indicated that it would take them

from 2 to 4 hours to manually develop the given experiment task, while the other

participants stated it would take at least a day and a maximum of 3 days.

Figure 5.11: Participant feedback regarding productivity: all agreed that CadaML
helps reduce implementation time and di�culty, but not all agreed that it was
su�cient on its own.

The participants also agreed that the modeling language made the implemen-

tation process easier. According to the answers to the follow up question, the par-

ticipants emphasized several benefits of CadaML to support this statement. Firstly,

concepts and notations provided by CadaML hide implementation details of di↵erent

cloud data storage solutions. Second, being able to design a data architecture as a

combination of three cloud storage types in a single model gives a general overview

of the application’s data layer. Third, visual representation of a data architecture

is more convenient to understand and manipulate. Finally, making changes in the

model is easier than in the application code and it shortens the development time.

Nonetheless, the participant responses di↵er about extra manual coding required

to implement the data layer. The half of the participants agreed that CadaML gener-

ates su�cient code to implement the data layer. Less than the half of the participants

(42%) expressed neither agreement nor disagreement with this statement claiming

that some extra manual coding may be needed depending on the application re-

quirements. Only one participants (8%) stated that the generated code required

few changes to fully implement the data layer.
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5.8.2 Quality of the Generated Code

The quality of the generated code is measured by interviewing the participants

regarding the readability of the generated code, occurrence of errors, and identifying

errors in the code. The outcome of the interview responses is shown in Figure 5.12

Analyzing the responses, we find that the majority of participants (92%) ac-

knowledged well readability of the generated code. The participants highlighted

that the produced code is clear, well formatted, and it follows coding conventions

and guidelines for Java. On the contrary, one participant (8%) found the generated

code neither easy nor hard to read. The response of the participant is a↵ected by

participant’s personal preferences.

Figure 5.12: Participant feedback on reliability: generated code is of high readability
and low frequency of errors; but with mixed perceptions about the ability of finding
errors in the generated code.

All participants claimed that fewer errors occurred in the code with CadaML in

contrast to manual implementation. Most commonly, the participants pointed out

the visual interface and model validation capability of CadaML as the main features

to reduce errors. In particular, visual representation of a data architecture prevents

making mistakes in defining model elements and links between them. While the

model validation helps to identify and capture errors at the model level without

digging in into the code.

However, for 42% of participants found it harder to locate errors in the produced

code compared to the manually written alternative. The participants gave di↵erent

reasons to support their opinions. Some participants expressed that it is di�cult to

identify cause of errors in the code since CadaML generates a large number of Java

classes and interfaces. Other participants referred to the fact that managing own

code is less challenging as opposed to the machine generated one. In the meantime,

one third of the participants stated that finding errors in the code requires same e↵ort

regardless the code is written manually or produced using the modeling language.
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5.8.3 Usability of CadaML

Di�culty in exploitation, flexibility and intuitiveness of concepts and notations pro-

vided by the modeling language are the main criteria to assess the usability of

CadaML. The participants responses regarding these aspects are illustrated in Fig-

ure 5.13.

The most of the participants (83%) argued that CadaML is relatively easy to use

due to its simple user interface and convenient tools to model a data architecture.

Nevertheless, a few participants (17%) struggled with applying CadaML when first

started using the modeling editor. The reason for struggling was unfamiliarity with

concepts of some tools. Therefore, these participants found the modeling language

neither di�cult nor easy to use.

Figure 5.13: Participant feedback on usability: CadaML is generally perceived to be
intuitive and easy to use without restricting the developers’ freedom of choice.

More than half of the participants (67%) agreed with flexibility of CadaML to im-

plement the data layer. On the contrary, one participant (8%) stated that CadaML

restricts his freedom as a programmer. The participant expected to manually im-

plement some parts of the data layer and model other parts using the modeling

language. The remaining participants (25%) evaluated CadaML somehow flexible

and restrictive at the same time. The reason for this is that the participants can

make changes in the generated code. However, changes in the code are not reflected

in the model.

Almost all participants (92%) found the concepts and notations provided by

CadaML intuitive enough to be applied. The participants appreciated that CadaML

reuses the existing terminology to define elements of di↵erent cloud data storage so-

lutions. The remaining participants (8%) expressed neutral point of view regarding

the intuitiveness of concepts and notations because of lack of knowledge in cloud

data storage types.
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5.9 Discussion

This section discusses the findings of the experiment and the exit interview. It

reflects on the strengths and weaknesses of CadaML in terms of ease of exploitation,

productivity of developers and code generator.

5.9.1 Ease of Exploitation

A major strength of CadaML is that it is generally simple and easy to exploit. Based

on the participants’ feedback, the graphical interface is one of the prime character-

istics that makes the modeling language convenient to use. Moreover, the graphical

representation of a data architecture facilitates the modeling process, and eases un-

derstanding the data architecture. This makes CadaML suitable for modelers with

little to strong technical knowledge in di↵erent cloud data storage solutions to create

and manipulate multi-tenant data architectures.

Currently, CadaML allows designing a data architecture in a single model as a

combination of three cloud data storage. This enables to get an overview of an ap-

plication’s data layer, though, representation and management of a graphical model

with many elements can be cumbersome. Creating a separate data architecture

model for each cloud data storage could alleviate representation of the model, but

would not solve the manageability issue.

In addition, a minority of participants found the graphical interface of CadaML

restricting and suggested a few improvements. Particularly, the participants recom-

mended including copy and paste capability to automate repetitive tasks such as

creating a model element, replicating attributes of a model element, or duplicating

relationships between model elements. The participants also proposed attributes of

model elements to be typed with Java primitive data types since CadaML generates

data access layer code in Java. Finally, the participants suggested to emphasize

primary and foreign keys of relational tables, and keys of objects in a model.

5.9.2 Productivity of Developers

The results of the experiment certainly show that using CadaML reduces the time to

implement the data layer of the given use case. More concretely, manual implemen-

tation would take around 3–5 hours in average to fully accomplish the experiment

tasks. This data is extrapolated from the experiment outcome presented in Ta-

ble 5.3. In contrast, with CadaML the participants spent 42 minutes on average to

complete the data layer implementation. Therefore, we can claim that the partic-

ipants spent about 4–7 times less time exploiting CadaML than using the manual

approach.
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Furthermore, improvements in the productivity of developers are echoed in the

exit interview results. According to the participants, the main factors that facilitate

increase in productivity are the visualization of the data architecture, validation

tool, and code generator. The discussed benefits and drawbacks of the visualization

in the previous section also apply to the productivity of developers. Meanwhile, the

validation tool ensures consistency of the model by capturing errors at the model

level. This eliminates the need to manually find and fix errors in the application

code. Finally, the code generator shortens the time to come up with data access

layer code by producing it from a model.

In terms of a limitation, an additional time is required to learn the modeling

language, its concepts and graphical editor when a modeler starts using CadaML.

Unfortunately, we cannot provide the exact amount of time that would be needed

to familiarize the participants with the modeling language for two main reasons.

First, the participants were given 2–5 minutes introduction to the modeling envi-

ronment of CadaML before starting the experiment. Secondly, the participants were

o↵ered additional guidance when they struggled exploiting the modeling language

during the experiment. Nevertheless, the experiment results demonstrate significant

reduction in time and increase in the completion rate when applying CadaML. Thus,

we can argue that the time to learn the language could be e↵ectively traded for long

term improvements in the productivity of developers.

5.9.3 Code Generator

Another advantage of CadaML is that it (semi-)automates the implementation of the

data layer by producing all necessary code from a model. This removes a lot of time

doing repetitive coding tasks such as creating data models, implementing CRUD

operations for each data model, and establishing connection to di↵erent types of

cloud data storage. However, some participants mentioned a few limitations which

made the generated code inconvenient to maintain and restrictive to modify.

The participants mainly referred that they would need more time to understand

the generated code compared to their own written alternative. The participants

also concerned that testing and debugging the generated code may be complicated

as CadaML produces a number of Java classes and interfaces. In contrast, some

participants disagreed with these limitations by arguing that understanding the

generated code and finding errors in it depends on a level of a programmer and the

application complexity. Furthermore, synchronization issues emerge between the

model and the generated code, because changes in the latter are not reflected in the

former. This issue requires a capability to handle such two-way synchronization and

automatically propagate changes between the model and the code.
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5.10 Threats to Validity

There are some threats that may hinder validity of the inference of our experi-

ment. These threats are divided into four types where each type addresses a specific

methodological question.

5.10.1 Construct Validity

Before starting the experiment, some design decisions have been made to system-

atically conduct the experiment and properly perform data collection. In order to

avoid the threat of an interaction e↵ect, the between-group design is applied to

allocate participants. Following this design, the participants are divided into two

groups where each group uses di↵erent approaches to evolve the data layer of the

given use case.

For data collection, the participants are interviewed regarding their experience

in using CadaML once completing the experiment tasks. The interview questions

are formulated using a Likert type scale. The chosen method enables quantifying

the participants’ responses, though it does not allow gathering qualitative data on

benefits and drawbacks of CadaML. Thus, additional questions are asked based on

participant’s responses to the interview questions, and open-ended questions are

included towards the end of the interview.

5.10.2 Internal Validity

A number of developers have been recruited for the experiment with various capabil-

ities in programming and cloud data layer implementation. This, in turn, increases

the threat that these external factors influenced the experiment results. Neverthe-

less, with CadaML the participants performed better in terms of completion rate

and implementation time than using the manual approach. The participants also

gave positive comments and feedback about CadaML and its features in their qual-

itative evaluation. Moreover, there were considerably less errors in the generated

code. Therefore, we can assure that CadaML results improvements in productivity

of developers and quality of the application code.

5.10.3 External Validity

Among the experiment participants, more than 65% reported lack of knowledge

in cloud application and data layer implementation. This leads to the concerns

in the generalizability of the experiment results to cloud experts. Despite of this,

we identified significant improvement in productivity across all the developer-base.
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However, further evaluation with cloud experts would provide more comprehensive

insights about CadaML.

Furthermore, the representativeness threat may be incurred due to the selected

use case. To mitigate this threat, a data layer of a business process analyzing appli-

cation has been chosen. The application is a real-world web service with a complex

data model owned by a major telecommunication company, and its architecture is

similar to many enterprise applications. During the experiment, the data architec-

ture is evolved to store the application data in di↵erent cloud storage solutions, and

the evolved application prototype is approved by the research center.

5.10.4 Conclusion Validity

Although a necessary amount of data has been collected to validate the benefits of

CadaML, a limited amount of time (i.e., 1 hour) was given to the participants to

develop the experiment tasks. As a result, the participants who were assigned to

the manual approach could not accomplish the experiment tasks in an hour of time.

This may lead to the threat that the participants assigned to the manual approach

may thought the necessity to complete the experiment tasks in the allocated time

without guaranteeing the validity of their code. Regardless the time constraint,

the experienced participants stated that it would take them 2–4 hours to manually

implement the tasks.

Another threat is that external factors such as participants’ knowledge and ex-

perience in cloud applications and data storage implementation might also influence

the experiment outcome. This threat is alleviated by the fact that the participants

were as fairly allocated as possible for both approaches without considering their

expertise level. Therefore, we can conclude that with CadaML less time is spent to

implement the data layer of the given use case, and with less errors appearing in the

generated application code.

5.11 Summary

This chapter evaluated CadaML against manual code re-factoring, and quantified the

benefits of the modeling language. As a use case for the evaluation, an industrial

business process analyzing application is evolved by deploying the application data

to a combination of di↵erent cloud storage services. The evaluation is conducted

following the controlled experiment design with the task analysis technique.

For the experiment, a number of developers with varying familiarity with Java,

cloud application and data layer implementation has been recruited. The devel-

opers are allocated to implement the experiment task either exploiting CadaML or
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manually. During the evaluation, the productivity of developers, reliability of the

generated code, and usability of the modeling language are assessed. The productiv-

ity is estimated by calculating the completion rate of the evaluation tasks, and time

required to model/implement the data architecture. The reliability is measured by

debugging and testing the generated/written code against several test cases. The

usability is analyzed through an interview and open-ended questions at the end of

the evaluation.

Through the evaluation, we have demonstrated that exploiting CadaML can sig-

nificantly reduce the time and e↵ort – by a factor of 4–7 – to implement the data

architecture, and decrease number of errors in the application code. We also dis-

cussed limitations that are gathered through the exit interview, and considered

threats to our study.
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Discussions & Conclusions

In this chapter, we summarize the thesis, describe the significance of our findings,

discuss limitations of CadaML, and present new insights that emerged as a result of

this research.

6.1 Thesis Summary

The aim of this thesis is to facilitate implementation of multi-tenancy in the data

layer of cloud applications using MDE techniques. The research, to achieve this aim,

is developed following the three research phases: 1) literature review of the past

and current approaches that are geared towards addressing multi-tenancy concerns

at the data layer; 2) development of CadaML, its graphical editor and modeling

environment; and 3) evaluation of CadaML in order to identify its application benefits.

The purpose of the literature review phase is to analyze information gathered

by identifying gaps and limitations in the related research, and formulating require-

ments for CadaML. Chapter 2 examines the existing literature and identifies a set

of (i) challenges of developing multi-tenancy at the data layer; (ii) current cloud

modeling languages and their important features; and (iii) their weaknesses and

limitations.

The outcome of the literature review is expanded in development phase to con-

verge on requirements for CadaML and to build these requirements into an actual

modeling language. Chapter 3, firstly, specifies the requirements along with as-

sociated rationale for concepts that need to be included in CadaML, and for a

meta-modeling language to implement the language. The chapter, then, identi-

fies a methodology to develop CadaML through analyzing the existing literature on

DSL development. Following the methodology, the specified requirements are trans-

formed into a modeling language with a graphical editor. This was accomplished

by analyzing di↵erent cloud storage solutions o↵ered at the PaaS provisioning level

by four major cloud service providers, designing a meta-model based on the do-
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main knowledge gathered through the analysis, and implementing CadaML and its

modeling environment.

The evaluation phase is reflected in Chapters 4 and 5, where the modeling lan-

guage is investigated through (1) a qualitative evaluation based on a case study;

and (2) an experimental evaluation which involved a controlled user study and an

in-depth interview with developers who have exploited CadaML.

The evaluation is performed on evolution of an industrial web application to

adopt multi-tenancy, and further evolution of the data layer to store application

data in di↵erent cloud data storage. The qualitative evaluation explores the appli-

cation of CadaML to a real-world industrial application, and demonstrates adequacy

of multi-tenancy implementation. While the experimental evaluation provides quan-

titative assessment of the benefits of CadaML in terms of well usability of the lan-

guage, increased productivity of developers, and improved reliability of the data

access layer code. Hence, these chapters present evidence that CadaML e↵ectively

facilitates implementation of multi-tenancy at the data layer by engaging develop-

ers with diverse programming and cloud application development background, and

o↵ering concepts and notations that enable developers to build a multi-tenant data

architecture in a cloud provider agnostic way.

6.2 Contributions

This thesis makes several contributions that are categorized around the three re-

search phases:

Literature review of manual approaches and modeling techniques to implement

multi-tenancy at the data layer in order to identify challenges of multi-tenancy im-

plementation and gather an appropriate feature set for CadaML.

C1. A literature search that captures the previous and current manual and mod-

eling approaches along with patterns for multi-tenant data architecture de-

velopment (Chapter 2).

C2. The overlap among manual and modeling approaches, and gap in them are

identified through analyzing published literature on multi-tenancy implemen-

tation (Chapter 2, Section 2.6).

Development of CadaML to mitigate and expedite the implementation of multi-

tenant data architectures for cloud applications.

C3. A set of concepts and terminology requirements for CadaML are formulated

based on the design methodology on graphical DSL development [44] (Chap-

ter 3, Section 3.1.1).
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C4. A set of meta-modeling language requirements to implement CadaML are spec-

ified (Chapter 3, Section 3.1.2).

C5. A domain model is formulated that captures common vocabulary of available

cloud data storage solutions with their partitioning alternatives at the PaaS

service level o↵ered by four major public cloud service providers (Chapter 3,

Section 3.3.4).

C6. A meta-model of the language is designed and implemented that converge on

the requirements specified in C2 and C3 (Chapter 3, Section 3.4.3), and these

requirements are integrated into a graphical modeling language (Chapter 3,

Section 3.5.3).

C7. A set of deterministic validation rules are specified to keep a model created

using CadaML consistent, and ensure reliability of the model-to-code transfor-

mation (Chapter 3, Section 3.5.4).

C8. A code generation tool is implemented to produce a data layer implemen-

tation, from a validated model, with multi-tenancy management logic that

corresponds to the specific data storage types and policies selected by the

developer (Chapter 3, Section 3.5.5).

Evaluation of CadaML in terms of its applicability, usability, productivity of

developers, and reliability of the generated code

C9. A case study is conducted to qualitatively evaluate the applicability of CadaML

to design and implement a multi-tenant data architecture of an industrial web

application (Chapter 4).

C10. An experimental user study is performed where real developers with varying

expertise level further evolved the data layer of the industrial web application

to deploy it on di↵erent cloud data storage solutions. Through the user

study, we observe how CadaML a↵ects the productivity of developers, evaluate

whether the language improves reliability of the generated code, and assess

the usability of the modeling language (Chapter 5).

These contributions certainly support the research aim to “facilitate the im-

plementation of multi-tenancy in the data layer of cloud applications using MDE

techniques”. Furthermore, the followed language design methodology built up in

the implementation of CadaML, and the evaluation methodologies resulted in the

constructive assessment of the benefits and limitations of the modeling language.
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6.3 Reflection on Research Objectives

As a result of considering multi-tenant applications, their challenges and the existing

approaches that tackle these challenges, Section 1.4 identified a list of research ob-

jectives to facilitate the implementation of multi-tenant data architectures. These

research objectives are now revisited with reflection on how they are addressed

throughout the thesis.

RO1: Analyze existing approaches that consider multi-tenancy challenges at the

data layer of cloud applications. In Chapter 2, we critically reviewed and

analyzed the previous and current approaches that include both manual im-

plementations and modeling techniques related to enabling multi-tenancy in

the data layer. Through reviewing and analyzing these approaches, we gave

an overview of the significant literature published, described the relationship

among approaches, identified their limitations, revealed the gaps that exist

in the literature, and presented our perspective on the research in enabling

multi-tenancy.

RO2: Provide a way to describe a multi-tenant cloud data architecture at an ab-

stract level. In Chapter 3, we specified a set of requirements for concepts

and notations that need to be included in CadaML in order to provide a uni-

fied representation of varying cloud data storage types o↵ered by di↵erent

cloud service providers. These requirements then were transformed into a

modeling language that enables building multi-tenant data architectures in

a cloud provider independent way by hiding cloud-specific implementation

details. In Chapter 4, we qualitatively evaluated this in a collaboration with

an experienced researcher in cloud application implementation. The outcome

of the evaluation emphasizes that CadaML provides developers an appropriate

level of abstraction by only representing the essential elements of the data

layer and multi-tenancy patterns which also enabled developers to focus on

the data architecture rather than on the implementation variance of di↵erent

cloud data storage types.

RO3: Reduce the development e↵ort during the implementation of a multi-tenant

cloud data architecture. We compared CadaML against manual coding tech-

nique in Chapter 5 where two separate groups of developers introduced multi-

tenancy to the data architecture of an industrial application. The outcome of

the comparison showed that developers spent 4–7 times less time exploiting

CadaML than using the manual approach.

RO4: Improve reliability of the application code (specifically at the data layer). To

decrease the number of errors in the application code, CadaML provides model
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validation and code generation tools. To evaluate whether this is achieved,

the generated code is assessed by combining manual code reviewing and au-

tomated unit testing in Chapters 4 and 5. Code reviewing showed that a

data architecture modeled using CadaML was appropriately transformed into

the corresponding data access layer code. Unit testing confirmed that the

generated code ensures isolation of tenants and management of custom data.

Furthermore, unit testing demonstrated that the number of errors in the

application code was reduced by almost half when using CadaML.

RO5: O↵er developers with a reasonable level of usability. The usability of CadaML

was evaluated by interviewing developers who used the modeling language

during the controlled experiment in Chapter 5. All participants emphasized

that the graphical editor makes the modeling a data architecture more con-

venient. They also highlighted that the visual representation eases under-

standing the model, and saves e↵ort when applying changes in the model.

Moreover, the majority of the participants were satisfied with the concepts

and notations provided by the language.

6.4 Limitations

Beside the benefits of applying CadaML that are mentioned above, there a few limita-

tions identified during the evaluation of the language and its modeling environment.

• Using CadaML developers can design a data architecture that consists of di↵erent

cloud data storage solutions in a single model. This, in turn, enables to get

an overview of an application’s data layer, eases the understandability of the

data architecture, and mitigates the exploitation of the modeling language.

However, representation and managing a graphical model with a large number

of elements can be challenging. Although CadaML provides a hierarchical tree

view of model elements, and allows designing each cloud data storage type in

a separate model to alleviate the representation issue, this would not properly

address the manageability challenge. This is something that could be addressed

using model slicing techniques where a large and complex model is broken down

into relevant model parts or elements.

• CadaML produces the data access layer code from a model in order to automate

the data layer implementation of cloud applications. However, developers might

need to extend or customize the generated code to meet additional data layer

requirements. Currently, changes in the generated code are not reflected in the

model which leads to synchronization issues between the code and the model.
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Moreover, changes in the generated code are overwritten whenever developers

re-produce the code from the model. This limitation requires two-way synchro-

nization where relevant modification in one artifact need to be propagated to

another. Model synchronization is outside the scope of this thesis but a very

relevant area.

6.5 Discussion

• E�cient cloud application implementation and evolution

Through implementing and applying CadaML, we realized that modeling ap-

proaches could be suitable for prototyping cloud applications as they enable

describing a purpose of an application more easily than with coding. Thus,

modeling can produce a high-level overview of an application and give the

ability to generate an application structure with basic functionality already

implemented. This in turn can provide a good starting point for developers

to further extend, customize or enrich the generated prototype to meet the

application requirements.

Moreover, modeling approaches can actually facilitate e�cient implementation

and evolution of cloud applications. As in prototyping, developers can design a

cloud application in a high-level model based on requirement specifications. An

application model can be then transformed into an application code using code

generation tools. When application requirements evolve over time, changes can

be directly captured in the model and, subsequently, reflected in the application

code. This is useful to keep the requirement specifications, application model,

and application code up to date, and it expedites the evolution process.

Finally, model validation and code generation capabilities can also bring a num-

ber of benefits. Code generation helps to automatically parse a model into ex-

ecutable application code. Meanwhile, model validation helps to keep a model

consistent, handle errors within the model before producing source code, and

ensure semantic correspondence of the generated code with the target environ-

ment. In our case, CadaML significantly improved productivity of developers in

terms of time and development e↵ort by a factor of 4–7 as opposed to the man-

ual implementation, increased quality of the application code, and minimized

number of errors in it.

• Cloud portability and generalizability of CadaML

Currently, cloud providers o↵er specific tools and libraries to support developing

applications that can interact with their own services and platforms. Therefore,

the implemented applications are locked to a particular cloud platform. In the
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future, customers may consider moving to another cloud environment due to

changes in their requirements or policies [7, 83, 106]. However, moving from

services of one cloud platform to another requires tremendous re-engineering

e↵ort [16, 30]. To address this issue and enable portability between cloud ser-

vice providers, customers could benefit from abstraction o↵ered by modeling

techniques. Thus, a cloud application model can be designed in a platform-

independent manner, and platform-specific artifacts can be transformed from

the model anytime. As a supportive to this, we showed that CadaML supports

Alibaba, Amazon, and Azure, though it would still be applicable to other cloud

service providers that o↵er similar data storage solutions such as Backblaze B2

Cloud Storage, Rackspace Cloud Files, MongoDB, Oracle NoSQL Database,

and Cassandra. To support more cloud platforms, we would need to extend the

code generation tool, or use abstraction libraries that can operate across multi-

ple clouds. However, we avoided using such abstraction libraries in this thesis

as they currently support only blob storage of a few cloud service providers

while most real world cloud applications store their data in di↵erent storage

solutions including relational and non-relational databases.

• Lowering barrier to adopt cloud environments

There is a number of di↵erent cloud service providers o↵ering heterogeneous

cloud services and solutions. Moreover, each cloud service provide has its own

tools and libraries to develop cloud applications as described in previous sec-

tion. This diversity is often seen as an obstacle by new cloud customers and

cloud users [7, 13,89]. Modeling approaches can help to overcome this obstacle

through an appropriate level of abstraction to exploit cloud services, and build

cloud applications using these services. As a result, cloud customers could be

provided with an ability to develop and host cloud applications on di↵erent

cloud platforms without going into cloud-specific implementation details. The

prominent example is Force.com 1, a cloud application development platform

that o↵ers cloud customers a meta-data driven modeling environment to model

and run custom applications on its cloud environment. Another example is the

TOSCA-based cloud-agnostic modeling framework Cloudify 2 that can be used

to automate application orchestration, maintenance and management.

On the other hand, it would also be a mistake to assume that modeling ap-

proaches can anticipate and address all the challenges associated with cloud

application development. Some development tasks such as complex business

logic, security related concerns, and fault handling are arguably easier and more

1http://www.force.com/
2https://cloudify.co/
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e�cient to implement manually. Therefore, modeling languages should be in-

tegrated with manual implementations to express di↵erent concerns of cloud

application development. Some modeling approaches can be domain specific

while others more related to technical concerns so they can be more generic.

• Modeling languages for cloud applications

In Chapter 2, we considered past and current modeling languages so that we

could possibly reuse their concepts or extend them to realize CadaML. This could

significantly reduce language development time, and provide an initial level of

quality. However, most of the modeling approaches propose diverse modeling

concepts even though they are geared towards describing the data architecture

of cloud applications. Although TOSCA has been proposed as a standardized

software modeling language, we could not extend it as it is intended to describe

a topology instead of structure of cloud applications in terms of components

and their relationships.

Moreover, we considered exploiting CadaML in a combination with other model-

ing tools to fully automate cloud application development since there is also

a high variety of modeling languages that capture cloud applications from

di↵erent implementation perspectives. However, most of these languages are

not mature enough, abandoned, or unavailable to public. Even with available

tools such as multi-view cloud variability framework [88], CloudDSL [119], and

CloudML-SINTEF [14], we failed to make them work properly due to lack of

tool support and documentation. As a consequence, we couldn’t extend existing

modeling languages or integrate CadaML with them because of unclear overlap,

semantic mismatches and interoperability issues.

Another interesting finding is that current modeling approaches are mostly ap-

plicable at design-time to generate cloud deployment configurations or part of

an application implementation [13]. Though, considering run-time character-

istics and evolution requirements within the model would be beneficial due to

the following reasons. The former will allow to capture quality aspects of pro-

visioned computing services which can be used for refining or optimizing cloud

services. The latter will enable to e�ciently evolve cloud application by defining

evolution requirements in the model and transforming them into the application

code.

• DSL development methodologies and meta-modeling languages

This thesis has shown that modeling approaches can help in managing the

complexity of developing cloud applications, but e�cient implementation of

modeling languages requires a set of appropriate methodologies along with

lightweight, and easy to use techniques and tools. In Chapter 3, we reviewed
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published literature on DSL development and examined meta-modeling lan-

guages to implement CadaML. The reviewed literature di↵ers from each other

based on tools and frameworks they use to implement a modeling language.

Some works embed detailed instructions, while others provide explicit design

guidelines. The examined meta-modeling languages are also divergent regard-

ing tool support, features and capabilities to design a DSL. Some of the meta-

modeling languages are not powerful enough to implement a complete language

and require additional e↵ort to complement their weaknesses. Based on this,

we can argue that there are no commonly accepted methodologies and meta-

modeling languages to develop graphical DSLs. Hence, there is a need for a

standardized meta-modeling language, and formal methodologies and guide-

lines to support development and exploitation of graphical DSLs.

• Other cloud data storage services

In order to support the demands of emerging technologies and provide e�cient

solutions to open problems, cloud providers o↵er new data storage and analysis

services such as graph databases and data streams. Graph databases are an-

other type of non-relational databases to store and navigate relationships, and

they are commonly used for fraud detection, social networking, and knowledge

graphs. Meanwhile, data streams enable to implement applications to analyze

and process streaming, for example, for collecting log and event data, real-time

analysis, and social media feeds. These data storage and analysis services are

optimized for certain use case scenarios and provide benefits over existing data

storage and analyzing solutions. Supporting these services by CadaML would fur-

ther expand its application and generalizability. This would require analyzing

similar services of cloud providers, capturing conceptual and implementation

commonalities and di↵erences, extending the domain model and meta-model of

CadaML, and subsequent modification of the graphical editor, model validation,

and code generation tools.

• Runtime model evaluation and optimization

Evaluation and validation of non-functional requirements would provide valu-

able insights to optimize and adapt provisioned cloud services. This was also

highlighted in the systematic review of cloud modeling languages [13]. The

runtime aspects of provisioned cloud resources can be typically monitored and

managed using cloud integrated services such as Amazon CloudWatch 3, Azure

Monitor 4, and Google Cloud Monitoring 5. CadaML could be integrated with

3https://aws.amazon.com/cloudwatch/
4https://azure.microsoft.com/en-gb/services/monitor/
5https://cloud.google.com/monitoring/
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these services for responding to performance changes, optimizing resource uti-

lization, and retrieving an overview of operational health based on the mon-

itored information. This could be achieved by implementing an additional

module that compares the status and workload of provisioned cloud services

provided by the cloud monitoring services against non-functional customer re-

quirements and adapts to changes if required..

6.6 Future Work

In addition to the future work to address the limitations outlined before, there are

a number of avenues of work that proceed from this thesis, including the following:

• For the experimental study, developers of varying familiarity with Java and

cloud data layer architectures were recruited. A benefit of this was to identify

baseline improvement across the wide developer-base. However, a more in-

depth study with experienced cloud data layer developers would provide further

insights, particularly in usability of CadaML, appropriateness of concepts used

in the language, and e↵ects on development e↵ort. This is a priority in the

future research.

• With the growth of cloud service providers and evolution of cloud applications,

more and more applications use a combination of di↵erent cloud data storage

solutions from multiple cloud service providers to optimally exploit data storage

services regarding pricing, performance, flexibility, geographical coverage, and

other quality related characteristics. Consequently, implementing/enhancing

abstraction libraries and multi-cloud management platforms is something for

future work. Moreover, analyzing these quality requirements will help to adapt

and optimize deployment configurations based on customer requirements. This

needs monitoring and evaluating behavior of cloud services at run-time, and

refining deployment configurations based on the evaluation results. This set of

added value activities constitute part of the responsibilities of a trusted third

party, i.e. a cloud broker [36].

• Since cloud services have been improving and new services have been con-

tinuously introduced over recent years, moving towards Functions as a Ser-

vice (FaaS) could be a promising solution to address multi-tenancy concerns.

Thus, investigating benefits and drawbacks of building multi-tenant cloud ap-

plications following this model would be a valuable contribution.
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[12] Keith H. Bennett and Václav Rajlich. Software maintenance and evolution:

A roadmap. In 22nd International Conference on on Software Engineering,

Future of Software Engineering Track, ICSE, pages 73–87, Limerick Ireland,

Jun 2000.
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[63] Enrique Jiménez-Domingo, Javier Torres Niño, Angel Lagares Lemos, Miguel

Lagares-Lemos, Ricardo Colomo Palacios, and Juan Miguel Gómez-Berb́ıs.

CLOUDIO: A cloud computing-oriented multi-tenant architecture for business

information systems. In IEEE International Conference on Cloud Computing,

CLOUD 2010, pages 532–533, Miami, FL, USA, July 2010.

120



BIBLIOGRAPHY CHAPTER 6

[64] Assylbek Jumagaliyev and Yehia Elkhatib. CadaML: A modeling language for

multi-tenant cloud application data architectures. In 12th IEEE Interational

Conference on Cloud Computing, CLOUD, 2019.

[65] Assylbek Jumagaliyev and Jon Whittle. Model-driven engineering for multi-

tenant saas application development. In Proceedings of the 3rd Workshop on

CrossCloud Infrastructures & Platforms, CrossCloud ’16, pages 8:1–8:2, New

York, NY, USA, 2016. ACM.

[66] Assylbek Jumagaliyev, Jon Whittle, and Yehia Elkhatib. Evolving multi-

tenant saas cloud applications using model-driven engineering. In 10th Inter-

national Workshop on Models and Evolution, CEUR Workshop Proceedings,

pages 60–64. CEUR-WS.org, 10 2016.

[67] Assylbek Jumagaliyev, Jon Whittle, and Yehia Elkhatib. Using DSML for

handling multi-tenant evolution in cloud applications. In IEEE International

Conference on Cloud Computing Technology and Science, CloudCom 2017,

pages 272–279, Hong Kong, December 2017.

[68] Jaap Kabbedijk, Cor-Paul Bezemer, Slinger Jansen, and Andy Zaidman.

Defining multi-tenancy: A systematic mapping study on the academic and

the industrial perspective. Journal of Systems and Software, 100:139–148,

2015.

[69] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A Spencer Pe-

terson. Feature-oriented domain analysis (FODA) feasibility study. Technical

Report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mel-

lon University, Pittsburgh, PA, 1990.

[70] Richard B Kieburtz, Laura McKinney, Je↵rey M Bell, James Hook, Alex Ko-

tov, Je↵rey Lewis, Dino P Oliva, Tim Sheard, Ira Smith, and Lisa Walton. A

software engineering experiment in software component generation. In Pro-

ceedings of the 18th international conference on Software engineering, pages

542–552. IEEE Computer Society, 1996.

[71] Dongmin Kim, Hanif Muhammad, Eunsam Kim, Sumi Helal, and Choonhwa

Lee. TOSCA-based and federation-aware cloud orchestration for Kubernetes

container platform. Applied Sciences, 9(1):191, 2019.

[72] Dimitrios Kolovos, Louis Rose, Richard Paige, and A Garcıa-Domınguez. The

Epsilon book. Structure, 178:1–10, 2010.

121



CHAPTER 6 BIBLIOGRAPHY

[73] Derrick Kondo, Bahman Javadi, Paul Malecot, Franck Cappello, and David P

Anderson. Cost-benefit analysis of cloud computing versus desktop grids. In

IEEE International Symposium on Parallel Distributed Processing, pages 1–12,

May 2009.

[74] Rouven Krebs, Christof Momm, and Samuel Kounev. Architectural concerns

in multi-tenant SaaS applications. Closer, 12:426–431, 2012.

[75] Indika Kumara, Jun Han, Alan Colman, Tuan Nguyen, and Malinda Kapu-

ruge. Sharing with a di↵erence: Realizing service-based SaaS applications

with runtime sharing and variation in dynamic software product lines. In

2013 IEEE International Conference on Services Computing, pages 567–574.

IEEE, 2013.

[76] Thomas Kwok, Thao Nguyen, and Linh Lam. A software as a service with

multi-tenancy support for an electronic contract management application.

In 2008 IEEE International Conference on Services Computing (SCC 2008),

pages 179–186, Honolulu, Hawaii, USA, 2008.

[77] Fabien Latry, Julien Mercadal, and Charles Consel. Processing domain-specific

modeling languages: A case study in telephony services. In Generative Pro-

gramming and Component Engineering for QoS Provisioning in Distributed

Systems, Portland, United States, October 2006.

[78] Kwanwoo Lee, Kyo C Kang, and Jaejoon Lee. Concepts and guidelines of

feature modeling for product line software engineering. In International Con-

ference on Software Reuse, pages 62–77. Springer, 2002.

[79] Frank Leymann, Christoph Fehling, Ralp Mietzner, Alexander Nowak, and

Schahram Dustdar. Moving applications to the cloud: An approach based on

application model enrichment. International Journal of Cooperative Informa-

tion Systems, 20(03):307–356, 2011.

[80] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. CloudCmp: com-

paring public cloud providers. In Proceedings of the 10th ACM SIGCOMM

Internet Measurement Conference, IMC, pages 1–14, Melbourne, Australia,

Nov 2010.

[81] Hongbo Li, Yuliang Shi, and Qingzhong Li. A multi-granularity customization

relationship model for SaaS. In Web Information Systems and Mining, 2009.

WISM 2009. International Conference on, pages 611–615. IEEE, 2009.

122



BIBLIOGRAPHY CHAPTER 6

[82] Cui Lizhen, Wang Haiyang, Jinjiao Lin, and Haitao Pu. Customization mod-

eling based on metagraph for multi-tenant applications. In 5th International

Conference on Pervasive Computing and Applications, pages 255–260, Dec

2010.

[83] Logicworks. Roadblocks to cloud success, 2016.

[84] Shuai Luan, Yuliang Shi, and Haiyang Wang. A mechanism of modeling and

verification for SaaS customization based on TLA. In International Conference

on Web Information Systems and Mining, pages 337–344. Springer, 2009.

[85] Janne Luoma, Steven Kelly, and Juha-Pekka Tolvanen. Defining domain-

specific modeling languages: Collected experiences. In 4 th Workshop on

Domain-Specific Modeling, 2004.

[86] Kun Ma, Bo Yang, and Ajith Abraham. A template-based model transforma-

tion approach for deriving multi-tenant SaaS applications. In Acta polytechnica
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Appendix A

Comparing Data Storage Services

of Cloud Providers

This section describes characteristics of di↵erent types of data storage o↵ered by

major cloud service providers, namely, Alibaba, AWS, Azure, and Google. The first

three tables present blob storage, where the rest three tables discuss non-relational

databases of each cloud service provider.

Table A.1: Characteristics of Alibaba Object Storage Service (OSS)
Feature Alibaba OSS
Unit of Deployment Bucket
Deployment Identifier Globally unique key
File System Emulation Limited
Object Metadata Yes
Object Versioning No
Object Lifecycle Management No
Update Notifications No

Service Classes
Standard Storage
Infrequent Access Storage
Archive Storage

Deployment Locality Regional
Encryption at rest Yes
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Table A.2: Characteristics of Amazon S3
Feature Amazon S3
Unit of Deployment Bucket
Deployment Identifier Globally unique key
File System Emulation Limited
Object Metadata Yes
Object Versioning Yes
Object Lifecycle Management Yes
Update Notifications Event notifications

Service Classes

Standard
Reduced Redundancy
Infrequent Access
Amazon Glacier

Deployment Locality Regional
Encryption at rest Yes

Table A.3: Characteristics of Azure Blob Storage
Feature Azure Blob Storage
Unit of Deployment Container
Deployment Identifier Account-level unique key
File System Emulation Limited
Object Metadata Yes
Object Versioning Manual
Object Lifecycle Management No
Update Notifications No

Service Classes

Redundancy Levels:
Locally Redundant Storage
Zone-redundant Storage
Geo-redundant storage
Read-access-geo-redundant
storage
Tiers: Hot and Cool

Deployment Locality Zonal and regional
Encryption at rest Requires enabling
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Table A.4: Characteristics of Google Cloud Storage
Feature Google Cloud Storage
Unit of Deployment Bucket
Deployment Identifier Globally unique key
File System Emulation Limited
Object Metadata Yes

Object Versioning
Yes
Requires manually enabling

Object Lifecycle Management Yes
Update Notifications Object change notification

Service Classes

Durable Reduced Availability
Nearline
Coldline

Redundancy Levels:
Region
Multi-regional
Standard

Deployment Locality Regional and multi-regional
Encryption at rest Yes

131



APPENDIX A COMPARING DATA STORAGE SERVICES OF CLOUD PROVIDERS

Table A.5: Characteristics of Alibaba Table Store
Feature Alibaba Table Store
Object category Table
One object Data
Individual data for an object Attribute
Unique ID for an object Primary Key

Data types for unique ID
String
Integer
Binary

Secondary Index No
Data Types Integer, String, Boolean, and Double

Read Consistency
Eventual Consistency (Default)
Strong Consistency

Throughput Capacity for
Reads and Writes

Must be specified when creating a table

Auto Scaling
Upper and lower limits for read and write
capacity units must be defined

Auto Back-up Across di↵erent servers in di↵erent racks
Auto Data Partitioning Yes
Object-centric support for SDK No
Read Operations Single a single row operation
Range read operation
Batch Transactions Up to 100 items per transaction
Versioning N/A

Limitations
10 instances of databases can be created under
an Alibaba Cloud user account
64 tables per instance

Server-side Encryption at rest Manual
Update Notification N/A

Batch Operations
Write: Up to 200 data to a table
Read: Up to 100 data to a table

Query
Retrieves all items that have a specific
partition key.

Limitations Item size is up to 400KB
Lifecycle Management N/A
Geo-replication N/A
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Table A.6: Characteristics of Amazon DynamoDB
Feature Amazon DynamoDB
Object category Table
One object Item
Individual data for an object Attribute

Unique ID for an object
Partition Key
Sort Key
Combination of both

Data types for unique ID
String
Number
Binary

Secondary Index

Two kinds of indexes:
1. Global secondary index
2. Local secondary index
Up to 5 of each per table

Data Types

Scalar Types: Number, String, Binary,
Boolean, and null
Document Types: List, Map (e.g., JSON)
Set Types: sets of Number, String or
Binary Values

Read Consistency
Eventual Consistency (Default)
Strong Consistency

Throughput Capacity for
Reads and Writes

Must be specified when creating a table

Auto Scaling
Upper and lower limits for read and write
capacity units must be defined

Auto Back-up Across multiple availability zones
Auto Data Partitioning Yes
Object-centric support for SDK Yes

Read Operations
Query only items with composite primary key
Scan

Batch Transactions Up to 100 items per transaction
Versioning Need to be enabled

Limitations
256 tables per region
The maximum item size is 400KB

Server-side Encryption at rest Manual
Update Notification With Stream record and AWS Lambda

Batch Operations
Write: Up to 25 items to a table
Read/Delete: Up to 100 items from one or
more table

Query

Retrieves all items that have a specific
partition key.
Table must have a composite key
Sort by a sort key

Limitations Item size is up to 400KB
Lifecycle Management Yes
Geo-replication Manual
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Table A.7: Characteristics of Azure Table Storage
Feature Azure Table Storage
Object category Table
One object Entity
Individual data for an object Property

Unique ID for an object
Partition Key
Row Key

Data types for unique ID String
Secondary Index No
Data Types Byte array, Boolean, DateTime, Double

Read Consistency
Optimistic Concurrency (Default)
Pessimistic Concurrency
Last write wins

Throughput Capacity for
Reads and Writes

Fixed: 1KB entities up to 2000 entities per
second

Auto Scaling Yes
Auto Back-up According to redundancy level
Auto Data Partitioning Yes
Object-centric support for SDK Yes

Read Operations
Query
Query Scan
Scan

Batch Transactions
Entity Group Transactions
Up to 100 entities with the same partition key

Versioning Auto (Timestamp)

Limitations
The maximum entity size is 1MB
Up to 252 properties per entity

Server-side Encryption at rest Manual
Update Notification No
Batch Operations No
Query No
Limitations Entity size is up to 1 MB
Lifecycle Management No
Geo-replication Auto
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Table A.8: Characteristics of Google Cloud Datastore
Feature Google Cloud Datastore
Object category Kind
One object Entity
Individual data for an object Property
Unique ID for an object Key

Data types for unique ID
String
Numeric ID (Auto-generated)

Secondary Index No

Data Types
String, DateTime, Int, Double, Boolean,
Key, Geopoint, Array, Embedded entity,
Null, Text

Read Consistency
Strong consistency for lookups by key
and ancestor queries
Eventual consistency for other queries

Throughput Capacity for
Reads and Writes

N/A

Auto Scaling Yes
Auto Back-up Regions/Zones
Auto Data Partitioning Yes
Object-centric support for SDK Third party APIs
Read Operations Query

Batch Transactions
Yes
Up to 25 entity groups

Versioning Requires enabling
Limitations The maximum entity size is 1MB
Server-side Encryption at rest Auto
Update Notification No
Batch Operations Yes

Query
Filters can be applied to any indexed property
Sort order by any indexed property

Limitations
Maximum entity size is ⇠1MB
Maximum transaction size is ⇠10MB

Lifecycle Management No
Geo-replication Auto
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Comparing Data Storage APIs of

Cloud Providers

This section characterizes di↵erences in using APIs of available data storage solutions

o↵ered by major cloud service providers, namely, Alibaba, AWS, and Azure. Sec-

tion B.1 describes relational databases, Section B.2 discusses non-relational databases,

and Section B.3 illustrates blob storage of each cloud service provider.

B.1 Relational Databases

Deploying and running a relational database require manually creating a database

instance and getting configuration information of the created database to program-

matically interact with it through the application. Manual creation process di↵ers

based on each cloud service provider, while the application code remains the same

since it is provided by JDBC API. The following lists the launching process of a

database instance using the web user interface of each cloud service provider.

B.1.1 Alibaba ApsaraDB

Creating a relational database instance using Alibaba Cloud console:

1. Choose ApsaraDB for RDS from Products.

2. Choose Create Instance.

3. Specify Region, Database (DB) Engine, Version, Edition (Availability),

Zone, Network Type, Instance Type, Capacity, Duration and Quality.

ApsaraDB o↵ers MySQL, Microsoft SQL Server, PostgreSQL, PPAS, and MariaDB TX.
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B.1.2 Amazon RDS

Creating a relational database instance AWS console:

1. Choose Amazon RDS from Services.

2. Select the region from the dropdown list in the right top corner.

3. Choose Instances from the navigation panel.

4. Choose Launch DB Instance.

5. Choose a database engine from the available engine options.

6. Choose a use case for your database engine.

7. Specify details of the database engine.

Amazon RDS o↵ers Amazon Aurora, MySQL, MariaDB, PostgreSQL, Oracle,

and Microsoft SQL Server.

B.1.3 Azure SQL Databases

Creating a relational database instance using Azure portal:

1. Create a SQL server (logical server) on Azure portal.

2. Specify Server name, Server admin login, Password, Subscription, Re-

source group and Location.

3. Choose SQL database from the left menu panel.

4. Choose +Add in the left top corner.

5. Specify Database name, Subscription, Resource group, Select source,

Server, SQL elastic pool, Pricing tier, and Collation.

Azure o↵ers Microsoft SQL Server only.

B.1.4 Creating connection and interacting with a database

using JDBC API

Once a database engine is launched, it can be manipulated using JDBC API. The

API requires configuration information and provides a set of operations that are

described below:

1. Specify database name, username, password, hostname (endpoint) and port to

your database engine.
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2. Specify your database engine.

3. Initialize a connection to SQL database.

4. CRUD operations:

(a) Insert a data.

(b) Batch insert.

(c) Select a list of data.

(d) Select a data.

(e) Update a data.

(f) Delete a data.

(g) Delete a list of data.

B.2 Non-relational Databases

All cloud service providers require security credentials to interact with a non-relational

storage when using Java API. Obtaining security credentials is a manual process

and di↵ers in each cloud service provider. Among analyzed cloud service providers,

AWS and Azure allow to programmatically perform storage related operations such

as creating a table and CRUD operations. Interestingly, Alibaba firstly requires

manual e↵ort to create an instance of a Table Store, and then enables using API to

perform CRUD operations.

B.2.1 Alibaba Table Store Service

Manually creating a non-relational database using Alibaba Cloud console:

1. Choose Table Store from Storage & Content Delivery Network (CDN)

category in Products.

2. Select the region from the dropdown list in the left top corner near Products

menu.

3. Choose Create Instance to create a table store instance.

4. Specify Instance Name, Instance Type and Instance Description.

5. Choose your table store instance from the list.

Manipulating a non-relational database using Alibaba Cloud Java SDK:
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1. Specify Access Key Id and Access Key Secret.

2. Initialize a connection to Table Store.

3. Create a table.

4. Perform operations (Table Store supports only partition key):

(a) Save an item.

(b) Save a list of items.

(c) Get an item by a partition key.

(d) Delete an item by a partition key.

(e) Delete a list of items.

B.2.2 AWS DynamoDB

Creating a non-relational database and manipulating it using AWS SDK for Java:

1. Specify access key and secret key.

2. Specify region where you would store your data.

3. Initialize a connection to DynamoDB.

4. Create a table.

5. Perform operations:

(a) Save an item.

(b) Save a list of items.

(c) Get a list of items.

(d) Delete a list of items.

(e) Get an item by a partition key.

(f) Delete an item by a partition key.

(g) Get an item by a composite 1 key.

(h) Delete an item by a composite key.

1A composite key consists of both partition and row keys
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B.2.3 Azure Table Storage

Creating a non-relational database and manipulating it using Azure Storage SDK

for Java:

1. Specify storage account name and key.

2. Region is specified within storage account.

3. Initialize a connection to Table Storage.

4. Create a table.

5. Perform operations (Table Storage supports only composite key):

(a) Save an item.

(b) Save a list of items.

(c) Get a list of items.

(d) Get an item by a composite key.

(e) Delete an item by a composite key.

(f) Delete a list of items by a partition key.

(g) Delete an item by a composite key.

(h) Delete a list of items.

B.3 Blob Storage

As with non-relational storage, blob storage services of all cloud providers also re-

quire manually obtaining security credentials to interact with them.

B.3.1 Alibaba OSS

Manipulate object storage using Alibaba OSS Java SDK:

1. Specify Access Key Id and Access Key Secret.

2. Specify region where you would store your data.

3. Initialize a connection to OSS.

4. Create a bucket.

5. Perform operations:
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(a) Upload a blob.

(b) Retrieve a blob.

(c) Retrieve a list of blobs.

(d) Delete a blob.

B.3.2 Amazon S3

Manipulate Amazon S3 using AWS SDK for Java:

1. Specify access key and secret key.

2. Specify region where you would store your data.

3. Initialize a connection to S3.

4. Create a bucket.

5. Perform operations:

(a) Upload a blob.

(b) Retrieve a blob.

(c) Retrieve a list of blobs.

(d) Delete a blob.

B.3.3 Azure Blob Storage

Manipulate Azure Blob Storage using Java Storage SDK:

1. Specify storage account name and key.

2. Region is specified within storage account.

3. Initialize a connection to Blob Storage.

4. Create a bucket.

5. Perform operations:

(a) Upload a blob.

(b) Retrieve a blob.

(c) Retrieve a list of blobs.

(d) Delete a blob.
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Comparing Meta-modeling

Environments

In the DSL development, a meta-modeling environment is needed for the meta-model

specification. Ecore, GOPPRR, and Domain Model Definition (DMD) are examples

of current meta-modeling environments. This section, describes and compares these

environments to choose the most suitable one for CadaML implementation.

Ecore is a meta-modeling environment o↵ered by EMF to create and define

meta-models. Fundamentally, Ecore is a subset of UML Class diagrams, and it

allows to define EClass, EAttribute, and EReference. EClass represents a class with

attributes and references. EAttribute is a fundamental data in a class which has

a name and a type. EReference defines a relationship between two classes, and it

can be represented as a compartment in a target class. An Ecore model is a root

object that contains packages, where each package consists classes with attributes

and their references.

DMD is a part of the MSDK tool suite to specify meta-models for modeling

languages designed for Visual Studio. Similarly in Ecore, DMD adopts UML Class

diagram principles, but it uses di↵erent terminology, such as Domain Class, Prop-

erty, and Domain Relationship, that can be associated with EClass, EAttribute, and

EReference, respectively. DMD also allows setting a domain class as a compartment

of another class.

In the meantime, GOPPRR is a set of metatypes provided by MetaEdit+. It is

an acronym from Graph, Object, Relationship, Role, Port and Property metatypes.

A graph is a root metatype that contains objects, relationships, roles and their

bindings. In turn, an object is an element in a graph, where a relationship is a

connection between two or more objects that are attached using roles. Moreover,

a specific part of an object can be specified as a port to which a role can connect.

Finally, a property is a characteristic to describe objects.

Despite the di↵erences in terminology to define meta-models, all of the described
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meta-modeling environments use a common core set of meta-modeling constructs

derived from UML Class diagrams. Therefore, they o↵er similar capability to de-

sign meta-models. Nevertheless, Ecore has the following advantages over the re-

maining meta-modeling environments. Firstly, Ecore is an open source environment

for Eclipse IDE and it does not require purchasing any supplementary software to

exploit it. Second, Ecore is used by major DSL development and deployment frame-

works such as EMF, GMF, and Epsilon. This enables meta-model composition and

portability, hence, a meta-model created in Ecore using one framework can be reused

in another one. Finally, there are plenty of additional tools tailored for Ecore to

support model validation and code generation.

143



Appendix D

Data Model for Alibaba Table

Store

The following listing provides an excerpt of ‘Artist’ data model for Alibaba Table

Store that is generated by CadaML.

@Entity
public class Artist implements ArtistInterface {
@Id
@Column(name="ArtistId", columnDefinition="Partition Key")
private String artistId;
@Id
@Column(name="ArtistName", columnDefinition="Row Key")
private String artistName;
@Column(name="Genres")
private String genres;
@Column(name="Biography")
private String biography;
@Column(insertable=false)
private List<AlbumInterface> albums;

...

public String getArtistId() { return artistId; }
public void setArtistId(String artistId) { this.artistId = artistId; }

public String getArtistName() { return artistName; }
public void setArtistName(String artistName) { this.artistName = artistName; }

public String getGenres() { return genres; }
public void setGenres(String genres) { this.genres = genres; }

public String getBiography() { return biography; }
public void setBiography(String biography) { this.biography = biography; }

public List<AlbumInterface> getAlbums () { return albums; }
public void setAlbums(List<AlbumInterface> albums) { this.albums = albums; }

}

Listing 11: ‘Artist’ data model for Table Store generated by CadaML

144



Appendix E

Test Cases to Verify

Multi-tenancy Implementation

Table E.1: The expanded test cases with their status for Process Definition entity
Process Definition Status

TC1 (a) Retrieve a process definition Passed
TC1 (b) Retrieve a process definitions with custom attributes Passed

TC1 (c)
Retrieve a process definition with corresponding
task definitions and processes

Passed

TC1 (d) Retrieve a list of process definitions Passed
TC2 (a) Store a process definition Passed
TC2 (b) Store a process definition with custom attributes Passed

TC2 (c)
Store a process definition with corresponding
task definitions and processes

Passed

TC2 (d) Store a list of process definitions Passed
TC3 (a) Update a process definition Passed
TC3 (b) Update a process definition and its custom attributes Passed

TC3 (c)
Update a process definition and corresponding
task definitions and processes

Passed

TC3 (d) Update a list of process definitions Passed
TC4 (a) Delete a process definition Passed
TC4 (b) Delete a process definition with corresponding custom attributes Passed

TC4 (c)
Delete a process definition and corresponding
task definitions and processes

Passed

TC4 (d) Delete a list of process definitions Passed
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Table E.2: The expanded test cases with their status for Task Definition entity
Task Definition Status

TC1 (a) Retrieve a task definition Passed
TC1 (b) Retrieve a task definition with custom attributes Passed
TC1 (c) Retrieve a task definition with corresponding tasks Passed
TC1 (d) Retrieve a list of process definitions Passed
TC2 (a) Store a task definition Passed
TC2 (b) Store a task definition with custom attributes Passed
TC2 (c) Store a task definition with corresponding tasks Passed
TC2 (d) Store a list of task definitions Passed
TC3 (a) Update a task definition Passed
TC3 (b) Update a task definition and its custom attributes Passed
TC3 (c) Update a task definition and corresponding tasks Passed
TC3 (d) Update a list of task definitions Passed
TC4 (a) Delete a task definition Passed
TC4 (b) Delete a task definition with corresponding custom attributes Passed
TC4 (c) Delete a task definition and corresponding tasks Passed
TC4 (d) Delete a list of task definitions Passed

Table E.3: The expanded test cases with their status for Process entity
Process Status

TC1 (a) Retrieve a process Passed
TC1 (b) Retrieve a process with custom attributes Passed
TC1 (c) - -
TC1 (d) Retrieve list of processes Passed
TC2 (a) Store a process Passed
TC2 (b) Store a process with custom attributes Passed
TC2 (c) - -
TC2 (d) Store a list of processes Passed
TC3 (a) Update a process Passed
TC3 (b) Update a process and its custom attributes Passed
TC3 (c) - -
TC3 (d) Update a list of processes Passed
TC4 (a) Delete a process Passed
TC4 (b) Delete a process with corresponding custom attributes Passed
TC4 (c) - -
TC4 (d) Delete a list of processes Passed

146



TEST CASES TO VERIFY MULTI-TENANCY IMPLEMENTATION APPENDIX E

Table E.4: The expanded test cases with their status for Task entity
Task Status

TC1 (a) Retrieve a task Passed
TC1 (b) Retrieve a task with custom attributes Passed
TC1 (c) - -
TC1 (d) Retrieve a list of tasks Passed
TC2 (a) Store a task Passed
TC2 (b) Store a task with custom attributes Passed
TC2 (c) - -
TC2 (d) Store a list of tasks Passed
TC3 (a) Update a task Passed
TC3 (b) Update a task and its custom attributes Passed
TC3 (c) - -
TC3 (d) Update a list of tasks Passed
TC4 (a) Delete a task Passed
TC4 (b) Delete a task with corresponding custom attributes Passed
TC4 (c) - -
TC4 (d) Delete a list of tasks Passed
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