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Abstract

The protein sequence-structure gap results froncdhérast between rapid, low-cost deep
sequencing, and slow, expensive experimental streictetermination techniques. Comparative
homology modelling may have the potential to cltiée gap by predicting protein structure in
target sequences using existing experimentallyesbdiructures as templates. This paper
presents the first use of force-directed graphsHervisualization of sequence space in two
dimensions, and applies them to the choice of BIgtRNA-dependent RNA polymerase (RARP)
target-template pairs within human-infective RNAug genera. Measures of centrality in
protein sequence space for each genus were alsedeand used to identify centroid nearest-
neighbour sequences (CNNs) potentially useful fodpction of homology models most
representative of their genera. Homology modeluas then carried out for target-template
pairs in different species, different genera arittcent families, and model quality assessed
using several metrics. Reconstructed ancestraPRsHguences for individual genera were also
used as templates for the production of ancestt®ARhomology models. High quality ancestral
RdRP models were consistently produced, as werd goality models for target-template pairs
in the same genus. Homology modelling between geinghe same family produced mixed
results and inter-family modelling was unreliabl&e present a protocol for the production of
optimal RARP homology models for use in furtheresxpents, e.g. docking to discover novel

anti-viral compounds. (219 words)
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1. Introduction

Since high-throughput sequencing technologies edtsrainstream use towards the end of the
first decade of the 2icentury, there has been an explosion in availptdein sequences. By
contrast, there has been no corresponding highugifmaut revolution in structural biology.
Obtaining solved structures of proteins at adeqresgelution remains a painstaking task. X-ray
crystallography is still the gold standard for stire determination more than 60 years after its
first use in determining myoglobin structure [T]he result of this discrepancy between the rate
of protein sequence determination and the rateaibjm structure determination is theotein

sequence-structure gdp].

Homology modelling is a rapid computational teclugdor prediction of a protein’s structure
from a) the protein’s sequence, and b) a solvedttre of a related protein, referred to as the
target and the template, respectively. Since siraktsimilarity often exists even where sequence
similarity is low [2, 3], homology modelling hasetlpotential to reduce massively the size of the
protein sequence-structure gap, provided the mgutetduced can be considered reliable enough

for use in further research.

The RNA-dependent RNA polymerase (RARP) of RNA s@&sipresents an opportunity to test
and expand this approach. RdRPs are the bestrgedsegroteins throughout the RNA viruses,
being essential for their replication [4]. Consaion is particularly high in structural regions
that are involved in the replication process, fatance the indispensable RNA-binding pocket
[5]. RdRPs are also of immense medical importanckeaprincipal targets for anti-viral drugs.
Evolution of resistance against anti-viral druga imajor concern for the future, and the design of
novel anti-viral compounds is a highly active resharea. Solved structures of RARPs are of great
assistance to these efforts, as they enable thef ukeking protocols against large libraries of

pharmaceutical candidate compounds [e.g. 6, 7].

Although some human-infective RNA viruses have edIRdRP structures, there are still large
areas within the virus taxonomy that lack any. sTiéper will first identify where the protein
sequence-structure gap is at its widest in RdResause of the sequence-structure gap, it is
therefore impossible in many genera to perform mhacgrotocols against solved structures of RARP
for discovery of novel anti-viral compounds. Untleese circumstances, replacement of real solved
structures with homology models for docking experits requires that the homology models used

should be both high quality and also optimally esygntative of their respective genera. Our

3
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second task is to present several similarity meifricsequence space that assist in the
identification of the virus species having the Rdf®iquence that is most representative of its
genus as a whole. We then present the first uteroé-directed graphs to produce an intuitive
visualization of sequence space, and select t&dRPs without solved structures for homology
modelling. These are then used to perform homoioggelling using template-target pairs
within the same genus, between sister genera dmeée sister families, monitoring the quality
of the models produced as the template becomesgasigely more genetically distant to the
target sequence being modelled. Finally, we precuamology models for reconstructed
common ancestral RARP sequences. In the lightroksults, we comment on the strengths and
weakness of homology modelling to reduce the sfzéhe protein sequence-structure gap for
RdRPs, and produce a flowchart of recommendationddcking experiments on RdRP proteins

lacking a solved structure.

2. Materials & Methods

2.1 Taxonomy search

We chose RARPs from human-infective viruses basdti®list provided by Woolhouse &
Brierley [8]. Given the global medical importanaAIDS, we also includedentivirusreverse
transcriptases (RTs) for analysis. Solved stresttior these proteins, where available, were
downloaded from the RCSB Protein Data Bank (PDB) [Bable 1 presents our criteria for

selecting suitable homology modelling candidates.

2.2 Multiple sequence alignment

RdRP and RT amino acid sequences for all virusispesatisfying the criteria of Table 1 were
downloaded from GenBank [10]. Alignment of sequeesets for each genus, was performed
using MAFFT [11]. Alignments were refined in MEGA2] using Muscle [13] where
necessary, and the best substitution model detedniAlignment of target sequences onto their
solved structure templates for homology modelliragwarried out using the Molecular
Operating Environment (MOE v.2016.08, Chemical Catimg Group, Montreal H3A 2R7,
Canada).

2.3 Visualization of sequence space

We define sequence space as a theoretical multtiianal space within which protein

sequences may be represented by points. Forgmaint ofN related proteins, the necessary
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dimensionality of this sequence spac#tli, with the hyperspatial co-ordinates in each
dimension for any protein determined by its gendistance to th&l-1 other proteins. Fad =

5, direct visualization of all dimensions of seqoepace is impractical at best, since a 4-
dimensional space must be simulated in three dimmessand is effectively impossible for=N

6. The following methods were used to reduce secpispace to two and three dimensions for
ease of visualization. To simplify calculationss allow an extra dimension defined by the
distance from each sequence to itself. The valtleeoco-ordinate in that dimension is always

zero and our sequence space Nakmensions rather thaw1.

2.3.1 Two-dimensional visualization of sequence space

The pairwise distance matri¥g) for each genus, calculated from the sequencerakmt in
MEGA, consists of entriel4(i,j) giving the genetic distance between each paseguences
andj where §,j} O0{1,2 ..... N} andi # |, for a set olN sequences. In our data detanges

(see Supplementary Table) from 5 (geRisobirnavirug to 64 (genus-lavivirus).

For each alignment, the pairwise distance mawiy) (vas converted into a similarity matrix

(My) as follows:
Ms(i,j) =1/Mq(,j) + 1)

(1)
The similarity matrix was then used as input fopd®kageggraph[14]. The “spring” layout
option was chosen, which uses the Fruchterman-Rkrajgorithm to produce a two-
dimensional undirected graph in which edge thicknsproportional to absolute distanceNin
dimensions and node proximity in two dimensionspgimized for ease of viewing while
attempting to ensure that those nodes closelyadiattheN-dimensional input are also close in
the two-dimensional output [15]. 500 iterationsravperformed, or until convergence was

achieved.

2.3.2 Three-dimensional visualization of sequence space

For each alignment, the pairwise distance maiiy) (vas used as input for R packagedscale
which uses multi-dimensional scaling to produchrad-dimensional graph from the
dimensional input, with node proximity again reflag relative similarity [16]. Spotfire Analyst
(TIBCO Spotfire Analyst, v.7.12.0, 2018) was usedisualize the output afmdscale

2.4 Centroid nearest neighbour determination

5
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We define theentroidas a hypothetical protein sequence located ateht&re point of the
sequence space of an alignment. The real sequéssst to the hypothetical centroid is termed

the centroid nearest neighbo(€NN). We calculate the position of the CNN in threays.

2.4.1 Shortest-path centroid nearest neighbour

For a sequendell {1,2 ..... N} in an alignment oN sequences, its total path length)D6 the

otherN-1 sequences may be calculated from the distantexnidy as follows:

j=N

D) = ) Mq(i,))
j=1

)
wherei =j, Mq(i,j) is zero. This may be omitted to enforce a stdidt dimensions foN input
sequences, but we leave it in to simplify subsetjoeltulations. We defing as the index that
minimizesD(i).

j=N
D(i*) = argmin z M;(i,j)
1<isN =

3)
The shortest path CNN is therefore sequéhcd-or alignments where clusters of closely
related sequences exist, giving many valuadifj) close to zerothis method will tend to
place the CNN within a clustef.o overcomethis problem thearithmetic mean and median,

respectively, were used to determine the mean CiNNtlze median CNN.

2.4.2 Mean centroid nearest neighbour

The values oD (equation 2) may be averaged to produce meanpathldistancé

D = iivp(i) /N
i=1

(4)
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where agaim is the total number of sequences in the alignmiv. now re-definé* as the

index that minimize®(i) - D.

D(i*) = argmin(D(i) — D)
1<i<N

5)
In the event of equation 5 returning zero, the melilN and the true centroid are identical. As

with all variables using means, the mean CNN isléido skewing by outliers.

2.4.3 Median centroid nearest neighbour

We generate a vectéroveri 0 {1,2 ..... N}, in which each entr{D(i) represents the total path
length for sequendglequation 2). The values of vecidrare then ranked in ascending order

X1y t0 Xo(ny tO produce vectob,.

DO’ - {D(l; xo‘(l))) D(l, xO’(Z)) D(l’ xa(N))}

(6)
The median CNN is the sequenegh valueD(i) situated in the middle of the arrdy,
at D(m), whereD(m) is eitherD(mygg) or D(Meyey for alignments with odd or even numbers of

sequences respectively

D(moaa) = D(i,Xs(v+1)/2))

()
D(meven) = (D(i» xa(N/Z)) +D (i' xa((N/2)+1)))/2
8
We now re-defing* as the index that minimizd3y(i) - D(m).
D(i*) = argmin(D (i) — D(m))
1<is<N
)
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Again, in the event of equation 9 returning zehe imedian CNN and the true centroid are
identical. As with all variables using medians thedian CNN is liable to skewing by the

presence in the alignment miltiple sequences with the same valuB @.

2.5 Homology modelling

The choice of solved structures as templates fordiogy modelling, and the choice of

targets to be modelled, within each genus was ge¢eby the following rules:

1) For each genus the solved structure that coveeeldiginest proportion of the RARP or
RT sequence was chosen as the template for thesgen

2) If more than one candidate template structure wasd at this sequence length, the
structure with the lowest resolution in angstronaswelected. See Table 2 for the
templates satisfying these two criteria.

3) Within each genus, the sequence with the greagsdty distance from the template, was
chosen as the target for homology modelling. Sd#ela for the template-target pairs
satisfying this criterion.

4) Criterion 3 was applied to find template-targetrgdm different genera (see Table 4) and
different families (see Table 5), thus testinglthrets of homology modelling at high

genetic distances.

Homology modelling was carried out using the MolacWperating Environment (MOE
v.2016.08, Chemical Computing Group, Montreal HFA72 Canada). Ten intermediate models
were produced using the Amber10:EHT forcefield undedium refinement. The model that
scored best under the generalised Born/volumeriaté@B/VI1) was selected to undergo further
energy minimisation using Protonate3D, which prexdibe location of hydrogen atoms using the
model's 3D coordinates [17, 18].

2.6 Model quality analysis

2.6.1 ®-¥ outliers

To assess the stereochemical quality of the honyatogdels produced, Ramachandran plots
were derived in MOE, and used to calculate the qntign of bad outlied-¥ angles in the
model, after subtraction of the number of outiie® angles in the template. Generally, outlier

angle percentage below 0.05% indicates a very tigtlity model, and a percentage below 2%
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indicates a good quality model [19].

2.6.2 Root-mean-square deviation

Models were superposed with their templates in MD# root-mean-square deviation (RMSD)
value derived for the alpha carbonsif@ the two structures. Generally, an RMSD belo 2

indicates a good quality model [20].

2.6.3 QMEAN Z-score

Qualitative Model Energy Analysis (QMEAN) was udedanalyse models using both statistical
and predictive methods [21]. The QMEAN Z-scorensoaerall measure of the quality of the
model when compared to similar models from a POBremce set of X-ray crystallography-
solved structures. A Z-score of 0 would indicatea@del of the same quality as a similar high
quality X-ray crystallographic structure, while asZore below -4.00 indicates a low quality
model [22].

2.7 Ancestral sequence reconstruction and modelling

Maximum likelihood (ML) trees [23] were produced fach genus in MEGA. The ML tree and
the corresponding multiple sequence alignment wgret into the ancestral reconstruction
server, FASTML [24]. The reconstructed sequencéHe root of the tree, i.e. the putative
common ancestor RARP or RT sequence for the geasisiged as the target for homology
modelling in MOE, using the template chosen aceaydo the rules in section 2.5. The
reconstructed ancestral sequence was added ttighmant and the force-directed graph re-
drawn. Figure 1B, showing the target-templategftir homology modelling may be compared

with Figure 1C, showing the ancestor-template pairs

3. Results
3.1 Areas of the taxonomy that lack solved RARP structures

Our first observation is that there are still laegeas of the viral taxonomy where no solved
RdRP structures exist. No suitable templates éondiogy modelling were found within the
entireNidoviralesorder of RNA viruses. This order contains seveosibnaviruses important to
human health includin§evere acute respiratory syndrome-related corons(iEARS-CoV)
andMiddle East respiratory syndrome-related coronasi(MERS-CoV) [25]. In the order

MononegaviralesVesiculoviruswvas the only genus with a solved RARP structuitalse for

9



Force-directed graphs, homology modelling and thetmicture—sequence gap

homology modelling. However, this order containmgnenedically important viruses such as
Zaire ebolavirusHendra henipavirusMeasles morbillivirusandMumps rubulavirug26]. In

the ordeBunyavirales Phenuiviridaestands out as an important family lacking a solRel&RP,
despite it containing various human-infective aibases such aRift Valley fever phlebovirus

andSandfly fever Naples phlebovir[&7].

Furthermore, some genera have solved RARP strgottirieh only cover a small proportion of
the protein. For instanc®rthohantavirusOrthonairovirusandMammarenaviru®nly have

solved structures covering less than 10% of thefRg&uence (Table 1).

3.2 Sequence space visualization
3.2.1 Two-dimensional visualisation

Figure 1 shows two-dimensional force-directed gsaphsimilarity for each genus with more
than four RARP reference sequences (or RT sequentes case ofentivirug. In principle, it
would be possible to draw force-directed graphsefttire families and even orders. However,
the input toggraphis the similarity matrix calculated from the dista matrix, and the distance
matrix is calculated in MEGA from an alignment. ¢@rtaxonomic distance begin to extend
beyond genera, alignment becomes progressivelyédable, with all the downstream statistics
tending to degrade as a consequence. We themofme our construction of force-directed

graphs to intra-genus comparisons.

It is evident from Figure 1 that sequences arenectssarily evenly distributed in sequence
space. Clustering is noticeable in the geRlawivirus, with two sub-groups and an outlier
sequence evidentMlammarenavirugsiso shows division into two sub-groups. By cositra
Picobirnavirushas only five relatively equidistant referencewsstges, thus producing a highly
regular pentagram. SimilarljRotavirushas eight reference sequences, with four at eadlokea
fairly regular cuboid. Figure 1A also shows how tlarious methods (equations 2-9) for
determining the CNN of sequence space for eachsyeme in poor agreement. Only in
RotavirusandPicobirnavirusare mean and median CNNs found in the same segudéiigure
1A also shows that the best solved structure fempilirposes of template choice in homology
modelling is rarely close to the centre of sequespace. Only ihentivirusis the optimal
template also the mean CNN, and onlywesiculovirugs the optimal template a shortest-path
CNN. Figure 1B shows the relations of the temptatget pairs in sequence space, illustrating
how intra-genus homology modelling template-taggtection attempts to traverse the largest

genetic distance available within the genus.

10
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3.2.2 Three-dimensional visualisation

Figures 2 and 3 compare, for genérdhohantavirusandMammarenavirusespectively, the
force-directed graphs of Figure 1 with the thremelsional equivalent output of
multidimensional scaling. Figure 2 shows a segaahastering withirOrthohantavirughat is

not readily apparent in the force-directed graphe CNNs are distributed among four clusters,
as there is no sequence close to the geometrintkcef the three-dimensional space, where the
notional centroid is located. The solved structume 10 other sequences in its proximity in the
three-dimensional space, roughly equivalent tddler right quadrant of the two-dimensional
force-directed graph. Similarly, the shortest-p@tiN and mean CNN are both located are
located within another three-dimensional clustepaontaining 11 sequences, which is roughly

equivalent to the upper right quadrant of the tirnahsional force-directed graph.

Figure 3 presents a similar picture Mammarenavirus The force-directed graph for
Mammarenavirusas more obvious clustering that that@thohantavirusshowing a lower-left to
top-right split. In the three-dimensional représon, these are equivalent, respectively, tdhiee clusters
on the right and two clusters on the left. As vtthohantavirusthere is no CNN near the geometrical

centre of the three-dimensional space, but the CatHgistributed around two clusters.

Three dimensional representations of all the gemeFagure 1 are available from the link in the

Raw Data section.

3.3 Homology modelling

Homology modelling was carried out as follows:

1) Intra-genus, inter-species (11 models, Table 3)
2) Intra-family, inter-genus (5 models, Table 4)
3) Intra-order, inter-family (7 models, Table 5)

4) Intra-genus, on reconstructed common ancestor ddeig, Table 6)

Table 3 shows that homology modelling with tempkate target within the same genus,
produced good quality models in most cases, asjithy percentage di-¥ outliers and RMSD
within the high quality range. Only the models fanerican bat vesiculovirusndTamana bat
virus have percentages ® ¥ outliers outside of the high quality range. QMEANwever, is

rather more critical of the output with only the dedfor Porcine picobirnavirudalling within

11
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the high quality range. The model fanjin thottimvirusscores eighth best on percentageéof
outliers and second best on RMSD, despite theassification (occurring after the completion
of our experimental work) by the ICTV of this virugriginally in genugrthohantavirusnto a
new Thottimvirusgenus [28]. It should be noted that the modeisrfgin thottimvirus

Burana orthonairovirusandBrazilian mammarenavirugiere based on very short template

structures (see Table 2).

Table 4 shows that homology modelling with tempkate target within the same family but
different genera, still produced good quality medalmost cases, as judged by percentage- of
Y outliers and RMSD within the high quality rang®nly the models fokLleida bat lyssavirus
andMacaque simian foamy virdsave percentages ® W outliers outside of the high quality

range. However, once again, QMEAN assesses alelmad outside the high quality range.

Table 5 showshat homology modelling with template and targethwm the same order but in
different families, is a far more difficult propdisin than at the lower taxonomic levels. The
model forMammalian orthobornavirus fails all three quality tests and only the modelRift

Valley fever phlebovirusianages to pass two out of three.

Table 6 shows that modelling the structure of #monstructed sequence of the common ancestor
of each genus, produces models of the same staadantta-genus modelling (compare Tables 3
and 6). By contrast with almost all the other medihe QMEAN scores are within the high
quality range, with only two exceptions, the comnamtestors of geneRotavirusand
Vesiculovirus Figure 1C shows the force-directed graphs wighlocations of the ancestral

seguences added.

Table 7 summarises the results of Tables 3 tolasne. As the taxonomical distance increases,
production of high quality homology models becomrese difficult. However, modelling the
reconstructed ancestral sequence of each genysicalty productive of a better scoring model

even than the real sequence targets chosen fargetius modelling.
Figure 4 shows representative examples of homaheggels of high and low quality
superimposed with their template solved structimagwith their corresponding Ramachandran

plot and QMEAN quality scores.

All homology models in Tables 3 to 6 are availdipten the link in the Raw Data section.

12
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4. Discussion

The first objective of this study was to identifiyal taxa which are comparatively lacking in
solved structures for RNA-dependent RNA polymeil@&#RP). We observed that the entire
orderNidovirales the familiesBornaviridae Filoviridae andParamyxoviridaewithin the order
Mononegaviralesand the familyPhenuiviridaewithin the ordeBunyaviralesfall into this
category. Additionally, within the gene@rthohantavirusOrthonairovirusand
Mammarenavirusall within the ordeBunyaviralesthe solved structure available for RARP
covers less than 10% of the protein sequence. nGhemedical importance of many viruses
within these taxa, and the number of anti-viralgdrthat target RARPs we suggest that they are

prioritized for X-ray crystallography to close tteequence-structure gap”.

Our second objective was to assess how well horgotoagelling could provide models that
might serve for computer-assisted drug discovenyosiel anti-viral compounds. To assist in the
visualization of sequence space, we produced thedpplication of force-directed graphs to
protein sequences (Figure 1). We also appliedidinensional scaling for comparative
purposes (Figures 2 and 3). Force-directed graphble the visualization of complex data in
two dimensions. The three dimensional visualizapooduced from multidimensional scaling is
visually richer, but this benefit can only be ampa¢ed when a viewing application such as
Spotfire is available so that the three-dimensiamalge can be rotated. Force-directed graphs
convey much of the information in a single imagechimay be printed on a page or viewed on
screen. This two-dimensional collapsing of seqeespace also allows for easy simultaneous
comparison of multiple datasets, in the preserg casltiple genera, which cannot readily be

performed if separate three-dimensional viewersirego be open.

The most common method of visualizing sequenceesjzaihe phylogenetic tree. For instance,
starting from a distance matrix, agglomerative dmehical clustering, such as the UPGMA
method [29], can be performed to generate a t&ightly more sophisticated methods, such as
neighbour-joining [30] can generate trees wherebtia@ch lengths are proportional to genetic
distance. Force-directed graphs do not represamdtis distance as accurately as phylogenetic
trees, since the distances between nodes, althtmptghized to reflect relatedness, are
constrained by the Fruchterman-Reingold algoritbrthe best representation in two dimensions.
However, force-directed graphs again allow easieukaneous comparison of several data sets
than phylogenetic trees. Figure 1 would be imgmedb create on a single page if trees were
used instead of force-directed graphs. Trees septeancestral sequences as nodes on the tree,
with only existing taxa as leaves. Force-direg@eabhs, by contrast, allow ancestral sequences

to be represented in the same way as existing drigsire 1C shows that ancestral sequences do

13
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not necessarily appear as outliers in force-dicegraphs. Indeed, for gendtkavivirus,
Hepacivirus OrthobunyavirusandOrthohantavirusin particular, the insertion of the
reconstructed ancestral sequence into the forestdid graph in Figure 1C does not overly
distort its original shape in Figures 1A and 1BheTeason for this becomes apparent when one
considers a phylogenetic tree represented in uadd@tar” format. The ancestral sequence is
then at the centre of the star topology and itlmaseen that the genetic distance from the root to
any particular leaf sequence may often be lessfitramany pairwise leaf sequence
combinations. We did not perform calculation ofitteid nearest neighbours (CNNs) for
alignments incorporating reconstructed ancestiglieseces, but we are tempted to speculate that

many of the ancestral sequences would have beersCiNdd they been included.

It is important to remember that homology modetstaeoretical constructions and caution must
be exercised in treating them as input materiafddher experiments. Among the various
statistics for assessment of model qualityy outlier percentage is a measure of the proportion
of implausible dihedral angles in the model, ardidate where parts of the model backbone are
likely to be incorrectly predicted. Nevertheleisss also important not to become too dependent
on statistics such abB-¥ outlier percentage, as “bad” angles do occasipmatur in solved
structures. For instance in the present studythtessholds of < 0.05% for a very high quality
model, and < 2% for a good quality model given loywéll et al[19] would suggest that six of

the twelve template solved structures used herkl€T2) would not have been assessed as “very
high quality” had they been models rather thanesblstructures. Indeed the templates from
Indiana VesiculovirugndRotavirus Ahave more than 0.5%-¥ outliers, and also have the poor
quality scores for QMEAN. These two structure®ddave the poorest resolution of any of our
templates, at > 3A. The poor quality scoring ntagréfore simply be a consequence of
uncertainties in positioning of atoms in thesedtrites. One might reasonably posit that the use
of template solved structures having such issugsinmfluence the resulting models to contain
the same outliers. However, the modelRartavirus lhas a lower level ab-¥ outliers than its

Rotavirus Atemplate (Table 3).

As might be expected, production of high qualitydels becomes more difficult as the genetic
distance between target and template increassebpasin Tables 3 to 5. Nevertheless, even at the
level of template-target pairs in separate genbadlé 4), the average performance is acceptable, as
summarized in Table 7. We therefore suggest thaioiogy modelling may be used to produce
RARP models for research use even for genera wloeselved structure exists, provided a template
structure exists within the same family. Here,pravide examples (Table 4) of such successful4inter
genus, intra-family, models for genetaltivirus andParechovirus Our inter-genus models for

LyssavirusandSpumavirusre slightly less successful. Moving to the naxbnomic level, models
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with template-target pairs in separate familiesb{@®) are generally less successful. One exaeptio
is our model for familyPhenuiviridag which is better than some of the intra-family mlsd This is
encouraging, sincBhenuiviridaeis a family without any solved RdRP structure.ntédogy models
have been produced at much larger taxonomic diesatian those dealt with here, for instance from
bacteria to eukaryotes [31], so it should be str@t$isat we make no claim for the generality of our
findings outside of the viral orders under consitien, or for proteins other than RdRP. Multi-

domain proteins in particular, may produce highaliy models for some domains than others.

One surprising result was the high quality of thediis of reconstructed ancestral sequences (Table
6, summarized in Table 7). As previously discusi@d may be due to the fact that the ancestral
sequence is, assuming a regular molecular clocknpally equally related to all descendent
members of its genus. In this paper, we calculegésdroid nearest neighbours (CNNs) as the central
points in sequence space for each genus (Figuré tgconstructed ancestral sequence may also be
considered as a candidate central point. The \@flaentral points is that they may serve as target
that could be used to make models representatitfeeofgenus as a whole. For instance, the shiertes
path, mean and median CNNs of ge@uthohantavirusare sequences 16, 22 and 7 (see
Supplementary Table for a list of sequences foh g@nius), representirgjn Nombre
orthohantavirusRockport orthohantaviruandCao Bangorthohantavirusespectively. The partial
solved structure used as the template for modeiltinige genu®©rthohantavirusn the present paper

is fromHantaan orthohantavirués1ZE, see Table 2) and the target usedin thottimvirus

(sequence 27 i@rthohantavirugpanel of Figure 1), is now classified as belondgmg new genus
Thottimvirus(Table 3). The three CNNSjn Nombre orthohantaviruRockport orthohantaviruand
Cao Bangprthohantavirusare 71%, 64% and 75% identical to 51ZE respegtiwghereasmijin
thottimvirusis only 58% identical. The latter was of courBesen to test the effectiveness of intra-
genus homology modelling over as wide a geneti@die as possible (see Section 2.5). For the
performance of subsequent experimental procedur&thohantavirusRdRPs, for instance docking
to discover novel anti-viral compounds, a homolowgydel corresponding to one of the three CNNs
mentioned above or to the reconstructed ancesti€16) would be the preferred target, along with

the existing solved structure.

On the basis of our investigations, we recommepibeaedural flowchart for selection of an RARP
structure for further study, for instance dockiogliscover novel anti-viral compounds, in any RNA
virus genus of interest (Figure 5). Where a soktedcture exists within a genus, it is the obvious
choice for further experiments. However, wheré fitdved structure is far from any of the CNN
sequences of the genus, as judged by the forcetelirgraph, a CNN may also be homology
modelled for comparative purposes, using the egstblved structure as a template. Any differéntia

performance of the solved structure and the honyatogdel in, for instance, a docking experiment,
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may give clues as to the generality of conclusieréved from the solved structure alone. A
reconstructed ancestral RARP may also be usedalteamative to, or in addition to, a CNN. The
limits of homology modelling would appear, on ttests of the results presented here, to be at the
intra-family, inter-genus level. Template-targatrp in different viral families are unlikely to loé
practical use, as the predicted quality of theltegumodels is low.Our models were produced
using MOE, and we have not performed comparisomgugher modelling tools, such as
SWISS-MODEL[31] or Modeller [32]. We feel thatig unlikely that significant differences in
output would be produced, but when the object efeékercise is drug-discovery, we recommend

that the protocol in Figure 5 be implemented usiegeral alternative modelling softwares.

Crystallographic structural genome projects ardybaeleded to close the sequence-structure gap. In
the meantime, systematic attempts to fill the gapromology modelling may be useful. However,
for many taxa — all of the ordé&lidoviralesand much oMononegavirales the paucity of solved

structures to act as templates remains a sericgiachée.

Raw Data

All code, inputs and outputs are available from:
https://doi.org/10.17635/lancaster/researchdata/276
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Criterion

Reason

Human-infective virus

Importance to human health

NCBI RefSeq annotated genome

Easy retrieval of high quality RARP

sequence

RdRP located at the 3’ end of polyprotein or on its

own segment

Eliminates unconventional RdRPs

At least one solved RdRP at a range of different
taxonomic levels, e.g. in same species, same genus,

same family, same order.

To be used as the templates in homology
modelling at different levels of genetic

distance.

Table 1: List of criteria used to select RNA-depedent RNA polymerases (RdRPs) for homology modellm



RdARP

Order Family Genus Species PDB Resolution - QMEAN Z- Reference
A coverage (%) outliers score
(%)
Bunyavirales Hantaviridae Orthohantavirus Hantaan orthohantavirus 51ZE 1.70 8 0.00 0.36 Reguera et al
2016
Nairoviridae Orthonairovirus Crimean-Congo hemorrhagic 3PHX 1.60 5 0.00 0.72 Akutsu et al
fever orthonairovirus 2011
Peribunyaviridae Orthobunyavirus La Crosse orthobunyavirus 5AMQ 3.00 100 0.06 -1.60 Gerlach et al
2015
Arenaviridae Mammarenavirus Lymphocytic 3JSB 2.13 9 0.00 -0.31 Love et al 2014
choriomeningitis
mammarenavirus
Mononegavirales Rhabdoviridae Vesiculovirus Indiana vesiculovirus 5A22 3.80 100 0.95 511 Morin et al 2010
Picornavirales Picornaviridae Enterovirus Rhinovirus A 1XR7 2.30 >99 0.00 -0.16 Vives-Adrian et
al 2014
Cardiovirus Cardiovirus A 4NYZ 2.15 100 0.22 0.00 Liang et al 2015
No order Flaviviridae Flavivirus Japanese encephalitis virus 4K6M 2.60 100 0.00 -0.91 Lu & Gong
assigned 2013
Hepacivirus Hepacivirus C 2YOJ 1.76 >08 0.00 0.32 Chen et al 2014
Picobirnaviridae Picobirnavirus Human picobirnavirus 5161 2.40 100 0.19 -0.75 Collier et al
2016
Reoviridae Rotavirus Rotavirus A 2R70 3.35 100 1.37 -4.35 Lu et al 2008
Ortervirales Retroviridae Lentivirus Human immunodeficiency 5TXL 2.50 100 0.18 -0.61 Das et al 2017

virus 1

Table 2:Solved structures of RARPs and reverse transcriptas(for HIV-1) selected as templates for homology naelling. All are derived by X-ray

crystallography except 5A22 which is a cryo-eleetngicroscopy structuref-or protein coverage, blue indicates that the tateptovers more than 90% of the




sequence, red indicates less. ®a¥ outliers and QMEAN Z-score, blue indicates gooaliy, red indicates poor-quality, determined by tbllowing

thresholds®-¥ = 2%, QMEAN Z-score = -4.00



Genus Template species Template Target species Target reference -Y RMSD QMEAN Z-
PDB genome outliers R score
(%)
Orthohantavirus Hantaan orthohantavirus 51IZE Imjin thottimvirus * NC_034564 1.67 0.499 -4.12
Orthonairovirus Crimean-Congo hemorrhagic 3PHX Burana orthonairovirus NC 031284 0.00 1.222 -4.74
fever orthonairovirus (Tacheng tick virus)
Orthobunyavirus La Crosse orthobunyavirus 5AMQ Shuni orthobunyavirus NC 018465 0.87 1.175 -4.02
(Aino virus)
Vesiculovirus Indiana vesiculovirus 5A22 American bat vesiculovirus NC_ 022755 3.22 1.007 -10.27
Enterovirus Rhinovirus A 1XR7 Enterovirus E NC 001859 1.52 0.564 -4.83
Mammarenavirus Lymphocytic choriomeningitis 3JSB Brazlian mammarenavirus NC 006313 1.73 0.401 -4.97
mammarenavirus (Sabia virus)
Flavivirus Japanese encephalitis virus AK6M Tamana bat virus NC_003996 2.06 1.191 -5.80
Hepacivirus Hepacivirus C 2v0J Hepacivirus N NC_038432 1.20 0.861 -4.42
Picobirnavirus Human picobirnavirus 5161 Porcine picobirnavirus NC_029802 1.33 0.586 -3.98
Rotavirus Rotavirus A 2R70 Rotavirus| NC_026825 0.42 0.949 -6.54
Lentivirus Human immunodeficiency virus 5TXL Caprine arthritis NC_001463 0.55 0.778 -4.01

1

encephalitisvirus

Table 3: Homology modelling at intra-genus, inter-pecies levelTemplates are as given in Table 2. Targets arRtiP (or reverse

transcriptase fokentivirus) sequences from the reference genome accessidrensigiven. RMSD: root mean square deviation igshroms

between template and model when superposed in M8)&e indicates good quality, red indicates poorlitygadetermined by the following




thresholds®-¥ < 2%; QMEAN Z-score > -4.00; RMSD < 2 A. Purptalicates good quality, but using a partial temp{ate Table
1) *Imjin thottimvirus was reclassified in 2018 by the International Cattaa on Taxonomy of Viruses (ICTV) in a new genus

Thottimvirus



Family Template Template Template Target genus Target Target O-¥ RMSD QMEAN
species PDB genus species reference outliers (Z\) Z-score
genome (%)
Rhabdoviridae Indiana 5A22 Vesiculovirus Lyssavirus Lleida bat NC_031955 3.25 1.048 -7.16
vesiculovirus lyssavirus
Picornaviridae Cardiovirus A ANYZ Cardiovirus Parechovirus Parechovirus NC_003976 1.49 0.954 -7.89
B
Flaviviridae Japanese 4K6M Flavivirus Hepacivirus Equine NC_024889 141 1.143 -8.11
encephalitis virus hepacivirus
Reoviridae Rotavirus A 2R70 Rotavirus Coltivirus Colorado tick AF133428 0.34 1.134 -9.62
fever
coltivirus
Retroviridae Human 5TXL Lentivirus Spumavirus Macaque X54482 2.14 1.507 -7.05
immunodeficiency simian foamy

virus 1

virus

Table 4: Homology modelling at intra-family, inter-genus levelTemplates are as given in Table 2. Targets arRH#RP (or reverse

transcriptase fogoumavirus) sequences from the reference genome accessidrensigiven. RMSD: root mean square deviation igshroms

between template and model when superposed in MEd&e indicates good-quality, red indicates poorigyaletermined by the following

thresholds®-Y¥ < 2%; QMEAN Z-score > -4.00; RMSD < 2 A.




Order Template Template Template Target family Target species Target O-¥ RMSD QMEAN
species PDB family reference outliers (Z) Z-score
genome (%)
Bunyavirales La Crosse 5AMQ Peribunyaviridae Phenuiviridae Rift Valley fever NC_014397 1.98 1.404 -8.99
orthobunyavirus phlebovirus
Mononegavirales Indiana 5A22 Rhabdoviridae Bornaviridae Mammalian NC_001607 3.53 2.238 -10.06
vesiculovirus orthobornavirus 1
Filoviridae Zaire ebolavirus NC_002549 3.50 1.242 -9.80
Marburg NC_001608 2.95 1.460 -10.09
marburgvirus
Paramyxoviridae Hendra henipavirus NC_001906 3.19 1.333 -9.83
Measles NC_001498 2.45 1.309 9.62
morbillivirus
Mumps NC_002200 3.20 1.494 -9.45
orthorubulavirus

Table 5: Homology modelling at intra-order, inter-family level. Templates are as given in Table 2. Targets ar®dRP (or reverse transcriptase for
Lentivirus) sequences from the reference genome accessidmensigiven. RMSD: root mean square deviation igsitoms between template and model
when superposed in MOBIue indicates good-quality, red indicates pooriiyuadetermined by the following thresholdB: ¥ < 2%; QMEAN Z-
score > -4.00; RMSD < 2 A.



Template Template Genus o-¥ RMSD QMEAN

PDB outliers (A) Z-score
(%)

Hantaan orthohantavirus SIZE Orthohantavirus 0.00 0.280 -0.38

Crimean Congo 3PHX Orthonairovirus 2.37 1.354 -2.88

hemorrhagic fever

orthonairovirus

La Crosse 5AMQ Orthobunyavirus 0.45 0.556 -2.64

orthobunyavirus

Indiana vesiculovirus 5A22 Vesiculovirus 1.98 0.850 -5.52

Cardiovirus A ANYZ Cardiovirus 0.86 0.954 -2.15

Rhinovirus A 1IXR7 Enterovirus 0.22 0.564 -1.10

Lymphocytic 3JSB Mammarenavirus 0.00 0.351 -1.43

choriomeningitis

mammarenavirus

Japanese encephalitis virus 4K6M Flavivirus 1.21 0.875 -3.94

Hepacivirus C 2Y0J Hepacivirus 1.21 0.701 -2.57

Human picobirnavirus 5161 Picobirnavirus 0.56 0.638 -2.77

Rotavirus A 2R70 Rotavirus 0.20 1.134 -7.09

Human immunodeficiency 5TXL Lentivirus 1.30 1.507 -2.82

virus 1

Table 6: Homology modelling the common ancestor fogach genusTemplates are as given in Table 2. Targets ¢
the reconstructed ancestral RARP (or reverse tiptesse for_entivirus) sequences. RMSD: root mean square
deviation in Angstroms between template and modelnsuperposed in MOBlue indicates good-quality, red
indicates poor-quality, determined by the followthgesholds®-Y < 2%; QMEAN Z-score > -4.00; RMSD

<2A.



Level ®-¥ outliers (%) RMSD (A) QMEAN Z-score
Solved structure templates 0.25 N/A -1.033
Intra-genus, inter-species 1.32 (1.29) 0.839 (0.870) -5.245 (-5.348)
Intra-family, inter-genus 1.73 (1.72) 1.157 (1.048) -7.966 (-7.325)
Intra-order, inter-family 2.97 1.497 -9.691
Common ancestor of genus 0.86 0.814 -2.941

Table 7: Mean model (or structure) quality. The top line shows the mean quality scores for the

solved structures used. The other lines show ts@nnguality scores for the models produced at

various levels of taxonomic distance between tetedad targetBlue indicates good-quality, red

indicates poor-quality, determined by the followthgesholds®-¥ < 2%; QMEAN Z-score > -4.900

RMSD < 2 A. Numbers in brackets indicate the rediscores if the model fomjin

thottimvirus is moved out of the intra-genus category and tiointra-family category in the light

of its subsequent transfer into the new gergtimvirus.
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Figure 1: Force-directed graph visualisations of snilarity of RARPs (or reverse transcriptase forLentivirus) within genera
The genetic distance matrix for each alignment emas/erted into a similarity matrix (Equations 1 @)d The Fruchterman-Reingold algorithm (500

minimisation iterations) was implemented in R madydraph to produce a force-directed graph. Relative sintjlas represented by node proximity, and

absolute similarity is proportional to edge thickae The solved structure and the three typesrdfaie nearest neighbour (CNN) sequences are lgtdd.

The species names corresponding to the numbereskravd listed in the Supplementary TaKlardiovirus has less than four reference sequences and is

omitted. A: Location of solved structure and theethCNNs in sequence space (Equations 3-7). Semerg have two median CNNs.
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Figure 2: Visualisation of sequence space in two drthree dimensions forOrthohantavirus

Multi-dimensional scaling on th@rthohantavirus similarity matrix was implemented in R modw®dscale and
viewed in Spotfire Analyst. Inset: tl@rthohantavirus Fruchterman-Reingold representation from Figuréhe
solved structure and the three types of centroadest neighbour (CNN) sequences are highlighted.species

names corresponding to the numbered nodes ard listhe Supplementary Table.
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Figure 3: Visualisation of sequence space in two drthree dimensions forMammarenavirus

Multi-dimensional scaling on thiglammarenavirus similarity matrix was implemented in R modwdscale and
viewed in Spotfire Analyst. Inset: tihdammarenavirus Fruchterman-Reingold representation from Figur&He
solved structure and the three types of centroadest neighbour (CNN) sequences are highlighted.species

names corresponding to the numbered nodes ard listhe Supplementary Table.
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Figure 4: Homology models, Ramachandran®-¥) plots and QMEAN Z-scores graphics for the “bestand
“worst” intra-genus model

A: Superposition oRotavirus | model (orange) oRotavirus A template 2R70 (pink). B: Superposition of
American bat vesiculovirus model (orange) oimdiana vesiculovirus template 5A22 (pink). C: Ramachandran
(®-Y) plot for Rotavirus | model. D: Ramachandra®{¥) plot for American bat vesiculovirus model. E:
QMEAN Z-scores graphic fdRotavirus | model. F:QMEAN Z-scores graphic folmerican bat vesiculovirus
model. Thed-¥ plots (C,D) show! on the y-axis and on the x-axis. Bond angle quality: favoured (giee
allowed (yellow), and outliers (red cross, bluet}eXhe Z-score graphics show model quality onidirsy scale:
low-quality (red), high-quality (blue). QMEAN4 stws the overall Z-score, “All Atom” shows the aveeagrscore
for all of the atoms in the model, “CBeta” the Zose for all @ carbons, “Solvation” is a measure of how
accessible the residues are to solvents, and ‘Grdris a measure of torsion angle for each resiwhrepared to

adjacent residues.
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Figure 5: Flowchart of recommended strategy for chize of RARP for docking experiments.

Where a solved RARP structure exists in a gengsoitild be used. However, if that solved strucisireot a CNN, a homology model of a CNN or anadstequence
should be produced for comparative purposes. Whergolved RARP structure exists in a genus, atsirel from another genus in the same family maydes.



Highlights
1. Thefirst use of force-directed graphs for the visualization of multidimensional protein

sequence space in two dimensions

2. Measures of centrality in protein sequence space to identify sequences for production of
homology models

3. Homology modelling for RNA-dependent RNA polymerase (RARP) target-template pairs
in different species, genera and families

4. A protocol for the production of optimal RARP homology models for use in further

experiments



