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Abstract 

 

A study has been carried out of superconductivity in coatings formed on niobium by plasma 

electrolytic oxidation (PEO) in electrolyte containing different concentrations of MgB2. From 

preliminary experiments, a suitable PEO condition was selected. The coatings were examined 

by analytical scanning electron microscopy and X-ray diffraction. Superconductivity was 

assessed using magnetic moment-field measurements. At 6 K, superconductivity of the 

niobium dominated, which revealed strong flux pinning and sudden release. The latter was 

more gradual following PEO, indicating pinning was a surface effect. Between the critical 

temperature of niobium (9.25 K) and MgB2 (about 39 K), the diamagnetic behaviour of 

superconducting MgB2 was present, with earlier flux penetration the closer the temperature to 

39 K. The hysteresis loop indicated stronger flux pinning for lower temperatures, as expected 

for a superconductor.   

 

Keywords: plasma electrolytic oxidation, coating, magnesium, boride, superconductivity 

 

1. Introduction 

 

A recent short communication of the present authors provided the first report of the possibility 

of forming superconducting coatings using plasma electrolytic oxidation (PEO) [1]. 

Superconductivity arose from MgB2 particles incorporated from the electrolyte into a coating 

composed of niobium and silicon oxides. PEO coatings are formed at high voltages during 

anodic polarization of a suitable metal substrate, most commonly aluminium, magnesium and 

titanium, in a liquid, usually aqueous, electrolyte [2, 3]. A porous coating material containing 

nano- to micro-sized pores [4, 5] is generated at the locations of microdischarges, with lifetimes 

in the microsecond to millisecond range [6-8], on the substrate surface. The coating material, 

often oxide-based [9-11], is probably formed by a mixture of processes, involving anodic 

oxidation, thermal oxidation and plasma-chemical reactions under the high temperatures and 

pressures at the microdischarge sites. Species from both the substrate and the electrolyte are 

incorporated into the coating, including the possibility of incorporation of nanoparticles if 

present as an addition to the electrolyte [13-15]. Usually the coating thickness is determined 

by the time of the PEO treatment [9, 15], with thicknesses up to the order tens of microns being 

possible. The rapid heating and cooling of the coating material at microdischarge sites results 
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in coatings that generally contain both crystalline and amorphous components in proportions 

dependent upon the PEO conditions, e.g electrolyte composition and electrical parameter (e.g. 

DC, AC, frequency, waveform). The formation of the coating is accompanied by significant 

generation of gas, including bubbles of oxygen, hydrogen and water vapour [3, 16]. 

 

In the previous study [1], the selected substrate was niobium, as it is of interest as a 

superconducting material (critical temperature 9.25 K) [17-18], and the applicability of PEO 

[19, 20].  Superconductivity was evident below 39 K, the critical temperature for MgB [21]2, 

owing to the presence of MgB2 particles in the oxide coating [1]. Various other processes have 

been used to produce superconducting MgB2 coatings e.g. pulsed laser deposition (PLD) [22], 

low pressure chemical vapour deposition (LPCVD) [23], molecular beam epitaxy (MBE) [24], 

hybrid physical chemical vapour deposition (HPCVD) [25], reactive evaporation [26], 

electroless [27], electrochemical synthesis [28], electrophoretic [29], sol–gel [30], and ion 

beam [31]. However, these techniques have some drawbacks, e.g. MgB2 phase stability, 

contamination and oxidation, line-of-sight access, and use of reactive chemicals, vacuum, and 

high temperatures. PEO is an alternative process that has received little attention for such an 

application. Of potential advantage, PEO can be used to treat large components, does not rely 

on line-of-sight access to the surfaces on which the coating is to be deposited, uses non-toxic 

treatment baths and does not require use of vacuum systems or high temperatures. 

 

The present work investigated the influence of the current waveform and treatment time on 

PEO coating formation on niobium, which was used to select treatment parameters for 

formation of coatings incorporating MgB2 particles.  PEO coatings containing MgB2 are of 

possible interest for use in superconducting radio frequency (SRF) cavities for particle 

accelerators [32, 33]. For the preferred coating condition, the superconductivity properties of 

the coated substrate were investigated in the temperature range 6 to 45 K using magnetization-

field measurements, not previously reported, made with a superconducting quantum 

interference device.  

 

 

2. Experimental 

 

2.1. Material and PEO conditions 
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Specimens were cut from 99.6% niobium sheet, of 2.0 mm thickness (ADVENT Research 

Materials Ltd.), ground to a 1200 SiC grade finish, degreased with acetone, rinsed with 

deionized water, dried in air at 40 °C and coated in lacquer (Stopper 45 MacDermid), leaving 

a working area of ∼1 x 1 cm2.  

 

PEO was carried out for up to 2000 s at a constant rms current density of 500 mA cm-2 with a 

square wave using an ACS-FB power supply (ET System Electronic GmbH). The frequency 

was 50 Hz, with a duty cycle of 50%, and a negative to positive current ratio (in/ip) in the 

range -1 to -1.27. The electrolyte consisted of reagent grade sodium silicate (10.5 g l−1 

specific gravity 1.5), phosphoric acid (3 ml l−1) and sodium hydroxide (2.8 g l−1) in deionized 

water. As required, either 3 or 8 g l-1 of MgB2 powder (99% purity-Alfa Aesar), which was 

first dispersed ultrasonically in 100 cm3 of the electrolyte for 30 min, were added. The 

electrical parameters and base electrolyte were selected from previous work of the authors on 

PEO coating of titanium [34]. 

 

A double-walled glass cell contained 1 dm3 of electrolyte, which was stirred using a magnetic 

stirrer. The electrolyte was kept at 25 °C by a flow of cold water through the cell wall. A 

7.5 × 15 cm type 304 stainless steel plate was used as a counter electrode. Voltage–time 

responses were recorded employing LabView software with a sampling time of 20 ms.  

 

Light emitted by discharges was collected using an optical emission spectroscope (USB4000 

Ocean Optics), with an optical fibre immersed in the electrolyte, and located 10 mm from the 

specimen to optimize the collection. The optical fibre (ZFQ-9596, Ocean Optics) was of 

1000 μm diameter, with a numerical aperture of 0.22 ± 0.22. Emissions were recorded in the 

wavelength range 200–850 nm with a resolution of 1 nm. 

 

2.2. Specimen examination 

 

PEO-treated specimens were examined using a Zeiss Ultra 55 scanning electron microscope, 

equipped with energy dispersive X-ray (EDX) analysis facilities. Cross-sections were prepared 

using successive grades of SiC paper, followed by finishing with 1 μm diamond paste. Phase 

composition was investigated by X-ray diffraction (XRD), using a Philips X’Pert-MPD (PW 

3040) instrument with copper Kα radiation, a step size of 0.005° and a scan range from 5° to 

85° (in 2θ). 
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2.3 SQUID measurements 

 

All deposited niobium films were analyzed using a superconducting quantum interference 

device (SQUID), quantum design MPMS XL-7 to measure magnetic hysteresis loops in a dc 

magnetic field at 6 K. In application to SRF cavities, the magnetic field should be parallel to 

the surface. All samples were oriented as close to parallel to the plane of the magnetic field as 

was possible to achieve. The error in the sample alignment with the magnetic field was 1 ° (17 

mrad). The sensitivity of the magnetic property measurement system (MPMS) system is 10-7 

emu; however, in the reported experiments the noise level of the magnetic moment 

measurements was observed to be 10-4 emu at zero field. 

 

3. Results and discussion 

 

3.1 Voltage-time response 

 

Figure 1(a) presents the voltage-time response for PEO of niobium for 2000 s in the MgB2-free 

electrolyte with in/ip of -1. The voltage increased in 7 s to 290 V as a barrier anodic film was 

formed. Earlier studies of anodic niobia barrier film growth show that the thickness increases 

in proportion to the increasing voltage at about 2.1 to 2.3 nm V-1 [35, 36]. Sparks then initiated 

when the voltage reached the dielectric breakdown voltage (290 V) of the anodic film.  The 

PEO stage of the process then commenced in the presence of sparking and gas evolution. The 

gas comprises hydrogen and oxygen generated electrochemically and also be thermal 

dissociation of water under radiolysis in the discharge channels [3, 16]. The electrolyte may 

also boil producing bubbles of water vapour on the coating surface that subsequently collapse 

as the water vapour condenses [3].  

 

 After sparking begins, the voltage remained steady until 200 s, increased to 325 V at 700 s, 

and then decreased to 150 V at 1200 s. The decline in voltage was accompanied by relatively 

small voltage fluctuations that gradually increased in magnitude. Thereafter, large fluctuations 

developed about a mean voltage of about 140 V.  These occurred with decreasing frequency 

and magnitude up to the end of the treatment, with peak-to-trough voltage differences initially 

of about 120 V and finally about 100 V. The minimum voltages were about 85 V. During these 

large transients sparking was sporadic. Individual transients comprised a voltage drop that 
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occurred in 10 to 18 s, followed by a gradual recovery over an interval that ranged from about 

40 to 80 s. The inability to support sustained dielectric breakdown at this stage of the process 

suggests that the barrier layer at the coating base was cyclically degraded, for instance due to 

stresses from coating growth and gas evolution causing detachment of the barrier layer from 

the substrate. This causes the voltage to decrease, followed by a recovery as the damage is 

healed. 

 

The effect of changing in/ip from -1 to -1.27 was negligible (see Fig. 1(b)). The differences 

between curves were within the limits of reproducibility. The negligible of effect of changing 

in/ip contrasts with PEO of aluminium or magnesium, when a transition to a so-called “soft” 

sparking regime occurs with increase of the negative current [37-40]. The onset of “soft 

sparking” has been suggested to be due to factors such as change of the pH and electric field at 

the metal/oxide interface [38], and to be influenced by the nature of the electrolyte cations [39]. 

Following PEO on the present specimens, a white coating was formed, which had a uniform 

appearance across the whole of the working area. 

 

From the previous experiments, in/ip = -1 and 720 s were chosen for carrying out PEO 

treatments in electrolytes containing 3 and 8 g l-1 MgB2. The additions of MgB2 particles led 

to an increase in the voltage during sparking by about 7 and 18 V, respectively (Fig. 1(c)). 

Furthermore, addition of 8 g l-1 MgB2 particles led to a rapid voltage drop, by about 100 V, 

after 550 s, with the final voltage after 720 s being about 220 V. It is later shown that more 

MgB2 was incorporated into the coating formed in the electrolyte containing 8 g l-1 MgB2 

compared with the electrolyte containing 3 g l-1. The decrease in voltage at the later stages of 

PEO with the higher concentration of MgB2 indicates a less resistive coating, possibly due to 

MgB2 particles reaching the barrier layer and disrupting its continuity on the niobium substrate. 

Current may then be preferentially diverted from oxidation of the niobium to electrochemical 

generation of oxygen and hydrogen on the particles at the niobium/coating interface under 

voltages below the dielectric breakdown voltage. The coatings formed in electrolytes 

containing particles were dark grey, similar to the colour of the MgB2 powder. 

 

3.2 Optical emission spectroscopy  

 

Figure 2 displays the optical emission spectra recorded every 60 s during PEO in the MgB2-

free electrolyte for 600 s at in/ip = -1. The use of the particle-free electrolyte was necessary 
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since additions of MgB2 rendered the electrolyte opaque. Emissions were detected at 180 s 

from sodium (Na I 589.6 nm) and hydrogen (Hα 656.3nm) and niobium (Nb 306.96 nm); small 

peaks were also present due to hydrogen (Hβ 486.1 nm) and silicon (Si I 288.1 nm). Sparking 

first occurred at the edges of the working area, then spread inwards to cover the whole working 

area by 240 s, when the emission intensities were highest. The emission from niobium gave a 

predominantly violet hue to the initial sparking. After 360 s, Na I was the main emission line, 

which resulted in an orange appearance of sparks. At 600 s, only a weak Na I peak was resolved 

as the number and intensity of sparks reduced. 

 

3.3 Coating morphology and composition 

 

The dependence of the coating thickness, determined from SEM of cross-sections, on PEO 

time at ip/in = -1 is shown in Fig. 3. Between 240 to 720 s, the thickness increased linearly with 

time at a rate of 115 nm-1 s up to a thickness of ≈60 µm. The rate then fell to an average of 30 

nm s-1 between 720 to 1800 s coinciding with the decreasing and fluctuating voltage observed 

in the voltage-time curve of Fig. 1.  

 

A secondary electron micrograph of a cross-section of a coating formed in the absence of MgB2 

particles for 720 s at in/ip of 1 reveals a variable coating thickness due to the presence of large 

nodules of coating material (Fig. 4(a)); the thickness mainly ranged from ≈50 to 70 µm. 

However, pores and channels are present throughout the coating, some channels penetrating to 

within a few microns from the niobium substrate. A thin barrier layer is present across the 

niobium surface with a thickness of about 1 µm.  The accompanying EDS elemental maps 

(Figs. 4(b-d)) show the presence of oxygen and silicon in most regions, while niobium occurs 

mainly near to the substrate. Sodium and phosphorus were minor constituents of the coating 

(maps not shown). Figure 4(e) shows a scanning electron micrograph of the coating surface. 

The nodule sizes typically range from 20 to 40 μm. Deep cavities occur between the nodules. 

Individual nodules appear to consist of an agglomeration of finer nodules. EDX analysis in an 

area of 30 x 30 μm revealed (in at%) 72.0%O, 24.0% Si, 2.6% P, < 1%Nb, ˂ 1% K, ˂ 1% Na, 

suggesting that SiO2 is the main constituent. SiO2 is formed by thermolysis of silicate ions due 

to the high temperatures generated at the discharge sites.  

 

 Figure 5 shows scanning electron micrographs of the cross-section (Fig. 5 (a)) and the surface 

(Fig. 5 (b)) of the coating formed in the presence of 3 g l-1 MgB2 for 720 s with in/ip of 1. The 
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coating thickness, about 65 µm, and nodular surface morphology are similar to those of the 

coating formed in the absence of MgB2. The nodular structure results in significant local 

variability in the thickness, with deep fissures between the nodules. Large cavities are present 

in the inner coating region, with sizes of up to several tens of microns. A thin layer of material, 

about 2 to 10 µm thick, containing small pores, extends along the niobium/coating interface. 

The inner layer material appears less porous than the foam-like material that constitutes the 

nodules in the outer coating regions. The layer also exhibits lighter regions in the backscattered 

micrograph of Fig. 5 (a), owing to the increased electron scattering from niobium-rich regions 

of coating material, which are interspersed with darker regions, presumed to be silicon-rich. 

The lighter regions probably contain Nb2O5, which is shown to be present in the coating 

according to the later results of XRD. In particular, a relatively continuous barrier layer of 

niobium-rich oxide, about 1 µm thick, is located immediately adjacent to the niobium substrate 

(see inset in Fig. 5 (a)). Figure 5 (c) shows a higher magnification image of the coating surface 

revealing MgB2 particles attached to the nodules and within the cavities between the nodules. 

 

Figure 6(a) shows a backscattered electron micrograph of a cross-section of the coating formed 

in the presence of 8 g l-1 MgB2 particles. From observations of several sections the coating was 

between 50 to 110 μm thick. The coating consisted of inner regions of more compact oxide of 

light appearance, and more foam-like, darker, oxide. Previous study showed that magnesium 

was mainly detected in the foam-like regions, which were relatively richer in silicon, while 

niobium was mainly present in the more compact oxide [1].  Closer examination showed that 

the majority of the pores contained micron- and sub-micron sized particles (Fig. 6(b) see 

arrows). The particles are of similar size to those of the as-received MgB2 powder [1]. EDS 

point analysis of the particles revealed high concentrations of magnesium indicating the 

presence of MgB2. 

 

Figure 6(c) shows the coating surface formed in the electrolyte containing 8 g l-1 MgB2.  The 

coating also has a nodular surface, however, the nodules are less densely packed than in the 

absence of MgB2 and a smoother porous material is visible between the nodules at the bottom 

of the interstices, as shown in Fig. 6(d). Large pores are evident of about 8 µm diameter and s 

region of finer pores of diameter in the approximate range 0.1 to 1 µm. It is known from 

previous work that formation of coatings in electrolytes containing added nanoparticles can 

reduce the porosity of coatings [41, 42], which may be due to their effect on the number and 

intensity of the microdischarges and hence, their influence on the local temperatures achieved 
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at the discharge sites in the coatings. The latter may affect both the chemical composition and 

the viscosity of the coating material, and hence the escape of oxygen, hydrogen and water 

vapour from the coating that can generate porosity [3]. Comparison of Figs 4 (e) and 5(c) that 

show the surfaces of coatings formed without and with MgB2 respectively, suggests a lower 

porosity in the coating formed in the presence of MgB2. Furthermore, the voltage-time curves 

of Fig 1 (c) reveal a higher voltage with the presence of MgB2, which may be associated with 

a greater intensity of the discharges. The porosity is formed by escape of gas from molten or 

softened oxide. Cracks are also evident, which may be due to the stresses created when the 

coating material cools rapidly after discharge terminate. Such cracks are commonly 

encountered in PEO coatings. The surfaces of the interstitial coating material and the nodules 

are decorated by fine particles of ≈ 0.1 to 1 µm diameter, which is the size range of the MgB2 

powder. EDX analysis (at.%) of the coating surface in an area of 10*20 μm revealed a Mg:Si 

ratio of 0.63, compared with 0.29 for the coating formed using 3 g l-1 MgB2, respectively. 

(Boron could not be analysed owing to the low energy of the characteristic X-rays). Thus, an 

increased concentration of MgB2 in the electrolyte increased the incorporation of particles into 

the coating. 

 

Results of XRD are shown in Fig. 7(a) for untreated niobium and following PEO at in/ip = -1 

for 720 s in MgB2-free electrolyte. A sharp peak due to Nb2O5 and a broad peak between ~ 15° 

to 30° due to amorphous material was present for the coated specimen. Owing to the coating 

thickness, no peaks were resolved from the substrate. Following PEO for 720 s in particle-

containing electrolytes, peaks due to MgB2, Nb2O5 and amorphous material were present (Fig. 

7(b)). The multiple peaks for 8 g l-1 MgB2 compared with the single peak for 3 g l-1 MgB2 

indicated a greater presence of MgB2 in the former specimen. No decomposition or oxidation 

products of MgB2 were detected. 

 

Incorporation of MgB2 may follow migration of particles to the coating surface, dependent 

upon the zeta potential of the MgB2. Additionally, boiling and refluxing of the electrolyte in 

the pores and interstices of the coating surface may draw MgB2 particles into the coating as the 

sites cool. MgB2 may then deposit on the coating surfaces, adhering to the coating due to van 

de Waals or electrostatic forces, mechanical interlocking or chemical bonding. The particles 

would later be trapped within the coating by subsequent deposition of oxide as the coating 

grows.   
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3.5 Superconductivity measurements 

 

The magnetisation has been measured as a function of the applied field (in the plane of the 

specimen) for four samples (uncoated niobium, PEO without MgB2 and PEO with 3 and 8 g l-

1 of MgB2) (Fig. 8), at 6 K, which is below the critical temperature of MgB2 (about 39 K) and 

niobium (9.25 K). The initial magnetization curve for the uncoated niobium sample shows a 

behaviour which is expected. Flux starts to penetrate gradually at relatively low field caused 

by field enhancement at the edges of the rectangular sample. Strong pinning (hysteresis) and 

sudden flux release are observed in the hysteresis loop. PEO with no MgB2 changes that 

behaviour. Some flux is already released at H=0. As PEO only affects the surface of the 

material this indicates that the pinning behaviour observed without PEO is a surface effect.  

PEO with MgB2 yields a more gradual flux release than uncoated niobium and PEO without 

MgB2. 

. 

Figure 9 shows the magnetic moment divided by the applied field M/H normalized to unity as 

a function of applied field for the initial magnetization curve. In this plot a value of M/H=1 

signifies the full sample in a flux free Meissner state. While the magnetic moment itself is an 

extensive property this normalized curve allows a better comparison of the four samples. As 

all four curves look very similar one can conclude that the PEO has no influence on the initial 

magnetization curve. The complete behaviour is dominated by the niobium substrate, which 

accounts for the major part of the superconducting material. Note that the PEO coating 

containing the MgB2 particles is only about 50-100 µm thick compared to the niobium substrate 

of 2 mm thickness.  

 

In order to probe superconductivity of the MgB2 coating the 8 g l -1 sample, which has the 

higher amount of MgB2 in the coating, has been measured at several temperatures above the 

critical temperature of niobium (9.25 K) (Fig. 10). For all temperatures, the dominating effect 

is the paramagnetism of niobium as the resulting magnetic moment is orientated in the same 

direction as the applied field. The measured moment is slightly larger than expected for a pure   

0.1988g niobium sample with a magnetic susceptibility of Χ=217μemu/mole [43]. This can be 

explained by competing diamagnetism of SiO2 and Nb2O5. 

 

The superconductivity of MgB2 is visible though by the hysteresis and the initial magnetization 

curve alike. For the initial curve, if measured above the critical temperature of MgB2 (about 39 
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K), there is a linear correlation between magnetization and applied field indicative of 

paramagnetic behaviour. If however, the temperature is below 42 K the initial slope M/H is 

weaker indicating additional diamagnetic behaviour of the superconducting MgB2. The trend 

for the temperatures of 12, 25 and 35 K is consistent with this interpretation. The closer the 

temperature is to the critical temperature of MgB2 the earlier the flux penetration occurs. The 

hysteresis loop shows for lower temperatures a larger Delta M (H=0). This can be interpreted 

as stronger flux pinning for lower temperatures as expected for a superconductor.  Hysteresis 

remains beyond 45 K where it cannot be attributed to pinning in a superconductor. At this 

temperature there is no sign of diamagnetism left further ruling out superconductivity. The 

magnetization curves at 45 and 300 K are therefore consistent with a weak ferromagnet with a 

Curie temperature above 300 K. Note that MgB2 exhibits ferromagnetic behaviour in the 

normal conducting state [44]. 

 

 

4. Conclusions 

 

1.  Silicon-rich PEO coatings formed on niobium under the present conditions grow at a 

constant rate in the first 720 s of the process. Thereafter, the rate falls steeply due to large 

reductions and fluctuations in voltage and intermittent sparking.  

2.  MgB2 particles are readily incorporated into the coating, with incorporation increased by 

increasing the MgB2 content of the electrolyte from 3 to 8 g l-1.  

3.  The superconductivity of the incorporated MgB2, probed with squid magnetometry, 

disclosed flux pinning and diamagnetic behaviour, both indicative of a superconducting 

state.  
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 Figure captions: 

 

Figure 1. Voltage-time curves during PEO of niobium at 500 mA cm-2 in silicate-phosphate 

electrolyte with a frequency of 50 Hz and duty cycle of 50%; (a) 2000 s, in/ip -1; (b) 720 s, in/ip 

in the range of -1 to -1.27; (c) 720 s, in/ip and 3 and 8 g l-1 MgB2 in the electrolyte. 

 

Figure 2.  Optical emission spectra recorded during PEO of niobium in silicate-phosphate 

electrolyte (500 mA cm-2, 50 Hz, a duty cycle of 50%, in/ip -1). 

 

Figure 3. Coating thickness-time relationship for PEO of niobium in silicate-phosphate 

electrolyte (500 mA cm-2, 50 Hz, a duty cycle of 50%, in/ip -1). The thickness was measured 

by SEM of coating cross-sections. 

 

Figure 4. (a) Scanning electron micrograph (secondary electrons) of the coating cross-section 

following PEO of niobium for 720 s in silicate-phosphate electrolyte (500 mA cm-2, 50 Hz, a 

duty cycle of 50%, in/ip -1); (b-d) EDS elemental maps of niobium, silicon, oxygen, 

phosphorus. (e) Coating surface.  

 

Figure 5. Scanning electron micrographs of (a) the coating cross-section (backscattered 

electrons) and (b, c) the coating surface (secondary electrons) following PEO of niobium for 

720 s in silicate-phosphate electrolyte containing 3 g l-1 MgB2 (500 mA cm-2, 50 Hz, a duty 

cycle of 50%, in/ip -1). 

 

Figure 6. Scanning electron micrographs of (a, b) the coating cross-section (backscattered 

electrons) and (c, d) the coating surface (secondary electrons) following PEO of niobium for 

720 s in silicate-phosphate electrolyte containing 8 g l-1 MgB2 (500 mA cm-2, 50 Hz, a duty 

cycle of 50%, in/ip -1). 

 

Figure 7. XRD patterns for niobium (a) before and following PEO for 720 s in silicate-

phosphate electrolyte (500 mA cm-2, 50 Hz, a duty cycle of 50%, in/ip -1). (b) Following 720 s 

in electrolytes containing 3 and 8 g l-1 MgB2. 
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Figure 8. Magnetic moment as a function applied field measured with a squid magnetometer 

at 6 K for niobium in the uncoated condition, following PEO in MgB2-free electrolyte and 

following PEO in electrolyte containing 3 and 8 g l-1 MgB2. 

 

Figure 9. Magnetic moment divided by applied field normalized to its maximum value as a 

function of applied field at 6 K for niobium in the uncoated condition, following PEO in MgB2-

free electrolyte and following PEO in electrolyte containing 3 and 8 g l-1 MgB2. A value of 1 

indicates the entire sample being in a flux free Meissner state. 

 

Figure 10.  Magnetic moment as a function applied field at temperatures from 12 to 300 K for 

niobium following PEO in electrolyte containing 8 g l-1 MgB2. The effect of the MgB2-

containing coating on the initial magnetization curve is clearly visible in the inset. 
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