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Abstract

Impacts of climate change on human health are a major concern for public health.

Increase in frequency and intensity of extreme hydro-climatic events (floods and

droughts) is one of the main characteristics of climate change. The occurrence

of these events can drastically affect the lives of the population through different

pathways. For example, by affecting accessibility to sufficient, safe and nutri-

tious food (food security), increasing levels of malnutrition or increasing disease

incidence. We hypothesize that nutrition might be a relevant pathway through

which extreme hydro-climatic events affect human health and that the impacts

are worse for vulnerable groups where they exacerbate existing vulnerabilities.

Then, to understand and evaluate the effects of extreme hydro-climatic events

on human health, we developed three studies. First, we propose a model-based

standardised index to identify and quantify extreme temporal events and com-

pared it against the classical standardized precipitation index (SPI). We found

that our index holds the properties of the SPI, but improves on the methodology

by tackling some of its limitations. Second, we used the model-based standard-

ised index to evaluate the effects of exposure to extreme hydro-climatic events

during pregnancy on birth weight. We controlled for other social and placed-

based factors that could influence birth weight and found out that floods could

significantly reduce birth weight. We also detected characteristics of vulnerable

groups where birthweight is expected to be lower. Finally, we proposed our de-

nominated spatial item factor analysis to model and predict spatially structured

latent factors. With our application on predicting food insecurity in a roadless

city of the Brazilian Amazonia, we discover that severely food insecure areas

were related to flood-prone, poor and marginalized neighbourhoods. In general,

our results highlight the importance of policies to reduce the effects of extreme

hydro-climatic events on vulnerable populations of the Brazilian Amazonia. Al-
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though our methods were motivated by the study of the impacts of extreme

hydro-climatic events, they can be applied in more general cases.

Keywords: Brazilian Amazonia, Climate Change, Extreme Hydro-climatic Events,

GAMLSS, Item Factor Analysis, Spatial Statistics.
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Chapter 1

Introduction

1.1 Climate Change and Extreme Events

Mitigating the effects of climate change on health and disease is one of the great-

est challenges to public health and international development (McMichael, 2013;

Watts et al., 2015). One of the main concerns relates to an expected increase in the

frequency, intensity and duration of extreme hydro-climatic events such as floods

and droughts (Porporato et al., 2006; Lehner et al., 2006). These natural disasters

affect human beings across different dimensions by endangering their basic need for

food, water, shelter and good health (McGuigan et al., 2002). In particular, human

health is affected by the accessibility to sufficient, safe and nutritious food (food

security) with malnutrition and higher disease incidence among the consequences

of this need not being satisfied (Rosenzweig et al., 2001).

Food security, and consequently nutrition, could be affected by extreme

events such as floods and droughts because a regular supply of good quality water

is arguably the most important factor in food production (McGuigan et al., 2002).

Nutrition, therefore, could be one of the health aspects more affected by extreme

hydro-climatic events, impeding the normal development of a population. The

effects of extreme events are expected to be more pronounced in vulnerable groups

like pregnant mothers, with negative consequences to the health of newborns and

subsequent generations, affecting longer term outcomes in education, income and

morbidity (Makhija et al., 1989; Risnes et al., 2011; Aizer and Currie, 2014).

1.2 Vulnerable Populations

In this thesis, we work with a definition of vulnerability provided by Blaikie et al.

(2014): it is a measure of the capability to anticipate, cope, resist or recover from
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natural hazards. The impact of extreme events as a result of climate change is

likely to vary, depending on the underlying vulnerability of the population being

affected (McGuigan et al., 2002).

Underdeveloped populations are therefore likely to be the most vulnerable

to climate change and, specifically, to extreme climatic events. One of the main

reasons for this is that a region’s capacity to adapt to extreme climatic events

depends on economic resources for adequate infrastructure, technology and social

safety nets. Developing populations/countries simply do not have the resources to

prevent and cope with these natural disasters, which limits their adaptive capabil-

ity. The effects of climate change are just likely to act as an additional burden on

their available resources, particularly where natural disasters are already a feature

of human existence. At the national level, poor countries are the most vulnerable

due to their lack of resources, while at the community level, it can depend on

socioeconomic class (e.g. education, type of employment), sex, ethnicity, age and

access to resources (McGuigan et al., 2002).

1.3 Brazilian Amazonia

Brazilian Amazonia has recently experienced unprecedented level of extreme hydro-

climatic events. For example, a rare drought was registered in 2005, a major flood

occurred in 2009, in which the main River Solimões-Amazonas channel reached

record levels and a large-scale severe drought was observed in 2010 (Zeng et al.,

2008; Chen et al., 2010; Filizola et al., 2014; Lewis et al., 2011). These events

drastically affect certain populations of the Brazilian Amazonia where around a

million citizens live in urban centres that lack access to Brazil’s road network

(Parry et al., 2017). These urban centers could be more vulnerable because of the

difficulty of trading goods under the absence of road networks and inside these

urban centers, disadvantaged groups are likely more affected. In this context, it

is pertinent investigate how extreme hydro-climatic events such as droughts and

floods affect human health in specific populations of Brazilian Amazonia, where
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the effects could be exacerbated due to major vulnerability. For instance, Smith

et al. (2014) found that drought events impacted health in the Amazon, as de-

tected by an increase in hospitalization rates for respiratory infections, linked to

forest fires and air pollution.

1.4 Research Questions

We hypothesise that extreme hydro-climatic events can affect population health,

in part, by modifying the levels of food insecurity and, consequently, increasing the

number of cases of malnutrition. We expect to be able to detect these effects by

studying vulnerable urban centers of Brazilian Amazonia, where the effects could

be of major consideration in comparison to the more developed cities in Brazil.

Hence, in order to better understand the effects of extreme-climatic events on

health status on vulnerable populations of Brazilian Amazonia, we aim to answer

the following four research questions (R.Q.):

(R.Q. 1) How should extreme hydro-climatic events be identified and quantified?:

Before trying to study the effects of extreme hydro-climatic events on

health related outcomes, it is necessary to have an approach to identify

and quantify these extreme events.

(R.Q. 2) What are the effects of extreme hydro-climatic events on birthweight?:

Once we have an approach to identify and quantify extreme hydro-

climatic events, we will use this approach to evaluate the effects of ex-

treme hydro-climatic events on population health. We decided to work

with birthweight, because it is a good indicator of newborn health. Our

hypothesis is that the effects of extreme hydro-climatic events are likely

to have an impact on the nutrition of the population, including pregnant

women, and thus on the health of newborns.

(R.Q. 3) How can we identify areas of high food insecurity, and what character-

istics do these areas have? : A more direct impact of extreme hydro-
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climatic events can be obtained by evaluating whether or not highly

food insecure areas are related to flood or drought prone areas. How-

ever, identifying these areas is not simple given that food insecurity is a

latent construct, elicited through the use of questionnaires and is thus not

directly observable. Since poor neighbourhoods often appear as clusters

within urban centres, it is necessary to develop an approach that allows

us to model the latent construct while accounting for spatial correlation

in the data. This will allow us to map areas with high or low levels of

food insecurity, which can be fed back to policy makers to help develop

targeted coping strategies.

(R.Q. 4) How can we predict food insecurity in unobserved urban centers using

secondary data? : Given the relevance of food insecurity to understand-

ing the effects of extreme hydro-climatic events, and the difficulty and

expense of obtaining this information in the field, it is desirable to be

able to predict the level of food insecurity in urban centers where we were

not able to visit due to budget constraints. We seek a way to utilise our

primary data along with more readily available secondary data in order

to predict food insecurity in a wider number of similarly isolated urban

centers.

While providing answers to these four research questions is directly relevant

to beginning our scientific understanding of the effects of extreme hydro-climatic

events on vulnerable urban centers of Brazilian Amazonia, they can also be used

as a basis for developing an early warning system for food insecurity that takes

into account environmental and socio-economic effects.

1.5 Flexible Statistical Models

To answer the research questions presented above, we require statistical models

that are flexible enough to handle heteroscedasticity, which is common property of
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precipitation and river level data (Mckee et al., 1993; Erhardt and Czado, 2017).

Models with this kind of flexibility are therefore required for R.Q. 1 and R.Q. 2.

For R.Q. 3 and R.Q. 4, we require statistical models that can handle the analysis

of latent constructs like food insecurity and for these reasons, we explore models

from the theory of distributional regression and factor analysis. More specifically,

we will use generalized additive models for location, scale and shape (GAMLSS)

and item factor analysis respectively. We extend these models when required and

combine them with models from spatial statistics, given that most of the response

variables studied have an inherent spatial structure, this is explored in greater

detail in subsequent chapters (Chapter 3, 4, and 5).

1.5.1 Generalized Additive Models for Location Scale and

Shape

The main characteristic of a generalized additive model for location, scale and

shape (GAMLSS) is that, in addition to the location parameter, the scale and

shape parameter are also modeled with respect to specific covariates (Rigby and

Stasinopoulos, 2005). More generally, if a response variable Yi (e.g. precipitation)

has a probability density function f(yi; θi1, . . . , θiK), then each parameter θik for

k = 1, . . . , K is associated with a linear predictor ηik through a monotonic link

function gk(.) such as

gk(θik) = ηik. (1.1)

The usefulness of these models is their inherent flexibility: they can adequately

capture the behaviour of response variables for which the distributional character-

istics change with respect to a set of independent variables.
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1.5.2 Item Factor Analysis

Item factor analysis is simply an extension to factor analysis, where the response

variable Yij for item j = 1, 2, . . . , q and subject i = 1, 2, . . . , n is a binarization

around zero of a continuous but unobservable process Zij that is explained by m

latent factors θi1, . . . , θim such as

Yij =

 1 Zij > 0

0 otherwise
, Zij = cj +

m∑
k=1

ajkθik + εij, (1.2)

where εij ∼ N (0, 1), {cj} are intercept parameters that take into account the

difficulty of items, and the slopes {ajk} indicate how well the j-th item can dis-

criminate the k-th ability between the subjects under study (Bock et al., 1988).

For instance, the latent factors θik could be the dimensions of food insecurity and

Yij, binary responses to the questions from a questionnaire designed to elicit the

level of food insecurity in a household. In the context of food insecurity, these

models allow the researcher to: (i) identify the level of food insecurity for subject

i; (ii) identify which strategies are used to cope with an absence of food (captured

through each question’s ‘difficulty’); and (iii) understand how the responses to the

different questions (items) and dimensions of food insecurity are related. More

will be said about what we mean by the ‘dimensions’ of food insecurity.

We extend item factor analysis by incorporating additional structure on the

latent factors using a link function g(.), usually an identity function, and a linear

predictor ηki as in Equation 1.1.

1.5.3 Types of Effects

Notice that the structure defined for the linear predictor in Equation 1.1 will de-

pend on the characteristics of θik. For example, it could have a seasonal and

temporal trend as in R.Q. 1, or non-linear effects as in R.Q. 2. It could also have

a spatial structure as in R.Q. 3 and R.Q. 4, or even more complex structures.
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For this reason we construct our models using a variety of effects including smooth

functions, random effects, Gaussian processes and Gaussian Markov random fields ;

when required we build more complex structures on top of these concepts. The

reader should refer to Wood (2006) for a comprehensive review on smooth functions

and random effects, to Diggle and Ribeiro (2007) for information on Gaussian pro-

cesses, and to Rue and Held (2005) for information on Gaussian Markov random

fields.

1.5.4 Statistical Inference

In flexible models such as GAMLSS and hierarchical models (e.g. model presented

in Chapter 4 and Section 5.2.3), there is evidence in the literature to support the

idea that the use of asymptotic approximations in quantifying the uncertainty of

estimators might not be reliable (Umlauf et al., 2018). For this reason, we pre-

fer to perform Bayesian inference using Markov chain Monte Carlo in our studies,

which allows us to easily deal with missing data and deeper model hierarchies. Un-

der Bayesian inference, the way we make predictions for random effects, expected

responses or a function of random variables at different levels of a hierarchical

model is also arguably more clear and neat given that we simply use probabil-

ity theory, treating all unknowns in the model as random variables regardless of

whether these are parameters, random effects or other quantities (see Skrondal

and Rabe-Hesketh, 2009, Section 7).

1.6 Thesis Structure

This thesis is organized as follows. A brief introduction to the context of the studies

and the models used throughout this thesis is presented in the present chapter. We

propose a model-based approach to identify and quantify extreme hydro-climatic

events in Chapter 2 to answer R.Q. 1. Next, we use this approach to evaluate

the effects of extreme hydro-climatic events on birthweight in Chapter 3 to answer
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R.Q. 2. In Chapter 4, we address R.Q. 3, proposing a novel approach to modelling

spatially-structured latent constructs, which we call spatial item factor analysis.

We use this to study and map food insecurity in a remote city of the Brazilian

Amazonia. Finally, we present the general conclusions and contributions of our

studies, with respect to the application studies and statistical models, in Chapter

5. In this, we discuss a possible extension to our spatial item factor analysis to

model food insecurity across different populations and to allow the inclusion of

covariates that are available at different spatial scales, which answers R.Q. 4
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Chapter 2
As mentioned in Chapter 1, this thesis focuses on the analysis of the impacts of

extreme hydro-climatic events on the Brazilian Amazonia population health. For

this reason, it is first necessary to obtain a methodology to identify and quantify

the magnitude of extreme hydro-climatic events like the standardized precipita-

tion index (SPI), which is a widely-used and accepted index for these purposes.

Unfortunately, this index has certain limitations that we overcome in the present

chapter by proposing two model-based alternatives and comparing them against

the SPI.

A Model-Based General Alterna-
tive to the Standardised Precipi-
tation Index

Erick A. Chacón-Montalván1, Luke Parry2,3, Gemma Davies2, Benjamin M. Taylor1

1Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical

School, Lancaster University, United Kingdom.
2Lancaster Environment Centre, Lancaster University, United Kingdom.

3Núcleo de Altos Estudos Amazônicos, Universidade Federal do Pará, Belém, Brazil

Abstract

In this paper, we introduce two new model-based versions of the widely-

used standardized precipitation index (SPI) for detecting and quantify-

ing the magnitude of extreme hydro-climatic events. Our analytical ap-

proach is based on generalized additive models for location, scale and

shape (GAMLSS), which helps to overcome some limitations of the SPI.

We compare our model-based standardised indices (MBSIs) with the SPI

using precipitation data collected between January 2004 - December 2013
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(522 weeks) in Caapiranga, a road-less municipality of Amazonas State.

As a result, it is shown that the MBSI-1 is an index with similar properties

to the SPI, but with improved methodology. In comparison to the SPI, our

MBSI-1 index allows for the use of different zero-augmented distributions,

it works with more flexible time-scales, can be applied to shorter records

of data and also takes into account temporal dependencies in known sea-

sonal behaviours. Our approach is implemented in an R package, mbsi,

available from Github.

Keywords: Droughts, Extreme Events, Flexible Regression Models, Floods,

GAMLSS, SPI.

2.1 Introduction

Mitigating the effects of climate change on health and disease is one of the great-

est challenges to public health and international development (McMichael, 2013;

Watts et al., 2015). One of the main characteristics of the burden of climate change

is the expected increase in the frequency, intensity and duration of extreme cli-

mate events (Houghton et al., 2001; Rosenzweig et al., 2001). These are events

experiencing extreme values of meteorological variables, they often cause damage

and are defined as either taking maximum values or exceeding established high

thresholds (Stephenson, 2008). In this paper, our focus is on floods and droughts,

which are considered extreme hydro-climatic events because they are related to

the tails of streamflow distribution (Shelton, 2009).

The impact of extreme hydro-climatic events is not straightforward to un-

derstand because they comprise a complex web of direct and indirect impacts

on environmental, economic and social areas (Blanka et al., 2017). Floods and

droughts, depending on their severity, can produce not only crucial damage to the

economy and ecology of a region, but also lives can be endangered (Lehner et al.,

2006). Agriculture and associated sectors are highly dependent on surface and
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ground water; hence, it is common to see major impacts of droughts and floods

on these areas (Blanka et al., 2017). The impact of extreme hydro-climatic events

will also crucially depend on specific characteristics of the society affected like

their vulnerability, adaptive capacity and resilience (Seiler et al., 2002; World Me-

teorological Organization (WMO) and Global Water Partnership (GWP), 2016).

Hence, focus should be put on vulnerable societies that are prone to experience

extreme hydro-climatic events; for example, on roadless urban centres of the Brazil-

ian Amazonia, where the population is experiencing droughts and floods without

precedent (see Zeng et al., 2008; Chen et al., 2010; Filizola et al., 2014; Lewis et al.,

2011).

In this context, the importance of being able to identify extreme hydro-

climatic events is due to two main reasons. First, it can help to improve the

understanding of the effects of floods and droughts by allowing the analysis of

extreme hydro-climatic events with respect to different variables or indicators of

interest in health, economy or others. For example, Chacón-Montalván et al.

(2018) evaluates the effects of these events on newborn health measured through

birthweight. Second, the methodology for the identification of extreme events

can help to improve monitoring and prediction tools and, potentially, enhancing

prevention policies to reduce the impacts of floods and droughts.

There are a large number of indices and indicators for monitoring droughts.

World Meteorological Organization (WMO) and Global Water Partnership (GWP)

(2016) presented 49 indicators and indices classified among the categories meteorol-

ogy, soil moisture, hydrology, remote sensing, and composite or modelled. Between

these indices, the most common are the standardized precipitation index (SPI),

the Palmer drought severity index (PDSI), the crop moisture index, the surface

water supply index and the vegetation condition index (Mishra and Singh, 2010).

Comparisons between these indices, often, agree that the standardized precipita-

tion index is an appealing index for monitoring droughts because of its simplicity,

spatial invariance, probabilistic nature and its flexibility to work with different
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time-scales (Guttman, 1999; Hayes et al., 1999; Morid et al., 2006; Mishra and

Singh, 2010). In addition, the World Meteorological Organization has suggested

to use the SPI as a primary meteorological drought index through Hayes et al.

(2011) and a user guide for this index has been released in World Metereological

Organization (2012).

In the case of flood monitoring, most studies focus on more than one indica-

tor given that flooding is not only related to rainfall, but also to river levels, river

discharge and geomorphology. In comparison with the case of droughts, there is

not much consensus in which indices or information to use for monitoring floods.

Koriche and Rientjes (2016), for example, used rainfall and topography to propose

a satellite based index, while Ban et al. (2017) used satellite-based RGB com-

posite imagery. Other approaches applied sensor networks or information from

hydrological stations (Keoduangsine and Goodwin, 2012). Despite this variabil-

ity of methodologies, several studies recognize the potential value of the SPI as

a tool for flood monitoring. For instance, Wang et al. (2017) demonstrated that

the 2-month SPI is an effective indicator for identifying major floods events in the

Minjiang River basin. Similarly, Seiler et al. (2002); Guerreiro et al. (2008); Du

et al. (2013); Koriche and Rientjes (2016) have used the SPI for flood predicting

systems.

Motivated by the desire to evaluate the impacts of extreme hydro-climatic

events on birthweight in the Brazilian Amazon (see Chacón-Montalván et al.,

2018), our research initially explored the use of the widely applied standardized

precipitation index (SPI). However, although this index has been suggested as the

primary meteorological drought index by the World Meteorological Organization

and has been shown to be useful for identifying and monitoring droughts and

floods, the current methodology for computing it has certain limitations that will

be explained in Section 2.2.3. For instance, the SPI can not be computed reliably

for series shorter than 30 years. For this reason, we propose two model-based ap-

proaches that maintain the desirable characteristics of the SPI but with improved
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computation and methodology.

Our model-based standardized indices (herein, MBSIs) overcomes some of

the limitations of the SPI by using generalized additive models for location, scale

and shape (GAMLSS). These models are flexible enough to capture the seasonal

trend on the parameters of the distribution of rainfall or precipitation data. Our

methodology differs from other attempts to improve the SPI by proposing a model-

based approach instead of a group of empirical steps to compute the SPI such as

presented in Erhardt and Czado (2017). A model-based approach provides a more

consistent framework that naturally allows model checking and uncertainty com-

putations. Also, it could allow further extensions; for example, by working on the

spatial or spatio-temporal scale, or by taking into account additional structures

such us trends and covariates effects. The MBSIs could be applied to other environ-

mental variables of interest, other than precipitation, by choosing an appropriate

family of distributions.

This paper is structured as follows. An introduction explaining the mo-

tivation for an alternative to the SPI is given in the present section. Then the

definition and limitations of the SPI are presented in Section 2.2. In Section 2.3,

we provide a short introduction to generalized additive models for location, scale

and shape (GAMLSS). In Section 2.4, two model-based approaches to compute the

standardized precipitation index are proposed to tackle some of the limitations de-

scribed in Section 2.2.3 and make possible the use of a theoretically similar index

in our study for birthweight (see Chacón-Montalván et al., 2018). After present-

ing the MBSIs, in Section 2.5, we compare the SPI and MBSIs using precipitation

data collected between January 2004 - December 2013 in Caapiranga, a road-less

municipality in the Amazonas State. Finally, conclusions and a discussion of the

performance of our method is given in Section 2.6.
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2.2 Standardised Precipitation Index

The SPI is an index that was proposed by Mckee et al. (1993) to improve drought

detection and monitoring capabilities using statistical concepts. This index quan-

tifies how extreme are the observed precipitation values with respect to the mean

seasonal behaviour. The main characteristics of this index are simplicity, spatial

invariance, probabilistic nature and flexibility to work with different time-scales

(Guttman, 1999). This last characteristic allows monitoring of different types

of droughts like agricultural (short time-scale) and hydrological (long time-scale)

(Mckee et al., 1993).

Therefore, to compute the SPI, it is necessary to choose a time-scale over

which to smooth the original precipitation data; this smoothing enables the method

to detect extreme events that occur over a period. The computation continues

by mapping the empirical cumulative distribution function to a standard normal

distribution. The resulting series of values are interpretable as quantiles from a

standard normal distribution. For example, an SPI value of 2 indicates that the

probability of observing an event at least as extreme as this is 0.0228. In the next

sections, we describe the computation of the SPI with further detail (Section 2.2.1),

present the approach to monitor floods and droughts using the SPI (Section 2.2.2),

and discuss some limitations of the SPI (Section 2.2.3).

2.2.1 Definition of the SPI

In this section, we outline the methodology of Mckee et al. (1993) for computing

the SPI for a monthly time series of aggregated precipitation, represented as a

discrete-time stochastic process, {Zt : t = 1, . . . , T}. Throughout this section we

will refer to {Zt} as the ‘monthly precipitation’, but the reader should bear in

mind that we intend {Zt} to be thought of in more general terms because the

methodology can, in theory, be easily applied to other variables such as river

levels, river discharge, etc.
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We begin by defining
{
Xk
t : t = 1, . . . , T

}
as the k-order moving average

process of {Zt} such as

Xk
t =

1

k

k−1∑
i=0

Zt−i, for t = 1, . . . , T, (2.1)

i.e. xkt is the average of the observed precipitation of the last k months, inclusive

of the present month t. In the literature of drought indices, k is referred to as the

‘time-scale’ under study. The ability to define k prior to analysis is considered one

of the appealing characteristics of the SPI (Guttman, 1998).

Rather than employing formal statistical methods for selecting k, the choice

of k is determined by the time-scale under consideration by the researcher. For

example, if one is interested in detecting droughts that occur over long periods of

time (e.g. during a year), then k = 12 might be chosen; similarly for analysing

quarterly droughts k = 3 might be more appropriate. The choice of time-scale can

be related to the particular type of drought impact of interest. Different values of k

shift the focus of an analysis to different types of extreme events; this is important

given that the lack of water in the short, medium or long-term affects different

sections of human society and the surrounding ecosystem in different ways (e.g

agricultural or hydrological effects) (Mckee et al., 1993). In the interest of disaster

prevention, or planning a humanitarian response to a drought, the actions taken

will be different for droughts at different time scales. For instance, events occurring

on a short time-scale may be important to agricultural decisions whereas events on

longer time-scales may be of more relevance for the management of water supplies

(Guttman, 1998, 1999).

To continue with the definition of the SPI, it is beneficial to switch notation

for the subscript t, replacing Zt and Xk
t by respectively Zij and Xk

ij, where i =

1, 2, . . . , n is the year and j = 1, 2, . . . , 12 is the month under study. We next

introduce a statistical model for Xk
ij, i.e. a parametric density function, hj(X

k
ij =

x; · ), where x is an arbitrary value on the domain of Xk
ij. Notice that the notation
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hj( · ; · ) implies that the characteristics of the density function change according

to the month of the year, i.e. it has a seasonal behaviour. In the original article,

Mckee et al. (1993) suggested a gamma density for hj( · ; · ), but current practice

instead makes use of a mixture, a zero-augmented gamma density (ZAGA), which

allows Xk
ij take zero values (Lloyd-Hughes and Saunders, 2002).

Define πj = Pr
(
Xk
ij = 0

)
, the probability that the smoothed precipitation

is zero on the month j, and let the density function of Xk
ij for Xk

ij > 0 be g(Xk
ij =

x;θj), a gamma density with parameters θj = (µj, σj)
ᵀ evaluated at x. Thus the

density function of the moving average process Xk
ij is a zero-augmented gamma

density defined as

hj(X
k
ij = x; πj,θj) = πj1(x=0) + (1− πj)g(X = x;θj)1(x>0), (2.2)

where 1(.) is an indicator function. Hence, the cumulative distribution function of

Xk
ij is

Pr
(
Xk
ij ≤ x

)
= Hj(x; πj,θj) =

 πj x = 0

πj + (1− πj)G(x;θj) x > 0
, (2.3)

where G( · ;θj) denotes the distribution function for a gamma random variable

with parameters θj.

A key point we will revisit in the sequel is that the parameters πj and

θj in Equations 2.2 and 2.3 vary from month to month, but not between years,

so they are able to capture annual seasonal behaviours. The methodology of

Mckee et al. (1993) thus partitions
{
X t
ij

}
into twelve independent series of the

form Xk
[j] = (Xk

1j, X
k
2j, . . . , X

k
nj)

ᵀ for j = 1, . . . , 12. Parameter estimation for

each month, π̂j and θ̂j, is done independently by fitting a realisation of Xk
[j],

i.e. xk[j] = (xk1j, x
k
1j, . . . , x

k
nj), to the zero-augmented gamma density hj( · ; · ) in

Equation 2.2.

Values of the standardized precipitation index (SPI) are then obtained by
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computing the quantiles for a standard normal density with probabilities Hj(·; ·).

As mentioned before, SPI values are interpreted as quantiles of a standard normal

distribution, e.g. values greater than 3 or lower than −3 can be considered extreme

values, while values close to zero are likely to happen.

Provided hj( · ; · ) are independent and fit the data well, the probability

integral transform implies we should expect the collection Π = {Hj(x
k
ij; π̂j, θ̂j)} to

follow a standard uniform density; the back-transform using the inverse cumulative

distribution function of a standard Gaussian is therefore redundant.

Hence, the proposed method of Mckee et al. (1993) to compute the SPI can

be summarized as:

1) Define the time-scale k to work with (e.g. 1 month, 3 months, etc).

2) Compute the k-order moving average series
{
xkij
}

using all the precipitation

time series
{
zkij
}

.

3) Split the moving average series {xkij} into months to obtain xk[1], x
k
[2], . . . ,

xk[12].

4) For each month j, obtain the estimates π̂j and θ̂j by fitting the realization

of Xk
[j], i.e. xk[j], to the density function hj( · ; · ) on Equation 2.2. Maximum

likelihood estimation can be used for this step.

5) Evaluate the cumulative density function H( · ; · ) to the observed values of

the moving average process {Xk
ij} to obtain the collection Π = {Hj(x

k
ij; π̂j, θ̂j)}.

6) Obtain the values for the SPI by computing the quantiles of a standard

normal distribution with probabilities Π = {Hj(x
k
ij; π̂j, θ̂j)}.

2.2.2 Flood and Drought Monitoring

For drought monitoring, Mckee et al. (1993) defined an episode of drought as a

period of time in which the SPI is continuously negative reaching at least one value

lower than or equal to −1. Then, it is said that the beginning of the drought is

the first time that the SPI falls below zero and it finishes when a positive SPI

is reached after observing a value lower than or equal to 1 (Mckee et al., 1993).
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Similarly, a flood can be defined as a period of time where the SPI is continuously

positive reaching at least one value greater or equal to 1. Further characteristics

of these events, such as magnitude and intensity, can be computed to improve

drought monitoring. For example, the magnitude has been defined as the absolute

value of the sum of the SPI during the period of the drought/flood, while the

intensity can be classify as shown in table 2.1 (Mckee et al., 1993; Wang et al.,

2017).

Table 2.1: Intensity of droughts and floods based on the SPI

Category Value

extreme flood SPI ≥ 2
severe flood 1.5 ≤ SPI < 2
moderate flood 1 ≤ SPI < 1.5
near normal −1 < SPI < 1
moderate drought −1.5 < SPI ≤ −1
severe drought −2 < SPI ≤ −1.5
extreme drought SPI ≤ 2

2.2.3 Limitations of the SPI

The standardised precipitation index has the following main limitations (Lim):

(Lim 1) The zero-augmented gamma distribution might not be a good fit for the

precipitation data: Although in most practical applications the zero-

augmented gamma distribution has been observed to be a good choice

for precipitation data, there have been cases where it has been found to

be inadequate (Guttman, 1999; Mishra and Singh, 2010). While it might

be straightforward in theory to extend the standard SPI model to include

other distributional choices for h(·; ·), it would nevertheless be useful if

the methodology itself was more flexible in this regard.

(Lim 2) The time-scale is based on months: Theoretically there is no impediment

to work with a time-scale other than months, but most published studies

do not do this. Additionally, the official SPI user guide recommends

working with a time-scale of at least 4 weeks (1 month) stating that lower
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values will make the SPI behave more erratically (World Metereological

Organization, 2012). It would be desirable to develop an index that is

flexible enough to allow the use of shorter and more arbitrary time-scales.

(Lim 3) It requires a long record of precipitation: In order to compute the SPI, it is

recommended that at least 30 years of precipitation records are available,

and ideally between 50 and 60 years (Piratheeparajah N and Raveendran

S, 2014). The reason for this is the splitting of the complete moving

average series into 12 independent subsets corresponding to each month

of the year. Each of these twelve subsets has length equal to the number of

years n under study, therefore small values of n may not provide reliable

estimates of πj and θj. This problem is related to the fact that subsets

of data are handled independently.

(Lim 4) It ignores the temporal correlation and the cyclic nature of Zt, and hence

in Xk
t , (i.e. we would expect Xk

i,12 to be correlated with Xk
i+1,1): It is

natural to observe a correlated and cyclic behaviour on precipitation data

and the parameters associated with the density function; however, the

SPI does not take this into account. This affects parameter estimation

for k = 1 because an outlier presented in certain month could affect the

estimated value of the parameters for that month only; this bias will

be reduced for bigger values of k. This way the parameters will not

vary smoothly across neighbouring months, which is both an undesirable

property, but also affects the reliability of SPI values. When neglecting

the temporal correlation inherent in time series such as precipitation, the

SPI does not take advantage that time is a continuous variable and that

continuous sharing of information across time should improve parameter

estimation and allow us to work with shorter time series (which is related

to Lim 3).
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2.3 Generalized Additive Models for Location,

Scale and Shape

In this paper we suggest the use of generalized additive models for location,

scale and shape (GAMLSS) to tackle the limitations of the SPI presented in

Section 2.2.3. We briefly introduce this type of model in the present section.

A generalized additive model (GAM) is an extension of an generalized lin-

ear model (GLM) that allows for the inclusion of smooth functions of covariates

in the linear predictor (Hastie and Tibshirani, 1990) and thus they allow complex

relationships between predictors and outcomes to be captured. The smooth func-

tions are defined as linear combinations of basis functions, the most common being

cubic regression splines, P-splines, thin plate regression splines and tensor product

splines (Wood, 2006).

A GAMLSS is an extension of a GAM where, in addition to the location

parameter, the scale and shape parameter are also modeled with respect to co-

variates. More formally, assuming a response variable Yi with probability density

function f(yi|θi1, . . . , θiK), each parameter θik for k = 1, . . . , K is associated with

a linear predictor ηik through a monotonic link function gk such as

gk(θik) = ηik = xᵀ
i0kβ0k + f1k(xi1k;β1k) + · · ·+ fJkk(xiJkk;βJkk), (2.4)

where β0k represents the fixed effects associated to the covariates xi0k for an indi-

vidual i, and fjk represent functions able to capture a wide variety of effects with

corresponding parameters βjk and covariates xijk. Considering hjk(·) a smooth

function, fjk(·) can be used to represent: a smooth effect hjk(x), varying coeffi-

cient x1×hjk(x2), a smooth multiple effect hjk(x1, . . . , xL), a random intercept bg,

a random slope x× bg, a spatial effect hjk(lat, lon), a temporal effect hjk(time),

a space-time effect hjk(lat, long, time), and others such as seasonal effects (Um-

lauf et al., 2018). The degree of smoothness of hjk(·) is controlled by additional
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smoothing parameters λjk (Rigby and Stasinopoulos, 2005).

More generally, for a set of observations y1, . . . , yn, parameter vector θk =

(θ1k, . . . , θnk) and linear predictor vector ηk = (η1k, . . . , ηnk), we can rewrite Equa-

tion 2.4 in matrix form as

gk(θk) = ηk = X0kβ0k + f1k(X1k;β1k) + · · ·+ fJkk(XJkk;βJkk), (2.5)

such as X0k represents the design matrix with fixed effects β0k and Xjk is the de-

sign matrix required to construct the effect fjk with parameters βjk. The structure

of Xjk will depend on the type of effects that are desired to be captured by fjk

as well as the type of covariates involved. The most common type of effects and

the ones included in this study take the form fjk(xijk;βjk) = Xjkβjk. However,

Umlauf et al. (2018) allows fjk(xijk;βjk) to take more complex structures (e.g.

β1 exp(− exp(β2 +Xjkβ3))) in the Bayesian approach of GAMLSS, which is called

Bayesian additive models for location, scale and shape (BAMLSS).

Estimation usually proceeds using a penalised likelihood approach (Rigby

and Stasinopoulos, 2005; Wood, 2006), or a Bayesian approach (Umlauf et al.,

2018). Both approaches are similar when obtaining point estimates due to the

connection between the posterior mode and the penalised maximum likelihood

estimator of βjk for fixed values of the smoothing parameters λjk (Rigby and

Stasinopoulos, 2005; Umlauf et al., 2018). However, although the Bayesian ap-

proach can be more computationally expensive due to the use of Markov chain

Monte Carlo sampling, it can provide more reliable uncertainty estimation.

2.4 A Model-Based Method for Evaluating Ex-

treme Hydro-Climatic Events

Having discussed some of the shortcomings of the SPI, in this section we pro-

pose two alternatives to the SPI using GAMLSS: these will be model-based ap-
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proaches which we refer to as model-based standardised indices (MBSIs: MBSI-1

in Section 2.4.1 and MBSI-2 in Section 2.4.2); we argue that our indices retain

the desirable characteristics of the SPI, but improve the methodology. We discuss

some limitations of using GAMLSS in Section 2.4.3. Our model-based standard-

ised indices are more stable, flexible and satisfying (from a modelling perspective)

than the SPI as explained in Section 2.6.

Although there have been attempts to improve the methodology of the SPI

(e.g. Erhardt and Czado (2017); World Meteorological Organization (WMO) and

Global Water Partnership (GWP) (2016)) our method differs because we use a

model-based approach, which accounts for the characteristics required to com-

pute a standardized index. In contrast, Erhardt and Czado (2017) proposed a

group of steps to compute the SPI including; elimination of seasonality (including

variable transformation to reduce skewness, computation of monthly sample and

variance mean), elimination of temporal dependence and transformation to the

standard normal distribution. The advantage of a model-based approach is that

it provides a single framework that naturally allows model checking, model se-

lection, uncertainty computation, and joint incorporation of processes that might

influence the index (e.g. seasonality, trends, covariates effects, spatial effects and

spatio-temporal effects). Besides, a model-based approach could be used for other

interests like interpolation, prediction, or integration with other models when the

standardised precipitation values are not the main interest of the study but are

required (e.g. to evaluate the effects of extreme hydro-climatic events on newborns

health). Specifically, our model-based approach allows us to not only compute the

standardized precipitation index appropriately but also enables us to work with

short time series, check assumptions, work at different scales (e.g. weeks), work

with missing values and obtain further relevant information about the underlying

process under study (i.e. precipitation).
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2.4.1 Model-based Standardized Index 1 (MBSI-1)

In Section 2.2.1, we saw that the SPI is defined for the moving average process{
Xk
ij

}
of a discrete stochastic process {Zij}, where i denoted the year and j the

month. The MBSI-1 instead uses the initial notation of Equation 2.1, i.e. we work

directly with {Zt : t = 1, . . . , T} and
{
Xk
t : t = 1, . . . , T

}
as the precipitation and

moving average process respectively. Note that we are assuming that t and k are

on the same scale, which can be an arbitrary one such as daily, weekly, monthly,

etc.

For the MBSI-1, we again define the density function of each element of the

stochastic process
{
Xk
t

}
as a mixture such as

h(Xk
t = x; πt,θt) = πt1(x=0) + (1− πt)g(Xk

t = x;θt)1(x>0), (2.6)

where x is an arbitrary value on the domain of Xk
t , while πt and θt are the param-

eters associated with the mixture density at time t.

The density function g( · ; · ) can be any distribution defined on the positive

real numbers that is adequate for characterizing the moving average precipitation.

In this paper, in order to highlight the advantages of our approach with respect to

the SPI for the same distribution, we complete the definition of h( · ; · ) by using

a gamma density for g( · ;θt) with parameters θt = (µt, σt)
ᵀ, defined as follows

g(xkt ;µt, σt) =
(σt/µt)

σt

Γ(σt)
xσt−1 exp

(
−σt
µt
x

)
. (2.7)

However, note that our approach is not limited to this distribution, and a different

choice of g(·;θt) may be more suitable in other situations. One consequence of

assuming a gamma density is that the mean and variance of [Xk
t |Xk

t > 0] are µt

and µ2
t/σt respectively.

As mentioned earlier, the SPI tries to quantify the extremity of levels of

precipitation by comparing it with the usual seasonal behaviour. For this reason,



26

our approach captures the seasonal behaviour in all the parameters by introducing

models for πt, µt and σt, as in Equation 2.4, using linear predictors η1t, η2t and η3t

such as

log

(
πt

1− πt

)
= η1t = X1α1 + f1(t;β1),

log(µt) = η2t = X2α2 + f2(t;β2),

log(σt) = η3t = X3α3 + f3(t;β3),

(2.8)

where X1, X2 and X3 are (optional) design matrices that include information for

predicting the process with linear effects α1, α2 and α3; and β1, β2 and β3 are the

parameters required to define the flexible non-linear functions f1( · ; · ), f2( · ; · )

and f3( · ; · ) that capture the seasonal effects on πt, µt and σt respectively. A

common choice for these functions in the generalised additive modelling literature

is to represent them using cyclic cubic splines because of the nice properties of

cubic splines like being the smoothest interpolators (under additional restrictions),

able to approximate closely any underlying smooth function, easy to construct and

not expensive to compute (Wood, 2006). An alternative to cyclic cubic splines is

to use harmonic terms to represent seasonal effects. However, our experience of

harmonic models in this context is that they tend to overfit the data because,

in part, the fitting method does not include penalties for the harmonic terms,

and using stepwise selection to reduce the number of harmonic terms can be a

computationally slow process.

Our model, defined with Equations 2.6, 2.7 and 2.8, is a generalized additive

model for location, scale and shape (GAMLSS), as explained in Section 2.3, using

a zero-augmented gamma likelihood (ZAGA). The computational cost to evaluate

the (penalized) likelihood function is O(np2), where p is the number of parameters

required to define the smooth function fk( · ; · ); inference can be achieved using

standard methods: backfitting or MCMC (Rigby and Stasinopoulos, 2005; Umlauf

et al., 2018).

Another option for modelling serial dependence in the parameter vector θt
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and πt would be to assume a latent, possibly multivariate, Gaussian process or a

moving average process for f1( · ; · ), f2( · ; · ) and f3( · ; · ). We have not explored

these options, but they fit into the class of latent Gaussian models, for which there

are a range of model fitting options, including INLA, MCMC and particle filtering,

if not off-the-shelf software solutions to implement them. If interested in exploring

the use of INLA, note that it should be adequately investigated for the particular

structure of the model (e.g. see Taylor and Diggle, 2014; Grilli et al., 2015).

Once we have estimated the parameters in our models, we can predict πt, µt

and σt for any time t and proceed with the computation of the MBSI-1 using steps

5 and 6 of Section 2.2.1. Hence, the computation of standardised precipitation

values using MBSI-1 can be summarized with the following steps:

1) Define the time-scale k to work with (e.g. 1 week, 4 weeks, 8 weeks, etc).

2) Compute the k-order moving average series {xkt } using all the precipitation

time series {zkt }.

3) Obtain the parameters estimates β̂1, β̂2, β̂3, α̂1, α̂2 and α̂3 by fitting the

moving average series {xkt } to the GAMLSS model with zero-augmented

gamma distribution (Equations 2.6 and 2.7) and linear predictors defined in

Equation 2.8.

4) With the parameters estimated in the previous step (β̂1, β̂2, β̂3, α̂1, α̂2 and

α̂3), obtain the estimates π̂t and θ̂t, using Equation 2.8, for t = 1, . . . , T .

5) Evaluate the cumulative density function H(·; ·) of the observed values of the

moving average process {Xk
t } to obtain the collection Π = {H(xkt ; π̂t, θ̂t)}.

6) Obtain the values for the SPI by computing the quantiles of a standard

normal distribution with probabilities Π.

2.4.2 Model-based Standardized Index 2 (MBSI-2)

One disadvantage of the MBSI-1 is that it requires a separate model for the moving

average process {Xk
t } for every scale-time of interest k. As an alternative to the

MBSI-1, we propose a second approach under which the model fitting is done only
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once, for k = 1. We will refer to this approach as the model-based standardised

index 2 (MBSI-2).

For this second approach, instead of imposing a model on the elements of

the moving average process
{
Xk
t

}
, we propose a model for the original stochas-

tic process {Zt} that represents the precipitation. Specifically, we assume that

Zt has a zero-augmented gamma distribution, which is defined by Equations 2.6

and 2.7, and the parameters are modelled considering a seasonal behaviour as in

Equation 2.8. Unfortunately, the implicit distribution for the moving average vari-

ables Xk
t =

∑
i=0 Zt−i/n, for each t ≥ k, cannot be found analytically, but we can

use Monte Carlo methods to obtain the cumulative distribution function H( · ; · )

evaluated on the observed values of the moving average process
{
Xk
t

}
, obtaining

Π = {H(xkt ; π̂t, θ̂t)}. Finally, we can compute the quantiles of a standard normal

distribution associated to these probabilities Π.

Hence, the computation of the MBSI-2 can be summarized as follows:

1) Obtain the parameters estimates β̂1, β̂2, β̂3, α̂1, α̂2 and α̂3 by fitting the

original precipitation series {zkt } to the GAMLSS model with zero-augmented

gamma distribution (Equations 2.6 and 2.7) and linear predictors defined in

Equation 2.8.

2) With the parameters estimated in the previous step (β̂1, β̂2, β̂3, α̂1, α̂2 and

α̂3), obtain the estimates π̂t and θ̂t, using Equation 2.8, for t = 1, . . . , T .

3) Obtain m realizations {z(l)
t }, where l = 1, . . . ,m, of the precipitation stochas-

tic process {Zt} using π̂t and θ̂t for a zero-augmented gamma distribution

(Equations 2.6 and 2.7).

4) Define the time-scale k to work with (e.g. 1 week, 4 weeks, 8 weeks, etc).

5) Compute the k-order moving average series {xkt } of the precipitation time

series {zt} and the k-order moving average series {xk(l)t } of the m samples

{z(l)
t }.

6) Evaluate the cumulative density function of the observed values of the moving

average process {Xk
t } to obtain the collection Π = {H(xkt ; π̂t, θ̂t)} considering
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that

H(Xk
t = xkt ; π̂t, θ̂t) = Pr

(
Xk
t ≤ xkt

)
=

m∑
l=1

1
{
xk

(l)

t < xkt

}
m

.

7) Obtain the values for the SPI by computing the quantiles of a standard

normal distribution with probabilities Π.

Note that this index might be more sensitive to the choice of the density

function g( · ; · ). This could happen because the initial error incurred by an inad-

equate density function for Zt = X
{k=1}
t can be compounded when deducing the

density function of the moving average Xk
t . However, under an adequate selection

of g( · ; · ), it is expected that an appropriate density function will be deduced for

Xk
t and therefore adequate standardised precipitation values predicted.

2.4.3 Limitations of GAMLSS

Although generalized additive models are attractive, they have some limitations

that are worth exploring. Firstly, there can be a tendency to overfit the data, for

example, it is known that the generalized cross-validation criterion used to estimate

the smoothing parameters λjk can lead to overfitting; however, this is less likely

with a large number of observations and when the values across covariates are

very well distributed (Wood, 2006). This problem can worsen when modelling in

addition the scale and shape parameters because the model is much more flexible

and appropriate precaution should be exercised on small sample sizes.

Another limitation is that prediction outside the range of values observed on

the covariates might not be reliable because usually few observations with extreme

values in the covariates are observed. Given that the model is very flexible, it will

try to adapt to these values. In this way, prediction at the tails of the covariates

may vary significantly from one sample to another, indicating that the model

has high variance in the tails of covariates. Nevertheless, extrapolation is also

problematic in other types of models.
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Finally, the interpretability of GAM models is not as easy for GLM models

and it is required to visualize the effects in order to understand and interpret

them. Despite this, we view the visualization process as actually provide useful

information on the effects at different levels. Also, when using credible intervals,

insight into the significance of each term is obtained.

In conclusion, GAM and GAMLSS are attractive models, but they should

be used with precaution given that their inherent flexibility.

2.5 Comparison Between the SPI and MBSI

In order to illustrate differences between the SPI, MBSI-1 and MBSI-2, we compare

parameter estimation, model checking and the resulting standardized precipitation

values for different time-scales using data collected between January 2004 - De-

cember 2013 (522 weeks) in Caapiranga, a road-less municipality in Amazonas

State.

We use our R package mbsi, created to analyse and visualise extreme events,

available from Github, https://github.com/ErickChacon/mbsi. It contains the

implementation of the SPI, MBSI-1 and MBSI-2 indices used in this section.

2.5.1 Parameter Estimation

In this section we compare the estimated mean and coverage interval of the moving

average rainfall Xk
t obtained with the estimated parameters using both the SPI

and the MBSI methodologies (Fig. 2.1). Given the density function defined in

Equation (2.6) with Gamma density g(.;θt), the 95% coverage interval for a time

t is obtained by computing the 0.025 and 0.975 quantiles of the estimated density

function h(xkij; π̂j, θ̂j).

We can see in Figure 2.1 that at a time-scale of 1 week, the mean and cov-

erage interval change quickly for the classical SPI, whereas they change smoothly

for the MBSIs. This is an indication that the SPI overfitted the observed precip-

https://github.com/ErickChacon/mbsi
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Figure 2.1: Precipitation moving average and 95% coverage interval obtained by the
SPI, MBSI-1 and MBSI-2 methodologies for different time-scales (1, 4, 8 and 12 weeks)

itation data. Another characteristic of the SPI at this shorter time-scale is that

parameter estimation is strongly affected by extreme short-term values. The cov-

erage interval is highly influenced by these extreme values leading sometimes to

much wider coverage intervals (e.g. due to some observations around 2005). This

can reduce the ability of the SPI to detect extreme events, e.g. it can be seen

in Figure 2.1 that there are more values lying outside the coverage intervals for

the MBSIs. Both characteristics happen because parameters in the SPI are inde-

pendent among months, while the MBSIs explicitly model this dependence using

smooth functions.

As the time-scale increases, the difference between the estimated mean and

coverage intervals methods decrease, but the coverage intervals are still wider and

looser for the SPI.
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2.5.2 Model Checking

Provided the assumed density function h( · ; · ) fits the data well and independence,

the probability integral transform implies we should expect the collection of the

empirical cumulative density values, Π = {H(xkij; π̂j, θ̂j)}, to follow a standard

uniform density. This should be expected at least for k = 1 because independence

can not be ensured for k >> 1. If this does not hold, then the interpretation of

the distribution of the standardized values as a standard normal distribution is

misleading since the back-transformed data will not be normally distributed. By

inspecting Figure 2.2, we can see that, for k = 1 week, the uniformly distributed

assumption seems adequate for the three indices, but notice that there are higher

deviations for the classical SPI index. It also seems adequate for k = 4, 8 weeks,

while for k = 12 weeks, the probability integral transform is not hold due to the

strong correlation on the moving average process. In general, there is no indication

of drastic inadequacies for any of the methodologies.

If the uniformity assumption holds, then under the probability integral

transform theorem, the obtained standardized precipitation values should follow

a standard normal distribution, which can be checked by comparing the empirical

quantiles with the theoretical quantiles of a standard normal distribution as shown

in Figure 2.3. Although, we can see in Figure 2.3 that there are some small devia-

tions from the identity line for the MBSI-1 and MBSI-2 at small scales, the points

lie close to the identity line for the three methodologies and the four time-scales.

Something to notice is that the SPI methodology tends to limit the standardized

values between 2 and −2 for this data of 522 observations, while we obtain more

extreme standardized values with the MBSIs, something highlighted even more for

the MBSI-2. This is probably related with the problem of overfitting discussed in

Section 2.5.1; given that the SPI tends to overfit the data, it is less likely to obtain

extreme values with respect to the estimated parameters. The opposite occurs

with the MBSIs indices.
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Figure 2.2: Distribution of the empirical cumulative density function
Π = {H(xkij ; π̂j , θ̂j)} for the SPI, MBSI-1 and MBSI-2 methodologies for different

time-scales (1, 4, 8 and 12 weeks). P-values are provided to test uniformity using the
two-sample Kolmogorov-Smirnov test. P-values with italic fonts correspond to

significant tests with 95% confidence.

2.5.3 Standardized Precipitation Values

The general trends of the standardized precipitation values obtained by the three

methodologies are similar; however, the actual standardized values corresponding

to the identified events differ (Figure 2.4). For example, at the time scale of 1 week,

most of the identified droughts have, clearly, greater absolute standardized values

when working with the MBSIs. We can also see that the number of identified

events varies between the methods. For instance, more droughts are identified

with the MBSIs when selecting a threshold of ±1.96 for a time-scale of 8 weeks.

Another difference among the methods is that the MBSI-2 tends to intensify more

the extreme events. For example, it can be seen that, for time-scales of 8 and

12 weeks, the levels of the standardized precipitation for 2005 and 2007 are more

extreme for the MBSI-2 than the SPI and MBSI-1. This could happen because
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Figure 2.3: Comparison between the empirical quantiles (standardized precipitation
values) and theoretical quantiles of a standard normal distribution for the SPI, MBSI-1
and MBSI-2 methodologies for different time-scales (1, 4, 8 and 12 weeks). The points
should be close to the identity line (straight line) to hold the assumption of normality.

the MBSI-2 does not overfit the moving average process and is more sensitive to

the choice of distribution g( · ; · ); both characteristics can lead to observe more

extreme values under this approach.

Amazonas State experienced a well-documented major flood in 2009 and

large-scale severe drought in 2010 (Chen et al., 2010; Lewis et al., 2011). The two

events are highlighted at 8 and 12 weeks time-scales, but they are more emphasized

when using the MBSI-1. For this reason and because it holds properties quite

similar to SPI improving the methodology, we preferred to use the MBSI-1 for

further studies on cities of the Brazilian Amazonia. However, we encourage the

development of indices like the MBSI-2 where the model is imposed on the original

process under study and analyse another process of interest (such as the moving

average process) that depends on the original one, using theoretical properties

derived from the initial model. This avoids the need to re-fit the model at different
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Figure 2.4: Standardized precipitation values and identification of extreme
hydroclimatic events at different time-scales using the SPI and MBSI: the threshold to

be considered extreme event was ±1.96

time-scales of potential interest.

2.6 Discussion and Conclusions

We compared the SPI with two proposed approaches MBSI-1 and MBSI-2 to obtain

standardized precipitation values. It has been seen that the three approaches are

adequate in terms of model assumptions; however, we found some differences that

leaded as to select the MBSI-1 to be used in our studies conducted in the Brazilian

Amazonia. Our results clearly demonstrate that the methodology of the SPI can

be adapted and placed in a modelling framework that can resolve some of the

disadvantages of this index.

• Because we use the GAMLSS framework, several distributions can be eas-

ily applied to compute standardized precipitation values and the diagnostic

of the GAMLSS framework can be used to test model adequacy. Alterna-
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tively, it is suggested to evaluate the adequacy of the method by checking

the property of the probability integral transform.

• The definition of time-scale is generalised in the MBSI-1 and so with this

model, it is not necessary to work on the monthly scale. In addition, the

observed series of precipitation data (or any other quantity of interest e.g.

river levels) could have missing values or it might be observed at irregular

intervals. Under the presence of missing values, the MBSIs estimate the

parameters with the neighbours of the missing values, while the classical SPI

does not take this into account for k = 1; for bigger k the problem is reduced.

On the other hand, when data is obtained at irregular intervals, the SPI can

not be computed given that it requires a collection of observations through

the years that correspond to the same seasonal period (e.g. month). This

is not a problem for the MBSIs given that they do not require that; the

observations could correspond to any time to estimate the parameters and

the moving average process could be computed for overlapping intervals of

time.

• By borrowing strength from temporal autocorrelation and seasonal patterns,

the MBSI-1 can compute standardized precipitation values using a shorter

length of records, i.e. less then 30 years, while the SPI usually requires a

longer series or a wider time-scale to avoid overfitting.

• The MBSI-1 is a temporally continuous model for precipitation and as such,

parameters in the model change more naturally (i.e. smoothly) over time. In

addition, the MBSI-1 could be extended to evaluate extreme events, assume

trends over the time, or to incorporate spatial effects.
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J. L. (2014). Was the 2009 flood the most hazardous or the largest ever recorded
in the Amazon? Geomorphology, 215:99–105.

Grilli, L., Metelli, S., and Rampichini, C. (2015). Bayesian estimation with inte-
grated nested Laplace approximation for binary logit mixed models. Journal of
Statistical Computation and Simulation, 85(13):2718–2726.

Guerreiro, M. J., Lajinha, T., and Abreu, I. (2008). Flood Analysis with the
Standardized Precipitation Index (SPI). Revista da Faculdade de Ciênca e Tec-
nologia. Porto, 4:8–14.

Guttman, N. B. (1998). Comparing the Palmer drought index and the standardized
precipitation index. Journal Of The American Water Resources Association,
34(1):113–121.

Guttman, N. B. (1999). Accepting the Standardized Precipitation Index: a Cal-
culation Algorithm1. JAWRA Journal of the American Water Resources Asso-
ciation, 35(2):311–322.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models, volume 1. CRC
Press.

Hayes, M., Svoboda, M., Wall, N., and Widhalm, M. (2011). The Lincoln Dec-
laration on Drought Indices: Universal Meteorological Drought Index Recom-
mended. Bulletin of the American Meteorological Society, 92(4):485–488.



38

Hayes, M. J., Svoboda, M. D., Wilhite, D. A., and Vanyarkho, O. V. (1999). Mon-
itoring the 1996 Drought Using the Standardized Precipitation Index. Bulletin
of the American Meteorological Society, 80(3):429–438.

Houghton, J. T., Y, D., DJ, G., M, N., PJ, v. d. L., X, D., K, M., and C, J.
(2001). Climate Change 2001: The Scientific Basis. Climate Change 2001: The
Scientific Basis, 57(8):881.

Keoduangsine, S. and Goodwin, R. (2012). An Appropriate Flood Warning System
in the Context of Developing Countries. International Journal of Innovation,
Management and Technology, 3(3):213.

Koriche, S. A. and Rientjes, T. H. M. (2016). Application of satellite products
and hydrological modelling for flood early warning. Physics and Chemistry of
the Earth, 93:12–23.
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Chapter 3
In Chapter 2 we proposed a model-based standardised index (MBSI) that over-

comes some limitations of the standardised precipitation index (SPI) to identify

and quantity extreme hydro-climatic events. In the present chapter, we now use

the MBSI to propose three bivariate indices to measure exposure to extreme hydro-

climatic events during pregnancy and, consequently, evaluate the effects of floods

and droughts on newborn health measured through birthweight.

Evaluating the Effects of Extreme
Hydro-climatic Events on Birth-weight
in Amazonia
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Abstract

Climate change poses a major risk to vulnerable populations although ma-

jor uncertainties remain, such as the health impacts of extreme droughts

and floods. Newborn weight is a well-recognized indicator of population

health and low birth-weight (< 2500g) has been linked to life-long dis-

advantage including negative effects on educational attainment, income

in adulthood and health. Numerous studies have investigated the social
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and environmental determinants of low birth-weight, yet the potential im-

pacts of climatic change on birth-weight are poorly understood. In this

paper we evaluate the effects of exposure to floods and droughts prior

to and during pregnancy on birth-weight in 43 road-less municipalities in

Amazonas State, Brazil. The dataset of 191,762 birth registrations from

2006 to 2014, was obtained from the Brazilian Information System of

Alive Newborns (Sistema de Informação sobre Nascidos Vivos - SINASC).

Our results demonstrate that (i) birth-weight varies according to seasonal

changes in river levels; (ii) there was a study-region wide negative effect

in 2009, coinciding with a major pan-Amazonian flood event, and a global

negative trend on birth-weight; (iii) Birth-weight is lower among vulner-

able mothers - those with little or no formal education, limited antenatal

care and indigenous Amerindian ethnicity; and (iv) Exposure to extreme

hydro-climatic events tends to have a negative impact on birth-weight. We

posit that links to birth-weight are mediated by maternal stress, health-

care access or inadequate nutritional intake during pregnancy. Overall,

this study provides clear evidence that extreme hydro-climatic events -

particularly floods - pose a major public health risk by exacerbating ex-

isting vulnerabilities in already marginalized areas of Amazonia.

Keywords: Birth-weight, Brazilian Amazonia, Climate Change, Droughts,

Floods, GAMLSS, MBSI, Vulnerable Groups, Spatio-Temporal Modelling.

3.1 Introduction

Vulnerability to natural hazards is, to a significant extent, socially-determined and

the greatest burden of climate change will be borne by the most disadvantaged

(McMichael et al., 2006; Campbell-lendrum et al., 2015). In particular, health

risks vary depending on the level of development and pre-existing vulnerabilities.

Those most at-risk from extreme events are those with poor health and nutritional
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status and with low adaptive capacity to prevent or cope with emerging hazards

(Rosenzweig et al., 2001). Consequently, climate change acts as a threat multi-

plier and can exacerbate existing social and spatial inequalities in development

(McGuigan et al., 2002; Parry et al., 2017).

Amazonia, for instance, has a population of over 25 million people in the

Brazilian part alone yet research on the social and health impacts of climate change

in this region is woefully scarce (Brond́ızio et al., 2016). Investigating how extreme

hydro-climatic events such as droughts and floods affect human health is pertinent

because under global climatic change these events are predicted to increase in

intensity, frequency and duration (Porporato et al., 2006). Smith et al. (2014)

found that drought events impacted health in the Amazon, as detected by an

increase in hospitalization rates for respiratory infections, linked to forest fires and

air pollution. Perhaps the gravest potential health risks of climate change are those

that affect newborns and infants and may interact with other social inequities to

strongly influence health and well-being throughout an individuals life-course.

Birth-weight is an important predictor of neonatal mortality and post-

neonatal mortality and morbidity (McCormick, 1985; McIntire et al., 1999). As

well as infant and early childhood outcomes, birth-weight has also been shown

to affect longer term outcomes in education, income and morbidity, thus it is an

important indicator for population health and development (Makhija et al., 1989;

Risnes et al., 2011). Birth-weight is a measure of well-being both for the present

generation and also for future generations: if a mother had a low weight at birth

then her child is more likely to have a low birth-weight (Currie and Moretti, 2007;

Aizer and Currie, 2014). A broad suite of social and environmental factors can

affect one or both of the mechanisms by which birth-weight is determined: the

intrauterine growth rate or gestational duration. The most important of these fac-

tors include the mother’s genetic make-up; her body’s ability to sustain a ‘normal’

pregnancy; her health status (including stress levels); and exposure to toxins.

Genetics can, to some extent, determine the limit of foetal growth: for
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instance, seven loci have been identified whose combined effect accounts for a

proportion of birth-weight variability similar to that accounted for by maternal

smoking (Horikoshi et al., 2012). During pregnancy the foetus requires energy

and this energy is taken from nutritional stores in the mother (Kramer, 1987).

For this reason, the mother’s body would ideally be able to store and provide

sufficient nutrients to maintain proper foetal development. A body that has not

finished growing (i.e. adolescent mothers), in which there are competing demands

on nutritional resources between the developing mother and baby, or a body that is

under-nourished pre-pregnancy (i.e. an unusually low maternal body mass index)

cannot support pregnancy as well as a healthy adult women. Hence, there can be

a negative impact on birth-weight among infants born to these mothers (Kramer,

1987).

Maternal morbidity affects foetal development because it can lead to a re-

duction of energy available and lower uterine blood flow and/or levels of amniotic

fluid; some diseases like malaria directly affect the placenta. Maternal stress af-

fects foetal development because it increases levels of Corticotrophin-Releasing

Hormone (CRH) in the mother. This hormone regulates the pregnancy duration

and foetal maturation (Ludwig and Currie, 2010; Menendez et al., 2000; Kramer,

1987; Camacho, 2008). Finally, toxic exposure due to cigarette smoking, tobacco

chewing, alcohol/drug consumption or pollution can also negatively push-down

birth-weight (Brooke et al., 1989; Butler et al., 1972; Kramer, 1987; Little, 1977;

Dadvand et al., 2013).

There are a range of potential pathways through which extreme climatic

events may lead to lower birth-weight and therefore, inter-generational disadvan-

tage. These include barriers of maternal access to food of sufficient quantity, safety

or nutritional value (Stephenson, 2002); access to health-care services, especially

antenatal care. There are also potential effects of exposure to disease, weather

extremes and their consequences (e.g. displacement, famine, disease) through

impacts on maternal nutrition, morbidity and stress. As mediators of maternal
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health, we suggest that, by using an appropriate modelling strategy, insights can

be gained into the effect of environmental and socio-economic variables on birth-

weight (Aizer and Currie, 2014; Currie and Moretti, 2007; Dadvand et al., 2013).

As we have outlined, most existing research on birth-weight determinants has fo-

cused on socio-economic disadvantage (Blumenshine et al., 2010; Foster et al.,

2000; Danielzik et al., 2004). Research has begun to elucidate how environmental

change might affect the odds of low birth-weight by changing levels of pollution,

precipitation and temperature (Grace et al., 2015; Stieb et al., 2012; Dadvand

et al., 2013).

Nevertheless, the effects of extreme climatic events and other natural haz-

ards on newborn health are not well understood. In particular, floods and droughts,

which constitute extreme hydro-climatic events, produce a complex web of direct

and indirect environmental, economic, health, and social consequences (Blanka

et al., 2017). However, few studies were done to understand their effects on birth-

weight in Amazonia.

In this paper we aim to (i) evaluate the impact of floods and droughts on

birth-weight in road-less municipalities in Amazonas State, Brazil, and (ii) iden-

tify the most vulnerable groups of mothers in these populations. Road-less areas

of Amazonia are particularly vulnerable (characterized by high sensitivity and

low adaptive capacity) to extreme climatic events, linked to higher food prices,

reduced institutional presence and effectiveness, and governance failures (Parry

et al., 2017). Moreover, many road-less cities in Amazonas State are also geo-

graphically isolated from major urban centres, in some cases by several thousand

kilometres of boat travel (Parry et al., 2017). We do not control for gestational

age in our analysis because we hypothesized that extreme hydro-climatic events

could affect birth-weight through either intrauterine growth rate and/or gestational

duration.

Achieving our study aims was non-trivial, for three main reasons. First,

it is surprisingly not straightforward to identify and quantify the size of extreme
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events and our research in this area has generated a new and generally applicable

index for this purpose (see Chacón-Montalván et al., 2018).

Once we have identified the occurrence of extreme events, we must for-

mulate a measure of the exposure to extreme events during pregnancy for both

flooding and droughts. This measure must take into consideration the duration of

pregnancy so as not to confound the results due to the difference of pregnancy du-

ration, which obviously has a direct effect on birth-weight. We propose bivariate

indices to measure the exposure to extreme events during pregnancy and lastly

develop Bayesian additive models for location, scale and shape (BAMLSS), which

is the Bayesian implementation of GAMLSS, for modelling the impact of floods

and droughts. The main reason for using this type of model is because it allows

us to include not only non-linear, random, spatial and temporal effect but also

non-linear interactions and additionally, the scale and shape parameters can be

modelled if required (Rigby and Stasinopoulos, 2005; Umlauf et al., 2018).

This paper is structured as follows. The description of the data being used

and the region of analysis are shown in Section 3.2. Our approach to modelling

birth-weight and evaluation of the impact of extreme hydro-climatic events is pre-

sented in Section 3.3. Finally, the article concludes in Section 3.4 with a discussion

on the effect of seasonality on birth-weight, the effects of extreme hydro-climatic

events, the characteristics of vulnerable groups and the long trend of birth-weight.

3.2 Data Description

3.2.1 Area and Time Period of Study

Our study area covers 43 road-less municipalities in Amazonas State (Figure 3.1),

chosen because extreme hydro-climatic events in these places are more likely to

cause harm than compared to road-connected municipalities, where social vulnera-

bility is lower (Parry et al., 2017). These municipalities were classified as road-less

based on the connectivity analysis made by Parry et al. (2017). The period under
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study was January 2006 to December 2013.

Figure 3.1: Map showing Amazonas State, Brazil, illustrating the municipalities
(analagous to US Counties) included in this study. Black lines represent main roads of

Amazonas State.

3.2.2 Sources of Information

As mentioned in Section 3.1, myriad factors contribute directly or indirectly to

variation in birth-weight. In order to evaluate the impact of extreme hydro-climatic

events, we used data related to environmental, social, demographic and genetic

covariates. These datasets were obtained from secondary data sources and were

measured at differing spatial scales, as explained below.

3.2.2.1 Information System of Alive Newborns (SINASC)

The Sistema de Informação sobre Nascidos Vivos (SINASC) is a Brazilian health

information system created in 1994 to register live births. This database contains

rich information relating to the alive newborn, the birth circumstances and the

mother’s social and demographic background. The number of registrations in
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the municipalities under study during the study period was 191,762. Specifically,

we used the following variables: sex of infant, marital status of mother; mother’s

years of education; ethnicity of new-born; number of antenatal consultations before

birth, mother’s age and municipality of mother’s residence (Table 3.1).

Table 3.1: Meta-data of variables used to predict birth-weight, taken from
registrations in Brazil’s Information System of Alive newborns (SINAS).

Variable Possible Values

Newborn’s sex Male or female.
Type of birth place Hospital, home, another health centre and

other.
Mother’s marital status
when she gave birth.

Single, married, widowed and divorced.

Mother’s education: number
of years the mother spent in
formal education.

Categorized: 0, 1-3, 4-7, 8-11 and greater
than 12 years.

Newborn’s ethnicity. Non-indigenous and indigenous Amerindian.
Antenatal consultations:
Number of antenatal con-
sultations attended during
pregnancy.

Categorized: 0, 1-3, 4-6, greater than 7 times
and missing values.

Mother’s age Discrete positive value in years.
Mother’s residence munici-
pality

Any of the 43 municipalities under study.

The following variables contained missing values; birth-weight (2.07%),

mother’s marital status (21.79%), type of birth place (0.006%), newborn ethnicity

(0.433%), antenatal consultations (1.133%) and mothers’age (0.0005%). Obser-

vations where birth-weight had missing values were removed and one observation

where mother’s age was a missing value was also removed. With respect to the

categorical variables, in order to handle the high percentage of missing covariate

data, we introduced additional “missing” levels into each of the affected variables.

The Sistema de Informação sobre Nascidos Vivos (SINASC) is likely to

present some biases in recording birth-weight. In particular, implausibly large

frequencies of specific values, mainly multiples of 500 grams, of birth-weight have

been observed in this dataset. This problem is known as heaping and can happen

when the mother reports an approximated value because the newborn was not
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weighed at birth, or because the weight was not recorded with diligence (Blanc and

Wardlaw, 2005). Additionally, it is known that the probability of being weighed

at birth is higher in urban areas where mothers have, on average, higher education

and prenatal care (Blanc and Wardlaw, 2005). Hence, care must be taken in

interpreting the results based on the analysis of this data.

3.2.2.2 Municipality-level Data

In order to account for differences in birth-weight between municipalities, we in-

cluded in our analysis municipality-level predictors, including: (i) socio-economic

variables from the 2010 National Brazilian Census, administrated by Instituto

Brasileiro de Geografia e Estat́ıstica (2010), including proportion of rural peo-

ple and proportion of population with internal toilet; (ii) an index of malaria

exposure (see below for definition) computed from DATASUS (http://datasus.

saude.gov.br/); and (iii) a weighted index of geographical remoteness, that takes

values from 0 (least remote) to 1 (most remote), computed from the shortest travel

distances to nearest cities in different levels within a hierarchical urban network

(Parry et al., 2017). Regarding the index of malaria exposure, this was computed

as the mean weekly rate of hospitalisations per capita due to malaria over the ap-

proximate duration of the pregnancy, computed as date of birth minus gestational

age (taken as the midpoint of the gestational age factor levels). Malaria hospi-

talisations from DATASUS appeared under ICD10 codes B50, B500, B508, B509,

B51, B510, B518, B519, B52, B520, B528, B529, B53, B531, B538 and B54. This

group of municipal-scale variables can be thought of as measuring the urbanity

and level of development of the municipalities under study.

3.2.2.3 Rainfall measurement

We obtained a measure of precipitation across our study region from the Tropi-

cal Rainfall Measuring Mission (TRMM) project, a joint collaboration between the

National Aeronautics and Space Administration (NASA) and the Japan Aerospace

http://datasus.saude.gov.br/
http://datasus.saude.gov.br/
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Exploration Agency (JAXA). TRMM produces rainfall products for climate re-

search; these include measures of land surface wetness, derived from satellite im-

ages, for an area including Amazonas State. The data from 2004 to 2014 was

recorded every 3 hours at a 0.25◦ × 0.25◦ spatial resolution; we averaged these

measures by week and then for each municipality in order to obtain a measure of

weekly-rainfall-per-municipality.

3.2.2.4 River-level measurement

River levels were obtained from the Hidroweb platform from Brazil’s National

Water Agency (Agência Nacional de Águas [ANA]). Historical river levels were

extracted for monitoring stations in and around Amazonas state over the period

2004 to 2014. In order to get a measure of extremeness relative to ’normal’ sea-

sonal behaviour, we fitted harmonic regression models to the river levels from each

station that had been active for more than 10 years. For each station, we identi-

fied the annual period of the year at which rivers reached their highest levels on

average. The harmonic terms in our model were computed in relation to this time:

weeks numbered 0 and 53 (cyclically) denoting peak wetness and values around

26 are peak dryness. The number of harmonic terms was chosen using forward

selection. We then standardised the residuals from these models and interpolated

them spatially onto a raster image using ordinary kriging. Lastly, we averaged the

resulting pixel-level data in order to obtain an average for each municipality and

each week under study. We will refer to this measure as the seasonal river level

index. Note that because the Amazon is so vast, the calendar week at which peak

wetness is attained varies greatly; these differences are particularly pronounced

between north and south of our study area.

3.3 Modelling Birth-weight

In this section, we will use a novel model-based standardised index (MBSI), pro-

posed in Chacón-Montalván et al. (2018), along with socio-economic variables to
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model birth-weight in Amazonia (Figure 3.1). Chacón-Montalván et al. (2018)

proposed two approaches to identify extreme hydro-climatic events from which

the MBSI-1 was selected. In this paper, we refer to this index simply as the model

based standardised index (MBSI).

This section is structured as follows: in Section 3.3.1 we propose bivariate

indices for calculating exposure to extreme floods and droughts during pregnancy.

In Section 3.3.2 we introduce the proposed model for birth-weight and discuss

model selection. Lastly, our results are described in Section 3.3.3.

3.3.1 Quantifying Exposure to Extreme Events During Preg-

nancy

The MBSI presented in Chacón-Montalván et al. (2018) is an alternative to the

classical standardised precipitation index (SPI) to identify and quantify extreme

hydro-climatic events. This index uses the k-order moving average process
{
Xk
t : t = 1, . . . , T

}
of the precipitation process {Zt : t = 1, . . . , T} to quantify how extreme are the val-

ues of xt with respect to the usual seasonal behaviour, which is modelled using

generalized additive models for location, scale and shape (GAMLSS). The time-

scale k is considered to monitor the type of extreme event; e.g. greater values of

k identify longer extreme events. The resulting series of values are interpretable

as quantiles from a standard normal distribution. For example, an SPI value of 2

indicates that the probability of observing an event at least as extreme as this is

0.0228.

Here, we use the MBSI to propose three bivariate indices that measure

exposure to extreme hydro-climatic events in different ways based on the classifi-

cation of droughts (and floods) proposed by Mckee et al. (1993), where extreme

droughts occur when MBSI ≥ 2. The first captures exposure to positive and

negative deviations from normal seasonality, while the second index captures ex-

posure to floods and droughts. Lastly, the third index captures the exposure to

extreme floods and droughts.
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3.3.1.1 Exposure to Positive and Negative Deviations in Precipitation

One way of measuring extremity is by evaluating how far the measured precipita-

tion was from usual seasonal behaviour. Based on this definition, we work directly

with the weekly precipitation series, which is the same as the moving average pre-

cipitation series of order 1. This implies that the time-scale used to compute the

MBSI for our first bivariate index is equal to one week.

We will represent the value of the obtained MBSI for mother i at week

of pregnancy j as Sk=1
ij , where i = 1, . . . ,m and j = −12, . . . , 0, . . . , di. Note

that the possible values of j are from 12 weeks before the mother was pregnant,

in order to take into account the pre-pregnancy trimester, until the pregnancy

duration di. The sum of only positive and only negative deviations during the pre-

pregnancy and pregnancy period divided by the number of weeks are the elements

our bivariate indicator Di to measure deviations from the seasonal rainfall such as

Di =

(
di∑

j=−12

Sk=1
ij 1(Sk=1

ij <0)

di + 12
,

di∑
j=−12

Sk=1
ij 1(Sk=1

ij >0)

di + 12

)
, (3.1)

where 1(·) takes a value 1 when the underlying condition (·) is hold and 0 otherwise.

Notice that the first element Di1 measures negative deviation and the second Di2

measures positive deviation.

The interpretation of this bivariate index Di is that average values in both

dimensions represent a mother’s exposure to normal rainfall. Cases where the

positive exposure Di2 is high and the negative exposure Di1 is close to zero rep-

resent mothers exposed to higher rainfall than expected. Conversely, high values

of negative exposure Di1 and positive exposure Di2 values close to zero represent

mothers experiencing lower values of rainfall than expected. This indicator does

not necessarily measure floods and droughts, but it is probably associated.
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3.3.1.2 Exposure to Floods and Droughts

While in the previous index Di, we were trying to measure deviations from season-

ality, in our second index FDi, we try to measure exposure to floods and droughts.

We used the definition of drought (or flood) proposed by Mckee et al. (1993) as a

period of time in which the SPI is continuously negative (or positive, for floods)

reaching at least one value lower (or higher for floods) or equal to −1 (1). However,

we use the MBSI instead of the SPI and allow the threshold of 1 to take other

values in order to capture more extreme floods and droughts. For the computa-

tion of the MBSI, a time-scale equal to 8 weeks (k = 8) is used because this is

related with agricultural floods and droughts, and it has performed adequately in

Chacón-Montalván et al. (2018).

After identifying floods and droughts using the MBSI with the criteria

explained above, the sum of standardized precipitation values corresponding to

droughts (or floods) during pre-pregnancy and pregnancy period divided by the

number of weeks are the elements of our bivariate indicator FDi to measure ex-

posure to floods and droughts such as

FDi =

(
di∑

j=−12

Sk=8
ij 1(j ∈ drought event)

di + 12
,

di∑
j=−12

Sk=8
ij 1(j ∈ flood event)

di + 12

)
, (3.2)

where 1(j ∈ drought event) takes a value 1 when the MBSI value Sk=8
ij at week of preg-

nancy j for mother i belongs to a period where a drought has occurred and 0

otherwise; similarly, for 1(j ∈ flood event). Notice that the first element FDi1 mea-

sures exposure to droughts and the second FDi2 measures exposure to floods and

that the interpretation of this index is similar to Di.

3.3.1.3 Exposure to Extreme Floods and Droughts

Our third bivariate index Ei is similar to the index for exposure to floods and

droughts FDi, but it tries to capture more extreme floods and droughts. Then, we

have computed exposure to extreme floods and droughts Ei similarly to exposure
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to floods and droughts FDi, but only the 8-week MBSI values greater that 2 or

lower than −2 were considered for the computation of the bivariate index. The

limit of 2 and -2 has been chosen because they are usually used to characterize

extreme floods and droughts respectively (Mckee et al., 1993). Therefore, we define

the bivariate index of exposure to extreme floods and droughts for mother i as

Ei =

(
di∑

j=−12

Sk=8
ij 1(Sk=8

ij <−2) 1(j ∈ drought event)

di + 12
,

di∑
j=−12

Sk=8
ij 1(Sk=8

ij >2) 1(j ∈ flood event)

di + 12

)
,

(3.3)

where 1(·) takes a value 1 when the underlying condition is hold and 0 otherwise.

Notice that the first element Ei1 measures exposure to extreme droughts and the

second Ei2 measures exposure to extreme floods.

3.3.2 Statistical Modelling

In order to evaluate the effects of extreme events on birth-weight it is important

to control for socio-economic status, sex and race, and include seasonal, temporal

and spatial effects. Therefore, using Bayesian additive models for location, scale

and shape (BAMLSS; see Umlauf et al., 2018), three models were proposed to

include these effects and one was selected based on model adequacy.

3.3.2.1 Proposed Models

For the first two models, a Gaussian and Students-t distribution was assumed

for birth-weight, but only the mean parameter was modelled with respect to the

covariates and the scale parameter was assumed to be constant. In both cases, the
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mean was modelled as

µij = ηij =β0 + h1(sexij) + h2(marital statusij) + h3(study yearsij)+

h4(birth placeij) + h5(ethnic raceij) + h6(consultations numberij)+

f1(ageij) + f2(remotenessi) + f3(malaria exposurei)+

f4(rural proportioni) + f5(tap toilet proportioni)+

s1(river level weekij) + f6(pregnancy dateij)+

f7(longitudei, latitudei)+

f8(rain negative deviationij, rain positive deviationij)+

f9(drought exposureij, flood exposureij)+

f10(extreme drought exposureij, extreme flood exposureij),

(3.4)

where µij is the mean birth-weight for mother j in municipality i and β0 is the inter-

cept. The functions h1(.), h2(.), . . . , h6(.) represent the effects of categorical vari-

ables that are transformed to dummy variables. The functions f1(.), f2(.), . . . , f6(.)

represent thin plate regression splines for one variable, while f7(.), f8(.), f9(.), f10(.)

are bivariate. Lastly, s(.) represents cyclic cubic regression splines to take into ac-

count seasonality.

The third model is an extension of the model with t-student distribution,

where, in addition to the linear predictor in 3.4, the scale parameter is also mod-

elled as

log(σij) = η∗ij =β∗0 + h∗1(sexij) + h∗2(study yearsij) + h∗3(birth placeij)+

h∗4(ethnic raceij) + h∗5(consultations numberij)+

f ∗1 (ageij) + f ∗2 (pregnancy dateij)+

f ∗3 (longitudei, latitudei),

(3.5)

where σ2
ij is the variance for mother j in municipality i and β∗0 is the intercept.
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The functions h∗1( · ), h∗2( · ), . . . , h∗5( · ) represent the effects of categorical variables,

f ∗1 ( · ), f ∗2 ( · ) represent univariate thin plate regression splines, and f ∗3 ( · , · ) repre-

sents a bivariate thin plate regression spline.

3.3.2.2 Model Selection

Comparing the two first models, where only the mean was modelled, it is clear

that the distribution assumption was not supported by the data in the Gaussian

model (see left-side quantile plot in Figure 3.2). The points far from the straight

line indicate that the residuals have heavier tails than a Gaussian distribution. On

the other hand, the quantile plot for the t-distribution model looks better in terms

of proximity to the straight line. Although the empirical quantiles lie out of the

95% confidence interval, this model is more adequate than the Gaussian model.

Figure 3.2: Quantile Plot of Residuals for a Generalized Additive Model (GAM) of
Birth-Weight with Gaussian and t-Student Distribution from Left to Right

The quantile plot of the third model, which also models the scale parame-

ter, shows a slight improvement on the tails (Fig. 3.3). Furthermore, as outlined

in the next section, the effects of the covariates on the scale parameter were signifi-

cant. Comparison using the deviance information criterion (DIC, see Spiegelhalter

et al., 2002) leads to the same conclusion; this statistic was 2857483, 2848852 and

2847784 for the three models respectively. Hence, the third model was chosen as
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Figure 3.3: Quantile Plot Residuals for a BAMLSS Model with t-Student distribution

the definitive in this study because the assumptions are better held than the other

two models and it has a better goodness of fit. Similar models to the third one

were also tried by including 1, 2 or the 3 bivariate indicators to measure exposure

to extremes hydro-climatic events in the mean parameter, but our third model was

also better than them when comparing the DIC.

3.3.3 Results

This section presents effects of socio-economical and environmental predictors af-

fecting birth-weight, through either intrauterine growth rate or gestational dura-

tion, obtained using the selected model which is a t-student Bayesian additive

model for location, scale and shape, where the linear predictors are modelled as

shown in equations 3.4 and 3.5.

3.3.3.1 Fixed effects

In order to understand the effects of the factors in Table 3.2, note that the intercept

term represents the mean value for the group of mothers that: gave birth to a male

offspring; was not married; had no formal education; gave birth in a hospital; was

not indigenous (i.e. not a tribal Amerindian); received no formal antenatal care

during her pregnancy. This group of mothers gave birth to offspring with an
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average weight of 3145 grams.

Table 3.2: Fixed Effects of Socio-Economic factors, Antenatal Care and Place of
Birth on Mean Birth-weight: Mean value E [β] and quantiles Q0.025, Q0.5, Q0.975 of the

posterior distribution.

Terms E [β] Q0.025 Q0.5 Q0.975

(Intercept) 3144.62 3133.08 3144.62 3156.82
sex: female -102.24 -106.21 -102.22 -98.28
marital status: married 29.80 23.30 29.76 36.33
marital status: widow -10.88 -75.74 -11.02 55.78
marital status: divorced -43.89 -101.99 -43.71 17.50
marital status: NA 22.38 15.94 22.38 28.98
study years: 1 - 3 55.36 45.33 55.50 64.58
study years: 4 - 7 75.95 66.34 76.07 84.49
study years: 8 - 11 73.57 63.64 73.83 82.88
study years: ≥ 12 73.21 60.31 73.44 85.23
birth place: another health center -9.38 -47.42 -9.38 26.84
birth place: home -83.42 -90.12 -83.36 -77.11
birth place: other -116.87 -159.45 -115.83 -76.70
birth place: NA -119.28 -340.51 -123.66 137.91
born race: indigenous -58.70 -65.77 -58.73 -51.98
born race: NA -12.31 -45.30 -12.76 20.54
consultations: 1 - 3 48.19 38.79 48.11 57.40
consultations: 4 - 6 85.61 77.20 85.48 94.56
consultations: ≥ 7 135.52 126.42 135.39 145.21
consultations: NA 19.12 -3.02 19.03 42.38

The following effects are conditional effects after accounting for the other

covariates.

Female newborns had a mean weight 102 grams lower than males, consistent

with the findings of Kramer (1987); Makhija et al. (1989). Offspring with a married

mother had significant effects of around 30 grams greater birth-weight than single

mothers.

Our analysis shows that maternal education plays an important role in

determining birth-weight (and hence, health etc. in later life) because mothers

with at least some formal education are expected to have offspring heavier than

those without education. These differences are 55 grams (1-3 years education) and

around 75 grams for greater than 3 years of education. Newborns born at home

or other (non-hospital) locations, weighed less than those being born at hospital
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or another health centre. This difference was around 83 grams and 117 grams for

those being born at home and other location, respectively. On average, indigenous

offspring were 50 grams lighter than non-indigenous offspring. Lastly, the number

of antenatal consultations had a positive effect on birth-weight, up 135 grams

heavier for those borne to mothers with 7 or more consultations in comparison to

those no consultations.

Regarding the variability parameter, 445 = exp(6.1) was the estimated

standard deviation for the group of mothers that gave birth to a male, were single

(unmarried), had no formal education, gave birth in a hospital, were not indigenous

and had no antenatal consultation during pregnancy (see Table 3.3). Around

4% ' 100(1 − exp(−0.0447))% lower standard deviation has been estimated for

females offspring in comparison to males. Similarly, we estimated around 4%

higher standard deviation for mothers with relatively more education and higher

variability for offspring born at home or other non-hospital location. On the other

hand, the variability of birth-weight was lower for indigenous people and mothers

with higher number of antenatal consultations.

Table 3.3: Fixed Effects of Covariates on Variance of Birth-weight: Mean value E [β]
and quantiles Q0.025, Q0.5, Q0.975 of the posterior distribution.

Terms E [β] Q0.025 Q0.5 Q0.975

(Intercept) 6.10111 6.07927 6.10094 6.12287
sex: female -0.04447 -0.05236 -0.04461 -0.03697
study years: 1 - 3 0.00398 -0.01362 0.00395 0.02140
study years: 4 - 7 0.01020 -0.00756 0.01020 0.02708
study years: 8 - 11 0.02580 0.00653 0.02574 0.04440
study years: > 12 0.04314 0.02166 0.04317 0.06622
birth place: another health center 0.04112 -0.02374 0.04110 0.10545
birth place: home 0.02880 0.01821 0.02868 0.04012
birth place: other 0.07229 0.00013 0.07305 0.14125
birth place: NA -0.14159 -0.67450 -0.13970 0.35574
born race: indigenous -0.07126 -0.08427 -0.07118 -0.05836
born race: NA -0.01814 -0.07776 -0.01798 0.04078
consultations: 1 - 3 -0.04751 -0.06460 -0.04716 -0.03128
consultations: 4 - 6 -0.08940 -0.10488 -0.08932 -0.07451
consultations: > 7 -0.11956 -0.13616 -0.11986 -0.10292
consultations: NA -0.01112 -0.05203 -0.01130 0.03032
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3.3.3.2 Non-linear effects on birth-weight at the individual level
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Figure 3.4: Non-linear Effects of Covariates at Individual Level on Birth-weight with
95% Credible Intervals (shaded areas). The left panel shows the effects on the mean

parameter and right panel on the log-scale parameter.

The only socio-economic or constitutional variable with non-linear effect

included in the selected model was age. Overall, the left panel in Figure 3.4

highlights the negative effect of pregnancy for very young women; this effect can

exceed 200 grams (or more for teenage mothers) in comparison to the ideal age of

25-40 years old. This is congruent with the findings of previous studies (Kramer,

1987; Makhija et al., 1989). On the right panel in Figure 3.4, it can also be seen

that the variability of birth-weight increases with maternal age indicating more

uncertainty on the health of newborns when mothers are older. In part, this could

be related to the health status of mothers given that older women are more prone

to complications during pregnancy.

3.3.3.3 Non-linear effects on birth-weight at municipality level

The effects of municipality-scale covariates on birth-weight are shown in Figure

3.5. Remoteness from other cities in the region’s hierarchical urban network had

significant negative effects on birth-weight for values higher than 0.6. These more

remote road-less cities include cases where boat-travel to the state capital of Man-
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aus can take weeks and even the closest neighbouring small town may be several

days away (Parry et al., 2017). The proportion of people with access to a toilet

and piped water within the home - a well-recognized measure of development as

seen in Brooks et al. (2005)- had a positive effect for municipalities where these

basic services were accessible to more than 30% of the population. Nevertheless,

it should be noted that remoteness and the proportion of people with toilet and

water-on-tap are associated (Parry et al. (2017) also demonstrated that more re-

mote places in Amazonia are less-developed), indicating that the effects shown in

Figure 3.5 are conditional on each other.
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Figure 3.5: Non-linear Effects of Covariates at Municipality Level on the Mean
Parameter of Birth-weight with 95% Credible Intervals (shaded areas).
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The municipal-scale effect of exposure to malaria was negative, although

the effect size was very small for values where the uncertainty of the effects was

narrow. Lastly, the effect of ’rurality’, defined as the proportion of a municipality’s

population that lived within the rural area, was somewhat unclear. The effect was

negative for rurality values from 0.3-0.4, but this effect seems to over-fit the data.

The inclusion of a higher penalty or the use of a hierarchical model could improve

our models in terms of avoiding this over-fitting.

3.3.3.4 Temporal effects
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Figure 3.6: Temporal and Seasonal Effects on Birth-weight with 95% Credible
Intervals (shaded areas). The top panels show the effects on the mean parameter and

the bottom panel on the log-scale parameter.
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Importantly, a seasonal river-level effect and a temporal effect, Figure 3.6,

were included in the mean linear predictor of Equation (3.4) and one temporal

effect on the standard deviation linear predictor of Equation (3.5). The seasonal

effect (left panel) on the mean birth-weight parameter was relatively modest -

approximately 5 grams difference between the peaks of the wet and dry seasons.

In contrast, a surprising finding was that we found an unexplained temporal effect

(right panel) of a global decrease in birth-weight and a main reduction around

2009. This may be associated with the major flood event in 2009, in which record-

high water levels caused widespread disruption in Amazonas state (Chen et al.,

2010; Filizola et al., 2014).

The tails of the conception date effects (right panel on Figure 3.6) around

2005 and 2013 years are less reliable because they are associated with mothers

with higher and lower gestational duration for the left and right tail respectively.

This happened because the mothers on the available dataset were selected based

on birth date and not conception date.

Additionally, we found an increased temporal effect on the standard devi-

ation of birth-weight (Figure 3.6), indicating that the uncertainty of birth-weight

have increased during the period of study.

3.3.3.5 Spatial effects on birth-weight

The spatial effects for the mean parameter, f7(longitudei, latitudei), and scale

parameter, f ∗3 (longitudei, latitudei), of birth-weight that is unexplained for the

four municipal-scale predictors are shown in Figure 3.7. These effects appear to

be significant, for both mean and standard deviation. The credible interval for the

effects on birth-weight mean are negative (with mean greater than -50 grams) for

two particular areas in the north and west of Amazonas state, and positive for an

area in south-east Amazonas (with mean around 50). Furthermore, the effects on

the standard deviation are positive in southern Amazonas and negative in western

Amazonas. Their corresponding credible intervals suggest significant effects given
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Figure 3.7: Spatial effects on the linear predictors of the birth-weight distribution:
the effect on the mean f7(longitudei, latitudei) and on the standard deviation
f∗3 (longitudei, latitudei) from top to bottom. Red (blue) indicates a negative

(positive) change in the relevant parameter. Mean, lower 95% bound and upper 95%
bound from left to right.

that they do not include 0.

3.3.3.6 Effects of extreme hydro-climatic events

We used three pairs of indices to evaluate the effects of exposure to extreme events

during pregnancy; exposure to: (1) rainfall which deviated from seasonal averages,

(2) floods and droughts, and (3) extreme floods and droughts. These variables are,

not surprisingly, co-linear, especially between exposure to rainfall deviations and

exposure to floods and droughts.

The conditional effect of exposure to rainfall deviations indicates that high

positive deviations negatively impact birth-weight (Fig. 3.8). The credible interval

seems significant for levels of positive rainfall deviation around 0.6 and negative de-

viation around -0.3. It also suggests that birth-weight is greater when a pregnancy

occurs during periods of rainfall that closely mirror long-term seasonal averages.

In other words, when a mother is not exposed to either high positive or negative
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rainfall deviations from the mean. The positive effect looks significant around the

position -0.2 and 0.3, where the credible interval is positive.
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Figure 3.8: Effects on Birth-weight of Above or Below the Mean Rainfall Exposure
during Pregnancy. Red (blue) indicates a negative (positive) change in mean

birthweight. Mean, lower 95% bound and upper 95% bound from left to right.
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Figure 3.9: Effects on Birth-weight of Floods and Droughts as defined by Mckee
et al. (1993). Red (blue) indicates a negative (positive) change in mean birthweight.

Mean, lower 95% bound and upper 95% bound from left to right.

Our findings show a significant negative effect of floods (around 20 grams)

but also a positive effect of droughts during pregnancy (Figure 3.9). However,

it is important to note that our indices of droughts and floods and exposure to

deviations are associated with one another and thus the marginal effects can lead to

misleading conclusions. A clearer picture is obtained for a similar model without
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including exposure to floods and droughts. The effect of positive and negative

deviations is shown in Figure 3.10, where negative effects are observed for higher

exposure to positive and negative deviations. Hence, it is clear that exposure to

extremes of precipitation affects birth-weight.
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Figure 3.10: Mean Effects on Birth-weight of Above or Below the Mean Rainfall
Exposure during Pregnancy: For an alternative model without including exposure to

floods and droughts. Red (blue) indicates a negative (positive) change in mean
birthweight.

Lastly, the mean of the effects of extreme floods and droughts in Figure 3.11

suggest a negative impact of droughts (exposure around -0.5) and negative impact

for certain floods (exposure around 0.5), but also a positive impact around 0.6

exposure. Note that a mean decrease of 200 grams was observed around (0, 0.4)

and that the credible intervals of these effects are negative. This major result

shows that extreme floods have strong negative impacts on birth-weight.

3.4 Discussion

In the Brazilian Amazonia, over the period of January 2006 - December 2013,

the mean birth-weight was 3220 grams and the proportion of low birth-weight

(< 2500g) was 0.06. Our findings provide strong evidence that extreme climatic

events - especially floods - negatively affect health, as suggested in Watts et al.
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Figure 3.11: Effects on Birth-weight of Exposure to Extreme Floods and Droughts.
Red (blue) indicates a negative (positive) change in mean birthweight. Mean, lower

95% bound and upper 95% bound from left to right.

(2015); Hales et al. (2003), including in road-less, vulnerable areas of the Brazilian

Amazon (Parry et al., 2017; Hummell et al., 2016). We have shown how climatic

extremes can deepen health inequities by causing lower birth-weight and exacer-

bating existing social vulnerabilities. Indeed, weight at birth is a strong indicator

of maternal health and low birth-weight can confer life-long and inter-generational

disadvantage (Kramer, 1987; Aizer and Currie, 2014).

In our study there were striking differences in birth-weight among children

borne to mothers that were indigenous; young (< 25 years old); had no formal

education and had little access to the formal healthcare system during pregnancy

or birth (Moser et al., 2003; Reime et al., 2006; Nobile et al., 2007). This paper

therefore makes an important and novel contribution to the literature on health and

climate change, because few studies have explored the effects of climatic variation

on birth-weight (but see Grace et al. (2015); Murray et al. (2000)), especially in

relation to social inequities. From a regional perspective, this research also engages

with the recent urgent call for more research on the social and health dimensions of

climate change in Amazonia, which has been woefully neglected (Brond́ızio et al.,

2016). Despite growing exposure to extreme floods and droughts in Amazonia

(Marengo et al., 2013), to our knowledge this is the first study to systematically
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asses health impacts of floods.

3.4.1 Floods and droughts affect birth-weight in Amazonia

Using the MBSI index to identify extreme hydro-climatic events, a major finding of

our study was that exposure to Amazonian flood events during pregnancy reduces

mean birth-weight by around 200 grams. This effect is probably associated with

the occurrence of severe flood(s) which mainly affected particular Amazonian sub-

watersheds (e.g. along either the River Purus, River Jurua or main River Solimões)

of the 43 municipalities we studied because a global reduction of 200 grams was

not observed. Because extreme events tend to be infrequent, unique values of

our three proposed bivariate indices were not very well distributed. This problem

could be overcome by extending the study period backwards in time (or broaden

the study area) in order to (i) improve the detection of extreme events, and also

to (ii) include more people affected by those events.

Although our results provide clear evidence that extreme hydro-climatic

events can negatively impact birth-weight (Section 3.3), our study was not in-

tended (or able) to identify which causal mechanism(s) link(s) climate extreme

and birth-weight. Nonetheless, identifying the relative importance of different

causal pathways is clearly important for developing effective public policy to mit-

igate the health impacts of climate change. For the context of our study system -

road-less areas in the Brazilian Amazon - principal candidate pathways for lower

birth-weight include: deficiencies in maternal nutritional intake linked to food

insecurity and disruption of the local food system (Sherman et al., 2015; Maru

et al., 2014); maternal stress and anxiety (Mansour and Rees, 2012; Berry et al.,

2010); restrictions on health-care access (including antenatal care) due to trans-

portation difficulties or stresses on public services (De Onis et al., 2007; Haines

et al., 2006); maternal morbidity, linked to insect-, water-borne or parasitic disease

(Steketee, 2003). In addition to determining whether extreme event effects were

caused by nutrition or disease, for example, there is an urgent need for further
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social-science research to understand the ’causes of the causes’ of these health im-

pacts. In other words, the social, economic and political processes through which

floods and droughts affect population health in Amazonia and other vulnerable

contexts (Watts et al., 2015). Building this evidence base is essential for eventu-

ally reducing the impact of extreme events through appropriate adaptation; the

negative effects on birth-weight become somewhat inexorable if they lead to low

birth-weight. Furthermore, the hazards posed by extreme climatic events will con-

tinue to grow if the frequency, intensity and duration of these events increase, as

predicted (Field, 2012).

3.4.2 Seasonal trends on birth-weight in road-less, river-

dependent places

River levels play a vital role in the lives of Amazonian people, around a million of

whom live in urban centres that lack any access to Brazil’s road network (Parry

et al., 2017). Our study has shown that, despite traditional livelihoods that are

adapted to the annual flood-pulse (Harris, 2000), seasonal changes in river levels

impact birth-weight in road-less municipalities with a statistically significant drop

in the mean weight of around 5 grams for mothers becoming pregnant in the dry

season. Although this seasonality effect seems relatively small, consider that the

estimated effect is the average for all 43 municipalities. It is likely that seasonality

is much more important for some cities and not relevant for others, as we observed

in our exploratory analysis. At this stage it is unclear whether the seasonal effect

is related to temporal variation in food insecurity, disease prevalence (Olson et al.,

2009) or access to public services (Parry et al., 2010).

In order to develop interventions that improve public health and mitigate

seasonally-lower birth-weight, we require deeper insights into the seasonality of

birth-weight at the municipality-scale and an understanding of the causes of inter-

municipal variation in these differences. For example, whether a reduction birth-

weight is due to fluctuation in the price of imported foodstuffs or reduced household



69

access to local foods including açáı (Euterpe spp.), or access to bush-meat. In either

of these cases, efforts could be made to provide nutritional substitutes for those

products whose accessibility is reduced during the dry season. Our results may be

explained by the argument posited by Vaitla et al. (2009) - that seasonal hunger or

food insecurity is a neglected yet important development challenge in the Global

South. The precise causes of seasonal differences in birth-weight are unclear, yet

improving antenatal care both in general and during the dry season, including

outside of urban centres, would be a ’no regret’ strategy, yielding benefits even in

the absence of climate change (Hallegatte, 2009; Watts et al., 2015).

3.4.3 Vulnerable groups of mothers give birth to smaller

offspring

Our study clearly supports theoretical and empirical evidence that vulnerability

to climate change is, at least partly, socially-determined (Birkmann, 2006). We

identified characteristics of particularly vulnerable pregnant women; for instance,

newborns of indigenous mothers weighed 50 grams less when considering only this

variable. However, ethnicity - through structural discrimination and oppression -

has complex links to social inequalities in Brazil and elsewhere (Guzmán, 2013;

Young, 2009).

For example, when including low levels of maternal education and very

low antenatal care received by many indigenous mothers, the negative effect on

birth-weight can be exacerbated between 163 to 271 grams when comparing with

more advantaged groups. Single mothers also had a negative effect on birth-

weight, perhaps because married mothers are more economically advantaged Aizer

and Currie (2014), and that they could exposure to more stressful scenarios. We

found that low education and inadequate antenatal care probably had the most

important impacts on birth-weight thus improving access to good quality education

and healthcare are obvious contenders for improving the resilience of Amazonian

societies in the context of climatic change.
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3.4.4 Negative trend around 2009 flood and long-term wors-

ening

An unexpected finding was that, after accounting for socio-economic and environ-

mental predictors, birth-weight experienced a mean decline of around 10 grams

around 2009 across our study region, which we have suggested is linked to a major

flood in the Brazilian Amazon in that year in which the main River Solimões-

Amazonas channel reached record levels (Chen et al., 2010; Filizola et al., 2014).

Given the broad spatial extent of this flood, it is plausible that our indices do not

fully capture the municipal-scale effects of this event.

In addition, a global decline on this unexplained temporal variation was

observed during the period of study. It could represent serious problems for the

population health; however, further analysis with more recent data per municipal-

ity are necessary for more concluding results about this temporal negative trend

because it is probably the case that this temporal trend varies per municipality

due to regional inequalities.

In summary, we have assessed the effects of socio-economical and environ-

mental factors on birth-weight in the Brazilian Amazonia. Through our analyses,

we have discovered significant negative effects of extreme hydro-climatic events,

especially floods; seasonal trends on birth-weight related to river levels; vulnerable

groups of mothers; negative effects around 2009 flood and long-term worsening

trend.
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and Patz, J. a. (2009). Links between climate, malaria, and wetlands in the
amazon basin. Emerging Infectious Diseases, 15(4):659–662.



75

Parry, L., Davies, G., Almeida, O., Frausin, G., de Moraés, A., Rivero, S., Filizola,
N., and Torres, P. (2017). Social Vulnerability to Climatic Shocks Is Shaped
by Urban Accessibility. Annals of the American Association of Geographers,
4452(October):1–19.

Parry, L., Day, B., Amaral, S., and Peres, C. A. (2010). Drivers of rural exodus
from Amazonian headwaters. Population and Environment, 32(2):137–176.

Porporato, A., Vico, G., and Fay, P. A. (2006). Superstatistics of hydro-climatic
fluctuations and interannual ecosystem productivity. Geophysical Research Let-
ters, 33(15):2–5.

Reime, B., Ratner, P. A., Tomaselli-Reime, S. N., Kelly, A., Schuecking, B. A.,
and Wenzlaff, P. (2006). The role of mediating factors in the association be-
tween social deprivation and low birth weight in Germany. Social Science and
Medicine, 62(7):1731–1744.

Rigby, R. A. and Stasinopoulos, D. M. (2005). Generalized additive models for
location, scale and shape (with discussion). Journal of the Royal Statistical
Society: Series C (Applied Statistics), 54(3):507–554.

Risnes, K. R., Vatten, L. J., Baker, J. L., Jameson, K., Sovio, U., Kajantie, E.,
Osler, M., Morley, R., Jokela, M., Painter, R. C., Sundh, V., Jacobsen, G. W.,
Eriksson, J. G., Sørensen, T. I., and Bracken, M. B. (2011). Birthweight and
mortality in adulthood: A systematic review and meta-analysis. International
Journal of Epidemiology, 40(3):647–661.

Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R., and Chivian, E. (2001).
Climate change and extreme weather events. Global change & human health,
2(2):90–104.

Sherman, M., Ford, J., Llanos-Cuentas, A., Valdivia, M. J., and Bussalleu, A.
(2015). Vulnerability and adaptive capacity of community food systems in the
Peruvian Amazon: a case study from Panaillo. Natural Hazards, 77(3):2049–
2079.

Smith, L. T., Aragão, L. E. O. C., Sabel, C. E., and Nakaya, T. (2014). Drought
impacts on children’s respiratory health in the Brazilian Amazon. Scientific
reports, 4:3726.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002).
Bayesian measures of model complexity and fit. Journal of the Royal Statistical
Society. Series B: Statistical Methodology, 64(4):583–616.

Steketee, R. W. (2003). Pregnancy, nutrition and parasitic diseases. The Journal
of nutrition, 133(5 Suppl 2):1661S–1667S.

Stephenson, T. (2002). Maternal nutrition as a determinant of birth weight.
Archives of Disease in Childhood - Fetal and Neonatal Edition, 86(1):4F–6.

Stieb, D. M., Chen, L., Eshoul, M., and Judek, S. (2012). Ambient air pollu-
tion, birth weight and preterm birth: A systematic review and meta-analysis.
Environmental Research, 117:100–111.



76

Umlauf, N., Klein, N., and Zeileis, A. (2018). BAMLSS: Bayesian additive mod-
els for location, scale and shape (and beyond). Journal of Computational and
Graphical Statistics, 27(3):612–627.

Vaitla, B., Devereux, S., and Swan, S. H. (2009). Seasonal hunger: A neglected
problem with proven solutions. PLoS Medicine, 6(6).

Watts, N., Adger, W. N., Agnolucci, P., Blackstock, J., Byass, P., Cai, W., Chay-
tor, S., Colbourn, T., Collins, M., Cooper, A., Cox, P. M., Depledge, J., Drum-
mond, P., Ekins, P., Galaz, V., Grace, D., Graham, H., Grubb, M., Haines, A.,
Hamilton, I., Hunter, A., Jiang, X., Li, M., Kelman, I., Liang, L., Lott, M.,
Lowe, R., Luo, Y., Mace, G., Maslin, M., Nilsson, M., Oreszczyn, T., Pye, S.,
Quinn, T., Svensdotter, M., Venevsky, S., Warner, K., Xu, B., Yang, J., Yin, Y.,
Yu, C., Zhang, Q., Gong, P., Montgomery, H., and Costello, A. (2015). Health
and climate change: Policy responses to protect public health. The Lancet,
386(10006):1861–1914.

Young, I. (2009). Five faces of oppression. Geographic Thought. A Praxis Per-
spective, pages 55–71.



77

Chapter 4
In Chapter 3, we have found significant effects of extreme hydro-climatic events

affecting birthweight and detected certain characteristics of disadvantaged groups.

However, further studies are required to understand the causal mechanism that

links hydro-climatic extremes and birthweight. An attempt to better understand

this link is presented in this chapter by studying food insecurity, which is a latent

construct to represent a situation in which individual or household access to suf-

ficient, safe and nutritious food is not a guaranteed (National Research Council,

2006). We present a novel approach to model latent constructs with spatial struc-

ture and apply it to the modelling and prediction of food insecurity; we obtain

areas with high food insecurity and evaluate if they are prone to extreme hydro-

climatic events.

Spatial Item Factor Analysis With
Application to Mapping Food In-
security

Erick A. Chacón-Montalván1, Luke Parry2,5, Emanuele Giorgi1, Patricia Torres3,
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Abstract

Item factor analysis is widely used for studying the relationship between a

latent construct and a set of observed variables. One of the main assump-

tions of this method is that the latent construct or factor is independent
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between subjects, which might not be adequate in certain contexts. In

the study of food insecurity, for example, this is likely not true due to a

close relationship with socio-economic characteristics, that are spatially

structured. In order to capture these effects, we propose an extension of

item factor analysis to the spatial domain that is able to predict the latent

factors at unobserved spatial locations. We develop a Bayesian sampling

scheme for providing inference and illustrate the explanatory strength of

our model by application to a study of the latent construct ‘food inse-

curity’ in a remote urban centre in the Brazilian Amazon. We use our

method to map the dimensions of food insecurity in this area and identify

the most severely affected areas. Our methods are implemented in an R

package, spifa, available from Github.

Keywords: Continuous spatial variation, Factor analysis, Gaussian pro-

cesses, Item Factor Analysis, Kriging, Model-based geostatistics, Multivariate

regression, Spatial prediction.

4.1 Introduction

This paper concerns the analysis of geo-referenced survey data in which there is

interest in understanding a set of spatially-varying latent constructs. A latent con-

struct is a complex attribute or property that can be described by a number of

characteristics, sometimes elicited through responses to survey questions for exam-

ple. They are not rigidly defined, rather the characteristics suggest the construct

and may be debated and revised as time progresses. Latent constructs are very

widely used across many areas of scientific research; in psychological research for

instance, an example of a latent construct would be extroversion. This character-

istic is not directly measurable for an individual (unlike age for example), but it

can be measured through questionnaires such as the Keirsey Temperament Sorter

(Briggs Myers and Myers, 1980; Keirsey, 1998). The idea is that the construct,
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extroversion, can be indirectly measured through responses to a subset of ques-

tions designed to elicit social behaviour and preferences. The collective response to

these questions, created for example using a summative operation (in the case of

binary data), is used to infer the degree of extroversion, as opposed to introversion,

in a person.

Using the language of Item Response Theory (IRT), the individual ques-

tions in a survey (or test) are referred to as items, see Hambleton and Swaminathan

(1989) for a detailed review. The responses to these items measure different con-

crete characteristics, known as observable variables. To continue the extroversion

example above, item 15 from the Kiersey Temperament Sorter is “At a party, do

you (a) interact with many, even strangers or (b) interact with a few friends?”

and the observable variable in this case might be ‘interaction preferences in social

situations’. Item response theory is a family of statistical models used to relate

responses to items to the latent construct(s). These models assume the latent

construct or ability (degree of extroversion in this case) is defined on a continuum.

This allows us, for instance to score each individual’s ability; to identify which

items have the greatest capacity to discriminate between individuals of differing

abilities (i.e. how well each item identifies the trait of extroversion in individuals);

or to identify the difficulty associated to each item – more ‘difficult’ items in this

context would tend to be endorsed by more extroverted individuals, but less often

by less extroverted individuals (De Ayala, 2013).

Item response theory has been widely applied in many areas of research.

In psychometrics, for example, it has been used to measure the theory of mind

ability (Shryane et al., 2008), emotional intelligence (Fiori et al., 2014), self-esteem

(Gray-Little et al., 1997). In health and medicine, it is used to determine the

health status of patients using self-reported outcomes (Edelen and Reeve, 2007),

to measure individual scores of child developmental status (Drachler et al., 2007)

and to asses achievement and evaluation of clinical performance (Downing, 2003).

In mental health research, it has been used to study disorders like psychopathy
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(Laurens et al., 2012), alcohol use (Saha et al., 2006) and depression (Sharp et al.,

2006). In e-learning, item response theory has been used to develop personalized

intelligent tutoring systems that match learner ability and difficulty level (Chen

and Duh, 2008). In computerized adaptive testing, it is used in tests like GMAT,

GRE or TOEFL to dynamically select the most appropriate items for examinees

according to individual abilities (Chen et al., 2006). In marketing, it has been

used to measure customer relationship satisfaction (Funk and Rogge, 2007) and to

measure extreme response styles (ERS) (de Jong et al., 2008). In criminology, it

is applied to the analysis of the causes of crime and deviance using self-reporting

measures of delinquency (Osgood et al., 2002) and to measure self-control (Piquero

et al., 2000).

Our motivating application concerns the assessment of household food inse-

curity which is mediated through a family’s ability to access food and also through

the supply of food potentially available. Both factors are relevant in the context

of our study located in Ipixuna, a remote urban centre in the Brazilian Amazon.

Food insecurity was measured using responses to a modified version of the ques-

tionnaire proposed by the United States Department of Agriculture (Carlson et al.,

1999; National Research Council, 2006). Food insecurity in these remote and road-

less urban centres, accessible only by boat or plane, is partly affected by seasonal

variation in river levels. During particularly dry months it may be difficult for

cargo boats to access the city and in very wet months there are risks of large-scale

flooding - disease, loss of home and income. But there are other factors at play

too: community, governmental and non-governmental support can bolster a fam-

ily’s food resources in difficult times (Garrett and Ruel, 1999; Battersby, 2011).

As is the case with cities in the West, neighbourhoods with certain characteristics

tend to cluster together: it is for exactly this reason that in this paper we propose

to extend traditional IRT models to accommodate spatial structure, among other

attributes detailed below.

One of the main limitations of classical IRT models is that they assume
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that the latent construct is unidimensional: this assumption may not be adequate

for more complex latent constructs. For example, the items developed to study

food insecurity capture a number of different concepts including: (i) the perception

of reduction in the quality or quantity of food, (ii) an actual reduction in quality

of food, (iii) an actual reduction in quantity of food, and (iv) a reduction in the

quantity or quality of food for children in the household. Hence, the construct food

insecurity has more than one dimension, and might also depend on characteristics

of the population under study, Froelich and Jensen (2002) for example found a

further dimension associated with the protection of children from hunger.

In this context, where unidimensional models are not appropriate, researchers

have developed Multidimensional Item Response Theory (MIRT) or Item Factor

Analysis (IFA), both approaches being conceptually similar (Bock et al., 1988;

Chalmers, 2012). These models extend the concept of standard multivariate fac-

tor analysis so it can be applied to binary or ordinal data and allows us to study

the interaction between multiple items and a multi-dimensional latent construct.

Although item factor analysis addresses the problem of uni-dimensionality, there

are other limitations of this approach that we seek to address in the present paper.

Firstly, IFA assumes the latent construct of a particular subject to be inde-

pendent of any other subject. In our subsequent example of food insecurity, this

seems inadequate given that households near to each other are more likely to share

similar socio-economic conditions and environmental exposures and thus a simi-

lar risk of food insecurity. This observation also applies to the analysis of latent

constructs in other disciplines where spatial correlation is naturally expected, an

example would be socio-economic status itself. Connected to this, an item factor

analysis model incorporating spatial random effects would allow us to map the la-

tent factors at unobserved locations, which can be (and is in our case) of scientific

interest. With respect to our own and other similar application(s), a complete map

of the latent factors over the area under study will improve our understanding of

the construct and help to better inform the decision-making process.
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Secondly, IFA only relates items to the latent construct, but not to possible

covariates that could help explain why certain individuals might have particularly

high or low values of the latent construct. For example, our previous research in

this area suggests socio-economic and environmental variables play an important

role in determining food insecurity (Parry et al., 2017). In our case, therefore,

understanding the relationship between the items, the latent construct and the

covariates is highly desirable.

The above summarises our motivation for developing an extension to IFA

which we here denominate spatial item factor analysis. Our hierarchical framework

allows the latent construct to be split into multiple latent factors, the number

and composition of which are determined by initial exploratory analyses. These

latent factors are explained by observed covariates and also by spatially-correlated

random effects. The relationship between the latent factors and the item responses,

in the case of binary outcomes, is mediated through a set of auxiliary variables

which handle the conversion between continuous to discrete data forms. We present

an efficient Metropolis-within-Gibbs sampling strategy for Bayesian inference with

our model.

The structure of the paper is as follows. Details of our proposed model

for spatial item factor analysis is presented in Section 4.2. This model is imple-

mented in our R package described in Section 4.3. Bayesian inference for our model

through Markov chain Monte Carlo methods is explained in Section 4.4. Spatial

prediction for the latent construct is developed in Section 4.5. Then we detail

application of the model to predicting food insecurity in Section 4.6. Finally, this

paper concludes with a discussion of the advantages, disadvantages and possible

extensions to our model in Section 4.7.

4.2 Spatial Item Factor Analysis

In this section we develop a modelling framework for spatial item factor anal-

ysis. We first introduce classical item factor analysis in Section 4.2.1, then in
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Section 4.2.3 we introduce our new methods. Solutions to identifiability issues in

our model are discussed in Section 4.2.4. We then introduce the matrix form of

the auxiliary variables of our model in Section 4.2.7. We conclude this section with

the specification of the likelihood function in Section 4.2.8.

4.2.1 Item Factor Analysis

Item factor analysis can be seen as an extension of factor analysis for binary or

ordinal data. In the present article, we concentrate on binary outcomes and discuss

extensions of the proposed framework to a mix of continuous, binary and ordinal

items in the Discussion (Section 4.7) and in Appendix E.

We begin by considering the response variable Yij for item j = 1, 2, . . . , q

from subject i = 1, 2, . . . , n as a binarization around zero of a continuous but

unobservable process Zij, explained by m latent factors (also called latent abilities)

θ1i, . . . , θmi,

Zij = cj +
m∑
k=1

ajkθki + εij, (4.1)

where εij ∼ N (0, 1) and {cj} are intercept parameters that take into model the

difficulty of items. High positive (negative) values for cj increase (reduce) the

probability of endorsing the j-th item, which is why they are also referred to

as easiness parameters (Chalmers, 2015). The slopes {ajk}, commonly called

discrimination parameters, indicate how well the j-th item can discriminate the

k-th ability between the subjects under study. If ajk = 0, the k-th latent factor

does not explain the variability of the j-th response item, in other words this

item does not help to discriminate the k-th latent ability between the subjects.

In our paper, we also use this parameterisation i.e. using intercepts and slopes.

Further details on this model including inference via the expectation-maximization

algorithm can be found in Bock et al. (1988).

As well as estimating the easiness and discrimination parameters, inter-
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est may also lie in making inferences for the latent factors θki, this allows us to

differentiate individuals with high or low levels of the construct under study. A

practical application of this is in the area of ideal point estimates, where the ob-

jective is to estimate the ideological position of a political legislator in order to

predict whether they will vote in favour of a particular motion, see Bafumi et al.

(2005) for example.

4.2.2 Exploratory and Confirmatory Item Factor analysis

The model defined by Equation 4.1 is not identifiable due to different types of

aliasing, as explained in Section 4.2.4. We can make the model identifiable by

placing restrictions on some parameters. The way this is done yields two different

approaches.

We obtain an exploratory item factor analysis if the restrictions are imposed

only to make the inference possible, i.e. the restrictions are not related to the

construct and data under analysis. In this case, estimates can be rotated under

the preference of the researcher.

We obtain a confirmatory item factor analysis if the restrictions are estab-

lished in a semi-formal manner: the researcher uses their own (or expert) knowl-

edge about the latent construct to establish the structure of an appropriate model

(Cai, 2010b). In a confirmatory item factor analysis, the restrictions are designed

with a particular study and context in mind, while in exploratory item factor anal-

ysis, the restrictions are generally imposed and are not problem-specific. Where

experts cannot agree on a particular structure for the model, the option to use

measures of model fit (e.g. WAIC or DIC for a Bayesian analysis) is still possible,

as is model averaging.

4.2.3 Extension to the Spatial Domain

In our application, we are interested in estimating the easiness and discrimination

parameters in order to understand the relationship between the underlying latent
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factors with the response variables. We also want to be able to predict the latent

factors not only in places where the observations were taken, but also in locations

where we have no observations. Our data were costly, difficult and time-consuming

to collect, thus our method for predicting food insecurity at new locations is an

important step for identifying particularly vulnerable areas that could be targeted

for intervention. Since our method can also be used to map and predict the

different dimensions of food insecurity, this information could be used to tailor

specific interventions to specific regions. This is our motivation for the development

of spatial item factor analysis.

The extension of item factor analysis to the spatial domain can be achieved

by including a spatial process in the predictor in Equation 4.1. Frichot et al. (2012),

for example, proposed such a model by including a spatially correlated error term

εij. This extension tries to correct the principal components by modelling the

residual spatial variation. Our proposed method, spatial item factor analysis allows

the latent factors θki to be spatially correlated because the nature of the particular

construct we are studying suggests they should be treated in this way. For example,

we expect there to be spatial patterns in food insecurity scores across a municipality

due to the relationship with socio-economic and environmental variables.

We model the binary response variables as a discrete-state stochastic pro-

cesses {Yj(s) : s ∈ D} where D ⊂ R2 and the notation Yj(s) is the response to

item j at spatial location s. The response variables take values 0 or 1 according

to the value assumed by an auxiliary spatial stochastic process {Zj(s) : s ∈ D}:

Yj(s) =

 1 if Zj(s) > 0

0 otherwise.
(4.2)

Conditional on Zj(s), the values assumed by Yj(s) are deterministic. We model

the auxiliary process as follows:

Zj(s) = cj + aᵀ
jθ(s) + εj(s), εj(s) ∼ N (0, 1), (4.3)
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where cj and aj are respectively the easiness and discrimination parameters. The

latent factors, θ(s), are defined as a function of covariates, continuous-space m-

dimensional stochastic process and a non-spatially correlated error term as in

Equation 4.4. Note that this process is the only source of spatial correlation in

Zj(s) and Yj(s): if the spatial variation is removed from θj(s), then the model

reduces to a simple item factor analysis.

The different assumptions that one can make with respect to aj and θ(s)

generate different types of models. For example, under the assumption that θ(s)

and θ(s′) are uncorrelated with the further assumption that θ(s) ∼ N (0, Im),

this generates an exploratory item factor analysis (Cai, 2010a). Alternatively,

restrictions on aj lead to a confirmatory item factor analysis (Cai, 2010b). The

reasons why we include these assumptions and restrictions will be explained in

Section 4.2.4: the concern is identifiability and our spatial item factor analysis

model requires specific choices here.

In a similar manner, we can impose a particular structure on the latent

factor θ(s) in order to create our spatial item factor model. Since one of our

interests is predicting the latent factors at unobserved locations s∗; we define the

structure of θ(s) through a set of spatial covariates x(s) = (x1(s), . . . , xp(s)) that

preferably are also available at unobserved locations. This way the model allows

us to understand why certain individuals have high or low scores. The inclusion

of covariates in factor analyses leads to multiple indicators, multiple causes models

(MIMIC) in the literature on structural equation modelling (SEM), see Tekwe et al.

(2014) for example. We include a latent spatial stochastic process {w(s) : s ∈ D}

into our model for θ(s), defining the m-dimensional latent factor as:

θ(s) = Bᵀx(s) +w(s) + v(s), (4.4)

where B is an p×m matrix of slopes associating a set of covariates x(s) with the

latent factor θ(s) and v(s) as defined below. Note that we will eventually assume

that the covariates have been standardised, see Section 4.2.4 for further details.
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We define w(s) = {wk(s)}mk=1 to be a set of zero-mean, independent, stationary

and isotropic Gaussian processes with variance σ2
k and correlation function ρk(u)

at distance u,

wk(s) ∼ GP(0, σ2
k, ρk(u)), k = 1, . . . ,m. (4.5)

This definition might seem restrictive, but the independence assumption of these

spatial processes is adequate when the latent factors θk(s) are independent and

it could still be adequate when the latent factors are not independent. We use

vector notation to denote w(s) because later, in Section 4.2.5, we discuss further

extensions to the structure of w(s), such as allowing correlation between the wk(s)

and thus at the outset we wish to think of this as a multivariate Gaussian process

(MGP).

Finally, the m-dimensional random vector v(s) is the remaining uncertainty

in the latent factors that is neither explained by the covariates nor byw(s). We as-

sume v(s) is a zero-mean multivariate normal distribution with covariance matrix

Σv,

v(s) ∼ N (0,Σv). (4.6)

Equation 4.4 has the same structure as a multivariate geostatistical model.

However, in our case, the dependent variable, θ(s), is a low-dimensional latent

process instead of a high-dimensional observed process as in Gelfand et al. (2004).

A similar structure including fixed and random effects is also discussed in Chalmers

(2015), but the author does not attempt to model unexplained spatial variation.

In addition, the author mainly focuses on including covariates at the item level,

whereas our emphasis is on the inclusion of covariates at the subject level which

will then allow us to make predictions about individuals at unobserved locations.

Substituting the structure of the latent factors θ(s) into Equation 4.3 re-
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sults in

Zj(s) = cj + aᵀ
j [B

ᵀx(s) +w(s) + v(s)] + εj(s). (4.7)

We note that if aj were known, then Equation 4.7 would be a multivariate geosta-

tistical model. The main challenges in our proposed model come from the inclusion

of the interaction between the latent variables with the (unknown) slopes, aj.

In theory, the proposed model could be used in both exploratory and con-

firmatory factor analysis. However, we suggest using the model for confirmatory

factor analysis in which there is no rotation of the latent factors - in this way, the

correlation parameters are directly interpretable. If on the other hand, the latent

factors have been rotated, as in exploratory analysis, interpreting the correlation

parameters is then more difficult.

θ1 θ2 θ3 θ4

Y9Y8

x3

Y1 Y3Y2 Y5Y4 Y7Y6

x1 x2 x4 x5

w4w3w2w1

Z8 Z9Z4 Z5 Z6 Z7

x6

Z1 Z2 Z3

η4η1 η2 η3

Z12Z10 Z11

Y11Y10 Y12

Figure 4.1: Directed Graph for the Spatial Item Factor Model: This example has
twelve response items (Yj), twelve auxiliary variables (Zj), four latent factors (θk), four

Gaussian processes (wk), four linear predictors (ηk) and six covariates (xl).

The relationship between covariates x(s), latent factors θ(s), auxiliary la-

tent variables Z(s) and response variables Y (s) can be seen more clearly through

an example of spatial confirmatory factor analysis, as shown in Figure 4.1. This

figure shows a directed graph with twelve items Yj(s), or response variables, four

latent factors θk(s), four Gaussian processes wk(s) and six covariates xl(s). We



89

have introduced ηk as a linear combination of the covariates in order to have a

more clear visualization of the model. In this example some of the coefficients

aj are set to zero so that each factor is only explained by a subset of items; this

is usually decided using an exploratory item factor analysis. It can be seen that

the 12-dimensional response vector Y (s) is reduced to a 4-dimensional space of

factors θ(s). These factors are allowed to be correlated with each other and also

spatial correlation is permitted within factors. The top row in the figure shows

how covariates x(s) are used to predict the latent factors θ(s).

4.2.4 Identifiability and restrictions

The model presented above is subject to the same identifiability problems as those

found in factor analysis and structural equation modelling. Identifiability issues

arise when different sets of parameters lead to the same likelihood in a structured

way - this leads to symmetry in the posterior distribution in a Bayesian framework,

(or objective function in a classical approach), i.e. there are multiple modes. In

our model, these identifiability issues could be due to additive, scaling, rotational

or reflection aliasing, which will be discussed in detail below.

Additive aliasing occurs when the item difficulties cj and the product aᵀ
jθj

have free means. Under this situation a constant value could be added and sub-

tracted to each term respectively and the probability density function will be

unchanged. Similarly, if aᵀ
j is multiplied by a constant and θj divided by the

same constant, then the probability density function is constant leading to scaling

aliasing.

In order to address the issues of scaling and additive aliasing in classical

item factor analysis as in Equation 4.1 it is common to assume that θik ∼ N (0, 1)

(Bafumi et al., 2005). A generalisation of this would be to assume θi ∼ N (0,Σθ),

whence the previous solution is obtained by setting that Σθ = I for an exploratory

factor analysis or by setting diag(Σθ) = 1 for a confirmatory factor analysis.

The spatial item factor model presented in Section 4.2.3 does not suffer
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from additive aliasing because we are already assuming the processes w(s) and

v(s) are zero-mean. As mentioned above, we assume that the covariates included

in Equation 4.4 are standardised, which leads to the latent factor θ(s) having mean

zero.

However, our model does suffer from scaling aliasing, so we are required to

restrict the variances of the latent factors θk(s), this is complicated by the presence

of covariates because we cannot directly ensure that V [bᵀkx(s) + wk(s) + vk(s)] =

1. One simple way of achieving the required restriction is by fixing the variance

of one of the terms inside the structure of the latent factors in Equation 4.4, see

Appendix A.1 for details. This is usually applied to the multivariate error term,

v(s), as in Tekwe et al. (2014). It is sufficient to fix a diagonal matrix D, which

contains the marginal standard deviations of v(s), diag(D) = (σv1 , . . . , σvm)ᵀ, such

that

Σv = DRvD, (4.8)

where Rv is a correlation matrix. The usual restrictions applied in exploratory

or confirmatory item factor analysis are equivalent to setting D = I. If the

model includes both covariates and Gaussian processes and we are conducting an

exploratory item factor analysis, then this method does not work well because the

marginal variances of the latent factors θk(s) might become big (greater than 1)

and consequently, the discrimination parameters would have to be close to zero

and become unidentifiable in practice. This happens because the modes of the

posterior distribution will not be very well separated and the MCMC chains will

be jumping between modes that are equivalent solutions. For confirmatory item

factor analysis the condition D = I is sufficient to eliminate issues of scaling

aliasing, see Appendix A.1.

Although the restrictions imposed modify the interpretation of the discrim-

ination parameters aj because the latent factors are on different scales, they are

only necessary in order to make the inference possible. Therefore, a scaling trans-
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formation can applied post-estimation in order to recover the correct interpretation

of the discrimination parameters:

Zj(s) = cj + aᵀQQ−1θ(s) + εj(s), (4.9)

where Q is a diagonal matrix of the standard deviations for θ(s). This trans-

formation leads to a new vector of latent abilities Q−1θ(s) with unit variances

and discrimination parameters aᵀQ with the usual interpretation as in item factor

analysis, see Section 4.4.4 for further details.

Returning to classical item factor analysis, the other two types of aliasing,

rotational and reflection, are due to the fact that linear transformations of the

slope parameters a∗j = aᵀ
jΛ
−1 and of the latent factors θ∗i = Λθi lead to the

same probability density function of the original parameters aj and θj given that

Λ−1Λ = I (Erosheva and Curtis, 2011). In exploratory factor analysis Λ is an

orthogonal matrix because it is assumed Σθ = I; it can be shown that this implies

ΛΛᵀ = I. In the case of rotational aliasing the matrix of the linear transformation

has m(m−1)/2 degrees of freedom. Hence, m(m−1)/2 restrictions can be applied

to eliminate this type of aliasing. The usual criteria is to set (a1, . . . ,aq)
ᵀ to be

a lower triangular matrix (Geweke and Zhou, 1996). For reflection aliasing, there

are 2m orthogonal matrices Λ obtained by simultaneously changing the signs of aj

and θi. In this case, identifiability can be ensured by setting the diagonal elements

of A = (a1, . . . ,aJ)ᵀ to be positive (Geweke and Zhou, 1996).

For spatial exploratory item factor analysis the above restrictions on the

discrimination parameters, or similar, are necessary. For confirmatory factor anal-

ysis it is sufficient to fix m(m − 1)/2 entries (usually the value chosen is zero) of

A and also set as positive (or negative) one element from each column of A; the

former addresses rotation aliasing, and the latter reflection aliasing. More gener-

ally, a set of restrictions can be induced through a linear association between the
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constrained parameters a∗j and the free parameters aj,

a∗j = uj +Ljaj, (4.10)

where the vector uj are the values that are to be fixed, while the matrix Lj

indicates which elements of the free-parameter aj are to be activated (Cai, 2010b).

In the example below, the third and fourth elements of the parameter vector are

set to 0 and 1 respectively.



a∗j1

a∗j2

a∗j3

a∗j4


=



0

0

0

1


+



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0





aj1

aj2

aj3

aj4


=



aj1

aj2

0

1


(4.11)

In practice, achieving the required positivity (or negativity) constraints is accom-

plished through the appropriate specification of the marginal prior distributions,

see Section 4.4.2 for details.

4.2.5 Allowing Further Flexibility on the Multivariate Spa-

tial Structure

In the discussion above, we proposed using a set of independent Gaussian processes

in the structure of the latent factors θ(s). It is adequate when each latent factor

θk(s) has a spatial structure and they are independent; the second condition might

be held when the restrictions on the discrimination parameters are imposed based

on an exploratory item factor analysis with varimax rotation. However, in more

general situations, it can be the case that some of the factors θk(s) are not spa-

tially correlated, or that some of the unexplained variation in two or more factors

may have a common (spatially-correlated) component. In this situation it will be

desirable, respectively, to include spatial structure on only a subset of the factors,

or to share the spatial structure across several factors.
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In a similar way to how restrictions were imposed on the discrimination

parameters, we can use an m×g transformation matrix T to convert g independent

standard Gaussian processes in w(s) into an m-dimensional multivariate Gaussian

process, w∗(s):

w∗(s) = Tw(s). (4.12)

An example is given in Equation 4.13, where after transforming, w1(s) is common

to the first and second factor and the second factor has an additional spatial

structure, namely w2(s); w3(s) features in the third factor, and the last factor

does not include any Gaussian process i.e. it is not spatially structured.



w∗1(s)

w∗2(s)

w∗3(s)

w∗4(s)


=



t11 0 0

t21 t22 0

0 0 t33

0 0 0




w1(s)

w2(s)

w3(s)

 =



t11w1(s)

t21w1(s) + t22w2(s)

t33w3(s)

0


(4.13)

Notice that the variance of w∗(s) is controlled by T . Using this stochastic process

in Equation 4.4, we re-define the m-dimensional latent factor of our model as:

θ(s) = Bᵀx(s) +w∗(s) + v(s). (4.14)

The methods described in the section are closely connected to multivari-

ate geostatistical models of coregionalization (Gelfand et al., 2004; Fanshawe and

Diggle, 2012). The main difference is that, due to the sparse structure of T , it is

not ensured that w∗(s) has a positive definite covariance matrix, and that we are

using this structure as a way for the user to control the nature of interrelationships

between factors (which would obviously change according to the problem and data

under study), rather than allowing free reign estimating all the elements of T . Al-

though we propose w∗(s) because it is simple and easy to interpret, our model is

not limited to this choice, it could be replaced with a more attractive multivariate

stochastic process (e.g. see Gneiting et al., 2010).
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There is a sense in which the restrictions imposed can be thought of as prior

specification. Provided the ‘correct’ overall sparse structure of T has been chosen,

such restrictions are also beneficial; in particular if m > g then inference becomes

more tractable – both in terms of computation, and subsequently interpretation.

In the absence of expert opinion (but preferably in the presence of it), we suggest

using an exploratory item factor analysis before applying our model in order to

evaluate these characteristics and decide on the structure of the multivariate spatial

correlation defined through T .

4.2.6 Auxiliary Variables in the Identifiable Spatial Item

Factor Analysis

Using the restricted discrimination parameters a∗ defined in Equation 4.10 and the

new definition of the latent factor θ(s) in Equation 4.14, we obtain an identifiable

and flexible model for spatial item factor analysis where the auxiliary variables

Zj(s) have the following structure

Zj(s) = cj + a∗ᵀj θ(s) + εj(s) = cj + a∗ᵀj [Bᵀx(s) +w∗(s) + v(s)] + εj(s). (4.15)

We are assuming that the structure of the restricted discrimination parameters

a∗j and also the multivariate Gaussian process w∗(s) will be informed by expert

opinion through direct involvement of researchers in the area of application and/or

through consulting the academic literature in that area.

Doing this not only allows our model to be identifiable, but it also allows

us to obtain interpretable latent factors which are practically useful to researchers

in the field under consideration.

4.2.7 Matrix Form of the Auxiliary Variables

Expressing the terms in our model at the individual level as above (and in Equation 4.15)

is convenient for understanding the various components; however, in the sequel,
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we will use the matrix form of our model in order to define the likelihood func-

tion (Section 4.2.8) and later derive the conditional distributions of the posterior

(Section 4.4).

Before proceeding with the matrix form of our model, we introduce some

further notational conventions. Let α(s) be a q-variate random variable at spatial

location s. Then if s = (s1, s2, . . . , sn)ᵀ is a set of locations, we will define the

q-vector αi = α(si) = (α1(si), . . . , αq(si))
ᵀ and the n-vector α[j] = αj(s) =

(αj(s1), . . . , αj(sn))ᵀ.

With the above conventions, the collection of auxiliary random variables

Z = (Zᵀ
[1], . . . ,Z

ᵀ
[q])

ᵀ for q items at n locations can be expressed as

Z = (Iq ⊗ 1n)c+ (A∗ ⊗ In)θ + ε (4.16)

where Iq and In are identity matrices of dimension q and n respectively, 1n is

a n-dimensional vector with all elements equals to one, c = (c1, . . . , cq)
ᵀ is a

vector arrangement of the easiness parameters, A∗q×m = (a∗1, . . . ,a
∗
q)

ᵀ is a matrix

arrangement of the restricted discrimination parameters, θ = (θᵀ[1], . . . ,θ
ᵀ
[m])

ᵀ and

ε = (εᵀ[1], . . . , ε
ᵀ
[q])

ᵀ is a nq-vector of residual terms.

The vector of latent abilities θ with respect to Equation 4.14 can be ex-

pressed as

θ = (Im ⊗X)β + (T ⊗ In)w + v, (4.17)

where β = vec(B) is a column-vectorization of the multivariate fixed effects,

Xn×p = (x1, . . . ,xn)ᵀ is the design matrix of the covariates, w = (wᵀ
[1], . . . ,w

ᵀ
[m])

ᵀ

is the collection of the multivariate Gaussian process and v = (vᵀ[1], . . . ,v
ᵀ
[m])

ᵀ is

the collection of the multivariate residual terms. Substituting Equation 4.17 into

Equation 4.16, we obtain:

Z = (Iq ⊗ 1n)c+ (A∗ ⊗X)β + (A∗T ⊗ In)w + (A∗ ⊗ In)v + ε. (4.18)
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This matrix representation is useful for deriving the multivariate marginal and

conditional distributions of Z in the following sections.

Alternatively, the collection of auxiliary variables Z can also be expressed

as

Z = (Iq ⊗ 1n)c+ (Iq ⊗Θ)a∗ + ε

= (Iq ⊗ 1n)c+ (Iq ⊗Θ)u+ (Iq ⊗Θ)La+ ε, (4.19)

where Θn×m = (θ[1], . . . ,θ[m]) is the matrix of latent abilities, u = (uᵀ
1, . . . ,u

ᵀ
q)

ᵀ

are the restrictions defined in Equation 4.10, a = (aᵀ
1, . . . ,a

ᵀ
q)

ᵀ are the free discrim-

ination parameters and L = ⊕qj=1Lj is the direct sum of the activation matrices

defined in Equation 4.10 (recall these link the free discrimination parameters a

with the constrained discrimination parameters a∗). We later use Equation 4.19

in the derivation of the conditional posterior distribution of the discrimination

parameters a.

4.2.8 Likelihood Function

A challenging aspect of some motivating applications is the fact that not all items

are observed for all subjects. More generally, it is common to have to deal with

missing data (in this case item responses) in statistics, therefore in the present

section we begin to introduce notation for observed and missing data; this will be

revisited several times in Section 4.4 and is also connected with prediction.

Let s = (s1, s2, . . . , sn)ᵀ be a set of locations at which data from q items has

been collected. Let the random variable Yij = Yj(si) be the j-th item response at

location si. Using notation introduced in Section 4.2.7, let Y = (Y ᵀ
[1], . . . ,Y

ᵀ
[q])

ᵀ

be the collection of responses to all items. These can be divided into two groups;

the set of observed variables Y obs and the set of variables that were missing Y mis.

The marginal likelihood function for our spatial item factor analysis model

is obtained by integrating the joint density of the observed variables Y obs, the asso-
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ciated auxiliary variablesZobs and the collection of latent abilities θ = (θ[1], . . . ,θ[m])
ᵀ;

L(c,a,B,T ,φ,Rv) =

∫ ∫
Pr (yobs | zobs) Pr (zobs,θ | c,a,B,T ,φ,Rv) dzobs dθ,

(4.20)

where a = (aᵀ
1, . . . ,a

ᵀ
q)

ᵀ is vector arrangement of all the discrimination parame-

ters and φ = (φ1, . . . , φg)
ᵀ is the vector of scale parameters of the g-dimensional

Gaussian process w(s). Note that the main computational cost inside the integral,

O(n3m3), comes from evaluating the distribution associated with θ which has a

mn×mn covariance matrix.

In Equation 4.20, the structure of our model implies

Pr (yobs | zobs) =
∏
oij=1

Pr (yij | zij) , (4.21)

where oij is an indicator variable with value equals to one when the variable Yij

has been observed (i.e. is not missing) and zero otherwise. We further have:

Pr (zobs,θ | c,a,B,T ,φ,Rv) =
∏
oij=1

Pr (zij | θi, cj,aj,B) Pr (θ | T ,φ,Rv) ,

(4.22)

and variables on the right hand side are normally distributed.

Note that the definition of the likelihood function through Equation 4.20,

4.21 and 4.22 does not depend on the missing observations. Therefore, if some

items were not observed in some of the locations, inference will still be possible

provided the missing data are missing at random (Merkle, 2011). Using this like-

lihood, inference from the model can proceed in a number of ways. Maximum

likelihood estimation can be achieved by approximating the likelihood function

in Equation 4.20 using a variety of Monte Carlo methods or via stochastic ap-

proximation (Cai, 2010b). However in the present article, we focus on a Bayesian

approach as shown in Section 4.4 because of the simplicity and reliability of un-
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certainty computation.

Our likelihood function can also be written using the auxiliary variables

associated with both the observed and missing responses:

L(c,a,B,T ,φ,Rv) =

∫
Pr (yobs | zobs) Pr (z | c,a,B,T ,φ,Rv) dz. (4.23)

The advantage of this representation is that the joint density of the auxiliary

variables Pr (z | c,a,B,T ,φ,Rv) can be obtained in a straightforward manner

using Equation 4.18. It is normally distributed with mean

µz = (Iq ⊗ 1n)c+ (A∗ ⊗X)β (4.24)

and covariance matrix

Σz = (A∗T ⊗ In)Σw(T ᵀA∗ᵀ ⊗ In) + (A∗ ⊗ In)DRvD(A∗ᵀ ⊗ In) (4.25)

where Σw = ⊕gk=1Σwk is the direct sum of the covariance matrices of the indepen-

dent Gaussian processes. We prefer this last definition of the likelihood function as

it allows us to handle the missing data using data augmentation, see Section 4.4.3.

4.3 R Package

Our model is implemented in an open-source R package, spifa, available from

Github, https://github.com/ErickChacon/spifa. This package implements the

Bayesian inferential method outlined below in full, allowing the user to specify the

structure of the multivariate Gaussian processes and prior hyperparameters; model

selection is also available through the DIC. The package has functions for sum-

marising model output, for MCMC diagnostics and for the production of predictive

maps via sf methods (Pebesma, 2018). The inferential code is written using C++,

Rcpp, RcppArmadillo and OpenBLAS to make efficient use of multi-CPU hardware

architectures.
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4.4 Bayesian Inference Using Markov Chain Monte

Carlo

In this section we describe a Metropolis-within-Gibbs algorithm for Bayesian in-

ference with the spatial item factor analysis model proposed in Section 4.2. We first

present the Bayesian formulation of our model in Section 4.4.1; then in Section 4.4.2,

we provide details of the prior specifications; lastly, we conclude by explaining the

sampling scheme for the parameters and auxiliary variables in Section 4.4.3.

4.4.1 Bayesian Spatial Item Factor Analysis Model

As illustrated in Figure 4.1, we factorised the joint likelihood in an natural way into

four levels. The first three levels are: the data level Pr (yobs | zobs), the auxiliary

variable level Pr (z | θ, c,a), and the latent factor level Pr (θ | β,T ,φ,Rv). For

our Bayesian model, we add an additional level for the prior distribution of the

parameters c,a,β,T ,φ and Rv. The posterior distribution of the model is

Pr (z, c,a,θ,β,T ,φ,Rv | yobs) ∝ Pr (yobs | zobs) Pr (z | θ, c,a) Pr (θ | β,T ,φ,Rv)

Pr (c) Pr (a) Pr (β) Pr (T ) Pr (φ) Pr (Rv) .

(4.26)

This choice of factorisation allows us to take advantage of conjugacy for some

parameters and also marginalise terms that may lead to slow convergence/mixing

e.g. the multivariate Gaussian process w and the multivariate residual term v.

4.4.2 Priors

We assume Gaussian distributions for the easiness, discrimination and fixed effects

parameters:

c ∼ N (0,Σc), aj ∼ N (µaj ,Σaj), β ∼ N (0,Σβ), (4.27)
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where µc and µaj are the mean parameters, and Σc, Σaj and Σβ are diagonal

covariance matrices.

With respect to the m-dimensional Gaussian processw∗(s), we assume that

the associated parameters have a log-normal distribution,

vec∗(T ) ∼ LN (µT ,ΣT ), φ ∼ LN (µφ,Σφ), (4.28)

where vec∗(T ) is a vector of the non-zero values of T , µT and µφ are the mean pa-

rameters and ΣT and Σφ are diagonal covariance matrices of the log-transformation

of the parameters.

Finally, as proposed in Lewandowski et al. (2009, Section 3) we use an LKJ

distribution for the correlation matrix Rv of the multivariate residual term, which

is defined as:

Pr (Rv) ∝ det(Rv)
η−1. (4.29)

Here, η is the shape parameter of the LKJ distribution. If η = 1, the density is

uniform; for bigger values η > 1, the mode is a identity matrix; and band diagonal

matrices are more likely when 0 < η < 1.

Bayesian inference can be sensitive to the choice of hyperparameters for

small sample sizes on the prior distributions described above; however, this is less

highlighted in factor models due to the high number of observations nq. In our

experience, inference does not vary drastically for the prior distribution of the

easiness, discrimination and fixed parameters as long as reasonable hyperparam-

eters are defined. More careful specification is needed for the scale parameters

of the Gaussian processes. This can be achieved by using the maximum spatial

distance between observations to define more informative prior distributions for

these parameters.
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4.4.3 Sampling Scheme

Samples from the posterior distribution (Equation 4.26) are drawn using blocked

Gibbs sampling where possible. In cases where the conditional posterior distribu-

tion is not available analytically, we use Metropolis Hastings to update parameters,

details below.

4.4.3.1 Auxiliary variables

Recall from above that we introduced a distinction between the observed variables

Y obs and the set that could not been observed Y mis. In a similar way, we divide the

associated auxiliary variables into two groups, Zobs andZmis. From Equation 4.18,

the joint vector of auxiliary variables Z is normally distributed given the easiness

parameters c, the discrimination parameters a and the latent factors θ:

Pr (z | c,a,θ) = N (z | (Iq ⊗ 1n)c+ (A∗ ⊗ In)θ, Inq). (4.30)

In the equation above it can be seen that any two elements of Z are conditionally

independent given c, a and θ because the covariance is the identity matrix. Using

the fact that this joint density can also be written as the product of two marginal

densities and that Y obs is conditionally independent of Zmis given Zmis, as shown

in Appendix B.1, the conditional posterior distribution for the auxiliary variables

Pr (z | yobs, c,a,θ) is

Pr (zobs, zmis | yobs, c,a,θ) ∝ Pr (zobs | c,a,θ) Pr (zmis | c,a,θ) Pr (yobs | zobs) .

(4.31)

Hence, using Equation 4.21, the conditional posterior distribution for Zobs is

Pr (zobs | yobs, c,a,θ) ∝ Pr (zobs | c,a,θ)
∏
oij=1

Pr (yij | zij) , (4.32)
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which is a marginal truncated normal distribution obtained from Equation 4.30.

Note that Pr (yij | zij) = 1
yij
(zij>0)1

1−yij
(zij≤0), where 1(.) is the indicator function. In a

similar way, we obtain that the conditional posterior distribution of the auxiliary

variables related to the missing data Zmis as

Pr (zmis | yobs, c,a,θ) ∝ Pr (zmis | c,a,θ) , (4.33)

which is a marginal distribution of Equation 4.30. Hence, the only difference

between the posterior of both sets of variables is that it is truncated for the Zobs

and unrestricted for Zmis.

4.4.3.2 Latent Factors

The conditional posterior distribution of the latent abilities is

Pr (θ | z, c,a,β) ∝ Pr (z | c,a,θ) Pr (θ | β,T ,φ,Rv) , (4.34)

where the joint density of the auxiliary variables Pr (z | c,a,θ) is a Gaussian dis-

tribution, given in Equation 4.30, and the density of the latent factors, as defined

in Equation 4.17, is also a Gaussian distribution,

Pr (θ | β,T ,φ,Rv) = N (θ | (Im ⊗X)β, (T ⊗ In)Σw(T ᵀ ⊗ In) +DRvD ⊗ In),

(4.35)

where Σw = ⊕gk=1Σwk . Hence, the conditional posterior Pr (θ | z, c,a,β) is de-

fined by the product of two normal densities that leads to a normal density with

covariance matrix

Σθ|· =
(
(A∗ᵀ ⊗ In)(A∗ ⊗ In) + ((T ⊗ In)Σw(T ᵀ ⊗ In) +DRvD ⊗ In)−1)−1

,

(4.36)
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and mean

µθ|· = Σθ|·(A
∗ᵀ ⊗ In)(z − (Iq ⊗ 1n)c)+

Σθ|· ((T ⊗ In)Σw(T ᵀ ⊗ In) +DRvD ⊗ In)−1 (Im ⊗X)β. (4.37)

4.4.3.3 Fixed effects

For the multivariate fixed effects β, the conditional posterior

Pr (β | yobs, z, c,a) ∝ Pr (θ | β,T ,φ,Rv) Pr (β) (4.38)

is given by the product of two normal densities obtained from Equation 4.17 and

4.27,

N (θ | (Im ⊗X)β, (T ⊗ In)Σw(T ᵀ ⊗ In) +R⊗ In)N (β | 0,Σβ), (4.39)

that also leads to a multivariate normal distribution with covariance matrix

Σβ|· =
(
(Im ⊗X)ᵀ ((T ⊗ In)Σw(T ᵀ ⊗ In) +R⊗ In)−1 (In ⊗X) + Σ−1

β

)−1
,

(4.40)

and mean

µβ|· = Σβ|·(Im ⊗Xᵀ) ((T ⊗ In)Σw(T ᵀ ⊗ In) +R⊗ In)−1 θ. (4.41)

4.4.3.4 Easiness parameters

The conditional posterior distribution of the easiness parameters c,

Pr (c | y, z,a,θ) ∝ Pr (z | θ, c,a) Pr (c) , (4.42)
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is also the product of two normal densities obtained from Equation 4.30 and 4.27,

Pr (c | y, z,a,θ) ∝ N (z | (Iq ⊗ 1n)c+ (A∗ ⊗ In)θ, Inq)N (c | 0,Σc), (4.43)

leading to a multivariate normal density with covariance matrix

Σc|· = ((Iq ⊗ 1n)ᵀ(Iq ⊗ 1n) + Σ−1
c )−1 = (diag(Σc)

−1 + n)−1, (4.44)

and mean

µc|· = Σc|·(Iq ⊗ 1ᵀ
n)(z − (A∗ ⊗ In)θ). (4.45)

4.4.3.5 Discrimination parameters

Due to the structure of our hierarchical model in Section 4.4.1, the conditional

posterior distribution of the discrimination parameters,

Pr (a | y, z, c,θ) ∝ Pr (z | θ, c,a) Pr (a) , (4.46)

is determined by the product of two Gaussian densities obtained from Equation 4.30

and 4.27,

N (z | (Iq ⊗ 1n)c+ (Iq ⊗Θ∗)u+ (Iq ⊗Θ∗)La, In)N (a | µa,Σa), (4.47)

which, similar to previous parameters, leads to a Gaussian density with covariance

matrix

Σa|· = (Lᵀ(Iq ⊗Θ∗ᵀΘ∗)L+ Σ−1
a )−1, (4.48)

and mean

µa|· = Σa|·L
ᵀ(Iq ⊗Θ∗ᵀj )(z − (Iq ⊗ 1n)c− (Iq ⊗Θ∗)u) + Σa|·Σ

−1
a µa. (4.49)
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4.4.3.6 Covariance parameters

Unlike the previous parameters, the parameters of the multivariate Gaussian pro-

cessw∗(s) and the multivariate residual term v(s) can not be directly sampled from

their conditional posterior density as they are not available analytically. However,

this density can be defined up to a constant of proportionality,

Pr (vec∗(T ),φ,Rv | θ,β) ∝ Pr (θ | β,T ,φ,Rv) Pr (T ) Pr (φ) Pr (Rv) . (4.50)

In order to obtain an MCMC chain that mixes over the real line, we work with

log(φ) instead of φ and log(vec∗(T )) instead of vec∗(T ). For the correlation Rv,

we use canonical partial correlation, transforming to a set of free parameters ν ∈

Rm(m−1)/2, see Lewandowski et al. (2009) for further details.

We use an adaptive random-walk Metropolis Hastings algorithm to sample

from this part of the posterior distribution. The covariance matrix of the proposal,

is adapted to reach a fixed acceptance probability (e.g. 0.234). More specifically,

we implemented algorithm 4 proposed in Andrieu and Thoms (2008) using a de-

terministic adaptive sequence γi = C/iα for α ∈ ((1 + λ)−1, 1], where λ > 0. In

the tests we have run and in our food insecurity application, this algorithm and

choice of parameters performs well (see details below for our choice of C and α).

4.4.4 Scaling Samples for Interpretation

In Section 4.2.4, we saw how restricting the standard deviations of the multivariate

residual term v(s) is necessary to make our model identifiable (Equation 4.8).

However, we can not ensure that the latent factors will be on the same scale,

which leads to a loss of interpretation of the discrimination parameters aj. As

proposed in the same section, after the samples of the MCMC have obtained,

we can transform the parameters in order to obtain latent factors with expected

variance equal to 1 to solve this problem. We can then obtain the matrix Q of

Equation 4.8 by filling the diagonal elements with the expected variances of the
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samples of the latent factors θ(s). We then make the following transformations

aj ← Qaj, θi ← Q−1θi, B ← Q−1B, T ← Q−1T , D ← Q−1D; (4.51)

the correct interpretation of the parameters is then recovered.

4.4.5 Model Selection Using the Deviance Information Cri-

terion

Bayesian model selection for the spatial item factor analysis can be done by using

any of the information criteria normally applied in Bayesian modelling; here we

focus on the deviance information criterion (DIC) proposed by Spiegelhalter et al.

(2002), though note compteting alternatives such as the Watanabe-Akaike Infor-

mation Criterion (WAIC). A Bayesian version of the Akaike information criterion,

the DIC encapsulates the trade-off between goodness of fit and model complexity.

This complexity, measured through the effective number of parameters, is deter-

mined by the difference between the mean of the deviance and the deviance of the

mean,

pD = D(α)−D(ᾱ). (4.52)

The deviance in our case is given by

D(α) = −2 log{Pr (y | α)}+ 2 log{Pr (y | µ(α) = y)}, (4.53)

where Pr (y | µ(α) = y) is the likelihood associated with a saturated model. The

DIC can then be calculated as:

DIC = D(α) + pD, (4.54)

where models with a lower DIC are preferred.

In order to be able to calculate this quantity for our model, we require the
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density function of the responses Y given all the parameters of the model, which

is expressed as

log(Pr (y | α)) =
∑
oij=1

(
yij log(Φ(cj + aᵀ

jθj)) + (1− yij) log(1− Φ(cj + aᵀ
jθj))

)
,

(4.55)

where oij is a binary variable taking value equal to one when the variable Yij has

been observed and zero otherwise.

4.5 Prediction of Latent Factors

In this section, our interest is on the spatial prediction of the latent factors θ̃ at

a set of locations that we have not observed data, s̃. As is customary, we obtain

the predictive distribution by integrating out the parameters of the model from

the joint density of θ̃ and the parameters,

Pr
(
θ̃ | y,X, X̃

)
=∫

Pr
(
θ̃ | θ,B,σ2,φ,Rv,y,X, X̃

)
Pr
(
θ,B,σ2,φ,Rv | y,X

)
dθdBdσ2dφdRv.

Note that a vectorized version of Equation 4.4 can be expressed as

θ̃ = (Im ⊗ X̃)β + (T ⊗ I ñ)w̃ + ṽ. (4.56)

Under these expressions, it can be shown that θ and θ̃ are normally distributed

with parameters

E [θ] = (Im ⊗X)β, V [θ] = (T ⊗ In)V [w] (T ᵀ ⊗ In) +V [v] (4.57)

E
[
θ̃
]

= (Im ⊗ X̃)β, V
[
θ̃
]

= (T ⊗ I ñ)V [w̃] (T ᵀ ⊗ I ñ) +V [ṽ] . (4.58)



108

Furthermore, the cross-covariance can be obtained as

Cov
[
θ̃,θ

]
= Cov [(T ⊗ I ñ)w̃ + ṽ, (T ⊗ In)w + v]

= Cov [(T ⊗ I ñ)w̃, (T ⊗ In)w]

= (T ⊗ I ñ)Cov [w̃,w] (T ᵀ ⊗ In), (4.59)

where Cov [w̃,w] is a block diagonal matrix as both w̃ and w are multivariate

independent Gaussian process, see Section 4.2.3. Hence, the conditional distribu-

tion of θ̃ is Pr
(
θ̃ | θ,B,σ2,φ,Rv,y,X, X̃

)
, a normal distribution with mean

and variance

E
[
θ̃ | θ

]
= E

[
θ̃
]

+ Cov
[
θ̃, θ
]
V [θ]−1 (θ − E [θ])) (4.60)

V
[
θ̃ | θ

]
= V

[
θ̃
]
− Cov

[
θ̃, θ
]
V [θ]−1 Cov

[
θ, θ̃
]
. (4.61)

Predictions are obtained by generating θ̃ from this conditional distribution for a

set of samples θ,B,σ2,φ,Rv obtained from the joint posterior via MCMC.

4.6 Case of Study: Predicting Food Insecurity

in an Urban Centre in Brazilian Amazonia

In this section, we detail results from our motivating application: modelling and

prediction of food insecurity in a remote urban centre, Ipixuna, in the Amazonas

state, Brazil.

“Food security [is] a situation that exists when all people, at all times,

have physical, social and economic access to sufficient, safe and nutritious food

that meets their dietary needs and food preferences for an active and healthy

life” (FAO, 2003, pp 313). Food insecurity describes the opposite situation, in

which individual or household access to sufficient, safe and nutritious food is not

a guarantee (National Research Council, 2006). For policy makers, understanding
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the level of food insecurity in a region is crucial in the planning of interventions

designed to foster development and improve the quality of life for these populations.

Therefore, being able to understand the spatial structure of food insecurity and

to be able to map (i.e. predict) it is highly relevant for both fundamental science

and policy makers alike.

Ipixuna, shown in Figure 4.2, is a ‘jungle town’ located on the banks of the

River Juruá; it is unconnected to the Brazilian road network, and is several thou-

sand kilometers of upstream boat travel from the Amazonas state capital, Manaus.

Being remote and ‘roadless’, Ipixuna exhibits very high social vulnerability and it

is also prone to extreme hydro-climatic events such as floods and droughts, which

pose a serious risk of harm to the local population (Parry et al., 2018).

Jurua Rive
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71.7°W 71.695°W 71.69°W 71.685°W

© OpenStreetMap contributors

Figure 4.2: Spatial distribution of the sampled households (yellow points) in the
urban area of Ipixuna. Note the points have been jittered.

4.6.1 Data description

Our data were collected in August 2015 (low-water dry season) and March 2016

(high water rainy season) with 200 randomly sampled households in total. The

spatial distribution of these samples can be seen in Figure 4.2; these points have

been jittered for privacy reasons: they just give a general sense of where samples

were taken from. Following our analysis, we presented and discussed our results

with local authorities and citizens to explain how food insecurity mapping can be
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done and to encourage the development of a food insecurity early warning system;

we also conducted site visits to neighbourhoods identified as particularly vulner-

able to observe their characteristics. These interactions were highly beneficial in

interpreting the results of our spatial models below.

The questionnaire contained items initially validated by the United States

Department of Agriculture and additional items that are relevant in the con-

text of Brazilian Amazoǹıa, the full questionnaire is available at: https://www.

lancaster.ac.uk/staff/taylorb1/food-insecurity-questions.html. In to-

tal the questionnaire contains 18 items relating to food insecurity. Items in

Section A of our questionnaire referred to the household as a whole, those in

Section B referred to adults only, Section C concerned children and Section D in-

cluded items related to the regional context of our study. The regionally-specific

questions in Section D were designed to measure similar aspects as contained in

the general scale, but measured through common coping strategies employed in

this locality.

The items with higher endorsement probability were numbers 15, 3, 1, 18,

and 2, see Table 4.1. In the present context, endorsement simply means ‘answering

with an affirmative’. This indicates that it is common that Ipixuna citizens obtain

credit for eating, eat few food types, are worried that food will end, reduce meat

or fish consumption, or run out of food. Of the 200 surveyed households, 25 did

not have children and this led to missing data on the 6 items of associated with

food insecurity in children, see Section D in Table 4.1. This is treated as missing

because it is desirable to obtain a joint model for all the population.

4.6.2 Confirmatory item factor analysis

Before undertaking a confirmatory item factor analysis (CIFA), we performed an

exploratory item factor analysis (EIFA) in order to choose the number of dimen-

sions and identify which items should be related to each factor. We compared

models whose dimensions ranged from one to six, and selected a model with 3

https://www.lancaster.ac.uk/staff/taylorb1/food-insecurity-questions.html
https://www.lancaster.ac.uk/staff/taylorb1/food-insecurity-questions.html
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Table 4.1: Summary of the food insecurity items: i) the number of missing values
(#NA) and the proportion of endorsement (π) are shown for the descriptive analysis,

ii) the posterior median of the discrimination parameters {Â·1, Â·2, Â·3} are shown for
the confirmatory factor analysis (CIFA), and iii) the posterior median of the

discrimination and easiness parameters {Â·1, Â·2, Â·3, ĉ} are shown for the spatial item
factor analysis (SPIFA).

Item Section Question
Descriptive CIFA SPIFA

#NA π Â·1 Â·2 Â·3 Â·1 Â·2 Â·3 ĉ

1

A

worry that food ends 0 0.56 · 1.62 · · 1.79 · 0.44
2 run out of food 0 0.52 · · 1.49 · · 1.87 0.21
3 ate few food types 0 0.64 1.68 · · 1.83 · · 1.47
4

B

skip a meal 0 0.30 1.48 · 1.01 1.91 · 1.00 -0.62
5 ate less than required 0 0.41 0.88 · 1.77 1.39 · 1.50 -0.07
6 hungry but did not eat 0 0.24 1.26 · 1.52 1.83 · 1.51 -1.44
7 one meal per day 0 0.26 1.57 · · 1.82 · · -0.53
8

C

ate few food types 25 0.49 1.69 · · 1.90 · · 0.60
9 ate less than required 25 0.31 1.89 · · 2.24 · · -0.34
10 decreases food quantity 25 0.36 2.16 · · 2.51 · · -0.03
11 skip a meal 25 0.23 2.01 · · 2.54 · · -1.06
12 hungry but did not eat 25 0.20 2.11 · · 2.56 · · -1.32
13 one meal per day 25 0.18 1.95 · · 2.45 · · -1.52
14

D

food just with farinha 0 0.17 0.34 · 1.24 0.63 · 1.28 -1.60
15 credit for eating 0 0.68 · 0.72 · · 0.79 · 0.62
16 borrowed food 0 0.14 · 1.42 · · 1.61 · -1.89
17 meal at neighbors 0 0.17 · 0.97 · · 1.01 · -1.24
18 reduced meat or fish 0 0.54 1.28 · · 1.43 · · 0.76

dimensions because a likelihood ratio test indicated no significant improvement

for higher dimensions (p-value 0.594). We applied a varimax rotation to try to

obtain independent factors.

For the structure of the CIFA model, we decided to include only those

items with a discrimination parameter greater than 0.5 in the EIFA model. In

our CIFA this leads to: the first factor being explained by items 3–14 and 18; the

second, by items 1 and 15–17; and the third by items 2, 4–6 and 14. To perform

Bayesian inference, we used standard normal priors for the easiness parameters

cj; standard normal priors for the discrimination parameters with exception of

{A11,1, A13,1A16,2, A14,3} for which we used normal priors with mean µ = 1 and

standard deviation σ = 0.45; and an LKJ prior distribution with hyper-parameter

η = 1.5 for the correlation matrix of the latent factors. The adaptive MCMC

scheme had parameters C = 0.7 and α = 0.8 with target acceptance probability

of 0.234. We ran the Metropolis-within-Gibbs algorithm for 100,000 iterations

discarding the first 50,000 iterations and storing 1 in 10 of the remaining iterations.

Convergence was assessed visually; stationarity was observed from around iteration
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10,000 of the burn-in period.

The posterior median of the discrimination parameters {Â·1, Â·2, Â·3} of

the CIFA model is shown in Table 4.1. These values show that questions related to

reduction of quality and quantity of food in the diet of children, items 10–12, are

the top three most important items for the first factor. The second factor includes

three items relating to Amazonian coping strategies (15–17) and one concerning

anxiety (1). Note that using credit (15), borrowing food (16) or relying on neigh-

bours for meals (17) are likely sources of anxiety in their own right. Finally, the

third factor is related mainly to the reduction in quantity of food (2 and 4–6) and

one item associated with substitution of normal foods with only toasted manioc

flour, a staple carbohydrate in low-income households (14).

In order to evaluate the spatial correlation in the obtained factors, we use

the empirical variogram: see Figure 4.3. This exploratory tool for determining the

extent and form of (spatial) correlation is defined as a function of the distance u,

γ̂(u) =
1

2
Ê
[
(w(s)− w(s+ u))2

]
.

The initial increasing behaviour of the variogram, mainly, observed in the first

and third factors is evidence for spatial correlation in these dimensions of food

insecurity.
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Figure 4.3: Empirical variogram γ̃(u) for each latent factor: the points represent the
empirical values and the lines the smoothed version of the empirical variogram.

4.6.3 Spatial confirmatory item factor analysis

We placed the same restrictions on the discrimination parameters for the spatial

item factor as we did for the confirmatory item factor analysis. Based on the

empirical variograms shown in Figure 4.3, we proposed three models; model 1

includes a Gaussian process in the first latent factor (SPIFA I), model 2 includes

Gaussian processes in the first and third factor (SPIFA II), and model 3 includes

Gaussian processes in the three factors (SPIFA III). We used the exponential

correlation function to model the spatial structure of each of the Gaussian processes

in our model. Spatial predictors were not included in our model because these are

insufficiently finely resolved in our study area. For instance, there are only 8

census sectors (from the 2010 demographic census by the Brazilian Institute for

Geography and Statistics (IBGE)) covering Ipixuna - in the future, we are planning

a larger scale analysis in which spatial predictors will be included; our software

package is already able to handle this case.

We used the same prior specifications as in the CIFA model for the eas-

iness parameters cj, discrimination parameters Ajk and correlation matrix Rv.

In addition, we used log-normal priors LN (log(160), 0.3), LN (log(80), 0.3) and
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LN (log(80), 0.3) for the scale parameters {φ1, φ2, φ3} of the Gaussian processes in

factor 1, 2 and 3 respectively; and the log-normal prior distribution LN (log(0.4), 0.4)

for all the free elements of T . The adaptive MCMC scheme had parameters

C = 0.7 and α = 0.8 with target acceptance probability of 0.234. We ran

the Metropolis-within-Gibbs algorithm for 300,000 iterations discarding the first

150,000 iterations and storing 1 in every 150 iterations. Convergence was again

assessed visually with stationarity occurring around the iteration 40,000 of the

burnin period. Usually, mixing is slower for the elements of T and the scale pa-

rameter φ of the Gaussian processes.

We compared these three models using the Deviance Information Criterion

(DIC), see Table 4.2. We can see that the classical confirmatory model (CIFA)

has lowest effective number of parameters (328.14); this model has independent

random effects only. In contrast, the spatial models include both independent

and spatial random effects as explained in Section 4.2. The DIC for the three

spatial models is lower than that for CIFA, hence by this measure, it is statistically

advantageous in terms of model fit to allow the factors to be spatially correlated.

Of the three spatial models, SPIFA III, the model including Gaussian processes

in all three factors, has the best performance in terms of DIC (2195.529). Hence

in the remainder of this section, we focus on the results from this model. The

trace-plots for the elements of T and the scale parameters φ of the Gaussian

processes for our selected model can be seen on Figure 4.10 and 4.11 respectively.

Additional (representative) trace-plots for random selected parameters can be seen

in Appendix D.
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Table 4.2: Deviance Information Criteria (DIC) for the Proposed Models: without
spatial correlation (CIFA), with spatial correlation in factor 1 (SPIFA I), with spatial

correlation in factor 1 and 3 (SPIFA II) and with spatial correlation in all factors
(SPIFA III).

Model

Diagnostics

Posterior Mean Deviance Effective Number of Parameters DIC

CIFA 1894.228 328.1377 2222.365

SPIFA I 1865.85 334.228 2200.078

SPIFA II 1862.156 339.2756 2201.432

SPIFA III 1856.354 339.1752 2195.529

The posterior medians of the discrimination parameters {Â·1, Â·2, Â·3} for

the selected model (SPIFA III) are shown in Table 4.1 under the column of SPIFA.

We can see that the median of the obtained parameters have a broadly a similar

structure as for the CIFA model, so their interpretation is as discussed in the

previous section; notice that most of the discrimination parameters are higher for

the SPIFA model. The last column of Table 4.1 shows the posterior median of the

easiness parameters ĉ; note the items with high easiness are those most frequently

answered with an affirmative (‘endorsed’). This column shows that eating few

food types (item 3), obtaining credit for eating (item 15) and worrying that food

will end (item 1) are the most common behaviours in the population of Ipixuna.

Borrowing food (item 16), eating food just with farinha (item 14), having children

with one meal per day (item 13) and feeling hungry but do not eat (item 6 and

12) are less common.
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Figure 4.4: Median of the predicted latent factors of food insecurity.

Figure 4.4 shows the posterior median of each of the three factors over our

study area. The left plot shows that the first factor has a strong spatial structure;

the respective posterior median of the standard deviation and scale parameters of

the associated Gaussian process are T̂1,1 = 0.465 and φ̂1 = 214 meters. Examining

the middle plot, for the second factor, it can be seen that the spatial structure is not

as strong as the first factor. The respective parameters of the associated Gaussian

process have posterior medians T̂2,2 = 0.205 and φ̂2 = 83.6. The right hand plot,

referring to the third factor, shows moderate spatial structure with similar median

posterior estimates as the second factor: T̂3,3 = 0.287 and φ̂3 = 78.8.

Examining the obtained maps of food insecurity for the first factor, we can

see there are lower levels of food insecurity around the center of the study area

and more severe food insecurity around the locations A (71.695◦ W, 7.045◦ S), B

(71.69◦ W, 7.045◦ S), C (71.698◦ W, 7.052◦ S) and D (71.685◦ W, 7.06◦ S). In

this city, location C refers to the flood-prone, politically marginalized and poor

neighbourhood of Turrufão. Housing is on stilts, and there is no sanitation and

poor provision of public services. Point A refers to the flood-prone, poorest part of

another marginalized neighbourhood, Multirão Novo. These households are also

located at the edge of a large stream called Igarapé Turrufão. The area B is a

relatively new neighbourhood, Morro dos Encanados, which is poor and prone to
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surface flooding from rainfall. Area D is at the edge of the River Juruá and is

highly flood-prone. It is also a relatively new and very poor neighbourhood called

Bairro da Várzea. Hence, the common characteristic among these locations is

that they are poor, marginalized and mostly flood-prone neighbourhoods on the

peri-urban fringe. Most of the heads of households in these neighbourhoods are

rural-urban migrants (often relatively recent), and many of their livelihoods are

still based in rural areas. These relatively large areas are capturing indications

of relatively severe food insecurity, yet without apparent anxiety and a distinct

absence of some coping strategies: borrowing food, eating in other households or

accessing credit.

With respect to the map of the second factor, we can identify higher levels

of food insecurity around location E (71.69◦ W, 7.048◦ S), F (71.686◦ W, 7.048◦

S) and G (71.698◦ W, 7.058◦ S). Location E covers a large and older area of the

town, covering proportions of two neighbourhoods: Bairro do Cemetério and Mul-

tirão Velho. They are not flood prone and not so marginalized and poor, though

certainly not wealthy. It is plausible that this factor captures more moderate food

insecurity and coping strategies associated with higher levels of horizontal social

capital and access to credit. Area F is the larger part of Morro dos Encanados

(see above). Area G is another flood-prone peri-urban neighbourhood on the other

side of the River Jurua, by the name of Bairro da Ressaca.

In the map of the third factor of food insecurity, we can see areas of severe

food insecurity around H (71.693◦ W, 7.045◦ S), I (71.687◦ W, 7.057◦ S) and J

(71.688◦ W, 7.056◦ S). Area H covers the border between two poor, peri-urban

neighbourhoods: Bairro da Liberdade and Multirão Novo. Point I is an area of

Morro dos Encanados. Area J is the beginning of the peri-urban, flood-prone

region and the poor area, Bairro da Várzea.

While spatial plots of the posterior median tell us where food insecurity

is high and low on average, we ideally also need to take into account the spatial

sampling design, since we will be better able to estimate food insecurity where
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we have more data points. One such measure are exceedance probabilities: the

posterior probability that the factor exceeds a given threshold; this takes into

account both the mean and the variance of the factor at each location. In figure

Figure 4.5, we show the probability that the latent factor is greater than zero in

order to identify areas over and below average. It so happens that in the present

case, the pattern of high and low food insecure areas remain similar with respect

to the maps of the median for each factor.
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Figure 4.5: Exceedance probabilities Pr (θk(s) > 0) of the latent factors of food
insecurity.

Identifying these areas of high (and also low) food insecurity is of relevance

for future research in this area, for example: exploring the social and environmental

(e.g. household flood risk due to elevation) determinants of vulnerability to food

insecurity. Understanding the spatial-variation of food insecurity at local (e.g.

neighbourhood or street) scales will also allow us to continue our dialogue with

local government and other stakeholders around which are the priority areas for

intervention and what type(s) of intervention should be deployed in order to reduce

the risk of food insecurity.
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4.7 Discussion

In this work we have developed a new extension of item factor analysis to the spatial

domain, where the latent factors are allowed to be spatially correlated. Our model

allows for the inclusion of predictors to help explain the variability of the factors.

These developments allow us to make prediction of the latent factors at unobserved

locations as shown in our case of study of food insecurity in the Brazilian Amazon.

We solved the issues of identifiability and interpretability by employing a similar

strategy as for confirmatory item factor analysis in order to obtain an identifiable

model, and by standardizing the resulting factors after inference. Our model has

been successfully implemented in an open source R package.

Since item factor analysis is used across such a wide range of scientific

disciplines, we believe that our model and method of inference will be important

for generating and investigating many new hypotheses. For instance, it could be

used to model socio-economic status.

Computationally, our model is more efficient compared to a model where

the spatial structure is used at the level of the response variables. By including

spatial structure at the level of the factors, we reduce the computational cost

from O(q3n3) to O(m3n3) where the number of items (q) is usually much greater

than the number of latent factors (m). For larger datasets, we can reduce the

computational burden by using alternatives to the Gaussian process. For example,

we could use spatial basis functions (Fahrmeir et al., 2004), nearest neighbour

Gaussian processes (Datta et al., 2016) or stochastic partial differential equations

(Lindgren et al., 2011) to reduce the cost. This is not so obvious because some of

the nice properties of these processes can be lost when working with multivariate

models.

Our model can be extended to the spatio-temporal domain, though again

with increased computational expense, depending on the chosen parameterisation

of the spatio-temporal correlation. A more complex extension of our model would



120

allow the use of binary, ordinal and continuous items and would also allow pre-

dictors to be related in a non-linear way to the latent factors. These extensions

would allow us to answer more complex research questions and would also improve

prediction of the latent factors, see Appendix E. Extensions to other distributional

assumptions (e.g. heavier tailed densities) are also possible if one desires to trade

the convenience conjugacy for realism; the Gaussian model fitted our particular

dataset well.
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Appendix A Spatial item factor analysis

A.1 Scaling aliasing

Restricting the variances of the latent abilities to one, diag(Σθ) = 1, is the same

as restricting the variances of the residual term v(s) because

V [bᵀkx(s) + wk(s) + vk(s)] = 1 (4.62)

for k = 1, . . . ,m implies that

V [vk(s)] = 1−V [bᵀkx(s) + wk(s)] = σ2
vk
. (4.63)

More generally, the constrain diag(Σθ) is equivalent to set the covariance matrix

of v(s) as Σv = D1RvD1, where D1 is a diagonal matrix with elements σvk . Then

the covariance matrix of the latent abilities θ(s) is expressed as

V [θ(s)] = V [Bᵀx(s)] +V [w(s)] +D1RvD1, (4.64)

the problem with this restriction is that σvk need to be known.

Inference can be attained by introducing arbitrary values. Consider the

transformation D2 = DD−1
1 , where D is a diagonal matrix with arbitrary values,

then we can define

âᵀ
j θ̂(s) = aᵀ

jD
−1
2 D2θ(s) = aᵀ

jθ(s). (4.65)

Note that under this transformation, the variance of the new latent variable θ̂(s) =

D2θ(s) is defined as

V
[
θ̂(s)

]
= V

[
B̂

ᵀ
x(s)

]
+V [ŵ(s)] +DRvD, (4.66)
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where B̂
ᵀ

= D2B
ᵀ and ŵ(s) = D2w(s). It can be seen that defining an arbi-

trary diagonal matrix D still allows us to make inference given that the marginal

variances of θ̂(s) are still restricted. In this case, the variances are equal to the

squared values of the diagonal matrix D2, diag(Σθ̂) = diag(D2
2).

If we choose D = I; then D2 = D−1
1 , θ̂(s) = D−1

1 θ(s), diag(Σθ̂) =

diag(D−2
1 ) and

V
[
θ̂(s)

]
= V

[
B̂

ᵀ
x(s)

]
+V [ŵ(s)] +Rv. (4.67)

This transformation allows us to make inference, but the interpretation of the

transformed parameters âj are not the same as in the classical item factor analysis

because the marginal variances of θ̂(s) are not equal to 1, diag(Σθ̂) 6= 1. To

recover the interpretation of the discrimination parameters, we simply compute

the standard deviations of θ̂(s) after sampling to obtain the estimated Q = D̂
−1

1 ,

and back-transformed aj = Qâj and θ(s) = Q−1θ̂(s) as explained in Section 4.4.4.

Appendix B Markov chain Monte Carlo scheme

sampling

B.1 Posterior of auxiliary variables

We show the details of how to obtain Equation 4.31 to specify the posterior dis-

tribution of the auxiliary variables of our model.

Pr (z | yobs, c,a,θ) = Pr (zobs, zmis | yobs, c,a,θ)

∝ Pr (zobs, zmis | c,a,θ) Pr (yobs | zobs, zmis)

∝ Pr (zobs | c,a,θ) Pr (zmis | zobs, c,a,θ) Pr (yobs | zobs, zmis)

∝ Pr (zobs | c,a,θ) Pr (zmis | c,a,θ) Pr (yobs | zobs) . (4.68)
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The last line is obtained because Zmis and Zobs are conditionally independent

given {c,a,θ} and because Y obs is conditionally independent of Zmis given Zobs.

Appendix C Alternative Sampling Schemes

C.1 Alternative sampling scheme using marginalization

In Section 4.4.1, we defined the Bayesian model such us the conditional probability

Pr (z | θ, c,a) plays a main role to derive the posterior conditional distributions

of the associated parameters. This was convenient to obtain the analytical expres-

sion of the conditional posterior distributions; however, convergence can be slow

due to nested relationship in the updates of the Gibbs sampling. An Alternative

approach to achieve faster convergence, in terms of iterations, is to marginalize

some parameters such as the nested relationship is reduced.

Considering the definition of the auxiliary variables in Equation 4.18, we

can see that any element from the set {c,β,w,v} can be marginalized due to

conjugacy Gaussian properties. Let α be the subset of parameters that we wish to

marginalize and γ the subset of remaining parameters which will not be marginal-

ized. Additionally, let Xα and Xγ be the associated design matrix, and let Σα

and Σγ be the associated covariance matrices. Then the auxiliary variables can

be expressed as

Z = Xγγ +Xαα+ ε, (4.69)

where at least one of the design matrices Xβ and Xγ will depend of the restricted

discrimination parameters A∗. Then, composition sampling, as shown in Holmes

and Held (2006), can be used to sample from the posterior distribution of the

model using the following equivalence

Pr (z,α,γ,a,T ,φ,Rv | y) = Pr (z,γ,a,T ,φ,Rv | y) Pr (α | z,γ,a,T ,φ,Rv) ,

(4.70)
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such as the first term of the right hand side does not depend of the set of parameters

α. This way convergence is expected to be faster and the parameters included in α

can be simulated by composition sampling once the convergence of the remaining

parameters is ensured.

Sampling from the marginalized parameters α can be done straight away

because the conditional distribution given γ is a Gaussian density,

Pr (α | z,γ,a,T ,φ,Rv) ∝ N (z |Xγγ +Xαα, Inq)N (α | 0,Σα), (4.71)

with mean and covariance:

Σα|z = (Xᵀ
αXα + Σ−1

α )−1 (4.72)

µα|z = Σα|zX
ᵀ
α(z −Xγγ). (4.73)

In some cases, computational advantage can be gained considering that

(Xᵀ
αXα + Σ−1

α )−1 = Σα −ΣαX
ᵀ
α(XαΣαX

ᵀ
α + I)−1XαΣα. (4.74)

Obtaining posterior samples for {z,γ,a,T ,φ,Rv} is more complicated,

but can be achieved using Metropolis within Gibbs sampling. For this, we should

notice that

Pr (z,γ,a,T ,φ,Rv | y) ∝ Pr (y | z) Pr (z | γ,a,T ,φ,Rv) Pr (γ) Pr (a)

Pr (T ) Pr (φ) Pr (R) . (4.75)

Hence, using Equation 4.69, the conditional posterior for Z is

Pr (z | y,γ,a,T ,φ,Rv) ∝ N (z |Xγγ,XαΣαX
ᵀ
α + Inq)

∏
i,j

Pr (yij | zij) (4.76)

which is a truncated multivariate normal distribution. Unfortunately, sampling

can not be done directly, but Gibbs sampling can be used taking into advantage
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that the conditional posterior of the marginalized parameters α given all the auxil-

iary variables except Zk, Pr (α | z−k,γ,a,T ,φ,Rv), is a Normal distribution with

covariance and mean:

Σα|z−k = Σα|z +
Σα|zxαkx

ᵀ
αk

Σα|z

1− hkk
(4.77)

µα|z−k = µα|z −
Σα|zxαk
1− hkk

(zk − xᵀ
βck
βc − xᵀ

αk
µα|z), (4.78)

where hkk = xᵀ
αk

Σα|yxαk . Then, we can sample from the leave-one-out marginal

predictive densities,

Pr (zk | z−k, yk,γ,a,T ,φ,Rv) =

∫
Pr (zk | α, yk,γ,a) Pr (α | z−k,γ,a,T ,φ,Rv) dα,

being proportional to

1
yk
(zk>0)1

1−yk
(zk≤0)

∫
N (zk | xᵀ

γk
γ + xᵀ

αk
α, 1)Pr (α | z−k,γ,a,T ,φ,Rv) dα (4.79)

which are univariate Normal truncated densities,

∝ N
(
xᵀ
γk
γ + xᵀ

αk
µα|z − wk(zk − xᵀ

γk
γ − xᵀ

αk
µα|z), 1 + wk

)
1
yk
(zk>0)1

1−yk
(zk≤0), (4.80)

where wk = hkk/(1− hkk). As explained in Holmes and Held (2006), each time a

sample zk is drawn, the conditional mean µα|z must be updated. Denoting S =

Σα|·X
ᵀ
α, the conditional mean can be expressed as µα|z = S−iz−i +Sizi−SXγγ,

and it can efficiently be updated as

µnew
α|z = Siz

new
i + S−iz−i − SXβcβc (4.81)

= Siz
new
i + S−iz−i − SXβcβc (4.82)

= Siz
new
i + Sz − Sizold

i − SXβcβc (4.83)

= µold
α|z + Si(z

new
i − zold

i ). (4.84)
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Finally, because we do not get analytically expressions for the conditional

distributions of remaining parameters {a,T ,φ,Rv}, we can use Metropolis-Hasting

or others samplers like Hamiltonian Monte Carlo to obtain draws from them. The

posterior is only defined up to a constant of proportionality

Pr (a,T ,φ,Rv | γ, z) ∝ Pr (z | γ,T ,φ,Rv) Pr (a) Pr (T ) Pr (φ) Pr (Rv) . (4.85)

Note that an adequate transformation will be required to sample these parameters

as explained in Section 4.4.3.6.

C.2 Marginalizing the Gaussian process and individual ran-

dom effect

In the spatial item factor analysis, it seems reasonable to desired to marginalized

the more high-dimensional terms like the multivariate Gaussian process w and the

multivariate residual term v. In this case, the marginalized parameters is defined

as α = (wᵀ,vᵀ)ᵀ with associated design matrix Xα = (A∗T ⊗ In,A∗ ⊗ In).

The remaining parameters would be γ = (cᵀ,βᵀ)ᵀ with design matrix Xγ =

(Iq ⊗ 1n,A
∗ ⊗X). The covariance matrix of these collections of parameters are

obtained as Σα = diag(Σw,Σv) and Σγ = diag(Σc,Σβ). Given these definitions,

it can be noticed that the some of the terms required for the sampling are

Xγγ = (Iq ⊗ 1n)c+ (A∗ ⊗X)β

XαΣαX
ᵀ
α = (A∗T ⊗ In)(⊕mk=1Σwk)(T

ᵀA∗ᵀ ⊗ In) + (A∗RvA
∗ᵀ ⊗ In), (4.86)

Xᵀ
αXα =

 T ᵀA∗ᵀA∗T T ᵀA∗ᵀA∗

A∗ᵀA∗T A∗ᵀA∗

⊗ In, (4.87)
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and also

Xᵀ
α(z −Xγγ) =

 (T ᵀA∗ᵀ ⊗ In)(z −Xγγ)

(A∗ᵀ ⊗ In)(z −Xγγ)

 (4.88)

=

 vec((Z − 1nc
ᵀ −XBA∗ᵀ)A∗T )

vec((Z − 1nc
ᵀ −XBA∗ᵀ)A∗)

 . (4.89)

As mentioned before, we can take advantage of Equation 4.74 and addi-

tionally reduce the dimension of the computational cost considering that

XαΣαX
ᵀ
α + Inq = (A∗T ⊗ In)Σw(T ᵀA∗ᵀ ⊗ In) + (A∗RvA

∗ᵀ ⊗ In) + Inq

= (A∗T ⊗ In)Σw(T ᵀA∗ᵀ ⊗ In) + ((A∗RvA
∗ᵀ + Iq)⊗ In),

(4.90)

that the inverse of this is

(XαΣαX
ᵀ
α + Inq)

−1 (4.91)

= ((A∗T ⊗ In)Σw(T ᵀA∗ᵀ ⊗ In) + (A∗RvA
∗ᵀ ⊗ In) + Inq)

−1

= ((A∗T ⊗ In)Σw(T ᵀA∗ᵀ ⊗ In) + (A∗RvA
∗ᵀ + Iq)⊗ In)

−1

= (A∗RvA
∗ᵀ + Iq)

−1 ⊗ In − ((A∗RvA
∗ᵀ + Iq)

−1A∗T ⊗ In)

(Σ−1
w + T ᵀA∗ᵀ(A∗RvA

∗ᵀ + Iq)
−1A∗T ⊗ In)−1(T ᵀA∗ᵀ(A∗RvA

∗ᵀ + Iq)
−1 ⊗ In)

= (A∗RvA
∗ᵀ + Iq)

−1 ⊗ In − ((A∗RvA
∗ᵀ + Iq)

−1A∗T ⊗ In)Σw

(Imn +
(
T ᵀA∗ᵀ(A∗RvA

∗ᵀ + Iq)
−1A∗T ⊗ In

)
Σw)−1(T ᵀA∗ᵀ(A∗RvA

∗ᵀ + Iq)
−1 ⊗ In)

(4.92)

and that the determinant is

det(XαΣαX
ᵀ
α + Inq)

= det ((A∗T ⊗ In)Σw(T ᵀA∗ᵀ ⊗ In) + (A∗RvA
∗ᵀ + Iq)⊗ In)

= det((A∗RvA
∗ᵀ + Iq)⊗ In) det(((A∗RvA

∗ᵀ + Iq)
−1 ⊗ In)(A∗T ⊗ In)Σw(T ᵀA∗ᵀ ⊗ In) + Inq)

= det((A∗RvA
∗ᵀ + Iq)⊗ In) det((T ᵀA∗ᵀ ⊗ In)((A∗RvA

∗ᵀ + Iq)
−1 ⊗ In)(A∗T ⊗ In)Σw + Inm)

= det((A∗RvA
∗ᵀ + Iq)⊗ In) det((T ᵀA∗ᵀ(A∗RvA

∗ᵀ + Iq)
−1A∗T ⊗ In)Σw + Inm)

= det(A∗RvA
∗ᵀ + Iq)

n det((T ᵀA∗ᵀ(A∗RvA
∗ᵀ + Iq)

−1A∗T ⊗ In)Σw + Inm). (4.93)
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C.3 Marginalizing all the posibble set of parameters

Letα = (cᵀ,βᵀ,wᵀ,vᵀ)ᵀ denote the collection of model terms that will be marginal-

ized with associated design matrix Xα = (Iq ⊗ 1n,A
∗ ⊗ X,A∗T ⊗ In,A∗ ⊗

In). The covariance matrix of this collection of parameters is obtained as Σα =

diag(Σc,Σβ,Σw,Σv). Then γ would be an empty set and will simply be removed

from the expressions shown in Section C.1.

The sampling follows the explanation presented in Section C.1, but it is

worth to notice that

Xᵀ
αXα =



Iq ⊗ 1ᵀ
n1n A∗ ⊗ 1ᵀ

nX A∗T ⊗ 1ᵀ
n A∗ ⊗ 1ᵀ

n

A∗ᵀ ⊗Xᵀ1n A∗ᵀA∗ ⊗XᵀX A∗ᵀA∗T ⊗Xᵀ A∗ᵀA∗ ⊗Xᵀ

T ᵀA∗ᵀ ⊗ 1n T ᵀA∗ᵀA∗ ⊗X T ᵀA∗ᵀA∗T ⊗ In T ᵀA∗ᵀA∗ ⊗ In

A∗ᵀ ⊗ 1n A∗ᵀA∗ ⊗X A∗ᵀA∗T ⊗ In A∗ᵀA∗ ⊗ In


,

(4.94)

Xᵀ
αz =



(Iq ⊗ 1ᵀ
n)z

(A∗ᵀ ⊗Xᵀ)z

(T ᵀA∗ᵀ ⊗ In)z

(A∗ᵀ ⊗ In)z


=



vec(1ᵀ
nZ)

vec(XᵀZA∗)

vec(ZA∗T )

vec(ZA∗)


. (4.95)
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Appendix D Traceplots of the Case of Study
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Figure 4.6: Traceplots of difficulty parameters: only 3 out of 18 were randomly
selected to be shown.

A5, 1

A6, 1

A16, 2

A4, 3

A5, 3

0 250 500 750 1000

1

2

1
2
3

0.8
1.2
1.6
2.0
2.4

0

1

2

0
1
2
3

iteration

V
al

ue

Figure 4.7: Traceplots of discrimination parameters: only 5 out of 22 were randomly
selected to be shown.
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Figure 4.8: Traceplots of discrimination parameters: only 5 out of 600 were randomly
selected to be shown.
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Figure 4.9: Traceplots of correlation parameters.
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Figure 4.10: Traceplots of unrestricted standard deviations parameters for the
multivariate Gaussian process.
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Figure 4.11: Traceplots of the scale parameters of the multivariate Gaussian process.

Appendix E Extension to Mixed Outcome Types

In order to deal with binary, ordinal or continuous items, we can extend the spa-

tial item factor analysis by considering q1 ordinal items and q2 continuous items.

We do not need to differentiate another set of binary items given the they are

simply ordinal items with two categories. The q1 ordinal times can be modelled

as spatial discrete-valued stochastic processes {Yj(s) : s ∈ D}, where D ⊂ R2

and the random variable Yj(s) can take values {0, 1, . . . , Kj − 1}. Notice that
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Kj represents the number of categories for ordinal item j = 1, . . . , q1. We as-

sume that the values of the q1 discrete-valued stochastic processes are determined

by an auxiliary real-valued stochastic processes {Zo
j (s) : s ∈ D} and thresholds

γj = (γj1, γj2, . . . , γj(Kj−1))
ᵀ such as

Yj(s) = k ⇐⇒ −γjk ≤ Zo
j (s) < −γj(k+1), for k = 0, 1, . . . , (Kj − 1),

where γj0 = −∞ and γj(Kj) = ∞. The q2 continuous items can be modelled as

real-valued stochastic processes {Zc
j (s) : s ∈ D} for j = 1, . . . , q2. Then, we can

defined the spatial random vector Z(s) = (Zo
1(s), . . . , Zo

q1
(s), Zc

1(s), . . . , Zc
q2

(s))ᵀ, a

collection of the auxiliary random variables Zo
j (s) associated to the ordinal items

and the observable random variables Zc
j (s) associated to the continuous items, and

define the factor model at this level such as

Zj(s) = cj + a∗ᵀj θ(s) + εj(s), for j = 1, . . . , q1 + q2

where, due to identifiability, cj = 0 for j = 1, . . . , q1 and where the m-dimensional

latent factors are modelled including multivariate non-linear effects, f(xj(s)) :

R→ Rm,

θ(s) =

p∑
i=1

f(xi(s)) +w∗(s) + v(s).

Finally, to make the model identifiable, the error term is defined as

εj(s) ∼

 N (0, 1) for j = 1, . . . , q1

N (0, σj) for j = q1 + 1, . . . , q1 + q2

.
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Chapter 5

Conclusions

In this thesis, we have presented three studies that aim to understand effects of

extreme hydro-climatic events on the health of vulnerable populations in Brazil-

ian Amazonia. In our first study, we proposed a model-based standardized index

(MBSI) to quantify and identify floods and droughts (Chacón-Montalván et al.,

2018a). In the second, we studied the effects of floods and droughts on birthweight

(Chacón-Montalván et al., 2018b). In the third, we proposed and developed in-

ferential methods for spatial item factor analysis (SPIFA) to model and predict

food insecurity (Chacon-Montalvan et al., 2018). In this section, we summarise

the contributions of these studies to (i) our collective scientific understanding of

the impacts of extreme hydro-climatic events on population health and (ii) with

respect to advances in statistical modelling.

5.1 Linking Extreme Hydro-climatic Events with

Population Health

In our studies, we have found consistently that floods, which are increasing in

frequency and magnitude, can have severe effects on population health. We have

also found identified spatial regions and popultaion characteristics of disadvan-

taged groups in roadless cities of Brazilian Amazonia, in which the impacts of

extreme events are likely to be exacerbated due to the fact that these populations

are vulnerable. From the aid perspective, our results can help in the develop-

ment of policies to protect these groups. In the future, we would like to see the

development of an early warning system for food security and health indicators.

The effects of floods on population health was investigated in Chapter 3 by

analysing birthweight and by modelling food insecurity in Chapter 4. We studied
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these two variables because we hypothesized that one mechanism by which extreme

hydro-climatic events could affect human health would be nutrition, which is highly

connected with both birthweight and food insecurity.

In the study of birthweight, it was found that exposure to extreme floods

during pregnancy reduces birth-weight by around 200 grams (see Section 3.4.1);

while in the study of food security, we found that hotspot areas of food inse-

curity, in different dimensions, are related with flood-prone neighborhoods (see

Section 4.6.3). This strongly indicates that there is a need for improving policies

for prevention of extreme hydro-climatic events to reduce the impact on the remote

populations of Brazilian Amazonia.

Disadvantaged groups have also been found our studies of birthweight in

Chapter 3 and food insecurity in Chapter 4. The effects of extreme hydro-climatic

events can be of major impact on these groups. For example, in Section 3.4.3,

it was found that babies from disadvantaged groups were between 163 and 271

grams lighter compared to advantaged groups. The characteristics of these vul-

nerable groups when studying birthweight was indigenous mothers with low level of

education and low ante-natal care. The additional effect of experiencing extreme

hydro-climatic events for these groups could lead to newborns with low weight

(< 2500 grams). With respect to food insecurity, high areas of food insecurity

were also associated with poor and marginalized neighborhoods (see Section 4.6.3).

This indicates spatial structure in disadvantaged groups (which is a common de-

mographic phenomenon, even in the UK). When proposing policies for monitoring

and preventing floods to reduce the impact on populations, the characteristics and

location of the vulnerable groups should be used in order to prioritize and select

intervention efforts and resources given that they are more likely to be affected

because of their low resilience.

We would like to see our work forming a basis for the development of an

early warning system (EWS) to reduce the impacts of floods and droughts on

human health. We could focus on ensuring an adequate level of food security in
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this EWS. The system could first use the MBSI presented in Chapter 2 to predict

droughts and floods by relating the obtained MBSI of precipitation with river levels

and we could use additional climatic and environmental variables like topography

to improve this predictions. Later, similar to Chapter 4, an SPIFA model could

be used to predict areas of high food insecurity by including the data of predicted

floods and droughts as covariates on the SPIFA model. Finally, prioritization

inside these areas could be done by identifying the vulnerable groups as in our

study of birthweight in Chapter 3.

5.2 Statistical Modelling

By understanding the effects of extreme hydro-climatic events on population health,

we developed novel methodologies that contribute to the area of statistical mod-

elling. These contributions are based on known theory of generalized additive

models for location, scale and shape (GAMLSS), item factor analysis (IFA) and

spatial statistics. Using these approaches, and mixing them when necessary, al-

lowed us to propose very flexible approaches like the model-based standardised

index (MBSI) in Chapter 2, the spatial item factor analysis (SPIFA) in Chapter 4

and the mixed spatial item factor analysis (MSPIFA) in Section 5.2.3.

5.2.1 Model-based Standardised Index

The model-based standardised index (MBSI) selected in Chapter 2 is an index to

detect extreme events of an discrete-time stochastic process. It has been applied

to precipitation data, but it can be used in more general cases where data collected

through time is available. This index turned out to be more theoretically attractive

than the standardised precipitation index (SPI), but we also showed the advantages

of it in practice (see Section 2.5). Lastly, given that advocate the use of a model-

based approach, this index can be easily extended, at least theoretically, to consider

temporal trends, to include covariates or to the spatio-temporal domain.
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5.2.2 Spatial Item Factor Analysis

Spatial item factor analysis (SPIFA), presented in Chapter 4, is a novel approach

to model and predict spatially structured multi-dimensional latent factors when

the observed items are dichotomous. These models use concepts of item factor

analysis and spatial statistics. In our application study, our method and inferential

techniques enabled us to detect areas with high food insecurity in each dimension

of this construct. Our method will allow scientists to obtain a deep understanding

of the spatial, environmental and socioeconomic aspects of food insecurity and

hopefully to inform and make better decisions in order to reduce it. The SPIFA

model can be applied in more general examples, as highlighted in that chapter,

which could lead to new scientific findings on the spatial structure of other latent

constructs.

Our model can be easily extended depending of the interest of the study.

For example, we propose an extension in the next subsections that could allow

prediction of food insecurity in cities where the associated survey was not observed

due to financial and logistic constraints.

5.2.3 Mixed Spatial Item Factor Analysis with Aggregated

Covariates Effects

In this section we describe an extension to spatial item factor analysis (SPIFA),

proposed in Chacon-Montalvan et al. (2018), by introducing random effects at the

levels of items and also covariates that have been spatially aggregated at the level

of latent factors.

This extension is motivated by the desire to predict food insecurity in sev-

eral remote municipalities of Brazilian Amazonia, where resources only permitted

us to conduct food insecurity surveys in only a few cities. Knowing that food

insecurity is linked to socio-economic characteristics, we could use secondary data,

like the census data, to link it to food insecurity thus enabling us to be able to



141

predict this latent construct in other municipalities. Our extension will also han-

dle the case that covariates from the secondary data might only be available at an

aggregated level.

5.2.3.1 Model at Item Level

Let Ykj(s) be a binary random variable to item j = 1, 2, . . . , q in group (e.g. city)

k = 1, 2, . . . , K at location s. These binary responses are modelled as discrete-

state stochastic processes {Ykj(s) : s ∈ D}, where D ⊂ R2, that take values 0 or 1

according to an auxiliary stochastic process {Zkj(s) : s ∈ D}:

Ykj(s) =

 1 if Zkj(s) > 0

0 otherwise.
(5.1)

In the SPIFA model, the structure of the auxiliary variables, Zkj(s) =

cj + a∗ᵀj θ(s) + εj(s), includes the easiness parameters {cj} to account for the

difference in the chance of endorsing each item, an interaction between the m-

dimensional restricted discrimination parameter a∗j and the m-dimensional latent

factor θ(s) to account for the influence of the latent factor to endorse item j, and

an error term εj(s) ∼ N (0, 1) (Chacon-Montalvan et al., 2018). The discrimination

parameters are restricted in the sense that some elements are set to zero and can

be defined as a∗j = Ljaj, where aj is the vector of free discrimination parameters

and Lj is a m×m matrix of ones and zeros that defines the structure imposed by

the researcher. The l-element a∗jl of the restricted discrimination parameters can

be interpreted as the capacity of of item j to discriminate the dimension l of the

latent factor θ(s); as long as a∗jl is far apart of zero, the capacity to discriminate

increases.

We can modify the model imposed on the auxiliary variables Zkj(s) to

account for other sources of variability. In our case, to consider the variability
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between groups (i.e. cities), we extend the structure of the auxiliary variables as

Zkj(s) = cj + γkj + [a∗j +α∗kj]
ᵀθk(s) + εkj(s), εkj(s) ∼ N (0, 1), (5.2)

where cj and γkj are the fixed and random easiness parameters respectively; the

first indicates the global easiness for item j and the second, which is assumed

to be normally distributed γkj ∼ N (0, σ2
γ), provides an additional increment on

easiness in item j for belonging to group k. The m-dimensional continuous-space

stochastic process {θk(s) : s ∈ D} represent the multi-dimensional latent con-

struct under interest in location s at group k. The latent factor has an effect on

the auxiliary variable Zkj(s) through the sum of the fixed a∗j and random α∗kj dis-

crimination parameters. In a similar way to the easiness parameters, a∗j represent

the global discrimination parameter, whileα∗kj, assumed to be normally distributed

as N (0, σ2
αI), is the additional increment on the discrimination for belonging to

group k. The random discrimination parameters also need to be restricted such

as α∗kj = Ljαkj, where αkj is the free random discrimination parameters.

5.2.3.2 Model at Latent Factor Level

The structure imposed on the m-dimensional latent factor θk(s) is the same model

proposed in Chacon-Montalvan et al. (2018); the difference is that the parameters

are going to vary with respect to each city. This structure considers three sources

of variability; the effects of covariates, multivariate continuous spatial variation

and multivariate residual variation. Then, the model for the latent factor in group

k is defined as

θk(s) = Bᵀx(s) + T kwk(s) + vk(s), (5.3)

where B is an p×m matrix of slopes associating a set of standardized covariates

x(s), non-necessarily observed, with the latent factor θk(s). The spatial compo-

nent of the latent factor is explained by a m× g linear transformation T k, whose
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sparsity is defined by the researcher, of a set wk(s) = {wkl(s)}gl=1 of standardized,

independent, stationary and isotropic Gaussian processes with correlation function

ρkl(u),

wkl(s) ∼ GP(0, 1, ρkl(u)), k = 1, . . . , K, l = 1, . . . , g. (5.4)

Finally, the m-dimensional random vector vk(s) accounts for the remaining un-

certainty in the latent factors that is neither explained by the covariates nor by

wk(s). It is assumed vk(s) is a zero-mean multivariate normal distribution with

covariance matrix Σvk ,

vk(s) ∼ N (0,Σvk), k = 1, . . . , K. (5.5)

It is useful to decompose the covariance matrix Σvk = DkRvkDk in terms of a

correlation matrix Rvk and a diagonal matrix of standard deviations Dk.

5.2.3.3 Model on Covariates at Aggregated Level

Notice that the covariates x(s) = (x1(s), . . . , xp(s))
ᵀ included in Equation 5.3

need to be on the continuous spatial scale at the locations where the items Ykj(s)

have been observed. However, the data available could be at aggregated level

(e.g. census sectors, post-codes, etc) or at individual level measured at different

locations to the items. One possibility would be to model the spatial covariates

and use this to predict these variables at any required (and reasonable) location

s. Different types of models could be used for this, but we prefer to use models

based on basis functions because they computationally cheaper when compared to

other alternatives like Gaussian processes.

Let X(s) denote the random variable associated with the covariate, or real-

ization, xi(s) for i = 1, . . . , p and spatial location s = (s1, s2) that can be modelled
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separately as an additive model

X(s) = f(s) + ε(s) =

q1∑
j=1

q2∑
l=1

δjlb1j(s1)b2l(s2) + ε(s), (5.6)

where εs represents the perturbation term and the flexible function f(s), defined

on the spatial domain s ∈ D, is expressed as a linear combination of the interaction

bjl(s) = b1j(s1)b2l(s2) of the basis functions b1j and b2j defined for the axis s1 and

s2 respectively. Notice that δjl defines the importance of the interaction of the

basis functions in the spatial structure and are usually modelled using intrinsic

Gaussian Markov random fields as a prior distribution such as

Pr (δ) ∝ exp(− 1

2τ 2
δᵀPδ), (5.7)

where δ = (δ11, . . . , δq1q2)
ᵀ, P is the penalty matrix and τ is the smoothing pa-

rameter (Rue and Held, 2005).

In case X(s) has been observed individually, we can easily fit our model

in Equation 5.6 and make prediction at locations where the items were observed.

However, if the data has been observed at aggregated level we can consider the

random variable X(A) for the area A such as X(A) = |A|−1 f(A) + ε(s), where

f(A) =
∫
s∈A f(s)ds, leading to the model

X(A) =

q1∑
j=1

q2∑
l=1

δjl

(
|A|−1

∫
s∈A

b1j(s1)b2l(s2)ds

)
+ ε(A), (5.8)

considering b∗jl(A) = |A|−1 ∫
s∈A b1j(s1)b2l(s2)ds, the above equation has the same

structure as an additive model where the basis functions are build based on the

areas under study, so common approached for inference of additive models can

be used. Evaluating b∗jl(s) is not straightforward, but Monte Carlo methods can

be used to easily evaluate this function. Notice that δjl in remains unmodified

with respect to the individual model in Equation 5.6, so they can be used to make

inference of X(s) at any location s ∈ D.
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Appendix A Matrix Form of the Mixed Model

In this section, we present the matrix form of the model at item and latent factor

level. This is a key aspect to be able to make inference and prediction for our

proposed mixed model.

Let sk = {sk1, . . . , sknk} be the set of nk locations in group k, and θkji =

θkj(ski) the j-dimension of the latent factor in group k at location ski. We denote

the m-vector θk·i = θk(ski) = (θk1i, . . . , θkmi)
ᵀ, the nk-vector θkj· = θkj(sk) =

(θkj1, . . . , θkjnk)
ᵀ, the mnk-vector θk·· = (θᵀk1·, . . . ,θ

ᵀ
km·)

ᵀ, and the mn-vector θ =

(θᵀ1··, . . . ,θ
ᵀ
K··)

ᵀ with n =
∑K

k=1 nk. These notations will be used for the multi-

variate processes considered in our mixed SPIFA model such as the response item

Y k(s), the auxiliary variables Zk(s), the multivariate Gaussian process wk(s), and

the multivariate residual term vk(s).

With the above conventions, the collection of auxiliary random variables

Z = (Zᵀ
1··, . . . ,Z

ᵀ
K··)

ᵀ for q items at n1 locations in group 1, n2 locations in group

2, so on, can be expressed as

Z = Icc+ Iγγ + Aθ + ε, (5.9)

where c = (c1, . . . , cq)
ᵀ is a vector arrangement of the fixed easiness parameters,

γ = (γᵀ
1 , . . .γ

ᵀ
K)ᵀ is a vector arrangement of random easiness parameters with

γk = (γk1, . . .γkq)
ᵀ, θ the vector of the latent factors as defined above, and ε =

(εᵀ1··, . . . , ε
ᵀ
K··)

ᵀ is a nq-vector of residual terms. The vectors c, γ and θ are related

with Z through the matrices Ic, Iγ and A respectively, which are defined as

Ic = (Iq ⊗ 1ᵀ
n1
, . . . , Iq ⊗ 1ᵀ

nK
)ᵀ, Iγ = ⊕Kk=1(Iq ⊗ 1nk), A = ⊕Kk=1([A∗ +α∗k]⊗ Ink),

(5.10)

where Iq and Ink are identity matrices of dimension q and nk respectively, 1nk is

a nk-dimensional vector with all elements equals to one, ⊕ represents a direct sum



147

of matrices, A∗ = (a∗1, . . . ,a
∗
q)

ᵀ is a q × m matrix arrangement of the restricted

fixed discrimination parameters, and α∗k = (α∗k1, . . . ,α
∗
kq)

ᵀ is a q × m matrix

arrangement of random discrimination parameters for city k.

The vector of latent factors θ for m dimensions at n1 locations in group 1,

n2 locations in group 2, so on, can be expressed as

θ = Xβ + T w + v, (5.11)

where β = vec(B) is a column-vectorization of the multivariate fixed effects,

w = (wᵀ
1··, . . . ,w

ᵀ
K··)

ᵀ is the collection of the multivariate Gaussian processes and

v = (vᵀ1··, . . . ,v
ᵀ
K··)

ᵀ is the collection of the multivariate residual terms. The terms

β and w influence θ through X and T respectively, which are defined as

X = (Im ⊗Xᵀ
1 , . . . , Im ⊗X

ᵀ
K)ᵀ, T = ⊕Kk=1(T k ⊗ Ink), (5.12)

where Xk = (xk1, . . . ,xkn)ᵀ is the nk×p design matrix of the covariates for group

k, and T k as defined in Equation 5.3.

Equation 5.9 and 5.11 are very useful to obtained conditional posterior

parameters, but not for the discrimination parameters. For this reason, it is also

convenient to express the collection of auxiliary variables Z as

Z = Icc+ Iγγ + ϑaLa+ ϑα(IK ⊗L)α+ ε (5.13)

where a = (aᵀ
1, . . . ,a

ᵀ
q)

ᵀ is an mq-vector of the free fixed discrimination parameters

and α = (vec(α1), . . . , vec(αK))ᵀ is an mqK-vector of the random discrimination

parameters. L = ⊕qj=1Lj is the direct sum of the activation matrices that constrain

the fixed discrimination parameters. a and α are related to Z through the matrices

ϑa and ϑα, which are defined as

ϑa = (Iq ⊗Θᵀ
1, . . . , Iq ⊗Θᵀ

K)ᵀ, ϑα = ⊕Kk=1(Iq ⊗Θk) (5.14)



148

where Θk = (θk1·, . . . ,θkm·) is a nk ×m matrix of latent abilities for group k.

Appendix B Bayesian Inference

The model proposed in this paper assumes that nk locations have been sample in

group k = 1, . . . , K and that q items have been observed at each location. Using

notation presented in Section A, we denote the collection of response variables for

item j in city k as Y kj· = (Ykj1, . . . , Ykjnk)
ᵀ, the collection of response variables in

city k as Y k·· = (Y ᵀ
k1·, . . . ,Y

ᵀ
kq·)

ᵀ, and the collection of all response variables as

Y = (Y ᵀ
1··, . . . ,Y

ᵀ
K··)

ᵀ. Given that it is possible some items are missing at certain

sample locations, we denote Y obs as the set of response variables where the data

has been observed and Y mis the set of response variables where the data is missing.

B.1 Hierarchical Model

We factored the joint likelihood into three model hierarchies: the data level Pr (yobs | zobs),

at the level of the auxiliary variables Pr (z | c,γ,a,α,θ), and at the level of the la-

tent factors Pr (θ | β, {T k}, {φk}, {Rvk}), easiness random parameter Pr
(
γ | σ2

γ

)
and discrimination random parameter Pr (α | σ2

α). Our hierarchical model includes

an additional level for the prior distributions of the parameters c,a,β,T k,φk,Rvk , σ
2
γ

and σ2
α. Hence, the posterior distribution of the model is

Pr
(
z, c,γ,a,α,θ,β, {T k}, {φk}, {Rvk}, σ2

γ, σ
2
α | yobs

)
∝

Pr (yobs | zobs) Pr (z | c,γ,a,α,θ) Pr (θ | β, {T k}, {φk}, {Rvk}) Pr
(
γ | σ2

γ

)
Pr
(
α | σ2

α

)
Pr (c) Pr (a) Pr (β) Pr ({T k}) Pr ({φk}) Pr ({Rvk}) Pr

(
σ2
γ

)
Pr
(
σ2
α

)
.

(5.15)

The advantage of this factorisation is that we marginalise the multivariate

Gaussian processw and the multivariate residual term v; in addition, the posterior

conditional distribution of some parameters are analytically obtained.
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B.2 Prior Distributions

The prior distributions of the parameters for our extension of the SPIFA model are

defined as in Chacon-Montalvan et al. (2018), but the prior of some parameters is

defined for each group in our extension.

The fixed easiness parameter c, the fixed discrimination parameter a and

the regression coefficients β are normally distributed with diagonal covariance

matrices, where the prior mean of c and β is set to zero. A prior log-normal

distribution is used for each free element of the sparse linear transformation T k

and for the scale parameters {φkl} of the correlation functions {ρkl(u)}. The

correlation matrix Rvk are assumed to have a prior LKJ distribution as defined

in Lewandowski et al. (2009). Finally, we impose an inverse-gamma distribution

IG(·, ·) for the additional parameters of our extended model, σ2
γ and σ2

α.

B.3 Sampling from the Posterior Distributions

In the same way as in Chacon-Montalvan et al. (2018), we use a blocked Gibbs

sampling to obtain samples from the posterior defined in Equation 5.15. The

parameters that are not conjugate are sample together using adaptive Metropolis-

Hastings (Andrieu and Thoms, 2008). Details of the conditional posteriors of our

scheme can be found in the Appendix C.

B.4 Scaling Samples for Interpretation

In Chacon-Montalvan et al. (2018), restricting the standard deviations of the mul-

tivariate residual term v(s) is necessary to make the SPIFA model identifiable.

However, it can not be ensured that the latent factors will be on the same scale

leading to a loss of interpretation of the discrimination parameters aj. As pro-

posed in Chacon-Montalvan et al. (2018), after the samples of the MCMC have

been obtained, we can transform the parameters in order to obtain latent factors

with expected variance equal to 1. We can then a diagonal matrix Q by filling the
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diagonal with the expected variances of the samples of the latent factors θ(s). We

then make the following transformations

aj ← Qaj, αj ← Qαj, θi ← Q−1θi, B ← Q−1B, T ← Q−1T , D ← Q−1D;

(5.16)

the correct interpretation of the parameters is then recovered.

Appendix C Markov chain Monte Carlo scheme

sampling

As mentioned in Section B.3, we use Metropolis-within-Gibbs algorithm to obtain

samples from the posterior distribution of our mixed SPIFA model with aggregated

covariates. Our scheme sampling is just an extension to the scheme proposed in

Chacón-Montalván et al. (2018b), where the parameters are updated by blocks.

Details of the conditional posterior distribution for each block of parameters are

shown below.

C.1 Auxiliary Variables

Using Equation 5.9, we can see that the joint density of the vector of auxiliary vari-

ables Z given given the fixed easiness parameters c, the random easiness parame-

ters γ, the fixed discrimination parameters a, the random discrimination parame-

ters α and the latent factors θ is normally distributed with mean Icc+Iγγ+Aθ

and identity covariance matrix,

Pr (z | c,γ,a,α,θ) = N (z | Icc+ Iγγ + Aθ, Inq). (5.17)

For sampling, it is required to differentiate between the auxiliary variables

where the response items were observed Zobs and where the response items could

not been observed Zmis. Given that these two random vectors are conditionally



151

independent in Equation 5.17, we can sample Zobs from

Pr (zobs | yobs, c,γ,a,α,θ) ∝ Pr (zobs | c,γ,a,α,θ)
∏
okij=1

Pr (ykji | zkji) , (5.18)

which is a marginal truncated normal distribution obtained from Equation 5.17.

The truncation direction is defined by Pr (ykji | zkji) = 1
ykji

(zkji>0)
1

1−ykji
(zkji≤0)

, where

1(.) is the indicator function and okij take value 1 when the item j at location i of

group k has been observed. The conditional posterior distribution of the auxiliary

variables when the item are not observed, okji = 0, is

Pr (zmis | yobs, c,γ,a,α,θ) ∝ Pr (zmis | c,γ,a,α,θ) (5.19)

which is simply a marginal distribution of Equation 5.17.

C.2 Latent Factors

From Equation 5.11, it can be seen that the vector of latent factors is normally

distributed with a block diagonal covariance matrix,

Pr (θ | β, {T k}, {φk}, {Rvk}) = N
(
θ | Xβ,⊕Kk=1Σθk··

)
, (5.20)

where ⊕ represent the direct sum of matrices and the covariance matrix of θk·· is

Σθk·· = (T k ⊗ Ink)Σwk··(T
ᵀ
k ⊗ Ink) +DkRvkDk ⊗ Ink , (5.21)

with Σwk·· = ⊕gl=1Σwkl· .

The conditional posterior distribution of the latent factors Pr (θ | z, c,γ,a,α,β)

is proportional to the product of two Gaussian densities, Pr (θ | β, {T k}, {φk}, {Rvk})

and Pr (z | c,γ,a,α,θ), resulting in another Gaussian density with block diagonal
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covariance matrix Σθ|· = ⊕Kk=1Σθk··|·, where

Σθk··|· =
(
(A∗ᵀ +α∗ᵀk )(A∗ +α∗k)⊗ Ink + Σ−1

θk··

)−1
,

and mean µθ|· = (µᵀ
θ1··|·, . . . ,µ

ᵀ
θK··|·)

ᵀ, where

µθk··|· = Σθk··|·
[
([A∗ᵀ +α∗ᵀk ]⊗ Ink)(zk·· − (c+ γk)⊗ 1nk) + Σ−1

θk··
(Im ⊗Xk)β

]
.

C.3 Fixed Regression Effects

The conditional posterior distribution of the multivariate fixed effects β given

θ, {T k}, {φk} and {Rvk} is proportional to the product of two Gaussian densities,

Pr (θ | β, {T k}, {φk}, {Rvk}) and Pr (β), leading to another Gaussian density with

covariance matrix and mean:

Σβ|· =

(
K∑
k=1

(Im ⊗Xᵀ
k)Σ

−1
θk··

(Im ⊗Xk) + Σ−1
β

)−1

, µβ|· = Σβ|·

(
K∑
k=1

(Im ⊗Xᵀ
k)Σ

−1
θk··
θk··

)
.

C.4 Fixed Easiness parameters

The conditional posterior distribution of the fixed easiness parameters Pr (c | z,γ,a,α,θ)

is also proportional to the product of two Gaussian densities, Pr (z | c,γ,a,α,θ)

and Pr (c), that leads to another Gaussian density with covariance matrix

Σc|· =

(
K∑
k=1

(Iq ⊗ 1ᵀ
nk

)(Iq ⊗ 1nk) + Σ−1
c

)−1

=
(
n+ diag(Σc)

−1
)−1

, (5.22)

and mean

µc|· = Σc|·

(
K∑
k=1

(Iq ⊗ 1ᵀ
nk

)(zk·· − γk ⊗ 1nk − ([A∗ +α∗k]⊗ Ink)θk··)

)
. (5.23)
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C.5 Random Easiness parameters

The conditional posterior distribution of the random easiness parameters γ given

z, c,a,α,θ and σ2
γ is also proportional to the product of two Gaussian densities,

Pr (z | c,γ,a,α,θ) and Pr
(
γ | σ2

γ

)
, that leads to another Gaussian density with

covariance matrix Σγ|· = ⊕Kk=1Σγk|·, where

Σγk|· =
(
(Iq ⊗ 1ᵀ

nk
)(Iq ⊗ 1nk) + σ−2

γ Iq
)−1

=
(
nk + σ−2

γ

)−1
Iq, (5.24)

and mean µγ|· = (µᵀ
γ1|·, . . . ,µ

ᵀ
γK |·)

ᵀ, where

µγk|· = Σγk|·(Iq ⊗ 1ᵀ
nk

)(zk·· − c⊗ 1nk − ([A∗ +α∗k]⊗ Ink)θk··). (5.25)

C.6 Fixed Discrimination parameters

Similar to previous parameters, the conditional posterior distribution of the dis-

crimination parameters Pr (a | z, c,γ,α,θ) is proportional to the product between

Pr (z | c,γ,a,α,θ) and Pr (a). This is a Gaussian density with covariance matrix

Σa|· =

(
Lᵀ

(
Iq ⊗

K∑
k=1

Θᵀ
kΘk

)
L+ Σ−1

a

)−1

,

and mean

µa|· = Σa|·L
ᵀ

(
K∑
k=1

(Iq ⊗Θᵀ
k)(zk·· − (c+ γk)⊗ 1nk − (Iq ⊗Θk)αk)

)
+ Σa|·Σ

−1
a µa.

C.7 Random Discrimination parameters

Similar to previous parameters, the conditional posterior distribution of the dis-

crimination parameters Pr (α | z, c,γ,α,θ) is proportional to the product between

Pr (z | c,γ,a,α,θ) and Pr (α | σ2
α). This is a Gaussian density with covariance
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matrix Σα|· = ⊕Kk=1Σαk|·, where

Σαk|· =
(
Lᵀ (Iq ⊗Θᵀ

kΘk)L+ σ−2
α Iqm

)−1
,

and mean µα|· = (µᵀ
α1|·, . . . ,µ

ᵀ
αK |·)

ᵀ, where

µαk|· = Σαk|·L
ᵀ(Iq ⊗Θᵀ

k)(zk·· − (c+ γk)⊗ 1nk − (Iq ⊗Θk)a).

C.8 Variances of the Random Effects

The posterior conditional distribution of the variance of the random easiness pa-

rameters σ2
γ and the random discrimination parameters σ2

α are

Pr
(
σ2
γ | γ

)
= IG(a0γ + qK/2, b0γ + γᵀγ/2),

Pr
(
σ2
α | α

)
= IG(a0α + qmK/2, b0α +αᵀα/2),

where a0γ , b0γ , a0α and b0α are the hyper-parameters of the prior IG distributions.

C.9 Covariance parameters

Let vec∗(.) denote a vector of the free elements in (.). The conditional posterior

distribution of the parameters vec∗(T k), φk and Rvk ,

Pr (vec∗(T k),φk,Rvk | θk··,β) ∝ Pr (θk·· | β,T k,φk,Rvk) Pr (T k) Pr (φk) Pr (Rvk) ,

can not be solved analytically. We obtain samples from this posterior using an

adaptive random-walk Metropolis Hastings algorithm, algorithm 4 of Andrieu and

Thoms (2008), on transformed variables, log(vec∗(T k)), log(φk) and R∗vk , whose

each dimensional domain is on the real line R. The transformation R∗vk is done

using canonical partial correlations (Lewandowski et al., 2009).
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