
 Elsevier Editorial System(tm) for

Information Sciences

 Manuscript Draft

Manuscript Number: INS-D-19-663R2

Title: A Hierarchical Prototype-Based Approach for Classification

Article Type: Full length article

Keywords: prototype-based; hierarchical structure; classification;

multimodal distribution

Corresponding Author: Dr. Xiaowei Gu,

Corresponding Author's Institution: Infolab21, Lancaster University

First Author: Xiaowei Gu

Order of Authors: Xiaowei Gu; Weiping Ding

Abstract: In this paper, a novel hierarchical prototype-based approach

for classification is proposed. This approach is able to perceive the

data space and derive the multimodal distributions from streaming data at

different levels of granularity in an online manner, based on which it

further identifies meaningful prototypes to self-organize and self-evolve

its hierarchical structure for classification. Thanks to the prototype-

based nature, the system structure of the proposed classifier is highly

transparent, and its learning process is of "one pass" type and

computationally lean. Its decision-making process follows the "nearest

prototype" principle and is fully explainable. The proposed approach is

capable of presenting the learned knowledge from data in an easy-to-

interpret prototype-based hierarchical form to users, and is an

attractive tool for solving large-scale, complex real-world problems.

Numerical examples based on various benchmark problems justify the

validity and effectiveness of the proposed concept and general

principles.

Research Data Related to this Submission

--

There are no linked research data sets for this submission. The following

reason is given:

Data will be made available on request

Dear Editor-in-Chief

Firstly, we would like to thank you for handling our manuscript entitled: A Hierarchical

Prototype-Based Approach for Classification (INS-D-19-663R1). We would also like to

express our appreciation to the anonymous referees for their valuable efforts and very kind

approvals.

We have revised this manuscript carefully to improve the language quality and reduced the

number of references to 50.

The changes have been highlighted in yellow in this manuscript for your convenience.

Thank you again!

Sincerely,

Authors

Revision Note

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Hierarchical Prototype-Based Approach for Classification

Xiaowei Gu
1
 and Weiping Ding

2

1
School of Computing and Communications, Lancaster University, Lancaster, LA1 4WA, UK

2
School of Information Science and Technology, Nantong University, Nantong, 226019, China

Email: x.gu3@lancaster.ac.uk; ding.wp@ntu.edu.cn

Abstract: In this paper, a novel hierarchical prototype-based approach for classification is proposed. This

approach is able to perceive the data space and derive the multimodal distributions from streaming data at

different levels of granularity in an online manner, based on which it further identifies meaningful prototypes to

self-organize and self-evolve its hierarchical structure for classification. Thanks to the prototype-based nature,

the system structure of the proposed classifier is highly transparent, and its learning process is of “one pass”

type and computationally lean. Its decision-making process follows the “nearest prototype” principle and is fully

explainable. The proposed approach is capable of presenting the learned knowledge from data in an easy-to-

interpret prototype-based hierarchical form to users, and is an attractive tool for solving large-scale, complex

real-world problems. Numerical examples based on various benchmark problems justify the validity and

effectiveness of the proposed concept and general principles.

Keywords: prototype-based, hierarchical structure, classification, multimodal distribution

1. Introduction

Classification is a supervised machine learning technique used for predicting class labels of new observations

[30]. It is a hotly studied problem in the machine learning and statistics domain. Till now, a variety of

classification algorithms have been proposed and successfully applied to different areas, e.g., computer vision

[26],[38], biomedical sciences [12], remote sensing [42],[49], finance [3], etc.

Nowadays, with the rapid development of artificial intelligence (AI) techniques, the explainability and

transparency of the decisions made by machine learning algorithms are becoming increasingly important [20],

especially when these approaches started to be implemented for safety-critical applications, such as autonomous

vehicles [43] and medical diagnose [13], etc. However, mainstream classification algorithms, for example, deep

neural networks (DNNs) [27] and support vector machines (SVMs) [9] are typical type of “black box” models.

Other popular classification approaches, for example, K-nearest neighbour (KNN) [10], decision tree

(DT)/random forests [39], and rule-based models [1],[17],[23] can be extremely hard to interpret when dealing

with high-dimensional, large-scale, and complex problems. The lack of transparency and human-interpretability

in the state-of-the-art machine learning approaches is a critical issue while not yet solved. There is a high

demand in developing alternative approaches that can provide high levels of transparency, human-

interpretability and, at the same time, perform learning lifelong in a computationally lean manner with high

precision comparable to, and even surpassing humans.

In this paper, a novel hierarchical prototype-based (HP) approach with such characteristics is proposed for

classification. The HP classifier decomposes complex problems into a series of simpler local models with

different levels of granularity and represents them with meaningful prototypes aggregated naturally in a

pyramidal hierarchy form. These prototypes are objectively identified from streaming data through an online,

autonomous and highly computationally efficient process with different levels of granularity from low to high,

which naturally results in a multi-layer structure. They represent the local peaks of multimodal distributions

derived from data at different levels of specificity without prior knowledge of the problems. The prototype

identification process of the HP classifier is of “one pass” type, highly computationally efficient and entirely

data-driven. It is also non-parametric in the sense that no assumptions on data generation model with user- and

problem- specific parameters are required to be made. Instead of being a “black box” model, the system

structure of the proposed HP classifier is highly transparent and, its learning and decision-making processes are

fully explainable and interpretable for human. In addition, the knowledge base of the HP classifier can be

visualized in a human-understandable hierarchical form thanks to its prototype-based nature. The upper layers of

the hierarchies are very useful for human users to quickly understand the general picture of the problem, and

they can be used for efficient coarse classification. Meanwhile, the lower layers contain lots of fine details

*Revised Manuscript
Click here to view linked References

mailto:x.gu3@lancaster.ac.uk
mailto:ding.wp@ntu.edu.cn
http://ees.elsevier.com/ins/viewRCResults.aspx?pdf=1&docID=48198&rev=2&fileID=1042730&msid={468A58BF-00C1-4C87-816D-C8E2EFDBECC0}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(which may take time to interpret) and can be used for performing classification with high accuracy. Numerical

examples presented in this paper validate the proposed concept and general principles, and further demonstrate

the strong advantages of the HP classifier as an attractive tool for solving large-scale complex classification

problems.

The key contributions of this paper are as follows: (1) a new approach that can self-learn and self-evolve highly

transparent pyramidal hierarchies from streaming data through an “one pass” learning process; (2) the capability

to perceive complex problems with different levels of specificity and mine valuable information in a highly

computationally efficient manner; (3) the abilities of presenting the gained knowledge from data in a human-

interpretable prototype-based hierarchical form and clearly explaining the rationales behind any decisions.

The remainder of this paper is organized as follows. Section 2 provides a review of related works. The

algorithmic procedure of the HP classifier is detailed in section 3. Numerical experiments and discussions are

given in section 4. This paper is concluded by section 5.

2. Related Works

Classification is a hotly researched topic, and there have been a wide variety of successful algorithms existing in

the literature. Since it is practically impossible to cover all of them due to the limited space of this paper, the

review of related works in this paper is concentrated on well-known classification approaches of the following

three types: (1) multi-layer; (2) fuzzy rule-based and (3) prototype-based.

DNNs (or artificial neural networks, ANNs) [27], which include feedforward neural networks (FNNs) [12],

convolutional neural networks (CNNs) [26],[38] and recurrent neural networks (RNNs) [18], are the best-known

classification approaches with multi-layer architecture. Currently, DNNs are the state-of-the-art for

classification, and they have demonstrated very high performance on a number of benchmark problems as well

as real-world applications [27]. Nonetheless, DNNs suffer from several deficiencies, which include [19] (1) the

training and decision-making processes lack explainability and human-interpretability, and the inner structure is

opaque; (2) the training process is data- and computational resource-hungry and limited to offline; (3) the

performance is fragile to new data patterns. In addition, some recent researches also suggest that DNNs can be

easily fooled as they can produce high confidence predictions for unrecognizable images [31]. These

shortcomings significantly influence the applicability of DNNs in real-world application scenarios [19],[20].

Evolving intelligent systems (EISs) [28],[40] have demonstrated success in many real-world applications, e.g.,

classification, prediction, control, anomaly detection, and are becoming increasingly popular thanks to their

simpler system structure and explainable learning and decision-making processes. EISs, generally, can be

implemented in the forms of multi-layer neuro-fuzzy systems [24] or rule-based models [1],[3],[17]. The

majority of EISs are designed for processing streaming data “on the fly”, and their learning processes are,

usually, of “one pass” type [28]. EISs are capable of continuously self-evolving based on new observations from

data streams and extending the knowledge base to incorporate new data patterns in real time. In contrast with

DNNs, EISs usually offer much higher transparency and human-interpretability. Nonetheless, it is often

observed that EISs can be unfavourably obese and uninterpretable for high-dimensional and large-scale

problems.

Prototypes play an instrumental role in prototype-based classification algorithms. Different prototype-based

approaches use different ways to identify prototypes from data, and this creates the differences in performance,

computational efficiency, system transparency and interpretability. KNN algorithms [10] conduct classification

using the “nearest neighbours” principle by comparing new observations with a pre-defined number () of

labelled data samples. Therefore, KNN can be viewed as a type of prototype-based approaches where all the

data samples are treated as prototypes. KNN requires all training samples to be stored in the memory, and the

transparency and human-interpretability of the system structure are very low. SVMs are also a type of

prototype-based classifiers since they perform classification based on support vectors (prototypes), which are

derived from training data [9]. Nonetheless, the operating mechanism of SVMs is much more sophisticated,

which involves an iterative optimization process to identify the maximum-margin hyperplane in the data space,

and, thus, SVMs are the typical type of “black box” models like ANNs. Zero-order EISs [1],[2],[17] are, in

general, based on prototypes, and they have simpler, more flexible and transparent system structure than other

types of EISs, e.g. first-order [24] and higher-order ones [3]. They are more computationally efficient and

capable of handling multi-class classification tasks. Nonetheless, the transparency and explainability of zero-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

order EISs are very limited for high-dimensional, large-scale, complex problems. Other well-known prototype-

based classifiers include learning vector quantization (LVQ) [25], self-organising map (SOM) [25], both of

which are ANNs and typical “black box” type models.

Compared with alternative approaches, the proposed HP classifier is highly transparent thanks to its prototype-

based nature and hierarchical system structure. The pyramidal hierarchies of the HP classifier can be clearly

visualized with meaningful links between prototypes of successive layers. The upper layer of a hierarchy is

composed of a smaller amount of highly abstract and more representative prototypes, and the bottom layer has a

larger number of prototypes with finer details. The learning process of the HP classifier is non-iterative, non-

parametric, recursive and highly interpretable for human. The proposed approach does not involve any weight or

parameter optimization operation, and it can be trained in an extremely lean manner. Moreover, its system

structure is dynamically evolving, and its meta-parameters are self-updating with new data, which largely

strengthens the capability of handling nonstationary data streams. More importantly, the rationales behind any

decisions made by the proposed approach can be explained clearly because the decision-making process strictly

follows the “nearest prototype” principle.

In the following section, the algorithmic details of the HP classifier will be described.

3. The HP Classifier

In this section, the general architecture, learning and decision-making processes of the proposed HP classifier

are presented in detail. The computational complexity of the proposed approach is also analysed at the end of

this section.

First of all, let be a particular data stream in the -dimensional real data space,

 , where

 , and the subscript denotes the time instance at which is

observed. The data stream, is composed of data samples of different classes and, thus, at the K
th

 time

instance, the observed data samples from this stream can be divided into subsets based on their class labels:

 (the superscript i denotes the i

th
class;) and there is

 . In the

remainder of this paper, all the mathematical derivations are conducted at the K
th

 time instance by default unless

specifically declared otherwise.

3.1. General Architecture

The general architecture of the HP classifier is depicted in Fig. 1. As one can see from Fig. 1(a), the HP

classifier consists of different prototype-based pyramidal hierarchies, which correspond to the available

classes in the data stream (one hierarchy per class). During the learning process, each hierarchy is trained in

parallel using data samples of the corresponding class in a self-organizing, “one-pass” manner. The zoom-in

structure of the i
th

 hierarchy is given in Fig. 1(b), where
 denotes the j

th
 prototype at the l

th
 layer of the i

th

hierarchy, which is derived from data samples of the i
th

 class of the data stream; ; is the layer

number;
 ;

 is the number of prototypes at the l
th

 layer and there are

 ;

 ;
 ;

 . In this paper, without loss of

generality, all prototype-based hierarchies of the HP classifier have the same layer number, namely, L.

Prototypes in the pyramidal hierarchies are derived directly from data in an “one pass”, top-down manner.

These prototypes at upper layers of the hierarchies contain highly generalized information and they are more

abstract and representative. Meanwhile, prototypes at the lower layers contain finer details and they are closer to

the originally observed data samples in the data space. Each prototype at a particular layer (except for apex

prototypes at the top layer) is linked with one immediate superior prototype at the layer above, and it represents

a local peak of the multimodal distribution of data associated with its immediate superior. At the same time,

each prototype (except for leaf prototypes at the bottom layer) is linked with one or more immediate subordinate

prototypes at the layer below. For example, in Fig. 1(b),
 is the immediate superior of

 , and

 are the immediate subordinates of
 .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) System structure

(b) Zoom-in structure of the i
th

 prototype-based hierarchy

Fig.1. The general architecture of the HP classifier

In the following two subsections, the learning and the decision-making processes of the HP classifier are

presented in detail. The computational complexity analysis of the proposed approach is also given at the end of

this section.

3.2. Learning Process

In this subsection, the algorithmic procedure for autonomously identifying a hierarchical prototype-based

system structure is detailed as follows. As the proposed HP approach identifies prototypes and self-organizes a

top-down pyramidal hierarchy from training samples of each class separately, only the learning process of the i
th

prototype-based hierarchy is presented (). The same principles can be applied to all other

hierarchies in the system. By default, for each observed data sample of the i
th

 class,
 (), it is

firstly normalized by its Euclidean norm:

 (1)

where

 . This type of normalization can convert the Euclidean distance between data

samples into a cosine dissimilarity-based distance measure and enhances the ability of the HP classifier for

handling high-dimensional complex problems [17].

Step 0. System Initialization

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The first observed data sample of the i
th

 class,

 () is used for initializing the hierarchy and is treated as

the first prototype at each layer ():

 (2)

where

 is the number of data samples associated with

 .

The links (subordinate relationships) between these prototypes of successive layers are, then, established to form

a hierarchical structure. Firstly, the collection of apex prototypes is defined as:

 (3a)

and, for the prototype at the l
th

layer,

 (), the collection of its immediate subordinates is

initialized by equation (3b):

 (3b)

Through equation (3), the i
th

 hierarchy is established in its initial form resembling a chain with

 as the

starting node and

 as the ending node.

Step 1. System Dynamically Evolving

After initialization, the HP classifier is able to continuously self-evolve its system structure and self-update

meta-parameters with steaming data. When a new data sample,

 () is observed, the system

updating process starts from the top layer () in a top-down manner. Firstly, the nearest prototype at the l
th

layer to

 is identified using the following equation:

 (4)

It is well-known that for a prototype-based approach, identifying a huge number of prototypes during the

learning process on large-scale, complex problems is often inevitable. Equation (4) significantly improves the

computational efficiency of the nearest prototype searching process by reducing the searching range from the

whole data space to a small group of neighbouring prototypes. This can effectively avoid wasting computational

resources because the majority of the identified prototypes in the data space are actually far away from

 . This

searching technique allows the proposed HP approach to identify the nearest prototype in an extremely efficient

manner compared with alternative approaches that are also based on the “nearest prototype” principle [2],[17].

Once the nearest prototype

 is identified, the following condition is checked to see whether

 has the

potential to become a new prototype of the l
th

layer:

 (5)

where is the radius of the influence area around each prototype at the l
th

 layer of the hierarchy, which defines

a particular degree of closeness that is interesting and distinguishable under the l
th

 level of granularity [17]. If

the distance between

 and

 is larger than , it means that

 represents a novel data pattern that no

prototypes at the l
th

 layer can describe, Thus,

 is added to the system as a new prototype. In fact, Condition 1

(equation (5)) is a simplified combination of Conditions 4 and 5 in [17].

In this paper, by default, the value of () is derived by the following equation [2]:

 (6)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

where

. The decreasing values of the radii of the successive layers allow the HP classifier to learn from

data and partition the data space with different levels of granularity. The upper layers of the pyramidal

hierarchies are capable of seeing the general picture of the problems and the lower layers can see more details.

However, it has to be stressed that the radii of influence areas, () are adjustable, and their values

are only required to follow the simple principle: , which means that prototypes at

the upper layer have a larger influence area than prototypes at the lower layer. Furthermore, the radii,

() are not problem- and user-specific parameters and require no prior knowledge to be determined.

On the contrary, their values can be decided based on users’ preferences. One may explore different methods to

define the values of () depending on specific needs of the problems. Moreover, there is an

alternative approach introduced in [17] for directly deriving () from empirically observed data

samples based on their mutual distances. One may also consider determining the layer number for each

hierarchy depending on the complexity of the problems and the availability of computational resources.

Nonetheless, the main purpose of this paper is to deliver the concept and general principles and, thus, only the

general settings are implemented.

If Condition 1 is unsatisfied,

 is used for updating the meta-parameters of the nearest prototype at the l

th

layer by the following formulas:

 (7a)

 (7b)

 (7c)

The main reason for using equation (7b) to re-normalize

 after equation (7a) is that, according to the

triangle inequality theorem, the Euclidean norm of the updated

 by

 using equation (7a) is smaller than 1

unless

 :

 (8)

Therefore, a re-normalization is needed to guarantee that the algorithm can correctly recognize the true nearest

prototypes all the time by equation (4).

Then,

 is passed to the next layer , and the same procedure (starting from equation (4)) is

repeated to update the next layer of the hierarchy until the bottom layer is updated or being interrupted when

Condition 1 is met.

If Condition 1 is satisfied, it means that

 is distinctive from all existing prototypes at the l

th
 layer as well as

the prototypes at lower layers. In such cases,

 becomes a new prototype of the l

th
 layer with

 as its

immediate superior (if there is any). A new prototype is added to the l
th

 layer as well as the successive layers

with meta-parameters initialized by equation (9) ():

 (9)

After new prototypes have been added to the hierarchy, the system structure is, then, updated by creating links

between these newly added prototypes and their immediate superiors. This results in a new branch adding into

the hierarchy. Firstly, the starting node of this new branch is identified. If

 is recognized as an apex prototype

(namely,),

 itself is the starting node and

 is updated as follows:

 (10a)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Otherwise,

 is recognized as the starting node of the new branch, and

 is updated by equation

(10b):

 (10b)

After the starting node of this new branch is defined, the links between these newly added prototypes, namely,

 ,…,

 are created using equation (3b). Once all the new links have been established, the

structure updating process is completed. The system goes back to Step 1 ready for processing the next available

data sample.

For better illustration, a three-layer prototype-based hierarchy derived from data samples observed in a 2D data

space is depicted in Fig. 2 as an example. Fig. 2(a) demonstrates how the identified prototypes partition the data

space with different levels of granularity; Fig. 2(b) depicts the three-layer hierarchy with meaningful links

between prototypes of successive layers corresponding to Fig. 2(a). In Fig.2(a), white squares “□” are the

empirically observed data samples in the data space; the large blue dot “·” is the apex prototype () of the

hierarchy and it is the most representative one; large green dots “·” are the prototypes (and) at the

second layer and they correspond to the local peaks of the multimodal distribution of the data samples; large red

dots “·” are the leaf prototypes () at the bottom layer. Each leaf prototype represents one of the

local peaks of the multimodal distribution derived from data samples associated with its immediate superior.

The blue, green and orange shadows indicate the respective areas of influence around prototypes of the top,

middle and bottom layers, where and are the respective radii, and there is . The links

between these prototypes are presented in equation (11a):

(a) Partitioning the data space in three levels of granularity

(b) The corresponding three-layer hierarchy

Fig. 2. Illustration of a three-layer prototype-based hierarchy derived from data

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 (11a)

When a new data sample, that represents a familiar data pattern is observed (see Fig. 3(a) for example), the

meta-parameters of the nearest prototypes to at each layer, namely, , and are updated using

equation (7). The three prototypes, , and will be slightly shifted towards , and the updated

prototypes are re-denoted by
 ,

 and
 , respectively. The updated data space partitioning result is given

in Fig. 3(b), and the corresponding three-layer hierarchy is depicted in Fig. 3(c). The links between prototypes

of the updated hierarchy in Fig. 3(c) are given as:

 (11b)

(a) New observation in the data space

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(b) The updated data partitioning results

(c) The updated three-layer hierarchy

Fig. 3. Illustration of updating the existing prototypes of the three-layer hierarchy

On the other hand, if represents an emerging data pattern (see Fig. 4(a)), the structure of the three-layer

hierarchy will self-evolve to incorporate the new pattern. Firstly, the meta-parameters of and are

updated because falls into their areas of influence, and the updated prototypes are re-denoted by
 and

respectively. Then, will be recognized as a new leaf prototype (denoted by) at the bottom layer according

to Condition 1, and a new branch of the three-layer hierarchy is established. The updated data space partitioning

result and the new three-layer hierarchical structure are given in Figs. 4(b) and 4(c), respectively. The links

between the prototypes of the updated hierarchy are given by equation (11c):

 (11c)

(a) New observation in the data space

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(b) The updated data partitioning results

(c) The updated three-layer hierarchy

Fig. 4. Illustration of adding a new prototype to the three-layer hierarchy

The learning process of the i
th

 prototype-based hierarchy is summarized by the following pseudo code:

Input: the data stream,

Algorithm begins

While (new data sample

 is available or until interrupted)

a. Normalize

 by its Euclidean norm:

 ;

b. If () then

 i. For to do

1.

 ;

2.

 ;

ii. End for

c. Else

i. For to do

1. Identify the nearest prototype,

 to

 by equation (4);

2. If (Condition 1 is unsatisfied) then

* Update

 and

 by equation (7);

3. Else

* For to do

-

 ;

* End for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

*

 ;

* For to do

-

 ;

* End for

* Break the for loop;

4. End if

ii. End for

d. End if

End while

Algorithm ends

Output: the i
th

 prototype-based hierarchy

3.3. Decision-Making Process

During the validation stage, the proposed HP classifier determines the class label of a given data sample by the

“winner takes all” principle. Thanks to its hierarchical structure, one can choose to use any layer of the HP

classifier for classification. The upper layers have less but more representative prototypes, and they can be used

for performing efficient and coarse classification. The lower layers have more prototypes with fine details, and

they can be used for performing more accurate classification.

Assuming that the l
th

 () layer is used, for a particular unlabelled data sample denoted by , the

local decision-maker of each prototype-based hierarchy (Fig. 1(b)) will produce a score of confidence,

based on the similarity between and the nearest prototype at the selected layer following the “nearest

prototype” principle (). In this subsection, two optional nearest prototype searching methods for

calculating are provided.

Mode A: the first method is to search the nearest prototype to at the l
th

 layer of the hierarchy directly, and the

score of confidence is calculated by the following equation:

 (12)

where

 denotes the collection of prototypes at the l
th

 layer of the i
th

 hierarchy.

Mode B: alternatively, one can choose to search the nearest prototypes

 layer-by-layer from

the top to the l
th

 layer of the hierarchy using equation (4), and the final output, namely, the score of confidence is

given by:

 (13)

An illustrative example is given in Fig. 5 to demonstrate the differences between the two optional nearest

prototype searching methods for decision-making. In this example, the bottom layer of the prototype-based

hierarchy as given by Fig. 2(b) is selected for producing the score of confidence on the new observation, as

depicted in Fig. 3(a). As one can see from Fig. 5(a), if Mode A is used, the score of confidence is calculated in a

more straightforward way by comparing the similarity between and all leaf prototypes at the bottom layer,

namely, and identifying the most similar one to . In this example, the score of confidence

produced by the three-layer hierarchy is obtained as

. Otherwise, if Mode B is adopted (see

Fig. 5(b)), the searching algorithm firstly looks for the nearest apex prototype to the new observation, , which

is in this case. Then, the algorithm continues to find the nearest prototype to from the immediate

subordinates of at the second layer, which include and , and in this example, is the

nearest one. Finally, the algorithm identifies the nearest prototype to from the leaf prototypes linked with ,

namely, and , and calculates the score of confidence accordingly.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) Mode A

(b) Mode B

Fig. 5. Illustration of two nearest prototype searching methods for decision-making (the red arrows with

concrete lines are the exploited paths during the searching process; the blue arrows with dash lines are the

unexploited paths)

After all pyramidal hierarchies have produced their scores of confidence on (one per class), the class label

of is determined following the “winner takes all” principle:

 (14)

It is worth to be noticed that Mode A is highly computationally efficient if the upper layers of the HP classifier

are used for classification because these layers usually have a smaller number of highly generalized prototypes.

If the bottom layers are selected, Mode A is able to produce more accurate classification results. However, in

such cases, the computational efficiency of the HP classifier can be decreased because these layers usually are

composed of a larger number of prototypes, especially for large-scale, high-dimensional problems.

In contrast, Mode B is more suitable for processing large-scale, high-dimensional problems and is highly

efficient thanks to the nearest prototype searching technique introduced in this paper (equation (4)). However, it

tends to produce more wrong decisions during the decision-making process. This is because that, for a particular

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

unlabelled sample, if any wrong decision is made during the top-down searching process, Mode B is unlikely to

give a correct final decision.

3.4. Computational Complexity Analysis

In this subsection, computational complexity of the learning and decision-making processes of the proposed HP

classifier is analysed. Since the system structure and meta-parameters of the HP classifier are dynamically

evolving, the complexity analysis is assumed to be conducted at the K
th

 time instance.

Computational complexity analysis of the learning process

Firstly, let us assume that the data sample observed at the current time instance belongs to the i
th

 class, namely,

 . Because the HP classifier performs self-learning on a sample-by-sample basis and each prototype-based

hierarchy is updated separately, one can reasonably expect that the computational complexity of each learning

cycle varies a lot depending on the mutual distances between

 and prototypes of the i

th
 hierarchy. As a result,

it is practically impossible to derive an exact expression. Nonetheless, the upper and lower bounds of the

computational complexity still can be calculated.

The maximum computational complexity for a particular learning cycle is reached when

 represents a

familiar data pattern and is associated with one of the prototypes at each layer of the hierarchy. In such cases,

the HP classifier is required to search the nearest prototype to

 layer-by-layer in a top-down manner, and the

computational complexity of the whole searching process is

 ,

where

 is the number of immediate subordinate prototypes at the (j+1)
th
 layer linked with

 . In other

words,

 is the cardinality of

 . The computational complexity of the overall prototype updating process

is (each layer has one prototype being updated). Therefore, the upper bound is

 . The lower bound of the computational complexity is reached when

 is distinctive from the apex

prototypes. The only computation is made for calculating the distances between

 and

 , and thus, the lower

bound is
 .

Therefore, the computational complexity of a particular learning cycle of the HP classifier is between

and

 .

Computational complexity analysis of the decision-making process

Let us assume that the l
th

 layer of the HP classifier is used for classification. During the validation stage, for a

given unlabelled data sample, , each pyramidal prototype hierarchy will produce a score of confidence based

on the similarity between and
 (). If the HP classifier uses Mode A for producing the scores

of confidence, the computational complexity is

 . In contrast, if Mode B is used, the computational

complexity is

 .

Based on the above computational complexity analysis, one may also conclude that Mode B is more

computational efficient for high-dimensional, large-scale problems. However, for simpler, small-scale problems,

Mode A might be more efficient. This conclusion is further verified via numerical examples presented in the

next section.

4. Numerical examples and Discussions

In this section, numerical examples are presented to justify the validity and effectiveness of the proposed

concept and method. The overall performance of the HP classifier is evaluated on well-known benchmark

datasets and compared with the state-of-the-art approaches. The algorithms were developed using

MATLAB2018a, and the performance was evaluated on a desktop with dual core i7 processor and

 RAM. In this paper, by default, the values of () of the HP classifier is defined by

equation (6) and the value of is set to be

.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.1. Demonstration of the Proposed Approach

First of all, a well-known benchmark dataset named banknote authentication
1
 is used for illustrating the concept

of the proposed approach. This dataset contains 1372 samples, and each data sample has four attributes and one

label (class 1 and class 2). There are 762 data samples in class 1 and 610 data samples in class 2. Thanks to its

smaller scale and simpler data structure, this dataset is very suitable for demonstration.

In the following numerical example, all data samples are used for training a three-layer HP classifier. Through

the training process, the HP classifier self-organizes two prototype-based hierarchies (one per class). For the

hierarchy corresponding to class 1, there are two prototypes at the top layer, six prototypes at the second layer

and 28 prototypes at the bottom layer. The other hierarchy, which is identified from data samples of class 2, has

three prototypes at the top layer, 16 prototypes at the second layer and 47 prototypes at the bottom layer.

The prototypes identified from data samples of the two classes are visualized in Figs. 6(a) and 6(b), respectively.

For visual clarity, the first two PCA scores of the original data are used for plotting. In the two figures, dots “·”

represent the observed data samples in the data space; asterisks “*” represent the apex prototypes at the top layer

of the hierarchy; squares “□” represent the second-layer prototypes; and circles “○” represent the leaf prototypes

at the bottom layer. Lines in different colours stand for the links between prototypes of successive layers. The

identified prototypes of the two classes are visualized together in the Fig.6(c), where only prototypes at the first

two layers are presented for visual clarity. These prototypes are also tabulated in Table 1 for better illustration,

and the links between them are given by equations (15a) and (15b), respectively.

 (15a)

 (15b)

Table 1. Two-layer prototypes identified through the learning process

Class First-Layer Prototypes Second-Layer Prototypes

1

2

1
 Available at: https://archive.ics.uci.edu/ml/datasets/banknote+authentication

https://archive.ics.uci.edu/ml/datasets/banknote+authentication

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) Identified prototypes of the class 1

(b) Identified prototypes of the class 2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(c) Identified prototypes of both classes

Fig. 6. The visualization of the identified prototypes of the HP classifier

In the next two subsections, numerical examples on benchmark datasets are presented for performance

evaluation. All reported results are obtained after 20 times Monte-Carlo experiments, and the bottom layer of

the HP classifier is used for classification unless specifically declared otherwise.

4.2. Performance on Benchmark Numerical Datasets

In this subsection, the following popular benchmark numerical datasets are used:

(1) Multiple feature (MF) dataset
2
;

(2) Pen-based handwritten digits recognition (PR) dataset
3
;

(3) Epileptic seizure recognition (ES) dataset
4
;

(4) Letter recognition (LR) dataset
5
, and;

(5) Forest cover type (FC) dataset
6
;

Details of the five benchmark datasets are summarized in Table 2.

Table 2. Details of the benchmark numerical datasets for evaluation

Dataset # Samples # Attributes # Classes

MF 2000 649+1 label 10

PR 10996 16+1 label 10

ES 11500 178+1 label 5

LR 20000 16+1 label 26

FC 581012 54+1 label 7

Firstly, the influence of the layer number, namely, on the performance and system complexity of the HP

classifier is investigated. In this numerical example, the four benchmark datasets, namely, MF, PR, ES and LR

are used. For each dataset, 50% of the data samples are randomly selected as the training set and the remaining

ones are used for validation. Owing to its non-iterative, “one-pass” learning behaviour, there is no randomness

2
 Available at: https://archive.ics.uci.edu/ml/datasets/Multiple+Features

3
 Available at: https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits

4
 Available at: https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition

5
 Available at: https://archive.ics.uci.edu/ml/datasets/Letter+Recognition

6
 Available at: https://archive.ics.uci.edu/ml/datasets/covertype

https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
https://archive.ics.uci.edu/ml/datasets/covertype

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

existing during the training process of the HP classifier. It can be easily concluded that the system structure and

meta-parameters of a -layer HP classifier are exactly the same as the top layers of a -layer HP classifier

() given the same training samples. In the following numerical example, a six-layer HP classifier ()

is trained on the four benchmark datasets. Classification on validation sets is performed by using the porotypes

at the first, second, third, fourth, fifth and sixth layers of the HP classifier, individually, which is equivalent to

conducting classification with the bottom layer of a one-layer, two-layer, three-layer, four-layer, five-layer or

six-layer HP classifier. The classification accuracy and time consumption (in seconds) of the validation process

(the two types of nearest prototype searching modes for decision-making as presented in subsection 3.3 are both

involved) are reported in Table 3 in the form of . The number of prototypes (per

class) at each layer of the HP classifier is also tabulated in Table 3.

Table 3. Number of identified prototypes per class during the training process

Dataset Layer # Prototypes Mode Classification Accuracy Testing Time, s

MF

1 1.00±0.00
A

0.7606±0.0101 0.41±0.01
B

2 1.07±0.05
A 0.7523±0.0187 0.45±0.02

B 0.7523±0.0153 1.04±0.05

3 1.44±0.09
A 0.7455±0.0175 0.48±0.04

B 0.7455±0.0166 1.67±0.05

4 3.27±0.30
A 0.8266±0.0177 0.55±0.09

B 0.8256±0.0201 2.25±0.18

5 14.87±0.52
A 0.9199±0.0087 0.65±0.05

B 0.9113±0.0091 2.89±0.16

6 68.39±1.20
A 0.9484±0.0064 1.34±0.19

B 0.9329±0.0072 3.53±0.27

PR

1 1.00±0.00
A

0.7796±0.0008 1.13±0.03
B

2 1.72±0.06
A 0.8341±0.0140 1.43±0.10

B 0.8341±0.0140 3.40±0.17

3 8.32±0.34
A 0.9303±0.0068 1.50±0.09

B 0.9263±0.0077 5.22±0.24

4 68.24±1.62
A 0.9656±0.0033 1.50±0.02

B 0.9583±0.0079 6.45±0.19

5 375.07±3.54
A 0.9764±0.0012 2.17±0.22

B 0.9648±0.0083 8.56±0.55

6 713.42±1.14
A 0.9782±0.0001 2.38±0.07

B 0.9649±0.0084 9.83±0.20

ES

1 4.68±0.32
A

0.3581±0.0086 1.17±0.01
B

2 817.76±6.33
A 0.5206±0.0056 24.19±0.62

B 0.4809±0.0078 4.89±0.11

3 1113.43±1.94
A 0.5429±0.0046 41.10±0.99

B 0.4874±0.0072 6.53±0.18

4 1147.47±0.50
A 0.5391±0.0047 41.98±0.70

B 0.4830±0.0068 7.93±0.15

5 1149.84±0.15
A 0.5389±0.0047 41.98±0.70

B 0.4830±0.0067 9.34±0.17

6 1150.00±0.00
A 0.5389±0.0047 41.88±0.64

B 0.4830±0.0067 9.34±0.17

LE

1 1.00±0.00
A

0.5605±0.0051 7.92±0.04
B

2 1.01±0.01
A 0.5604±0.0051 8.04±0.22

B 0.5604±0.0051 19.73±0.27

3 3.25±0.11
A 0.6057±0.0117 9.42±0.04

B 0.6056±0.0117 33.60±0.08

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 28.86±0.79
A 0.8862±0.0034 10.27±0.06

B 0.8760±0.0043 45.52±0.19

5 183.14±1.15
A 0.9401±0.0016 12.15±0.15

B 0.9180±0.0030 57.83±0.21

6 348.05±1.22
A 0.9414±0.0011 14.19±0.47

B 0.9153±0.0033 77.50±4.44

As one can see from Table 3, the HP classifier is able to perceive the data space and identify prototypes from

data at different levels of granularity. Each layer of the prototype-based hierarchies corresponds to a particular

level of granularity. In general, an upper layer of the hierarchy usually contains less but more abstract prototypes,

and it is able to perform more efficient but coarser classification. In contrast, a lower layer contains more

prototypes and partitions the data space in a finer way. As a result, it can be used for conducting classification

with a higher precision. The larger is, the more detailed data partitioning results the HP classifier can achieve.

Nonetheless, if is too large, the HP classifier will achieve the finest data partitioning, namely, all the data

samples are recognized as prototypes at the lower layers of the prototype-based hierarchies. In such cases, the

HP classifier reduces to a KNN classifier with =1. It is also noticeable in Table 3 that the proposed HP

classifier demonstrates better classification performance when Mode A is used during the validation stage. At

the same time, for high-dimensional, large-scale problems (e.g. ES dataset), using Mode B can result in a highly

computationally efficient decision-making process. In the rest of this section, the proposed HP classifier uses

Mode A by default because this method performs better in terms of classification accuracy.

To evaluate the influence of the layer number, on computational efficiency, a HP classifier is trained on the

previously used four benchmark datasets with varying from to . The relationship between the training time

consumption and the layer number is depicted in Fig. 7. From this figure one can see that, the computational

efficiency of the HP classifier is (almost) linearly correlated to the layer number. The more layers the HP

classifier has, the more time is consumed during the learning process. However, it is worth to be noticed that if

the highest level of granularity for data partitioning has been reached and all the data samples have been

recognized as prototypes at the bottom layers, adding extra layers to the HP classifier will not significantly

increase the training time consumption.

Fig. 7. The influence of layer number on the computational efficiency of the HP classifier

In order to better evaluate the performance of the proposed HP classifier, the following state-of-the-art

approaches are involved for comparison:

(1) KNN classifier using Euclidean distance (KNN-E) with [10];

(2) KNN classifier using cosine dissimilarity (KNN-C) with [10];

(3) SVM with linear kernel [9];

(4) DT classifier [39];

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(5) FNN with three hidden layers, each hidden layer consists of 20 neurons [21];

(6) Long short-term memory (LSTM) with three hidden layers, each hidden layer consists of 20 neurons [16];

(7) LVQ with one hidden layer consisting of 32 neurons [25];

(8) SOM classifier using “winner takes all” principle with the net size of [34];

(9) Extended sequential adaptive fuzzy inference system (ESAFIS) [35];

(10) Zero-order autonomous learning multiple-model (ALMMo0) classifier [2];

(11) Self-organizing fuzzy (SOF) classifier using Euclidean distance with the level of granularity [17],

and;

(12) eClass0 classifier [1].

Note that both, KNN and SVM are two main generic classifiers used by the pre-trained DNN-based approaches

[33], and they are capable of producing highly accurate classification results. ALMMo0, SOF and eClass0

classifiers are all zero-order EISs, and they have a prototype-based nature same as the proposed HP classifier. In

these experiments, a six-layer HP classifier () is used. The same experimental protocol as used in the

previous numerical examples are adopted. The performance of these classification approaches in terms of

accuracy and training time consumption (in seconds) on the four benchmark problems is presented in Table 4,

where the training time consumptions of the KNN classifiers are not reported because they literally require no

training.

Table 4. Performance comparison on benchmark numerical datasets

Dataset Algorithm Classification Accuracy Training Time, s

MF

HP 0.9484±0.0064 0.64±0.05

KNN-E 0.9434±0.0051

KNN-C 0.9489±0.0056

SVM 0.9704±0.0062 20.35±4.69

DT 0.9263±0.0107 0.14±0.02

FNN 0.8658±0.0380 0.49±0.18

LSTM 0.2042±0.0471 6.43±1.75

LVQ 0.6533±0.0209 69.80±2.35

SOM 0.8790±0.0079 40.62±1.63

ESAFIS 0.5324±0.1383 360.31±74.51

ALMMo0 0.9343±0.0055 0.11±0.01

SOF 0.9226±0.0092 0.06±0.02

eClass0 0.7985±0.0060 2.54±0.11

PR

HP 0.9782±0.0001 3.87±0.07

KNN-E 0.9774±0.0000

KNN-C 0.9780±0.0000

SVM 0.9551±0.0000 58.65±0.90

DT 0.9122±0.0003 0.04±0.03

FNN 0.9177±0.0180 0.92±0.17

LSTM 0.8218±0.0280 34.29±7.82

LVQ 0.8217±0.0018 338.83±7.10

SOM 0.9126±0.0067 9.76±0.58

ESAFIS 0.9197±0.0134 38.80±5.93

ALMMo0 0.9752±0.0023 0.56±0.05

SOF 0.9763±0.0000 0.39±0.03

eClass0 0.7630±0.0001 0.73±0.08

ES

HP 0.5389±0.0047 1.95±0.02

KNN-E 0.5050±0.0046

KNN-C 0.5389±0.0047

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

SVM 0.2220±0.0066 363.20±1.99

DT 0.4588±0.0048 0.69±0.03

FNN 0.4263±0.0611 0.82±0.28

LSTM 0.3257±0.0101 13.23±7.35

LVQ 0.2000±0.0000 285.97±0.61

SOM 0.3743±0.0091 66.39±0.83

ESAFIS 0.2597±0.0246 266.17±83.10

ALMMo0 0.5401±0.0053 5.53±0.05

SOF 0.4893±0.0073 0.77±0.03

eClass0 0.2848±0.0067 3.20±0.17

LR

HP 0.9414±0.0011 5.31±0.26

KNN-E 0.9426±0.0016

KNN-C 0.9415±0.0011

SVM 0.8540±0.0030 15.77±0.54

DT 0.8255±0.0048 0.06±0.02

FNN 0.4777±0.0354 1.55±0.14

LSTM 0.4481±0.0418 53.03±10.03

LVQ 0.0379±0.0011 437.47±0.56

SOM 0.4645±0.0100 16.80±0.14

ESAFIS 0.0394±0.0000 9.32±0.22

ALMMo0 0.9197±0.0031 0.59±0.04

SOF 0.9297±0.0021 0.24±0.03

eClass0 0.4915±0.0040 0.87±0.07

In the following numerical example, the quality of the identified prototypes by the HP classifier is examined

from the data partitioning point of view, and the four datasets, MF, PR, ES and LR are used for evaluation.

During the experiments, a six-layer HP classifier () is firstly trained with the whole datasets to extract

prototypes from data with different levels of granularity. After that, Voronoi tessellations are created by using

the identified prototypes at different layers to attract nearby data samples of the same classes forming data

clouds. This results in six different data partitioning results (one per layer), each one corresponds to one level of

granularity.

Then, three clustering quality indices, namely, Calinski-Harabasz [6], Davies-Bouldin [11] and Silhouette [36],

are used for evaluating the quality of the data partitioning result of each layer, and the calculated index values

are reported in Table 5. For better evaluation, the following widely used data partitioning/clustering algorithms

are involved for comparison:

(1) Autonomous data partitioning (ADP) algorithm [18];

(2) Mean shift (MS) clustering algorithm [8];

(3) Subtractive (Sub) clustering algorithm [7];

(4) Affinity propagation (AP) clustering algorithm [14];

(5) DBSCAN clustering algorithm [13], and;

(6) Nonparametric mixture model (NMM) clustering algorithm [4].

In this example, the offline version of the ADP algorithm is used; the bandwidth of the MS algorithm is set to be

0.15; the initial cluster radius of the Sub algorithm is set to be 0.3 as recommended by [7]; for the AP algorithm,

the maximum number of iterative refinements is 200, the cumulative number of iterations for monitoring the

exemplar decision is set as 20, and the dampening factor is equal to 0.5; the minimum number of data samples

within the radius is set to be 4 for the DBSCAN algorithm, and the cluster radius is set to be the value of the

knee point of the sorted 4-dist graph as recommended by [13]; the NMM algorithm assumes that the data

samples follow Gaussian distribution, its prior scaling parameter is set to be 1, and the maximum number of

iterative refinements is 200. All the comparative algorithms use the same experimental protocol by identifying

the data clouds/clusters from data samples of different classes, separately. For the Calinski-Harabasz and

Silhouette indices, a higher value indicates a better clustering result. However, it is the opposite for the Davies-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Bouldin index that a lower value indicates a better clustering result. The best results are bolded in Table 5. It is

also noticeable that occasionally, the clustering indices give abnormal values such as: 0.0000, 1.0000, not a

number (nan) and infinite (inf). Such cases are in italic in Table 5 and should not be taken into consideration.

As we can see from Table 5, the HP classifier is able to identify prototypes from data with different levels of

granularity and partitions the data space with high-quality data clouds surpassing the alternative approaches.

This is an important feature showing the strong adaptive ability and flexibility of the proposed approach. By

perceiving complex problems at different levels of specificity and self-organising a multi-layer structure through

an “one pass” learning process, the HP classifier significantly simplifies complex problems and presents users

the learned knowledge in a human-understandable prototype-based hierarchical form with different levels of

details all in one. It allows users to choose the lower layers with lots of finer details for performing accurate

classification or/and the easy-to-interpret upper layers for coarse classification. Users can determine the most

suitable layer for a particular problem depending on preferences and/or specific requirements.

Table 5. Quality comparison between the formed clusters/data clouds by different algorithms

Dataset Algorithm # Clusters Calinski-Harabasz Davies-Bouldin Silhouette

MF

HP Layer 1 10.0 1038.3387 2.1662 0.1115

Layer 2 11.0 1012.9386 2.6062 0.1048

Layer 3 16.3 832.1617 2.5744 0.0448

Layer 4 39.4 690.0422 1.7152 0.1311

Layer 5 203.0 330.6662 1.1416 0.1678

Layer 6 1182.0 129.1651 0.5979 0.5118

ADP 408.0 282.1538 1.5072 0.1517

MS 1994.0 inf 0.0000 1.0000

Sub 1994.0 inf 0.0000 1.0000

AP 52.0 976.3070 1.8232 0.2131

DBSCAN 24.0 559.7079 3.8972 0.0742

NMM 10.0 1038.3387 2.1662 0.111

PR

HP Layer 1 10.0 1404.4659 2.3209 0.2187

Layer 2 18.9 1408.9932 1.5576 0.2516

Layer 3 97.7 778.4346 1.3151 0.2758

Layer 4 820.4 262.97307 1.1739 0.2099

Layer 5 5001.0 131.5285 0.6967 0.3932

Layer 6 10297.2 231.9914 0.2308 0.9260

ADP 1022.0 243.7096 1.3187 0.2524

MS 2627.1 74.8120 0.7123 0.0535

Sub 3957.0 65.0035 0.8365 0.2893

AP 303.0 535.0103 1.5422 0.2292

DBSCAN 393.0 670.5420 2.3932 0.1748

NMM 79.7 695.2818 1.9006 0.1441

ES

HP Layer 1 24.3 49.7753 6.6989 -0.3027

Layer 2 7385.9 5.7619 0.9858 0.4832

Layer 3 10925.7 11.97795 0.5728 0.9536

Layer 4 11450.1 27.7188 0.2917 0.9976

Layer 5 11497.1 43.4237 0.0526 0.9999

Layer 6 11500.0 nan 0.0000 1.0000

ADP 564.0 3.2650 7.0981 -0.3561

MS 9790.2 18.0079 0.6878 0.7633

Sub 9186.0 4.4166 1.1445 0.6347

AP 1945.0 1.4213 3.1027 -0.3277

DBSCAN 10.0 3.3213 36.4996 -0.2135

NMM 28.9 6.3598 17.3070 -0.4429

LE

HP Layer 1 26.0 382.5708 4.3511 -0.0129

Layer 2 26.4 385.3833 4.2978 -0.0112

Layer 3 87.0 407.6502 2.6115 0.0255

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Layer 4 858.8 197.5088 1.5564 0.2136

Layer 5 7192.0 80.4005 0.8229 0.3717

Layer 6 17111.8 225.1629 0.2304 0.9149

ADP 1867.0 155.3645 1.3385 0.3105

MS 4808.6 45.5177 0.7478 0.2036

Sub 1343.0 69.7540 1.6665 -0.0647

AP 831.0 212.9784 1.5094 nan

DBSCAN 215.0 148.7575 2.3189 -0.1930

NMM 150.0 225.2300 2.6303 -0.1008

Finally, numerical example is presented on the FC dataset to evaluate the performance of the proposed HP

classifier on very large-scale numerical datasets. In this example, 50% of data samples of this dataset are

randomly selected as the training set and the remaining ones are used for validation. The classification

performance of a six-layer HP classifier () in terms of accuracy, training and testing time consumptions (in

seconds) is reported in Table 6. Here, the two nearest prototype searching modes for decision-making, namely,

Mode A and Mode B, are both involved. Alternative classification approaches as used in the numerical

examples presented in Table 4 are involved for comparison, and their results are also tabulated in Table 6.

However, LSTM and LVQ are not used in this example because their computational efficiency is significantly

lower on large-scale datasets.

Table 6. Performance comparison on the FC dataset

Algorithm Classification Accuracy Training Time, s Testing Time, s

HP
Mode A 0.9069±0.0006 544.95±36.85 7528.65±433.48

Mode B 0.8711±0.0042 1459.61±18.14

KNN-E 0.9331±0.0004 6479.94±170.76

KNN-C 0.9331±0.0004 6511.59±217.21

SVM 0.7247±0.0008 4641.64±247.81 2605.98±161.16

DT 0.9180±0.0008 37.82±6.59 0.36±0.04

FNN 0.7186±0.0006 104.14±1.49 1.40±0.09

SOM 0.6335±0.0008 2596.12±120.83 788.05±114.33

ESAFIS 0.7359±0.0037 5479.86±1288.21 5.97±1.12

ALMMo0 0.8932±0.0005 1717.16±166.51 4138.93±210.86

SOF 0.9242±0.0005 6916.28±444.19 14181.74±1051.70

eClass0 0.3456±0.0005 73.95±2.04 26.20±3.12

As one can see from Table 6, during the training stage, the HP classifier is at least two times more

computationally efficient than alternative prototype-based approaches with similar levels of precision, namely,

ALMMo0 and SOF. Its computational efficiency is also four times higher than SOM and 10 times higher than

SVM. One may notice that both KNN classifiers produce the most accurate classification results on this problem.

This indicates that the classification accuracy of the HP classifier can be further improved by adding more layers

to it. It is also noticeable that during the decision-making stage, the computational efficiency of the HP classifier

is four times higher if Mode B is used. In contrast, using Mode A results in stronger classification performance

in terms of accuracy.

4.3. Performance on Benchmark Image Sets

In this subsection, the following popular benchmark image sets are used for further evaluating the performance

of the proposed HP classifier on image classification problems:

(1) MNIST dataset
7
;

(2) UCMerced dataset
8
;

7
 Available at: http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(3) WH-RS19 dataset
9
;

(4) Caltech101 dataset
10

, and;

(5) Caltech256 dataset
11

;

MNIST is a large-scale image set for hand-written digits recognition (from “0” to “9”). MNIST dataset is

composed of a training set and a validation set. The train set contains 60000 grey-level images and the

validation set contains 10000 grey-level images. All the images have the uniform size of pixels. The

amounts of training and validation images of the 10 classes are more or less equal. Example images of this

image set are given in Fig. 8(a) for illustration.

UCMerced image set is a well-known benchmark in the remote sensing domain [42]. This dataset consists of

fine spatial remote sensing images of 21 challenging land-use categories (including 1) agricultural; 2) airplane; 3)

baseball diamond; 4) beach; 5) buildings; 6) chaparral; 7) dense residential; 8) forest; 9) freeway; 10) golf

course; 11) harbour;12) intersection; 13) medium residential;14) mobile home park; 15) overpass;16) parking lot;

17) river; 18) runway; 19) sparse residential; 20) storage tanks; and 21) tennis courts). Each category contains

100 images with the uniform size of pixels. Example images of the UCMerced image set are

presented in Fig. 8(b).

WH-RS19 is a popular benchmark image set collected from Google Earth (Google Inc.). It consists of 950

images with a size of pixels. WH-RS19 has 19 different land-use categories, which include 1)

airport; 2) beach; 3) bridge; 4) commercial; 5) desert; 6) farmland; 7) football field; 8) forest; 9) industrial; 10)

meadow; 11) mountain; 12) park; 13) parking lot; 14) pond; 15) port; 16) railway; 17) residential; 18) river; and

19) viaduct, with 50 images in each. This image set contains aerial images with high variations in terms of

illumination, scale resolution, etc., and, thus, is a challenging problem. Example images of the WH-RS19

dataset are presented in Fig. 8(c).

Caltech101 dataset has 8677 images belonging to 101 classes. There are 31 to 800 images for each class, and the

size of each image is roughly 200×300 pixels. Caltech256 dataset is the extended dataset of Caltech101 and has

256 classes. The minimum number of images per class for Caltech256 dataset is 80, and in total, there are 29780

images. The two datasets contain both, classes corresponding to rigid object (like bikes and cars) and classes

corresponding to non-rigid object (like animals and flowers) with various backgrounds, and, thus, they are

challenging problems. The images of both datasets are very uniform in presentation, aligned from left to right

and usually not occluded. The example images of two datasets are given in Fig. 8(d) and 8(e).

In this paper, for the MNIST dataset, the GIST feature descriptor [32] is employed to extract

dimensional feature vectors from the original handwritten digit images. For the UCMerced, WH-RS19,

Caltech101 and Caltech256 datasets, a high-level ensemble descriptor using the pre-trained AlexNet [26] and

VGG-VD-16 [38] models is created for feature extraction, which results in a dimensional

discriminative representation denoted by from each image, :

 (16)

where represents dimensional representation extracted from by the ensemble feature descriptor;

 and are the dimensional activations extracted from the first fully connected layers of the

AlexNet [26] and VGG-VD-16 [38] models, respectively. In particular, the commonly used “centre, four

corners and horizontal flipping” data augmentation technique is applied on UCMerced and WH-RS19 datasets,

and the mean of feature vectors of the 10 sub-images created from each remote sensing image is used as the

feature vector of the image [26]. Images of WH-RS19 dataset have been rescaled to the size of

 pixels in advance to avoid loss of information during the data augmentation process. However, it has

to be stressed that there is no image augmentation technique applied to MNIST, Caltech101 and Caltech256

8
 Available at: http://weegee.vision.ucmerced.edu/datasets/landuse.html

9
 Available at: http://captain.whu.edu.cn/repository.html

10
 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech101/

11
 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech256/

http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://captain.whu.edu.cn/repository.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

datasets in the numerical examples presented in this subsection. The details of the image sets are given in Table

7.

Table 7. Details of the benchmark numerical datasets for evaluation

Image Set # Images # Classes # Pixels # Features

MNIST
Training 60000

10 1
validation 10000

UCMerced 2100 21

WH-RS19 950 19

Caltech101 8677 101
Roughly

Caltech256 29780 256

(a) MNIST

(b) UCMerced

(c) WH-RS19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(d) Caltech101

(e) Caltech256

Fig. 8. Example images of the benchmark image sets for performance evaluation

Firstly, the performance of the proposed approach is tested on the MNIST dataset. In this experiment, a four-

layer HP classifier () is trained on the training sets of different size (5000, 10000, 20000, 30000, 40000,

50000 and 60000 images), and then, each individual layer is used for testing on the validation set. Statistical

performance in terms of average number of prototypes (per class) at each layer and classification accuracy is

reported in Table 8.

From Table 8 one can see that the bottom layer of the HP classifier is able to classify the unlabelled handwritten

digits with the highest accuracy. Meanwhile, one may also notice that the bottom layer has a huge number of

prototypes. This is due to the very high variability demonstrated by these handwritten digit images in the

MNIST, where even images of the same class can vary a lot.

Table 8. The statistical performance of the HP classifier

#Training Images Layer # Prototypes Classification Accuracy

5000 1 1.00±0.00 0.8973±0.0030

2 1.79±0.18 0.8807±0.0069

3 89.93±2.65 0.9643±0.0013

4 466.94±2.13 0.9731±0.0015

10000 1 1.00±0.00 0.8985±0.0024

2 1.98±0.16 0.8818±0.0090

3 129.95±3.81 0.9698±0.0013

4 920.49±3.30 0.9784±0.0011

20000 1 1.00±0.00 0.8987±0.0016

2 2.28±0.12 0.8852±0.0115

3 186.33±4.53 0.9738±0.0015

4 1806.01±4.60 0.9828±0.0001

30000 1 1.00±0.00 0.8988±0.0011

2 2.44±0.15 0.8899±0.0067

3 228.84±4.97 0.9754±0.0011

4 2673.84±5.96 0.9845±0.0001

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

40000 1 1.00±0.00 0.8988±0.0009

2 2.54±0.15 0.8935±0.0049

3 263.31±4.70 0.9763±0.0010

4 3527.52±5.71 0.9855±0.0001

50000 1 1.00±0.00 0.8988±0.0007

2 2.62±0.15 0.8949±0.0045

3 292.96±6.01 0.9774±0.0009

4 4369.10±5.41 0.9860±0.0001

60000 1 1.00±0.00 0.8989±0.0002

2 2.71±0.16 0.8958±0.0047

3 318.35±6.30 0.9777±0.0010

4 5202.36±5.34 0.9864±0.0001

Furthermore, the performance of the HP classifier is compared with the following comparative algorithms in

terms of classification accuracy and training time consumption (in seconds):

(1) KNN-C with [10];

(2) SVM with linear kernel [9];

(3) DT classifier [39];

(4) Deep rule-based (DRB) classifier [19];

(5) SOF classifier using cosine dissimilarity with the level of granularity [17];

(6) eClass1 classifier [1], and;

(7) TEDAClass classifier [23].

Note that cosine dissimilarity is more effective than Euclidean distance on high-dimensional problems [17] and,

thus, both KNN and SOF classifiers use cosine dissimilarity in the numerical experiments presented in this

subsection. The comparison on classification accuracy is tabulated in Table 9, and the comparison on training

time consumption is depicted in Fig. 9, where the same four-layer HP classifier is used for the experiments.

Table 9. Performance comparison on MNIST dataset in terms of accuracy

Training

Images

Classification Accuracy

HP KNN-C SVM DT DRB SOF eClass1 TEDAClass

5000 0.9731 0.9679 0.9733 0.8197 0.9712 0.9679 0.9685 0.9716

10000 0.9784 0.9747 0.9786 0.8459 0.9769 0.9747 0.9719 0.9738

20000 0.9828 0.9795 0.9819 0.8692 0.9815 0.9795 0.9732 0.9752

30000 0.9845 0.9816 0.9835 0.8803 0.9836 0.9816 0.9746 0.9768

40000 0.9855 0.9827 0.9846 0.8890 0.9848 0.9827 0.9745 0.9766

50000 0.9860 0.9833 0.9851 0.8940 0.9856 0.9833 0.9746 0.9765

60000 0.9864 0.9835 0.9857 0.9010 0.9864 0.9835 0.9746 0.9763

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Fig. 9. Comparison on training time consumption between different algorithms on MNIST image set

From Table 9 one can see that the proposed HP classifier demonstrates very high classification performance

surpassing or, at least, on par with comparative algorithms. Moreover, Fig. 9 further demonstrates that the

computational efficiency of the proposed HP classifier is much higher than the alternatives, especially, on large-

scale, high-dimensional problems.

In the following numerical examples, the performance of the HP classifier is tested on UCMerced and WH-

RS19 image sets. Following the common practice [42], the ratios between the training and validation images of

the UCMerced dataset are set to be 50% and 80%; the ratios of the WH-RS19 dataset are set as 40% and 60%,

respectively. Since the scales of the two remote sensing image sets are smaller than the MNIST image set, a

three-layer HP classifier (is trained. The accuracy rates of the classification results by the HP classifier

on the two image sets are tabulated in Tables 10 and 11, respectively. The KNN-C, SVM and DRB classifiers as

used in the previous example are involved for comparison, and the classification performance of the competitors

is reported in Tables 10 and 11 as well. Selected state-of-the-art results reported by recent publications are also

given for informed comparison. The average number of the prototypes (per class) at each layer of the HP

classifier is reported in Fig. 10.

Table 10. Performance comparison on UCMerced image set

Algorithm
Classification Accuracy

50% Training Images 80% Training Images

HP 0.9329±0.0092 0.9594±0.0151

KNN-C 0.9090±0.0101 0.9359±0.0141

SVM 0.9425±0.0080 0.9601±0.0112

DRB 0.9313±0.0087 0.9580±0.0146

RCNet [49] 0.9453

CaffeNet [42] 0.9398±0.0067 0.9502±0.0081

GoogLeNet [42] 0.9270±0.0060 0.9431±0.0089

VGG-VD-16 [42] 0.9414±0.0069 0.9521±0.0120

BoVW(SIFT) [42] 0.7190±0.0079 0.7412±0.0330

VLAD(SIFT) [42] 0.7323±0.0102 0.7819±0.0166

MS-CLBP+FV [22] 0.8876±0.0079 0.9300±0.0120

salM
3
LBP-CLM [4] 0.9421±0.0075 0.9575±0.0080

salM
3
LBP [4] 0.8997±0.0085 0.9314±0.0100

salCLM (eSIFT) [4] 0.9293±0.0092 0.9452±0.0079

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 11. Performance comparison on WH-RS19 image set

Algorithm Classification Accuracy

40% Training Images 60% Training Images

HP 0.9320±0.0069 0.9470±0.0099

KNN-C 0.9264±0.0083 0.9379±0.0097

SVM 0.9458±0.0105 0.9577±0.0100

DRB 0.9335±0.0098 0.9470±0.0085

CaffeNet [42] 0.9511±0.0120 0.9624±0.0056

GoogLeNet [42] 0.9312±0.0082 0.9471±0.0133

VGG-VD-16 [42] 0.9544±0.0060 0.9605±0.0091

BoVW (SIFT) [42] 0.7526±0.0139 0.8013±0.0201

VLAD (SIFT) [42] 0.7637±0.0201 0.8082±0.0215

salM
3
LBP-CLM [4] 0.9535±0.0076 0.9638±0.0082

salM
3
LBP [4] 0.8974±0.0184 0.9258±0.0089

salCLM (eSIFT) [4] 0.9381±0.0091 0.9592±0.0095

MS-CLBP+FV [22] 0.9453±0.0102

Fig. 10. The average number of prototypes at each layer of the HP classifier trained on remote sensing image

sets

Finally, Caltech101 and Caltech256 datasets are used for numerical examples. Following the common practice

[44], for Caltech101 image set, 15 and 30 images are randomly selected out from each category for training

respectively, and the rest of the dataset is used for validation. For Caltech256 image set, 15, 30, 45 and 60

images are randomly selected from each category for training, respectively, and the rest is used for validation. A

two-layer HP classifier () is used for the experiments because of the smaller scale and less variability of

training images in each category. The statistical performance of the HP classifier in terms of classification

accuracy is reported in Tables 12 and 13, respectively. The average number of prototypes of each layer (per

class) is given in Fig. 11. Similarly, the KNN-C, SVM and DRB classifiers as used in the previous example are

involved for comparison, and the selected state-of-the-art results reported by recent publications are also given

for a better evaluation.

Table 12. Performance comparison on Caltech101 image set

Algorithm
Classification Accuracy

15 Training Images 30 Training Images

HP 0.8863±0.0060 0.9224±0.0040

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

KNN-C 0.8670±0.0063 0.8999±0.0051

SVM 0.8729±0.0104 0.9027±0.0087

DRB 0.8491±0.0062 0.8864±0.0047

ICAC [45] 0.7148±0.0056 0.7663±0.0079

CASE-LLC-SVM [29] 0.6400±0.0040 0.7140±0.0120

LLC [41] 0.6543 0.7344

ScSPM [44] 0.6700±0.0045 0.7320±0.0054

DEFEATnet [15] 0.7128±0.0061 0.7760±0.0096

Table 13. Performance comparison on Caltech256 image set

Algorithm
Classification Accuracy

15 Training Images 30 Training Images 45 Training Images 60 Training Images

HP 0.6353±0.0045 0.6908±0.0029 0.7172±0.0034 0.7347±0.0030

KNN-C 0.6249±0.0033 0.6723±0.0026 0.6986±0.0032 0.7210±0.0027

SVM Out of System Memory

DRB 0.6239±0.0033 0.6711±0.0026 0.6976±0.0034 0.7187±0.0029

DEFEATnet [15] 0.3507±0.0038 0.4206±0.0025 0.4598±0.0026 0.4852±0.0032

ScSPM [44] 0.2773±0.0051 0.3402±0.0035 0.3746±0.0055 0.4014±0.0091

LSC-LG [47] 0.4314±0.0063 0.5062±0.0053 0.5327±0.0056 0.5576±0.0048

LLC [41] 0.2776±0.0032 0.3207±0.0024 0.3509±0.0044 0.4014±0.0091

FV [37] 0.3850±0.0020 0.4740±0.0010 0.5210±0.0040 0.5480±0.0040

OCB-FV [50] 0.4403±0.0046 0.5315±0.0044 0.5784±0.0040 0.5903±0.0045

SWSS-DeCAF [46] 0.6152±0.0039 0.6768±0.0065 0.6977±0.0053 0.7283±0.0044

SWSS-FV [46] 0.4246±0.0038 0.4985±0.0042 0.5466±0.0047 0.5652±0.0041

SC
2
-CNN [48] 0.4758±0.0062 0.5542±0.0056 0.5912±0.0051 0.6174±0.0050

Fig. 11. Number of prototypes at each layer of the HP classifier trained on Caltech101 and Caltech256 image

sets

4.4. Discussions

As we can see from the numerical examples presented in this section, the proposed approach outperforms the

comparative approaches on various benchmark classification problems. Its computational efficiency is also

extremely high, especially for high-dimensional, large-scale, complex problems. Thanks to its unique hierarchal

system structure and prototype-based nature, the HP classifier is able to effectively handle complex problems by

approaching them at different levels of granularity and can further present the learning results in the form of

prototype-based hierarchies. In addition, the HP classifier also puts users “in the driving seat” by allowing users

to determine the layer number for the system structure and choose the method for decision-making. Experienced

users can further change the settings of the HP classifier to meet various preferences or problem requirements,

for example, by adjusting the values of radii () of influence areas or specifying a layer number

for each hierarchy. The strong flexibility significantly strengthens the adaptive ability of the proposed approach

in real-world applications. Therefore, one can conclude that the proposed HP classifier is a strong alternative to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the state-of-the-art approaches for classification, and its unique advantages make it highly attractive for large-

scale, high-dimensional and complex problems.

Nonetheless, it has to be admitted that there are still few issues for future improvements. Firstly, there is no

scientific way at this moment to determine the most suitable layer number for the HP classifier to perform the

best on a particular problem. Users have to either rely on their experience and expertise or make multiple

attempts to obtain the best setting. Secondly, the system structure and meta-parameters of the HP classifier are

self-evolving and self-updating all the time with new data samples. However, if one wants to add an extra layer

to the system structure, the whole HP classifier has to be re-trained fully. Thirdly, the radii of influence areas of

prototypes at different layers of the HP classifier are hard-coded in advance at this moment.

5. Conclusion

This paper presents a novel hierarchical prototype-based (HP) approach for classification. The proposed

approach has a highly transparent hierarchical system structure composed of meaningful prototypes. These

prototypes are identified through an autonomous, non-iterative learning process, and they naturally represent the

local peaks of multimodal distributions derived from data at different levels of granularity. The HP classifier can

start working from the very first training example per class, and continuously learn from new observations in a

computationally lean, “one pass” manner and dynamically self-evolve to follow the rapidly changing data

patterns. Thanks to its prototype-based nature, the learning and decision-making processes of the HP classifier

are fully interpretable, traceable, explainable to/by humans. The proposed approach is also capable of

visualising the learned knowledge, namely, the identified prototypes with different levels of details and the

meaningful links between them, in a human-understandable hierarchical form naturally. Users can use either the

more sophisticated lower layers of the HP classifier for finer classification or/and the more generalized upper

layers to quickly understand complex problems and perform coarse classification. Numerical examples on

various benchmark problems demonstrated that the HP classifier can perform highly accurate classification

surpassing or, at least, on par with the state-of-the-art approaches. Moreover, the very high computational

efficiency of the HP classifier on large-scale problems is also justified.

There are several considerations for future work. Firstly, the optimality of the HP classifier needs to be

investigated. This is of paramount importance to the proposed approach because it determines the validity and

effectiveness of the learning results. There are a few potential modifications that can enhance the objectiveness

and effectiveness of the HP classifier and strengthen its adaptive ability and applicability for real-world

problems. For example, the current HP classifier requires a full re-training if extra layers are required to be

added into the system structure. An approach to dynamically add new layers based on requirements during the

online learning process will be valuable. It will be a strong novelty if some operating mechanisms are

introduced to the HP classifier that enables the approach to autonomously determine the optimal layer number

for each hierarchy based on the ensemble properties of data. Alternatively, developing some criteria that can

help users to determine the most desirable layer number for a given problem without prior knowledge will also

be useful. Another important direction will be introducing a data-driven approach for determining parameter

setting (radii) to replace the hard-coding method used by the current version.

References

[1] P. Angelov and X. Zhou, “Evolving fuzzy-rule based classifiers from data streams,” IEEE Trans. Fuzzy

Syst., vol. 16, no. 6, pp. 1462–1474, 2008.

[2] P. Angelov and X. Gu, “Autonomous learning multi-model classifier of 0-order (ALMMo-0),” in IEEE

International Conference on Evolving and Autonomous Intelligent Systems, 2017, pp. 1–7.

[3] M. Antonelli, D. Bernardo, H. Hagras, and F. Marcelloni, “Multiobjective evolutionary optimization of

type-2 fuzzy rule-based systems for financial data classification,” IEEE Trans. Fuzzy Syst., vol. 25, no. 2,

pp. 249–264, 2017.

[4] X. Bian, C. Chen, L. Tian, and Q. Du, “Fusing local and global features for high-resolution scene

classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 10, no. 6, pp. 2889–2901, 2017.

[5] D. M. Blei and M. I. Jordan, “Variational inference for Dirichlet process mixtures,” Bayesian Anal., vol. 1,

no. 1 A, pp. 121–144, 2006.

[6] T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,” Commun. Stat. Methods, vol. 3, no. 1,

pp. 1–27, 1974.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[7] S. L. Chiu, “Fuzzy model identification based on cluster estimation,” J. Intell. Fuzzy Syst., vol. 2, no. 3, pp.

267–278, 1994.

[8] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, 2002.

[9] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based

learning methods. Cambridge: Cambridge University Press, 2000.

[10] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers,” Mult. Classif. Syst., vol. 34, pp. 1–17,

2007.

[11] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 2, pp. 224–227, 1979.

[12] O. Erkaymaz, M. Ozer, and M. Perc, “Performance of small-world feedforward neural networks for the

diagnosis of diabetes,” Appl. Math. Comput., vol. 311, pp. 22–28, 2017.

[13] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large

spatial databases with noise,” in International Conference on Knowledge Discovery and Data Mining, 1996,

vol. 96, pp. 226–231.

[14] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” Science (80-.)., vol. 315,

no. 5814, pp. 972–976, 2007.

[15] S. Gao, L. Duan, and I. W. Tsang, “DEFEATnet—a deep conventional image representation for image

classification,” IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 3, pp. 494–505, 2016.

[16] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing with LSTM recurrent

networks,” J. Mach. Learn. Res., vol. 3, no. 1, pp. 115–143, 2002.

[17] X. Gu and P. P. Angelov, “Self-organising fuzzy logic classifier,” Inf. Sci. (Ny)., vol. 447, pp. 36–51, 2018.

[18] X. Gu, P. P. Angelov, and J. C. Principe, “A method for autonomous data partitioning,” Inf. Sci. (Ny)., vol.

460–461, pp. 65–82, 2018.

[19] X. Gu, P. P. Angelov, C. Zhang, and P. M. Atkinson, “A massively parallel deep rule-based ensemble

classifier for remote sensing scenes,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 3, pp. 345–349, 2018.

[20] H. Hagras, “Toward human-understandable, explainable AI,” Computer (Long. Beach. Calif)., vol. 51, no.

9, pp. 28–36, 2018.

[21] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,”

Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[22] L. Huang, C. Chen, W. Li, and Q. Du, “Remote sensing image scene classification using multi-scale

completed local binary patterns and fisher vectors,” Remote Sens., vol. 8, no. 6, pp. 1–17, 2016.

[23] D. Kangin, P. Angelov, and J. A. Iglesias, “Autonomously evolving classifier TEDAClass,” Inf. Sci. (Ny).,

vol. 366, pp. 1–11, 2016.

[24] N. K. Kasabov and Q. Song, “DENFIS: dynamic evolving neural-fuzzy inference system and its application

for time-series prediction,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144–154, 2002.

[25] T. Kohonen, Self-organizing maps. Berlin: Springer, 1997.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural

networks,” in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.

[27] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nat. Methods, vol. 13, no. 1, pp. 35–35, 2015.

[28] E. Lughofer, “Evolving fuzzy systems—fundamentals, reliability, interpretability, useability, applications,”

in Handbook on Computational Intelligence, P. Angelov, Ed. New York: World Scientific, 2016, pp. 67–

135.

[29] W. Luo, J. Li, J. Yang, W. Xu, and J. Zhang, “Convolutional sparse autoencoders for image classification,”

IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 7, pp. 3289–3294, 2018.

[30] M. N. Murty and V. S. Devi, Introduction to pattern recognition and machine learning. World Scientific.,

2015.

[31] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: high confidence predictions

for unrecognizable images,” in IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.

427–436.

[32] A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic representation of the spatial

envelope,” Int. J. Comput. Vis., vol. 42, no. 3, pp. 145–175, 2001.

[33] A. B. Penatti, K. Nogueira, and J. A. Santos, “Do deep features generalize from everyday objects to remote

sensing and aerial scenes domains?” in IEEE Conference on Computer Vision and Pattern Recognition,

2015, pp. 44–51.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[34] P. Płoński and K. Zaremba, “Self-organising maps for classification with metropolis-hastings algorithm for

supervision,” in International Conference on Neural Information Processing, 2012, pp. 149–156.

[35] H. J. Rong, N. Sundararajan, G. Bin Huang, and G. S. Zhao, “Extended sequential adaptive fuzzy inference

system for classification problems,” Evol. Syst., vol. 2, no. 2, pp. 71–82, 2011.

[36] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” J.

Comput. Appl. Math., vol. 20, pp. 53–65, 1987.

[37] J. Sanchez et al., “Image classification with the Fisher vector: theory and practice,” Int. J. Comput. Vis., vol.

105, no. 3, pp. 222–245, 2013.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in

International Conference on Learning Representations, 2015, pp. 1–14.

[39] S. S. Sivatha Sindhu, S. Geetha, and A. Kannan, “Decision tree based light weight intrusion detection using

a wrapper approach,” Expert Syst. Appl., vol. 39, pp. 129–141, 2012.

[40] I. Škrjanc, J. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and F. Gomide, “Evolving fuzzy and neuro-fuzzy

approaches in clustering, regression, identification, and classification: a survey,” Inf. Sci. (Ny)., vol. 490, pp.

344–368, 2019.

[41] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained linear coding for image

classification,” in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 3360–3367.

[42] G. Xia et al., “AID: a benchmark dataset for performance evaluation of aerial scene classification,” IEEE

Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3965–3981, 2017.

[43] S. Yang, W. Wang, C. Liu, and W. Deng, “Scene understanding in deep learning-based end-to-end

controllers for autonomous vehicles,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 49, no. 1, pp. 53–63, 2019.

[44] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image

classification,” in IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1794–1801.

[45] C. Zhang, J. Cheng, and Q. Tian, “Incremental codebook adaptation for visual representation and

categorization,” IEEE Trans. Cybern., vol. 48, no. 7, pp. 2012–2023, 2018.

[46] C. Zhang, J. Cheng, and Q. Tian, “Structured weak semantic space construction for visual categorization,”

IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 8, pp. 3442–3451, 2018.

[47] C. Zhang, J. Cheng, C. Li, and Q. Tian, “Image-Specific Classification with Local and Global

Discriminations,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 9, pp. 4479–4486, 2018.

[48] C. Zhang, C. Li, D. Lu, J. Cheng, and Q. Tian, “Birds of a feather flock together: visual representation with

scale and class consistency,” Inf. Sci. (Ny)., vol. 460–461, pp. 115–127, 2018.

[49] L. Zhang, L. Zhang, and V. Kumar, “Deep learning for remote sensing data,” IEEE Geosci. Remote Sens.

Mag., vol. 4, no. 2, pp. 22–40, 2016.

[50] C. Zhang, G. Zhu, C. Liang, Y. Zhang, Q. Huang, and Q. Tian, “Image class prediction by joint object,

context, and background modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 2, pp. 428–438,

2018.

Declaration of Interests

This manuscript is the authors’ original work. The authors declare no competing interests.

Xiaowei Gu and Weiping Ding

*Declaration of Interest Statement

