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Abstract: In this paper, a novel hierarchical prototype-based approach for classification is proposed. This 

approach is able to perceive the data space and derive the multimodal distributions from streaming data at 

different levels of granularity in an online manner, based on which it further identifies meaningful prototypes to 

self-organize and self-evolve its hierarchical structure for classification. Thanks to the prototype-based nature, 

the system structure of the proposed classifier is highly transparent, and its learning process is of “one pass” 

type and computationally lean. Its decision-making process follows the “nearest prototype” principle and is fully 

explainable. The proposed approach is capable of presenting the learned knowledge from data in an easy-to-

interpret prototype-based hierarchical form to users, and is an attractive tool for solving large-scale, complex 

real-world problems. Numerical examples based on various benchmark problems justify the validity and 

effectiveness of the proposed concept and general principles. 

Keywords: prototype-based, hierarchical structure, classification, multimodal distribution 

1. Introduction 

Classification is a supervised machine learning technique used for predicting class labels of new observations 

[30]. It is a hotly studied problem in the machine learning and statistics domain. Till now, a variety of 

classification algorithms have been proposed and successfully applied to different areas, e.g., computer vision 

[26],[38], biomedical sciences [12], remote sensing [42],[49], finance [3], etc. 

Nowadays, with the rapid development of artificial intelligence (AI) techniques, the explainability and 

transparency of the decisions made by machine learning algorithms are becoming increasingly important [20], 

especially when these approaches started to be implemented for safety-critical applications, such as autonomous 

vehicles [43] and medical diagnose [13], etc. However, mainstream classification algorithms, for example, deep 

neural networks (DNNs) [27] and support vector machines (SVMs) [9] are typical type of “black box” models. 

Other popular classification approaches, for example, K-nearest neighbour (KNN) [10], decision tree 

(DT)/random forests [39], and rule-based models [1],[17],[23] can be extremely hard to interpret when dealing 

with high-dimensional, large-scale, and complex problems. The lack of transparency and human-interpretability 

in the state-of-the-art machine learning approaches is a critical issue while not yet solved. There is a high 

demand in developing alternative approaches that can provide high levels of transparency, human-

interpretability and, at the same time, perform learning lifelong in a computationally lean manner with high 

precision comparable to, and even surpassing humans. 

In this paper, a novel hierarchical prototype-based (HP) approach with such characteristics is proposed for 

classification. The HP classifier decomposes complex problems into a series of simpler local models with 

different levels of granularity and represents them with meaningful prototypes aggregated naturally in a 

pyramidal hierarchy form. These prototypes are objectively identified from streaming data through an online, 

autonomous and highly computationally efficient process with different levels of granularity from low to high, 

which naturally results in a multi-layer structure. They represent the local peaks of multimodal distributions 

derived from data at different levels of specificity without prior knowledge of the problems. The prototype 

identification process of the HP classifier is of “one pass” type, highly computationally efficient and entirely 

data-driven. It is also non-parametric in the sense that no assumptions on data generation model with user- and 

problem- specific parameters are required to be made. Instead of being a “black box” model, the system 

structure of the proposed HP classifier is highly transparent and, its learning and decision-making processes are 

fully explainable and interpretable for human. In addition, the knowledge base of the HP classifier can be 

visualized in a human-understandable hierarchical form thanks to its prototype-based nature. The upper layers of 

the hierarchies are very useful for human users to quickly understand the general picture of the problem, and 

they can be used for efficient coarse classification. Meanwhile, the lower layers contain lots of fine details 
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(which may take time to interpret) and can be used for performing classification with high accuracy. Numerical 

examples presented in this paper validate the proposed concept and general principles, and further demonstrate 

the strong advantages of the HP classifier as an attractive tool for solving large-scale complex classification 

problems. 

The key contributions of this paper are as follows: (1) a new approach that can self-learn and self-evolve highly 

transparent pyramidal hierarchies from streaming data through an “one pass” learning process; (2) the capability 

to perceive complex problems with different levels of specificity and mine valuable information in a highly 

computationally efficient manner; (3) the abilities of presenting the gained knowledge from data in a human-

interpretable prototype-based hierarchical form and clearly explaining the rationales behind any decisions. 

The remainder of this paper is organized as follows. Section 2 provides a review of related works. The 

algorithmic procedure of the HP classifier is detailed in section 3. Numerical experiments and discussions are 

given in section 4. This paper is concluded by section 5. 

2. Related Works 

Classification is a hotly researched topic, and there have been a wide variety of successful algorithms existing in 

the literature. Since it is practically impossible to cover all of them due to the limited space of this paper, the 

review of related works in this paper is concentrated on well-known classification approaches of the following 

three types: (1) multi-layer; (2) fuzzy rule-based and (3) prototype-based.  

DNNs (or artificial neural networks, ANNs) [27], which include feedforward neural networks (FNNs) [12], 

convolutional neural networks (CNNs) [26],[38] and recurrent neural networks (RNNs) [18], are the best-known 

classification approaches with multi-layer architecture. Currently, DNNs are the state-of-the-art for 

classification, and they have demonstrated very high performance on a number of benchmark problems as well 

as real-world applications [27]. Nonetheless, DNNs suffer from several deficiencies, which include [19] (1) the 

training and decision-making processes lack explainability and human-interpretability, and the inner structure is 

opaque; (2) the training process is data- and computational resource-hungry and limited to offline; (3) the 

performance is fragile to new data patterns. In addition, some recent researches also suggest that DNNs can be 

easily fooled as they can produce high confidence predictions for unrecognizable images [31]. These 

shortcomings significantly influence the applicability of DNNs in real-world application scenarios [19],[20]. 

Evolving intelligent systems (EISs) [28],[40] have demonstrated success in many real-world applications, e.g., 

classification, prediction, control, anomaly detection, and are becoming increasingly popular thanks to their 

simpler system structure and explainable learning and decision-making processes. EISs, generally, can be 

implemented in the forms of multi-layer neuro-fuzzy systems [24] or rule-based models [1],[3],[17]. The 

majority of EISs are designed for processing streaming data “on the fly”, and their learning processes are, 

usually, of “one pass” type [28]. EISs are capable of continuously self-evolving based on new observations from 

data streams and extending the knowledge base to incorporate new data patterns in real time. In contrast with 

DNNs, EISs usually offer much higher transparency and human-interpretability. Nonetheless, it is often 

observed that EISs can be unfavourably obese and uninterpretable for high-dimensional and large-scale 

problems.  

Prototypes play an instrumental role in prototype-based classification algorithms. Different prototype-based 

approaches use different ways to identify prototypes from data, and this creates the differences in performance, 

computational efficiency, system transparency and interpretability. KNN algorithms [10] conduct classification 

using the “nearest neighbours” principle by comparing new observations with a pre-defined number ( ) of 

labelled data samples. Therefore, KNN can be viewed as a type of prototype-based approaches where all the 

data samples are treated as prototypes. KNN requires all training samples to be stored in the memory, and the 

transparency and human-interpretability of the system structure are very low. SVMs are also a type of 

prototype-based classifiers since they perform classification based on support vectors (prototypes), which are 

derived from training data [9]. Nonetheless, the operating mechanism of SVMs is much more sophisticated, 

which involves an iterative optimization process to identify the maximum-margin hyperplane in the data space, 

and, thus, SVMs are the typical type of “black box” models like ANNs. Zero-order EISs [1],[2],[17] are, in 

general, based on prototypes, and they have simpler, more flexible and transparent system structure than other 

types of EISs, e.g. first-order [24] and higher-order ones [3]. They are more computationally efficient and 

capable of handling multi-class classification tasks. Nonetheless, the transparency and explainability of zero-
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order EISs are very limited for high-dimensional, large-scale, complex problems. Other well-known prototype-

based classifiers include learning vector quantization (LVQ) [25], self-organising map (SOM) [25], both of 

which are ANNs and typical “black box” type models.  

Compared with alternative approaches, the proposed HP classifier is highly transparent thanks to its prototype-

based nature and hierarchical system structure. The pyramidal hierarchies of the HP classifier can be clearly 

visualized with meaningful links between prototypes of successive layers. The upper layer of a hierarchy is 

composed of a smaller amount of highly abstract and more representative prototypes, and the bottom layer has a 

larger number of prototypes with finer details. The learning process of the HP classifier is non-iterative, non-

parametric, recursive and highly interpretable for human. The proposed approach does not involve any weight or 

parameter optimization operation, and it can be trained in an extremely lean manner. Moreover, its system 

structure is dynamically evolving, and its meta-parameters are self-updating with new data, which largely 

strengthens the capability of handling nonstationary data streams. More importantly, the rationales behind any 

decisions made by the proposed approach can be explained clearly because the decision-making process strictly 

follows the “nearest prototype” principle.   

In the following section, the algorithmic details of the HP classifier will be described. 

3. The HP Classifier 

In this section, the general architecture, learning and decision-making processes of the proposed HP classifier 

are presented in detail. The computational complexity of the proposed approach is also analysed at the end of 

this section. 

First of all, let                         be a particular data stream in the  -dimensional real data space, 

  , where                      
 
   , and the subscript   denotes the time instance at which    is 

observed. The data stream,     is composed of data samples of   different classes and, thus, at the K
th

 time 

instance, the observed data samples from this stream can be divided into   subsets based on their class labels: 

    
     

    
     

  
    (the superscript i denotes the i

th 
class;          ) and there is       

   . In the 

remainder of this paper, all the mathematical derivations are conducted at the K
th

 time instance by default unless 

specifically declared otherwise.  

3.1. General Architecture 

The general architecture of the HP classifier is depicted in Fig. 1. As one can see from Fig. 1(a), the HP 

classifier consists of   different prototype-based pyramidal hierarchies, which correspond to the   available 

classes in the data stream (one hierarchy per class). During the learning process, each hierarchy is trained in 

parallel using data samples of the corresponding class in a self-organizing, “one-pass” manner. The zoom-in 

structure of the i
th

 hierarchy is given in Fig. 1(b), where      
  denotes the j

th
 prototype at the l

th
 layer of the i

th
 

hierarchy, which is derived from data samples of the i
th

 class of the data stream;          ;   is the layer 

number;           
 ;   

  is the number of prototypes at the l
th

 layer and there are   
    

        
  

  
 ;           

 ;          
 ;                   

 . In this paper, without loss of 

generality, all prototype-based hierarchies of the HP classifier have the same layer number, namely, L. 

Prototypes in the   pyramidal hierarchies are derived directly from data in an “one pass”, top-down manner. 

These prototypes at upper layers of the hierarchies contain highly generalized information and they are more 

abstract and representative. Meanwhile, prototypes at the lower layers contain finer details and they are closer to 

the originally observed data samples in the data space. Each prototype at a particular layer (except for apex 

prototypes at the top layer) is linked with one immediate superior prototype at the layer above, and it represents 

a local peak of the multimodal distribution of data associated with its immediate superior. At the same time, 

each prototype (except for leaf prototypes at the bottom layer) is linked with one or more immediate subordinate 

prototypes at the layer below. For example, in Fig. 1(b),     
  is the immediate superior of     

         
 , and 

    
          

  are the immediate subordinates of        
 . 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

(a) System structure 

 

(b) Zoom-in structure of the i
th

 prototype-based hierarchy 

Fig.1. The general architecture of the HP classifier 

 

In the following two subsections, the learning and the decision-making processes of the HP classifier are 

presented in detail. The computational complexity analysis of the proposed approach is also given at the end of 

this section. 

3.2. Learning Process 

In this subsection, the algorithmic procedure for autonomously identifying a hierarchical prototype-based 

system structure is detailed as follows. As the proposed HP approach identifies prototypes and self-organizes a 

top-down pyramidal hierarchy from training samples of each class separately, only the learning process of the i
th

 

prototype-based hierarchy is presented (          ). The same principles can be applied to all other 

hierarchies in the system. By default, for each observed data sample of the i
th

 class,   
  (            ), it is 

firstly normalized by its Euclidean norm: 

  
  

  
 

   
  

                                                                                                                                                                (1) 

where    
          

  
  

    . This type of normalization can convert the Euclidean distance between data 

samples into a cosine dissimilarity-based distance measure and enhances the ability of the HP classifier for 

handling high-dimensional complex problems [17].   

Step 0. System Initialization 
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The first observed data sample of the i
th

 class,  
  
 

 (    ) is used for initializing the hierarchy and is treated as 

the first prototype at each layer (         ): 

  
     

    
 

   
  
   

    
 

                                                                                                                           (2) 

where  
    

 
  is the number of data samples associated with  

    
 

 .   

The links (subordinate relationships) between these prototypes of successive layers are, then, established to form 

a hierarchical structure. Firstly, the collection of apex prototypes is defined as: 

  
    

    
 

                                                                                                                                                           (3a) 

and, for the prototype at the l
th 

layer,  
    

 
  (           ), the collection of its immediate subordinates is 

initialized by equation (3b): 

 
    

 
    

        
 

                                                                                                                                                 (3b) 

Through equation (3), the i
th

 hierarchy is established in its initial form resembling a chain with  
    

 
  as the 

starting node and  
    

 
  as the ending node. 

Step 1. System Dynamically Evolving 

After initialization, the HP classifier is able to continuously self-evolve its system structure and self-update 

meta-parameters with steaming data. When a new data sample,  
  
  (       ) is observed, the system 

updating process starts from the top layer (   ) in a top-down manner. Firstly, the nearest prototype at the l
th 

layer to  
  
  is identified using the following equation: 

  
   

           
   

  
           

      
   

        
 

    
  
                 

                                                                                        (4) 

It is well-known that for a prototype-based approach, identifying a huge number of prototypes during the 

learning process on large-scale, complex problems is often inevitable. Equation (4) significantly improves the 

computational efficiency of the nearest prototype searching process by reducing the searching range from the 

whole data space to a small group of neighbouring prototypes. This can effectively avoid wasting computational 

resources because the majority of the identified prototypes in the data space are actually far away from  
  
 . This 

searching technique allows the proposed HP approach to identify the nearest prototype in an extremely efficient 

manner compared with alternative approaches that are also based on the “nearest prototype” principle [2],[17].   

Once the nearest prototype      
 

  is identified, the following condition is checked to see whether  
  
  has the 

potential to become a new prototype of the l
th 

layer: 

            
      

  
       

 
  

 

    

       
  
                                      

                                                                  (5) 

where    is the radius of the influence area around each prototype at the l
th

 layer of the hierarchy, which defines 

a particular degree of closeness that is interesting and distinguishable under the l
th

 level of granularity [17]. If 

the distance between  
  
  and      

 
  is larger than   , it means that  

  
  represents a novel data pattern that no 

prototypes at the l
th

 layer can describe, Thus,  
  
  is added to the system as a new prototype. In fact, Condition 1 

(equation (5)) is a simplified combination of Conditions 4 and 5 in [17]. 

In this paper, by default, the value of    (         ) is derived by the following equation [2]: 

            
  

    
                                                                                                                                            (6) 
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where    
 

 
. The decreasing values of the radii of the successive layers allow the HP classifier to learn from 

data and partition the data space with different levels of granularity. The upper layers of the pyramidal 

hierarchies are capable of seeing the general picture of the problems and the lower layers can see more details. 

However, it has to be stressed that the radii of influence areas,      (         ) are adjustable, and their values 

are only required to follow the simple principle:                , which means that prototypes at 

the upper layer have a larger influence area than prototypes at the lower layer. Furthermore, the radii,    

(         ) are not problem- and user-specific parameters and require no prior knowledge to be determined. 

On the contrary, their values can be decided based on users’ preferences. One may explore different methods to 

define the values of    (         ) depending on specific needs of the problems. Moreover, there is an 

alternative approach introduced in [17] for directly deriving    (         ) from empirically observed data 

samples based on their mutual distances. One may also consider determining the layer number for each 

hierarchy depending on the complexity of the problems and the availability of computational resources. 

Nonetheless, the main purpose of this paper is to deliver the concept and general principles and, thus, only the 

general settings are implemented. 

If Condition 1 is unsatisfied,  
  
  is used for updating the meta-parameters of the nearest prototype at the l

th
 

layer by the following formulas: 

     
 

  
 
    

 
 

 
    

 
   

     
 

  
 

 
    

 
   

 
  
                                                                                                                             (7a) 

     
 

  
 
    

 
 

  
    

 
  

                                                                                                                                                        (7b) 

     
 

       
 

                                                                                                                                                        (7c) 

The main reason for using equation (7b) to re-normalize       
 

  after equation (7a) is that, according to the 

triangle inequality theorem, the Euclidean norm of the updated      
 

  by  
  
  using equation (7a) is smaller than 1 

unless      
 

   
  
 : 

  
 
    

 
 

 
    

 
   

     
 

  
 

 
    

 
   

 
  
    

 
    

 
 

 
    

 
   

      
 

   
 

 
    

 
   

   
  
                                                                          (8) 

Therefore, a re-normalization is needed to guarantee that the algorithm can correctly recognize the true nearest 

prototypes all the time by equation (4). 

Then,  
  
  is passed to the next layer        , and the same procedure (starting from equation (4)) is 

repeated to update the next layer of the hierarchy until the bottom layer is updated or being interrupted when 

Condition 1 is met. 

If Condition 1 is satisfied, it means that  
  
  is distinctive from all existing prototypes at the l

th
 layer as well as 

the prototypes at lower layers. In such cases,  
  
  becomes a new prototype of the l

th
 layer with          

 
  as its 

immediate superior (if there is any). A new prototype is added to the l
th

 layer as well as the successive layers 

with meta-parameters initialized by equation (9) (               ): 

  
    

     
    

 
   

  
   

    
 

                                                                                                                 (9) 

After new prototypes have been added to the hierarchy, the system structure is, then, updated by creating links 

between these newly added prototypes and their immediate superiors. This results in a new branch adding into 

the hierarchy. Firstly, the starting node of this new branch is identified. If  
  
 

 is recognized as an apex prototype 

(namely,    ),  
  
  itself is the starting node and    

  is updated as follows: 

  
    

    
    

 
                                                                                                                                                (10a) 
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Otherwise,          
 

  is recognized as the starting node of the new branch, and          
 

 is updated by equation 

(10b): 

         
 

           
 

    
    

 
                                                                                                                             (10b) 

After the starting node of this new branch is defined, the links between these newly added prototypes, namely,  

 
    

 
   

        
 

 ,…,  
    

 
  are created using equation (3b). Once all the new links have been established, the 

structure updating process is completed. The system goes back to Step 1 ready for processing the next available 

data sample.  

For better illustration, a three-layer prototype-based hierarchy derived from data samples observed in a 2D data 

space is depicted in Fig. 2 as an example. Fig. 2(a) demonstrates how the identified prototypes partition the data 

space with different levels of granularity; Fig. 2(b) depicts the three-layer hierarchy with meaningful links 

between prototypes of successive layers corresponding to Fig. 2(a). In Fig.2(a), white squares “□” are the 

empirically observed data samples in the data space; the large blue dot “·” is the apex prototype (    ) of the 

hierarchy and it is the most representative one; large green dots “·” are the prototypes (          and     )  at the 

second layer and they correspond to the local peaks of the multimodal distribution of the data samples; large red 

dots “·” are the leaf prototypes (                 ) at the bottom layer. Each leaf prototype represents one of the 

local peaks of the multimodal distribution derived from data samples associated with its immediate superior. 

The blue, green and orange shadows indicate the respective areas of influence around prototypes of the top, 

middle and bottom layers, where       and    are the respective radii, and there is           . The links 

between these prototypes are presented in equation (11a): 

 

(a) Partitioning the data space in three levels of granularity 

 

(b) The corresponding three-layer hierarchy 

Fig. 2. Illustration of a three-layer prototype-based hierarchy derived from data 
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                                                                                                                                      (11a) 

When a new data sample,    that represents a familiar data pattern is observed (see Fig. 3(a) for example), the 

meta-parameters of the nearest prototypes to    at each layer, namely,     ,      and      are updated using 

equation (7). The three prototypes,      ,      and      will be slightly shifted towards  , and the updated 

prototypes are re-denoted by     
 ,     

  and     
 , respectively. The updated data space partitioning result is given 

in Fig. 3(b), and the corresponding three-layer hierarchy is depicted in Fig. 3(c). The links between prototypes 

of the updated hierarchy in Fig. 3(c) are given as: 

 
  
 

  
 

        
  

                    
   

                     

                     

          
       

                                                                                                                                     (11b) 

 

(a) New observation in the data space 
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(b) The updated data partitioning results 

 

(c) The updated three-layer hierarchy 

Fig. 3. Illustration of updating the existing prototypes of the three-layer hierarchy 

 

On the other hand, if   represents an emerging data pattern (see Fig. 4(a)), the structure of the three-layer 

hierarchy will self-evolve to incorporate the new pattern. Firstly, the meta-parameters of      and      are 

updated because   falls into their areas of influence, and the updated prototypes are re-denoted by     
  and     

  

respectively. Then,   will be recognized as a new leaf prototype (denoted by     ) at the bottom layer according 

to Condition 1, and a new branch of the three-layer hierarchy is established. The updated data space partitioning 

result and the new three-layer hierarchical structure are given in Figs. 4(b) and 4(c), respectively. The links 

between the prototypes of the updated hierarchy are given by equation (11c): 

 
  
 

  
 

        
  

                    
   

                     

                     

                     

                                                                                                                                     (11c) 

 

(a) New observation in the data space 
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(b) The updated data partitioning results 

 

(c) The updated three-layer hierarchy 

Fig. 4. Illustration of adding a new prototype to the three-layer hierarchy 

 

The learning process of the i
th

 prototype-based hierarchy is summarized by the following pseudo code: 

Input: the data stream,     
  

Algorithm begins 

While (new data sample  
  
  is available or until interrupted) 

a. Normalize  
  
  by its Euclidean norm:  

  
   

  
   

  
   ; 

b. If (    ) then 

 i. For     to   do 

1.   
     

    
 

   
  
   

    
 

   ; 

2.  
  
    

    
 

        

 
        

 
    

    
 

              

 ; 

ii. End for 

c. Else 

i. For     to   do 

1. Identify the nearest prototype,      
 

  to  
  
  by equation (4); 

2. If (Condition 1 is unsatisfied) then 

* Update      
 

  and      
 

  by equation (7); 

3. Else 

* For     to   do 

-   
    

     
    

 
   

  
   

    
 

   ; 

* End for 
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*  
  
    

    
    

 
        

         
 

           
 

    
    

 
              

 ; 

* For       to   do 

-  
        

 
    

    
 

  ; 

* End for 

* Break the for loop; 

4. End if 

ii. End for 

d. End if 

End while 

Algorithm ends 

Output: the i
th

 prototype-based hierarchy 

 

3.3. Decision-Making Process 

During the validation stage, the proposed HP classifier determines the class label of a given data sample by the 

“winner takes all” principle. Thanks to its hierarchical structure, one can choose to use any layer of the HP 

classifier for classification. The upper layers have less but more representative prototypes, and they can be used 

for performing efficient and coarse classification. The lower layers have more prototypes with fine details, and 

they can be used for performing more accurate classification. 

Assuming that the l
th

 (         ) layer is used, for a particular unlabelled data sample denoted by   , the 

local decision-maker of each prototype-based hierarchy (Fig. 1(b)) will produce a score of confidence,        

based on the similarity between    and the nearest prototype at the selected layer following the “nearest 

prototype” principle (         ).  In this subsection, two optional nearest prototype searching methods for 

calculating        are provided. 

Mode A: the first method is to search the nearest prototype to    at the l
th

 layer of the hierarchy directly, and the 

score of confidence is calculated by the following equation: 

          
      

          
 
                                                                                                                            (12) 

where     
       

      
     

    
 

   denotes the collection of prototypes at the l
th

 layer of the i
th

 hierarchy. 

Mode B: alternatively, one can choose to search the nearest prototypes       
        

          
 

  layer-by-layer from 

the top to the l
th

 layer of the hierarchy using equation (4), and the final output, namely, the score of confidence is 

given by: 

        
   

    
 

     
 

                                                                                                                                         (13) 

An illustrative example is given in Fig. 5 to demonstrate the differences between the two optional nearest 

prototype searching methods for decision-making. In this example, the bottom layer of the prototype-based 

hierarchy as given by Fig. 2(b) is selected for producing the score of confidence on the new observation,   as 

depicted in Fig. 3(a). As one can see from Fig. 5(a), if Mode A is used, the score of confidence is calculated in a 

more straightforward way by comparing the similarity between   and all leaf prototypes at the bottom layer, 

namely,                  and identifying the most similar one to  . In this example, the score of confidence 

produced by the three-layer hierarchy is obtained as                
 

. Otherwise, if Mode B is adopted (see 

Fig. 5(b)), the searching algorithm firstly looks for the nearest apex prototype to the new observation,  , which 

is      in this case. Then, the algorithm continues to find the nearest prototype to   from the immediate 

subordinates of      at the second layer, which include           and     , and in this example,      is the 

nearest one. Finally, the algorithm identifies the nearest prototype to   from the leaf prototypes linked with     , 

namely,      and     , and calculates the score of confidence accordingly. 
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(a) Mode A 

 

(b) Mode B 

Fig. 5. Illustration of two nearest prototype searching methods for decision-making (the red arrows with 

concrete lines are the exploited paths during the searching process; the blue arrows with dash lines are the 

unexploited paths) 

After all   pyramidal hierarchies have produced their scores of confidence on    (one per class), the class label 

of    is determined following the “winner takes all” principle: 

                                       
                                                                                           (14) 

It is worth to be noticed that Mode A is highly computationally efficient if the upper layers of the HP classifier 

are used for classification because these layers usually have a smaller number of highly generalized prototypes. 

If the bottom layers are selected, Mode A is able to produce more accurate classification results. However, in 

such cases, the computational efficiency of the HP classifier can be decreased because these layers usually are 

composed of a larger number of prototypes, especially for large-scale, high-dimensional problems. 

In contrast, Mode B is more suitable for processing large-scale, high-dimensional problems and is highly 

efficient thanks to the nearest prototype searching technique introduced in this paper (equation (4)). However, it 

tends to produce more wrong decisions during the decision-making process. This is because that, for a particular 
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unlabelled sample, if any wrong decision is made during the top-down searching process, Mode B is unlikely to 

give a correct final decision.   

3.4. Computational Complexity Analysis 

In this subsection, computational complexity of the learning and decision-making processes of the proposed HP 

classifier is analysed. Since the system structure and meta-parameters of the HP classifier are dynamically 

evolving, the complexity analysis is assumed to be conducted at the K
th

 time instance. 

Computational complexity analysis of the learning process 

Firstly, let us assume that the data sample observed at the current time instance belongs to the i
th

 class, namely, 

 
  
 . Because the HP classifier performs self-learning on a sample-by-sample basis and each prototype-based 

hierarchy is updated separately, one can reasonably expect that the computational complexity of each learning 

cycle varies a lot depending on the mutual distances between  
  
  and prototypes of the i

th
 hierarchy. As a result, 

it is practically impossible to derive an exact expression. Nonetheless, the upper and lower bounds of the 

computational complexity still can be calculated. 

The maximum computational complexity for a particular learning cycle is reached when  
  
  represents a 

familiar data pattern and is associated with one of the prototypes at each layer of the hierarchy. In such cases, 

the HP classifier is required to search the nearest prototype to  
  
  layer-by-layer in a top-down manner, and the 

computational complexity of the whole searching process is     
         

         
              

 
    , 

where      
 

  is the number of immediate subordinate prototypes at the (j+1)
th
 layer linked with       

 
 . In other 

words,      
 

  is the cardinality of      
 

 . The computational complexity of the overall prototype updating process 

is       (each layer has one prototype being updated). Therefore, the upper bound is       
        

 
    

    

   . The lower bound of the computational complexity is reached when  
  
  is distinctive from the apex 

prototypes. The only computation is made for calculating the distances between  
  
  and   

 , and thus, the lower 

bound is      
  . 

Therefore, the computational complexity of a particular learning cycle of the HP classifier is between      
   

and       
        

 
    

       . 

Computational complexity analysis of the decision-making process 

Let us assume that the l
th

 layer of the HP classifier is used for classification. During the validation stage, for a 

given unlabelled data sample,   , each pyramidal prototype hierarchy will produce a score of confidence based 

on the similarity between    and     
  (         ). If the HP classifier uses Mode A for producing the scores 

of confidence, the computational complexity is       
  

    . In contrast, if Mode B is used, the computational 

complexity is        
        

 
    

     
    .  

Based on the above computational complexity analysis, one may also conclude that Mode B is more 

computational efficient for high-dimensional, large-scale problems. However, for simpler, small-scale problems, 

Mode A might be more efficient. This conclusion is further verified via numerical examples presented in the 

next section. 

4. Numerical examples and Discussions 

In this section, numerical examples are presented to justify the validity and effectiveness of the proposed 

concept and method. The overall performance of the HP classifier is evaluated on well-known benchmark 

datasets and compared with the state-of-the-art approaches. The algorithms were developed using 

MATLAB2018a, and the performance was evaluated on a desktop with dual core i7 processor           and 

       RAM. In this paper, by default, the values of    (         ) of the HP classifier is defined by 

equation (6) and the value of    is set to be  
 

 
.  
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4.1. Demonstration of the Proposed Approach 

First of all, a well-known benchmark dataset named banknote authentication
1
 is used for illustrating the concept 

of the proposed approach. This dataset contains 1372 samples, and each data sample has four attributes and one 

label (class 1 and class 2). There are 762 data samples in class 1 and 610 data samples in class 2. Thanks to its 

smaller scale and simpler data structure, this dataset is very suitable for demonstration. 

In the following numerical example, all data samples are used for training a three-layer HP classifier. Through 

the training process, the HP classifier self-organizes two prototype-based hierarchies (one per class). For the 

hierarchy corresponding to class 1, there are two prototypes at the top layer, six prototypes at the second layer 

and 28 prototypes at the bottom layer. The other hierarchy, which is identified from data samples of class 2, has 

three prototypes at the top layer, 16 prototypes at the second layer and 47 prototypes at the bottom layer. 

The prototypes identified from data samples of the two classes are visualized in Figs. 6(a) and 6(b), respectively. 

For visual clarity, the first two PCA scores of the original data are used for plotting. In the two figures, dots “·” 

represent the observed data samples in the data space; asterisks “*” represent the apex prototypes at the top layer 

of the hierarchy; squares “□” represent the second-layer prototypes; and circles “○” represent the leaf prototypes 

at the bottom layer. Lines in different colours stand for the links between prototypes of successive layers. The 

identified prototypes of the two classes are visualized together in the Fig.6(c), where only prototypes at the first 

two layers are presented for visual clarity. These prototypes are also tabulated in Table 1 for better illustration, 

and the links between them are given by equations (15a) and (15b), respectively. 
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Table 1. Two-layer prototypes identified through the learning process 

Class First-Layer Prototypes Second-Layer Prototypes 

1 

    
                                   

    
                                   

    
                                  

    
                                 

    
                                  

    
                                   

    
                                  

    
                                 

2 

    
                                    

    
                                    

    
                                   

    
                                    

    
                                    

    
                                   

    
                                   

    
                                  

    
                                   

    
                                   

    
                                    

     
                                    

     
                                   

    
                                       

                                    

                                                           
1
 Available at: https://archive.ics.uci.edu/ml/datasets/banknote+authentication  

https://archive.ics.uci.edu/ml/datasets/banknote+authentication
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(a)  Identified prototypes of the class 1 

 

(b)  Identified prototypes of the class 2 
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(c)  Identified prototypes of both classes 

Fig. 6. The visualization of the identified prototypes of the HP classifier 

 

In the next two subsections, numerical examples on benchmark datasets are presented for performance 

evaluation. All reported results are obtained after 20 times Monte-Carlo experiments, and the bottom layer of 

the HP classifier is used for classification unless specifically declared otherwise. 

4.2. Performance on Benchmark Numerical Datasets 

In this subsection, the following popular benchmark numerical datasets are used: 

(1) Multiple feature (MF) dataset
2
; 

(2) Pen-based handwritten digits recognition (PR) dataset
3
; 

(3) Epileptic seizure recognition (ES) dataset
4
; 

(4) Letter recognition (LR) dataset
5
, and; 

(5) Forest cover type (FC) dataset
6
; 

Details of the five benchmark datasets are summarized in Table 2.  

Table 2. Details of the benchmark numerical datasets for evaluation 

Dataset # Samples # Attributes # Classes 

MF 2000 649+1 label 10 

PR 10996 16+1 label 10 

ES 11500 178+1 label 5 

LR 20000 16+1 label 26 

FC 581012 54+1 label 7 

 

Firstly, the influence of the layer number, namely,   on the performance and system complexity of the HP 

classifier is investigated. In this numerical example, the four benchmark datasets, namely, MF, PR, ES and LR 

are used. For each dataset, 50% of the data samples are randomly selected as the training set and the remaining 

ones are used for validation. Owing to its non-iterative, “one-pass” learning behaviour, there is no randomness 

                                                           
2
 Available at: https://archive.ics.uci.edu/ml/datasets/Multiple+Features  

3
 Available at: https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits 

4
 Available at: https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition  

5
 Available at: https://archive.ics.uci.edu/ml/datasets/Letter+Recognition  

6
 Available at: https://archive.ics.uci.edu/ml/datasets/covertype 

https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
https://archive.ics.uci.edu/ml/datasets/covertype
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existing during the training process of the HP classifier. It can be easily concluded that the system structure and 

meta-parameters of a   -layer HP classifier are exactly the same as the top    layers of a   -layer HP classifier 

(     ) given the same training samples. In the following numerical example, a six-layer HP classifier (   ) 

is trained on the four benchmark datasets. Classification on validation sets is performed by using the porotypes 

at the first, second, third, fourth, fifth and sixth layers of the HP classifier, individually, which is equivalent to 

conducting classification with the bottom layer of a one-layer, two-layer, three-layer, four-layer, five-layer or 

six-layer HP classifier. The classification accuracy and time consumption (in seconds) of the validation process 

(the two types of nearest prototype searching modes for decision-making as presented in subsection 3.3 are both 

involved) are reported in Table 3 in the form of                        . The number of prototypes (per 

class) at each layer of the HP classifier is also tabulated in Table 3. 

 

Table 3. Number of identified prototypes per class during the training process 

Dataset Layer  # Prototypes Mode  Classification Accuracy Testing Time, s 

MF 

1 1.00±0.00 
A 

0.7606±0.0101 0.41±0.01 
B 

2 1.07±0.05 
A 0.7523±0.0187 0.45±0.02 

B 0.7523±0.0153 1.04±0.05 

3 1.44±0.09 
A 0.7455±0.0175 0.48±0.04 

B 0.7455±0.0166 1.67±0.05 

4 3.27±0.30 
A 0.8266±0.0177 0.55±0.09 

B 0.8256±0.0201 2.25±0.18 

5 14.87±0.52 
A 0.9199±0.0087 0.65±0.05 

B 0.9113±0.0091 2.89±0.16 

6 68.39±1.20 
A 0.9484±0.0064 1.34±0.19 

B 0.9329±0.0072 3.53±0.27 

PR 

1 1.00±0.00 
A 

0.7796±0.0008 1.13±0.03 
B 

2 1.72±0.06 
A 0.8341±0.0140 1.43±0.10 

B 0.8341±0.0140 3.40±0.17 

3 8.32±0.34 
A 0.9303±0.0068 1.50±0.09 

B 0.9263±0.0077 5.22±0.24 

4 68.24±1.62 
A 0.9656±0.0033 1.50±0.02 

B 0.9583±0.0079 6.45±0.19 

5 375.07±3.54 
A 0.9764±0.0012 2.17±0.22 

B 0.9648±0.0083 8.56±0.55 

6 713.42±1.14 
A 0.9782±0.0001 2.38±0.07 

B 0.9649±0.0084 9.83±0.20 

ES 

1 4.68±0.32 
A 

0.3581±0.0086 1.17±0.01 
B 

2 817.76±6.33 
A 0.5206±0.0056 24.19±0.62 

B 0.4809±0.0078 4.89±0.11 

3 1113.43±1.94 
A 0.5429±0.0046 41.10±0.99 

B 0.4874±0.0072 6.53±0.18 

4 1147.47±0.50 
A 0.5391±0.0047 41.98±0.70 

B 0.4830±0.0068 7.93±0.15 

5 1149.84±0.15 
A 0.5389±0.0047 41.98±0.70 

B 0.4830±0.0067 9.34±0.17 

6 1150.00±0.00 
A 0.5389±0.0047 41.88±0.64 

B 0.4830±0.0067 9.34±0.17 

LE 

1 1.00±0.00 
A 

0.5605±0.0051 7.92±0.04 
B 

2 1.01±0.01 
A 0.5604±0.0051 8.04±0.22 

B 0.5604±0.0051 19.73±0.27 

3 3.25±0.11 
A 0.6057±0.0117 9.42±0.04 

B 0.6056±0.0117 33.60±0.08 
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4 28.86±0.79 
A 0.8862±0.0034 10.27±0.06 

B 0.8760±0.0043 45.52±0.19 

5 183.14±1.15 
A 0.9401±0.0016 12.15±0.15 

B 0.9180±0.0030 57.83±0.21 

6 348.05±1.22 
A 0.9414±0.0011 14.19±0.47 

B 0.9153±0.0033 77.50±4.44 

 

As one can see from Table 3, the HP classifier is able to perceive the data space and identify prototypes from 

data at different levels of granularity. Each layer of the prototype-based hierarchies corresponds to a particular 

level of granularity. In general, an upper layer of the hierarchy usually contains less but more abstract prototypes, 

and it is able to perform more efficient but coarser classification. In contrast, a lower layer contains more 

prototypes and partitions the data space in a finer way. As a result, it can be used for conducting classification 

with a higher precision. The larger   is, the more detailed data partitioning results the HP classifier can achieve. 

Nonetheless, if    is too large, the HP classifier will achieve the finest data partitioning, namely, all the data 

samples are recognized as prototypes at the lower layers of the prototype-based hierarchies. In such cases, the 

HP classifier reduces to a KNN classifier with   =1. It is also noticeable in Table 3 that the proposed HP 

classifier demonstrates better classification performance when Mode A is used during the validation stage. At 

the same time, for high-dimensional, large-scale problems (e.g. ES dataset), using Mode B can result in a highly 

computationally efficient decision-making process. In the rest of this section, the proposed HP classifier uses 

Mode A by default because this method performs better in terms of classification accuracy. 

To evaluate the influence of the layer number,   on computational efficiency, a HP classifier is trained on the 

previously used four benchmark datasets with   varying from   to  . The relationship between the training time 

consumption and the layer number is depicted in Fig. 7. From this figure one can see that, the computational 

efficiency of the HP classifier is (almost) linearly correlated to the layer number. The more layers the HP 

classifier has, the more time is consumed during the learning process. However, it is worth to be noticed that if 

the highest level of granularity for data partitioning has been reached and all the data samples have been 

recognized as prototypes at the bottom layers, adding extra layers to the HP classifier will not significantly 

increase the training time consumption. 

 

 

Fig. 7. The influence of layer number on the computational efficiency of the HP classifier 

In order to better evaluate the performance of the proposed HP classifier, the following state-of-the-art 

approaches are involved for comparison: 

(1) KNN classifier using Euclidean distance (KNN-E) with     [10]; 

(2) KNN classifier using cosine dissimilarity (KNN-C) with     [10]; 

(3) SVM with linear kernel [9]; 

(4) DT classifier [39]; 
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(5) FNN with three hidden layers, each hidden layer consists of 20 neurons [21]; 

(6) Long short-term memory (LSTM) with three hidden layers, each hidden layer consists of 20 neurons [16]; 

(7) LVQ with one hidden layer consisting of 32 neurons [25]; 

(8) SOM classifier using “winner takes all” principle with the net size of     [34]; 

(9) Extended sequential adaptive fuzzy inference system (ESAFIS) [35]; 

(10) Zero-order autonomous learning multiple-model (ALMMo0) classifier [2]; 

(11) Self-organizing fuzzy (SOF) classifier using Euclidean distance with the level of granularity      [17], 

and; 

(12) eClass0 classifier [1]. 

Note that both, KNN and SVM are two main generic classifiers used by the pre-trained DNN-based approaches 

[33], and they are capable of producing highly accurate classification results. ALMMo0, SOF and eClass0 

classifiers are all zero-order EISs, and they have a prototype-based nature same as the proposed HP classifier. In 

these experiments, a six-layer HP classifier (   ) is used. The same experimental protocol as used in the 

previous numerical examples are adopted. The performance of these classification approaches in terms of 

accuracy and training time consumption (in seconds) on the four benchmark problems is presented in Table 4, 

where the training time consumptions of the KNN classifiers are not reported because they literally require no 

training.  

 

Table 4. Performance comparison on benchmark numerical datasets 

Dataset Algorithm Classification Accuracy Training Time, s 

MF 

HP 0.9484±0.0064 0.64±0.05 

KNN-E 0.9434±0.0051  

KNN-C 0.9489±0.0056  

SVM 0.9704±0.0062 20.35±4.69 

DT 0.9263±0.0107 0.14±0.02 

FNN 0.8658±0.0380 0.49±0.18 

LSTM 0.2042±0.0471 6.43±1.75 

LVQ 0.6533±0.0209 69.80±2.35 

SOM 0.8790±0.0079 40.62±1.63 

ESAFIS 0.5324±0.1383 360.31±74.51 

ALMMo0 0.9343±0.0055 0.11±0.01 

SOF 0.9226±0.0092 0.06±0.02 

eClass0 0.7985±0.0060 2.54±0.11 

PR 

HP 0.9782±0.0001 3.87±0.07 

KNN-E 0.9774±0.0000  

KNN-C 0.9780±0.0000  

SVM 0.9551±0.0000 58.65±0.90 

DT 0.9122±0.0003 0.04±0.03 

FNN 0.9177±0.0180 0.92±0.17 

LSTM 0.8218±0.0280 34.29±7.82 

LVQ 0.8217±0.0018 338.83±7.10 

SOM 0.9126±0.0067 9.76±0.58 

ESAFIS 0.9197±0.0134 38.80±5.93 

ALMMo0 0.9752±0.0023 0.56±0.05 

SOF 0.9763±0.0000 0.39±0.03 

eClass0 0.7630±0.0001 0.73±0.08 

ES 

HP 0.5389±0.0047 1.95±0.02 

KNN-E 0.5050±0.0046  

KNN-C 0.5389±0.0047  
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SVM 0.2220±0.0066 363.20±1.99 

DT 0.4588±0.0048 0.69±0.03 

FNN 0.4263±0.0611 0.82±0.28 

LSTM 0.3257±0.0101 13.23±7.35 

LVQ 0.2000±0.0000 285.97±0.61 

SOM 0.3743±0.0091 66.39±0.83 

ESAFIS 0.2597±0.0246 266.17±83.10 

ALMMo0 0.5401±0.0053 5.53±0.05 

SOF 0.4893±0.0073 0.77±0.03 

eClass0 0.2848±0.0067     3.20±0.17 

LR 

HP 0.9414±0.0011 5.31±0.26 

KNN-E 0.9426±0.0016  

KNN-C 0.9415±0.0011  

SVM 0.8540±0.0030 15.77±0.54 

DT 0.8255±0.0048 0.06±0.02 

FNN 0.4777±0.0354 1.55±0.14 

LSTM 0.4481±0.0418 53.03±10.03 

LVQ 0.0379±0.0011 437.47±0.56 

SOM 0.4645±0.0100 16.80±0.14 

ESAFIS 0.0394±0.0000 9.32±0.22 

ALMMo0 0.9197±0.0031 0.59±0.04 

SOF 0.9297±0.0021 0.24±0.03 

eClass0 0.4915±0.0040 0.87±0.07 

 

In the following numerical example, the quality of the identified prototypes by the HP classifier is examined 

from the data partitioning point of view, and the four datasets, MF, PR, ES and LR are used for evaluation. 

During the experiments, a six-layer HP classifier (   ) is firstly trained with the whole datasets to extract 

prototypes from data with different levels of granularity. After that, Voronoi tessellations are created by using 

the identified prototypes at different layers to attract nearby data samples of the same classes forming data 

clouds. This results in six different data partitioning results (one per layer), each one corresponds to one level of 

granularity.  

Then, three clustering quality indices, namely, Calinski-Harabasz [6], Davies-Bouldin [11] and Silhouette [36], 

are used for evaluating the quality of the data partitioning result of each layer, and the calculated index values 

are reported in Table 5. For better evaluation, the following widely used data partitioning/clustering algorithms 

are involved for comparison: 

(1) Autonomous data partitioning (ADP) algorithm [18]; 

(2) Mean shift (MS) clustering algorithm [8]; 

(3) Subtractive (Sub) clustering algorithm [7]; 

(4) Affinity propagation (AP) clustering algorithm [14]; 

(5) DBSCAN clustering algorithm [13], and; 

(6) Nonparametric mixture model (NMM) clustering algorithm [4]. 

In this example, the offline version of the ADP algorithm is used; the bandwidth of the MS algorithm is set to be 

0.15; the initial cluster radius of the Sub algorithm is set to be 0.3 as recommended by [7]; for the AP algorithm, 

the maximum number of iterative refinements is 200, the cumulative number of iterations for monitoring the 

exemplar decision is set as 20, and the dampening factor is equal to 0.5; the minimum number of data samples 

within the radius is set to be 4 for the DBSCAN algorithm, and the cluster radius is set to be the value of the 

knee point of the sorted 4-dist graph as recommended by [13]; the NMM algorithm assumes that the data 

samples follow Gaussian distribution, its prior scaling parameter is set to be 1, and the maximum number of 

iterative refinements is 200. All the comparative algorithms use the same experimental protocol by identifying 

the data clouds/clusters from data samples of different classes, separately. For the Calinski-Harabasz and 

Silhouette indices, a higher value indicates a better clustering result. However, it is the opposite for the Davies-
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Bouldin index that a lower value indicates a better clustering result. The best results are bolded in Table 5. It is 

also noticeable that occasionally, the clustering indices give abnormal values such as: 0.0000, 1.0000, not a 

number (nan) and infinite (inf). Such cases are in italic in Table 5 and should not be taken into consideration. 

As we can see from Table 5, the HP classifier is able to identify prototypes from data with different levels of 

granularity and partitions the data space with high-quality data clouds surpassing the alternative approaches. 

This is an important feature showing the strong adaptive ability and flexibility of the proposed approach. By 

perceiving complex problems at different levels of specificity and self-organising a multi-layer structure through 

an “one pass” learning process, the HP classifier significantly simplifies complex problems and presents users 

the learned knowledge in a human-understandable prototype-based hierarchical form with different levels of 

details all in one. It allows users to choose the lower layers with lots of finer details for performing accurate 

classification or/and the easy-to-interpret upper layers for coarse classification. Users can determine the most 

suitable layer for a particular problem depending on preferences and/or specific requirements.  

 

Table 5. Quality comparison between the formed clusters/data clouds by different algorithms 

Dataset Algorithm # Clusters Calinski-Harabasz Davies-Bouldin Silhouette 

MF 

HP Layer 1  10.0 1038.3387 2.1662 0.1115 

Layer 2 11.0 1012.9386 2.6062 0.1048 

Layer 3 16.3 832.1617 2.5744 0.0448 

Layer 4 39.4 690.0422 1.7152 0.1311 

Layer 5 203.0 330.6662 1.1416 0.1678 

Layer 6 1182.0 129.1651 0.5979 0.5118 

ADP 408.0 282.1538 1.5072 0.1517 

MS 1994.0 inf 0.0000 1.0000 

Sub 1994.0 inf 0.0000 1.0000 

AP 52.0 976.3070 1.8232 0.2131 

DBSCAN 24.0 559.7079 3.8972 0.0742 

NMM 10.0 1038.3387 2.1662 0.111 

PR 

HP Layer 1  10.0 1404.4659 2.3209 0.2187 

Layer 2 18.9 1408.9932 1.5576 0.2516 

Layer 3 97.7 778.4346 1.3151 0.2758 

Layer 4 820.4 262.97307 1.1739 0.2099 

Layer 5 5001.0 131.5285 0.6967 0.3932 

Layer 6 10297.2 231.9914 0.2308 0.9260 

ADP 1022.0 243.7096 1.3187 0.2524 

MS 2627.1 74.8120 0.7123 0.0535 

Sub 3957.0 65.0035 0.8365 0.2893 

AP 303.0 535.0103 1.5422 0.2292 

DBSCAN 393.0 670.5420 2.3932 0.1748 

NMM 79.7 695.2818 1.9006 0.1441 

ES 

HP Layer 1  24.3 49.7753 6.6989 -0.3027 

Layer 2 7385.9 5.7619 0.9858 0.4832 

Layer 3 10925.7 11.97795 0.5728 0.9536 

Layer 4 11450.1 27.7188 0.2917 0.9976 

Layer 5 11497.1 43.4237 0.0526 0.9999 

Layer 6 11500.0 nan 0.0000 1.0000 

ADP 564.0 3.2650 7.0981 -0.3561 

MS 9790.2 18.0079 0.6878 0.7633 

Sub 9186.0 4.4166 1.1445 0.6347 

AP 1945.0 1.4213 3.1027 -0.3277 

DBSCAN 10.0 3.3213 36.4996 -0.2135 

NMM 28.9 6.3598 17.3070 -0.4429 

LE 

HP Layer 1  26.0 382.5708 4.3511 -0.0129 

Layer 2 26.4 385.3833 4.2978 -0.0112 

Layer 3 87.0 407.6502 2.6115 0.0255 
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Layer 4 858.8 197.5088 1.5564 0.2136 

Layer 5 7192.0 80.4005 0.8229 0.3717 

Layer 6 17111.8 225.1629 0.2304 0.9149 

ADP 1867.0 155.3645 1.3385 0.3105 

MS 4808.6 45.5177 0.7478 0.2036 

Sub 1343.0 69.7540 1.6665 -0.0647 

AP 831.0 212.9784 1.5094 nan 

DBSCAN 215.0 148.7575 2.3189 -0.1930 

NMM 150.0 225.2300 2.6303 -0.1008 

 

Finally, numerical example is presented on the FC dataset to evaluate the performance of the proposed HP 

classifier on very large-scale numerical datasets. In this example, 50% of data samples of this dataset are 

randomly selected as the training set and the remaining ones are used for validation. The classification 

performance of a six-layer HP classifier (   ) in terms of accuracy, training and testing time consumptions (in 

seconds) is reported in Table 6. Here, the two nearest prototype searching modes for decision-making, namely, 

Mode A and Mode B, are both involved. Alternative classification approaches as used in the numerical 

examples presented in Table 4 are involved for comparison, and their results are also tabulated in Table 6. 

However, LSTM and LVQ are not used in this example because their computational efficiency is significantly 

lower on large-scale datasets.  

 

Table 6. Performance comparison on the FC dataset 

Algorithm Classification Accuracy Training Time, s Testing Time, s 

HP 
Mode A 0.9069±0.0006 544.95±36.85 7528.65±433.48 

Mode B 0.8711±0.0042 1459.61±18.14 

KNN-E 0.9331±0.0004  6479.94±170.76 

KNN-C 0.9331±0.0004  6511.59±217.21 

SVM 0.7247±0.0008 4641.64±247.81 2605.98±161.16 

DT 0.9180±0.0008 37.82±6.59 0.36±0.04 

FNN 0.7186±0.0006 104.14±1.49 1.40±0.09 

SOM 0.6335±0.0008 2596.12±120.83 788.05±114.33 

ESAFIS 0.7359±0.0037 5479.86±1288.21 5.97±1.12 

ALMMo0 0.8932±0.0005 1717.16±166.51 4138.93±210.86 

SOF 0.9242±0.0005 6916.28±444.19 14181.74±1051.70 

eClass0 0.3456±0.0005 73.95±2.04 26.20±3.12 

 

As one can see from Table 6, during the training stage, the HP classifier is at least two times more 

computationally efficient than alternative prototype-based approaches with similar levels of precision, namely, 

ALMMo0 and SOF. Its computational efficiency is also four times higher than SOM and 10 times higher than 

SVM. One may notice that both KNN classifiers produce the most accurate classification results on this problem. 

This indicates that the classification accuracy of the HP classifier can be further improved by adding more layers 

to it. It is also noticeable that during the decision-making stage, the computational efficiency of the HP classifier 

is four times higher if Mode B is used. In contrast, using Mode A results in stronger classification performance 

in terms of accuracy. 

4.3. Performance on Benchmark Image Sets 

In this subsection, the following popular benchmark image sets are used for further evaluating the performance 

of the proposed HP classifier on image classification problems: 

(1) MNIST dataset
7
; 

(2) UCMerced dataset
8
; 

                                                           
7
 Available at: http://yann.lecun.com/exdb/mnist/  

http://yann.lecun.com/exdb/mnist/
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(3) WH-RS19 dataset
9
; 

(4) Caltech101 dataset
10

, and; 

(5) Caltech256 dataset
11

; 

MNIST is a large-scale image set for hand-written digits recognition (from “0” to “9”). MNIST dataset is 

composed of a training set and a validation set. The train set contains 60000 grey-level images and the 

validation set contains 10000 grey-level images. All the images have the uniform size of       pixels. The 

amounts of training and validation images of the 10 classes are more or less equal. Example images of this 

image set are given in Fig. 8(a) for illustration. 

UCMerced image set is a well-known benchmark in the remote sensing domain [42]. This dataset consists of 

fine spatial remote sensing images of 21 challenging land-use categories (including 1) agricultural; 2) airplane; 3) 

baseball diamond; 4) beach; 5) buildings; 6) chaparral; 7) dense residential; 8) forest; 9) freeway; 10) golf 

course; 11) harbour;12) intersection; 13) medium residential;14) mobile home park; 15) overpass;16) parking lot; 

17) river; 18) runway; 19) sparse residential; 20) storage tanks; and 21) tennis courts). Each category contains 

100 images with the uniform size of         pixels. Example images of the UCMerced image set are 

presented in Fig. 8(b). 

WH-RS19 is a popular benchmark image set collected from Google Earth (Google Inc.). It consists of 950 

images with a size of         pixels. WH-RS19 has 19 different land-use categories, which include 1) 

airport; 2) beach; 3) bridge; 4) commercial; 5) desert; 6) farmland; 7) football field; 8) forest; 9) industrial; 10) 

meadow; 11) mountain; 12) park; 13) parking lot; 14) pond; 15) port; 16) railway; 17) residential; 18) river; and 

19) viaduct, with 50 images in each. This image set contains aerial images with high variations in terms of 

illumination, scale resolution, etc., and, thus, is a challenging problem. Example images of the WH-RS19 

dataset are presented in Fig. 8(c). 

Caltech101 dataset has 8677 images belonging to 101 classes. There are 31 to 800 images for each class, and the 

size of each image is roughly 200×300 pixels. Caltech256 dataset is the extended dataset of Caltech101 and has 

256 classes. The minimum number of images per class for Caltech256 dataset is 80, and in total, there are 29780 

images. The two datasets contain both, classes corresponding to rigid object (like bikes and cars) and classes 

corresponding to non-rigid object (like animals and flowers) with various backgrounds, and, thus, they are 

challenging problems. The images of both datasets are very uniform in presentation, aligned from left to right 

and usually not occluded. The example images of two datasets are given in Fig. 8(d) and 8(e). 

In this paper, for the MNIST dataset, the GIST feature descriptor [32] is employed to extract       

dimensional feature vectors from the original handwritten digit images. For the UCMerced, WH-RS19, 

Caltech101 and Caltech256 datasets, a high-level ensemble descriptor using the pre-trained AlexNet [26] and 

VGG-VD-16 [38] models is created for feature extraction, which results in a        dimensional 

discriminative representation denoted by   from each image,  : 

        
     

       
 
     

       
 
 

                                                                                                                               (16) 

where      represents        dimensional representation extracted from   by the ensemble feature descriptor; 

      and       are the        dimensional activations extracted from the first fully connected layers of the 

AlexNet [26] and VGG-VD-16 [38] models, respectively. In particular, the commonly used “centre, four 

corners and horizontal flipping” data augmentation technique is applied on UCMerced and WH-RS19 datasets, 

and the mean of feature vectors of the 10 sub-images created from each remote sensing image is used as the 

feature vector of the image [26]. Images of WH-RS19 dataset have been rescaled to the size of  

        pixels in advance to avoid loss of information during the data augmentation process. However, it has 

to be stressed that there is no image augmentation technique applied to MNIST, Caltech101 and Caltech256 

                                                                                                                                                                                     
8
 Available at: http://weegee.vision.ucmerced.edu/datasets/landuse.html 

9
 Available at: http://captain.whu.edu.cn/repository.html  

10
 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech101/  

11
 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech256/  

http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://captain.whu.edu.cn/repository.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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datasets in the numerical examples presented in this subsection. The details of the image sets are given in Table 

7. 

Table 7. Details of the benchmark numerical datasets for evaluation 

Image Set # Images # Classes # Pixels # Features 

MNIST 
Training 60000 

10           1 
validation 10000 

UCMerced 2100 21         

       
WH-RS19 950 19         

Caltech101 8677 101 
Roughly         

Caltech256 29780 256 

 

 

(a) MNIST 

 

(b) UCMerced 

 

(c) WH-RS19 
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(d) Caltech101 

 

(e) Caltech256 

Fig. 8. Example images of the benchmark image sets for performance evaluation 

  

Firstly, the performance of the proposed approach is tested on the MNIST dataset. In this experiment, a four-

layer HP classifier (   ) is trained on the training sets of different size (5000, 10000, 20000, 30000, 40000, 

50000 and 60000 images), and then, each individual layer is used for testing on the validation set. Statistical 

performance in terms of average number of prototypes (per class) at each layer and classification accuracy is 

reported in Table 8.  

From Table 8 one can see that the bottom layer of the HP classifier is able to classify the unlabelled handwritten 

digits with the highest accuracy. Meanwhile, one may also notice that the bottom layer has a huge number of 

prototypes. This is due to the very high variability demonstrated by these handwritten digit images in the 

MNIST, where even images of the same class can vary a lot.  

 

Table 8. The statistical performance of the HP classifier 

#Training Images Layer # Prototypes Classification Accuracy 

5000 1 1.00±0.00 0.8973±0.0030 

2 1.79±0.18 0.8807±0.0069 

3 89.93±2.65 0.9643±0.0013 

4 466.94±2.13 0.9731±0.0015 

10000 1 1.00±0.00 0.8985±0.0024 

2 1.98±0.16 0.8818±0.0090 

3 129.95±3.81 0.9698±0.0013 

4 920.49±3.30 0.9784±0.0011 

20000 1 1.00±0.00 0.8987±0.0016 

2 2.28±0.12 0.8852±0.0115 

3 186.33±4.53 0.9738±0.0015 

4 1806.01±4.60 0.9828±0.0001 

30000 1 1.00±0.00 0.8988±0.0011 

2 2.44±0.15 0.8899±0.0067 

3 228.84±4.97 0.9754±0.0011 

4 2673.84±5.96 0.9845±0.0001 
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40000 1 1.00±0.00 0.8988±0.0009 

2 2.54±0.15 0.8935±0.0049 

3 263.31±4.70 0.9763±0.0010 

4 3527.52±5.71 0.9855±0.0001 

50000 1 1.00±0.00 0.8988±0.0007 

2 2.62±0.15 0.8949±0.0045 

3 292.96±6.01 0.9774±0.0009 

4 4369.10±5.41 0.9860±0.0001 

60000 1 1.00±0.00 0.8989±0.0002 

2 2.71±0.16 0.8958±0.0047 

3 318.35±6.30 0.9777±0.0010 

4 5202.36±5.34 0.9864±0.0001 

 

Furthermore, the performance of the HP classifier is compared with the following comparative algorithms in 

terms of classification accuracy and training time consumption (in seconds): 

(1) KNN-C with     [10]; 

(2) SVM with linear kernel [9]; 

(3) DT classifier [39]; 

(4) Deep rule-based (DRB) classifier [19]; 

(5) SOF classifier using cosine dissimilarity with the level of granularity      [17]; 

(6) eClass1 classifier [1], and; 

(7) TEDAClass classifier [23]. 

Note that cosine dissimilarity is more effective than Euclidean distance on high-dimensional problems [17] and, 

thus, both KNN and SOF classifiers use cosine dissimilarity in the numerical experiments presented in this 

subsection. The comparison on classification accuracy is tabulated in Table 9, and the comparison on training 

time consumption is depicted in Fig. 9, where the same four-layer HP classifier is used for the experiments. 

 

Table 9. Performance comparison on MNIST dataset in terms of accuracy 

# Training 

Images 

Classification Accuracy 

HP KNN-C SVM DT DRB SOF eClass1 TEDAClass 

5000 0.9731 0.9679 0.9733 0.8197 0.9712 0.9679 0.9685 0.9716 

10000 0.9784 0.9747 0.9786 0.8459 0.9769 0.9747 0.9719 0.9738 

20000 0.9828 0.9795 0.9819 0.8692 0.9815 0.9795 0.9732 0.9752 

30000 0.9845 0.9816 0.9835 0.8803 0.9836 0.9816 0.9746 0.9768 

40000 0.9855 0.9827 0.9846 0.8890 0.9848 0.9827 0.9745 0.9766 

50000 0.9860 0.9833 0.9851 0.8940 0.9856 0.9833 0.9746 0.9765 

60000 0.9864 0.9835 0.9857 0.9010 0.9864 0.9835 0.9746 0.9763 
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Fig. 9. Comparison on training time consumption between different algorithms on MNIST image set 

 

From Table 9 one can see that the proposed HP classifier demonstrates very high classification performance 

surpassing or, at least, on par with comparative algorithms. Moreover, Fig. 9 further demonstrates that the 

computational efficiency of the proposed HP classifier is much higher than the alternatives, especially, on large-

scale, high-dimensional problems. 

In the following numerical examples, the performance of the HP classifier is tested on UCMerced and WH-

RS19 image sets. Following the common practice [42], the ratios between the training and validation images of 

the UCMerced dataset are set to be 50% and 80%; the ratios of the WH-RS19 dataset are set as 40% and 60%, 

respectively. Since the scales of the two remote sensing image sets are smaller than the MNIST image set, a 

three-layer HP classifier (     is trained. The accuracy rates of the classification results by the HP classifier 

on the two image sets are tabulated in Tables 10 and 11, respectively. The KNN-C, SVM and DRB classifiers as 

used in the previous example are involved for comparison, and the classification performance of the competitors 

is reported in Tables 10 and 11 as well. Selected state-of-the-art results reported by recent publications are also 

given for informed comparison. The average number of the prototypes (per class) at each layer of the HP 

classifier is reported in Fig. 10. 

 

 

 

Table 10. Performance comparison on UCMerced image set 

Algorithm 
Classification Accuracy 

50% Training Images 80% Training Images 

HP 0.9329±0.0092 0.9594±0.0151 

KNN-C 0.9090±0.0101 0.9359±0.0141 

SVM 0.9425±0.0080 0.9601±0.0112 

DRB 0.9313±0.0087 0.9580±0.0146 

RCNet [49]  0.9453 

CaffeNet [42] 0.9398±0.0067 0.9502±0.0081 

GoogLeNet [42] 0.9270±0.0060 0.9431±0.0089 

VGG-VD-16 [42] 0.9414±0.0069 0.9521±0.0120 

BoVW(SIFT) [42] 0.7190±0.0079 0.7412±0.0330 

VLAD(SIFT) [42] 0.7323±0.0102 0.7819±0.0166 

MS-CLBP+FV [22] 0.8876±0.0079 0.9300±0.0120 

salM
3
LBP-CLM [4] 0.9421±0.0075 0.9575±0.0080 

salM
3
LBP [4] 0.8997±0.0085 0.9314±0.0100 

salCLM (eSIFT) [4] 0.9293±0.0092 0.9452±0.0079 
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Table 11. Performance comparison on WH-RS19 image set 

Algorithm Classification Accuracy 

40% Training Images 60% Training Images 

HP 0.9320±0.0069 0.9470±0.0099 

KNN-C 0.9264±0.0083 0.9379±0.0097 

SVM 0.9458±0.0105 0.9577±0.0100 

DRB 0.9335±0.0098 0.9470±0.0085 

CaffeNet [42] 0.9511±0.0120 0.9624±0.0056 

GoogLeNet [42] 0.9312±0.0082 0.9471±0.0133 

VGG-VD-16 [42] 0.9544±0.0060 0.9605±0.0091 

BoVW (SIFT) [42] 0.7526±0.0139 0.8013±0.0201 

VLAD (SIFT) [42] 0.7637±0.0201 0.8082±0.0215 

salM
3
LBP-CLM [4] 0.9535±0.0076 0.9638±0.0082 

salM
3
LBP [4] 0.8974±0.0184 0.9258±0.0089 

salCLM (eSIFT) [4] 0.9381±0.0091 0.9592±0.0095 

MS-CLBP+FV [22]  0.9453±0.0102 

 

 

 

Fig. 10. The average number of prototypes at each layer of the HP classifier trained on remote sensing image 

sets 

 

Finally, Caltech101 and Caltech256 datasets are used for numerical examples. Following the common practice 

[44], for Caltech101 image set, 15 and 30 images are randomly selected out from each category for training 

respectively, and the rest of the dataset is used for validation. For Caltech256 image set, 15, 30, 45 and 60 

images are randomly selected from each category for training, respectively, and the rest is used for validation. A 

two-layer HP classifier (   ) is used for the experiments because of the smaller scale and less variability of 

training images in each category. The statistical performance of the HP classifier in terms of classification 

accuracy is reported in Tables 12 and 13, respectively. The average number of prototypes of each layer (per 

class) is given in Fig. 11. Similarly, the KNN-C, SVM and DRB classifiers as used in the previous example are 

involved for comparison, and the selected state-of-the-art results reported by recent publications are also given 

for a better evaluation.  

 

Table 12. Performance comparison on Caltech101 image set 

Algorithm 
Classification Accuracy 

15 Training Images 30 Training Images 

HP 0.8863±0.0060 0.9224±0.0040 
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KNN-C 0.8670±0.0063 0.8999±0.0051 

SVM 0.8729±0.0104 0.9027±0.0087 

DRB 0.8491±0.0062 0.8864±0.0047 

ICAC [45] 0.7148±0.0056 0.7663±0.0079 

CASE-LLC-SVM [29] 0.6400±0.0040 0.7140±0.0120 

LLC [41] 0.6543 0.7344 

ScSPM [44] 0.6700±0.0045 0.7320±0.0054 

DEFEATnet [15]  0.7128±0.0061 0.7760±0.0096 

 

Table 13. Performance comparison on Caltech256 image set 

Algorithm 
Classification Accuracy 

15 Training Images 30 Training Images 45 Training Images 60 Training Images 

HP 0.6353±0.0045 0.6908±0.0029 0.7172±0.0034 0.7347±0.0030 

KNN-C 0.6249±0.0033 0.6723±0.0026 0.6986±0.0032 0.7210±0.0027 

SVM Out of System Memory 

DRB 0.6239±0.0033 0.6711±0.0026 0.6976±0.0034 0.7187±0.0029 

DEFEATnet [15] 0.3507±0.0038 0.4206±0.0025 0.4598±0.0026 0.4852±0.0032 

ScSPM [44] 0.2773±0.0051 0.3402±0.0035 0.3746±0.0055 0.4014±0.0091 

LSC-LG [47] 0.4314±0.0063 0.5062±0.0053 0.5327±0.0056 0.5576±0.0048 

LLC [41] 0.2776±0.0032 0.3207±0.0024 0.3509±0.0044 0.4014±0.0091 

FV [37] 0.3850±0.0020 0.4740±0.0010 0.5210±0.0040 0.5480±0.0040 

OCB-FV [50] 0.4403±0.0046 0.5315±0.0044 0.5784±0.0040 0.5903±0.0045 

SWSS-DeCAF [46] 0.6152±0.0039 0.6768±0.0065 0.6977±0.0053 0.7283±0.0044 

SWSS-FV [46] 0.4246±0.0038 0.4985±0.0042 0.5466±0.0047 0.5652±0.0041 

SC
2
-CNN [48] 0.4758±0.0062 0.5542±0.0056 0.5912±0.0051 0.6174±0.0050 

 

 

Fig. 11. Number of prototypes at each layer of the HP classifier trained on Caltech101 and Caltech256 image 

sets 

4.4. Discussions 

As we can see from the numerical examples presented in this section, the proposed approach outperforms the 

comparative approaches on various benchmark classification problems. Its computational efficiency is also 

extremely high, especially for high-dimensional, large-scale, complex problems. Thanks to its unique hierarchal 

system structure and prototype-based nature, the HP classifier is able to effectively handle complex problems by 

approaching them at different levels of granularity and can further present the learning results in the form of 

prototype-based hierarchies. In addition, the HP classifier also puts users “in the driving seat” by allowing users 

to determine the layer number for the system structure and choose the method for decision-making. Experienced 

users can further change the settings of the HP classifier to meet various preferences or problem requirements, 

for example, by adjusting the values of radii    (         ) of influence areas or specifying a layer number 

for each hierarchy. The strong flexibility significantly strengthens the adaptive ability of the proposed approach 

in real-world applications. Therefore, one can conclude that the proposed HP classifier is a strong alternative to 
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the state-of-the-art approaches for classification, and its unique advantages make it highly attractive for large-

scale, high-dimensional and complex problems. 

Nonetheless, it has to be admitted that there are still few issues for future improvements. Firstly, there is no 

scientific way at this moment to determine the most suitable layer number for the HP classifier to perform the 

best on a particular problem.  Users have to either rely on their experience and expertise or make multiple 

attempts to obtain the best setting. Secondly, the system structure and meta-parameters of the HP classifier are 

self-evolving and self-updating all the time with new data samples. However, if one wants to add an extra layer 

to the system structure, the whole HP classifier has to be re-trained fully. Thirdly, the radii of influence areas of 

prototypes at different layers of the HP classifier are hard-coded in advance at this moment.  

5. Conclusion 

This paper presents a novel hierarchical prototype-based (HP) approach for classification. The proposed 

approach has a highly transparent hierarchical system structure composed of meaningful prototypes. These 

prototypes are identified through an autonomous, non-iterative learning process, and they naturally represent the 

local peaks of multimodal distributions derived from data at different levels of granularity. The HP classifier can 

start working from the very first training example per class, and continuously learn from new observations in a 

computationally lean, “one pass” manner and dynamically self-evolve to follow the rapidly changing data 

patterns. Thanks to its prototype-based nature, the learning and decision-making processes of the HP classifier 

are fully interpretable, traceable, explainable to/by humans. The proposed approach is also capable of 

visualising the learned knowledge, namely, the identified prototypes with different levels of details and the 

meaningful links between them, in a human-understandable hierarchical form naturally. Users can use either the 

more sophisticated lower layers of the HP classifier for finer classification or/and the more generalized upper 

layers to quickly understand complex problems and perform coarse classification. Numerical examples on 

various benchmark problems demonstrated that the HP classifier can perform highly accurate classification 

surpassing or, at least, on par with the state-of-the-art approaches. Moreover, the very high computational 

efficiency of the HP classifier on large-scale problems is also justified. 

There are several considerations for future work. Firstly, the optimality of the HP classifier needs to be 

investigated. This is of paramount importance to the proposed approach because it determines the validity and 

effectiveness of the learning results. There are a few potential modifications that can enhance the objectiveness 

and effectiveness of the HP classifier and strengthen its adaptive ability and applicability for real-world 

problems. For example, the current HP classifier requires a full re-training if extra layers are required to be 

added into the system structure. An approach to dynamically add new layers based on requirements during the 

online learning process will be valuable. It will be a strong novelty if some operating mechanisms are 

introduced to the HP classifier that enables the approach to autonomously determine the optimal layer number 

for each hierarchy based on the ensemble properties of data. Alternatively, developing some criteria that can 

help users to determine the most desirable layer number for a given problem without prior knowledge will also 

be useful. Another important direction will be introducing a data-driven approach for determining parameter 

setting (radii) to replace the hard-coding method used by the current version.  
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