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The Logarithmic Mean Revisited
Graham Jameson and Peter R. Mercer

Abstract. We present a simple method for establishing several inequalities relating to loga-
rithmic means.

The logarithmic mean of two distinct positive numbers a, b is

L(a, b) =
b− a

log b− log a
.

The basic inequality for the logarithmic mean states that it sits between the geometric
mean G(a, b) = (ab)1/2 and the arithmetic mean A(a, b) = 1

2
(a+ b):

G(a, b) ≤ L(a, b) ≤ A(a, b). (1)

We note here that the special case a = 1 (with b replaced by x) says, for all x > 0,

x1/2 ≤ x− 1

log x
≤ 1

2
(x+ 1). (2)

Conversely, the substitution x = b/a transforms (2) into (1), so in fact the statements
are equivalent. In this way, (1) reduces to inequalities in terms of a single variable x.

Numerous proofs of (1) have been given. The recent note [10] presents a proof
using Cauchy’s mean value theorem (though in fact the ordinary mean value theorem
works equally well). Other proofs can be seen, for example, in [4], [5], and [11, pp.
272–273].

The note [10] goes on to give proofs, again using Cauchy’s mean value theorem,
of some more intricate inequalities, which had been obtained by quite complicated
methods in earlier papers ([6], [8], [9]). We state them here, writing just L for L(a, b),
and similarly A and G.

L ≤ 2
3
G+ 1

3
A. (3)

L ≥ G2/3A1/3. (4)

L ≤ M1/3. (5)

Here M1/3 is the case p = 1/3 of the power mean Mp(a, b) = [1
2
(ap + bp)]1/p.

It was pointed out in [7] that inequalities (3) and (4) together imply that the number
1/3 is optimal in each case.

Here we give an exposition of a pleasantly simple method for these inequalities,
along with a few related ones. The strategy is to translate the required inequality into
an equivalent statement in terms of sinh and cosh, which, with luck, is easily proved
using power series. The use of this technique for the purpose of obtaining inequalities
for means is well established: for example, see [1]. In relation to the inequalities con-
sidered here, a proof of (1) by this method was outlined briefly in [3], and proofs of
(3), (4), and (5) were indicated rather sketchily in [12]. We present full proofs, starting
with (1).
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Proof of (1). We have seen that it is sufficient to prove (2). In (2), substitute x = e2y:
the statement becomes (for all y)

ey ≤ e2y − 1

2y
≤ 1

2
(e2y + 1).

After division by ey, this says

1 ≤ sinh y

y
≤ cosh y. (6)

So (1) is equivalent to the beautifully simple statement (6), which can be read off with
no further work from the series expansions

sinh y

y
= 1 +

y2

3!
+

y4

5!
+ · · · , (7)

cosh y = 1 +
y2

2!
+

y4

4!
+ · · · . (8)

We now show how this method delivers (3), (4), and (5).

Proof of (3). We do not need to know the factor 1/3 in advance: we can let it emerge
from the reasoning. So consider (3) in the form L ≤ (1 − p)G + pA, where p is to
be found. For the strongest possible result, we must choose p as small as possible. As
before, it is sufficient to prove the case a = 1, in other words (with b replaced by x)

x− 1

log x
≤ (1− p)x1/2 +

p

2
(x+ 1).

The substitution x = e2y tranforms this into

e2y − 1

2y
≤ (1− p)ey +

p

2
(e2y + 1),

equivalently,

sinh y

y
≤ (1− p) + p cosh y. (9)

The article [12] does not include a proof of (9), but this is again achieved very easily
by comparing power series (it is difficult to imagine a simpler proof). Indeed,

(1− p) + p cosh y = 1 + p

(
y2

2!
+

y4

4!
+ · · ·

)
.

Statement (9) will be assured if the coefficients are no smaller than the corresponding
ones in (7). The y2 term requires that p/2 ≥ 1/6, so p ≥ 1/3. The y2n term requires
p/[(2n)!)] ≥ 1/[(2n+ 1)!], or p ≥ 1/(2n+ 1). So (9) holds with p = 1/3.

At the same time, it is clear that (9) will fail for some y if p < 1/3, since (1− p) +
p cosh y = 1 + p

2
y2 +O(y4), while (sinh y/y) = 1 + 1

6
y2 +O(y4).
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Proof of (4). For this, given the previous proof and the remark in [7], we will accept
the index 1/3 from the start. As before, (4) is equivalent to the case a = 1, that is,

x− 1

log x
≥ x1/3[ 1

2
(x+ 1)]1/3.

The substitution x = e2y transforms this into

e2y − 1

2y
≥ e2y/3

(
1
2
(e2y + 1)

)1/3
.

After division by ey, this is equivalent to

sinh y

y
≥ (cosh y)1/3,

hence to (
sinh y

y

)3

≥ cosh y. (10)

This time, comparison of the coefficients will cost us a little more work. For readers
with the appetite for it, here are the details. Note that

(sinh y)3 = 1
8
(ey − e−y)3 = 1

4
sinh 3y − 3

4
sinh y =

∞∑
n=0

c2ny
2n+3,

where

c2n =
32n+3 − 3

4(2n+ 3)!
.

We need to know that c2n ≥ 1/[(2n)!] for each n ≥ 0. This equates to saying that
un ≥ vn, where

un = 32n+3 − 3, vn = 4(2n+ 1)(2n+ 2)(2n+ 3).

To start, we have u0 = v0 = 24 and u1 = v1 = 240. For all n ≥ 1, it is clear that
un+1/un > 9, while

vn+1

vn
=

(2n+ 4)(2n+ 5)

(2n+ 1)(2n+ 2)
≤ 6× 7

3× 4
=

7

2
,

so indeed un > vn, as required.
At the same time, if q < 3, then by (7) and the binomial series, we have (sinh y/y)q

= 1 + q
6
y2 +O(y4) < cosh y for sufficiently small y, so 1/3 is optimal in (4).

Remark. The inequality (10) is given in [11, p. 270], without any mention of the
equivalence with (4). Mitrinovic’s method is by the mean value theorem, twice dif-
ferentiating the function y − sinh y(cosh y)−1/3. Readers may wish to try this and
compare with the series method. Another method based on differentiation can be seen
in [2].
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Proof of (5). After replacing a and b by 1 and x, and substituting x = e2y, we see that
(5) is equivalent to

sinh y

y
≤ (cosh 1

3
y)3 = 1

4
cosh y + 3

4
cosh 1

3
y. (11)

The series expression for the right-hand side is
∑∞

n=0 d2ny
2n, where

d2n =
1

(2n)!

(
1

4
+

3

4.32n

)
.

Comparing with (7), we need to know that d2n ≥ 1/[(2n + 1)!] for each n. This
equates to

1

4
+

3

4.32n
≥ 1

2n+ 1
.

This is much easier than the previous proof! When n = 0, both sides are 1, and when
n = 1, both sides are 1/3. The required inequality is obvious for n ≥ 2.

It is well known thatMp increases with p. By the binomial series again, (cosh py)1/p

= 1 + p
2
y2 +O(y4), so we cannot replace 1/3 by p < 1/3 in (5).

We describe some further inequalities for means of assorted types delivered with
minimal effort by this method. First, the following comparison between the upper
bounds in (3) and (5):

M1/3 ≤ 2
3
G+ 1

3
A. (12)

This statement does not involve L, but of course, together with (5), it implies (3).

Proof of (12). Again replacing a and b by 1 and x, and substituting x = e2y, we see
that (12) is equivalent to

(cosh 1
3
y)3 ≤ 2

3
+ 1

3
cosh y. (13)

Now (cosh 1
3
y)3 = 1

4
cosh y + 3

4
cosh 1

3
y, so the statement is equivalent to

9 cosh 1
3
y ≤ 8 + cosh y.

The constant term is 9 on both sides, and for n ≥ 1, the coefficient of y2n on the
left-hand side is

1

32n−2(2n)!
,

which is not greater than 1/[(2n)!].

Remark. This raises the obvious question of how Mp compares with (1− p)G+ pA
for general p. Now M1 = A and, on writing it out, one sees that M1/2 =

1
2
G+ 1

2
A.

A proof like the one just given (admittedly with a little more work) shows that M2/3 ≥
1
3
G+ 2

3
A. It seems natural to conjecture that Mp ≤ (1− p)G+ pA for 0 < p ≤ 1/2

and that the opposite holds for 1/2 < p ≤ 1. However, a word of caution is in order.
All these means, unlike L, make sense for three or more numbers. Simple examples
show that for three numbers, M1/2 can be either greater or less than 1

2
G + 1

2
A, and

equally, M1/3 can be greater or less than 2
3
G+ 1

3
A.
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For the next result, let us work from the other end. Start from the obvious inequality
cosh y ≥ 1 + 1

2
y2. How does this translate into a statement about means when the

steps above are applied in the reverse order? Multiplication by ey transforms it into

1
2
(e2y + 1) ≥ (1 + 1

2
y2)ey.

With the substitution x = e2y, this becomes

1
2
(x+ 1) ≥

(
1 + 1

8
(log x)2

)
x1/2,

so, finally substituting x = b/a, we conclude

A ≥
(
1 + 1

8
(log b− log a)2

)
G. (14)

This is an enhanced version of the basic inequality A ≥ G. It was proved, by a more
elaborate method, in [13]. Clearly, it could be enhanced further, at the cost of greater
complication, by incorporating further terms of the cosh series.

Readers will be able to verify that, in the same way, the inequality 1
y
sinh y ≥

1 + 1
6
y2 translates into

L ≥
(
1 + 1

24
(log b− log a)2

)
G, (15)

bringing us neatly back to the logarithmic mean.
Added in proof : The conjecture relating to Mp has been proved by Gord Sinnamon.
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