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AVPark: Reservation & Cost Optimization Based
Cyber-Physical System for Long-range Autonomous

Valet Parking (L-AVP)
Muhammad Khalid, Yue Cao*, Nauman Aslam, Mohsin Raza, Alun Moon and Huan Zhou*

Abstract—The Autonomous Vehicle (AV) is an emerging prod-
uct of intelligent transportation system. This paper proposes a
new parking cost optimization scheme for long-range autonomous
valet parking (L-AVP), namely AVPark. The L-AVP selects a
drop-off point (as the temporary reference point for people to
fetch the AV for travelling purpose) for AV. The user leaves AV at
drop-off spot and the AV finds out the most optimal Car Parks
(CPs) itself. The AVPark provides an AV with the most optimal
car park considering the parking price, fuel consumption and
distance to a vacant parking space. AVPark aims to minimize the
walking distance for drivers, and also the round-trip duration
for AV from drop-off point to car park through combination
of weighted values and heuristic approach. By facilitating the
drop-off point that is newly brought into the emerging scenario,
an optimization scheme is proposed to minimize the total cost
for fuel consumption and travelling time using the weighted
value analysis. Results show that AVPark optimized the total
trip duration, walking distance and cost.

Index Terms—Autonomous Parking, Optimization, Au-
tonomous Driving, Reservation.

I. INTRODUCTION

TRANSPORTATION system has always remained an im-
portant aspect of human life. Human mobility is largely

dependent on the transportation and infrastructure. According
to transportation statistics of Great Britain 2017 [1], 78% of
distance is covered by own transport while remaining 22% is
covered by other means of public transport. The other means
of public transport includes bus, train and cabs. Similarly,
in the USA, Europe and China, distance travelled by private
and public transportation mean is illustrated in Fig. I. Recent
statistics show that there is an increase in travelling through
private mode of transportation [2], [3].

Usually in urban areas, there is only a limited number of
parking spaces available. On average, vehicles searching for
parking space contributes to 30% of traffic on roads. In the
UK, it takes over 6 minutes to find a parking lot, in a report
by JustPark [4]. In a global parking survey by IBM [5], 20
minutes are spent in searching for an appropriate CPs [6]–[8].
Parking a car in a pre-defined and limited space itself is a
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difficult task for most of the early stage drivers. As per the
recent report of Insurance Institute for Highway Safety (IIHS),
20% of all car accident occurs in commercial parking lots.
The rate of auto-mobiles has been doubled over the past few
decades and it is quite challenging to accommodate increasing
number of vehicles in existing infrastructure. Besides limited
space for parking, skills required to manoeuvre vehicle in tight
spaces, high cost and circular driving are various reasons that
need to be addressed using the state of the art technologies.

On one hand, a personal vehicle provides much comfort. On
the other hand, one may face multiple challenges while driving
their own vehicle. One of the most challenging tasks is to find
a cheap and suitable parking space in a timely manner. Smart
Parking (SP) benefits to user, by providing suggestion for CPs.
Apart from finding parking slot, parking vehicle into exact
dimensions specified for parking is considered as the most
difficult part of all driving operations. These days, finding CPs
in urban areas, congested zones, business areas, and tourist
spots is a major concern due to the increase in number of
vehicles.

Fig. 1. Statistics of 2017-2018 [1], [4]

Recent inventions in autonomous control systems, sens-
ing and vision systems have addressed many of the major
challenges with respect to safety on wheels, efficiency, fuel
consumption, traffic congestion and environmental pollution
[9], [10]. The AV provides the capacity of performing mul-



2

tiple operations at the same time autonomously [11], [12].
It includes several operations such as parking vehicle in the
garage without a driver, searching for a vacant parking slot in
CPs and getting parked.

In Autonomous Valet Parking (AVP), the driver leaves an
AV at designated locations. The AV is capable of driving
in fully autonomous mode, moves towards selected CPs and
gets parked. The AVP is delivering astonishing services with
the help of modern automation technologies. It improves the
overall user experience and provides safety as well [13], [14].

One type of AVP called Short range Autonomous Valet
Parking (S-AVP) has been made possible through the ad-
vancement of vision system and autonomous car-maneuvering
techniques [13]. The S-AVP has addressed various problems
that happen in parking lots, like finding empty parking lot
inside CPs and parking AV in specified dimensions. The S-
AVP has performed efficiently in training scenarios, where AV
training is performed by the driver at least once. The most
advanced system in S-AVP can search for vacant parking lots
in multi-story buildings. Through advanced machine learning
techniques, S-AVP can park an AV in full autonomous mode
[15], [16].

This paper will address key challenges related to Long-range
Autonomous Valet Parking (L-AVP), which is an extension
of the existing S-AVP. In L-AVP, the user drives the AV at
a certain point in city centre called Drop-off/Pick-up (D/P)
point and walks towards the desired location, which could
be a Leisure Point (LP), or a Work Place (WP). In the next
step, the AV moves autonomously towards CPs. Similarly,
for the inbound trip from CPs, the AV is picked-up by the
driver at pick-up point. The L-AVP provides driver with
more convenience, by allowing them to drop their AVs near
LP. The proposed scheme also saves significant amount of
time because, L-AVP allows drivers to be dropped off at
nearest point to their desired location. L-AVP also facilitates
smart operations executed through AVs by providing the most
suitable path planning, cost effective selection of CPs and
suggestions for pick-up/drop-off spots selection.

In literature, pricing schemes for smart parking has been
proposed and analysed [17]. The L-AVP delivers by providing
the nearest drop-off point near to their work place/leisure
point. The AV is facilitated at the nearest drop-off point, and
provides users the convenience in terms of time and monetary
value. Our contribution focuses on providing efficient pricing
and reservation scheme for L-AVP. The main contributions of
this paper are as follows;

• Optimal Parking Cost The work in [17] is more towards
resource1 allocation. To provide user with more conve-
nience and economic solution for parking, this work aims
to minimize parking cost2 by comparing suggested cost
with already set minimum value.

• Drop-off Spot & Car Park Recommendation The work
in [18] used only distance parameter to analyse the best
CPs. This work recommends the best D/P by calculating
minimum distance from D/P to WP. Also, the distance

1Resource refers to vacant car park slot
2Parking cost includes the fuel consumed and price paid for car park

between current position of AV and suggested D/P is
minimized. A cost function is used to recommend most
appropriate CPs.

II. BACKGROUND

A. Traditional Parking
A couple of years ago, pre-parking information about park-

ing places, their prices, and location were used to be almost
null [19]. There was no prior information about where to park,
how much it will cost and, how far it is. In traditional parking,
a driver has to check each parking lot in search of a free
CP slot. On one hand, it costs them in terms of time, fuel
consumption and the hassle of moving the vehicle in CPs
multiple times. While on the other hand, it tends to produce
greater environmental pollution [20]–[22].

B. Smart Parking (SP)
A general Smart Parking (SP) model consists of following

five elements [23]–[25]. User interface module connects the
user with parking servers and manager module. The user
can perform multiple operations through this interface. The
communication module ensures availability and reliability of
overall communication of the system. The communication
module performs multiple operations like encryption, control-
ling errors, exchanging data and information reliably. The
parking module looks after all operations inside the park-
ing area. It analyses the vehicles and parking slots. Space
controller unit consists of a combination of sensors and a
controller. These sensors detect a vehicle in the parking lot and
inform the controller about parking slot status. The manager
module is responsible to take care of parking servers and
information about registered users.

The i-Parker parking scheme is mainly based on intelli-
gently allocating resources, defining prices and reserve parking
lots when necessary [17]. The main contribution of i-Parker
is the confirmed reservations with the lowest parking price
and searching time. The i-parker combines the concept of
real time reservation and share time reservation. Real time
reservation and share time reservation allow users to select
parking spot any time earlier or on the spot. Real time reser-
vation continuously allocates vehicle with the best parking
slot. While in share time reservation, user selects a specific
parking and time slot as per their convenience. This scheme
allows users to select multiple parking slots at the same time
and the system will recommend the best parking space as per
the current circumstances. The architecture of this system has
been categorized into central request centre, parking manager
and smart allocation systems. The purpose of central request
centre is to receive parking request and then put it forward to
appropriate smart allocation systems for allocation of parking
space. The parking manager acts as an interface between smart
allocation systems and parking authorities. smart allocation
system consists of pricing engine, sensors, data center, smart
allocation centre and virtual message sign. The queuing model
is divided into dynamic and static parking. The i-Parker uses
mixed integer linear programming to minimize the monetary
cost for the users. The mixed integer linear programming also
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Fig. 2. From Smart Parking to Autonomous Valet Parking

focuses on minimum resource utilization with higher revenue
generation.

The SP system assigns and reserves an optimal parking lot
depending on users cost function [26]. The components of this
system include parking geographic information system, driver
requests processing centre, parking resource management cen-
tre and smart parking allocation centre. The parking resource
management centre updates real-time parking information and
delivers it to end users via the internet or virtual message
sign. Similarly, driver request processing centre is responsible
for collecting users request for parking, and keeps an eye on
the recent allocation of resources to users. This system takes
the current road condition and parking space information into
account, and suggests an optimal parking solution. It reserves
an optimal parking space for the user. In earlier parking mech-
anisms, the suggested space was been occupied by some other
vehicle when the actual vehicle reaches. An objective function
is used to compute an optimal parking space as per user needs.
The user’s objective function, depending on the distance to
CPs and parking cost. The proposed algorithm solves mixed
integer linear programming problem at every decision point.
The mixed integer linear programming proposes an optimal
parking slot on the basis of data being provided by the user.

Campus parking system focuses on the efficient use of the
existing parking slots on sharing basis by dividing users into
day and night shifts [27]. This scheme is provide a general
framework which could be deployed for various scenarios. The
number of supposed parking slots on campus are k while l are
parking slots on private parking are in surrounding area. The
proposed scheme has supposed that k parking slots can be
utilized by university staff and students once l parking slots
are filled. It is considered the k parking slots are utilized at
night time and these people go to offices in day time. In this
system, it has been considered that a certain contract exists
between university administration and private parking owners.

C. Autonomous Valet Parking (AVP)

The Fig. 2 gives a bird-eye view of the properties of both
SP and AVP. There are a few features that makes AVP a novel
and efficient technique for parking than SP. In early days, AVP
was used to provide a limited parking assistance. Automatic
parking can be used if the driver remains inside the AV. This
process is not fully autonomous as driver can intervene during
the process. In this process, the whole parking activity is fully
supervised by the driver, referred to as Level 1b in Fig. 3. The
driver drives AV to a vacant parking slot and set AV position at
a certain distance from the obstacle and other AVs. Once AV is
in heading position towards the parking slot, it automatically
detects the slot and get parked. This mechanism is mostly
useful for less experienced drivers and it has minimum chances
of hitting an obstacle or another AV.

In the following years, AVP developed wireless operations.
It enables the driver to stay out of the car, perform and monitor
parking process through their specified handset or smart phone,
which is referred as “level 2”. In the later stage which is shown
as “level 3”, 3D mapping and sensing technologies are used.
This is a more advanced level of AVP, where AV travels to
parking lot from a specific spot. Usually, in this technique, an
AV is trained at least once with driver inside AV [28].

In the state-of-the-art AV systems, path generation [29] and
precise detection [30] techniques have extended the appli-
cations of AVP. In this scenario referred as “Level 4a”, a
driver leaves AV at CPs entrance and navigates AV towards a
vacant slot [31]. The disadvantage of this system is that driver
must approach CPs and drop AV there, however it saves time
to find parking slot. User leaves AV at CPs, while the AV
autonomously searches for an available parking slot.

Short-range Autonomous Valet Parking The recent de-
velopment in machine vision system and autonomous car-
manoeuvring techniques has made it possible for S-AVP to
become a mature technique. The S-AVP has addressed many
parking issues where space for parking operations is found to
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be limited. For S-AVP, AV must be trained at least once to
adopt the new routes and analyze the obstacles [32]. Recent
advancement in machine learning techniques can make it
capable of achieving optimal output for S-AVP in complex
parking areas [33], [34].

In initial steps, AV is parked by the driver to train AV
and familiarizes it with the new area and surroundings. This
operation is performed at least once by the driver to supervise
AV properly. In the following step, AV is parked in complete
autonomous mode. The recent advancement enables an AV
to scan for objects coming its way and perform accordingly.
Nowadays, AV is equipped with multiple sensors performing
different kinds of functionalities. Due to these advancements,
S-AVP is as mature. S-AVP can search for a vacant parking
slot, avoid objects coming its way and the most important is
to take care of living objects while performing autonomous
driving. In the next step, AV learns to park itself without a
driver. Advancement in AVP system has made it capable of
scanning for available CPs, slot by slot and floor by floor
in case of multi-story CPs. AVP has made AV capable of
parking in fully autonomous mode [35]. The work in [36]
provides valuable recommendation on parking slots status, that
results in saving time. In [37], studies about coordination of
AV to available parking facilities in Vehicle-to-Grid (V2G)
environment for electric vehicles.

Fig. 3. AVP at Low Autonomous Level

III. SYSTEM FRAMEWORK

In L-AVP, multiple D/P are deployed around the city, while
CPs are deployed in remote area or border line of the city.
When an AV (in driving mode) is serving users, it searches
for the nearest D/P. For example, in the out bound trip, the
user leaves AV at a drop-off spot, and walks towards WP.
Then the AV travels towards CPs and finds a suitable parking
slot. Similarly, for inbound trip, the drop-off spot would act
as a pick-up spot. The AV is able to pick-up user and delivers
towards inbound trip destination [38].

A. Autonomous Valet Parking Model

The AVP design serves as core model for the autonomous
parking process. All the notations used in Section III are
defined in Table I. The model includes various modules related
to parking process as following and as presented in Fig. 4;

TABLE I
MAIN NOTATIONS

α Vehicle acceleration in m/s2

v Vehicle speed assuming no headwind, in m/s

g Acceleration due to gravity 9.8m/s2

G Road grade

CR Rolling resistance 0.009

ρ Air density 1.2 kg/m3

CD Aerodynamic drag coefficient 0.3

AF Frontal area 2m2

ζ Mass factor accounting for the rotational masses 0.1

m Vehicle mass in metric tonnes (1305 kg for AV, plus 80 for driver)

P Fuel consumption

Pavg Average fuel consumption

ξ Number of hour(s)

y Fuel consumption weight coefficient

z Parking cost weight coefficient

Jlavp−out Total L-AVP journey cost (outward)

Jbck−out Total benchmark journey cost (outward)

Dv,cps Distance from AV current location car park

Dcps,v Distance from car park to destination

Sn n number of total D/P spots

sln n number of slots in each CPs

Pmin Possible minimum fuel consumption in reaching CPs

Cξ Parking fee for number of ξ hours

ξ Number of hours for which parking slot is reserved

Υop Optimized parking cost

Υavg Average parking cost

Υmax Maximum parking cost

Ucps,w Travelling cost for user from CPs to WP

M Upper limit for Drop-off spots

N Upper limit for CPs slots

dpcurrM Currently available drop-off spot out of M spots

cpscurrN Currently available CPs out of N CPs

T outlavp L-AVP outbound trip time

T outbck L-AVP outbound trip time

Dv,d Distance between vehicle and D/P spot

Sv Speed of Vehicle

Dd,w Distance between D/P spot to WP

Sh Speed of human

1) Autonomous Vehicle: AV is supposed to be the end
user of AVP model. An AV can directly communicate with
Resource Request Centre (RRC) and the Vehicle-to-Everything
(V2X) infrastructure. The V2X acts as primary source real-
time information for AV. The RRC is liable to receive any
parking request from AV and process them. The AV is able to
receive city wide CPs information through V2X and similarly,
AV can request for parking resources to RRC. The AV uses
RRC to request for any available resources. It receives real-
time information about surrounding region from V2X. This
information includes congestion rate, routes and CPs informa-
tion in the region being covered by that specific V2X.

2) Resource Request Centre: The responsibility of the
Resource Request Centre (RRC) is to receive request from
AV and forward it to the Reservation Centre: 1) Pre-arrival
Reservation; 2) Real-time Reservation.

3) Reservation Centre:

• Pre-Arrival: In pre-arrival, a fixed slot is assigned to AV
at a specified CPs, if available.
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Fig. 4. AVP Model

• Real-time: A real time reservation is made when an AV is
about to reach a parking space. It is updated continuously
by the server to provide AV with efficient cost and better
experience.

4) Cost Control Centre: The cost control centre deals with
parking prices for different CPs. The cost control centre
change prices as per traffic situation and to make CPs for
profitable.

• Cost Centre: This module sets the prices of parking slots
in a region covered by an V2X. The parking price is
set depending on the demand of parking slots. Usually,
a smart approach is followed to benefit the operators of
CPs as well as AV.

• Cost Optimizer: The cost optimizer tends to provide users
with minimum possible parking fee. It calculates the
average parking fee and aims to provide users with below
average parking prices.

5) Car Park Information Module: This module is respon-
sible to keep track of all the the CPs. It includes CPs current

vacant and occupied slots, reserved slots and their predicted
status in the near future. The car park information module
directly communicates with Cost centre and V2X.

6) V2X: It acts as an intermediate unit between CPs module
and data centre. It also communicates and provides CPs
information to AV directly. The V2X is required to cover
a specific geographic area and report it to the data centre.
Similarly, the V2X system is connected to data centre at the
same time. Usually, all the computation is carried out on this
end and results are forwarded to data centre.

7) Data Centre: This is the main module where all the
relevant data about CPs, parking fee, routes, vehicles and
traffic condition is held. It can directly communicate with
V2X and receive data frequently, in order to update other V2X
accordingly.

8) Control Manager: The control manager module is re-
sponsible to monitor overall system. It observes the parking
fee and makes changes to provide CPs owner’s with maximum
output. The control manager offers lower parking fee to users,
in order to enhance their parking experience.

B. Long-range Autonomous Valet Parking

1) L-AVP Communication: In this framework, all AVs can
communicate with network entities introduced in section III-A
through V2X infrastructure, as depicted in Fig. 5.

2) Drop-off Spot Selection & Reservation: Initially, AV
is in travelling mode. In the Algorithm 1, the process of
searching and selecting a drop-off spot has been explained.
All the available M spots are extracted in the initial stage. As
explained between lines 4 to 10, the minimum distance as a
summation of Dv,d (from location of AV to D/P) and Dd,w

(from D/P to WP) is ranked, in case M > 0. Once reserved,
the reserved spot is deducted through M = M − 1.

Algorithm 1 Reservation of D/P Spot
1: Define MIN,ℵ
2: if (M > 0) then
3: for (i = 1; i ≤M ; i + +) do
4: Calculate

(
Dv,d(i) + Dd(i),w

)
5: if

((
Dv,d(i) + Dd(i),w

)
< MIN

)
then

6: MIN =
(
Dv,d(i) + Dd(i),w

)
7: ℵ = i
8: end if
9: end for

10: Select D/Pℵ
11: M = M − 1
12: end if

3) Car Park Selection & Slot Reservation: The Algorithm
2 aims to address the challenge of CPs selection. It extracts the
CP.LIST from the nearest V2X. Each AV is treated on First
Come First Serve (FCFS) basis for CPs selection. Each CPs
in the CP.LIST is checked for three conditions for available
slots, where N is upper bound for number of slots in each CPs.
Here, (cpscurrN = N) is considered as the best best option,
(N > cpscurrN ≥ 1) as average and (cpscurrN = 1) means that
only one slot is left in selected CPs. They are compared on
average cost of P as fuel consumption and C as the parking
cost in the CPs. The cost is calculated through Υ in line 12.
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Fig. 5. L-AVP Communication Framework

Algorithm 2 Car Park Selection
1: for Extract CP.LIST do
2: for Serve every AV’s on FCFS do
3: Get data about available slot on each CPs
4: for (j = 1; j ≤ N ; j + +) do
5: if (cpscurrN = N) then
6: Select CPs with C(j) < 0.5 & lowest P(j) value
7: else if (N > cpscurrN ≥ 1) then
8: Select CPs with C(j)&P(j) ≤ average
9: else

10: Select last available CPs
11: end if
12: Calculate Υ = P(j) + Cξ(j)
13: end for
14: end for
15: end for

Algorithm 3 helps AV in reserving a slot in selected CPs
defined by Algorithm 2. It checks for the available slot in the
CPs, considering the total cost and distance. The Algorithm 3
computes the minimum value of parking Υop. Once reserved,
it is removed from available slot list sln = sln− 1. Here, sln
is number of total slots in certain CPs. The status of CPs is
updated through cpscurrN .

Algorithm 3 Slot Reservation in CPs
1: for Get All Available CPs do
2: Get CP.LIST
3: for Each CPs in CP.LIST do
4: if (0 < cpscurrN ≤ N ) then
5: Reserve slot having the minimum cost Υop
6: else if (1 ≤ cpscurrN ≤ 1) then
7: Calculate cost
8: Reserve slot
9: else

10: Select last available slot
11: end if
12: sln = sln − 1
13: slot reserved
14: Update cpscurrN
15: end for
16: end for

C. Parking Cost Optimization

Initially, vehicle is in driving mode. The moment driver
intends to park a vehicle, a parking request is initiated and
nearest drop-off spot is selected, if available. After selection
of available drop-off spot, CPs is checked for vacant slots. A
list of CPs having vacant slots is obtained and selection of
CPs is made by the user.

Fig. 6. Cost Optimization Flow Chart

The fuel consumed from drop-off zone to CPs can be
calculated by P [39],

P = mv[α(1 + ζ) + gG+ gCR] + 0.5ρCDAFv3 (1)

Let total cost of parking be denoted by Υ. It can be achieved
by calculating fuel consumption P and parking fee per hour.
Here, C be the parking fee per hour while ξ as the number of
hours vehicle is being parked. So the total parking cost along
the time is,

∑%
ξ=1 Cξ,

Υmax = P +

%∑
ξ=1

Cξ (2)

Considering the total cost of parking, following elements
are considerable;

P,C, Sv, Sh (3)

This model uses a weighed value for fuel consumption and
parking fee, keeping in view fuel and parking prices. For fuel
consumption P , a weighted value of y is assigned while a
weighted value of z is assigned to parking fee C and ξ is
number of hours a slot is need, where ξ = {1, 2, 3...., 12}.
Here, we denotes the maximum number by %. The Sv is speed
of AV and Sh is speed of human.

Υmax = y(P ) + z

%∑
ξ=1

Cξ (4)
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%∑
ξ=1

Υmax = y(P ) + z

%∑
ξ=1

Cξ (5)

The slot can only be reserved for up to 12 hours. If a user
wants a slot for more than 12 hours, a re-reservation process
must be performed to reserve the same slot again.

Υavg = Pavg + Cξ (6)

Here, the term avg can be defined as (0.01 ≤ avg ≤ 0.5)
Similarly, for up to 12 hours parking slot the equation can be
given as follows;

%∑
ξ=1

Υavg = {Pavg +

%∑
ξ=1

Cξ} (7)

Υmax is compared with the average parking cost for AV
Υavg . Here, v is considered as number of AV’s and v =
{1, 2, 3.......n} Similarly, for n number of AV’s, the equation
can be given as;

n∑
v=1

Υop =

n∑
v=1

{
Υavg

Υmax

}
where (0 < Υop ≤ 1) (8)

The value of Υop will lie between 0.01 & 1.0. The value of
Υop vary depending on traffic condition and usage of parking
spaces. It also depends on how busy the city is. The more a city
centre is busy, the higher parking price would be. Although
the cost of fuel will have a rare effect of overall cost. This
model aims to serve user with the minimum value of Υop.
The lower the value of Υop is, the minimum will be the
parking price. The goal of algorithm 4 is to optimize the
existing parking price3. This algorithm first extracts CP.LIST
and analyse the average cost for parking in specific area by
Υavg = Pavg+Cξ. The Pavg is then compared with maximum
and minimum possible cost. The parking slot detail each CPs
is obtained through sl.LIST . For the optimal parking cost

Υop =

{
Υavg
Υmax

}
, a normalized value is calculated. After

calculating Υop the lowest value among all the obtained values
is selected. The Υop can only be obtained when slots in
selected CPs qualifies are greater than n

2 and less than or equal
to sln, which are total available slots in each CPs. The average
value of parking cost Υavg can only be obtained when n

2 or
less slots in selected CPs are available.

D. AVPark & Benchmark

A detailed study and analysis is provided to analyse the
advantages of L-AVP. As inbound and outbound trips are
considered as same, so outbound trips are considered for
analysis. For benchmark, D/P spots are not considered. As
user would straight away drive their vehicles to CPs and walk
down to WP, if L-AVP is not involved.

3Here, the price includes parking price for using a parking slot in CPs and
the fuel cost for the distance covered by AV to reach that specific CPs.

Algorithm 4 Cost Optimization for Parking Slot
1: for Extract CP.LIST do
2: while Get parking slot details form sl.LIST do
3: Calculate Υmax = {y(P ) + z(C)}
4: Calculate Υavg = y(Pavg) + z(C)
5: end while
6: Compare Υavg , Υmax
7: Scanning each CPs
8: for Each CPs in CP.LIST do
9: if (1 ≤ slcurrn ≤ sln then

10: Υop =

{
Υavg
Υmax

}
11: Select Lowest value of Υop, where (0 < Υop ≤ 1)
12: else if (1 ≤ slcurrn ≤ n

2
then

13: Υavg = y(Pavg) + z(C)

14: Compare Υavg for LIST.sl
n
2
1

15: Select Lowest value of Υavg
16: else
17: Select available sl with Υmax
18: end if
19: end for
20: end for

E. Total Travel Time

For L-AVP the outbound trip time for a single vehicle can be
taken as T outlavp, which is computed by adding the time required
for the vehicle to arrive at the drop-off spot and the time
required by the driver to cover the distance between drop-
off spot and desired destination. The relationship for T outlavp is
defined as follows;

T outlavp =
Dv,d

Sv
+
Dd,w

Sh
(9)

For the comparison purposes we use the benchmark case
T outbck , where the total time is calculated as vehicle to arrive at
the car park and the time required by the driver to cover the
distance between car desired destination. The relationship for
T outbck is defined as follows;

T outbck =
Dv,cps

Sv
+
Dcps,w

Sh
(10)

As the value of Sv larger in comparison to Sh (e.g., 13.9-
14.9 m/s vs 1.5-2.0 m/s). These are the values of Dd,w

and Dcps,w, which illustrates how optimal L-AVP is. The
suggestions for D/P shows the efficacy of the L-AVP. The
capacity of CPs is dependent on size & population of the city.
Busy and congested areas need CPs with a larger capacity as
compared to small cities, a detailed demonstration is given in
Fig. 7. When higher number of D/P spots are deployed, there
is a higher possibility to locate d ∈ D to hold Dd,w < Dcps,w.

The inbound time for L-AVP can be defined as;

T inlavp =
Dcps,x

Sv
+
Dw,p

Sh
(11)

Where, Dcps,x is the distance from CPs to destination and
being covered by AV. The user needs to walk down to pick-up
spot Dw,p. The L-AVP tends to select the nearest pick-up spot
to WP. As speed of human Sh is much lower than speed of
vehicle Sv . To minimize the waiting time for user and AV at
pick-up spot, their distance and speed must be synchronized.

Similarly, the benchmark for inbound trip can be presented
as;
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Remote Car Park (CP1)

Remote Car Park (CP2)

LAVP Drop-off/Pick-
up Spot

Car Park in 
Urban Area (CP3)

Urban Area

A 
Working Place (WP)

B
Dd,w

Dcp,w

Dv,d

Dv,cp Dw,p

Dp,x 

Inbound Trip Destination

Dd,cp

Dv,w

Dv,d – Distance from vehicle 

position to drop-off spot

Dv,w – Distance from vehicle 

position to work place

Dd,w – Distance from drop-off to 
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Dw, p – Distance from work place 

to pick-up spot

Dp, x – Distance from pick-up spot 

to inbound trip destination

Dv, cp – Distance from 

vehicle position to car park

Dcp, w – Distance 

from car park to work 
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Dd, cp – Distance 

from drop-off spot to 

car park

Parking Request Near A

Collection 
Request at B

Itinerary (A-C-B)

Fig. 7. Broad-view Design for Long-range Autonomous Valet Parking

T inbck =
Dcps,x

Sv
+
Dw,cps

Sh
(12)

For the benchmark, the AV needs to travel from its des-
ignated slot to CPs entrance Dcps,x with the speed of Sv . It
takes quite less time due to speed of vehicle. The user travels
from WP to CPs Dw,cps. The CPs being deployed remotely,
this distance is usually long and user needs to use some public
transport or walk a long way to CPs from WP. It costs the user
an extra amount or time or sometimes both to travel between
WP and CPs.

F. Total Journey Cost

The total journey cost of an AV in L-AVP includes, the
fuel consumption for that specific AV from current location to
drop-off spot Pv,d then cost of fuel from drop-off spot to CPs
Pd,cps and optimized parking fee is obtained by Υop;

Jlavp−out =
︷ ︸︸ ︷
Pv,d + Pd,cps +Υop (13)

For benchmark total journey cost can be defined as;

Jbck−out =
︷ ︸︸ ︷
Pv,cps + Ucps,w +Υmax (14)

Here, Ucps,w is the cost of user travelling from CPs to WP.

Pv,cps is the cost of AV from current location to CPs. While,
Υmax the cost of parking.

The consumption of fuel is directly proportional to the
distance covered by vehicle. In case of L-AVP, Dv,d+Dd,cps is
traversed. While in benchmark, Dv,cps is covered. If L-AVP
relies on just one CPs and D/P, it will record a higher fuel
consumption. As AV must be dropped at designed D/P and
parked in defined CPs. In case of multiple D/P and CPs, AV
will select the nearest D/P to WP and nearest CPs to D/P. It
will result in less fuel consumption for AV and less walking
distance for users.

IV. PERFORMANCE EVALUATION

A. Simulation Set-up

The presented case study is carried out with Opportunistic
Network Environment (ONE) [40]. The ONE is a Java-based
simulator. The scenario is with an area of 4500×3400 m2,
shown as down town area of Helsinki city in Finland. The case
study present 300 AV running at a speed range of [30 ∼ 50]
km/h are deployed in the network. This case study deploys a
total of 5 CPs (each CPs with 60 slots by default) and 15
D/Ps as depicted in Fig. 8. By default, the time for users
to start requesting for drop-off spot is 3600s while 7200s is
set as working period. The simulation has been carried out
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TABLE II
SIMULATION PARAMETERS

Simulation Tool Opportunistic Network Emulator (ONE)
Simulation Time 12 hours

City Map Helsinki, Finland
Area 4500 x 3400 m2

No. of AVs 300
Deployed Drop-off Spots 15

Deployed Car Parks 5
Drop-off Request Time 3600s

Working period at Work Place 7200s

for 12 hours, defined in Table II. The terminologies used in
simulation are defined as follows;

• Walking Distance (WD) This is the distance covered by
a user from drop-off spot to WP. This distance depends
on the number of drop-off spots deployed inside the city
centre. The more the number of spots will lead to pick-
up/drop people closer to WP.

• Parking Cost (PC) This is the actual parking fee C that
a user is charged when parking their AV. The parking fee
also depends on the number of hours an AV is parked
for.

• Total Fuel Consumption (TFC) The TFC is the amount
of fuel consumed per trip. A trip can be defined as
leaving the drop-off spot. Then its arrival at designated
CPs and travelling back to pick-up spot. The TFC can
be minimized by selecting the shortest path to CPs or by
selecting nearest CPs. Usually there is a trade-off between
CPs and TFC. When former decreases, the latter increase
and vice versa.

• Average Travel Time (ATT) The ATT involves two
factors; one computed from users perspective and the
other from vehicles perspective. It involves computa-
tion of time needed by AV to travel from a drop-
off spot to CPs and time needed by driver to travel
from drop-off spot to the desired location. It can be

given by
{
Dv,d+Dd,cps+Dcps,x

Sv
+

Dd,w+Dw,p
Sh

}
. Here,

Dv,d+Dd,cps+Dcps,p
Sv

is the time taken by AV while
Dd,w+Dw,p

Sh
is the time taken by user in each trip.

• Total Distance Covered (TDC) It indicates the distance
covered by AV and user in each trip. Where a trip
start from drop-off spot to CPs for AV and to WP for
user and similarly the inward trip to pick-up spot for
both user and AV. Where distance covered by AV and
user can be represented by Dv,d +Dd,cps +Dcps,x and
Dd,w +Dw,p respectively. Similarly, for benchmark it
will be Dv,cps and Dcps,w for AV and user respectively.

Fig. 9 shows the walking distance travelled by user from
drop-off spot towards WP in L-AVP. The distance is compared
against the number of drop-off spots deployed and results are
compared for a total of 15 drop-off spots. The result shows
that there is a significant decrease in walking distance from
drop-off spot to WP with increase in number of drop-off
spots deployed. The walking distance may vary depending on

Fig. 8. Simulation Scenario

Fig. 9. Walking Distance Comparison for Various D/P
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structure of the city centre but overall walking distance from
D/P to WP will be decreased with the increase of D/P spots.
The walking distance can also be minimized by deploying
D/P spots near WP but that can effect the flow of traffic.
Fig. 10 provides the comparison between the distance covered

Fig. 10. Average Distance Covered

by user as well as AV. The covered distance is compared
concurrently against the drop-off spots and CPs. The increase
in spots and CPs showed a prominent change in decrease
of distance covered by both AV and user. The more number
of drop-off, pick-up spot and CPs, smaller the overall travel
distance meaning that they are easily accessible. Similarly, it
decreases the walking distance in L-AVP as well. The CPs
away from city centre are usually less costly as compare to
CPs near the city centre. One may pay lower parking fee but
has to travel a larger distance to reach the CPs. The Fig.

Fig. 11. Parking Cost

11 represents the cost of parking for both benchmark and
AVPark against the number of CPs deployed. The parking cost

depends on the availability of parking slots. The parking cost
of all the CPs are compared through optimization equation and
CPs with the minimized cost is selected. The CPs are given
with different prices, depending on how far they are from city
centre. The optimal cost of parking has been achieved through
the selection of nearest D/P and then scanning for the lowest
parking price in combination with selection shortest path to
CPs.

Fig. 12. Total Journey Cost

Fig. 13. Average Cost With Respect to P & C Values

The cost against different values of P as fuel consumed and
C as parking cost has been shown in Fig.13. The results are
being shown for parking hours between 9am-5pm. The total
cost progressively decreases with an increase in D/Ps and CPs.
The value of P as 0.3 and C as 0.7 offers the lowest cost in
the simulated scenario. A variation in cost with respect to
different values of P and C can also be observed. The Fig.
12 depicts the total cost of the outward and inward trip, also
called as total journey. TJC in benchmark includes the parking
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Fig. 14. Average Travel Time

cost and journey cost from CPs to WP. The travel between
CPs and WP may be by bus, train or by walk. The TJC of
AVPark and benchmark are compared in Fig. 12. The Fig.13
represents total cost with respect to different values of P as
fuel consumption and C as parking price. The most optimal
value is achieved by P = 0.3 and C = 0.7. The Fig. 14
has analysed ATT with respect to number of drop-off, pick-up
spots and CPs. The ATT represents the journey time starting
from the time AV requests for parking spot. Until the AV is
parked in CPs and the time AV requests for pick-up spot till AV
is picked by the driver. Results show that ATT decreases with
increase in D/P and CPs simultaneously. The higher number
of D/Ps means, AV can easily find a nearby D/P and results
in minimizing ATT. The ATT of AVPark is compared with
benchmark. In the benchmark the CPs entrance is considered
as drop spot and pick up spot simultaneously.

V. CONCLUSION

This paper proposed a novel technique for optimizing reser-
vation process and minimizing cost of using parking areas,
called AVPark. A new model for AVP has been presented in
this article. The L-AVP for outbound trip, uses the nearest D/P
to drop user at a convenient location near WP. Similarly, for
the inbound trip the most convenient D/P is selected and AV is
picked by the user at that spot. The results of the novel tech-
nique were compared with the benchmark and the proposed
technique has achieved improvement in minimizing the time
required for travelling, parking cost, fuel consumption and
distance to be travelled by AV. In future, Integration of AVP
with edge computing and cloud to support IoT services will
be of great interest. The need of IoT applications that require
location awareness, real-time and low-latency responses, core
network bandwidth load management, data security manage-
ment, and IoT power consumption management can be the
motivation. Real-time video analytics for low-latency decision
making is an IoT application area which is seen to have real
benefits when the processing is done at the edge nodes. This

type of analytics will be needed for making self-driving cars
and augmented reality.
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