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ABSTRACT

SOLVING THE CAPACITATED MULTIFACILITY WEBER
PROBLEM APPROXIMATELY

In this study, we consider the capacitated multifacility Weber problem which is
concerned with locating m facilities in the plane, and allocating their limited capacities
to m customers at minimum total cost. In this group of location-allocation problems,
the only cost dealt with is the transportation cost that is proportional to the distance
between the facility and the customer. The capacities of each facility and the de-
mands and the locations of each customer are predetermined and given as parameters.
This problem is an intractable non-convex optimization problem and difficult to solve.
Therefore, using approximation strategies to compute efficient and accurate lower and

upper bounds for the capacitated multifacility Weber problem can be a good approach.

We first concentrate on the alternating location allocation heuristics. Then we
continue with the discretization strategies and the Lagrangean relaxations of the ap-
proximating models. Some specific lower bounding algorithms are also defined by using
the special properties of some of the distance functions. In addition to them, the relax-
ation of the main model is investigated and a Lagrangean heuristic is devised. In this
heuristic, either a linear relaxation or exact solution of the Lagrangean subproblem
is found by using column generation and branch and price algorithms combined with

concave minimization.

Although an exact solution methodology is not found, the approximation methods
give accurate results. The tight bounds calculated by using these algorithms can be

convenient in searching the exact solutions for this group of problems.



OZET

SINIRLI SIGALI COK TESISLI WEBER PROBLEMI ICIN
YAKLASIK COZUM YONTEMLERI

Bu ¢aligmada enkiiciik maliyetle, m tane tesisin diizleme yerlegtirilmesi ve sinirh
sigalariyla n miisterinin istemlerinin karsilanmasini amaclayan siirh sigal ¢ok tesisli
Weber problemi tizerinde caligildi. Bu tiir tesis yerlegtirme atama problemlerindeki tek
maliyet tesis ve miigteri arasindaki uzaklikla dogru orantili olan tagima gideridir. Tesis
sigalari ile miigteri yerleri ve istemleri onceden belirlenmistir ve problem icin veridir.
Bu problem c¢oziimii zor olan, bir digbiikey olmayan eniyileme problemidir ve bazi
yaklagik ¢oziim yontemleriyle eniyi amag fonksiyonu i¢in st ve alt sinirlar bulunup

siirekli olarak iyilegtirilmesi iyi bir yaklagim olabilir.

Yaklagik ¢oziim yontemlerine degismeli yerlestirme atama benzeri sezgiselleriyle
bagland: ve asil problemin kesikli uyarlamasi ile onun Lagrange gevsetmesi ile devam
edildi. Baz1 alt siir algoritmalari da bazi uzaklik normlarinin 6zel niteliklerinden
faydalanilarak tamimlandi. Bunlara ek olarak, asil model gevsetilerek incelendi ve
bir Lagrange sezgiseli tasarlandi. Bu sezgiselde, Lagrange alt problemin ya dogrusal
gevsetmesi ya da tam sonucu siitun iiretme ve dal maliyetlendir algoritmalar1 kul-

lanilarak ve i¢biikey enkiigiikleme alt problemleri ¢oziilerek bulundu.

Her ne kadar bu ¢oziim yontemleriyle her zaman kesin ¢oziim bulunamasa da
yaklagik ¢oziim yontemleri timit verici sonuglar verdi. Bu algoritmalar kullanilarak
hesaplanan siki sinirlar, bu grup problemler i¢in kesin ¢oziim arayan yontemlerde de

yararl olabilirler.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . iii
ABSTRACT . . . . iv
OZET . o o v
LIST OF FIGURES . . . . . . . . . vii
LIST OF TABLES . . . . . . . s viii
LIST OF SYMBOLS/ABBREVIATIONS . . . . .. .. ... ... ....... ix
1. INTRODUCTION . . . . . 1
2. PROBLEM FORMULATION . . . . . . . . ... . . ... ... ... .... 4
3. LITERATURE SURVEY . . . . . . ... .. 9
4. LAGRANGEAN RELAXATION AND SUBGRADIENT OPTIMIZATION . 13
5. ALTERNATING LOCATION ALLOCATION HEURISTICS . . . . . . . .. 16
5.1. Capacitated Location Allocation Heuristic . . . .. . ... ... .... 16
5.2. Region Rejection Heuristic . . . . . ... .. .. ... ... ... ... 18
5.3. Discrete Region Rejection Heuristic . . . . . . ... ... ... .. ... 19
5.4. Region Rejection Heuristic with Dynamic Radius . . . . . . ... ... 19
5.5. Discrete Region Rejection Heuristic with Dynamic Radius . . . . . . . 20
6. DISCRETIZATION STRATEGIES . . . . . . . .. ... ... ... ..... 23
6.1. Discrete Approximation Heuristic . . . . . . .. .. .. ... ... ... 23
6.2. Relaxed Discrete Approximation Heuristic . . . . . . .. .. ... ... 24
6.3. Discrete Approximations Using /; and [, Norms . . . . . . .. ... .. 27
7. LAGRANGEAN HEURISTICS . . . . . . ... ... ... ... .. .... 29

7.1. Lagrangean Relaxation and Capacitated Multifacility Weber Problem . 29

7.2. Set Partitioning . . . . . . . . ... 32
7.3. Column Generation . . . . . . . . . .. ... 34
7.4. Branch and Price . . . . . . . . ... 41
7.5. Outer Approximation . . . . . . . . . . .. 55
7.6. Alternating Location Allocation Heuristic . . . . . . ... .. ... .. 57
7.7. Uncapacitated Discrete Approximation Heuristic . . . . . . ... .. .. 58

7.8. Relaxed Uncapacitated Discrete Approximation Heuristic . . . . . . . . 59



vil

8. COMPUTATIONAL RESULTS . . . . . . . . .. ... .. ... ... 62
8.1. Upper Bounds on the Optimal Value . . . . .. ... ... ... .... 63
8.2. Lower Bounds on the Optimal Value . . . . . . ... ... .. ... .. 66
8.3. Bounds with Lagrangean Relaxation . . . . .. ... ... ... ... .. 74

9. CONCLUSIONS . . . . e 83

REFERENCES . . . . . . e 86



Figure 4.1.

Figure 5.1.

Figure 5.2.

Figure 5.3.

Figure 5.4.

Figure 5.5.

Figure 5.6.

Figure 6.1.

Figure 6.2.

Figure 6.3.

Figure 6.4.

Figure 7.1.

Figure 7.2.

Figure 7.3.

Figure 7.4.

LIST OF FIGURES

General subgradient optimization algorithm . . . . . . . . ... ..

Weiszfeld procedure . . . . . . . ..o L

Capacitated alternating location allocation heuristic

Region rejection heuristic . . . . . . .. ...

Discrete region rejection heuristic

Region rejection heuristic with dynamic radius

Discrete region rejection heuristic with dynamic radius

Discrete approximation heuristic . . . . . . . .. ... ...

Inspection method for RDCMLAP?

Discrete capacitated alternating location allocation heuristic

Relaxed discrete approximation heuristic

Subgradient optimization procedure for the CMFWP

Basic column generation algorithm for the RCMFWPj5
Column generation heuristic

Column generation algorithm for the RCMFWP; . . . . . .. . ..

viil

26



Figure 7.5.

Figure 7.6.

Figure 7.7.

Figure 7.8.

Figure 7.9.

Figure 7.10.

Figure 7.11.

Figure 7.12.

1X

Basic branch and price algorithm for the RCMFWP; . . . . . .. 51
Column generation with branch and price heuristic. . . . . . . .. 53
Branch and price algorithm for the RCMFWP; . . . . . . ... .. 54
Adjacency list algorithm . . . . . . ... ... ... .. 56
Outer approximation algorithm . . . . . .. ... ... ... ... 57
Alternating location allocation heuristic . . . . . . ... ... ... 58
Discrete alternating location allocation heuristic . . . . . . .. .. 61
Relaxed uncapacitated discrete approximation heuristic . . . . . . 61



Table 1.1.

Table 8.1.

Table 8.2.

Table 8.3.

Table 8.4.

Table 8.5.

Table 8.6.

Table 8.7.

Table &8.8.

LIST OF TABLES

Distance functions most frequently used in the literature . . . . . .

Accuracy of the upper bounds: Percent deviations for Problems

201-220 with the FEuclidean distance . . . . . . . . . . . .. . ...

Efficiency of the upper bounds: CPU times (seconds) of UB algo-
rithms for Problems 201-220 with the FEuclidean distance . . . . .

Accuracy of the upper bounds: Average percent deviations for all

problems with the Euclidean and [, distances with p = 1.25, 1.50,

Efficiency of the upper bounds: Average CPU times (seconds) for
all problems with the Euclidean and [, distances with p = 1.25,
150, 175 o oo

Accuracy of the upper bounds: Average percent deviations for all

problems with the squared Euclidean distance . . . . . . . . .. ..

Efficiency of the upper bounds: Average CPU times (seconds) for

all problems with the squared Euclidean distance . . . . . . .. ..

Accuracy of the lower bounds: Percent deviations for Problems 201-

220 with the Fuclidean distance . . . . . . . . . . . . . .. . ...

Efficiency of the lower bounds: CPU times (seconds) for problems
201-220 with the Euclidean distance . . . . . . . ... .. ... ..



Table 8.9.

Table &8.10.

Table 8.11.

Table 8.12.

Table 8.13.

Table 8.14.

Accuracy of the lower bounds: Average percent deviations for all
the problems with the Euclidean distance and [, distances with p =

1.25, 1.50, 1.75 . . . . o oo

Efficiency of the lower bounds: Average CPU times (seconds) for
all the problems with the Euclidean distance and [, distances with

p=1.25 150, 1.75 . . o

Accuracy of the Lagrangean heuristic: duality gaps for the problems

201-220 with the Euclidean distance . . . . . . . . . . . .. .. ..

Efficiency of the Lagrangean heuristic: CPU times (second) for the
problems 201-220 with the Euclidean distance . . . . . . . . .. ..

Accuracy of the Lagrangean heuristic: Average duality gap for all
the problems with the Euclidean, squared Euclidean and [, dis-

tances with p = 1.25, 1.50, 1.75 . . . . . . . . . ... ... ... ..

Efficiency of the Lagrangean heuristics: Average CPU times (sec-
onds) for all the problems with the Euclidean, squared Euclidean

and [, distances with p = 1.25, 1.50, 1.75 . . . . . ... . ... ..

X1



xii

LIST OF SYMBOLS/ABBREVIATIONS

bjit

First part of the technology matrix

Coordinates of customer j

First part of the resource vector

Second part of the technology matrix

Set of unsolved nodes in the branch and price algorithm
Binary parameter to show if customer j is supplied in column

t of facility ¢

Binary variable to show if customer j is supplied in the column

of facility 7 created at iteration ¢

Binary parameter to show if customer j exist in subset s or

not
Coordinates of candidate location k

Cost vector

Optimal objective value for subproblem RDCMLAP? of facil-
ity ¢

Unit shipment cost per unit amount per unit distance between

facility ¢ and customer j

Cost of assigning facility ¢ located on candidate location k to

customer j in RDCMLAP*

Objective coefficient of subset s of facility ¢

Objective coefficient of column ¢ of facility ¢

Cost of a column at iteration ¢

Reduced cost of a column at iteration ¢

The minimum reduced cost calculated among the columns of

facility ¢ at iteration ¢

Lower bound calculated in the most recent iteration
Optimal objective function value for the SFWP over subset s
The minimum reduced cost among all columns at iteration ¢
Lower bound calculated in most recent iteration

Second part of the resource vector



TS F R o008 @ -°

~

1@

m

M, = {M?> Mll}

N

G

xiii

Distance between facility ¢ and customer j at iteration ¢
Function to measure the distance between points x; and a;
Given distance between points x; and a; in RCMFWP
Initial feasible set in outer approximation

Outer set in outer approximation at iteration ¢

Index of iterations

Subgradient vector

Set of cuts in outer approximation method

A cut function used in outer approximation method
The i entry of the subgradient vector G

The j*® entry of the subgradient vector G

Convex hull of customers

Demand of customer j

Remaining demand of customer j in RDCMLAP?

Index of facilities

Index of facilities

Index of customers

Customer set

Index of candidate locations

Candidate location set

Optimal candidate location for facility i in RDCMLAP®
Cut function created in outer approximation method at iter-

ation ¢
Number of facilities to be located

Zero and one branched customer pair set of node [ in BP

algorithm

Number of customers
Not branched customers set in BP algorithm
One branched customer pair set whose elements are only

branched once
Number of rejected iterations required to update radius in the

region rejection type heuristics



X1v

Hyperplane used in outer approximation method
Total demand of customers inside circle with center of x; and

radius R°

Number of candidate locations
Dynamic radius assigned to facility
Additional variable used in concave minimization problem for

facility ¢

Initial radius in region rejection type heuristics

Dynamic radius found at iteration e

Index of customer subsets

Special set of customer group sets in the branch and price

algorithm

Customer group set k in a special set S
Customer group [ in customer group set k of special set S
Customer p in customer group [ in customer group set k of

special set S

Capacity of facility ¢

Subset s of customers set

Index of iterations

Step size in subgradient optimization

Dual variable value of supply constraints for facility < in RCM-

FWP
Set of vertices used in the outer approximation algorithm

Dual variable value of demand constraints for customer j in

RCMFWP
Dual variable value of supply constraints for facility < in RCM-

FWP at iteration ¢
Dual variable value of demand constraints for customer j in

RCMFEFWP at iteration ¢
Dual variable value of total number of facilities constraint in

RCMFWP
Amount of goods to be shipped from facility ¢ to customer j

Fixed amount of goods to be shipped from facility ¢ to cus-

tomer j



T
- ()

T
Xit = < Ti1e Lot >

Xs

Yij

T
X2 )

XV

Amount of goods to be shipped from facility ¢ located on

candidate location k to customer j

Dual variable value of total number of facilities constraint in

RCMFEFWP at iteration ¢
Decision variable vector

Coordinates of facility
Fixed coordinates of facility ¢
Randomly assigned coordinates of facility ¢

Binary decision variable to determine if facility 7 is located on

candidate location k
Coordinates of facility ¢ at iteration ¢

Coordinates of facility ¢ at column ¢
Optimal location for the SFWP over subset s
Binary variable to determine if customer j is supplied by fa-

cility ¢ or not

Zero branched customer pair set whose elements are only

branched once
Binary variable to determine if subset s is completely served

by facility ¢ or not

Binary variable to determine if column ¢ of facility i is selected

or not
Lower bound for node [

Current best lower bound so far
Optimal objective value of location allocation problem for [,

distance
Binary variable to determine if subset s is selected or not

Current best upper bound so far

Radius update coefficient in region rejection type heuristics
Function used in subproblem derivations of the branch and

price algorithm

Function used in subproblem derivations of the branch and

price algorithm



Qgt) (Xia j)

B
51@, (Xi7j1>j2)

Bz@ (Xi, J1, Ja)
BY (x4, 41, Ja)
3 (x1,9)
51@, (Xi; j1,j2>
—t

5i ) (Xi7j17j2)

éz@ (Xi»jlan)

xvi

Function used in subproblem derivations of the branch and

price algorithm
Initial radius multiplier in RRH" and DRRH’

Function used in subproblem derivations of the branch and

price algorithm

Function used in subproblem derivations of the branch and

price algorithm

Function used in subproblem derivations of the branch and

price algorithm

Function used in subproblem derivations of the branch and

price algorithm

Function used in subproblem derivations of the branch and

price algorithm

Function used in subproblem derivations of the branch and

price algorithm

Function used in subproblem derivations of the branch and

price algorithm
Lower limit coefficient in RRH and DRRH’

Function used in subproblem derivations of the column gen-

eration and the branch and price algorithms

Function used in subproblem derivations of the branch and

price algorithm

Function used in subproblem derivations of the branch and

price algorithm

Lagrangean multiplier vector
The i entry of the Lagrangean multiplier vector
The i*" entry of the Lagrangean multiplier vector at iteration

t
Function used in subproblem derivations of the branch and

price algorithm

The j*® entry of the Lagrangean multiplier vector
Function used in subproblem derivations of the branch and

price algorithm



(e

,Ol(t) (Xi7 {817 Sn} 7Q>

i

ALA
BP
BPA
BPH
BP’
CALA
CG
CGA
CGH
CG!
CLAP
CMFWP
DAH
DALA
DC
DCALA
DCMLAP
DLAP
DRRH
DRRH'
DUMLAP

LB
LDP

XVvil

Multiple acceptance limit used in creating columns in the col-

umn generation and the branch and price algorithms

Step size parameter in subgradient optimization algorithm
Function used in subproblem derivations of the branch and

price algorithm

Constant part of the concave minimization problem in the

column generation and the branch and price algorithms

Alternating location allocation

Column generation with branch and price

Column generation with branch and price algorithm
Column generation with branch and price heuristic
Subproblem for facility ¢ in the branch and price algorithm
Capacitated alternating location problem

Column generation

Column generation algorithm

Column generation heuristic

Subproblem for facility 7 in column generation

Continuous location allocation problem

Capacitated multifacility Weber problem

Discrete approximation heuristic

Discrete alternating location allocation heuristic

Difference of convex functions

Discrete capacitated alternating location allocation heuristic
Discrete capacitated multifacility location allocation problem
Discrete location allocation problem

Discrete region rejection heuristic

Discrete region rejection heuristic with dynamic radius
Discrete uncapacitated multifacility location allocation prob-

lem
Lower bound

Lagrangean dual problem



LP
L,CMFWP
LR

LSP

Ly

Lo

MFWP
MILP

MP

NP
RCMFWP
RDAH
RDCMLAP

RDCMLAP?
RDUMLAP

RDUMLAP;
RCMFWP,
RCMFWP;
RCMFWP,
RCMFWP;5

RLT
RL,
RL
RRH
RRH’
RUDAH
SFWP
SO

SPP

xviil

Linear programming

1, distance capacitated multifacility Weber problem
Lagrangean relaxation

Lagrangean subproblem

Discrete approximation method by using /; distance
Discrete approximation method by using /., distance
Multifacility Weber problem

Mixed integer linear programming

Main problem

Nondeterministic polynomial

Relaxed capacitated multifacility Weber problem
Relaxed discrete approximation heuristic

Relaxed discrete capacitated multifacility location allocation

problem
Subproblem associated with each facility ¢ for RDCMLAP

Relaxed discrete uncapacitated multifacility location alloca-

tion problem
Subproblem associated with each facility «+ for RDUMLAP

Mixed integer binary programming formulation for RCMFWP
Set partitioning problem formulation for RCMFWP
Set covering problem formulation for RCMFWP

Column generation master problem formulation for RCM-

FWP
Reformulation linearization technique

Relaxed discrete approximation method by using /; distance
Relaxed discrete approximation method by using /., distance
Region rejection heuristic

Region rejection heuristic with dynamic radius

Relaxed uncapacitated discrete approximation heuristic
Single facility Weber problem

Subgradient optimization

Set partitioning problem



TP

UB
UDAH
UMFWP
UMFWP,

Transportation problem

Upper bound

Uncapacitated discrete approximation heuristic
Uncapacitated multifacility Weber problem

Set partitioning problem formulation for UMFWP

XIiX



1. INTRODUCTION

Facility location allocation problems are used for deciding the locations of new
facilities —such as warehouses, factories and retailers— and the allocation of customers
to these new facilities. This decision is aimed to minimize the total cost composed
of the summation of transportation cost, which is the product of the defined distance
between customers and the supplying facility and the amount of product carried from
the given facility to the customer, and the fixed cost of opening facilities. If the possible
locations for the facilities is chosen from a set of candidate facility locations, problem
becomes discrete location allocation problem (DLAP) whereas if the facilities can be
located anywhere in the Euclidean space, the problem is named as continuous location

allocation problem (CLAP).

In the (single facility) Weber problem (SFWP), the aim is to find the optimal
location for a single facility in the Euclidean space which minimizes the total trans-
portation cost. Similar to SFWP, in the multifacility Weber Problem (MFWP), facility
location costs are not included in the objective, the only cost dealt with is the trans-
portation cost. In addition to that, the number of facilities is predetermined, given as

a parameter and facilities can be located anywhere in the continuous Euclidean space.

In the capacitated MEWP (CMFWP), each facility has a predetermined capacity
to supply customers whereas in the (uncapacitated) MEWP (UMFWP) facilities do
not have any capacity limitation so every customer is served by the closest facility.
Both the UMFWP and the CMFWP are nonlinear nonconvex optimization problems
and difficult to solve. These problems are NP-hard problems even if all customers are
located on a straight line [1]. However, if the optimal locations for the facilities are
given, the optimal allocation can be found by solving a transportation problem for the
CMFWP and assigning every customer to the nearest facility for the uncapacitated
case. Similarly, if the optimal allocations are given, both problems can be separated

into SFWP’s for every facility and their allocations over customers and solved easily.



Table 1.1. Distance functions most frequently used in the literature

Distance Formula

Euclidean d(x;,a;) = [(za — aj1)’ + (zig — aj2)2] V2
rectilinear d(x;,a5) = |z — aj| + w2 — ajo]
squared Euclidean | d (x;,a;) = (21 — aj1)2 + (w0 — aj2)2

lp d(xi,a5) = [[ea — an |+ |22 — ap[']'"
13 d(xi,a5) = [lra — apl” + |z — a """

MFWPs can be categorized according to their distance functions. The most com-
mon distance functions investigated by the researchers are the FEuclidean, rectilinear
and squared Euclidean distances. Although not specifically investigated in the liter-
ature, there are also some results for some of the [, distance functions. The most

frequently used distance functions can be seen in Table 1.1.

CMFWPs can be grouped into two classes: single-source and multi-source prob-
lems. In the single-source CMFWP every customer can only be supplied by a single
facility whereas in the multi-source CMFWP, customers are allowed to have more than

one supplier.

In this study, we are aiming to propose approaches to solve the [,-distance multi-
source CMFWP (L,CMFWP) for 1 < p < 2 approximately. In Chapter 2, we will
give general problem formulations for both the continuous and the discrete versions
for the capacitated and the uncapacitated MFWPs. This part will be followed by a
general literature survey on the MEWP in Chapter 3. In Chapter 4, a general overview
about the Lagrangean relaxation and subgradient optimization will be given. These
two will be used in several different parts of the thesis. Chapter 5 will include some
alternating location allocation type heuristics to solve the CMFWP, which gives upper
bounds for our problem. In Chapter 6, we will give information about the discretization
strategies for the CMFWP. The main motivation in this chapter is to solve CMFWP
approximately by solving approximating discrete capacitated multifacility location al-
location problem. In Chapter 7, a LR scheme will be formulated. In addition, we will

define some lower bounding algorithms for the Lagrangean relaxation of the CMFWP.



Computational results will be given in Chapter 8 and the thesis will be concluded by

making comments and giving directions for the future work in the last chapter.



2. PROBLEM FORMULATION

In CMFWP, the aim is to find the locations of m capacitated facilities and their
allocation for each of m customers in a Fuclidean space which minimizes the total
transportation cost. Each facility has a predetermined supply capacity and their total
allocation to customers cannot exceed this amount. The mathematical programming

formulation of the CMFWP can be stated as follows:

CMFWP:

i=1 j=1

s.t. Zwij = hj j = 1, ., n (22)
i=1

D wiy=s i=1,....m (2.3)
j=1

In this model m is the number of facilities to be located and n is the number of
customers. h; is the demand and a; = < aji ajo )T is the coordinates of customer j.
s; represents the capacity of facility 7. x; = ( Ti Tio )T and w;; are respectively the
unknown coordinates of facility ¢ and the amount shipped from facility ¢ to customer
g with the unit shipment cost per unit amount per unit distance ¢;;. The formulation
assumes that the problem is balanced; i.e. total demand equals to total supply. If the
total demand exceeds the total supply, the problem is infeasible. On the other hand, if
total supply exceeds total demand, a dummy customer with the demand of the excess

supply and zero shipment cost per distance can make the problem balanced.

The objective (2.1) equals the total transportation cost. Constraints (2.2) and

Constraints (2.3) ensure demand satisfaction of each customer and supply limitation



of each facility respectively.

The only difference between the CMFWP and its uncapacitated counterpart is
the capacity limitations over facilities. In the UMFWP capacities of the facilities are
unlimited. Because of this, the CMFWP formulation without the facility supply lim-
itation constraints, namely Constraints (2.3), can be used for the UMFWP. However,
since the customers are assigned to the nearest facility in the uncapacitated case, the

problem can be formulated using binary decision variables as follows:

UMFWP:

manZywhjd (Xi,aj) (25)

i=1 j=1

sE) yy =1 j=1,..,n (2.6)
=1
yi; € {0,1} i=1,..m;j=1,..n. (2.7)

Different than the capacitated case, instead of w;;, binary decision variable y;; is
used. It is set to 1 if customer j fulfills all its demand from facility ¢, and 0 otherwise.

Constraints (2.6) ensure that each customer is assigned to a facility.

One of the other ways to formulate the UMFWP is to use an equivalent set par-
titioning problem (SPP) formulation (UMFWP5;). In this formulation, every possible
subset of the customer set A are created which will be the sets in our SPP model. A
SEFWP model is solved for every subset to find the cost of assigning a single facility
for the elements of this subset, or cost of selecting the given set for the SPP. The
mathematical formulation of the UMFWP5 is given by Krau [2] as follows:



UMFWP,:
min Z CsZs (2.8)
5:SsCN
st Y biz=1 j=1,...n (2.9)
5:8sCN
Y z=m (2.10)
$:SsCN
zs €{0,1} (2.11)
where,

1if j €S -
bis = o and ¢, = min {Z bjsd (Xs, aj)} (2.12)

0 otherwise =1

and d (x4,a;) is any defined distance function for (xy,a;) pair.

In the above UMFWP, formulation, Sy is the subset s of the customer set N,
cs is the cost associated with this subset, 2z, is the binary decision variable, equals to
1 if subset Sy is selected or the customers in the subset Sg are supplied by the same
facility, 0 otherwise. Constraints (2.9) guarantee that every customer is assigned to a
facility. Constraint (2.10) ensures that the number of facilities which can be opened
equals to m. Equations (2.12) shows that for every subset S;, a SEFWP must be solved
to determine c;. Since the SFWP can be solved easily to optimality by using the
Weiszfeld procedure [3], the related costs ¢s can be calculated efficiently. However, the
main problem for this formulation is the exponential number of variables related to the

number of customers. There are 2" — 1 decision variables in this model.

In the discrete capacitated multifacility location allocation problem (DCMLAP),
the facilities have limited capacities and serve customers by using this limited sup-
ply in the Euclidean space, as it is the case in CMFWP. Both the locations of the
facilities and their allocations to customers which minimizes the total transportation

cost are found. The only difference is the possible set of locations for the facilities.



In CMFWP, the facilities can be placed anywhere in the Euclidean space, whereas in
the DCMLAP, the set of candidate locations are predetermined and facilities can only
be placed on these sides. Besides, even though the CMFWP does not have a known
linear model, its discrete version, discrete capacitated multifacility location allocation
problem (DCMLAP), can be modeled and solved as a difficult mixed integer linear
programming (MILP) problem.

When K = {by,...,bg,...,b,.} is the set of candidate locations for the facilities
and d(b, a) is the distance between customer location a and candidate location b, the

mathematical model of the DCMLAP can be stated as:

DCMLAP:

min Z Z Z wijkcijd (bk, aj) (213)
i=1 j=1 k=1

s.t.Zwijk:sixik i=1,...mk=1,..r (2.14)
j=1
Zzwijk:hj j=1,...,n (2.15)
i=1 k=1
» g =1 i=1,...m (2.16)
k=1
Wik > 0 i=1,...m;j=1,...nk=1,...r (2.17)
vy € {0,1} i=1,. mik=1,..r (2.18)

Different than its continuous counterpart CMFWP, for the DCMLAP model given
above, binary decision variables z;; are used to determine facility locations x;; it is set
to 1 if facility ¢ is located on candidate location k, or 0 otherwise. Constraints (2.14)
ensure that only opened facilities can serve the customers. Constraints (2.15) guarantee
that the demand of each customer is satisfied and Constraints (2.16) force each facility

to be located only on one of the candidate locations.



It is important to note that DCMLAP does not guarantee the optimal solution for
the CMFWP if candidate facility locations set does not include optimal facility sites.
In other words, if optimal facility locations for the CMFWP are included in the set of
candidate facility locations, DCMLAP will find an optimal solution for the CMFWP.
We can also state that, as the size of the candidate location set goes to infinity, the

optimal value of DCMLAP converges to the one of CMFWP.



3. LITERATURE SURVEY

SFWP in the Euclidean space was first proposed by Pierre de Fermat. He com-
posed the problem with three equal demanding customers and it is solved in the same
decade [4]. Then the problem was expanded in three dimensions: different demands

for each customer, increased number of customers and increased number of facilities.

Cooper introduced the MEWP first [5]. He also proved that the objective func-
tion of the given problem is neither concave nor convex [6]. In addition to these, he
tried to solve the problem by a converging Alternating Location Allocation (ALA)
heuristic, which is still one of the widely used heuristics to solve the MFWP [7]. A
similar heuristic for the capacitated version, Capacitated Alternating Location Alloca-
tion (CALA) heuristic, was also proposed by Cooper. The only difference from ALA is
that, instead of assigning the customers to the closest facilities in the allocation phase,
a transportation problem is solved [8]. In addition to heuristic methods, Cooper also
defined an exact method, which enumerates all basic feasible solutions which is based
on the fact that the optimal solution lies at an extreme point of the feasible region [8].
Since the number of extreme points can be very large, this method is applicable for

only small sized problems.

Ostresh devised an exact method called TWAIN to solve the uncapacitated two
center location-allocation problem in particular [9]. His method first partitions the
customers into every possible two groups and solves a single facility location problem
for every group. However, since the convex hulls of each facility-customer group cannot
coincide at the optimality, he partitioned customers according to Thiessen polygons.
This method decreases possible partition groups from Stirling number of the second

kind, S(n,2) =2"1 -1 to C(n,2) = "("271) and less if collinearity exist in customer

locations. However, the method is impractical for the UMFWP with more than two

facilities.

Rosing [10] devised a method using Ostresh’s approach, which works in two stages.
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In the first stage, every possible convex hull and their costs are found. Costs are
calculated by solving a Weber problem for each convex hull which also finds optimal
facility locations for every convex hull. Then a set partitioning problem is solved which
includes every (or some intelligently selected) convex hulls and their associated costs

as columns.

Bongartz et al. [11] conducted a solution procedure which is generalized for [,
distance location allocation problems. Their algorithm finds stationary points and
descent directions by using second-order information for the locations and first-order
information for the allocations after relaxing the binary restrictions of the allocation

variables.

Bischoff and Klamroth [12] proposed two branch and bound schemes for the
multi connection location problem and UMFWP, one of which is branching on discrete
assignment variables whereas the other is branching on continuous location variables.
These are promising methods for both problems and neither of them dominates the

other.

Chen at al. [13] models UMFWP as a difference of convex function (DC) pro-
gramming problem and convert it into a concave minimization problem that is solved
by outer approximation method in which number of dimensions increases as the num-
ber of facilities increases. As a result problems with 20 facilities or less are solved

optimally.

Krau [2] reported an exact method that first models the UMFWP as a set covering
problem and solves them by using column generation and DC programming subprob-
lems. He also proposes a branch and price strategy to get binary optimal solution. As
a branching strategy, he selects two customers and creates child nodes by using them.
In the left child’s feasible column set, the selected customer pair either exist together
or does not exist at all, whereas in the right child’s column set, at most one of the
customers exists. UMFWP instances with at most 100 facilities are solved optimally

by his algorithm and from the experimental results, he claims that, his method works
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better for instances with small facility-to-customer ratio .

Righini and Zaniboni [14] extends Krau’s early work [2] and propose a method
which first models the UMFWP as a set partitioning model and solves the problem
again by column generation method. The difference between the work of Krau and
that of Righini and Zaniboni is that, in the latter one, subproblems are solved by
SFWP with limited distance instead of DC programming. They use two lower bounds
to decrease the CPU seconds. Similar to Krau [2] they apply a branch and price
technique which groups customers and create nodes accordingly. Last but not least, in
order to eliminate degeneracy, they added two different stabilization methods namely
box stabilization [15] and interior point method [16]. They solve problems optimally
with at most 2000 customers and 1300 facilities. Their claim about the algorithm is

that, it works better for instances with high facility-to-customer ratio.

Sherali and Tungbilek transformed squared Euclidean distance CMFWP problem
into convex quadratic function with transportation constraints [17]. They developed
a branch and bound scheme which uses four upper bounding schemes one of which is
derived by using reformulation linearization technique (RLT) [18]. RLT linearizes the
original nonlinear problem unfortunately by increasing the number of variables enor-
mously. Although RLT needs more computational effort, it results in tighter bounds
for the original problem. This lower bounding algorithm is used together with branch
and bound algorithm that implicitly enumerates the vertices of the feasible region. In
their branching scheme, the allocation space is partitioned according to the values of

the variables, either zero or positive.

Sherali et al. extend the same procedure for the Euclidean distance CMFWP
[19]. They again used RLT to find a lower bound for the subproblems arising at each
node. In addition to the Euclidean distance, they generalized the method for the [,

distance as well.

In addition to exact methods given above, there are some heuristics which ap-

proximates the CMEFWP. Aras et al. devised heuristics for both the rectilinear [20] and
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the Euclidean distance [21] CMFWP’s. In the rectilinear distance case, they proposed
a new formulation which is more efficient than Sherali et al.’s [19] RLT based one. This
is based on Wendell and Hurter’s dominance results. They showed that Weber problem
has an optimal solution located within the convex hull of the set of customers for every
distance norm and located on the intersection point of vertical and horizontal lines
drawn through customer locations for rectilinear norm [22], Hansen et al. generalized
these two results for the MEWP [23]. Aras et al. exploited these results to formulate
the MFWP with the rectilinear distance function as equivalent MILP problem [20] and
developed an efficient discrete approximation heuristic (DAH) when the [, distance is
used instead [21]. In addition to these, it is worth noting that in both papers, Cooper’s
alternating location allocation heuristic [7] is used to improve the results at the final

stage.
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4. LAGRANGEAN RELAXATION AND SUBGRADIENT
OPTIMIZATION

This chapter aims to give a general idea about the Lagrangean relaxation and the
subgradient optimization. These two techniques are used together in several different
parts of this thesis. Lagrangean relaxation is one of the best relaxation technique for
the problems with complicated constraints. First we will describe this technique and
give an example that is somewhat similar to the problems considered in this research.
Then, we will give the general scheme for the subgradient optimization to solve the

Lagrangean dual problem.

As stated in the previous sections, it is computationally difficult to solve CMFWP
even for small instances. This is a nonlinear, nonconvex optimization problem. In order
to find good solution for these types of problems, lower and upper bounds for the same
problem can be calculated. However, accuracy and efficiency are the key issues in

calculating the lower and upper bounds.

Upper bounds (UB) (for minimization problems) can be calculated by using
heuristics. There are various types of heuristics reported in the literature. On the
other hand, lower bounds (LB) can be found by relaxing the original problem and
solving it. The most commonly used relaxation strategies are the linear programming

relaxation and the Lagrangean relaxation.

Lagrangean relaxation (LR) has been successfully applied to many difficult opti-
mization problems ever since Held and Karp’s work on the traveling salesman problem
[24]. It is used to find bounds on the optimal value of the MILP problems. In LR
one or some of the constraints are added to the objective function by multiplying this
function with a so called Lagrangean multiplier. Usually complicating constraints are
selected to be relaxed. The main issue in LR is the decision of constant values multi-
plied (i.e. Lagrangean multipliers) by the constraints and the choice of constraints to

be relaxed. Now let us show this technique on a generic model. Assume that our main
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problem (MP) is formulated as:

MP:

min cx (4.1)
st. Ax>b (4.2)
Bx >d (4.3)
x > 0. (4.4)

If we decide to relax Constraints (4.3) our Lagrangean subproblem (LSP) can be re-

formulated as,

LSP:

min cx + A (d — Bx) (4.5)
st. Ax>Db (4.6)
x>0 (4.7)
A>0. (4.8)

As stated above, the objective function value of the LSP is a LB for the main
problem, and our aim is to make it as tight as possible. In other words, we are aiming
to maximize the LSP by choosing A vector wisely. This new problem is named as the

Lagrangean dual problem (LDP) and has the following form:

LDP:

min cx + A (d — Bx)

max< s.t. Ax >b . (4.9)
A>0

x>0
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There are several ways for determining the values of these multipliers. One of
them is to solve LDP using the subgradient optimization (SO). SO is an iterative pro-
cedure and it creates multipliers for the LRP in every step with given initial values. It
attempts to maximize the lower bound obtained from the LR by calculating multipliers
wisely. SO computes tight lower bounds efficiently for the most of the MILP problems

and it is widely used in the literature as a result [25].

The generic subgradient algorithm for the minimization problem (4.1) - (4.4) is
given above. Here X and G are respectively the Lagrangean multiplier and subgradient
vectors, Cyg and Crg denote the recent bounds and Zyg and Zi 3 denote the current

best upper and lower bounds. 7 is the step size parameter.

Update A using the step size calculated above: A = max {0, A + T'G}

Update 7 if necessary.

1. Decide initial A and 7 (where 0 < 7 < 2).

2. Calculate Cyp by using a problem specific heuristic.

3. Solve the LRP by using the current A and find Crg

4. Zyp + min{Zyp, Cyp} and Z;p < max{Zp,CLp}

5. Calculate G as the infeasibility of the relaxed constraints.

6. Calculate step size T by using Zyg and Cyg: T = %
7.

8.

9.

Go to Step 3 until termination criteria are satisfied.

Figure 4.1. General subgradient optimization algorithm
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5. ALTERNATING LOCATION ALLOCATION
HEURISTICS

Alternating location allocation heuristic [7] and its capacitated version [8] were
first proposed by Cooper and they are still two powerful heuristics to solve the MFWP.
One of their weak points is the dependency on the starting points of the heuristics. In
this chapter, first the CALA heuristic will be defined and then some more heuristics
built on CALA will be explained.

5.1. Capacitated Location Allocation Heuristic

As mentioned above, CALA heuristic was proposed by Cooper, who defined the
CMFWP in 1971 [8]. The heuristic is simply composed of the sequential location and
transportation problems (TPs). Even though the CMFWP is an NP-complete problem,

the location and transportation problems are easy to solve.

In TP the aim is to minimize the total transportation cost by only deciding the
allocations between facilities and the capacitated customers. Different than CMFWP,
in TP, locations of the facilities are known. The mathematical model for the TP is as

follows:

TP:

w;j >0 i=1,...m;j=1,..n. (5.4)
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As given before in the CMFWP, facility locations are given as decision variables
whereas in TP X;’s are predetermined. Because of this difference, TP is an easy to
solve linear programming problem. Similar to CMFWP, w;; is the decision variable
for the allocation amount sent from facility ¢ to customer j. In addition to that,
Constraints (5.2) ensure demand satisfaction of each customer and Constraints (5.3)

limit the amount of goods that can be sent by the facilities.

The second part of the heuristic is composed of finding the allocations between
the facilities and the customers by solving a SEFWP for every facility. In the SFWP, the
aim is to locate a single facility in a Euclidean space to minimize total transportation
cost. Allocations are predetermined and given as parameters to the problem. Different
than its multifacility counterpart, the SFWP can be solved easily by the Weiszfeld
procedure [3] or its generalizations [26]. Weiszfeld procedure is an iterative algorithm
which has fast asymptotic convergence. For w;; is the predetermined allocations from

facility ¢ to customer j, the overall Weiszfeld procedure can be formally stated as in

Figure 5.1.
1.1+ 0 n n
Z Ezgazl Z E’LJG/ZQ
2. Initialize the facility location by setting 2% = =, and 2% = =
ngmij J§1 Wi
3. Calculate the distance dg-) =d <x§t), aj>
i E’L]I('i) wljz(,2
2 T ® 2 T®
4. Update the location of facility 7 as x1(11t+1) = Jfln—m” and :EgH) = %
321 d(tj) jgl d(t])

5. t+t+1

6. Go to Step 3 until the termination criteria are satisfied

Figure 5.1. Weiszfeld procedure

Now we can define the CALA heuristic. CALA heuristic is initialized at given
initial facility locations. This locations are used to calculate distances that are the
main ingredients of the costs of TP. Then the TP is solved. The optimal allocations
found from the TP are treated as given during the location phase of the problem. A
SEFWP is solved with them by using the Weiszfeld Procedure for every facility. Then,
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the location and allocation phases are repeated alternately until the stopping criteria

are not satisfied. The overall CALA heuristic procedure is given in Figure 5.2.

1. Define initial facility locations z; for i = 1,...,m

2. Set facility locations X; for ¢ = 1,...,m as parameters and solve the TP to find
the allocations w;; fori =1,...m;j =1,...,n

3. Set allocations w;; for ¢« = 1,...,m;j = 1,...,n as parameters and solve a SFWP
for every facility to find the locations x; for e =1,....,m

4. Go to Step 2 until termination criteria are not satisfied

Figure 5.2. Capacitated alternating location allocation heuristic

It is worth to note here that, performance of CALA heuristic heavily relies on

the initial facility locations. For this reason we define some initialization methods.

5.2. Region Rejection Heuristic

In the region rejection heuristic (RRH), which is due to Luis et al. [27], the
aim is to select initial locations of the facilities well separated. This is accomplished by
checking whether or not there is an already placed facility that remains within the circle
of a given radius centered at the newly initialized one. If this is the case, a new location
is randomly selected for that facility. Initialization is completed when all the facilities
are located within the convex hull of the customers, according to this procedure. In
other words, while the initial facility locations are assigned, if the randomly selected
location is not away from one of the previously placed facilities by a certain threshold
distance, the selected location is renewed or the radius is decreased by some amount.
Then the usual ALA steps are implemented. For the predetermined radius R, radius
decreasing factor a and the iteration limit P, the general scheme of RRH can be defined

as in Figure 5.3.
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Initialize R, P and find convex hull H of the customer locations
Let the facilities be in arbitrary order and set ¢ < 1

If s =m + 1 then go to Step 7, else t < 1

Ll A

Repeat

(a) Select a point X; € H randomly
(b) t+t+1

(c) Ift > P then R« aR and t < 1
(d) Until min{d (x;,%;)} > R
5. X; +— X; -
6. 7 <1+ 1 and go to Step 2

7. Run CALA heuristic starting with these initial facility locations

Figure 5.3. Region rejection heuristic

5.3. Discrete Region Rejection Heuristic

Discrete region rejection heuristic (DRRH) is developed as an enhancement of the
region rejection heuristic. In DRRH, instead of selecting a random initialized location
within the convex hull of the customers, a random customer is selected from the set of
customers and its coordinates are used as an initial location. The motivation behind
this is that the optimal facility locations usually overlaps with the customer locations
as observed for the UMFWP by Hansen et al. [23] and by Aras et al. [21] for the
CMFWP. The overall procedure for the DDRH is provided in Figure 5.4.

5.4. Region Rejection Heuristic with Dynamic Radius

In RRH, the size of the region is set to a fixed value, all restricted regions have the
same radius. However, this selection can be improper since some circles can have more
customer demands. For this reason RRH heuristic was improved with the dynamic
radius concept [27]. The radius of the facility is found by using an iterative procedure.
First, a value ), which is the total demand of the customers remaining within the circle

centered of facility ¢ with dynamic radius R; are determined. Second, R; is updated
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1. Initialize R and P
2. Let the facilities be in arbitrary order and set ¢ < 1
3. If i =m+ 1 then go to Step 7, else t < 1
4. Repeat
(a) Select a random customer, say customer j and set X; <— a,
(b) t+t+1
(c) Ift > P then R« aR and t < 1
(d) Until min{d (x;,%;)} > R
5. X; +— X; -

6. 7 <1+ 1 and go to Step 2

7. Run CALA heuristic starting with these initial facility locations

Figure 5.4. Discrete region rejection heuristic

to satisfy the inequalities 6h; < @) < h;, and the circle is created with center z; and
radius R;. All the other parts of the heuristic is the same as the simple RRH heuristic.
In addition to parameters defined in RRH, for R{ is the radius of facility ¢ at iteration
e, Q(x;, R;) is the total demand of customers inside the circle with center x; and radius
R;, and F is the iteration limit in radius adjustment, the overall procedure of the region

rejection heuristic with dynamic radius (RRH’) can be seen in Figure 5.5.

5.5. Discrete Region Rejection Heuristic with Dynamic Radius

Similar to the modification done between RRH and RRH’, discrete region rejec-
tion heuristic with dynamic radius (DRRH’) includes notion of capacity of the facility
and demands of the customers around it. In addition to selection of random locations
over the customers, a dynamic radius is assigned for every located facilities. This value
is the radius of the customers whose demands’ summation is close to the capacity of
the facility. This radius is either found by multiplying it with a calculated parameter
or by bisection method. For the same parameters given in RRH’, the overall procedure

for the DRRH' is listed as Figure 5.6.
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N e

10.

11.
12.
13.
14.

Initialize £, R, P and find convex hull H of the customer locations
Let the facilities be in arbitrary order and set i < 1
If : = m + 1 then go to Step 14, else t < 1
Repeat (location selection)
(a) Select a point X; € H randomly
(b) If ¢ > P then go to Step 13
(c) t+t+1
(d) Until min {d (x7,%;)} — 17 <0

P —
1<1

Initialize R© = R and set e « 1
Repeat (radius adjustment)

(a) ﬁ — /m and R(e) < R(e—l) * ﬁ
(b) e<—e+1

(¢) Until §h; < Q (x R<e>) <hore>E

If 6h; < Q <Xi, }N%(e)> < h; then R; <+ R© and go to Step 13 else go to Step 10

e (Xi’R(E)) > h; then R < R® and R, + RV else R « RV and

R, <+ R©
Repeat (bisection)
(1) By = gt
(b) If Q (xi, Ryn) > h; then R, < R, else R, + R,
(c) Until Oh; < Q (xi, Rn) < hy
R, + R,
1 <1+ 1 and go to Step 2
Locate all of the unassigned facilities to random locations

Run CALA heuristic starting with these initial facility locations

Figure 5.5. Region rejection heuristic with dynamic radius
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N e

10.

11.
12.
13.
14.

Initialize £, R and P
Let the facilities be in arbitrary order and set i < 1
If : = m + 1 then go to Step 14, else t < 1
Repeat (location selection)
(a) Select a random customer, say customer j and set X; <— a;
(b) If ¢ > P then go to Step 13
(c) t+t+1
(d) Until min {d (x7,%;)} — 77 <0

P —
1<1

Initialize R© = R and set e « 1
Repeat (radius adjustment)

(a) B« \/ﬁ and R® + RV % 3

(b) e<—e+1

(¢) Until §h; < Q (x R<e>) <hore>E
If 6h; < Q <Xi, }N%(e)> < h; then R; <+ R© and go to Step 13 else go to Step 10
It Q (xi,R@)) > h; then R « R® and R, « RV clse R, « RE and
R, <+ R©
Repeat (bisection)

(a) R, «+ ftfe

(b) If Q (x;, Ryn) > h; then R, < R, else R, + R,

(c) Until Oh; < Q (x4, Ryn) < hy
R, + R,
1 <1+ 1 and go to Step 2
Locate all of the unassigned facilities to random customer locations

Run CALA heuristic starting with these initial facility locations

Figure 5.6. Discrete region rejection heuristic with dynamic radius
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6. DISCRETIZATION STRATEGIES

As mentioned in Chapter 2, even though the CMFWP is a nonlinear programming
problem, its discrete approximation DCMLAP can be formulated as the MILP problem
given with Equations (2.13) - (2.18). In this chapter, our aim is to define solution
approaches based on the discrete approximation DCMLAP. We will first define the
discrete approximation heuristic which is simply finding the initial locations by solving
a DCMLAP formulation and improving it by a single CALA run. Then the Lagrangean
relaxation for the discrete approximation heuristic will be introduced. It is especially
meaningful when the number of binary decision variables in the DCMLAP is large.
These two strategies can be used to compute upper bounds on the optimal value of the
CMFWP. In the last section of this chapter, we will propose two discrete approximation
strategies. They are based on the relation of [;, l, and [, norms and result two

approximating MILP’s whose optimal values give lower bounds for the CMFWP.

6.1. Discrete Approximation Heuristic

As mentioned in the previous chapter, CALA depends very much on the initial
locations of the facilities. As a result, a DCMLAP model is solved first to improve
CALA heuristic solution. This overall heuristic, which is named as the Discrete Ap-
proximation Heuristic (DAH), is due to Aras et al. [21]. In DAH, the candidate facility
location set is formed by the customer locations, K = {aj, as, ..., a,}, and a DCMLAP
is solved to find initial facility locations before running a CALA heuristic. Recall that
DCMLAP is formulated in Chapter 2 using the Equations (2.13) - (2.18). A formal
definition of DAH is given in Figure 6.1.

1. Set candidate location set IC <— {aj, as, ..., a,}
2. Solve the DCMLAP problem defined on
3. Run CALA after initializing at the locations obtained by solving DCMLAP.

Figure 6.1. Discrete approximation heuristic
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6.2. Relaxed Discrete Approximation Heuristic

Depending on the size of the candidate point set X, DCMLAP can be very large
and very difficult to solve exactly. However, Lagrangean relaxation and subgradient
optimization can be used to compute a good solution, which can be made even better
if CALA is also incorporated. As stated before, the relaxed constraints in LR is an
important issue and we are aiming both tight bounds and easier solution process by
this relaxation. All possible relaxations are formulated but finally relaxing the demand
constraints (2.15) is seen as the best strategy because of two reasons. First, choosing
the demand constraints makes the Lagrangean subproblems separable over facilities.
Second, computational experiments show that this relaxation generates tight lower
bounds. The Lagrangean subproblem obtained by relaxing the demand constraints

can be given as:

RDCMLAP:
minz Wik [cijd (br,a;) + p5] — Z,uj ; (6.1)
i=1 j=1 k=1
s.t. Constraints (2.14), (2.16) - (2.18) (6.2)
wzjkghj Z:L,m,jzl,,n,kzl,,?“ (63)

In the RDCMLAP, 1 represents the Lagrangean multipliers. All the constraints,
except the relaxed (2.15), of the DCMLAP are added to the new model. In addition,
Constraints (6.3) which limit the demand satisfied are added to the model. In fact,
these newly added constraints are redundant in the main model but when the demand
constraints (2.15) are relaxed they increase the optimal value of RDCMLAP, which

improves the lower bound.

As can be observed, the second summation of the objective function (6.1) is
constant and does not affect the optimal solution. As a result, RDCMLAP can be

decomposed into m problems RDCMLAP? each for one facility 4.
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RDCMLAP:

min Z Z Wik [Cijd (bk, aj) + Mj] (64)

j=1 k=1

s.t. Zwijk = S;Tik k=1,..r (6.5)
j=1
k=1
Wik > 0 j=1..nmk=1..r (6.7)
zix € {0,1} k=17 (6.8)
Wik < hj ] = 1, D k= 17 T (69)

The above RDCMLAP* model can be solved easily by inspection. First, customers
are sorted in nondecreasing order with respect to the cost of sending one unit of good
from facility ¢ to customer j, when the facility is located at candidate location k.
Second, all the capacity of the facility is distributed to the customers by using the
sorted list and the cost of assigning the facility to the given candidate location is found.
This sorting and cost calculation processes are done for every candidate location. The
candidate location with the minimum reduced cost is the optimal solution for facility

i. The overall inspection algorithm for the RDCMLAP" is given in Figure 6.2.

For the upper bounding algorithm the discrete CALA (DCALA) heuristic is used.
DCALA is the discrete version of CALA and the location phase is accomplished solving
1-median problems instead of SFWP using Weiszfeld procedure. DCALA heuristic is

stated as algorithm given in Figure 6.3.

After defining all the required algorithms, the SO algorithm for the RDAH can

be formally listed as Figure 6.4.
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1. Calculate ¢;j; < ¢;jd (by,a;) +pjfor j =1, .njk=1,..r
2. For each candidate location k
(a) Sort the customers in nondecreasing order with respect to &;,. Let the
customers in this order be given as j(1),j(2),...,j(n)
(b) h; « h;, current objective C' + 0 and [ + 1
(c) Repeat
i. If djg) < hy then C < C + &jdjq else C < C + &b
il. ﬁ, < max {ﬁ, —djq), 0}
iii. Until 2; =0
(d) If Cf > C then Cf + C and kf < k
3. k! is the optimal candidate location and C} is the optimal objective value for the

subproblem of facility 4

Figure 6.2. Inspection method for RDCMLAP*

1. Define initial facility locations from the candidate location set I
2. Set facility locations ; for ¢« = 1,...,m as parameters and solve the TP to find
the allocations w;; fori=1,...m;j=1,...,n
3. Set allocations w;; for ¢ = 1,...,m;j = 1, ...,n as parameters
4. For each facility 7 do
(a) ]{?: < arg min {Z Cijwij‘d (bk, aj)}
breK b

5. Go to step 2 until termination criteria are satisfied

Figure 6.3. Discrete capacitated alternating location allocation heuristic
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Decide 1, m (where 0 < 7 < 2) and set Zyp «— 00, Z,p < 0
Run DCALA algorithm, Cyp is the objective

ZUB < min (ZUB7 OUB)

= W o=

Calculate the objective by solving CALA. Keep the solution if it is the best so
far

5. For each facility ¢ do, find the optimal candidate location index £}, by solving
subproblems RCMLAP*

6. Calculate C g and set Zyp < max (Z1p, CLp)

7. Gj — z Wijkr — dj 7= 1,...n
8 T «+ 7rZ(7271?13—63413)

£

j=n
9. pj <+ pj +TG; j=1,..,n

10. Update 7 if needed

11. Go to Step 2 until termination criteria are satisfied

Figure 6.4. Relaxed discrete approximation heuristic

6.3. Discrete Approximations Using /; and [,, Norms

[1 (rectilinear) and I, (Tchebycheff) norms are two common distance functions,
which have two important properties for the MEWP. The first property is that, the
locations for the optimal solutions are an element of a finite set. This finite set contains
the intersection points of the vertical and horizontal lines drawn through customer
locations if it is /; norm and the intersection points of the 45° projection of the vertical
and horizontal lines drawn through customer locations if it is [, norm [28]. In addition
to that, Wendell and Hurter showed that facility locations lie inside the convex hull
of the customers [22]. As a result, since we have a set of candidate locations which
contains the optimal locations for the CMFWP, optimal solution for it can be found
by solving a DCMLAP problem with the appropriate candidate location set. The
mathematical model for the DCMLAP is given by Equations (2.13) - (2.18).

Second, these two distance norms can be used as lower bounds for the other [,

norms [19]. More specifically if we let Z> denotes the optimal value of any given LAP
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in [, distance with 1 < p < oo,

7> 7% (6.10)

20Dz > 73 (6.11)

By using the inequalities, lower bound for the CMFWP with [, distance can
be computed solving MILP’s based on the two properties mentioned in the previous
paragraph. Last but not least, since the LR of DCMLAP produces a lower bound for
the optimal value of the original model, RDCMLAP can also be used as a lower bound
generated for the CMEF'WP. Then the overall procedure given in Figure 6.4 can be used
without Step 4, namely the step where CALA heuristic is run for this purpose.
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7. LAGRANGEAN HEURISTICS

As stated before, both the capacitated and the uncapacitated MEWP are NP-
hard problems [1]. However, we know that, UMFWP has an equivalent pure binary
linear programming set partitioning model with exponential number of decision vari-
ables. Even though it is a difficult problem with an exponential number of decision
variables, relaxing some of the constraints and turning the CMFWP into an uncapac-
itated problem can be a good idea. In this section, we will relax the CMFWP by

Lagrangean relaxation and solve it using different methods.

It is important to note that, we need either an optimal solution or a lower bound
on the optimal value of the relaxed CMFWP. For this reason a set partitioning model
of this relaxed problem is created, which is similar but more complicated than the
usual UMFWP,. This set partitioning model turns into an equivalent set covering
model and a column generation scheme is created to solve the linear relaxation of this
model optimally. In the next section, this column generation algorithm is combined
with a branch and price scheme, which finds the (binary) optimal solution of the set
covering problem, which gives a tighter lower bound. Finally, three more algorithms
will be defined which are not valid lower bounds but can be used to make valid lower

bounding algorithms faster.

7.1. Lagrangean Relaxation and Capacitated Multifacility Weber Problem

As mentioned above, in this part our aim is to relax the CMFWP model given
with Equations (2.1) - (2.4) and deal with a problem which can be modeled as a set
partitioning problem. In order to do this, we relax the capacity constraints (2.3) of the

facilities to obtain the following LR of the CMFWP (RCMFWP) is obtained:



RCMFWP:

manwa ciid (Xi,a5) + A Z)\ S;

=1 j=1

s.t.Zwij:hj jzl,...,n
i=1
Wy >0 Z:L,m,]:l,,n
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In this formulation \; stands for the weights of the relaxed constraints and must

be chosen wisely to have better lower bounds so these values are updated by using

subgradient optimization (SO). In SO, an iterative procedure is used. Initial values of

the multipliers (A) are set to a certain value and updated according to the subgradients

(G) and the step length T. The subgradient vector and the step length are calculated

by using upper and lower bounding algorithms. Even though the upper bound can be

found by using any heuristic solving the CMFWP, calculating a tight lower bound is

not as easy as it seems. Lower bounds used for the CMFWP can either be the optimal

value of the RCMFWP or a lower bound of it. The overall SO algorithm for solving
the CMFWP is given in Figure 7.1.

A N

10.

Decide A;, m (where 0 < 7 < 2) and set Zyp < o0
Run selected UB method and set Cyg as the objective value
Zyg + min (Zyg, Cuyg)
Run selected LB method and set C g as the objective value
Zip <+ max (Z1p, CLp)
Gi + s; — iyijhj i=1,...,m
T (ZUB CLB)
Z G?
i <—max(0/\—|—TG) 1=1,...m
Update 7 if needed

Go to Step 2 until termination criteria are satisfied

Figure 7.1. Subgradient optimization procedure for the CMFWP
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Before defining some lower bounding algorithms to use in the SO steps given
before, let us rewrite our RCMFWP model. As it can be seen from the above model,
the objective function (7.1) has a constant part which is the weighted sum of the facility
capacities. For d; (x;,a;) = ¢;;d (x;,a;) + ); the objective function (7.1) of the relaxed

model without the constant part can be rewritten as

min Z Z wzﬁz (Xi; Elj). (74)

i=1 j=1

Before continuing, please note that for d (x;,a;) is any defined distance function,
ci; and \; are nonnegative constants, d, (x;,a;) always has nonnegative values. Since
d; (x4, a;) is always nonnegative and there is no capacity restrictions over facilities, the
customers satisfy their demands from the one and only one facility, probably the one
with the minimum function value of d; (x;,a;). In other words, RCMFWP can be
modeled using binary decision variables instead of the continuous w;;. For y;; is the

binary decision variable which determines whether customer j is supplied by facility ¢

or not, RCMFWP can be reformulated as

RCMFWP,:

min i z”: yiihid (x;,a;) — i”: \iSi (7.5)
i=1

i=1 j=1
sE) yy =1 j=1,..,n (7.6)
=1
yi; € {0,1} i=1,..m;j=1,..n. (7.7)

The formulation given above is an extension of the UMFWP model given by
equations (2.5) - (2.7) if the constant part is disregarded. The only difference between
the ordinary UMFWP and the problem given with the above formulation is that, in
RCMFWP, the distance function is facility specific and has a different value for every

facility. In the remaining part of the chapter, we will define some algorithms to solve



32

RCMFWP, which will be used to compute lower bounds in procedure given in Figure
7.1. Please note that, for the upper bounding algorithms, any heuristic giving a feasible
solution for the CMFWP can be used. In other words any strategies defined in Chapter

5 and Chapter 6 are suitable as an upper bounding procedure.
7.2. Set Partitioning

The ordinary UMFWP can be modeled as a set partitioning problem (2.8) - (2.12)
by creating all possible subsets of customer set and solving a Weber problem for each
subset to find their objective coefficients. However, in our case every facility can have
different distance function because of the facility specific unit shipment cost ¢;; per
unit good per unit distance and multipliers ;. In order to solve our case, we have to
create all possible subsets of the customer set for every facility and solve them. For

d; (x;, ;) is any defined distance function for (x;,a;) pair for facility i and,

lifj e S, e
bjs = J and ¢; = mi_n {Z bjsd (x;, aj)} (7.8)

0 otherwise =1

the set partitioning formulation for RCMFWP, can be given as

RCMFWPg

mian: Z CisZis (7.9)

i=1 s:SsCN

s.t.i > bjezs =1 j=1,...n (7.10)

i=1 s:SsCN

> =1 i=1,..,m (7.11)

Z Z Zis =M (7.12)

zis € {0,1} i=1,...,m;s:8; CN. (7.13)
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For every (x;,a;) pair, since d; (x;,a;) > 0, every objective coefficient of subset
s of facility ¢ ¢;s is nonnegative. Because of that customers are not assigned to more
than one facility in an optimal solution even though it is restricted with greater than
or equal to instead of equal to in Constraints (7.10). Second, relaxing Constraints
(7.11) with less than or equal to would not change the optimal value either, since the
empty subsets are also created for the model and assigning an empty set to a facility
is equal to not opening the facility. The former and latter facts ensure that relaxing
the constraint sets (7.10) and (7.11) with greater than or equal to and less than or
equal to respectively, would not make any difference at the optimality and the above
model can be formulated with the new constraints which makes the model equivalent
to a set covering problem (SCP). The RCMFWP can be modeled by using the SCP
formulation RCMFWP, as follows:

RCMFWP4

mian: Z CisZis (7.14)

i=1 5:SsCN
SEY D bz > 1 j=1,...n (7.15)
i=1 5:SsCN
Z 2is < 1 i=1,..m (7.16)
5:SsCN
Z Z Zis <m (7.17)
i=1 5:SsCN
zis € {0,1} i=1,..,m;s:S, CN. (7.18)

Since the objective of this model is used as a lower bound in the main problem,
the linear relaxation of the set covering version of RCMFWP is also a valid lower bound
for the main problem. The linear relaxation of the RCMFWP, is obtained by replacing

Constraints (7.18) with the nonnegativity restrictions

2is > 0 1=1,..m;s:S;, CN. (7.19)
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Even though the relaxed model given above does not contain any binary variables,
even the medium sized problems cannot be solved easily, because of the very large
number of decision variables and SFWPs that must be solved: We need to solve 2"m
SEF'WP to create the set covering model with the same number of decision variables.
In order to deal with this problem, we use the column generation approach explained

in the next section.

7.3. Column Generation

One of the most successful approaches to solve large integer programming prob-
lems optimally is to adopt the column generation developed by Dantzig and Wolfe
in 1960 [29] for solving large liner programming problems. The main idea in column
generation is choosing entering variable to the basis by generating and solving a spe-
cific subproblem in every step to calculate and find the nonbasic variable which has
the minimum reduced cost instead of introducing every possible columns to the model

from the beginning and solving it.

The set covering problem mentioned above can also be modeled and solved by
the column generation approach. It should be recalled that, the column generation
approach for the UMFWP was originally proposed and used by Krau [2]. We adopt

this method for our case and our derivations are heavily drawn on his work.

Assume that not all of the columns, but a set of them that can give a feasible
solution in RCMFWP, are used and a new model is generated (RCMFWP;). The
linear programming relaxation of the problem that is used in our column generation
approach is given below. Here 7T; is the number of columns generated for facility ¢, ¢;
is the objective coefficient for column ¢ of facility ¢, b;;; equals to 1 if customer j is
served in column ¢ of facility ¢, 0 otherwise, u;, v; and w are related dual values for the

related constraints.
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RCMFWPy:

m T;
min E E CitZit

(7.20)
i=1 t=1
m T;
s.t. Zzbjitzit Z 1 ] = 1, ,n Uy (721)
i=1 t=1
Zzitg 1 i=1,..,m v; (7.22)
t=1
m T;
Z Z iy <m Cw (7.23)
i=1 t=1
zit 2 0 i=1,.mt=1,..T,. (7.24)

In order to find the nonbasic variable with the minimum reduced cost, we must
derive a subproblem related to this master problem. At every iteration (t), this sub-
problem must be solved for every facility to find the column with the minimum reduced

cost. For u”, v/ and w® are the dual values of the related Constraints (7.21), (7.22)

o Vi
and (7.23) at iteration ¢ respectively, cgt) is the cost and EZ@ is the reduced cost related

to any column created at iteration t for facility ¢, the following calculations should be

done to accomplish the pricing operation. The reduced cost is defined as

n

20— -

bg-ti)ug-t) + o —w® (7.25)

Jj=1

1, if customer j is served by facility 7 in
where bﬁ? = column created at iteration ¢ for facility 4
0, otherwise

Then, for Egt)* is the minimum reduced cost calculated among the columns of

facility ¢ and ®* is the minimum reduced cost among all columns at iteration ¢, we
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can state that,

1<i<m
(b _ () b(t) () ® _ @ 7.27

The cost c ) of the column of facility 7 at iteration t can be calculated using the

expression

= m;(nt) {Z bgi y [cw X;, ;) + )\Et)] } . (7.28)

In order to increase the readability we continue our derivation without the itera-
tion symbol superscript (t). After Combining (7.27) with (7.28) the minimum reduced

cost ¢ becomes

[ :nbljiin {mln {Z bijihj [cijd (x;,a;) + A } Z bjiuj +v; — w} (7.29)

7j=1

For v; (x;,j) = h; [cijd (xi,a;) + Ni] (7.29) reduces to

c: —n;un {mln{z bjivi (Xi,7) } —ijiuj+vi—w} , (7.30)
=1

Vi

which turns into

[0 —mm {Z bii Vi (%i,7) — ]]} +v; —w (7.31)

7j=1

after some simple algebraic manipulations. Since b;; € {0,1} and it is aimed to find



37

the minimum over x; and bj;,

Loaf [y (x3,7) —uy] <0

0, otherwise

is obtained. In other words,

f}lgl {Z bji [vi (xi,7) — Uj]} = min {Z min {; (x;, ) — wj, 0}}- (7.33)

After performing the change given in (7.33) on (7.31)

¢; =min {Z min {v; (x;,7) — u;, 0}} +v; —w. (7.34)

J=1

Since,
min {3 (%, 1) — 1, 0} = [ (x6,7) — 5] — max {3 (00 J) — 0,0}, (7.35)

(7.34) can be rewritten as,

Xi

¢; =min {Z [i (x4, 5) — uy] — Zmax {vi (x5, 5) — wy, 0}} + v —w, (7.36)

j=1
or equivalently as for a particular iteration ¢ as,

n

a4 = min {Z Vi (Xi, J) — Zmax {%’ (xi,7) — u§-t),0}} - ZU§”
CoUj=1 j=1

j=1 (7.37)
ol —w®

because the dual variables ug-t), vgt) and w® are independent of the location variables
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x; fori=1,...,m.

In (7.37), the last summation is the constant part of the inner minimization, and
the first two summations are the two convex functions. The remaining parts are the
constants. The first summation is convex since it is the summation of distance func-
tions which are convex, and the second summation is the summation of the maximum
functions which are also convex. In the literature, these types of problems where the
objective function and the constraints can be expressed as the difference of two convex

functions are known as the d.c. programming (DC) problems.

There are several methods to solve DC programming problems. One of them
is to convert the problem into a concave minimization problem, which requires the
introduction of auxiliary variables [30]. The model after converting the problem into a

concave minimization problem becomes
CG"

min F' (x;, ;) =r; — Z max {%- (x4,7) — ugt), O} - Z ugt) + UZ@ —w® (7.38)

=1 i=1

s.t. z”: vi (xi,7) — 1 <0 (7.39)
=1
ri > 0 (7.40)
x; € H (7.41)

where H is the convex hull of the customer locations. Here r; is the auxiliary vari-
able. The concave minimization subproblem CG® for every facility i is solved by outer
approximation method. A detailed explanation of the outer approximation method is

provided in Section 7.5.

After solving the subproblem CG" for facility 4, suppose x?, 7 are optimal values
for problem related to facility ¢ and i* = argmin{F (x},r})}. If ¢ which is €. is

nonnegative then the model is optimal, meaning that the remaining columns have
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positive reduced costs and thus no need to add any more columns. However, if ¢ < 0

then attach the column b;i)* after setting

Ji*

forj=1,...,n. (7.42)
0, otherwise

The basic column generation scheme for solving the RCMFWPj, which is denoted as

CGy, is given in Figure 7.2.

1. Sett <0
2. Initialize the RCMFWP5 model with a feasible solution
3. Repeat
(a) t«—t+1and ¢ + +o0
(b) Solve the main problem and find the dual values ugt), U](-t) and s
(c) For each facility i
i. Solve the CG" problem for facility 1.
i, If e <&, then ¢ « & < ¢
(d) If ¢ < 0, then insert column for facility ¢ which is found by Equation (7.42)
(e) Untile* >0

Figure 7.2. Basic column generation algorithm for the RCMFWPs5

As mentioned above, these concave minimization problems are solved by outer
approximation [31] which has asymptotic convergence. In other words, the values that
are found by concave minimization are not optimal but they are € close to an optimal
solution, or the solution reaches to optimality in an infinite number of iterations. In
order to eliminate problems related to asymptotic convergence, a £ value is decided

and columns are created using (7.43) instead of (7.42):
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1, if i (%3, 5) —uy < —§
bgil* = 0 or 1, if —f <Y (Xz‘,j) — Uy S 5 for ] = 17 ey T (743)

0, otherwise

With the above modification, in column generation, there is a possibility to create
more than one column with negative reduced cost for a single concave minimization
problem which increases the convergence rate of the problem and decreases the running

time.

One of the other ways to increase the number of columns created in every step is
to add the every columns with negative reduced cost instead of adding the one with the
most negative value. Theoretically, every column which has negative reduced cost must
improve the master problem. So in our implementation, every generated column with
negative reduced cost is added to the master problem which makes a slight decrease in

the total running time.

On top of all this, the procedure given in Figure 7.3 which is named as column
generation heuristic (CGH) is used in intermediate steps. This heuristic, which is run
for every facility separately, starts from an initial location and creates the columns
with negative reduced cost by updating its customer subset with the customers which
decreases the reduced cost and finds an optimal location for the updated customer sub-
set after solving a SFWP by using the Weiszfeld procedure [3]. Although CGH does
not guarantee the most negative column, applying this approach does not cause sub-
optimal solutions for the relaxed problem since the optimality of the model is checked
by solving a concave minimization problem for each facility. The solution is declared
optimal and column generation approach is terminated when all the columns created
for every facility by concave minimization have nonnegative reduced cost. In order
to increase the number of columns created, the heuristic is modified as adding every

column with negative reduced cost created in Step 3 and this modification makes slight
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improvements in some cases.

1. Set JP «— Js, Js < 0
2. Forall j =1,...,nif v (x;,5) — u§~t) < 0 then Js < J, U {j}

3. Find cgt) =ming > (x4, 7)
Xi JETs
4. It JPV = J, then go to Step 5, else go to Step 1
5. Add newly created column containing J, and facility ¢ and solve model
RCMFWP?. If the objective function is not improved, then terminate, else go to
Step 6

6. Update u®, t « t +1

Figure 7.3. Column generation heuristic

The column generation algorithm used in computations (CGy) is given in Figure 7.4.

It makes calls to CGH given in Figure 7.3.

As mentioned before, by the column generation approach, the linear relaxation of
the set covering model can be solved, which is a lower bound for the relaxed problem
and can be used as a valid lower bound for the main problem. However, the exact
value of the relaxed problem can be found by combining a branch and price procedure

combined with the column generation approach.

7.4. Branch and Price

In this work, a branching rule that is similar to Ryan and Foster’s [32] is applied.
When a node is needed to be branched, first a branching pair is formed containing
two customers which does not exist in zero or one branched list of the current node.
In addition to the inherited zero and one branched sets from the father node, the left
child adds the new branching pair to its zero branched list whereas the right child
adds the new branching pair to its one branched list. For every customer pairs in zero
branched list, the customers either exist together or both do not exist in the feasible
columns. Similar to that, for every customer pairs in one branched list, either one of

the customers exist or both do not exist in the set of feasible columns.
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1. Set t <0
2. Initialize the RCMFWP5; model with a feasible solution
3. Repeat
(a) t«t+1and ¢ + o0
(b) Solve the main problem and find the dual values ugt), U](t) and s
(c) For each facility i
i. Solve the subproblem CG? for facility i
ii. If¢f <¢*, thenc* + ¢ <¢" and ¢* <1
iii. If ¢f <0, then
A. Insert column for facility ¢ which is found by as in (7.43)
B. Solve the main problem and find the dual values ugt), "UJ(-t) and s®
C. Run CGH for facility 7 from the locations found in subproblem CG’
(d) Untile* >0

Figure 7.4. Column generation algorithm for the RCMFWPj5

After branching the set of customer pairs have to handle by four types of sets:
Z,0, N and S. Z is the set of customer pairs which contains zero branched customer
pairs whose customers are branched only in this pair. Similarly O includes the customer
pairs branched in one branched list and both customers of the pair only exist in this
branched pair. N\ is the set of customers which are not branched yet and S is the special
set of customer group sets which contains customer groups, simple set of customers.
A customer group set contains feasible customer groups of connected customer pairs.
Two customer pairs are connected if either one of the customers are common in both
pairs or common in their connected customer pairs. An example would clearify this

set construction.

If there are 20 customers in the problem and current nodes zero and one branched

set contains the following customer pairs:

zero branched set ={{1,2},{2,3},{4,5},{6,7},{8,9}}

one branched set ={{9,10}, {11,12},{12,13}, {14, 15},{16,17}}
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{1,2} and {2,3} are connected. Similar to that {8,9} and {9,10}, and {11,12} and
{12,113} are also connected groups. Furthermore, N, Z, O and S include the following

set of customer pairs and sets:

N ={18,19,20}

zZ = {{4’ 5} ) {67 7}}
O = {{14,15}, {16,17}}

S={{0,{1,2,3}},{0, {10}, {8,9}} , {0, {11}, {12} , {13} , {11, 13} }}

In the branch and price approach, every nodes’ subproblem is different than the others
because of their pricing. Before finding the pricing function let us define sets given
above properly. For 7 is the set of all customers, N' = {nl, N9y .ney n|M} where nq, no, ...,
and ny are all in J, Z = {{211, 212} 5 o {z|z|1, z|z‘2}} where 211, 212, ..., 2jz;1 and 2|z}
are all in J, O = {{011,012},..., {0|@‘1,0‘@|2}} where 011,012, ..., 01051 and ojj2 are
allin 7, § = {81,8,,...,Sis)} where S, = {Sk1,Ska, ..., Sisy | for k = 1,...,|S| and
Su = {Sku, Ski2, ey sk”311|} for k=1,..,|S|and [ = 1,...,|Sk| and sy, is an element of

Jfork=1,...,|S|,l=1,...,|S| and p =1, ..., |Su-

As it is defined before, N is the set of customers which are not branched before,
Z and O sets are set of customer pairs which are zero and one branched and their
elements (customers) only exist in one branch and S is the special set for the sets of
customer subsets, Sy is one of the set of customer subsets, Sy, is one of the customer
subsets of S, and sy, is the p" customer in the customer subset Sy;. The aim of this
division is that, only customers of one and only one customer group from each customer

group set can exist in the valid column for this node.

Now we can start to find the pricing of the subproblem for the column of facility

i at iteration (¢). Similar to the column generation procedure

o =c® = 3" b0u® + o — ), (7.44)
j=1
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and

& =min {Cﬁt) = T p{ul + v } —w®. (7.45)

Jj=1

Different than the pure column generation explained previously

VI
¢ . t
Cz( ) H}l(lln Z bg;i% (x4,n5)

j=1

12|
t
+ 00 i (i, 21) i (%4, 250)]

j=1

o (®) (t)

t t

=

bg;)l i+bgt]-)2¢ <1
.
S| 1St |Skil
t
20D b | Do (xesm)

=1 k=1 Jj=1

|| @

b’ =1
= sk J

First part under summation, which is for elements of N, is similar to the column
generation. Second summation is for customer pairs in Z and since the customers of
each pair of this set either exist together or do not exist at all, their decision variables
are equal to each other. Third summation includes customer pairs in O where the
customers in the pairs of this set cannot exist together, either one of them exists in the
generated columns or both do not exist. This property is shown as a condition over
the summation. Last summation is for the elements of S. Only customers of one of the
customer group in each customer group set can exist and it is added as a condition over
the summation again. Again the subscript (¢) is dropped to increase the readability.

After inserting cost function (7.46) to (7.45), ¢ becomes
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V] 2]
E: :H)l(ll'l Z bn]z% (XZ', nj) + Z szli [’VZ (Xi7 Zjl) + v (Xi? ’Zj2)}
=t j=1
0]
+ Z [bOjli’Yz‘ (X3, 041) =+ boivi (X, 0j2)]
j=1
bojyitbo i<l (7.47)
)
|S| IS |Skil n
15 DD SEUI ) SETIIN] B S ST
=1 k=1 j=1 J=1
il ,

If we group the equations with the same decision variables, we will end up with the

expression
VI
[ :Ir)l(i_n Z [bn]-i%' (xi,nj) — Unj}
T J:l
IZ]
+ Z {boyi [y (%5 2j1) + 7 (X3, 250)] = [z, +uzp,] }
j=1
0]
-+ Z {bOjli [71 (Xia Zjl) - qul} + bszi [% (Xi? Zj2) - uoﬂ] } (748)
boﬂiﬁjﬂigl
)
|S| S| |k
+ Z Z bskli Z i (Xiv Sjk?l) = Usjp + v — w.
=1 k=1 j=1
|1
> bsyit=1
k=1
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We can rewrite (7.48) as

V]
¢/ =min Z min {% (Xi, 1) — Un,, O}
i =
|Z]
+ Z min {7y (X, zj1) + % (X, 2j2) — (uz;, + zy,) , 0}
o (7.49)
0]

+ Z min {% (Xi,041) = Uojy, Vi (Xis 0j2) — Uoyy, 0}

S| | Sk
+ E Hlkln g Vi (Xz‘, Sjkl) — Ugjyy ¢ TV — W,
=1 j=

from which

W E
o =min{ Y al (xi,n5) + > B (%0 21, 21)
oL = (7.50)
o] S| '

+ 252 (X, 041, 042) + ZM; (xi,S1) p +vi —
= =1

follows for

v (%3, 5) =hj [ed (i, a5) + N — uf”,
o (x;, ) =min {5 (x;,7) .0}

@(t)/ (X, j1, jo) = min {'yi(t)/ (x4, J1) + %(t)/ (xi; o) 70} )

5§t), (Xi7j17j2) =min {%(t), (Xiajl) nyz'(t)/ (Xi7j2> 70} 9

i XH Z/y(t) XZ)]

jeEP

i (xi, {Pr ey Pa}) = mlm{ (v (xz,Pl)}



A7

For,

QU

al” (xi, ) =max {3 (x:,) .0}
{71 ) (Xiajl) + /y'(t)/ (Xi7j2) 70}

—(t . .

55 : (xi, 71, J2) = max
(X4, J1, j2) =max {% (x4, 71) a%(t)/ (Xujz)} + max {%(t)/ (xi,71) ,0}
Qz@ (xi,7) =i (%4, 7)

B (x4, 1, 42) =7 (%3, 1) + % (%, j2)

égt) (Xz‘ajlajZ) =% (Xi7j1) + Vi (Xi:j2) + max {’Yi(t), (Xi7j1) 7%@/ (Xi7j2) ,0}

Although ggt) and ﬁl@ remain unchanged through the iterations, the superscript () is
still used for the sake of completeness. Then for § = {S;,...S,}, Sk = {Sk1, -, Ski,

ceey

S\sk\}, and Sy = {slkl, cey Sphly - $|Skl|} the variables

) (o _ @ (o
o (xi St S} g) = Y glgg{% (XZ,S)},

QLS
1Ql=¢
7(t) -
0, (xSt Sa}) = > Y (%, {S1, - Su} )
dEoen
and
n |Snl Skl n
Qgt) (Xi7 {817 g) S’rl}) = Z Z Z’% (Xi7 Spkl) + Z loz(t) (Xi? {817 M) Sn} ’q)
g=1 I=1 p=1 q=3
qodd
of (7.50) can be written as
o (x;,5) =a? (xi, ) — a® (xi, j) — ul?, (7.51)
B (%, 71, J2) Iﬁgt) (%i, J1,72) = B " (Xi, 1, J2) — (uﬁ) - u§?> 7 (7.52)

<(?)

5,~(t)/ (Xi>j17j2) :égt) (Xi7j17j2) — 0, (Xiajlan) - <U§? + uﬁ)) ) (7-53)
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and

1 (x5, {81, . S0)) =09 (x,, {81, e, Su}) — 0 (xi, {S1, s Su1)
n ‘Sn |Skl| (754)

P IR

k=1 =1 p=1

After replacing the variables in (7.50) with their definitions (7.51) - (7.54), we have

IV
e —min [ggt) (x4,n5) — a (x;, n;) — uffj)]
X; j:1
12| )
Z [ E Xz,Zﬂ, 232) B (Xz‘,Zjh Zj?) - <Ug)1 + Ugl)}
7.55
\OI " " (7.55)
; -
+ Z [éi (Xi,041,042) — 6; " (Xi,051,042) — (u((fjj1 + ug?ﬂ)]
j=1
S| @ @ ISI 1Sk| ISkl
) (x. —w®
+Z |:QZ (XZ’SZ 9 X“Sl ] ZZZ“W U‘ W
k=1 k=1 I=1 j=1
Regrouping of the variables results in
V] 2] ||
o =min Yol (ximg) + D BY (xi 21, zp0) + Y8 (3,001, 0)0)
’ j=1 j=1 j=1
S| IV 12| ©
—(t =
+29 (xi,S1) | — ZOQ( : (xi,ny) + Zﬁi (i, 251, 2j2)
=1 =1
’ ’ (7.56)
0| = S| - V] 12|
A o)+ D 0|+ [+ 2 (40
j=1 =1 j=1
O] S| 1Sk| ISkl o
t t
+Z< o s 032>+ZZZ Us +; _w()'

=1 k=1 j=1

Similar to the column generation, the last summation is the constant part of the
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minimization, and the first two summations are two convex functions, since they are
the difference of convex functions, the pricing problem becomes a DC programming

problem.

As it is previously done in the column generation, this problem can be rewritten

as a concave minimization problem. For,

VI 12| O] ISI |Sk] 1Skl
S+ 30 (w0 u0) + 3 (W) £ S S ull | ol —wl?
J=1 j=1 j=1 I=1 k=1 j=1

the concave minimization submodel (BP*) becomes:

BP":
V] 2] )
min F' (XZ', 7’1') =r; — Z@Et) (XZ‘, nj) + Z 51 (Xi, Zjl, Z]Q)
j=1 J=1
7.57
&l =(t) l 7(t) ( |
+Z(5i (i, 051, 052) +29i (xi,8) | + 9
j=1 =1
Y |Z2]
s.t. Za (x;,m5) + Zﬁ (x4, 21, 2j2)
7j=1
7.58
|O] S| ( )
+ ZQZ@ (xi, 01, 042) + ZQZ@ (%, S)| =i <0
j=1 =1
r; >0 (7.59)
X; € H, (760)

where H is the convex hull of the customer locations and r; is the auxilliary variable.

Z

For ¢* = argmin {min F' (x;,7;)} and min F' (x;+,7+) = F (x}.,r%), if ¢ > 0 the

model is optimal, there is no need to add any more columns. However, if ¢* < 0 then
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attach the column bgi)* as such to the model:

1, if ozgt), (x4,n;) <0

bff]): = for j=1,...,|N|
0, otherwise
1, if B (x5, 21, 2j2) < 0
bi?:; - biig’b - ﬁl ( 7 ]2) B fOI' j - ]-7 LS |Z| )

0, otherwise

b(t)* =1,b O O if o (Xi7 051, Ojg) = "}/i(t), (Xz’> Ojl) for ] = 1, ceny ‘O| s (761)

(t)
0511* ) Yojo1* T 51
t)x (t)= t) t .
bgj)ll* = O,bo )22 =1, if 52( " (x4,041,052) = 72-( Y (xi,052)  forj=1,..,]0],
b(t)* =0 b(t)* _0 if 5Z(t,(Xi,Oj1,Oj2) =0 fOI‘j = 1,,|O| y

Ojl’L ’ 70j 21*

1, if Mz@ (X3, Sk) = Vi (X4, Sk)
0, otherwise

for k=1,..,|S|;1=1,...,|Sk|;7=1,..., Sk -

For M, is any node and M; = {M?, M}} is node [ with zero branched pairs set
M7, one branched set M} and Z; is the lower bound for node [, the basic branch and

price heuristic is formerly listed in Figure 7.5.

Concave minimization problem is again solved by outer approximation [31], and
this method has asymptotic convergence. In order to eliminate this issue and speed up
the procedure column generation, Strategy (7.62) is used in practice instead of (7.61).

Here,



o1

1. Set t < 0, B+ () and Z1p + +o0
2. Let Mo « {{},{}} and B = BU{ Mo}
3. Repeat (selecting node)
(a) Choose M, such that M, € B, B+ B\ M,
(b) Find NV, Z,0 and S sets by definitions given above for the node M,
(c) Initialize the RCMFWP; model with a feasible solution
(d) Repeat (solving node)
i. t<-t+1andc" < 400

i. Solve the main problem and find the dual values uit), o and w®

—e

iii. For each facility ¢
A. Solve the BP? problem for facility i
B. If¢f <¢*, then¢" < ¢ <¢" and i* < ¢
iv. If ¢ < 0, then insert column for facility ¢ which is found using (7.61)
v. Untile* >0
(e) Set Z; < the optimal solution for node I
(f) If the solution is not binary and Zpp < Z; then choose a branching pair
{71, 72}, form two new nodes M(ier) and Might):
i Mgy { Mg M} } where My < MU {1, o}
i Migsgn) < {MP Ml | where Mg < MU (i, 72)
1. Ziget) < Zis Zigwighe) < Z1 and B < B U {Miget)s Mirighe) }
(g) If solution is binary and Zpg < Z; then Zyp < Z; and remove nodes with

lower bounds less than Z; g from B

(h) Until B =0

Figure 7.5. Basic branch and price algorithm for the RCMEFWPj
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1, if Oégt)/ (XZ',TL]') < —§
t)* . .
bg)z = 0orl,if —¢< agt)/ (x,n;) <& for j=1,...,|N|;

0, otherwise

1, if BZ-(t)/ (xi, zj1, 2j2) < =€

b(t bitzl* = 0 or 1, if —g S /Bi(t), (XZ‘7Z]'1,ZJ‘2) S f for ] = 17 LS ‘Z‘ )

zj1e* T

0, otherwise

Besides if min {’Y'(t)/ (sz 0j1) 7%@)/ (xi, 0j2)} <—=£
b =1,5%, =0
0j 1% o 22 lf /_yi(t)/ (X“ Ojl) . /_yi(t)/ (XZ’ 0]2) S é.
or boﬂ* 0 bo2Z =1
bt()j)ll 17 bot)gz = 07 if ryi(t)/ (Xia Oj1> S ’yi(t)/ (Xiv 0j2) + g
bt()t)lz O’ bo j2i* T ]'7 if ’yi(t), (Xi7 OjQ) S ’71'(t)/ (Xia Ojl) + 57
(7.62)
If —¢§ <min {%(t), (Xi7 Ojl) ;%W (Xi; sz)} <<
()
bo i* T 17 bo ot T O
or bfflz =0, bo le=1pif W (x5, 001) — 77 (xi,052)| < €
(t) (®)
bo 1% O’ bO 21 O
b((;)ﬂ =0orl bo i = 0, it % (%1, 001) < W (x1,05) + €
bgj)”* 0, bot)*l* =0or1,if fyz (xz-, 0j2) < %(t)/ (xi,041) + &,
If min {%(t)/ (x4,041) 7%@’ (x4, OjQ)} > £ then bc()?l =0 bo i =0,

for j=1,...,|0];

1, if v; (XiaSkl) — [Lz(t) (Xi,Sk) < —f
bg?,:; =q0orl,if =& <v;(x,Su) — ,uz(t) (xi,8k) <&
0, otherwise

fork=1,...|S|;l=1,....|S|;7=1, ..., |Skl -

Moreover, since concave minimization problems must be solved in every node
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created at least once for every facility in the branch and price algorithm, run times
are considerably longer compared to pure column generation. In order to start with a
promising column set, in branching, the columns that are not violating the restrictions
are imported to child nodes’ column set. In addition to this, similar to the pure
column generation part, in order to decrease the running time, every column created
with negative reduced cost are added to the model instead of adding the most negative
one in every iteration. On top of all this given above, the previously defined column
generation heuristic is altered and used. Overall column generation with branch and
price heuristic (BPH) can be seen in Figure 7.6. Similar to the column generation, in
Step 3, every column created is added to the column sets and this change improves run

time for some cases.

1. Set JP < Js, Js < 0
2. For j=1,..., |V, if o/ (x;,n;) < 0 then J; < J; U {n,}
For j =1,...| Z|, if 8% (x, 21, 22) < 0 then J; + J. U {zj1, 2j2}
For j =1,...,]|0], if 52@/ (x4,041,0j2) = %@/ (xi,041) then J5 < Js U {01}
else if (5§t)/ (x4,041,052) = i(t)’ (x4,052) then J; < Js U{0j2}
For k=1,..,[8|;1=1,...,Sk|;5 =1, ..., |Skl,
if uﬁ” (xi, Sk) = v; (Xi, Spr) then Js <+ Js U Sy
3. Find cgt) =minq > % (X, J)
x| Jeds
4. It JPV = J, then go to Step 5, else go to Step 1
5. Add newly created column containing J; and facility ¢« and solve model. If the
objective function does not improve terminate, else go to Step 6

6. Update u® ¢t «t+1

Figure 7.6. Column generation with branch and price heuristic

After defining the BPH in Figure 7.6, the branch and price algorithm BP, can

be given as Figure 7.7.
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1. Set t < 0, B+ () and Zip < +o0
2. Let Mg < {0,0} and B < BU {M,}
3. Repeat (node selection)
(a) Choose M; such that M; € B, B+ B\ M,
(b) Find NV, Z,0 and S sets by definitions given above for the node M,
(c) Initialize the RCMFWP5 model with a feasible solution
(d) Repeat (solving the subproblem of the selected node)

I. t+t+1and ¢ + +o0

—

—e

i. Solve the main problem and find the dual values ne , ?)J(-t) and w®

N

iii. For each facility ¢
A. Solve the BP* problem for facility i
B. If ¢ < ¢ then ¢* « ¢ < ¢*
iv. If €7 <0, then
A. Tnsert column for facility ¢ which is found using (7.62)
B. Solve the main problem and find the dual values u(t), o™ and w®

i Y
C. Run BPH for facility i from the locations found in subproblem BP*

v. Untile* >0
(e) Set Z; < the optimal solution for node I
(f) If the solution is not binary and Zip < Z; then choose a branching pair
{J1, J2}, form two new nodes Mjerry and Mpigne):
L Migetr) < {M?(left)7 Mll} where M?(left) — Mlo U {J1, Ja}
i Migigny  {MP, Ml } where Ml MEU G, jo}
i, Zigete) < Zis Zigright) < Z1 and B < B U { Mygete), Migright) }

—e

iv. Export every feasible columns from M; to Mqes) and Mpigny)

(g) If the solution is binary and Zyp < Z; then Zip < Z; and remove nodes
with lower bound less than Zig from B

(h) Until B=10

Figure 7.7. Branch and price algorithm for the RCMFWPj
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7.5. Outer Approximation

One of the basic properties of the concave minimization problem on a convex
feasible set is that a global optimal point exists at some extreme point of the feasible
set. If the feasible set is a polytope, the number of extreme points are finite and the
problem can be solved by the enumeration of these vertices. Nevertheless, they can be
too many [33] and an efficient method is necessary since it effects the computational

cost of pricing and thus the efficiency of the column generation.

Another approach is to find optimal solutions for the concave minimization prob-
lems defined on a convex feasible set is the outer approximation method. Simply outer
approximation method can be defined as relaxing the feasible set to a simpler includ-
ing set, finding the optimal point on this relaxed set, adding new constraints on this
relaxed set to exclude the optimal point which is not a feasible point for the origi-
nal problem until a feasible solution —or at least a feasible solution which is almost
feasible— is found. The outer approximation algorithm starts by creating a relaxed
feasible set for the feasible set of the original problem. Since the extreme points of
the relaxed feasible region are the candidate locations for the global optimal solution,
they are kept on a set and in every iteration the extreme point with the maximum
objective function value is selected and removed from the set. If this point is at most
e-infeasible or simply an e-feasible solution for the main problem, this point is regarded
as a global optimal point of the concave minimization problem. If not, a cut is added
to the relaxed feasible solution which excludes this extreme point but not any part of
the feasible set of the original problem. After this cut, the set of extreme points are

updated and the process continues until the stopping criteria is obtained.

Before defining the outer approximation algorithm, let us define the adjacency
list algorithm [34]. It is an efficient way to keep track of the extreme points set in
outer approximation method. Current vertex set is defined as V. N (v) is the new
neighbors of vertex v. G is the set of functions of cuts that are added previously and
9" (.) < 0 is the function of new cut added to the relaxed set. P is the hyperplane
which can be defined as P ={z € R": g(z) =0} and J (v) ={g() € G:g(v) =0} is
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the set of constraints that defines vertex v. After defining the variables, the adjacency

list algorithm can be listed as Figure 7.8.

1. Set V™« {} and V* «+ {}
2. For all vertex v € V
(a) If g (v) <0, then V= <=V~ U {v} else V < VT U {v}
3. Set V™V « {}
4. For all vertex v~ € V™
(a) For all vertex v € N (v™) N VT
i. Set w <« [v~,vT|NP
i, VeV = PV Jw
iil. N'(v7) = {N (v7) \{v"}} U{w}
iv. N(w) «{v7} and T (w) < {T (v7) N T (vF)} Ug™ ()
5. For all vertex u € V"V
(a) For all vertex v € V™" and v # u

L IF|T (w)NT (v)] =n—1, then N (u) < N (u)Uv and N (v) + N (v)Uu

Figure 7.8. Adjacency list algorithm

For the problem,

min f (z) (7.63)
st.zeD (7.64)

where f : R" — R is continuous and D C R" is closed, the generic outer approximation

scheme is summarized in Figure 7.9 as given in [31].

It is worth to highlight some application details we use when implementing the
outer approximation method. In Step 1, initial relaxation D is defined as a hyperplane
using the upper bounds on the variables. The bounds that are computable or given
explicitly are used as they are. For the unbounded variables, arbitrary large numbers

are selected as upper bounds. This approach also simplifies finding the initial vertex set
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1. Set t + 1 and choose D! D D
2. Initialize V vertex set with the vertices of D!
3. Repeat
(a) v* & argmin { (v)}
(b) If v* ¢ D, then
i. Construct a constraint function [® : R — R satisfying,
A 1D (v)<0forallveD
B. IO (v*) >0
ii. Set DU «— DO N {v: 1 (v) <0}
iii. Set ¢"*¥ « {®) and update V by the adjacency list algorithm
iv. t+t+1
(c) Until v € D

Figure 7.9. Outer approximation algorithm

V. During the initialization we also found a feasible point w € D to use in further steps.
In function construction given in Step 3(b)i, we first draw a line between the feasible
point w and current infeasible point v*. The intersection of this point and the most
infeasible constraint is found. If the constraints of the set D are differentiable, partial
derivatives of these functions are used, if not the partial derivatives are calculated from
the formal definition of the derivative for the intersection point. After finding the point
and the partial derivatives on that point, a hyperplane which contains that point with
the slopes of partial derivatives is drawn and checked by using the feasible point w.

That is how we construct function {) at iteration ().

7.6. Alternating Location Allocation Heuristic

ALA heuristic was proposed by Cooper to solve the UMFWP [7]. Tt simply
consists of the sequential solution of location and allocation problems. With its fast
convergence rate and near optimal solution, it is still one of the best heuristics available
in the literature. Similar to CMFWP, UMFWP is an NP-complete problem, but the

two components of the heuristic, location and allocation problems are easy to solve.
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Allocation part in this heuristic is a simple inspection over customers in which they are
assigned to the nearest facility. Location part is similar to CALA and can be handled
by using Weiszfeld procedure given in Figure 5.1. The steps of the ALA heuristic are
given in Figure 7.10.

1. Define initial facility locations z; for i = 1,...,m

2. Set facility locations =; for ¢ = 1, ..., m as parameters.

3. For each customer j, if facility 7 is the nearest facility to customer j set w;; < hy,
otherwise set w;; <— 0

4. Set allocations w;; for ¢ = 1,...,m;j = 1,...,n as parameters and solve a SEFWP
for every facility to find the locations z; for i = 1,...,m

5. Go to Step 2 until termination criteria are satisfied

Figure 7.10. Alternating location allocation heuristic

Notice that in our case the distance function is d; (x;, a;) = ¢;;d (x;,a;) + A;. Here
A; is the Lagrange multiplier and because of it, the new distance function depends on
the facility. In short, Lagrangean subproblems are UMFWPs with facility dependent
distance functions. This affects the allocation phase: The distance function d; (x;,a;)
is used. However, Weiszfeld procedure can be adopted directly since \; is constant and

does not exist, after the differentiations with respect to the facility coordinates.

7.7. Uncapacitated Discrete Approximation Heuristic

Even though it is one of the most efficient heuristics in the literature, ALA’s
accuracy heavily depends on the initial solution. In order to calculate better solutions
with ALA, we have tried to improve initial facility locations. This is done by solving
a discrete uncapacitated multifacility location allocation problem (DUMLAP) to find

initial facility locations whose pure binary mathematical model can be written as:
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DUMLAP:

min Z Z Z yijkhj [Cijd (bk, aj) + )\z] (765)

i=1 j=1 k=1

s.t.ZZyijk =1 j=1..n (7.66)
i=1 k=1
> ag=1 i=1,...,m (7.67)
k=1
Yijk < Tik i=1,..m;j=1..nk=1..,r (7.68)
vk € {0,1} i=1,.mj=1..nk=1..r (7.69)
zi € {0,1} i=1,...mk=1,..r (7.70)

Similar to the variables defined in the previous models, b, is the candidate lo-
cation k for facilities and they are taken as the customer locations. In other words
K ={aj,as,....,a,}. x; is 1 if facility ¢ is opened at location by, and y;;;, is 1 if facility
i is opened at location by, serves customer j. Constraints (7.66) force every customer to
be assigned to a facility, 0 otherwise. Constraints (7.67) restrict facilities to be opened
in only one candidate location. Constraints (7.68) guarantee that customers are served
by opened facilities. As mentioned above, the solution of this model is taken as initial

facility locations and ALA is run afterwards.
7.8. Relaxed Uncapacitated Discrete Approximation Heuristic
For larger problems, it is difficult to solve the pure binary integer programming

model. Fortunately, an accurate Lagrangean heuristic can be devised. Assignment

constraints (7.66) are relaxed and the Lagrangean subproblem is formulated as
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RDUMLAP:
min Z Z Z Yk {hy [ciid (br, aj) + Nl + 151 — > py (7.71)
i=1 j=1 k=1 j=1
s.t. Constraints (7.67) - (7.70) (7.72)

where p; stands for the corresponding Lagrange multipliers.

As it can be seen easily, the second summation is constant and the first summation
is separable over the facilities, and the solution of RDUMLAP becomes equivalent to

the solution of

RDUMLAP":

mind Y ysjr {hy [eud (br,ag) + A + ) (7.73)

j=1 k=1

S6) mp =1 (7.74)
k=1

Yijk < Tig j=1,..,nk=1,...r (7.75)
Yijk € 10,1} j=1,..,nk=1..r (7.76)
Tik € {0, 1} k=1,..r (777)

Furthermore, the separable problems, RDUMLAP?, can be solved by inspection.
The inspection consists of a calculating the cost of assigning a single facility to every
candidate location for given customer subset and selecting the candidate location which

gives the minimum cost.

In addition to the discrete alternating location allocation heuristic (DALA) is
used in steps of the the relaxed discrete approximation heuristic (RUDAH). Similar
to ALA, in DALA heuristic, location and allocation problems are solved alternately.

The only difference is that, in the location phase of DALA, a DLAP is solved for
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every facility and allocations assigned to it in the previous iteration. The procedure

for DALA heuristic can be seen in Figure 7.11.

Define initial facility locations from the candidate location set IC
Set facility locations ¥; for ¢ = 1, ..., m as parameters
For each customer j, if facility ¢ is the nearest facility to customer j set w;; < h;,

otherwise set w;; <— 0

. For each facility 7 do

brink

(a) kf < arg min {Z c;;w;jd (by, aj)}
J

Go to Step 2 until termination criteria are satisfied

7.12.

Figure 7.11. Discrete alternating location allocation heuristic

Finally the steps of the overall SO procedure for RUDAH can be listed as Figure

10.
11.

A e B

Decide p; and m (where 0 < 7 < 2)
Run DALA heuristic, Cyg is the objective
Zyg + min (Zyg, Cuyg)
Solve seperated problems, £ is the optimal candidate location for facility ¢
Calculate Cp and set Zpp + max (Zp, CLp)
Calculate objective by solving ALA. Keep the solution if it is the best so far
G = ijijk;—1 j=1,....n
T — fZon-Cin)
> G]
pj = ujﬁ—nTGj j=1..,n
Update 7 if needed

Go to Step 2 until termination criteria are satisfied

Figure 7.12. Relaxed uncapacitated discrete approximation heuristic
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8. COMPUTATIONAL RESULTS

Before giving the computational results, we would like to express the computa-
tion environment. All the methods in this research are coded by C#. For solving
mixed integer and linear programming problems ILOG Cplex version 11.0 commercial
solver with Concert technology is used. The remaining methods, including the outer
approximation method based concave minimization solver [31] are coded within the
same environment. Results are obtained on a Dell server with two 3.16 Ghz Intel Xeon
X5460 processor and 28 GB of RAM. It is worth to note that all runs are realized as

single threaded programs.

This chapter consists of three sections. The first one contains results with the
alternating location allocation and discrete approximation heuristics. They give upper
bounds on the optimal value. In the second section the performances of the approxi-
mations using [, and [, norms are studied. In the third and final section, we compared
the Lagrangean relaxation of the CMFWP with the other lower and upper bounding
methods.

Test problems are combined in three groups. Small instances which include some
previously solved problems for the Euclidean distance functions, 201-220 which has 5
facilities with 30 customers and 10 facilities with 10 customers as the largest instances.
Problems 301-323 are also small instances ranging up to size of 30 customers with
10 facilities and 50 customers with 10 facilities. The problems between 301-323 are
unweighted, in other words, the unit shipment cost per unit distance per unit amount
of goods (¢;;) is defined as unity for every facility customer pair. Test problems 401-423
are obtained by randomly setting c;; of the test problems 301-323 to values different
than one. Problems 324-328 and 424-428 are medium instances with 5 facilities and 100
customers where the formers have equal unit shipment cost for every facility customer
pair. Large instances have at least 25 facilities and 250 customers which are named as

Problems 501-504 and 601-604. The former ones have, unit shipment cost set to one.
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The experiments with every test instance are repeated for 5 different distance

functions: Euclidean, squared Euclidean, and [, distance for p = 1.25, 1.50 and 1.75.
8.1. Upper Bounds on the Optimal Value

In the upper bounding algorithms, we tested 6 heuristics. The first 4 heuristics
are the region rejection heuristics RRH, DRRH, RRH’ and DRRH'. In these heuristics,
the radius update factor « is set to 0.7, T' is set to the number of customers and F
is set to the integer part of number of customers divided by number of facilities. 7 is

chosen as 0.5 and R, the initial rejection radius, is calculated according to the formula

i
R= E Hl]aX {ajl, ajg}

as suggested in [27]. These four region rejection heuristics are run K times and the

best value of these K iterations is reported. The value of K is set to

max {100, m}
max {100, /n},

K —

which is again suggested in [27].

The remaining two upper bounding heuristics are DAH and RDAH. In RDAH
algorithm, initial A values and 7 are set to two and 7 is updated if Zyg or Zrg do not
change, by more than 10~* in 20 consecutive iterations. The algorithm terminates if 7

is updated 15 times or the difference between Zyg and Zip is less than 1074

All individual running times of these six heuristics are limited to 1200 seconds
for small instances, 2400 seconds for medium instances and 3600 seconds for large

instances, and the current best solution is reported.
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Table 8.1. Accuracy of the upper bounds: Percent deviations for Problems 201-220

with the Euclidean distance

Problem | (m,n) | Optimal | RRH DRRH RRH DRRH | DAH RDAH
201 (2,2) 0 0.00 0.00 0.00 0.00 | 0.00 0.00
202 (2,4) 247.28 0.00 0.00 0.00 0.00 | 0.00 0.00
203 (2,4) 214.34 0.01 0.01 0.01 0.01 | 0.01 0.01
204 (3,5) 24 0.00 0.00 0.00 0.00 | 0.00 0.00
205 (3,5) 73.96 0.00 0.00 0.00 0.00 | 0.00 0.00
206 (3,9) 221.4 0.06 0.00 28.91 0.00 | 0.00 0.00
207 (3,9) 871.62 0.00 0.00 0.00 0.00 | 0.00 0.00
208 (4,8) 609.23 19.79 3.52  19.79 0.00 | 0.00 0.00
209 (5,15) 8169.8 63.74 0.56 0.56 0.00 | 0.00 0.56
210 (5,20) 12847 4.13 0.00 4.13 0.37 | 0.00 0.60
211 (5,20) 1107.2 29.40 21.98  29.40 21.98 | 0.00 0.00
212 (5,30) 23990 2.83 2.80 2.83 1.63 | 0.00 2.83
215 (5,10) | 2595.5 31.65  23.53 31.65 19.38 | 0.00 2.32
216 (6,10) 7797.2 3.18 0.00 3.18 3.18 | 0.00 1.56
217 (7,10) 6967.9 5.05 1.03 18.67 2.51 1 0.10 0.77
218 (8,10) 1564.5 36.80 23.85 36.80 36.80 | 0.00 0.00
219 (9,10) 3250.7 20.32 8.88  47.42 13.20 | 0.00 20.32
220 (10,10) 7719 12.71 143  12.71 4.96 | 0.01 3.77

Average 12.76 4.87 13.11 5.78 | 0.01 1.82

In Table 8.1, the percent deviations of the upper bounds from optimal solutions

of problems 201-220 with the Euclidean distance are reported. The total CPU statistic

for these runs can be found in Table 8.2.

As can be seen, DAH heuristic has the highest accuracy and efficiency, which is

followed by RDAH. Furthermore, DAH finds the optimal solution on 15 out of 18 test
instances. This number is 9 out of 18 for RDAH. The performances of DRRH and

DRRH' are slightly worse; they found an optimal solutions of 8 out of 18 instances.
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Table 8.2. Efficiency of the upper bounds: CPU times (seconds) of UB algorithms for
Problems 201-220 with the Euclidean distance

Problem | (m,n) | RRH DRRH RRH DRRH'|DAH RDAH
201 (2,2) 022 016 028  031] 039  0.19
202 (2,4) 6.36 827 645  822| 017  0.20
203 (2,4) 811  9.05 967  861| 022  0.22
204 (35) | 1130 922 964  809| 025  0.34
205 (3,5) 800 997 7.80  10.03| 0.19  0.23
206 (3,9) 889  9.69 1020  10.00 | 0.20  0.42
207 (3,9) || 1448 1244 1548 1244 | 019  0.22
208 (4.8) || 17.16  18.02 2233  19.11| 020  0.83
209 | (515) | 3045 3648 31.97 3578| 034  1.00
210 | (520) || 30.86 54.27 3481 4336 | 044  0.73
211 | (5,20) | 2842 3283 26.06 2845| 069  1.13
212 | (530) || 62.64 6519 60.67 6777 | 1.92  2.38
215 | (5,10) || 15.98 21.05 17.86  27.45| 028  1.19
216 | (6,10) || 31.88 3459 30.31  34.02| 058  1.03
217 | (7,10) || 27.59 3863 3123  41.86| 0.56  1.03
218 | (8,10) || 19.78 23.06 2358  24.63| 055  0.86
219 | (9,10) | 23.84 2678 2422 28.11| 0.66  0.84
220 | (10,10) | 33.00 36.69 31.55 4219 | 0.36  1.02
Average 21.05 24.80 21.90 25.02 | 0.45  0.77
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For the rest of the instances, percent deviations from the best known values are
reported since the optimal values are not known. Average deviations and CPU times
are reported in Table 8.3 and Table 8.4 for the Euclidean distance and [, distance with
p = 1.25,1.50,1.75. Results for the squared Euclidean distance can be found in Table
8.5 and Table 8.6.

Similar to instances 201-220, DAH has the best performance on the small in-
stances. However, it loses its superiority for the large ones because of the limitations
over the CPU time. All of the medium and large instances, except Problem 425, are
stopped because of the time limitation. On the other hand, even though it has the
minimum average CPU time compared to other methods, RDAH performs the best
for all the medium and large instances. Remaining four alternating location allocation

heuristics are not only less accurate but also less efficient than RDAH.

As a result, we can state that DAH is the most accurate for the instances that
can be solved optimally in time limitations, whereas RDAH has the highest accuracy
for the large instances and has fairly short CPU times. It seems better to use RDAH
for the cases with more than 100 customers and/or more than 25 facilities. DAH can

solve small instances better than the other five heuristics in slightly less CPU seconds.

8.2. Lower Bounds on the Optimal Value

In Chapter 6, in addition to heuristics that compute upper bounds, four lower
bounding approaches using discrete approximations of the /; and [, norms with special
sets of candidate locations are defined. The first two of them, namely L; and L, solves
the MILP problems obtained for the [; and the [, norms exactly whereas the other
two, RL; and RL,, are two Lagrangean heuristics for these two exact models obtained
by relaxing the demand constraints. In this section, we are going to compare these

four lower bounding algorithms experimentally.

In the L; and L., DLAP are solved, whereas in the RL; and the RL.,, Lagrangean

relaxations of these DLAP are formed and solved by using the relaxed discrete approx-



Table 8.3. Accuracy of the upper bounds: Average percent deviations for all

problems with the Euclidean and [, distances with p = 1.25, 1.50, 1.75

Distance type | Problems | RRH DRRH RRH DRRH | DAH RDAH
201-220 || 12.76 4.87 13.11 5.78 | 0.01 1.82

301-323 8.48 9.87  9.35 10.03 | 0.00 1.56

401-423 || 33.83  33.23 34.98 33.22 | 0.00 2.90

Euclidean 324-328 0.39 0.67  0.06 0.33 | 0.25 0.00
424-428 2.50 3.13 0.70 2.36 | 0.01 0.08

501-504 9.95 10.01  9.45 9.17 | 9.13 0.00

601-604 || 11.71 18.09 9.24 15.82 | 6.07 0.41

201-220 || 10.13 4.56 12.12 6.14 | 0.08 2.28

301-323 9.51 9.61 9.01 9.53 | 0.09 1.58

401-423 || 34.24  33.41 32.71 32.70 | 0.00 2.22

p=1.25 324-328 0.29 0.54 0.12 0.73 | 0.55 0.12
424-428 2.16 2.77 2.17 2.61 | 0.02 0.19

501-504 8.52 9.10 10.07 8.95 | 4.69 0.00

601-604 9.01 16.75  9.27 15.37 | 11.93 0.00

201-220 9.68 4.60 14.06 6.14 | 0.00 2.06

301-323 8.61 9.69 9.41 10.36 | 0.01 1.64

401-423 || 35.61  32.22 34.38 34.93 | 0.00 1.91

p=15 324-328 0.13 0.55  0.20 0.65 | 0.28 0.45
424-428 3.95 3.40 2.39 2.34 | 0.13 0.12

501-504 7.89 879  8.45 7.87 | 6.13 0.00

601-604 || 11.07  16.80 10.02 15.35 | 10.05 0.00

201-220 9.27 4.82 13.26 5.97 | 0.00 1.83

301-323 || 21.09 13.21 12.85 13.49 | 3.18 4.51

401-423 || 36.04  32.18 34.39 35.45 | 0.00 1.95

p=175 324-328 0.35 0.37  0.11 047 | 0.15 0.00
424-428 3.98 3.45 2.32 2.71 | 0.20 0.12

501-504 8.78 9.65 8.98 9.90 | 8.20 0.00

601-604 9.02 17.09  9.66 15.56 | 5.74 0.00

67



Table 8.4. Efficiency of the upper bounds: Average CPU times (seconds) for all

problems with the Euclidean and [, distances with p = 1.25, 1.50, 1.75
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Distance type | Problems | RRH DRRH RRH DRRH | DAH RDAH
201-220 21.1 24.8 21.9 25.0 0.5 0.7

301-323 117.3 115.8  120.0 115.3 19.1 3.6

401-423 79.1 74.5 76.0 73.3 5.3 2.0

Fuclidean 324-328 218.6 2254 224.2 230.0 | 2400.7 19.6
424-428 269.2 266.0  273.7 274.8 | 2216.5 14.8

501-504 || 4091.8 3536.6 3404.3 3456.8 | 3624.3 1076.8

601-604 | 4256.0 3533.7 3356.2 3422.9 | 3623.2 623.2

201-220 23.6 24.9 23.2 25.0 0.4 0.7

301-323 117.1 1159 1194 119.1 16.3 4.2

401-423 74.2 72.6 72.1 70.9 5.7 2.2

p=1.25 324-328 226.9 232.3 2259 241.5 | 2402.9 23.3
424-428 280.1 273.4  281.2 282.9 | 2223.2 27.1

501-504 || 3358.9 3540.4 3361.7 3455.2 | 3620.5 1151.0

601-604 | 3386.4 3447.3 3343.6 3431.4 | 3621.3 722.3

201-220 21.6 23.3 21.4 24.1 0.4 0.7

301-323 119.0 117.9  116.7 115.3 21.1 4.1

401-423 7.2 71.5 80.9 72.4 5.7 2.1

p=1.5 324-328 215.7 2204 2227 225.6 | 2400.6 18.2
424-428 277.8 265.5 2814 284.1 | 2289.4 16.6

501-504 || 3352.9 3541.4 3331.2 3501.9 | 3621.4 1033.1

601-604 | 3378.8 3474.5 3321.1 3486.0 | 3619.4 651.9

201-220 | 21.6 237 210  243| 04 0.7

301-323 | 1211 1184 1182 1156 | 147 42

401-423 78.2 72.0 80.1 73.4 5.4 2.1

p=1.75 324-328 216.1 223.6  217.5 220.1 | 2405.1 21.0
424-428 262.6 2619 275.9 278.0 | 2162.7 12.9

501-504 || 3378.7 3503.1 3307.1 3487.6 | 3622.8 1118.4

601-604 | 3372.2 3480.1 3321.9 3419.6 | 3620.9 645.0
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Table 8.5. Accuracy of the upper bounds: Average percent deviations for all

problems with the squared Euclidean distance

Distance type | Problems | RRH DRRH RRH DRRH' | DAH RDAH

201-220 | 10.70 4.61 10.15 451 1.53 4.47
301-323 | 15.67  16.49 18.31 13.81 | 1.12 4.31
Squared 401-423 || 56.94  53.84 54.13 62.86 | 1.14  11.38
Euclidean 324-328 0.89 0.83 154 1.50 | 1.00 0.00
424-428 6.36 8.56  6.26 731 | 2.82 0.00
501-504 6.88 7.36 9.5 9.14 | 9.50 0.92
601-604 | 26.40  28.75 26.38 32.43 | 14.10 0.23

Table 8.6. Efficiency of the upper bounds: Average CPU times (seconds) for all

problems with the squared Euclidean distance

Distance type | Problems | RRH DRRH RRH DRRH | DAH RDAH

201-220 9.3 94 9.0 9.1 0.5 0.9
301-323 24.0 24.3 25.1 24.5 | 109.1 4.7

Squared 401-423 23.8 23.7 23.0 22.9 8.7 2.7
Fuclidean 324-328 76.8 77.2 78.5 76.6 | 2418.2 31.1
424-428 74.5 76.4 72.8 73.4 | 2400.9 21.9
501-504 || 2867.7 2831.8 2642.4 2851.9 | 3623.5  588.0
601-604 || 2811.2 2769.6 2683.1  2759.1 | 3621.7 1976.9
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imation heuristic given in Figure 6.4 without Step 4, using an appropriate candidate
location set IC. Initial ;1 and 7 values are set to 2 and 7 is updated if Zyg or Zy g do
not change more than 10~* in 20 consecutive iterations. If 7 is updated 15 times, the
difference between Zyg and Zip is less than 107* or the CPU time exceeds the time
limit algorithm terminates and Zip is reported as the lower bound after multiplying it
with the constant defined in (6.10) and (6.11). Similar to the previous runs, all individ-
ual CPU times of these four heuristics are limited to be below 1200 seconds for small
instances, 2400 seconds for medium instances and 3600 seconds for large instances.
The percent relative deviations of the solutions of the lower bounding algorithms from
the optimal solutions and the total CPU times for these runs of problems 201-220 with
the Euclidean distances are reported in Table 8.7 and 8.8 respectively.

As can be seen, for problems 201-220 with the Euclidean distance, L, algorithm
performs slightly better than the other three. None of the instances’ but problem 201’s
lower bounds calculated by these four algorithms overlap with the optimal objective
function values. The CPU times for all the instances are very short; but the relaxation
type algorithms terminate in less than one second on the average. Whereas the other

two heuristics find the lower bound for Problem 212 in more than sixty seconds.

For the remaining instances, again the deviations from the best known are com-
pared instead of the the deviations from the optimal objective value. Average devia-
tions from the best value and the average CPU times for the Euclidean and [, distance
for p = 1.25, 1.50, 1.75 are reported in Table 8.9 and Table 8.10 respectively. First,
we must state that large instances are not solved optimally by using the methods L,
and L., since these models composed of more than 200000 binary decision variables.
Second, the CPU times are reported regardless of the distance type. The L; and RL;
only multiplies the value found by the algorithm with a different constant whereas L,

and RL., returns the same solution for every distance type for the same instance.

From the results, we can state that the RIL; algorithm has the best average
accuracy, whereas in small instances L., algorithm gives the best lower bounds for the

Euclidean distance. Even though they are solved using the Lagrangean heuristic, RL;
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Table 8.7. Accuracy of the lower bounds: Percent deviations for Problems 201-220

with the Euclidean distance

Problem | (m,n) | Optimal L, Lo RL; RL,
201 (2,2) 0 0.00  0.00 0.00 0.00
202 (2,4) 247.28 6.78  8.61 6.78 8.61
203 (2,4) 214.34 18.84 1042 | 18.84 10.42
204 (3,5) 24 29.29  0.00 | 39.90 35.00
205 (3,5) 73.96 6.31 18.88 6.31 18.88
206 (3,9) 2214 12.17 10.57 | 13.03 12.16
207 (3,9) 871.62 1758 397 | 17.58 3.97
208 (4,8) 609.23 7.96 20.72 | 14.03 24.23
209 (5,15) | 8169.79 16.75 10.62 | 17.33  10.68
210 (5,20) | 12846.87 | 10.14 9.68 | 11.17 9.79
211 (5,20) | 1107.18 11.67 8.60 | 18.57 12.57
212 (5,30) | 23990.04 | 18.72 11.57 | 19.83 14.40
215 (5,10) | 2595.47 6.64 12.73 8.79 15.01
216 (6,10) | 7797.21 13.03 9.02 | 1745 14.19
217 (7,10) 6967.9 11.99 749 | 1513 12.43
218 (8,10) | 1564.46 19.59 7.32 | 3044 19.72
219 (9,10) | 3250.68 | 20.10 9.50 | 28.13 21.01
220 (10,10) 7719 597 15.74 6.07 15.79

average 12.97 9.75 | 16.08 14.38
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Table 8.8. Efficiency of the lower bounds: CPU times (seconds) for problems 201-220

with the Euclidean distance

Problem | (m,n) L Lo | RL; RL4
201 (2,2) 0.27 0.25| 2.38 0.20
202 (2,4) 0.19 0.31 | 0.28 0.20
203 (2,4) 0.19 0.27 | 0.30 0.19
204 (3,5) 0.22 0.31] 0.38 0.47
205 (3,5) 0.19 0.39 | 0.27 0.20
206 (3,9) 0.42 091 0.45 0.55
207 (3,9) 0.34 0.73] 031 0.23
208 (4,8) 0.66 0.58 | 0.52 0.45
209 (5,15) 1.28 3.59 | 0.70 0.72
210 (5,20) 5.02 9.53 | 1.56 1.52
211 (5,20) 267 1195 1.38 1.84
212 (5,30) || 73.03 153.36 | 3.75 4.33
215 (5,10) 0.73 1.14 | 047 294
216 (6,10) 1.02 250 | 0.77  0.70
217 (7,10) 1.02 1.98 | 0.64 0.75
218 (8,10) 1.00 1.48 | 0.77 0.81
219 (9,10) 1.27 1.44 | 0.77 0.89
220 (10,10) | 0.77 1.78 | 0.75  0.77

Average 5.01 10.70 | 0.91 0.99




Table 8.9. Accuracy of the lower bounds: Average percent deviations for all the

problems with the Euclidean distance and [, distances with p = 1.25, 1.50, 1.75

Distance type | Problem L Lo | RL; RL4

201-220 || 12.97 9.75 | 16.08 14.38
301-323 || 12.42 551 | 7.75 277
401-423 || 10.39 499 | 9.23 6.31
Euclidean 324-328 || 84.02 86.31 | 0.73 0.95
424-428 || 97.42 9548 | 1.92 1.11
501-504 || N/JA  N/A | 0.25 6.09
601-604 | N/JA  N/A | 0.08 0.68

201-220 || 0.72 14.84 | 4.40 19.39
301-323 | 7.25 18.60 | 2.62 16.48
401-423 | 6.38 19.17 | 522 20.35
p=125 | 324-328 | 83.95 88.81| 0.00 18.94
424-428 | 97.34 96.29 | 0.00 18.02
501-504 | N/A N/A | 0.00 23.51
601-604 | N/JA N/A | 0.00 19.26

201-220 1.55 8.08 | 5.14 12.86
301-323 770 11.20 | 3.00 8.79
401-423 6.90 1192 | 570 13.15
p=15 324-328 | 83.95 87.73 | 0.00 11.10
424-428 || 97.34 95.94 | 0.00 10.08
501-504 || N/JA  N/A | 0.00 16.11
601-604 | N/JA  N/A | 0.00 11.44

201-220 | 3.44 430 | 6.91 9.16
301-323 | 9.09 6.64| 4.31 3.97
401-423 || 8.06 7.17| 6.82 8.39
p=175 | 324-328 | 83.95 86.89 | 0.00 5.03
424-428 | 97.36 95.66 | 0.45 4.41
501-504 | N/A N/A | 0.00 10.38
601-604 | N/A N/A| 000 5.40
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Table 8.10. Efficiency of the lower bounds: Average CPU times (seconds) for all the
problems with the Euclidean distance and [, distances with p = 1.25, 1.50, 1.75

Problem Ly L RL; RLw

201-220 5.01 10.70 0.91 0.99
301-323 714.20  653.77 14.42 11.57
401-423 629.75  578.20 11.28 9.09

324-328 || 2410.77 241598 | 284.88  329.28
424-428 || 2410.28 2412.78 | 207.06  236.42
501-504 N/A N/A | 3609.70 3612.12
601-604 N/A N/A | 3606.52 3610.10

and RL,, terminates because of the time limitation, for large instances, since there
are more than 200000 candidate facility locations. All other CPU times of these two
algorithms are fairly short compared to L; and L.,. L; and L., are terminated by using

the time limit even for some of the small instances with 25 customers and 9 facilities.

Regardless of the size of the problem and the distance, we can state that RL; has
the highest accuracy and efficiency. It solves small and medium sized instances in less
than 600 seconds and in most of the cases, finds the best solution compared to other

methods.

8.3. Bounds with Lagrangean Relaxation

In this section we will show the computational results for the RCMFWP. The
RCMFWP is solved by either column generation or branch and price technique. In both
of these methods a concave minimization solver with the outer approximation method
is used for solving the subproblems. In order to eliminate the asymptotic convergence
issue, several stopping conditions are used to terminate concave minimization solver.
The number of iterations and the number of extreme points in the outer convex hull are
limited to 5000. As mentioned before, since the outer approximation offers asymptotic

convergence, an € value of 107 is decided and the outer approximation method returns
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an optimal solution which is at most € infeasible of the constraints. In addition, in
column generation and branch and price, algorithms given as Figure 7.4 and Figure 7.7
are used instead of Figure 7.2 and Figure 7.5 respectively. Last but not least, columns
are generated using strategies given with (7.43) and (7.62) instead of the ones given

with (7.42) and (7.61) by setting the parameter £ to 1.

In column generation an initial starting feasible solution and column set is created
by running CALA heuristic 10 times starting at random location at their first run in
any SO iteration. Furthermore, in order to decrease the time required to create initial
column set, columns created in the previous SO iteration are used in the next iteration

after correcting their cost values, since \; change in every iteration of SO.

In order to compute the upper bounds, either DAH or RDAH is used at first
iteration. At the remaining iterations of SO, CALA heuristic is used and optimal/best
facility locations found by previous steps’ lower bounding algorithm is used as starting
facility locations. In DAH and RDAH, customer locations are used as the candidate
locations. For the cases with more than 30 customers, the RDAH is used with CALA
heuristic. A similar approach is also used for lower bounding algorithms. We solve small
instances with UDAH algorithm and replace with its Lagrangean heuristic RUDAH for

the other two groups of instances.

In SO procedure, initial 7 and \; values are set to 2 and updated as shown in
Figure 7.1. 7 is halved if 20 steps passed without any significant improvements which
is more than 10~* in the best lower or upper bounds. If 7 or the difference between the
best lower and upper bound is less than 10~* the SO procedure terminates. The runs
are limited to 180 minutes for small instances, 360 minutes for the medium instances
and 540 minutes for the large ones, SO procedure terminates and the best values found
so far are reported. However, if time elapsed inside one of the lower or upper bounding

algorithms, program waits the algorithm to terminate.

In the test runs for the problems 201-220 with the Euclidean distance column

generation (CGA) and branch and price algorithms (BPA) are used to compute lower
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bound in every iterations of the SO method. Whereas, upper bound is first initialized
by DAH and updated by CALA heuristic in every iteration. In the other two groups
of test runs, instead of running the CGA and BPA in every step, UDAH is used in
every iteration and the lower bound is updated by the other two with different periods
according to run type. Even though a heuristic is used to calculate lower bounds
inside SO, the reported lower bound is calculated by one of the valid lower bounding

algorithms to guarantee its validity at the final step.

Two different settings are considered according to the usage of the second lower
bounding algorithm. In all types, second lower bounding algorithm is applied and 7
is halved when the difference between upper and lower bound is less than 107*. In
addition to that, in type one runs (1), second lower bounding algorithm is run in every
iteration in which 7 is updated. In type two runs (2), the second lower bounding
algorithm is run after SO terminates, with the lambda values which gives the greatest
lower bound in iterations. The optimality gaps and the CPU times for these 6 different
test runs and the best gap found by using the L., and DAH for the Euclidean distance
are reported in Table 8.11 and Table 8.12 respectively.

Before continuing, we must note that, in all of the iterations using Lagrangean
heuristic, upper bound is initialized by running a DAH at the first iterations of the SO
algorithm. Even though, a CALA heuristic is run in every step of the SO, the solution
found by the DAH is rarely improved. This shows the accuracy of the DAH heuristic

for small instances.

If we compare the average gaps, we can state that L., /DAH pair outperforms
all other three. However if the number of optimal solutions found is compared, which
means the number of zero gaps, all the other six Lagrangean heuristics found optimal
values for the four cases. Furthermore, we can realize that, for the problem 202, the gap
calculated by the Lagrangean type heuristics is 100 % which means the lower bound
found for this instance is 0. If we treat it as an outlier and recalculate the gaps, the
type two algorithm of BPA where UDAH is run in every step of the SO and BPA is

run only in 7 updates and final iterations, have average gap of 8.79 % which is better



Table 8.11. Accuracy of the Lagrangean heuristic: duality gaps for the problems

201-220 with the Fuclidean distance

7

Problem || CGA(1) BPA(1) | CGA(2) BPA(2) | CGA BPA | L./DAH
201 0.00 0.00 0.00 0.00 0.00 0.00 0.00
202 0.00 0.00 0.00 0.00 0.00 0.00 8.60
203 22.90 20.10 22.90 20.10 | 21.67  20.10 10.43
204 100.00  100.00 100.00  100.00 | 100.00 100.00 0.00
205 0.00 0.00 0.00 0.00 0.00 0.00 18.87
206 22.37 11.34 22.95 11.34 | 21.54 11.35 10.57
207 0.00 0.00 0.00 0.00 0.00 0.00 3.97
208 22.68 17.31 22.69 17.47 | 19.60 17.59 20.72
209 6.30 6.30 7.00 7.00 5.14 4.93 10.62
210 1.58 1.58 1.58 1.58 1.58 1.78 9.68
211 8.28 5.27 8.28 5.27 7.81 5.63 8.60
212 2.56 4.74 5.58 5.12 5.05 4.46 11.57
215 3.72 3.72 3.72 3.72 3.77 3.82 12.73
216 17.37 17.37 17.39 17.39 | 17.61 18.78 9.02
217 10.54 10.54 10.54 10.54 | 14.26  13.97 7.58
218 34.25 22.99 34.25 2299 | 2897 37.36 7.32
219 30.05 27.70 30.06 2763 | 31.80 65.13 9.50
220 0.46 0.46 0.46 0.46 1.40 1.40 15.75

Average 15.89 13.86 15.97 13.92 | 15.57 17.02 9.75
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Table 8.12. Efficiency of the Lagrangean heuristic: CPU times (second) for the

problems 201-220 with the Euclidean distance

Problem || CGA(1) BPA(1) | CGA(2) BPA(2) CGA BPA | L..,/DAH
201 0.4 0.5 0.4 0.5 0.5 0.3 0.6
202 63.9 63.7 65.0 63.5 156.0 260.0 0.5
203 103.2 466.4 36.2 67.7 790.0  8014.0 0.5
204 417.6 398.5 113.9 110.4 | 6557.4  6950.7 0.6
205 66.1 63.2 66.0 63.2 92.3 89.8 0.6
206 239.2 501.2 67.2 167.9 343.6 10819.7 1.1
207 192.9 185.0 130.1 125.2 773.4 793.1 0.9
208 771.9  5038.2 177.3 547.9 | 10802.4 10872.9 0.8
209 2545.1  2255.3 415.9 408.7 | 10809.7 10916.0 3.9
210 1481.3 37324 321.9 322.0 | 10806.8 11735.7 10.0
211 320.8  5536.0 176.9 768.3 | 1801.2 10876.3 12.6
212 888.5  1209.4 577.1 747.6 | 3059.9 10905.5 155.3
215 1907.9  2108.0 375.0 364.2 | 10836.4 10949.7 1.4
216 3130.0  2995.2 653.3 644.2 | 10839.0 11086.0 3.1
217 4305.0  4077.8 961.4 931.7 | 10840.9 10897.7 2.5
218 3669.0  9823.7 754.3  1326.2 | 10859.6 10983.4 2.0
219 4259.5 14385.8 898.4  3409.2 | 10823.1 10974.8 2.1
220 5299.6  5359.2 873.3 854.4 | 10824.8 11127.5 2.1

Average | 1647.9 3233.3 370.2 606.8 | 6167.6 8236.3 11.2
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than the L., /DAH pairs gap. However, if we compare the CPU times, L.,/DAH pair

outperforms the other six with its very short CPU times.

If the Lagrangean heuristics are compared with each other, we can state that
using CGA and BPA in every step do not perform better than using them frequently
or only at final step. This is because of the limitations over the CPU time. Since in
every step of CGA and BPA, at least one concave minimization problem is solved using
outer approximation method, the number of iterations done in 180 minutes decreases.
Because of this reason, the SO methods using only CGA or BPA as a lower bounding

algorithm are not tested for the other cases.

For the rest of the instances, instead of giving the results separately, we have
reported the average gaps and running times of each of the groups for every distance.
Since RL; gives the best performance in both accuracy and efficiency in lower bound-
ing algorithms and DAH performs the best in upper bounding algorithms for small
instances and RDAH the best in medium and large ones, the average gaps found by

the Lagrangean heuristic are compared with the gap formed by them.

In all runs, if the time limit is reached, the SO steps finish and a final CGA or
BPA is run to make lower bound valid. That is why in some of the instances, CPU
times are more than the limits. For small instances DAH is used to generate the initial
upper bound. Lower bound is found using UDAH with CGA or BPA of usage type (1)
or (2). For medium instances, RDAH is used as the initial upper bounding algorithm.
As lower bounding algorithm again UDAH with CGA and BPA are used. However,
using the UDAH and updating BPA in every update of 7, BPA(2) type lower bounding
is removed from the runs because of the long running times. For large instances, instead
of UDAH, RUDAH is used with CGA. CGA is run only in the last iteration of the test

runs to make the found lower bound valid.

The average gaps and CPU times for the Lagrangean heuristic and the gaps
and total CPU times of the other best lower and upper bounding algorithms for the
Euclidean and [, distances with p = 1.25, 1.50, 1.75 are reported in Table 8.13 and
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Table 8.14.

Based on the overall computational results we can state that, in cases with high
Z ratio, Lagrangean heuristics perform considerably better than the RL;/(R)DAH in
accuracy, whereas in all the other cases, RL; /(R)DAH slightly gives better results. In
addition to that, the RL;/(R)DAH pair has higher efficiency compared to all other
Lagrangean heuristics. Furthermore, the comparisons between the Lagrangean heuris-
tics using BPA and CGA shows that, BPA makes a minor improvement in the lower
bounds of some instances with a great increase in the CPU time. In some instances, it
is observed that BPA performs worse than CGA. This phenomenon occurs since BPA’s
long CPU times reduces the number of iterations and this prevents \;’s to be updated
more accurately. In addition, there is not more than 1 % improvement in the objectives
of the algorithms using CGA in every 7w update compared to final iteration only. On

the other hand, using CGA at every 7w update doubles the CPU times. So it is better
to use CGA(2).
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Table 8.13. Accuracy of the Lagrangean heuristic: Average duality gap for all the

problems with the Euclidean, squared Euclidean and [, distances with p = 1.25, 1.50,

1.75

Distance | Problems | CG(1) BP(1) | CG(2) BP(2) | RL;/(R)DAH
201-220 15.89 13.86 | 1597 13.92 16.08

301-323 13.26  13.26 | 13.26 13.27 18.77

401-423 17.41 16.11 | 1753 16.28 19.54

Euclidean | 324-328 3.27 N/A 3.26 3.23 13.43
424-428 234 N/A 3.04 3.04 14.08

501-504 | N/A 2542 | N/A  N/A 21.39

601-604 | N/A 27.60| N/A N/A 25.85

201-220 15.61 1341 | 15.75 13.44 8.56

301-323 13.12  13.11 | 13.18 13.16 10.86

p=125 | 401-423 17.44 1640 | 17.64 16.47 12.02
324-328 3.36  N/A 3.44 3.45 6.69

424-428 247 N/A 3.26 3.20 7.34

201-220 15.63 13.55 | 15.75 13.65 11.70

301-323 13.15 13.15 | 13.16 13.15 14.12

p=15 401-423 1734  16.16 | 1745 16.45 15.13

324-328 3.23 N/A 3.35 3.34 9.73

424-428 3.13  N/A 3.20 3.19 10.13

201-220 | 1551 13.70 | 15.87 13.77 14.13

301-323 13.24 1324 | 13.23 13.23 16.72

p=1.75 401-423 1734 16.23 | 1746 16.42 17.58
324-328 329 N/A 3.3 3.35 11.62

424-428 3.09 N/A 3.20 3.20 12.31

201-220 27.06 26.33 | 27.62 26.37 N/A

301-323 26.25 26.24 | 26.45 26.31 N/A

Squared | 401-423 29.69 30.66 | 30.76 29.68 N/A

Euclidean | 324-328 10.10 N/A | 10.48 10.50 N/A
424-428 412 N/A 6.67 6.39 N/A
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Table 8.14. Efficiency of the Lagrangean heuristics: Average CPU times (seconds) for

all the problems with the Euclidean, squared Euclidean and [, distances with p =

1.25, 1.50, 1.75
Distance | Problems || CG(1) BP(1) | CG(2) BP(2) | RL;/(R)DAH
201-220 1647.9  3233.3 370.2 606.8 1.4
301-323 818.0 898.8 818.0 586.5 33.5
401-423 734.5  60357.5 563.5  1398.3 16.5
Euclidean | 324-328 | 11286.4 N/A | 11663.4 17639.4 304.5
424-428 | 15136.5 N/A | 12182.1 14614.8 221.9
501-504 N/A 35892.3 N/A N/A 4686.5
601-604 N/A 554352 | N/A  N/A 4229.7
201-220 1543.3  3088.6 163.9 635.2 1.3
301-323 204.8 340.4 91.8 102.9 30.7
p =125 401-423 387.7  5854.9 208.6  1226.1 17.0
324-328 || 10379.7 N/A | 6706.0 8252.9 308.1
424-428 || 11905.0 N/A | 8844.1 15650.9 234.1
201-220 || 1391.8 29498 | 3476  561.8 1.4
301-323 || 241.0  733.5| 1001 1583 35.5
p=1.5 401-423 436.9 56474 243.3  1173.5 16.9
324-328 || 13826.2 N/A | 7660.3 9463.8 303.1
424-428 | 13096.3 N/A | 8838.5 16309.7 223.7
201-220 | 1169.6 2675.8 | 1662  372.2 1.3
301-323 294.7 731.4 93.1 95.0 29.2
p=175 | 401-423 4447 49447 230.1  1188.7 16.7
324-328 || 15489.6 N/A | 7655.7 9541.5 305.9
424-428 || 13141.8 N/A | 10513.7 13253.9 220.0
201-220 | 1342.7 3470.1 | 586.1  1883.4 N/A
301-323 1071.6  1625.4 237.3 269.8 N/A
Squared | 401-423 | 2922.3 82138 | 643.1 30739 N/A
Euclidean | 324-328 | 14799.6  N/A | 8619.5 10754.8 N/A
424-428 || 16665.9 N/A | 15171.5 17681.3 N/A




83

9. CONCLUSIONS

In this thesis we have considered the capacitated multifacility Weber problem
with the Euclidean, squared Euclidean and [, distance for 1 < p < 2. The capacitated
multifacility Weber problem has nonconvex objective function and is very difficult to
solve exactly. For this reason, instead of finding the exact solutions of this type of
problems, we proposed some lower and upper bounding algorithms, which give tight
bounds. First we propose four alternating location allocation heuristics and two dis-
cretization strategies which gives good upper bounds. Second we define four lower
bounding algorithms, which are based on some special properties of the /; and [, dis-
tances and their relations with general [, distance. Third we formulate a Lagrangean
relaxation of the capacitated multifacility Weber problem and solve the Lagrangean
subproblem by using column generation and branch and price. In every iteration of
these two algorithms several concave minimization subproblems are solved by outer

approximation method.

For upper bounding algorithms, we compared two groups of heuristics. In the
first group, we use region rejection type heuristics. The main idea of these heuristics
are placing the facilities in the convex hull of the customers as balanced as possible
initially and improving the objective by CALA heuristic. In the first two of these
heuristics, RRH and DRRH, we first define a constant radius and consider not to locate
a facility inside the radius of a previously fixed facility. The only difference between
RRH and DRRH is that, in RRH a facility can be located anywhere in the convex hull
of the customer locations whereas in DRRH a facility is placed on one of the customer
locations. In RRH’ and DRRH’, previously defined two heuristics are improved by
defining a dynamic radius concept and instead of defining a constant radius at the
beginning of the iterations, each radius of the facility are assigned according to its
capacity and the customers near to it. In the second group of heuristics, we investigate
the DAH and its Lagrangean relaxation RDAH. In DAH, the customer locations are set
as candidate facility locations and a DLAP is solved and this solution is improved by

a CALA. In RDAH, instead of solving the problem exactly, a Lagrangean relaxation is
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considered, and a CALA is run in every step of the SO algorithm. Experimental results
show that, DLAP and RDLAP outperforms the other four. In small instances with
less than 50 customers and 10 facilities DAH performs good whereas in larger cases
RDAH gives better results in limited time period with minimum CPU time compared

to the other four.

As a lower bounding algorithm, we define four types of algorithms: L;, L., and
their relaxations RL;, RL,,. Briefly, these are the same problems with different distance
metrics, [y and [, which are known as rectilinear and Tchebycheff distances. Since,
the optimal facility locations of these problems are elements of a finite set of locations,
these problems can be modeled as DLAP problems and can be solved optimally. In L
and L, algorithms, problems are modeled and solved optimally whereas in RL; and
RL., a Lagrangean heuristic is devised which gives tight upper bounds in short CPU
times. Experiments show that, RL; outperforms all other three with tighter lower

bounds and shorter running times.

At the last part, we have first proposed a Lagrangean relaxation scheme for the
CMFWP. After this relaxation, Lagrangean subproblem looks like an uncapacitated
multifacility Weber problem. This Lagrangean subproblem is reformulated as a set
partitioning model and solved using column generation and branch and price algo-
rithms. Pricing subproblems are a d.c. programming problems, which are converted
into concave minimization problems and solved by the outer approximation method. By
using one of these two lower bounding algorithms with an appropriate upper bounding
heuristic, a subgradient optimization scheme is generated and tight bounds are com-
puted. The experimental results show that using UDAH or RUDAH algorithms as
lower bounding algorithms inside the subgradient optimization scheme and validating
the lower bound by solving a column generation or branch and price algorithm with
the A;’s that give the best lower bound in iterations returns the best solution. Finally
we compared the best lower and upper bounds with the gaps found by the Lagrangean
heuristic. It can be observed that, Lagrangean heuristic works better for instances with
small facility to customer ratio. For all of the remaining instances, RL; and (R)DLAP

outperforms the Lagrangean heuristics.
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Although we have not been able to find an exact solution procedure yet, we
proposed some methods that can be used in finding exact solution methods. The
lower and upper bounding methods researched in the previous chapters can be used
in a branch-and-bound scheme. In this type of algorithm, especially the Lagrangean
heuristic can be very useful and by reformulating the variables the lower bounds of the
nodes can be improved. As a final point it is possible to say that, tighter lower bounds
can be obtained by combining other lower bounding methods with the Lagrangean

heuristic.
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