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Abstract

Although they have different objectives, emergency response systems and on-demand trans-
portation systems are two similar systems in the sense that both deal with stochastic demand
and service time which create congestions for moderate level of demand.

Emergency response system location problems are one of the early problems immensely dealt
in the literature. These problems are modeled by either set covering or transportation models
which do not give much attention to the stochastic nature of the problem. On-demand trans-
portation is a newly developing type of transportation system and literature is not broad enough
but has similarities with emergency response systems.

In this research, our aim is to solve facility location problem with stochastic demand and service
time. Specifically we are dealing with temporal and spatial stochasticity which emerge because
of the uncertainty in demand and service time. Recently we have developed a mixed aggregate
hypercube model which are extensions to Larson (1974) and Boyacı and Geroliminis (2012).
Results are promising and applicable to real life instances.
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1 Introduction

Location-allocation of emergency response systems is one of the oldest problems in the opera-
tions research literature. Locating ambulances, fire brigades and police-beats were the pioneer
problems mathematically modeled and solved. Although there are quite a few number of works
on the subject, most of them does not take the probabilistic nature of the problem and solves
it with deterministic assumptions. However, this is one of the most important property of the
problem that differs it from other types of facility location-allocation problems. This random-
ness creates congestions and causes unexpected losses.

On-demand transportation (also known as demand responsive transport, dial-a-ride transit) is
an advanced, user-oriented form of public transport with flexible routing and scheduling of
vehicles operating in shared-ride mode between pick-up and drop-off locations according to
passengers needs. These systems provide service in areas with low passenger demand where
regular bus service is not economically feasible or applicable. Shuttle bus services, paratransit,
shared taxis and taxicabs are some types of on-demand transportation systems. Although they
have different purposes and priorities, the environment that these systems work has similarities
with the emergency response systems. They have probabilistic demand and the main aims are
rapid and reliable response and adequate coverage.

2 Literature Survey

The early models dealing with the location of emergency response systems assume determin-
istic demand. They ignored stochastic nature of the problem and dealt on coverage and median
models. Hakimi (1964) proposed p-median problem that locates p facilities on a finite set of
candidate locations in such a way that minimizes total transportation cost of n customers. A
recent survey of the literature about this subject has conducted by Mladenović et al. (2007).

Coverage models are used to locate limited number of facilities (i.e. emergency response sys-
tems) in such a way to maximize total coverage. Toregas et al. (1971), Church and ReVelle
(1974), Marianov and ReVelle (1996), Daskin and Stern (1981) and Gendreau et al. (1997) are
some of the different versions of coverage models.

Although the literature mainly covers static and deterministic location models, in recent mod-
els uncertainty is also taken into account. This uncertainty can be either related to planning of
future periods (dynamic models) or input model parameters (probabilistic models). For urban
problems, probabilistic models are the most suitable ones. For location and allocation of emer-
gency response systems and other service on-demand vehicles (e.g. taxis), it is more convenient
to model both the demands and the duration of the time the facility serving these demands with
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probabilistic models. In these models, with some probability, it is always possible to have de-
mand which cannot be intervened by any facility, because of stochasticity in both demand and
service times. Manne (1961), Daskin (1983), ReVelle and Hogan (1989) and, Marianov and
ReVelle (1996) are some of the important articles written in this literature.

Larson (1974) proposed a hypercube queueing model (HQM) which is the first model that em-
beds the queueing theory in facility location allocation problems. This model analyzes systems
such as emergency services, door-to-door pickup and delivery services , neighborhood service
centers and transportation services which has response district design and service-to-customer
mode (Larson and Odoni, 1981). The solution of this model provides state probabilities and
associated system performance measures (e.g. workload, average service rate, loss rate) for
given server locations. “The HQM is not an optimization model; it is only a descriptive model
that permits the analysis of scenarios” (Galvão and Morabito, 2008). HQM models the current
state as a continuous-time Markov process but does not determine the optimal configuration.

The first model proposed by Larson (1974) assumes that the service time is independent of
the locations of the calls for service and the dispatched unit. This argument was supported
by the idea that time spend on the road is negligible compared to service time. This can be
a fact for fire brigades but not for the ambulances and on-demand vehicles. However even
with this simplification, as number of servers (n) is increased, number of states (2n) grows
exponentially. That’s why Larson (1975) also proposed a heuristic method because of this
exponential behavior. As an extension, Atkinson et al. (2008) assume different service rates
for each server in the system with equal interdistrict or intradistrict responses which increases
number of states (3n) significantly.

Iannoni and Morabito (2007); Iannoni et al. (2008) embedded hypercube in a genetic algorithm
framework to locate emergency vehicles along a highway. They extend the problem to enable
multiple dispatch (e.g. more than one server can intervene for the same incident).Geroliminis
et al. (2009, 2011) integrate the location and distracting decisions in the same optimization
and solve the problem by using steepest descent (Geroliminis et al., 2009) and genetic algo-
rithms (Geroliminis et al., 2011). Recently Boyacı and Geroliminis (2012) proposed two new
aggregate models which group servers into bins of servers. These two approaches dramatically
decrease number of states and make HQM applicable for medium sized problems.

3 Hypercube Queueing Models

The conventional HQM models (Larson, 1974) include hypercube in the name since the tran-
sition graph of the continuous time Markov chain used to model this structure has a hypercube
structure when the number of servers is more than three. State variables contain n binary vari-
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Figure 1: 2n HQM for three servers

ables which shows if server i is available (0) or busy (1). In other words, each state is a number
in base 2 and each digit shows the state of the corresponding server. For each region which
are called atoms (j) there exist a priority list of servers. Incidents in each region are served by
the available server with the highest priority for this atom. If there does not exist any avail-
able servers, either the call is lost (i.e. call for ambulance is dispatched by a backup) or joins
a queue to be served (i.e. taxi customers are asked to be waited until there is one available),
depending on the problem assumptions. Service requests arrive from each atom according to
an independent Poisson process with parameter λj .

As it is mentioned before, Boyacı and Geroliminis (2012) have proposed two new aggregate
models. In 2n (Larson, 1974) and 3n (Atkinson et al., 2008) models number of states is expo-
nential function of the number of servers, n (2n and 3n respectively) whereas in the aggregated
models number of states is exponential function of the number of bins. Number of states in

2n and 3n aggregate models equal to ((n1 + 1) (n2 + 1) ... (nI + 1)) and
∏
i

(
ni + 2

2

)
respec-

tively where ni is defined as number of servers in bin i for i = 1, ..., I . As an example, a
system of 3 bins with 9, 6 and 5 servers in each for 3n aggregate model has 32340 whereas
this number would be 420 if we use 2n aggregate model which assumes equal service rates for
inter and intradistrict responses (µi = µ′

i for ∀i). For the same total number of servers, the
conventional two models need around million and more than three billion states respectively.
For more information, interested readers can apply to Boyacı and Geroliminis (2012)
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Figure 2: 3n HQM for two servers with different inter (µi) and intradistrict (µ′
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4 Mix Aggregate Hypercube Algorithm

As it is stated before, although aggregate models decrease number of states in the HQM, the
number is still exponential function of the number of bins in the problem. Especially 3n ag-
gregate model is more representative since it assumes different service rates for different bin-
subregion pairs but it has also more states for the same problem than 2n aggregate models.
Because of these reasons, we are proposing an approximation algorithm that takes a mix struc-
ture of these two models.

The approximation algorithm basically contains three steps. In the first step, the whole problem
is clustered into regions by taking subregion demands and location of the servers into consider-
ation. This clustering should be binary in each step. In other words, clustering algorithm starts
dividing the whole area into two and divides each part into two if needed in every iteration.
This approach is important since we will use the same pattern in the opposite direction when
each region is merged. The second step contains solving 3n models in each divided region. In
order to keep algorithm efficient, there should be at most 6 servers in each region which makes
problems of size 729 states. In the last step, we start merging each region as they are clustered
by using a mix aggregate hypercube model that has bins of 2n and 3n aggregate models. There
are two reasons for that: First of all, we want to keep our algorithm efficient, so that is the
reason a pure 3n aggregate model is not used. Secondly, although we cluster the whole area
into regions, there are still servers that can serve the requests of the other regions quite often
which are the servers that are close to the borders between two merged regions. So the algo-
rithm uses three bins, the one that is composed of servers close to the border has two different
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Figure 3: 2n aggregate HQM for three bins with equal inter and intradistrict service rates (µi)

response rates (3n). The two other bins that are composed of servers away from the border
between two regions have one response rate (2n). The pseudo-code of the algorithm and its
simple representation can be seen in Algorithm 1 and Figure 6 respectively.

There are two points which need to be described precisely. The first thing is, as it is described
above, we are calculating the service rates for each subregion and then using these values for
a bigger subregion that contains two small subregions and a new subregion which is generated
by taking some of the servers of these two small subregions. As a result new subregions has
less servers than the ones that are calculated before. In order to update this value we are taking
the additional service rate of the servers for number of servers in the common area of that
subregion. With this approach, heuristic gives service rates for number of servers close to the
exact values. However, the lost rate is underestimated and needs to be adjusted as well. In
reality, this value is underestimated because when a bin is formed it is assumed that every
demand can be served as long as there is an available server in that bin. However this is
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Figure 6: The steps of mix aggregate hypercube algorithm

not the case and the probability should be adjusted for this fact. One of the ways to get rid
of this is not to use aggregate models and represent each server state separately. However
this increases number of states extremely. What we applied here is simply calculating the
probability of having an available server for that demand explicitly and assigning service and
lost rates accordingly. Here we have used two approaches. In the first one we assume each
server has equal probability to get busy and in the second one we assume each server has
different probabilities to get busy and this value is proportional to the demand that they are
serving as primary server. Applying this approach improves the lost rates and gives very close
results to exact solutions. Detailed experimental results can be seen in the next section. The
probability of serving a demand point can be formulated as:
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Algorithm 1 Mix aggregate hypercube algorithm

1. Divide the region into subregions iteratively

(a) Size of each problem in the leaves should be solvable
(b) Common area servers should be decided

2. Solve the problems in the leaves by using 3n hypercube model and calculate average
service rates for number of busy servers (kind of M/M/n)

3. For each subregion not in the leaves

(a) Solve 3n hypercube model for the common area servers and calculate their average
service rates for number of busy servers (intradistrict service rate)

(b) Calculate average service rate for atoms that are not in common area servers primary
service area (interdistrict service rate)

(c) Solve 3n + 2n mix aggregate hypercube model and calculate average service rates
for number of busy servers

4. Calculate the lost rate for the first subregion ( which is the main region)

Pb =


1 if b ≤ k − 1

1−
∏k

i=1 psi

(∑
K̃∈K,|K̃|=b−k,K̃={s̃1,s̃2,...,s̃k̃}

∏k̃
i=1 ps̃i

)
∑
Ñ∈N ,|Ñ |=b,Ñ={q̃1,q̃2,...,q̃b}

∏b
i=1 pq̃i

otherwise
(1)

where

Pb : probability of serving the demand point for b busy servers (2)

N = {q1, q2, ..., qn} : the set of all servers (3)

K = {s1, s2, ..., sk} : the set of servers that can serve the demand point (4)

K̃ = {s̃1, s̃2, ..., s̃k̃} : the set of servers that cannot serve the demand point (5)

p? : the probability of being busy for server ? . (6)

Equation 1 is also applicable for the case where the probability of being busy is equal. For any
busy probability p > 0, the formulation returns the same value.

5 Computational Results

The performance of the mixed aggregate approximation algorithm is evaluated by comparing
the results of the method with the exact 3n hypercube model instances. However, since 3n
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Figure 7: Demand and potential locations for central Athens network

hypercube model has exponential number of states, the compared instances have at most 11
servers. The lost rate of the system and service rates per number of busy servers are compared
and represented in the Figure 8 and Figure 9.

We demonstrate the model for locating repair and tow-away vehicles for public transport in
Athens (Greece) surface transportation network. This network contains around 3000 buses of
different size. This system is used by 1.7 million passengers. Although the whole area is about
650 km2 we deal with the 150 km2 area of the highly populated part which contains more
than 85% of the demand. In Athens, the buses are handled by city’s bus company (ETHEL)
whereas the Athens Public Transportation Organization (OASA) is responsible for planning
and managing the bus system. In Figure 7 you can see incident percentages that are derived
from 10-year historical data and normalized to 10000 per cells that are squares with 0.5 km
in each side. In this example, 10 and 11 candidate locations (the additional one to the first
10 candidate locations is shown with dotted line) for transit mobile repair units (TMRUs) are
selected (pointed out with red circles) and number of TMRUs needed in each candidate location
is calculated for given demand intensity. The reader can refer to Karlaftis et al. (2004) for more
information about the data.

As it can be seen in Figure 8, service rates of exact method and approximate algorithms are
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Figure 8: Comparison of service rates per busy server of exact values and approximate methods

quite close to each other. However, this is not the case for the lost rates. In Figure 9, approx-
imate methods always underestimates the exact lost rate. However, this error is lowest for the
probabilistic approach and less than 10% for the high demand cases and around 30% for the
medium demand cases.

6 Conclusion

In this paper we have investigated an approximation method for spatial queueing systems which
have wide range of usage in the urban systems such as deciding the response areas of ambu-
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10 / 5 10 / 10 10 / 20 11 / 5 11 / 10 11 / 25

exact 0.0239474 0.1800289 1.9867694 0.0218006 0.1437841 3.1332933

simple 0.0009875 0.029337 0.9547946 0.0004043 0.0108273 1.5453191

binom. 0.0067369 0.0988244 1.6261798 0.0039957 0.0540883 2.5496965

prob. 0.0055722 0.0975113 1.7021984 0.0050746 0.0670037 2.8463261
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Figure 9: Comparison of lost rates of exact values and approximate methods

lances or paratransit vehicles. Although there are some hypercube queueing models exist in the
literature, they are not applicable to real life problems because of their computational complex-
ity. The new method that we propose has higher efficiency with acceptable accuracy. However,
we still believe that we can improve accuracy by applying an extension to this new method in
such a way that the problem will be solved sequentially. In addition to that, both current and
sequential methods are suitable for dynamic programming approach if candidate locations for
servers are given in advance.

One of the other points missing in this work is the partitioning algorithm for the regions. Al-
though the experiments on worked instances showed that partitioning has small effect on the
results, we need to investigate more on that as well. Last but not least is the limitations for the
exact problems. As it is stated before, the maximum size of a problem that can be solved by
the 3n hypercube model is 11. However, we can also solve larger cases by using simulation. In
order to see the performance of the approximation method for larger instances, we are planning
to calculate exact results by simulation.
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