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Abstract

This study is motivated by planning on-demand transportation systems in large scale urban
networks. We specifically handle emergency response systems and car-sharing services in con-
gested urban areas. Our ultimate aim is to improve the quality of service for both emergency
response and car-sharing systems with the support of operational research tools.

In the first part of the thesis, we deal with a method that can evaluate the performance of
spatial queueing systems with different server-customer service rates. More precisely, we
propose two new spatial queueing models, which utilize service rates that are the functions of
both the server providing the service and the customer receiving it. These two new models
can be regarded as two extensions to the known hypercube queueing models. These models
have a lot of application areas including improvement of emergency (e.g. ambulance, police,
emergency repair) and transportation (taxicabs, on-demand transportation, para-transit)
services in cities.

The first contribution of this part of the thesis to the literature is developing two hypercube
models that apply different service rates according to the distance between server and the
customer. In order to keep problems tractable, we assume that there are two different service
rates for each server: The service rate when a server is serving its own region (i.e. intradistrict
service) is different when the same server is serving outside its own region (i.e. interdistrict
service). The second contribution is proposing an approximation algorithm for the problems
that are intractable because of their size. We also test both methods inside some efficient
heuristics to show the applicability of the two methods with algorithms for real case problems.
In the second part of the thesis, we work on improving the services in (non-floating) one-way
(electric) car-sharing systems. We regard this problem in three different levels: Strategic,
tactical and operational. Strategic decisions are regarded as the decisions related to the
infrastructure (e.g. location and size of the stations) and tactical decisions are about the
vehicles and the personnel (e.g. fleet and personnel size); whereas operational decisions are
problems related to daily operations (e.g. relocation operations, personnel shift assignments).
The first two levels of the decisions (i.e. strategic and tactical) are taken into consideration
together in the first chapter of this part. A multi-objective (different objectives are applied for
the users and the operator of the system) mixed integer linear programming formulation with
its relaxation is proposed and solved for different scenarios. The model is applied on a real
case, a car-sharing service in the city of Nice.

In the second chapter of this part, the operational problem of one-way car-sharing systems
are handled. A mixed integer linear programming formulation is proposed for the problem
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Abstract

which decides on initial vehicle locations, relocation operations and assignment of relocation
personnel to the shifts. In order to keep the decisions robust, flexible and applicable, some
extra soft constraints are added. We aim to improve flexibility of the service from the users
point of view, it is assumed that the users might pick-up and drop-off vehicles earlier or
later than their reservations occasionally. In order to cope with these situations, set of soft
constraints are introduced to the model that keeps vehicles and empty spots at the right place
at the right time. This chapter is still work in progress but is included in the dissertation to
represent preliminary results.

In the last part of the thesis, we propose a tool for a parsimonious travel time estimation for
the first two parts of the thesis. We mostly benefit from Variational theory and macroscopic
fundamental diagram literature. We start with extending the prior work on the travel time
estimation works on homogeneous networks and apply similar methods to the systems with
heterogeneous system characteristics; i.e. link lengths, offset between traffic signals and
incoming turns. The research is conducted for both unimodal and multimodal networks.
More specifically, in this part of the research, we explore the effect of network parameters on
the two key characteristics of macroscopic fundamental diagram: (i) the network capacity and
(ii) the density range when the network capacity is maximum.

Although scarce data do not enable us to do, in the process of improving the tool we have
reached to some conclusions that are applicable not only to travel time estimation but also to
traffic in urban networks. A closed analytical formulation, that utilizes system characteristics,
to calculate the density range of a homogenous network is proposed and proven. Then, the
effects of the changes on the system characteristics are investigated for both homogeneous
and heterogeneous networks. In addition, the effect of the incoming turns is modeled and
its intensity is explored. In an extended research, similar investigations are conducted for
the multimodal networks, i.e. networks with public transportation buses. These tools can
be utilized for the development of hierarchical control strategies for large scale congested
transport networks.

Keywords: emergency response, spatial queues, hypercube queueing models, location models,
one-way car-sharing, electric mobility, multi-objective optimization, integer programming,
vehicle relocation, scheduling, Variational theory, macroscopic fundamental diagram, simula-
tion, network capacity, multimodal systems
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Résumé

La présente étude est motivée par la question de la planification des systémes de transports a
la demande dans les réseaux urbains a grande échelle. Nous nous intéressons particulierement
aux services d’intervention d'urgence et aux systemes d’autopartage opérant dans les zones
urbaines congestionnées. L'objectif final de I'étude est d’améliorer la qualité de service et de
réponse de ces deux types de systémes grace aux outils de la recherche opérationnelle.

Dans la premiére partie de cette these, nous travaillons sur une méthode qui permet d’évaluer
la performance des systémes avec files d’attentes distribuées spatialement et qui utilisent
différents taux de service fournisseur-client. Plus précisément, nous proposons deux nouveaux
modeles de files d’attente spatiales dans lesquels les taux de service dépendent a la fois du
fournisseur et du bénéficiaire du service. On peut considérer ces deux modeles comme des
extensions des modeles de files d’attente hypercube connus. Ces modeles ont des applications
dans beaucoup de domaines dont les systemes d’intervention d'urgence (par exemple pour
les ambulances, la police ou encore le dépannage d'urgence) et de transports (par exemple
les taxis, les services de transport a la demande ou les services de transport adaptés (para-
transit)) en ville. La premiére contribution a la littérature dans cette partie consiste en le
développement de deux modeles hypercube dans lesquels on applique différents taux de
service selon la distance entre le fournisseur du service et le client. Pour que les probléemes
abordés restent analytiquement solubles et aisément maniables, nous supposons qu’il existe
deux taux de service différents pour chaque fournisseur : 'un lorsqu’il fournit le service dans sa
zone (c’est-a-dire un service intra district) et 'autre lorsqu’il le fournit en-dehors (c’est-a-dire
un service interdistrict). La seconde contribution est de proposer une approche qui permette
d’obtenir une solution pour les problémes qui ne sont pas analytiquement maniables du fait
de leur taille. Nous testons ces deux méthodes au travers de plusieurs heuristiques efficaces
afin de montrer leur applicabilité pour des algorithmes traitant des problémes réels.

Dans la seconde partie de cette these, nous travaillons a améliorer les systémes d’autopartage,
principalement ceux qui utilisent des véhicules électriques et dont les conditions de fonc-
tionnement sont différentes du free-floating. Nous considérons ce probléme a trois niveaux :
stratégique, tactique et opérationnel. Les décisions stratégiques concernent l'infrastructure
(par exemple la localisation et la taille des stations) ; les décisions tactiques concernent les
véhicules et le personnel (par exemple la taille de la flotte de véhicules et le nombre d’employés
nécessaire) alors que les décisions opérationnelles concernent le fonctionnement du systéme
au jour le jour (par exemple la redistribution des véhicules ou le tournus et les horaires du
personnel). Les deux premiers aspects (stratégique et tactique) sont traités conjointement
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Résumé

dans le premier chapitre de cette partie. Une formulation en programmation linéaire mixte
avec variables entieres et a fonctions objectif multiples (différentes fonctions objectifs sont
appliquées pour 'opérateur du systéeme et I'utilisateur) est proposée et utilisée pour obtenir
la solution dans différents scénarii. Le modeéle est appliqué a un cas réel, celui d'un service
d’autopartage a Nice.

Dans le deuxieme chapitre de cette partie, c’est le probléme opérationnel pour ces systemes
d’autopartage qui est traité. Une formulation en programmation linéaire mixte avec variables
entieres est proposée pour le résoudre. Il décide du positionnement initial des véhicules, des
opérations de redistribution, de 'emploi du temps ainsi que des missions de redistribution du
personnel. Afin de garantir la robustesse, la flexibilité et 'applicabilité des décisions issues
du modele, quelques contraintes supplémentaires sont ajoutées. On cherche a améliorer la
flexibilité du point de vue des usagers : il est alors supposé qu'’ils puissent occasionnellement
prendre ou déposer un véhicule plus t6t ou plus tard que prévu dans leurs réservations. Pour
gérer de telles situations, un ensemble de contraintes est introduit dans le modele afin d’avoir
des véhicules et des places de parc libres au bon moment et au bon endroit. Ce chapitre est
en cours d’avancement mais est tout de méme inclus dans la dissertation pour présenter les
résultats préliminaires qui ont été obtenus.

Dans la derniére partie de cette thése, nous proposons un outil économe en ressources pour
estimer les temps de parcours dans le cas des problémes traités précédemment. Nous nous
appuyons principalement sur la littérature existante traitant de la théorie variationnelle et du
diagramme fondamental de zone. Nous étendons d’abord les travaux existants sur I'évaluation
du temps de trajet dans des réseaux homogenes a des réseaux aux caractéristiques hétérogenes
(par exemple longueur des routes et arteres, offset entre les feux tricolores ou encore intensité
des flux de trafic tournant). Nous menons cette recherche ala fois sur les réseaux multimodaux
et sur les réseaux unimodaux, c’est-a-dire comprenant un et un seul mode de transport. Plus
spécifiquement, dans cette partie de la recherche, nous évaluons les effets des parameétres du
réseau sur les deux caractéristiques clés du diagramme fondamental de zone : la capacité et la
gamme de densité atteinte lorsque le réseau est a capacité.

Malgré le peu de données a disposition, nous sommes parvenus, au cours du processus d’amé-
lioration des outils développés, a certaines conclusions qui sont applicables non seulement a
I'estimation du temps de parcours mais aussi au trafic dans les réseaux urbains. Une solution
en forme close qui repose sur les caractéristiques du systeme et qui donne la gamme de
densité a capacité pour un réseau homogene a été proposée et prouvée. Ensuite, les effets
de la modification des caractéristiques du systeme sont étudiés a la fois pour les réseaux
homogenes et les réseaux hétérogenes. En outre, I'effet des flux de trafic tournant est modélisé
et leur impact en fonction de leur intensité étudié. La recherche sur ce sujet est étendue aux
réseaux multimodaux, particulierement ceux dans lesquels sont déployés des services de
bus réguliers. Les outils développés dans cette partie peuvent étre utilisées pour créer des
stratégies de controdle hiérarchisées dans des réseaux de transports congestionnés a grande
échelle.

Mots-clés : intervention d'urgence, files d’attentes spatialement distribuées, modeles de file
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d’attente hypercube, modeles de localisation, autopartage, mobilité électrique, optimisation
multi objectifs, programmation en nombres entiers, redistribution de véhicules, planification,
théorie variationnelle, diagramme fondamental de zone, simulation, capacité du réseau,

systemes multimodaux.






Contents

Acknowledgements
Abstract (English/Francais)
Contents

List of Figures

List of Tables

1 Introduction

1.1 Contextand Motivation . ................
1.2 Thesis Contributions . . . ... .............
1.2.1 Hypercube QueueingModels . . . .. ... ..
1.2.2 One-Way Car-Sharing Systems . . . . ... ..

1.2.3 Estimation of Network Capacity in Congested Urban Systems. . . . . . .

1.3 ThesisOutline . . . ... ... ... ... ... .....

I Hypercube Queueing Models

2 Approximation Methods for Large-Scale Spatial Queuing Systems

2.1 Introduction .. ... ...................
2.2 LiteratureSurvey .. ... ................
2.3 Hypercube QueueingModels . . . . ... ... ....
2.3.1 ANote on 2" Hypercube Queueing Model . .
2.3.2 3" Hypercube QueueingModel . . . . ... ..
2.3.3 3" Aggregate Hypercube Queueing Model . .
2.4 Mix Aggregate Hypercube Queueing Algorithm . . .
2.4.1 BinlInteractions .. ... .............
2.4.2 PartitioningModel . . ... ... ... .....
2.5 ComputationalResults . . . ... ............
251 Accuracyof3"HQM . ..............
2.5.2 Heuristics for Better Location of Servers . . .

2.5.3 Performance Measures of Hypercube Models

xiii

xvii

G W W W =

10
11
12
13
14
17
20
21
24
29
30
32
33

Xiii



Contents

II

III

5

Xiv

2.6 ConcludingRemarks . . .. ... ... ... ... . . . . . . ..

One-Way Car-Sharing Systems

An Optimization Framework for One-Way Car-Sharing Systems

3.1 Introduction . . . ... ... ... ...

3.2 PreviousRelatedResearch . . . . ... ... ... .. .. ... .. ... .. .. ..
3.2.1 Models for Strategic Planning Decisions . . . .. ... ...........
3.2.2 Operational Decisions . . . ... ... ... ... . ...,

3.3 Model Description . . . . .. .. ... e
3.3.1 System Characteristics . . . . ... ... ... ... . ... ... ..
3.3.2 MathematicalModel . . . ... ... ... .. ... . .. ... . ...

3.4 ModelApplication . .. .. ... ... ..
3.4.1 Car-SharingSysteminNice . .. ... ... .. ... ... .. ........
34.2 EffectofDemand . ... ..... ... ... ... ... o
3.4.3 Effect of Accessibility Distance . . . . .. .. ... ... .. .........
344 EffectofSubsidy .......... .. .. ...

3.5 ConcludingRemarks . . ... ... ... ... .. ... ..

Operational Framework for One-Way Car-Sharing Systems

4.1 Introduction . . . . . . . . . . i i e e e e e
4.2 Mathematical Model . . . ... ... .. . . .. ... e e
4.3 ExperimentalResults . . . .. .. ... ... ... ... ... e
4.4 Conclusions and Future Research Directions . . . . .. ... ............

Estimation of Network Capacity in Congested Urban Systems

The Effect of Variability of Urban Systems in The Network Capacity
5.1 Introduction . . . . . . . . . . . . i e e e e
5.2 ANoteon Variational Theory . . ... .. ... ... ... ... ... .. .....
5.3 HomogeneousNetworks . . . . . .. ... ... . ... . ...
5.4 Simulation Framework . . . . . . ... . ... . ... ... e
54.1 IncomingTurns . . ... ... ... ... .. e
5.5 Results . . ... .. . ... e
5.5.1 Deterministic Network Parameters . ... ..................
5.5.2 Stochastic Network Parameters . . . . . ... ... ... ...........
5.6 Conclusions . . . . . . . . . . . . e e

Estimation of the network capacity for multimodal urban systems

6.1 Introduction . . . ... ... ... . ...

6.2 Literature Review . . . . . . . . . . ..
6.2.1 Traffic Models for Multi-Modal Transport Systems . . . ... .......

39

41
41
43
43
45
48
48
53
61
64
67
70
70
71

73
73
74
80
85

87

89
89
91
94
100
103
106
106
108
113



Contents

6.2.2 Macroscopic Models of Single-Mode Traffic in Urban Networks . . . . . 118

6.3 Methodological Description . . . . . . ... .. .. ... ... .. .. .. .. ..., 119
6.3.1 Extension of VT for Multi-Modal Networks . . . . .. ... ......... 119

6.4 ImplementationandResults . ... .. ... ... ... ... . . ... .. ..., 122
6.5 Conclusions . . . . .. . .. .. e 128

7 Conclusions 131
7.1 Hypercube QueueingModels . . . .. ... ... ... ... o 131
7.2 One-WayCar-Sharing . .. ... .. .. ... .. .. .. . . 132
7.3 Estimation of Network Capacity in Congested Urban Systems . . . . .. ... .. 132
Bibliography 135
Curriculum Vitae 145






List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Larson (1974)’s 2" HQM for three servers with equal intra and interdistrict service
rates (y;). State “011”, “111” and the transition connecting them is shown with
differentcolors. . . . . . . . . .

3" HQM model for two servers with different intra (u;) and interdistrict (,u;.)
service rates. State “210”, states directly connected to it and transitions are
coloreddifferently. . . ... ... .. ... .. ...

3" AHQM for two bins containing two servers in each bin with different intra (1)
and interdistrict (p;o) service rates, and primary demand areas (A ;). State “10/01”
and states connected to it are filled with different colors to show an example of
transition equations. . . . . . . . . . L e e e e e

Part of the transition diagram of a 3 AHQM for two bins containing six servers in
each bin with different intra (i) and interdistrict (u}) service rates, and primary
demand areas (A;). States “32/41” (green), “42/41” (red) and their neighbor
states (blue) are depicted to help to visualize transition equations of the former
EWOSTALES. . . o v vt e

An illustration of the partitioning approach. . . . ... .. ... ... .. .....

An illustration for bin interactions. Dark and light blue squares represent de-
mand requests and red circles show the server locations in two subregions 2
and 4. Larger circles centering servers show their accessibility area. If there is
no available server in region 2, for an incident happening in light and dark blue
atoms, we need touse serversinregion4.. . . . . ... ... L oL L.

Pseudocode forthe MHQA . . . . . . . . . . . . . . . ..

The demand distribution of the two networks used in our experiments: Central
Athens (top) and experimental (bottom). . . . . .. ... .. ... ... ......

The ratio of difference between the loss rates calculated by simulation and the
approximation method proposed. . . . . ... ... .. ... oo ..

13

15

18

19

22

30

31

xvii



List of Figures

2.10 In the top two graphs (a and b), the effect of increased demand and accessibility
range is shown for incidents of 8 servers (with 3” HQM). The same server loca-
tions are selected in all incidents, which can be seen in the map given below the
two graphs (c). Both the fraction of time each server is busy (line) and the frac-
tion on intradistrict response (column) are shown in a and b. The total demand
at each servers’ primary and secondary service area are shown under the x-axis
respectively. Note that the values in parenthesis in the legend are the loss rates.

2.11 The effect of increased demand on 5 best instances of different demand levels.
In all instances, the number of servers is 12, on scene service time is 20min and
accessibility range is 30km. The fraction of time for different busy servers’ count
(line) and the ratio of servers in intradistrict response (columns) can be seen in
the figure. Lost rates for each demand level is given in parenthesis in the legend,
next to the related demandlevel. . . . . .. ... ... ... .. ...........

2.12 Illustration of a system with three servers and three service range belts for each
SEIVET. & & v v v vt e e e e e e e e e e e e e e e e e e e e e e e e

3.1 Relationship between strategic, tactical and operational decisions . . . . . . . .

3.2 The relationship between time intervals and operations where T = {tl, 1, [ T|}
isthesetoftimeintervals. . . . . . . . . . . . . . . ... ...

3.3 (a) Location of stations and historical trips generated between origins and desti-
nations; (b) Origins and destinations are grouped according to the set of accessi-
ble (candidate) stations; (c) Based on this aggregation, a specific demand can be
served in two different ways (tripland2). . . . . ... .. .. ... ... ... ..

3.4 Atoms used in populationcoverage . ... ... ... ... .. ...

3.5 Average absolute error of imaginary hub usage in relocation for different number
of relocations. Different n values are compared in order to find the most suitable
valueforourcase. . . . . . .. ...

3.6 Summary of the methodology for the entire approach with the weights woperator
and wysers for the users’ and operator’s benefit respectively . . . . ... ... ..

3.7 The origin and destinations of the divided trips, the operating (blue) and candi-
date (gray, black and red) stations and their catchmentareas ... ... .. ...

3.8 The efficient frontier for the case of Nice, France. . . . .. .. .. ... ... ...
3.9 The costs, benefits and revenues with the increaseddemand . . . ... ... ..
3.10 The costs, benefits and revenues for different maximum accessibility distances

3.11 The costs, benefits and revenues for different subsidylevels . . . . ... ... ..

4.1 The network of Nice utilized in the operational model . .. ... ... ... ...
4.2 Legendforfigures4.3and4.4 . .. ... ... .. ... e

4.3 A Gannt chart including all time intervals and stations for an instance with 200
P Irequests . . . . . . . o o e e e e e e e e e

4.4 Asmaller area of the Gannt chart given in Figure4.3 . .. ... ..........

xviii

35

37

38

48

49

51
52

62

63

65
67
68
69
71

81
81



List of Figures

5.1

5.2

5.3
5.4

(a) The MFD defined by a 1-parameter family of “cuts” (Daganzo and Geroliminis,
2008) and both forward, backward and stationary observers in a time-space (b)

and their associated “cuts” in a network flow-density diagram (¢). . .. ... .. 93
Regions and formulations of each region according to Corollary (1) for L/ us +

LIw<C. . e 101
Simulation platform: (a) pseudocode (b) time-space diagram . . . . . ... ... 103

Integrating the effect of incoming turns within variational theory: time-space
diagrams for forward (a) and backward (b) moving observers with (F and B) and
without turns (F; and B;), flow-density diagrams without (c) and with (d) turns. 104

5.5 Deterministic cases (Homogeneous networks). Range and Capacity for different
values of topological and signal characteristics (part1). . ............. 107
5.6 Deterministic cases (Homogeneous networks). Range and Capacity for different
values of topological and signal characteristics (part2). ... ........... 108
5.7 Stochastic L (part1) . .. .. . . . v it e e e 109
5.8 Stochastic L (part2) . . . . . . . . i it it e e e e e 110
5.9 Stochasticd . . ... . ... e 111
5.10 The effect of incoming turns in capacity and range (part1). .. ... ... .. .. 112
5.11 The effect of incoming turns in capacity and range (part2). .. ... ... .. .. 113
6.1 A time-space diagram for an arterial with periodical signalized intersections and
DUS SIOPS . . . o o e e e e e 120
6.2 Busstops with correlated offsets . . . .. ... ... ... ... .. ... 123
6.3 Pseudocode for finding forward and backward moving observer parameters . . 124
6.4 Vehicle and passenger capacities of networks with buses (part1). . ... .. .. 125
6.5 Vehicle and passenger capacities of networks with buses (part2). . ... .. .. 126
6.6 Vehicle and passenger capacities of networks with and without buses for some
SPECIfICCASES . . . v v v i e e e 127
6.7 A multi-reservoir, multimodal system . . . . ... ... ... .. ... ...... 129

Xix






List of Tables

2.1

2.2

3.1

4.1

The best lost rate found by MEXCLP, VNS and SA algorithms for the Athens

network givenin Figure2.8a. . . ... ... ... .. .. .. .. oL 33
The best lost rate found by MEXCLP, VNS and SA algorithms for the experimental

network givenin Figure2.8b. . .. ... ... ... .. ... ... . . 34
Values of the parameters usedinthemodel . .. ... ... ............ 66
Comparing one-way car-sharing systems with and without relocation . . . . . . 84






|§ Introduction

1.1 Context and Motivation

At the beginning of the 20! Century, the world population was around 1.7 billion and not more
than 20% of the whole world population was living in the cities. In 2010, first time in history,
total urban population has passed the rural population. The 7 billion barrier has reached on
October 2011 and in the year 2016, it is expected to have an urban population of 4 billions (UN,
2011). This dramatic population increase in the urban areas increases the pressure on the
urban services. In order to keep the level of service in acceptable levels under high demand
scenarios, operations need to be planned and handled in the highest efficiency. In this thesis,
we are dealing with the modeling and optimization of two different urban systems, emergency
response and car-sharing services. Our aim is to increase their efficiency while keeping them
economically feasible. The models provided for both systems are applicable to different
demand responsive systems. In both models we are dealing with location and dispatching
decisions. These systems are beneficial to the society, environmental- and user-friendly.

In the first part of the thesis, we are dealing with spatial queueing models. These models can
be regarded as useful tools for modeling distributed urban service systems such as emergency
services (e.g. ambulance, police, fire, emergency repair), door-to-door delivery services
(e.g. mail and parcel delivery), neighborhood service centers (e.g. clinics, libraries) and
transportation services (e.g. bus, subway, taxi and para-transit services) (Larson and Odoni,
1981). More specifically we build our research on extending the prior work on 2" hypercube
queueing model proposed by Larson (1974). 2" hypercube queueing model assumes that
compared to time spent on the scene, travel time is negligible in services. In other words, in
this model, for any given server, service time is not effected by the location of the incident.
In our research, we proposed two new 3" hypercube queueing models (one detailed and
one aggregated) that enable to use different service rates for different server-incident pairs.
This way, effect of distance between the server and the incident is also taken into account in
calculating system performance of these systems. The developed framework allows to model
and optimize medium to large-scale systems, which would not be possible with the classical
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hypercube model.

The second part of the thesis is about (non-floating) one-way (electric) car-sharing systems.
Car-sharing is a new model of car rental that enables users to rent for short period of time.
Depending on the type of the system, they can be regarded as complementary services to rigid,
scheduled public transportation for the society. They contain both the efficiency of the public
transportation for the society and the flexibility of owning a vehicle for the users at the same
time. It can be regarded as the missing link for continuous choice of people’s demand, the way
to answer this problem with minimum cost.

In general, there are two types of car-sharing systems mostly used in the system. Two-way and
free-floating one-way. In two-way, vehicles should be returned where they have been picked-
up. They are easy to maintain by the operators and enable users to do early-reservations. On
the other hand, free-floating one-way systems allow users to drop-off vehicles in designated
areas. However, early-reservations are not directly applicable since vehicles locations are
not predictable. Our recommendation is something that takes strong parts of both systems:
reservation capability of two-way systems and drop-off flexibility of non-floating one-way
systems. In the system we have proposed, vehicles are picked-up and dropped-off into
designated parking areas. Users should state their origin and destination stations and, pick-up
and drop-offlocations in their reservation requests. The system is designed with the objective
to serve a large number of requests while keeping the cost for the operator at reasonable levels
through a multi-objective optimization. Designated parking spots are also crucial for electric
vehicles since they need to be charged regularly, especially when utilization rates are high.

In Chapter 3, we deal with the strategic (e.g. location, size and count of the stations) and
tactical decisions (e.g. fleet and relocation personnel size) of one-way car-sharing systems. In
Chapter 4, we handle the operational decisions (e.g. vehicle and personnel relocations) with a
model that enables flexibilities to pick-up and drop-off times.

The third part of the thesis (chapters 5 and 6) is related to travel time estimation in congested
urban areas. We have mostly benefited from literature related to macroscopic fundamental
diagram and Variational theory. We have built on the previous works on Daganzo and Geroli-
minis (2008) and Geroliminis and Daganzo (2008). These two papers showed the existence
of relationship between the density and the flow of urban networks. In addition, the former
proposed moving observer method to calculate flow and density in urban networks with
homogeneous characteristics. The cuts generated with the help of this method bounds the
flow-density diagram from above.

The two main contributions of this part of the thesis is to find a closed formulation for the
density range of the maximum capacity of the urban networks. Second, we have applied the
method to the networks with heterogeneous system characteristics (i.e. link length, offset
and distance between traffic signals). We have also added the effect of left turn to our results.
Last but not least, multimodal networks are taken into consideration with different system
characteristics. In this part of the thesis, our ultimate aim was to estimate speed with the
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help of flow and density. Although, lack of data prevent us to implement such tools for our
work, this approach has potential to be applied in the operational research literature. It is
also currently integrated for large scale urban control for single mode and multimodal traffic
systems.

1.2 Thesis Contributions

We can categorize the contributions of the thesis into three groups: hypercube queueing
models, one-way car-sharing systems and estimation of network capacity in congested urban
systems.

1.2.1 Hypercube Queueing Models
» We propose two new 3" hypercube queueing models.

The previous hypercube queueing model proposed by Larson (1974) assumes that the
service rate of a server is not a function of the customer (or the incident) characteristics
itis serving. In other words, he assumes that the distance between the customer and
the server has no effect on the service rate. We propose two new 3" hypercube queue-
ing models which enable servers to have different service rates for different customer
groups.

o We implement a new approximation algorithm for medium to large size cases to solve
3" hypercube queueing model.

The size of the state space of hypercube queueing models grows exponentially. There is
aneed for an algorithm that can handle these problems. For this purpose, we develop an
approximation algorithm that integrates partitioning to smaller (and faster) problems
and then merging the larger ones with another 3" aggregate hypercube queueing model.

» We devise the 3" hypercube queueing models inside optimization frameworks.

Hypercube queueing models are descriptive models and only enable to analyze. In this
research, we implement them inside optimization frameworks and use them as tools to
improve spatial queueing systems.

1.2.2 One-Way Car-Sharing Systems

» We propose a decision support tool for strategic and tactical decisions for one-way
electric car-sharing systems.

In non-floating one-way car-sharing systems, users pick-up and drop-off vehicles into
designated parking areas. Different than the two-way systems, users have freedom
to park vehicle into a different parking space than the spot they have picked-up. In
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this research, we propose a decision support tool to have better strategic and tactical
decisions, e.g. locations and capacities of the stations, fleet size and relocation personnel
count. A multi-objective mathematical programming formulation containing both the
operator’s and the users’ objective functions is developed to model general electric
car-sharing systems. Various scenarios are used in order to keep results robust.

+ A mathematical model for operational decisions of one-way electric car-sharing systems
is developed.

We regard daily vehicle and personnel relocations, and personnel assignments to desig-
nated shifts as operational decisions. We develop a mixed integer linear programming
formulation for these operational decisions. The model takes reservations of the users
and layout of the car-sharing system as input and finds the decisions which minimizes
total cost of operations. In order to keep outcomes of the model robust for the users’
reservations, we add some soft constraints that assumes users’ stated pick-up and drop-
off times might deviate from the reality. With the help of these soft constraints, we keep
vehicles and empty spots at the right place at the right time.

1.2.3 Estimation of Network Capacity in Congested Urban Systems

* We propose and prove new closed formulation for finding the density range of the
maximum capacity of the large scale homogeneous urban networks.

The formulation given in Daganzo and Geroliminis (2008) is altered for the moving
observer method. This new formulation is also supported with a set of lemmas and their
proofs.

+ We expand the method to networks with heterogeneous characteristics and left turns.

The work of Daganzo and Geroliminis (2008) and Geroliminis and Daganzo (2008) are
applied on networks with homogeneous characteristics. We apply similar approaches
on networks with heterogeneous characteristics in terms of topology and signal settings.
The effect of incoming turns in the network capacity are also investigated.

» The network capacity for multimodal systems that involve service related stops (buses,
taxis etc) is also investigated.

In this research, we investigate the effect of public buses on the urban networks. For
different frequency of bus arrivals and bus-stop locations, the change in capacity and
density range of the maximum capacity are investigated. While bus operations might
decrease the vehicular capacity, there is a significant increase in the passenger flows in a
network. These findings can be integrated in an optimization approach for redistribu-
tion of urban space among different modes.
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1.3 Thesis Outline

We organize the thesis in three parts.
Part I focuses on hypercube queueing models.

Chapter 2 deals with 3" hypercube queueing models and approximation algorithm including
partitioning model. An exact and an approximate algorithms are developed to have steady
state properties of 3" hypercube queueing problems. This chapter is presented as:

» B. Boyaci and N. Geroliminis. Extended hypercube models for large scale spatial queue-
ing systems. In 91th Annual Meeting of the Transportation Research Board, Washington
D.C., 2012c

e B. Boyaci and N. Geroliminis. Facility location problem for emergency and on-demand
transportation systems. In 12th Swiss Transport Research Conference, Monte Verita,
2012b

» B. Boyaci and N. Geroliminis. Extended hypercube queueing models for stochastic
facility location problems. In 25th European Conference on Operational Research (EURO
XXV), Vilnius, 2012a

» B.Boyaci and N. Geroliminis. Extended hypercube models for location problems with
stochastic demand. In 2nd Symposium of the European Association for Research in
Transportation, Stockholm, 2013

This chapter is submitted to the journal of Tranportation Research Part B: Methodological for
publication.

Part I1 is related to (non-floating) one-way (electric) car-sharing problems.

Chapter 3 deals with strategic and tactical decisions of generic one-way car-sharing systems.
The optimization framework takes demand, current system state (e.g. stations in operation)
and cost components (e.g. fixed and variable cost of stations) as an input and returns an
efficient frontier of the solutions.

This chapter is submitted to the European Journal of Operational Research. It is under the
second round reviews. This chapter is also presented as:

» B. Boyaci, N. Geroliminis, and K. Zografos. A generic one-way multi-objective car-
sharing problem with dynamic relocation. In Proceedings of the Eighth Triennial Sympo-
sium on Transportation Analysis (TRISTAN VIII), San Pedro de Atacama, 2013c

» B. Boyaci, N. Geroliminis, and K. Zografos. Developing and solving an integrated
multi-objective model for supporting strategic and tactical decisisions for one-way
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car-sharing systems. In 26th European Conference on Operational Research (EURO
INFORMS MMXIII), Rome, 2013a

« B. Boyaci, N. Geroliminis, and K. Zografos. An optimization framework for the devel-
opment of efficient one-way car-sharing systems. In 13th Swiss Transport Research
Conference, Monte Veritd, 2013b

Chapter 4 contains the mathematical model for operational decisions (e.g. vehicle and person-
nel relocation) of generic one-way car-sharing systems. This part of the thesis is still research
in progress. Preliminary results are shared in the dissertation.

Part III is about estimation of the network capacity in the congested urban networks.

Chapter 5 contains research on estimation of networks capacity in urban networks with traffic
signals. Variational theory and macroscopic fundamental diagrams are used to investigate the
capacity and the density range of the maximum capacity for different network characteristics.
A preliminary version of this chapter is presented as:

¢ B. Boyaciand N. Geroliminis. Exploring the effect of variability of urban systems charac-
teristics in the network capacity. In 90th Annual Meeting of the Transportation Research
Board, Washington D.C., 2011b

The same chapter is published as:

» N. Geroliminis and B. Boyaci. The effect of variability of urban systems characteristics in
the network capacity. Transportation Research Part B: Methodological, 46(10):1607-1623,
2012

Chapter 6 is an extension of work on network capacity to multimodal networks. We add public
buses to the network to see the effect of multimodality on the capacity and the density range
of the maximum capacity. This chapter is published and presented as:

« B. Boyaci and N. Geroliminis. Estimation of the network capacity for multimodal urban
systems. In 6th International Symposium on Highway Capacity and Quality of Service,
2011a. 6th International Symposium on Highway Capacity and Quality of Service

A journal publication of the chapter is under preparation.
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4 Approximation Methods for Large-
Scale Spatial Queuing Systems

Different than the conventional queueing systems, in spatial queueing systems (SQS) the
service rate for each customer-server pairs differs and the server that intervenes for a specific
customer is not known a priori, depending on the availability of servers at the moment a re-
quest was made. These features make the SQS computationally expensive (almost intractable
for large scale) but at the same time more suitable for real-life problems with high reliability
expectations. Emergency response and on-demand transportation systems are two similar
systems that can be modeled with the spatial queueing systems.

Emergency response system location problems are one of the first problems immensely dealt
in the optimization literature. In most approaches, the instances of this problem are modeled
as either set covering or transportation models which disregard stochastic nature of the
problem.

In this chapter, we aim to solve facility location problems as SQS with stochastic demand and
service time. The stochasticity concerned here is temporal and spatial, that emerges from the
uncertainty in the demand and service time. In order to tackle this problem Larson (1974)’s
2" hypercube queueing model (HQM) is extended to 3" HQM. In our model, there are two
different possible service types for each server: (i) service for locations in the proximity of a
server (area of responsibility) and (ii) service for other locations where the first responsible
server is busy during this event. In addition, to decrease the dimension of the problem, which
is intractable due to their size, a 3" aggregate hypercube queueing model (AHQM) is also
developed that treats group of servers (bins) in a similar manner by considering interactions
among bins. An efficient graph partitioning algorithm is proposed to cluster servers in groups
with an objective to minimize the interactions among groups. Both exact and approximate
approaches are integrated inside two optimization methods (i.e.variable neighborhood search
and simulated annealing) to find server locations that improve system performance. Com-
putational experiments showed that both developed models are applicable to use inside
optimization algorithms to find good server locations and to improve system performance
measures of SQS.
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2.1 Introduction

Location-allocation of emergency response systems is one of the oldest problems in the op-
erations research literature. Locating ambulances, fire brigades and police-beats were the
pioneer problems mathematically modeled and solved. Although there are quite a few number
of works on the subject, many of them disregards the stochastic nature of the problem and
find solutions with deterministic assumptions. However, this specific property is the one
that differs emergency response system location-allocation problems from the other types of
location-allocation problems. This randomness (in demand rates, service times and servers’
intervention) creates unexpected congestion and eventually causes losses. While stochasticity
in demand and service rates have been included in many researches, the choice of the server
based on the state of the system (location of request and availability of other servers) has been
addressed in only a few instances for small-scale systems.

There are different methods in the literature dealing with locating emergency response systems.
One of the models that was proposed by Larson (1974) models this problem as a spatial
queueing model which is also known as 2" hypercube queueing model (HQM). In 2" HQM,
each emergency response unit is regarded as a server on an Euclidean space and each of them
has two states, available and busy generating 2" possible states for the system (where n is the
number of servers); these are the vertices of a hypercube.

Larson (1974) assumed that since the time spent on the way to scene is negligible compared
to the service time on scene, the region that is served has no effect on the service time, i.e.
for a specific server, service time is the same for any region. This may be acceptable for
some systems like fire brigades but not for ambulances. In this research, our aim is to alter
Larson (1974)’s 2" HQM in such a way that enables the model to use different service rates
for different server-region pairs. For this purpose a new 3 HQM is proposed. In 3" HQM,
each server has three states: available, busy inside primary service area (intradistrict) and
busy outside primary service area (interdistrict), which creates an intractable hypercube for
even medium size problems (with more than 8 servers). In order to tackle larger problems
an aggregate method, namely 3" aggregate HQM (AHQM) is also developed. Instead of
estimating each server state separately, 3" AHQM keeps the number of servers at each of
the 3 states (i.e. available, busy with intradistrict, busy with interdistrict) at each bin (i.e. set
of servers). To identify bins, AHQM is integrated inside mix aggregate hypercube queueing
algorithm (MHQA). In a nutshell, MHQA bi-partitions the whole problem area into tractable
HQM subproblems and merges the solutions of each subproblems’ in the reverse order of the
bi-partitioning with AHQM. Both methods are used to find better locations for emergency
vehicles to improve a real and an experimental regions with the help of two optimization
algorithms, the variable neighborhood search (VNS) and the simulated annealing (SA).

The remainder of the chapter is organized as follows: In the next section, Section 2.2, we
describe significant literature about locating emergency response systems. We start with the
early location-allocation models and extend it to very recent emergency response systems
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literature. Section 2.3 describes the two new models, i.e. 3" HQM and 3" AHQM, and their
comparison with Larson (1974)’s 2" HQM. Section 2.4 contains the definition and steps of
MHQA with the mathematical model of the partitioning algorithm. In Section 2.5, we share
the computational results of our two algorithms, 3 HQM and MHQA. This part contains both
the accuracy of the two models compared to the simulation of the real system and the results
from the optimization algorithms, VNS and SA. In the last section, we discuss the conclusions
and the future research directions.

2.2 Literature Survey

The earliest models dealing with the location of emergency response systems assume deter-
ministic demand and service. They disregard the stochastic nature of the problem and model
the problem by median and coverage models.

The first median problem was created by Fermat in the 17th Century: Given a triangle, find
the median point in the plane such that the sum of the distance from each point of the points
to the median point is minimized. Weber (1909) extended the problem with more than three
points with weights and objective minimizing total weighted distance. Both Weiszfeld (1937)
and Hakimi (1964) proposed methods to solve the Fermat-Weber problem optimally, the former
gives the optimal location in the Euclidean space whereas the later for networks. Cooper (1963,
1964, 1972) modeled the existing Fermat-Weber problem with more than one facilities and
proposed efficient heuristic methods. Calvo and Marks (1973) grouped the population into
groups and introduced facilities of these groups. Weaver and Church (1985) proposed the
vector assignment p-median problem which aims to minimize total transportation cost while
forcing the demand nodes to have service from k closest facilities with predefined ratios.

Coverage models are used to locate facilities (i.e. emergency response systems) in such a way to
maximize coverage and/or minimize number of facilities. The first two models, the location set
covering problem (LSCM) aims to minimize number of facilities to cover all demand (Toregas
et al., 1971) and the maximal location set covering problem (MCLP) aims to maximize total
coverage with limited number of facilities (Church and ReVelle, 1974). Schilling et al. (1979)
proposed a model that aims to have multiple coverages with different types of facilities. Daskin
and Stern (1981) promoted the multiple coverage as a secondary objective. Aly and White
(1978), Hogan and Revelle (1986), ReVelle and Hogan (1989), Marianov and ReVelle (1992),
Ball and Lin (1993), Gendreau et al. (1997) have extended the works given above in different
aspects.

In addition to the two main types of models given above, there are also dynamic models
proposed in the literature. The main idea in these models is to relocate the facilities (e.g.
ambulances, fire brigades) when one or more of the facilities are dispatched for an incident.
Kolesar and Walker (1974) proposed a model for the fire brigades. Recently, with the increase
in computational power, relocation model applications for ambulances have also emerged.
Gendreau et al. (2001) proposed a parallel tabu search heuristic to solve relocation model
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efficiently. Gendreau et al. (2005) and Schmid and Doerner (2010) are the two recent models
on dynamic facility location problems for emergency response systems where the latter is the
multistage approach of the former one. Andersson and Véarbrand (2006) proposed a decision
support tool for a similar aim.

Larson (1974) proposed a hypercube queueing model (HQM) which is the first model that
embeds the queueing theory in facility location-allocation literature. This model analyzes
systems such as emergency services, door-to-door pickup and delivery services, neighbor-
hood service centers and transportation services which has response district design and
service-to-customer mode (Larson and Odoni, 1981). The solution of the model provides
state probabilities and other related system performance measures (e.g. workload, average
service rate, loss rate) for any given server locations. Nevertheless, it is a descriptive model
that only allows to analyze scenarios Galvao and Morabito (2008). HQM models the current
configuration as a continuous-time Markov process and does not determine the optimal
configuration.

The first model proposed by Larson (1974) assumed that the service time is not a function of
the locations of the calls for service and the dispatched unit. This argument was supported
with the claim that the time spend on the way to scene is negligible compared to the service
time on scene. Since, even with this simplification, as the number of servers (n) is increased,
number of states grows exponentially; Larson (1975) proposed a heuristic method. Jarvis
(1985) altered this heuristic for the systems with both server and customer dependent service
times. Atkinson et al. (2008) proposed a partial 3" model in which each region takes service
from two servers with different service rates.

Takeda et al. (2007) showed the benefits of decentralization of emergency response systems
with the help of hypercube models in Brazil. lannoni and Morabito (2007); Iannoni et al. (2008)
embedded hypercube in a genetic algorithm framework to locate emergency vehicles along a
highway. They extended the problem to enable multiple dispatch (i.e. more than one server
may be needed for an incident). Geroliminis et al. (2009, 2011) integrated the location and
districting decisions in the same optimization and solve the problem by using steepest descent
and genetic algorithm respectively.

As it is stated before, there is an extensive literature on location and coverage literature. The
more interested readers can apply to Hale and Moberg (2003), Owen and Daskin (1998),
Brotcorne et al. (2003) and Laporte et al. (2009) for broader survey for the related topic. The
former two are surveys generally on location and coverage literature whereas the latter two
focus more on the ambulance location-relocation models.

2.3 Hypercube Queueing Models

This section provides a description of the existing 2” hypercube model of Larson (1974) and
formulates two new models to deal more accurately with interactions of servers.
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Preference List
R1: S1 S2 S3
R2: S2 S3 S1
R3:S3S1 S2

Figure 2.1: Larson (1974)’s 2" HQM for three servers with equal intra and interdistrict service
rates (y;). State “011”, “111” and the transition connecting them is shown with different colors.

2.3.1 A Note on 2" Hypercube Queueing Model

The HQM proposed by Larson (1974) includes hypercubein the name since the transition graph
of the continuous time Markov chain representing this queueing structure has a hypercube
structure when the number of servers is more than three. The state variables contain » binary
variables for n servers showing if server i is available (0) or busy (1). Each state is a number in
base 2 and each digit shows the state of the corresponding server. For each region, which is
called atom (j) in HQM literature, there exists a priority list of servers. Incidents at each atom
are dispatched to the available server with the highest priority for this atom. If there does not
exist any available server that can serve the atom, either the call is lost (i.e. call for ambulance
may be dispatched by a backup system) or joins a queue to be served (i.e. customers are asked
to wait until there is an available server) depending on the assumptions. Service requests
arrive from each atom according to an independent Poisson process with rate A ; and servers
have exponential service rates of u; for any atom served. The transition graph of 2 HQM with
three servers can be seen in Figure 2.1. It is seen on that simple graph that as the system gets
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congested, the burden on the free server(s) increases. For instance in state “011” all the servers
but the third are busy. That is why the next incident in any region will be served by the third
server and transition rate from “011” to “111” is A; + A, + A3. Such a model does not consider
different service rates for inter and intradistrict responses.

2.3.2 3" Hypercube Queueing Model

In this research, we first develop the transition equations for a 3” HQM. If different rates for
intra and interdistrict responses are applied, each server has three possible states: available
(0), busy with intradistrict (1) and busy with interdistrict (2). Figure 2.2 is a transition graph of
a system of the same type with three servers. Given the large number of transitions and states
the illustration for a system with more servers would be difficult to visualize. For instance
“210” represents the state in which first server is available, the second intervenes an incident
inside its own region and the third intervenes an incident outside its own region (state reads
from right to left). Since there are three possibilities for each server, the number of states also
increases to 3".

Note that, the server has always priority for the incidents inside its own intradistrict area. When
the system is empty, the first assignment should be an intradistrict assignment. However, this
does not prevent having states such as “222”. Although, practically rare for lightly congested
systems, it has a non-negative probability in all systems.

The general transition equation for the states of 3" HQM can be stated as:

P |1l@i: T =0) A+ > wi+ Y
j i:T(r,i)=1 i:T(r,i)=2

= )Y Pgut+ ) Pai+ ) P} A @1

q,i:D(q,r,i)=1 q,i:D(q,1,i)=2 q,i:D(r,q,i)=1 JER;

+ ) Pg ) A

q,i:D(r,q,)=2  jeS(r,i)

in which g and r are states which can be regarded as numbers in base 3 and, P is the steady-
state probability of state g. i and j represent servers and atoms respectively. T(q, i) is the
condition of server i in state g (i.e. i digit of g), R; is the set of atoms in the intradistrict area
of server i, S(g, i) is the set of atoms that have interdistrict response from server i if there is an
incident during state g which is generated by priority lists. 1 (*) is an indicator function. It is
equal to 1, if * is true and 0 otherwise. D(q, r, i) is another function defined as:

) .f d ) = lv T ) ) = Oy T ) ) =
D(g,r,i) = ¢ itdian D (.1)=c (2.2)
0, otherwise.

where d(q,r) is the Hamming distance between states g and r (i.e. minimum number of
transitions to reach from g to r). D(q,r,i) simply shows state pairs with the same server
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Figure 2.2: 3" HQM model for two servers with different intra (u;) and interdistrict (u}) service
rates. State “210”, states directly connected to it and transitions are colored differently.
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conditions except server i. If server i is available in state r and busy in state g, condition
of the server in state g is the output of the function. Memoryless arrivals and service rates
are simplifying the size of transitions as only states with Hamming distance equal to 1 are
connected. Such an approximation is reasonable for different types of queueing systems. Real
data can further investigate this assumption.

In building Equation 2.1, LHS is equal to the rate of leaving state r whereas RHS is equal
to the rate of entering state r. On the LHS of Equation 2.1, the total rate leaving state r is
multiplied with steady state probability of r (i.e. P,). To keep the formulation simpler, we
assume that, every atom is reachable by any server. In addition, we are formulating a system
without queue, incident from any atom is lost if the system is full. In other words, upper
transition (i.e. transition to a state with one more busy server) is possible only if there exists
an available server. That is the reason, the term 3i : T'(r, i) = 0 exists in front of the term}_; 1;.

The second and third summations multiplied with P, in the LHS of Equation 2.1 are for lower
transitions (i.e. transition to a state with one less busy server). The transition rate differs if a
server is in intradistrict (T (r, i) = 1) or interdistrict (T'(r, 1) = 2) respond.

The RHS of the Equation 2.1 is composed of transitions to state r from the states that are one
Hamming distance away. The first two summation terms are from upper transitions. They
show transitions from an upper state g after an intradistrict (first term) or interdistrict (second
term) service. The former is multiplied with y; and the latter is with .

The last two summations on the RHS of 2.1 are from lower transitions to state r. If the condition
of server i in state r is intradistrict service, then there exists a state g that forms a transition to
state r. Note that, in state g and r all servers have the same condition except state i. Server
i is available in state g and busy with intradistrict in state r. The rate of the transition is the
total arrival rate for the atoms in the intradistrict area of server i. This is formulated with
the third summation on the RHS of 2.1. Similarly, if the condition of server i in state r is
interdistrict service, then we can state there is a transition between state g and r in which the
only difference between two states is the condition of server i: It is available in state g and
busy with interdistrict in state r. The fourth summation deals with the cases in which server i
is the available server with the highest priority for atom j in state g and atom j is not in the
intradistrict area of server i. This is formalized with the last summation on the RHS of 2.1.

To give an illustrative example, the transition equation for red painted state “210” in Figure 2.2
can be written as:

P210 (A] + Az + A,g + [.L,3 + [.Lz) 2.3)
= P11 + P21z + A2P200 + A2Po1o
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2.3.3 3" Aggregate Hypercube Queueing Model

Although 3" HQM is more accurate than 2", the increase in the number of states is more and
not applicable for real life cases. For instance a system with 20 servers needs more than three
billion states in 3" HQM. In order to cope with that, we develop a 3" aggregate HQM (AHQM).
In this new model, a new concept called bin is used to represent servers. It is assumed that,
each bin (b) has a capacity as it consists of a group of servers and each state consists of 2 values
for each bin, which show the number of busy servers with intra and interdistrict responses
at each bin. For intra and interdistrict service rates y; and ), for bin b and demand rate 1
for atom j, transition diagram for two bins with two servers in each bin can be depicted as
seen in Figure 2.3. Note that, each row of the state name shows condition of each bin. Given
that the number of servers per bin (capacity) is known, the state of each bin is described with
only two values. The values on the left and right are number of servers occupied by intra and
interdistrict responses respectively.

The general transition diagram for 3” AHQM can be written as:

P, |L(3n: T(r,b,free) #0)>_Aj+)_ T(r,bintra)u,
7 b
+Y T(r,b, inter)u%] = > Pyup+ Y Pyu, 2.4
b q,b: q,b: .
D(q,r,b,intra)=1 D(q,r,b,inter)=1
+ Z Py Z Aj+ Z Py Z Aj
q,b: JERyp q,b: JjesS(r,b)
D(r,q,b,intra):l D(r,q,b,inter):l

in which in addition to definitions used in Equation 2.1, b is index for bins. T (r, b, *) shows

number of servers in bin b in the condition of * (i.e. “inter”, “intra”, “free”) in state r and
D(g,r,b, %) can be defined as:

- 1, ifd(g,r)=1,T(q,b,*)=T(r,b,*)+1
D(q,rb,*)= ta.n) (:Dr) = 105 (2.5)
0, otherwise.

where * stand for conditions “inter” and “intra”.

We can see how transition equations are generated on a specific state. In Figure 2.3, in state
“10/01”, there is a busy server in bin 1 with intradistrict response which is shown with the first
line of the state name. In bin 2 there is also a busy server which is in interdistrict response.
The transition equation for this state can be written as Equation 2.6. Note that, in Figure 2.3,
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Preference List
R1: 8182
R2: S2 S1

Figure 2.3: 3" AHQM for two bins containing two servers in each bin with different intra (i)
and interdistrict (u}) service rates, and primary demand areas (A;). State “10/01” and states
connected to it are filled with different colors to show an example of transition equations.
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Preference List 2
R1: S1S2 G

R2: S2 S1

Figure 2.4: Part of the transition diagram of a 3 AHQM for two bins containing six servers
in each bin with different intra (up) and interdistrict (u}) service rates, and primary demand
areas (A ;). States “32/41” (green), “42/41” (red) and their neighbor states (blue) are depicted
to help to visualize transition equations of the former two states.

state “10/01” and its neighbor states are colored with red and blue respectively:

P1o (/11 + Ao+ H1+ /.1/2)
o1 , , (2.6)
=2 P2 + poP1o + P11 + 205 P10 + A1 Poo
01 11 01 02 01

As for the case of 3" HQM a visualization of all states in a figure for a large number of servers is
difficult. To further clarify with a more complex example, in Figure 2.4, some specific states of
a 3" AHQM with two bins of 6 servers each can be seen. The complete transition diagram of
the system in Figure 2.4 has 784 states. We just depict two states “32/41” (green), “42/41” (red)
and their neighbor states (blue) to show how transition equations are calculated. For states
“32/41” and “42/41”, transition equations can be written as follows:
P32 (A1 + Ao+ 3y +4pp + 207 + 1)
4 2.7)
=4u1Pgo +5usP3o + 3,(1/111333 + 2#’2[@32 + A1P22 + A2P32
41 51 41 42 41 31
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Pap (A1 + Ao +4py + 4 + 207 + 1)
4 , (2.8)
=5uUpPg2 +2u,Pyo + AMP32 + 1oPyo
51 42 41 31

For a 3" AHQM, if Cj, is the maximum number of servers in bin b, total number of states
equals [ w For this estimation, each bin can be regarded independently in this
calculation. The number of servers at each bin is separated into three groups: available, busy
with intradistrict, busy with interdistrict. Since the number of states each bin is independent,

the total number of states of each bin can be multiplied with each other.

As described above, 3" AHQM is a solution for larger spatial systems. It applies different service

(Cb+2)2(Ch+1) iS far

rates for intra and interdistrict responses, and has less number of states: []
less than 3”. For most of the cases with two bins, this value is even less than 2" (i.e. for the
cases with 8 or more servers). For instance, the system with 16 servers has 65536 states in 2"
and over 43 million states in 3" HQM whereas a 3" AHQM of two bins with 8 servers each
has only 2025 states. In the next section, we describe the MHQA that utilizes the two new 3"

models, i.e. 3 HQM and 3" AHQM, defined in the current section.

2.4 Mix Aggregate Hypercube Queueing Algorithm

The exponential increase in the number of states makes 3" HQM not applicable to real life
instances. For this purpose, we propose 3" AHQM which has less states. However, the way 3"
AHQM is applied, is also important for the efficiency of the method and accuracy of the results.
In this section, the details of this procedure will be described. Simply, the method we propose
contains an iterative approach that partitions the whole problem area into subregions which is
followed by an iterative solve for each partition and merge scheme for the pairs of partitions. In
our approach during the different steps of partitioning and merging we consider interactions
between groups of servers, i.e. “bins”, that are important especially in systems with many busy
servers. In the following two subsections firstly the iterative solution procedure and then the
partitioning algorithm are described. An illustration of the procedure is provided in Figure
2.5. Figure 2.5a shows the whole region with the location of all servers (red dots). Dark color
represents atoms of high demand and lighter color the ones of lower demand. Figure 2.5b
shows the primary areas of responsibilities of each server estimated with a Voronoi approach
based on Euclidean distance. Figures 2.5b-d shows the results of the sequential partitioning
method which is described later in more details.

After sequential partitioning we end up with a number of core subregions, see for example
the outcome of Figure 2.5e. These subregions are modeled as 3" HQMs. With 3" HQMs, any
needed performance measures can be calculated. Service rate for the number of servers,
availability of each server, loss rate of each atom and percentage of time each server spends at
intra or interdistrict responses are found for the algorithm. Then, in the sequence of merging,
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an inverse process of partitioning is followed to estimate performance measures for the whole
area of study (moving from Figure 2.5e to Figure 2.5a now).

The core subregions are merged to larger compounds subregions, which are modeled as 3"
AHQM. Compound subregions are also merged to larger subregions with 3 AHQM until the
whole area is covered. Note that at each merging step, only two subregions (core or compound)
are merged to a larger compound region. For intradistrict service rate of each bin, the service
rate calculated from the previous step is used. Loss rate of each atom in sibling subregion
(i.e. subregions which are the pairs of each other in sequential partitioning) and availability
of each servers are used to calculate interdistrict service rates. We assume that servers are
busy most of the time within their core region responses. The availability of a server can be
assumed to be proportional to one minus the occupancy in its core region. Since, in the next
steps, all servers are merged and regarded as servers inside bins, we use the availability of
each server in a bin to calculate the probability if an interdistrict call can be served or not. The
formulation we have conducted for this purpose can be seen in the next subsection.

2.4.1 Bin Interactions

If a 3" HQM is applied for each partition of Figure 2.5D without considering any interactions,
the system performance measures would be consistently less accurate. In our experiments,
we see that the interaction between bins is 5-50% (see Figure 2.11). However, this relationship
also needs a correction, we cannot assume every atom can be served by any bin. Since, bins
are not physically at the same location, it is not possible to assign a single location for them.
There is no straightforward way to calculate distance between an atom and a bin. However, we
need the distance between the bin and the atom to decide if the atom can be served by this bin
or not. In order to cope with that, we assume, with some probability, some atoms might not be
served even though there is at least some servers available in a bin of the neighbor subregion.

It is easy to illustrate how we apply methodology on a toy example before a formal mathe-
matical notation is introduced, shown in Figure 2.6. Assume that, all servers in region 2 are
busy. Consider now 3 servers from region 4 (servers 14, 16 and 17) and the areas within their
accessibility distance (shown with the 3 circles). Let us assume that a new request for service
arrives from an atom located in the dark or light blue squares, close to the boundary of the two
regions. In such a state, if an incident occurs in light and dark blue atoms, these incidents can
either be served with servers in region 4 or they are lost. There is only one server (i.e. server
14) that can serve light blue atom and three servers (servers 14, 16 and 17) that can serve dark
blue atom from region 4. In the AHQM, servers from the same bin cannot be differentiated
after merging. We can only calculate number of servers available or busy with either intra
or interdistrict responses at each state. So, in order to approximate the probability of being
served, we use the formulation given in Equation 2.9. For instance, if all 6 servers available
in region 4, we can assume that both light and dark blue atoms can be served by the servers
in region 4, as there is always a server available that can reach both atoms. If there are only
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Figure 2.5: An illustration of the partitioning approach.
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2 ® ©

Figure 2.6: An illustration for bin interactions. Dark and light blue squares represent demand
requests and red circles show the server locations in two subregions 2 and 4. Larger circles
centering servers show their accessibility area. If there is no available server in region 2, for an
incident happening in light and dark blue atoms, we need to use servers in region 4.

4 servers available in region 4, we can still assume dark blue atom is served with probability
1 because in the worst case, one of the three servers that can reach dark blue atom should
be available. Nevertheless, if there are not more than 3 servers available, then with some
probability both light and dark blue regions cannot be served. But, we can state that, dark
blue region can be served with a higher probability because light blue atom can be reached by
only server 14, whereas dark blue atom is reachable by servers 16 and 17 in addition to 14.

Let us assume there are n servers in a bin, first m of them can reach to the atom of the sibling
subregion and k servers are busy. When m = 0 the probability of serving the atom by a server
from this bin equals 0. When k < m the incident in this atom is served with probability 1, since
even in the worst case, there has to be a server available to serve it. However if k = m, the
probability that none of the available servers can reach the atom is approximated as:

m
11 P; )y ( I1 Pi)
i=1 VLe@(N"mH); Yiel
P(not served) = [LI=k=m 2.9)
> ( I1 Pi)
vLe(N): \Viel
L=k
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where 22 () represents the power set of *, N is an inclusive sequence of integers starting
from a to b and IP; is the probability that server i is busy. In Equation 2.9, the denominator is
equal to the sum of the all cases’ probabilities with k busy servers. The numerator is equal to
the sum of the probability of cases where all servers that can reach the atom are busy. As a
result Equation 2.9 gives conditional probability that, there does not exist any available server
which can reach the atom given k busy servers. Note that, the same combination term (CZl)
canceled out each other both in the numerator and the denominator.

Equation 2.9 is an approximate value for the probability of an incident happening in the
selected atom does not get an interdistrict service even though there is an available server
in the bin. In order to calculate loss rate caused by this phenomena, the demand that is not
served in the previous steps of the algorithm is multiplied with the probability in Equation 2.9
and assumed to be lost. Total demand of the atom minus calculated loss rate is assigned as
the demand of the atom. This is done for each atom and the new 3" AHQM is modeled with
these demand values. After solving the model, loss rate calculated by 3" AHQM and assumed
loss rates are summed up and assigned as total loss rates of each atom.

An informal pseudocode for our algorithm is given in Figure 5.3 where Tl* (n) and Rl* (n) stands
for average service time and rate for bin composed of servers of subregion [ for the intra and
interdistrict responses. T'(i, j) is the total service time needed for a response to atom j by
server i. J; are the atoms in subregion / and, intra; and inter; are atoms in intra- (i.e. atoms
closest to server i) and interdistrict (i.e. atoms serviceable but not closest to server i) area
of server i. If a 3" HQM was solved for each partition without considering any interactions,
the system performance measures would be consistently less accurate for semi-congested
systems (medium to high demand).

2.4.2 Partitioning Model

As stated before, the size of 3" HQM grows exponentially with the number of servers and
is applicable only for problems with limited number of servers. In order to cope with that,
we develop an aggregate approach that devices both 3" HQM and 3" AHQM. In order to
have accurate results in efficient time we need a partitioning algorithm that partitions the
whole problem area to subregions with an objective to minimizes the total demand that
is served by more than one bins. Even if in Section 2.4.1 we develop a framework to deal
with interactions, given that AHQM does not keep track of individual servers, this estimation
contains some level of error. For fixed server locations, by minimizing interaction between
subregions’ (i.e. minimizing services provided by servers of other subregions), we decrease
the error of approximation algorithm. The partitioning algorithm will also determine if for
some instances of specific problems (e.g. with no common regions), HQMs can be solved
independently. We should also fulfill the following properties:

1. The number of servers in each partition should be the parameter of the partitioning algorithm.
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1. Partition the whole problem area into subregions. A binary tree structure is created with
partitioning. Leaves of the binary tree are core subregions, and the rest of the nodes are
compound subregions composed of two (core or compound) subregions.

2. Iterate each node with depth first search

(a)

(b)

(©

(a)

(b)

(c

(d)

(e)
®

(g

If selected subregion [ is core subregion

Calculate average intra and interdistrict service time (7;""2, T"") , and calculate

average service rates (R\"", RI"") for each server i in selected core subregion:
Y aiTa,)) Y diTG,))

Ti jeintra(i = jeJyninter(i)

T}ntra - Jjeintra(i) , T}nter - JjeJyninter(i

l d; l d;

jE]lnintra(i) Jj€inter(i)
Solve 3" HQM with RI"", RINr and d; where the former two stand for inter and
intradistrict response rates for each server i and latter for demand rate of each atom j
in the selected core subregion .

Rintra __ 1 Rinter __ 1
[ ) Timtra [y ) Timter

Calculate probability of server i busy (P;), loss rate of atom j (loss;), and average
service rate for the number of servers busy Sllmra(n) where n € N.

If selected subregion [ is a compound subregion with children regions [; and [,
/*Assume bins by and b, are composed of servers of subregions /; and I, respectively.*/

Calculate average interdistrict service times (Silnter) of bins in child subregions of I:
Y r  loss;T(i,]) Y X loss;T(i,))

zelll ]E]lzﬂmter(l) Sinter - 16112 ]e]ll ninter(i)

Y loss; T > Y loss;

iEIll jE]lzninter(i) iEll2 jE]ll ninter(i)

Sinter -
L

Calculate average interdistrict service rates of each child subregion :
RIMeT(p) — SL VI=1{l, L} and neN.

1
Generate a 3" AHQM with given intra and interdistrict service rates of each subregion
(or equivalently bin) R}ntra(n) and R}nter(n) respectively for [ = {Iy, I,}.
For each state, find the loss rate because of server unavailability (loss’j) by multiplying
loss; and Equation 2.9. Update demand of each atom with (di - loss;.) for correspond-
ing states.
Solve generated 3" AHQM.
Calculate loss rate of each atom j with the equation: loss; < lossl;HQM + loss’j.

Calculate average service rate for the number of servers busy Silmra(n) forneN

3. Return the values calculated for the subregion in the root node (which is equivalent to the
whole problem area).

Figure 2.7: Pseudocode for the MHQA
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We need to set the number of servers in each subregion. There is a maximum size that is
efficiently solvable with both hypercube models and over partitioning (i.e. using more
partitions than needed) decreases the accuracy of the final result.

. Servers in the same partition should be adjacent to each other. This prevents disconnected
atoms and helps to have connected subregions which improves accuracy of the method.

. Partitioning should be sequential in order to apply the approximation algorithm.

. Partitioning should be efficient. Our aim in developing an approximation algorithm is to
evaluate instances in an optimization framework. To do that, we need efficient algorithms in
all steps of the evaluation.

For this purpose, we have developed an algorithm that generates “cuts” on the problem area
and creates subregions. This algorithm first utilizes a Voronoi diagram for server locations.
Afterwards, one or more network flow problems are solved on the line segments of the Voronoi
diagram. Flows in these problems start from and end at the vertices on the borders and flows
on the inner edges of Voronoi diagram. The set of flows are regarded as the cuts we need to
create subregions. To obtain a partitioning with the objectives stated above, for the following

indices and sets:
iel Servers

jej atoms

leL  partitions

veV  vertices on Voronoi diagram
ec€ E  edges on Voronoi diagram
ke K  paths on Voronoi diagram

parameters:
V/V  all/outer vertices on Voronoi diagram
E, edges connected to vertex v
I}/T?  servers that are separated by edge e
Ji atoms that are accessible by server i
dj weight of atom j

Gkl 1 if partition / is on the selected side of path k
0 otherwise

Ve vertices connected to edge e
st number of servers in partition /
and variables:
sk number of times an inner vertex v is visited in
path k
k 1 if outer vertex v exists in path k
S 0 otherwise
k 1 ifedge e exists in path k
“e 0 otherwise
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1

xk
i 0
1

1
q; 0
1

!

Yj
0

1
k
t
IR

we develop a binary integer programming problem (BIPP).

if server i is on the selected side of path k
otherwise

if server i belongs to partition /

otherwise

if atom j is accessible by one of the servers
that belongs to partition /

otherwise

if vertex v exists in path k

otherwise

minY" Y d;y!
I j

st. Y sk=2

vev

s’lﬁ = 2t,’f
> =5,
ecE,

(2.10)
VkeK (2.11)

Vke K;Yve V\V (2.12)
Vke K;VYveV (2.13)

VkeK (2.14)

Vke K;Vee E (2.15)
VkeK;VeeE (2.16)
Vke K;Vee E (2.17)

VkeK;VeeE (2.18)
Vke K;Viel (2.19)

Vke K;Viel (2.20)

tk e 0,1}
skeqo0,1
zXe 0,1
qle{0,1)

ske0,1,2)

x¥e0,1)
yieo,n

VieL (2.21)

VlieL,Vje;Vie]; (2.22)
Viel (2.23)

YveV\V;keK (2.24)
YveV;keK (2.25)
VkeK;Vee E;Viel (2.26)
VieLVie[Vje] (2.27)

In this BIPP, Equation 2.10 minimizes the total demand that is covered by servers of each

partition. As a result, with this objective, for fixed locations of servers, the total demand that
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is served by more than one partitions’ servers is minimized. The physical reasoning of this
objective is that as a detailed 3" HQM will be solved for each core subregion, the influence of
demand outside this core subregion should be minimal, as it is not considered at this stage.
Constraints 2.11 force the model to have only two different outer vertices visited for each path
with constraints 2.25. With these constraints, we are creating paths which start and end in
the borders of the Voronoi diagram, similar to cuts dividing the whole Voronoi diagram into
two pieces. Constraints 2.12 require that if an inner vertex is visited, it should be visited twice
with the help of the second part of constraints 2.24. Note that, the mathematical model selects
both edges and vertices, and if an edge is selected, vertices that belongs to this edge should
also be visited. Different than outer vertices, inner vertices should be visited twice, to have a
(continuous) path made of edges.

Constraints 2.13 work for inner and outer vertices differently because of constraints 2.11 and
2.12: If an inner vertex v is visited (i.e. s* = 2), two of the edges that are adjacent to vertex v
have to be visited as well. However if v is an outer vertex, if it is visited (i.e. s’lf =1) only one of
the adjacent edges has to be visited.

Constraints 2.14 satisfy that the partition sizes that are in the selected side of path k, should
sum up to the number of servers in the selected side of path k. Note that when the model is
generated, each S; is calculated in a way that each partition has a predetermined number of
servers. For instance, for the partitioning in Figure 2.5, we set S’ = 6 where [ = 1,...,4. Binary
variables G*! are set in a way that each path has equal number of partitions in both of their
sides: GV = G13 = G>! = G*? =1 and the rest of the G¥/ = 0, which means that path k =1 (the
vertical path) creates partitions / = 1 and / = 3, and path k = 2 (the horizontal path) creates
partition [ =1 and / = 2 in their selected sides. As a result, we end up with 4 partitions with 6
servers that are formed by two paths. If for example, we prefer to make 3 partitions composed
of 8 servers for the same example, we again need 2 paths but with three partitions. In this case,
we should set S’ = 8 for [ = 1,2,3 and GV! = G12 = G>! = 1 and the rest of the G*! = 0. This
way, we will make two paths in a way that, path k = 1 has two partitions (! =1 and (I = 2) and
path k = 2 has one partition (I = 1) on their selected sides.

If the edge between two servers does not belong to path k (i.e. zf =0), constraints 2.15 and
2.16 ensure that the servers on the opposite side of edge e belongs to the same side of path k.
Similarly, if the edge between two servers belongs to path k (i.e. zX = 1), constraints 2.17 and
2.18 forces the servers to be at the opposite side of path k.

Constraints 2.19 and 2.20 assign each server into their groups by checking in which side of the
paths they belong. In the case depicted in Figure 2.5, partition / = 1 is in the selected side of
both paths. If a server is at the same side, it is assigned to partition / = 1. On the other hand, if
a server belongs to not selected sides of both paths, it is assigned to partition / = 4 because
this partition is selected as such by setting G'** = G>* = 0. In a similar way, the rest of the
partitions’ servers are assigned.
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Constraints 2.21 sets the number of servers in each partition to the partition’s size. Constraints
2.22 associates atoms with partitions: If an atom can be accessed by a server, one of the servers
that belongs to this partition can access to the atom. Constraints 2.23 place each server into
one and only one partition.

Constraints 2.24-2.27 sets variables as binary variables except for the variables s in which v
represents an inner vertex of the Voronoi diagram. The reason of this assignment is, as stated
above, to satisfy that inner vertices should be visited twice in a continuous path starting from
and ending at the outer vertices of the Voronoi diagram. Physical topological boundaries (e.g.
rivers, mountains etc) that do not allow interactions between specific servers and atoms, can
be easily integrated in the above formulation as further constraints.

In experiments, we have observed that adding cuts iteratively is much more efficient than
solving the whole BIPP at once. As a result, we develop and use a heuristic that generates
a single cut at each step. This is also consistent with the step of merging, which will follow
inverse iterations of the partitioning. Steps of this heuristic for an instance can be seen in
Figure 2.5. Figure 2.5a shows the problem area: demand intensity (darker color represents
higher demand) and locations of servers (red circles). The first step of the algorithm is to
generate a Voronoi diagram (Figure 2.5b). The steps afterwards are iteratively adding cuts to
whole problem area. In our case, first a vertical then a horizontal cut is added (Figure 2.5c-d).

2.5 Computational Results

In this section, we first evaluate the accuracy of the models described in Section 2.3 and 2.4 (i.e.
3" HQM and MHQA) by comparing them with the results of a discrete event simulation. Then,
we utilize our models to evaluate instances in two approximation heuristics with an objective to
identify close-to-optimum locations that optimize specific performance measures (loss rates
and service times): variable neighborhood search (VNS) (Mladenovi¢ and Hansen, 1997) and
simulated annealing (SA) (Kirkpatrick et al., 1983). Finally, we provide different performance
measures of the optimization results that highlight the importance of the developed models.
All of the algorithms in this work are developed under C# .NET environment. For partitioning
algorithm IBM ILOG Cplex 12.4 is used through Concert user interface. MATLAB 7.9 through
MATLAB Automation Server interface is used for matrix operations. All experiments are
conducted on a PC with Intel Core2 Quad 3.00 Ghz processor.

In order to test the method, we use two different networks for demand distribution: Central
Athens network with demand for tow-away services for bus operations (taken by Geroliminis
et al. (2011)) (top) and an experimental network (bottom) which are given in Figure 2.8. In
these figures, each square shows a 1km? area. The value inside each square shows 10* times
the ratio of arrival rate to total arrival rate. Euclidean norm is used to calculate distance. Total
service time is the sum of on-scene service time and the total travel time to reach incident
atom and coming back. We did not test networks with physical boundaries but it can be
easily integrated to our hypercube models (by applying exact travel times for each atom-
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Figure 2.8: The demand distribution of the two networks used in our experiments: Central
Athens (top) and experimental (bottom).

server pairs) and partitioning algorithm (by generating an additional edge in the Voronoi
diagram). Different distance metrics (e.g. rectilinear, squared Euclidean) can also be applied
to them. The only difference may be in the partitioning algorithm. Voronoi diagrams work for
Euclidean distance metric. For another metric, we need different set of vertices and edges but
the mathematical model used in the partitioning algorithm is still applicable.

2.5.1 Accuracyof 3" HQM

In this part, the lost rate computed by MHQA is compared with the solution of the discrete
event simulation for a case with 12 servers. We tested following instances with three demand
(5, 15, 45 instance/hour), average on-scene service time (5, 10, 20min) and accessibility
distance (10, 15, 20kms) for each demand distribution which makes 27 scenarios in total
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Figure 2.9: The ratio of difference between the loss rates calculated by simulation and the
approximation method proposed.

for each instance. It is assumed that each server travels with a speed of 60km/h. On-scene
service time and inter-arrival times are distributed exponentially. In simulation, a random
value is generated whereas in approximation method it is assumed that total service time is
exponentially distributed with the sum of travel time and on scene service time. We need
such an assumption for the Markovian property. We generated 500 random instances with 12
facilities. In approximation algorithm, the whole problem area is partitioned into two core
subregions with 6 servers each. Then the algorithm described in Figure 5.3 is applied. Both
simulation and our method are run over these networks. The percentage of error in loss rates
are reported in Figure 2.9. We calculate the errors by comparing the values of MHQA with
simulation values.

To ensure that simulations have reached steady states, 25 parallel simulation instances were
created with 11 batches simulating length of 50 days each. The first batch of each run was
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discarded and mean of the rest of the batches of all 25 parallel simulations are reported. Length
of the simulations are selected in a way that calculated values have tight enough confidence
intervals to guarantee steady state.

For each instance, simulation took around 25s for both networks whereas our method took
around 3s for Athens network and 7s for the experimental network on average. The comparison
showed that compared to simulation, our method gives results with acceptable error (less
than 5% error on average and 10% in the worst case) in less run time (12-28% of simulation
run time). This error gets even less for increased server range, for the scenarios with the
range of 20km, average error is less than 1% and in 95% of the cases error is less than 2%.
Furthermore, simulation might need longer run times to have accurate results if we want to
calculate more detailed performance measures (e.g. loss rate per number of busy servers) or
for larger instances of the problem.

2.5.2 Heuristics for Better Location of Servers

In this part, we have tested our exact 3" HQM (for cases with less than or equal to 8 servers) and
mix aggregate hypercube (for cases with more than 8 servers) algorithms inside two heuristic
approaches to identify close-to-optimum locations of servers: variable neighborhood search
(Mladenovi¢ and Hansen, 1997) and simulated annealing (Kirkpatrick et al., 1983). Both
methods are initialized with the maximum expected coverage location model (MEXCLP)
(Daskin, 1983). MEXCLP is selected because it is fast and gives good results. In VNS algorithm,
we assume that if two instances’ all but one servers are in different locations, they are neighbors.
In other words, in every iteration, a randomly selected server’s location is changed. We use the
same neighborhood structure in SA algorithm. We set the starting “temperature” coefficient to
1 and increase it by 10% in every 20 iterations. Temperature is assumed to be the division of
temperature coefficient with the average lost rate in every iteration. We have applied 3" HQM
for cases with 6,7 and 8 servers for total arrival rates of 5, 8, 10, 15 and 20 requests/hour. For
cases with 12 and 16 servers, arrival rates are doubled (i.e. 10, 16, 20, 30, 40 requests/hour),
problems are solved by approximation algorithm with two partitions of equal size. Run times
for the former three (i.e. 6, 7 and 8-server) cases are set to one hour, whereas the latter two
(i.e. 12 and 16-server) cases are run for four hours. We have applied two different on scene
service times: 5 and 20 minutes. For all cases, maximum accessibility distance is set to 30km.
Found minimum lost rate and percent lost rate improvements after MEXCLP for Athens and
experimental networks (Figure 2.8) by both heuristics (i.e. VNS and SA) for cases with realistic
lost ratios (ratio of lost rate to the total arrival rate) can be seen in tables 2.1 and 2.2 respectively.

For both Athens and experimental networks, it is observed that there is an improvement of
more than 20% on average for the lost rates over MEXCLP. Average lost rate improvement gets
around 50% for the Athens network with short on scene service times (i.e. 5 minutes). We have
not observed any significant difference between VNS and SA. Since our primary goal in this
research is to test the applicability of hypercube models inside search algorithms, we have not
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< ) =i
S1E 5| 3 VNS SA
SIZEE|E| &
# |© vwE | T p=
value % impr. | value % impr.
5 8 | 0.129 | 0.080 38.28 | 0.080 37.95
6 10 | 0.422 | 0.266 37.07 | 0.268 36.50
20 5 | 0.174 | 0.138 20.61 | 0.138 20.52
8 | 1.197 | 0.989 17.36 | 0.989 17.34
5 8 | 0.031 0.018 41.98 | 0.018 42.48
7 10 | 0.136 | 0.079 42.32 | 0.081 40.78
20 5 | 0.059 | 0.046 22.30 | 0.045 23.18
8 | 0.653 | 0.521 20.19 | 0.528 19.12
5 10 | 0.044 | 0.021 52.53 | 0.023 46.62
8 15 | 0.651 0.335 48.60 | 0.393 39.60
20 5 | 0.019 | 0.013 29.13 | 0.014 27.18
8 | 0.340 | 0.248 26.87 | 0.260 23.46
5 20 | 0.077 | 0.016 79.45 | 0.018 76.40
12 30 | 1.824 | 0.690 62.17 | 0.692 62.05
20 10 | 0.039 | 0.020 49.23 0.020 48.62
16 | 0.993 0.726 26.86 | 0.691 30.43
5 30 | 0.121 | 0.058 51.88 | 0.025 79.35
16 40 | 1.666 1.113 33.2 | 0412 75.27
20 16 | 0.102 | 0.059 41.74 | 0.045 55.40
20 | 0.645 | 0.374 42.00 | 0.368 43.00

Table 2.1: The best lost rate found by MEXCLP, VNS and SA algorithms for the Athens network
given in Figure 2.8a.

searched for parameters that may give better final results for both VNS and SA.

From the results in tables 2.1 and 2.2 one can also observe that the lost rates dramatically
increase with the increase of on scene service time. Small increase in demand has also
considerable influence on the lost rate. Queueing systems are unpredictably complex and
need custom-built algorithms to be tested. We also observe that the performance of SA and
VNS against MEXCLP get better with the increase in the number of servers. Last but not least,
careful readers might realize that for the same value we have calculated different percent
improvements. This is the consequence of showing results with limited precision. We also
noticed (not shown here) that even after 30 minutes (instead of 4 hours) the VNS and SA
methods provide similar improvement with a 4 hour run.

2.5.3 Performance Measures of Hypercube Models

In this subsection, we conduct further analysis to some location instances improved by the
optimization heuristics. In the first analysis we investigate the effect of accessibility range
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2o el
S5 S| A VNS SA
0|2 F g £ >
«|883|3 =
value %impr. | value % impr.
5 5 | 0.076 | 0.055 26.72 | 0.055 26.67
6 8 | 0.725 | 0.594 18.09 | 0.594 18.09
20 5 | 0.432 | 0377 12.63 | 0.377 12.67
8 | 2.074 1.926 7.11 1.926 7.11
5 5 | 0.022 | 0.013 39.27 | 0.013 39.27
7 8 | 0.343 | 0.252 26.29 | 0.252 26.29
20 5 | 0.207 | 0.167 19.34 | 0.168 19.15
8 | 1.436 | 1.267 11.81 1.27 11.62
5 8 | 0.129 | 0.098 23.94 | 0.098 23.94
8 10 | 0.483 | 0.387 19.82 | 0.387 19.82
20 5 | 0.084 | 0.065 22.77 | 0.068 19.71
8 | 0.894 | 0.776 13.21 0.798 10.73
5 16 | 0.263 | 0.054 79.36 | 0.054 79.36
12 20 | 1.272 | 0.472 62.90 | 0.472 62.9
20 10 | 0.200 | 0.095 52.49 | 0.099 50.18
16 | 2.680 | 2.062 23.03 | 2.064 22.99
5 20 | 0.068 | 0.008 87.92 | 0.008 87.92
16 30 | 2.423 | 0.786 67.58 | 0.786 67.58
20 16 | 0.551 | 0.282 48.85 | 0.290 47.37
20 | 2.203 1.458 33.84 1.448 34.29

Table 2.2: The best lost rate found by MEXCLP, VNS and SA algorithms for the experimental
network given in Figure 2.8b.

and demand on servers’ workload (fraction of time a server is busy) and intradistrict service
ratio for fixed locations, with the 3 HQM for 8 servers. These fixed locations are estimated
through the optimization heuristics for some level of demand and they do not recalculated
when demand changes. In the second analysis, the effect of demand increase on the number
of busy servers and the ratio of the time spend on intradistrict service in bin level is analyzed.
Alarger instance with 12 servers solved by 3" AHQM is considered (2 bins of 6 servers each).

In order to see the effect of accessibility range and demand on servers’ utilities, ten instances
(5 demand levels and 2 accessibility ranges) with 8 servers on the experimental network are
analyzed. To have a better insight, the location of the servers are fixed in all instances. We set
the best locations found by the heuristic for demand 5 requests/hour and on scene service
time equal to 20 minutes (see Table 2.2). The fraction of time each server is busy (lines) and
the fraction of busy time each server is in intradistrict response (columns) are reported in
Figure 2.10a and b. Demand levels (5, 8, 10, 15 and 20 requests/hour) are shown with different
colors. Two different accessibility ranges (15 and 30min) are used in two separate graphs, 2.10a
and b respectively. The lost rate for different demand levels are reported in the legends of each
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Figure 2.10: In the top two graphs (a and b), the effect of increased demand and accessibility
range is shown for incidents of 8 servers (with 3” HQM). The same server locations are selected
in all incidents, which can be seen in the map given below the two graphs (c). Both the fraction
of time each server is busy (line) and the fraction on intradistrict response (column) are shown
in a and b. The total demand at each servers’ primary and secondary service area are shown
under the x-axis respectively. Note that the values in parenthesis in the legend are the loss
rates.
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figure inside the parenthesis. The fraction of the total demand each server has in their intra
and interdistrict area are also reported under the x-axis. Note that the first line of percentages
sum up to 1, which means that all atoms are reachable by at least one server. The second line
has much higher values because it considers the accessibility of interdistrict responses. The
locations of each server (#1 to #8 are shown in the x axis of the graphs) can also be seen in
the map reported in Figure 2.10c. Note that, the intensity of the blue color shows the level of
demand; darker the blue, higher the demand.

One of the striking outcomes of these graphs is the ratio of the time spend in intradistrict
responses. Although, the probability of being busy fluctuates a little among servers (5-10%),
the ratio of intradistrict responses is quite variant for different servers (5-95%). This fact shows
the importance of using a model which differentiates intra and interdistrict responses. The
main reason to have such fluctuations in intradistrict response ratios is the difference between
the responsibility areas of each server. Servers with more intradistrict demand spend more
on intradistrict service. This is expected. However, seeing such a huge difference between
time spent on intradistrict service among servers is an interesting observation. This high
intradistrict fraction motivates to investigate the effect of the accessibility distance in the
results.

In addition, by comparing Figure 2.10a and b, we can see the effect of accessibility range
and the importance of dispatching policy. In this research, advanced dispatching policies
are not investigated. In every state, the available server with the minimum service time is
dispatched at all times. For low demand levels, higher accessibility range works better than
the low. For demand 5 requests/hour, we get a lost rate of 0.06 /hour with a 30km accessibility
range whereas this value is 0.33 /hour for an accessibility range of 15km. With the increase in
demand, lower accessibility range improves more and gives better results. For demand level
20, lower accessibility range has a smaller loss rate than the higher accessibility range because,
requesting from a server to intervene in an incident far from his responsibility area under high
demand conditions, might result in loss demand for intradistrict requests.

There is something more to add to these analysis. Although, compared to high accessibility
range, low accessibility range always provides a higher intradistrict ratio for all instances and
servers, for low demand levels, it does not give better loss rates. This is probably because of the
congestion in the system. By lowering accessibility range, although we encourage the model to
have more intradistrict responses, we are also decreasing the secondary service areas of each
server. In other words, we are lowering the number of servers that can be dispatched at each
incident and obviously specific to our instance, this declines the performance of the system
for lower demand and ameliorates for higher demand. Note that, even for small accessibility
range, all demand is accessible by at least one server.

In our second analysis, we investigate performance measures from a larger instance with 12
servers solved by the MHQA (2 bins with 6 servers each). We take best instances we have
found with our heuristics for 12 servers and 20min on scene service time in the experimental
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Figure 2.11: The effect of increased demand on 5 best instances of different demand levels. In
all instances, the number of servers is 12, on scene service time is 20min and accessibility range
is 30km. The fraction of time for different busy servers’ count (line) and the ratio of servers in
intradistrict response (columns) can be seen in the figure. Lost rates for each demand level is
given in parenthesis in the legend, next to the related demand level.

network. Different than the previous analysis, we investigate the probability of having specific
number of servers busy in the system all of which can be seen in Figure 2.11. These values are
shown with columns. With lines, the percentage of time servers busy with bin instradistrict
responses (i.e. dispatching inside bin) are depicted. We use 5 different demand levels and
each of which are shown with a different color. Again, loss rates are shown inside parenthesis
in the legend next to the related demand level.

The first interesting result that can be observed from this figure is the effect of increased
demand on the system efficiency. The increase in demand results in less time spend in
intradistrict (equivalently more time in interdistrict) responses. The increase in the number
of busy servers has also similar effect. With the increase in busy server count, intradistrict
response ratio decreases.

One of the other important findings observed in graphs in Figure 2.11 is the interaction
between subregions. As a simpler approach, we can take each core subregion as separate
problems and do calculations regarding this assumption (e.g. sum loss rate of each subregions
to find total loss rate). However, results in Figure 2.11 show that, amount of time spent for
interdistrict responses is significant. Because of this, disregarding interdistrict responses
between subregions and estimate performance measures with 3 HQM without the step of
merging two compound regions, might create inaccurate results and does not seem to be a
right approach.
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rd

Figure 2.12: Illustration of a system with three servers and three service range belts for each
server.

2.6 Concluding Remarks

In this research, we have proposed two new 3" hypercube models and two algorithms that
utilize these two methods. We first compare our approach with the system with real service
time and show the accuracy of our approach for different parameters on two different networks:
one real (central Athens) and one experimental with different spatial distribution of demand.
In order to show the applicability of our two algorithms inside an optimization framework,
the two methods are implemented with the variable neighborhood search and simulated
annealing. From these experiments, it is seen that, although hypercube queueing models are
not optimization models, they can be used inside such frameworks. Then, we have investigated
the percentage of time the servers spend on intra and interdistrict responses. The percentage
of interdistrict responses is not negligible.

As future research, our aim is to change the way we define intra and interdistrict response areas.
In hypercube queueing models, service rate and service priority are different parameters. We
can still define intra and interdistrict areas with service priority, instances can be served by the
closest available server. However, we can arrange different service rates for different distance
ranges from the servers. We can create two or more service range belts and we can apply
different service rates for each belt (see Figure 2.12). Another direction to further investigate is
the partitioning algorithm. With some additional cuts, we might create a tighter convex hull
which in the end might give a more efficient partitioning algorithm. We are also interested in
to work on some efficient heuristic methods to replace the partitioning algorithm. Last but
not least, different dispatching algorithms are also worth investigating. For the same server
locations, intelligent dispatching schemes may give better results.
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An Optimization Framework for One-
Way Car-Sharing Systems

Electric vehicle sharing systems have been introduced to a number of cities around the world
as a means of increasing mobility, reducing congestion, and pollution. Electric vehicle sharing
systems can offer one or two-way services. One-way systems provide more flexibility to users
since they can be dropped-off at any stations. However their modeling involves a number of
complexities arising from the need to relocate vehicles accumulated at certain stations. The
planning of one-way electric vehicle-sharing systems involves a host of strongly interacting
decisions regarding the number, size and location of stations, as well as fleet size.

In this chapter we develop and solve a multi-objective MILP model for planning one-way
vehicle-sharing systems taking into account vehicle relocation and electric vehicle charging
requirements. For real world problems the size of the problem becomes intractable due to
the extremely large number of relocation variables. In order to cope with this problem we
introduce an aggregate model using the concept of the virtual hub. This transformation allows
the solution of the problem with a branch and bound approach.

The proposed solution generates the efficient frontier and allows decision makers to examine
the trade-off between operator’s revenues and users’ net benefits. The capabilities of the
proposed approach are demonstrated on a large scale real world problem with available data
from Nice, France. Extensive sensitivity analysis was performed by varying demand, station
accessibility distance and subsidy levels. The results provide useful insights regarding the
efficient planning of one-way electric vehicle sharing systems.

3.1 Introduction

Car-sharing (also known as shared-use vehicle) systems have attracted considerable attention
with multiple implementations worldwide due to their potential to improve mobility and sus-
tainability (Shaheen and Cohen, 2013). These systems provide benefits both to their users and
the society as a whole. Reduced personal transportation cost and mobility enhancement have
been cited as the two most notable benefits to individual users. Reduction in the parking space
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requirements is one of the benefits that society have. Recent studies show that, depending
on the type of the system car-sharing also decrease average vehicle kilometers traveled and,
likely to decrease congestion (Crane et al., 2012) and emissions (Shaheen and Cohen, 2013).
Provision of affordable mobility to economically disadvantaged groups with on-demand and
public transportation systems is one of the other societal benefits (Duncan, 2011).

The attractiveness of car-sharing systems is determined by the level of service offered and
the cost associated with the use of the system. The level of service is influenced by the
accessibility of vehicle stations by the potential users, i.e. (i) the distance between user’s
origin and destination from pick-up and drop-off vehicle stations respectively, and (ii) the
availability of vehicles at stations. On the other hand, station number and size, as well as fleet
size and availability of vehicles, at the “right time” at the “right station”, influence the cost of
establishing and operating a car-sharing system.

The car-sharing systems can be classified into flexible “one-way” and the more restricted “two-
way” types, according to whether the users should return the rented vehicle at a different or at
the location they picked it up. The “one-way” systems are also classified as “free-floating” and
“non-floating” according to parking spot restrictions. The former refers to a system without
restricted parking spots. Users can pick-up or drop-off vehicles in a restricted area with some
borders. The latter is used for defining systems in which pick-up and drop-off locations of
the vehicles should be designated parking spots. In “free-floating” models, reservation is
not possible whereas “non-floating” models provide users both reservation and freedom of
one-way trips. In reality, most of the non-floating one-way systems in operation works with
partial reservations (e.g. without destination reservation). Although full reservation needs
further planning, we believe that, system with such a property may provide a better service
and attract more customers. This work focuses on one-way systems with reservations both at
the origin and destination.

The problem of ensuring vehicle availability and fulfilling reservation becomes more promi-
nent when the vehicles can be rented and used on a one-way basis in non-floating systems.
The one-way operation of the vehicles coupled with the imbalance of demand for vehicles,
both at the origin of the trip (pick-up station) and at the destination (drop-off station), may
result a situation where the vehicles are accumulated to stations where they are not needed,
while at the same time there is vehicle shortage at the stations where more vehicles are needed
(Barth et al., 2004).

Vehicle relocation, i.e. transfer of vehicles from stations with high vehicle accumulation to
stations where shortage is experienced, is a technique that has been proposed to improve
the performance of one-way car-sharing systems (e.g. Kek et al., 2006; Cucu et al., 2009; Jorge
etal., 2013). The lack of efficient vehicle relocation coupled with the need to guarantee a given
level of vehicle availability may lead to an unnecessary increase of the fleet size and vehicle
under-utilization. The efficient and cost-effective strategic planning, and the operation of
one-way car-sharing systems require models that will determine the number and location of
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the service stations, the fleet size, and the dynamic allocation of vehicles to stations optimally.
These models should assist decision makers to strike an optimum balance between the level
of service offered and the total cost (including vehicle relocation costs) for implementing and
operating the car-sharing system.

However, the literature currently lacks a model that can consider simultaneously decisions
related to the determination of station location, size and number, and fleet size, while taking
into account the dynamics of vehicle relocation and balancing. Existing models (Lin and Yang,
2011; Correia and Antunes, 2012) either look at station locations without due consideration to
vehicle relocation decisions (Lin and Yang, 2011), or consider station locations assuming that
only the demand in the catchment area of opened stations needs to be serviced (Correia and
Antunes, 2012). In the case where vehicle relocation is modeled (Correia and Antunes, 2012),
the relocation of the vehicles and the associated costs are considered only at the end of the
operating period (usually a day), and therefore they are influencing the fleet size.

The objective of this chapter is twofold: (i) to develop and solve a mathematical model for
determining the optimum fleet size, and the number and location of the required stations of
non-floating one-way car-sharing systems by taking into account the dynamic repositioning
(relocation) of vehicles, and (ii) to apply the proposed model for planning and operating a
one-way electrical car-sharing system in the city of Nice, France.

The remainder of this chapter is organized as follows. Section 3.2 provides an overview
of previous related work and further elaborates on the arguments justifying the need for
the proposed model, Section 3.3 presents the formulation and the solution approach of the
proposed model, Section 3.4 describes the application of the proposed model for planning and
operating a one-way electrical car-sharing system in Nice, France while Section 3.5 discusses
the research conclusions and provides recommendations for future research.

3.2 Previous Related Research

Models related to the planning and operation of car-sharing systems can be classified into
the following two broad categories: i) models addressing strategic planning decisions, and ii)
models supporting operational decisions.

3.2.1 Models for Strategic Planning Decisions

Strategic planning decisions seek to determine the number, size and location of stations, and
the number of the vehicles that should be assigned to each station, in order to optimize a
measure or a combination of measures of system performance. Station location models have
been developed to locate bicycle stations (Lin and Yang, 2011) and car stations (Correia and
Antunes, 2012). Although the focus of our work is on electrical car-sharing systems, we also
review models that address the station location of shared-use bicycles, given some similarities
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of the two systems.

The problem of locating stations for shared-use bicycles has been studied recently (Lin and
Yang, 2011). This paper presents a model for determining the number and location of bicycle
stations and the structure of the network of bicycle paths that should be developed to connect
the bicycle stations. The problem is formulated as a non-linear integer model. The objective
function used expresses the total yearly cost encountered by the operator and the users. A
small scale example was used to illustrate the model and a branch and bound algorithm was
used to solve it. This model does not consider the daily variation of demand and the problems
arising from the dynamic accumulation/shortage of bicycles due to the variation of demand
in time and space.

The optimization of vehicle depot locations and the definition of the number of parking spaces
(size) for each depot has been also addressed (Correia and Antunes, 2012). The number of
parking spaces at each depot is determined by the maximum number of vehicles that are
allocated to each station throughout an operating day. Vehicle relocation (and the associated
relocation cost) is considered only at the end of the entire operating period (i.e. day). Thus,
this model does not treat explicitly the dynamic imbalance created by the one-way operation
and therefore it does not rebalance the vehicles at the end of each operating sub-interval
(e.g. hour). This model assumes that the vehicle imbalance problem is by-passed through
the optimum depot location and size. This assumption makes this model applicable to the
systems with low/balanced demand and/or high station capacity. For high and unbalanced
demand, and limited capacity of stations, its performance is debatable. The objective function
of the model seeks to maximize the profit of the operating agency and takes into account
the depreciation, maintenance and relocation (at the end of the operating period) costs of
the vehicles, the maintenance cost of the depots, and the revenues generated by the system
operations. This model makes the assumption that only trips associated with open stations
need to be served. Thus, the demand (trips) that falls outside the catchment area of open
stations associated with the stations that are not open is ignored. As a consequence, this model
does not consider the access and egress cost of the potential users to/from the candidate
station locations. A direct implication of this assumption is that, the proposed model cannot
be used to study the trade-off between station accessibility cost and system benefits. Finally,
this model does not consider the dynamic relocation of vehicles throughout the operating
period. The proposed model was used to analyze a case study in Lisbon and an optimizer
based on branch-and-cut algorithms was used to solve the problem.

A recent work also models one-way car-sharing problem with an MILP considering relocation
through out the day (Jorge et al., 2013). Similar to Correia and Antunes (2012), the model
exogenously associates trips to stations. Different than the previous work, the model enables
relocation at any time of the day. The objective function maximizes the profit of the operating
agency. The model is tested on three different scenarios and the results are supported with a
simulation. In simulation, cost of relocation is minimized with minimum cost flow algorithm.
Results on different scenarios show that, with dynamic relocation, car-sharing system modeled
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on the demand in Lisbon, Portugal starts profiting.

The problem of determining the fleet size and the distribution of vehicles among the stations of
a car-sharing system was studied in relation to the Personal Intelligent City Accessible Vehicles
(PICAVs). This system uses a homogeneous fleet of eco-friendly vehicles and allows one-way
trips (Cepolina and Farina, 2012). The stations are parking lots that offer vehicle recharging
services and are located at inter-modal transfer points and near major attraction sites within
a pedestrian area. The number, location and capacity of stations are not determined by
the model, hence constitute inputs to the simulated annealing process. To cope with the
imbalance of vehicle accumulation of the one-way system, this model introduces the concept
of supervisor. The task of the supervisor is to direct users that are flexible in returning the
vehicle to alternative stations, as to achieve a balanced operation and fulfill a maximum
waiting time constraint. The objective function of this model includes the minimization of
the daily system and user costs subject to a maximum waiting time constraint. The value of
the objective function of the model was estimated through micro-simulation. A simulated
annealing approach was used for determining the fleet size and for allocating vehicles among
system stations.

Models for evaluating the performance of a network of car-sharing stations has been intro-
duced in the literature (Fassi et al., 2012; George and Cathy, 2011). This problem arises when
the demand for car-sharing services changes (increases) and as a consequence the network
of stations should be adapted to serve better the emerging demand profile. In response to
this need a decision support tool was developed which allows decision makers to simulate
alternative strategies leading to different network configurations. Such strategies include
opening and/or closing stations, and increasing the capacity of stations. This tool is based
on discrete event simulation and seeks to maximize the satisfaction level of the users and to
minimize the number of vehicles used (Fassi et al., 2012). This model does not address vehicle
relocation as it is based on a system that does not allow one-way use of vehicles. Performance
analysis for shared-use vehicles systems has been proposed in the literature using a closed
queuing network model (George and Cathy, 2011). In this approach, both exact and approxi-
mate solution methods are proposed to evaluate the bike sharing system Vélib operating in
Paris, France with over 20000 bicycles and 1500 locations.

3.2.2 Operational Decisions

A major decision associated with the operation of one-way car-sharing systems is how to
relocate vehicles. The vehicle relocation problem arises from the imbalanced accumulation of
vehicles at stations when the car-sharing system allows their one-way use. Different strategies
and models have been proposed in the literature to cope with the vehicle relocation problem.

The relocation of shared vehicles can be realized by using operating staff (Kek et al., 2006) or it
can be user based (Barth et al., 2004). Two user-based relocation strategies namely, trip-joining
and trip-splitting have been proposed (Barth et al., 2004). The trip-joining strategy is used
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when two users have common pick-up and drop-off stations and there is a shortage of vehicles
at the pick-up station. In this case, the users are asked to share the ride. The trip-splitting
strategy is used when there is a surplus of vehicles at the pick-up station and there are users
that are traveling as a group. Under this condition, the users are asked to use separate vehicles
when there is a shortage of vehicles at their destination (Barth et al., 2004). The trip-joining
and the trip-splitting strategies have been analyzed using data collected from a car-sharing
system operated at a university and through simulation. The results of the simulation model
suggest that the need for vehicle relocations can be decreased by 42% by using these strategies
(Barth et al., 2004).

Shortest time, and inventory balancing strategies have been used (Kek et al., 2006) for staff
based vehicle relocation. The shortest time strategy relocates vehicles from other stations to
minimize the travel time needed for a staff member from his/her current location to the station
where the vehicle is available plus the travel time needed from the station that the vehicle is
available to the station where the vehicle is needed. The inventory balancing strategy relocates
vehicles from stations with over-accumulated vehicles to stations that experience vehicle short-
ages. Both strategies were tested through a simulation model which was validated using data
from an operational car-sharing system (Kek et al., 2006). An optimization-trend-simulation
decision support system (Kek et al., 2009) is proposed which uses the same simulation model.
In this three-phase decision support system, the effectiveness of different relocation policies
are evaluated according to zero-vehicle time (duration of the vehicle shortage), full-port time
(shortage of empty parking space when needed) and number of relocation.

The dynamic allocation of vehicles among the stations of a car-sharing system to maximize
profit has been modeled in (Fan et al., 2008). The fleet size, the location of stations, and the
demand for trips for a given planning horizon are known in advance. Penalties associated
with unserved trip requests are not considered. A multistage stochastic linear model with
recourse has been proposed to address this problem. A stochastic optimization method based
on Monte Carlo simulation was used to solve the proposed model (Fan et al., 2008). This model
considers only the vehicle relocation decisions. Furthermore, vehicle relocation is performed
at the end of the day:.

Chance constraint modeling has been used to study fleet redistribution (Nair and Miller, 2011).
This model assumes that system configuration, current inventory of each station, costs and
demand at each station are known in advance. The model aims to find the minimum cost
fleet redistribution plan for the demand expected in the near future. The chance constrained
model with reliability p (CCM-p) is constructed and solved by utilizing a special technique
involving p-efficient points (PEPs) (Prékopa, 2003). The model is applied on the Intelligent
Community Vehicle System in Singapore, a one-way system with 14 stations, 202 parking
spaces and 94 vehicles.

Relocation operations in bike-sharing systems are also investigated in the OR literature. Asym-
metric demand creates problem of imbalance for bike-sharing systems. This results in increase
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in the number of users (i.e. who try to rent bikes from empty stations or to leave bikes to full
stations) who cannot utilize the system properly. As a result redistribution of bikes becomes
inevitable. The literature contains solutions for both static and dynamic balancing problems.
Static balancing problem disregards customer demand and assumes the system does not
operate during redistribution (e.g. during the night). Whereas in dynamic balancing problem,
demand varies with time and redistribution operations are performed accordingly. The static
balancing problem has been modeled as a single vehicle one-commodity capacitated pickup
and delivery problem (SVOCPDP) and was solved with an exact algorithm based on column-
generation (Chemla et al., 2012). Additional formulations of the static balancing problems
have been proposed in Raviv et al. (2013). Dantzig and Wolfe (1960) and Benders (1962) de-
compositions have been also used to solve the dynamic balancing problem (Contardo et al.,
2012).

In the literature, there are also other types of problems that share common structures with
the one-way car-sharing problem. The multiple depot vehicle scheduling problem with time
windows (MDVSPTW) is one of the examples (Desaulniers et al., 1998). In the MDVSPTW, each
customer has a request of tight time windows with a precise start and end time of operations,
and a fleet of vehicles serves these customers one at a time. Each vehicle in the fleet belongs to
a depot and the vehicles have to return to their depot at the end of the service. The objective
of the problem is to minimize the number of vehicles and empty trips.

The literature review revealed that existing modeling efforts make a sharp separation between
strategic and tactical decisions. This means that strategic decision-making models do not
integrate in their structure aspects of tactical and operational decisions (e.g. vehicle relocation,
fleet size) which, as we demonstrate in this chapter have a significant bearing on the cost and
performance of the car-sharing system. On the other hand, operational models are focused
on the detailed modeling of different types of relocation strategies, assuming that the location,
number, and station and fleet size are exogenously defined.

In reality, strategic, tactical, and operational decisions are interweaved and therefore there
is a strong interaction between the three decision making levels. Strategic decisions are
primarily related to the definition of the location, number, and size of stations and interact
with the tactical decision of fleet size determination. In turn the fleet size is affected by vehicle
relocation which is an operational decision. Here it is important to stress the fact that both
fleet size and vehicle relocation influence the strategic level decisions. The above discussion
suggests that there is a need for a model that will be able to address the strategic and tactical
decisions by taking into account (at a macroscopic level) the impact of vehicle relocation.
Figure 3.1 illustrates these interactions. The above discussion suggests that there is a need for
amodel that will be able to address the strategic and tactical decisions by taking into account
the impact of vehicle relocation. In what follows we are presenting such a model. In this
work, although we regard pricing as an input to our model, different pricing policies can be
generated with different price parameters and solved in separate runs to see their effect to
the model. Elasticity of demand due to pricing is beyond the scope of this work and can be
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OPERATIONAL DECISIONS
e Vehicle relocation
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Figure 3.1: Relationship between strategic, tactical and operational decisions

investigated in the future.

3.3 Model Description

The proposed model is motivated from the planning of electrical one-way car-sharing system.
Shared-use electric vehicles are used to serve trips within a given geographical area. The
system operates on the basis of reservations and therefore the origin-destination matrix for
the planning period is known in advance. Stochastic and seasonal demand variations are also
considered in the optimization process. In what follows we provide a description of the system
in terms of its demand and supply characteristics.

3.3.1 System Characteristics

i. Vehicles: A homogeneous fleet of electric vehicles is used to provide the services. Any
type of trip request can be accommodated by any available vehicle.

ii. Stations: Vehicles are picked-up and dropped-off at designated stations. Stations have
the necessary infrastructure for parking and recharging the vehicles. Each station provides a
specific number of parking places which defines the station size. Station size varies among
stations and the size of each station determines its capacity.

iii. Time Intervals: An operating day is divided into time intervals (not necessarily equally
long) and each operation (i.e. rental, relocation, charging) starts at the beginning and finishes
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Figure 3.2: The relationship between time intervals and operations where T = {11, f2, ..., fi 71} is
the set of time intervals.

at the end of a time interval. The model assumes that demand is cyclic and it repeats itself on
a daily basis for a given time horizon (e.g. season, day of the week) and the first time interval
of a given day starts after the last time interval of the previous day (Figure 3.2).

iv. Operations: The system involves three types of operations: rental, relocation and
charging.

a.Rental: The system operates on the basis of reservations and allows one-way rental
of vehicles. Reservations are made in advance of the pick-up time. Origin and destination
locations, and pick-up and drop-off times are also known. Vehicles are picked-up/dropped-
off from/at a station that is accessible to the initial origin/destination location of the
respective user at pre-specified (when reservation is made) periods. It is assumed that
each rental starts at the beginning of a time interval and ends at the end of the same or a
subsequent time interval (Figure 3.2).
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b. Relocation: The system allows one way rental of vehicles. As a result, there might be
accumulation and/or shortage of vehicles at stations. Relocation is used to rebalance the
system resources, i.e. vehicles. Relocations can last more than one time interval (Figure
3.2). During relocation, the vehicle is not available with the exception of extremely closely
located stations (i.e. less than 2kms) in which case rental and relocation can take place
at the same time interval. The total time spend for relocation operations during a time
interval cannot exceed the total available time of the staff assigned to a working shift.

c. Charging: The system modeled in this chapter uses electric vehicles. In order to
model the electric vehicles charging period, it is assumed that after a vehicle is returned
from a rental operation, it has to stay in the station for a fixed period of time which
represents the charging period of the vehicle.

v. Working Shift: A set of consecutive time intervals defines a working shift. Working shifts
are used to model the personnel needed for relocation operations.

vi. Centers: In the model, centers represent demand points that can be served by the
same set of (candidate) stations. To illustrate how the centers are defined we are using the
example shown in Figure 3.3. Figure 3.3a depicts the origin and destination of demand and
the station locations. Figure 3.3b shows the stations that are accessible by different origin
and destination locations. Please note that more than one station may be accessible from a
given origin/destination point. The origin/destination points that can access the same set
of stations are clustered together and constitute a center. Figure 3.3c illustrates two centers
(shaded areas) and trips (demand) associated with these centers. The grouping of demand into
centers decreases the number of variables since the trips with the same origin and destination
centers are grouped together and allows the solution of larger instances of problems. The
distance between a center and a station is the average of all distances defined by the demand
points of a given center and the associated station.

vii. Demand: Demand represents an aggregation of trip reservations (orders) of rentals
that are associated with the same set of origin and destination centers and have common
departure and arrival time intervals. In order to satisfy an “order” (i) a vehicle from a station
that is accessible from the origin location (or equivalently center) at the beginning of the
departure time interval, and (ii) a parking space at a station that is accessible from the destina-
tion location (or equivalently center) at the end of the arrival time interval have to be available.
Note that, “orders” do not have to be assigned to the closest stations but to accessible ones.

viii. Atoms: An atom represents a small geographical area with known population. The
atoms are used to model the population coverage of the car-sharing system. In our model, we
assume that there is a maximum distance that determines if an atom is covered. Thus, if there
is an open station closer than the predefined maximum value (coverage distance), the atom is
covered. Atoms used in population coverage of example problem can be seen in Figure 3.4.

ix. Costs and Revenues: The model includes two objective functions expressing the objec-
tives of the users and the operator. The operator’s benefits include vehicle rental revenues and
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Figure 3.3: (a) Location of stations and historical trips generated between origins and destina-
tions; (b) Origins and destinations are grouped according to the set of accessible (candidate)

stations; (c) Based on this aggregation, a specific demand can be served in two different ways
(trip 1 and 2)
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Figure 3.4: Atoms used in population coverage

subsidies, while costs include maintenance, operation and relocation of vehicles, and station
opening costs. Users’ net benefit is calculated as the difference between the utility gain in
terms of monetary value, and the sum of vehicle rental and accessibility costs. In what follows
(see items a to h below) we define all these terms.

a. Vehicle Rental Cost: The amount paid by the users to the operator to rent a vehicle
expressed in €/unit time. This value is predefined and regarded as an input to the model.

b. Subsidy: It represents money paid directly to the operator, by public agencies, to
cover revenue deficits per rental in €/unit time.

c. Fixed Vehicle Cost: The cost encountered by the operator expressed in €/day (e.g.
depreciation, insurance)

d. Variable Vehicle Cost: The cost of the operator per km vehicle rented (e.g. cost of
energy, maintenance cost due to wear-and-tear).
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e. Vehicle Relocation Cost: The cost related to the relocation operations of the vehicles.
It has two components: the relocation personnel cost (per shift) and the cost for driving
vehicles between stations.

f. Station Operating Cost: The cost of operating a station. Itis a function of the number
of operating parking spaces.

g. User Utility: The monetary value of the utility gained by the users by each satisfied
trip expressed in €/unit time.

h. Accessibility Cost: The monetary value of time of the users required to reach a
station from their origin and from stations to their destination expressed in €/distance.

x. Scenarios: Alternative scenarios are defined by varying the input parameters of the
model (e.g. weekdays, weekends). Scenarios are used to obtain a more representative average
system performance.

xi. Scenario Groups: The set of scenarios which addresses the same strategic decisions
and parameters (e.g. number of vehicles, relocation personnel cost) belongs to the same
scenario group. In order to account for daily variation within the same season (e.g. summer,
autumn, winter), each season is set as a scenario group and more than one scenarios is
generated according to day of the week (e.g. weekdays, weekends).

3.3.2 Mathematical Model

In this part, we represent the mathematical structure of the proposed model. We first define the
sets and indices used to describe the model as well as the functions, variables and parameters
in Section 3.3.2. In Section 3.3.2, the detailed multi-objective mathematical model is given
and its objective functions and constraints are described in details. The aggregate model and
the rational for to have an aggregate model are presented in Section 3.3.2.

Inputs

Sets and Indices:

i,keI: centerindices

J,1 € J: (candidate) station indices
t,u,we T: time interval indices

f € F: working shift index

a€ A: atom index

s€ S: scenario index
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g € G: scenario group index
Functions:

next(z,#): time interval that is # intervals after time interval ¢
cover(a): set of stations that are accessible from atom a
btwn(t, u): set of time intervals from ¢ to u

close(j): setof stations that relocation with station j is possible during the same time interval
Parameters:

SOC;j: cost for establishing station j
PSC;: cost per parking space available at station j
VFCS: fixed vehicle cost per vehicle-day in scenario group g

VOC%”: operating cost of a vehicle rented at time interval ¢ from station j to reach station /
at time interval u in scenario s

VRC‘;’.T lt : relocation cost of moving a vehicle from station j to [ starting at time interval ¢ in

scenario group g

AC‘f].t/Aij: accessing/egressing cost from/to center i to/from station j at time interval ¢ in
scenario group g

RPC?: cost of relocation personnel for working shift f in scenario group g

RC‘;’.’ lt “l SA?.’ lt “: rental charge/subsidy when a vehicle is rented at time interval ¢ from station j
to reach station [ at time time interval u in scenario group g

UG%”: user utility when a vehicle is rented at time interval ¢ from station j to reach station /
at time time interval u in scenario s

CAP;: maximum number of available parking spaces for station j
COV: minimum percentage of population need to be covered by open stations
PR,: percent of population inhabiting in atom a

ODIS.]Z”: number of orders starting at the beginning of time interval ¢ from center j ending at
the end of time interval u at center k for scenario s

RIf lt : time intervals needed to relocate a vehicle from station j to [ starting at the beginning
of time interval ¢ in scenario group g
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LRI}?’ lt : last time interval of relocation if a vehicle is relocated from station j to [ starting at the
beginning time interval ¢ in scenario group g

Sl}gc: time intervals included in working shift f in scenario group g

RT?’ lt : time spend to relocate a vehicle from station j to [ at the beginning of time interval ¢ in
scenario group g

WHS!: total available working hours for a shift operating during time interval 7 in scenario
group g

SW*: weight of the net benefit of scenario s in the objective function

CT%”: charging periods of vehicles rented at time interval ¢ from station j to reach station /
at time interval u in scenario s

N: maximum number of open stations
S(g): scenarios belonging to scenario group g

G (s): scenario group of scenario s
Decision Variables:

Xj: binary variable showing if (candidate) station j is open or not
cj: number of parking spaces operating in station j

v8: number of vehicles used in scenario group g

dg,: binary variable showing if atom a is covered by a station or not

h?: number of relocation personnel needed during shift f in scenario group g

Auxiliary Variables:

nj '+ number of available vehicles in station j at the beginning of time interval ¢ in scenario s

yl?lzj‘?l: number of trip orders satisfied from center i renting vehicle from station j to make a

trip at the beginning of time interval ¢ to reach center k through station / at the end of
time interval u in scenario s

zﬁ“: number of vehicles rented from station j at the beginning of time interval ¢ to reach

station [ at the end of time interval « in scenario s
m; ,’;“: number of unserved orders of ODIS.IZ”
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pfjt Ip3 ]t : number of vehicles rented/left from/to station j at the beginning/end of time interval
t to/from center i in scenario s

qjs. t ﬁ;t: number of vehicles rented/left from/to station j at the beginning/end of time interval
¢ in scenario s

bj: number of vehicles rented before time interval ¢ which are still rented during time interval
t in scenario s

e;: number of vehicles being relocated during time interval ¢ for which their relocation started

before t in scenario s

r]?lt: number of vehicles relocated from station j to [ starting from the beginning of time

interval ¢ in scenario s

Detailed Model

rental charge + subsidy - vh. operating costs v}, relocation cost
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The problem formulation is described in equations 3.1-3.20. To summarize, equations 3.1-3.2
are the two objectives of the model. Constraints 3.3-3.6 and 3.17 are related to station opening
and capacities. Constraints 3.7-3.10 and 3.14 establish relations between decision and auxiliary
variables. Constraints 3.11-3.12 satisfies feasibility of station capacities during operations.
Constraints 3.15-3.16 satisfy vehicle and personnel restrictions respectively. Constraints 3.18
are for charging restrictions and can be omitted for combustion vehicle systems.

The first objective function (Equation 3.1) expresses the maximization of the net revenue
for the operator. Net revenue is calculated as the difference between the sum of total rental
revenue and subsidy minus station, vehicle and relocation costs. Note that all of the values in
both objective functions except station opening cost are weighted analogous to the number
of days (e.g. five for weekdays, two for weekends) of each scenario (SW*). This is due to
the fact that the location of the stations and the number of parking spaces are regarded as
strategic decisions and therefore have to be the same in all scenarios. However the rest of the
parameters are scenario (e.g. the number of vehicles) specific. The net revenue for the trip
starting from station j to station / from the beginning of time interval ¢ to time interval u in
scenario s of given type equals the rental charge per trip (RCS.t ”) plus subsidy (SA;?”) minus

operating cost (VOC“ ”) times the number of trips of the same type served (z“ ”)
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The relocation cost has two components: (i) The vehicle cost related to the total km driven
to relocate and (ii) the labor cost associated with the cost of the personnel used to relocate
the vehicles. The total vehicle relocation cost is equal to the expenses of all the relocation
operations. The vehicle relocation cost for the relocation starting from station j at time interval
t to station [ in scenario s is equal to the sum per relocation (VRC?I(S) t) times the number of

relocations (rjs l[ ) Similarly, the relocation personnel cost equals the sum of all personnel costs.

The total personnel cost for shift f in scenario group g equals the unit personnel cost (RPCJgC)

times the number of staff hired for this shift (h?)

The fixed vehicle cost depends on the total number of vehicles operating in the system. For
scenario s, this cost is equal to the product of the unit fixed vehicle cost (VFC8) and the
number of vehicles in the system (v$) in scenario group g. Note that, for scenarios belonging
to the same (scenario) group, the number of vehicles is the same, since we regard the number
of vehicles as a tactical decision.

The station operating and parking space costs are the costs dedicated to station operations.
There is a fixed cost for operating a station (SOC;) and a variable cost (PSC;) for each parking

space (n;‘) operating at given station j.

The second objective (Equation 3.2) expresses the maximization of the users’ net benefit.
UG%” can be defined as the monetary value (i.e. €) of the utility gain for each realized trip
starting from station j to station / from the beginning of time interval ¢ to time interval u in
scenario s of the same type. Similarly, the rental fee is the money paid to the operator for the
rental of vehicles by the users (REV%”) and total rental charge equals the sum of them. The
accessibility cost is the cost associated with the access or egress of a station from a center.

Constraints 3.3 restrict the number of parking spaces (station capacity constraint), and the
number of available vehicles for each time interval and station. If a station is not open in
a candidate station location, the station capacity is set to zero. If the station is open, then
there is an upper bound (CAP;) for its capacity. Constraint 3.4 limits the total number of
operating stations. Constraints 3.5a and 3.5b require that if a station is open, at least one
parking space and an operation (i.e. rental, relocation) from this station should be assigned
as well. These constraints are essential in order to guarantee the coverage of the demand by
an open station that has at least a capacity of one parking space. Constraints 3.6a and 3.6b
are the atom coverage constraints, i.e. if an atom is covered or not, and population coverage
constraints, i.e. the car-sharing system is accessible by a given percentage of the population,
respectively. Constraints 3.7 ensure that the total number of orders is equal to the sum of the
satisfied demand and unserved (lost) orders.

Constraints 3.8 postulate that the total satisfied demand that is assigned to a trip starting from
center i at the beginning of time interval ¢ by a vehicle from station j, ending at the end of
time interval u in center k through station [ in scenario s over origin/destination center pairs
(i, k), is equal to the trip starting from station j to station / from the beginning of time interval
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t to time interval u in scenario s. Similarly, constraints 3.9a indicate that the total number of
the trips defined above from station j is equal to the number of vehicles rented from station j
at the beginning of time interval ¢ to serve demand from centers i. Constraints 3.9b do the
same as constraints 3.9a for the vehicles originating from center i left at station j at the end of
period ¢. Constraints 3.10a and 3.10b are equivalent to Constraints 3.9a and 3.9b and ensure
respectively the same conditions for the vehicles that are rented/left from/to a station j. Thus,
Constraints 3.8, 3.9a, 3.9b, 3.10a and 3.10b establish the functional relationship between the
variables y, and z, p (p) and g (q) respectively. Please note that, variables z express vehicle
assignments independent of the center to which originate/end their movement, variables p
and p indicate customer movements from centers to stations and from stations to centers
respectively, and variables g and g, signify the number of vehicles rented from and left to a
station respectively.

Constraints 3.11 require that the number of vehicles leaving a station (due to rental and
relocation) at the beginning of interval ¢ cannot exceed the number of vehicles available

at that stations at the same time interval. Constraints 3.12 are the “vehicle conservation’
constraints for each station.

Constraints 3.13 and 3.14 are used to establish the functional relationship between variables
b, e, and z, r respectively. Variables b and e are used in Constraints 3.15 to determine the total
number of vehicles (fleet size) of the system. Constraints 3.16 are introduced to ensure the per
shift availability of the workforce needed to perform vehicle relocations.

Constraints 3.17a and 3.17b set an upper bound to relocation from and to every station
respectively. This upper bound equals to the number of operating parking spaces in related
station. For a station which is not open, the number of relocations from and to this station are
set to zero with the same constraints respectively.

Constraints 3.18 are restrictions specific to electric-car-sharing systems. These constraints
force the vehicles to stay and be charged, after each rental operation, at the station they arrived.
These constraints require that the number of vehicles in the station should be greater than or
equal to the number of vehicles requiring charging.

Aggregate Model

Equations 3.2 -3.10, 3.13, 3.15, 3.18 - 3.20 (3.21)

new vh. relocation cost
A
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q;t < n;t _ r;t n Z rlst Vs, j,t (3.23)
leclose(j)
'+ X a@'sni+ X onf' Vs, j, t (3.24)
leclose(§) leclose(§)
st _ St =St _ _.st —su _ ,snext(t,1) .
mi'—qit+qy -t ) T=n; Vs, j,t (3.25)
(j,w):t=LRIJ"
_ N\t .
rj?” = Z r;. Vs, j,t (3.26)
(j,D:¢=LRIG" i
t —st .
r; scj @ Tj=sc (b) Vs, j, t (3.27)
r;u +7§” — 5t Vs, t (3.28)
(j,u):rebtwn|u, LRIS" ) \u
Y RTGO(rr7) < WHOW G Vs, f,teSITY (3.29)
(j,l,u):tERI?(S)”
r’t>0 7t>0 Vs, j, t (3.30)

J - J

In real life instances, the model described by equations 3.1-3.20 may result in problem sizes
that are not possible to be efficiently solved. Although for most of the variables, we only
generate those that have positive values and construct the corresponding constraints accord-
ingly, we do not have this opportunity for the relocation variables r]? lt . As the relocations can
happen between any station pairs, we need to generate |/ |2|S|| T| number of variables which
renders the case of Nice, France impossible to solve. An instance of 142 candidate stations,
12 scenarios and 15 time intervals needs more than 3.6 millions variables of type r; lt only. In
order to cope with this issue, we assume that the relocated vehicles are firstly accumulated
in an imaginary hub and then distributed from that hub to the stations. For this issue, two
new variables, r ]S Fand Fj.[ are defined as that the number of vehicles relocated from/to station
j starting from the beginning/finishing at the end of time interval ¢ in scenario s. With this
change, the number of variables of type r decreases to 2|J||S||T| which means 51120 variables
instead of over 3.6 millions.

In addition, we substitute the constraints 3.11, 3.12, 3.14 and 3.16 and 3.17, with the following
constraints 3.23-3.30. Moreover, the vehicle relocation cost part of the operator’s objective
function (Equation 3.1) is replaced with Equation 3.22. Note that, parameters LRI}‘.’ t, VRC?.’ g

and RT}g. ! shows the last time interval, the vehicle relocation cost and time spent when a
vehicle is relocated from/to station j to/from hub starting in time interval ¢ in scenario group
g respectively. The aggregate model is expressed by equations 3.21-3.30.

Constraints 3.23 and 3.24 replace constraints 3.11. Constraints 3.23 postulate that the total
number of trip starting from station j at the beginning of time interval ¢ in scenario s cannot
be more than the number of available vehicles at the beginning of the time interval ¢; minus
the number of relocations from station j; plus the number of relocations from the stations
that are close enough to station j to have relocations at the same time interval. Constraints
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3.24 set an upper bound for each station group close enough to have relocations to the same
station. For each set of stations, the total number of trips started from the corresponding set
of stations cannot be more than the total number of available vehicles at these stations.

Constraints 3.25 replace constraints 3.12 of the first model. Constraints 3.26 require that
the total number of relocations from stations to the imaginary hub ending in time interval ¢
should be equal to the number of relocations to the stations from the imaginary hub starting
in time interval ¢. This is applicable for each time interval and scenario.

Constraints 3.27a and 3.27b replace constraints 3.17a and 3.17b. They set the number of
relocations to the number of operating parking spaces. Constraints 3.28 and 3.29 work the
same as constraints 3.14 and 3.16 respectively. The former constraints calculate the number
of vehicles under relocation whereas the latter constraints decide on the manpower need for
each time interval in each scenario.

3.4 Model Application

The model presented in Section 3.3.2 was applied to plan a one-way electric-car-sharing
system in Nice, France. The study area is 294.19km? and has a population 327188 inhabitants
between ages 15-64 with a density 1112 persons/km?. The area under consideration consists
of 210 regions. The population of each region was obtained from 2009 census data (INSEE,
2010). We assume that the population is uniformly distributed inside regions and calculate the
population of each atom accordingly. The atoms and their population can be seen in Figure
34.

The whole model is implemented in C# .NET environment. IBM ILOG Cplex Version 12.5
with Concert Technology is used for solving MILPs. To cope with the enormous number of
relocation variables, the aggregate model (Section 3.3.2) is used. The exact and aggregated
relocation costs will be compared later. For each station, half of the average distance of closest
n stations is calculated and regarded as the distance of the same station to the imaginary hub.
This approach generates values that closely approximate real relocation distances. To further
investigate the performance of the approximation, a simulation environment that compares
average real and hub relocation distance for 1000 cases is generated with different » values. In
Figure 3.5, the error for different values of the number of relocations (n) are compared. We
use n = 20 which results to an average minimum error. In other words, when distance for
relocation is calculated, the distance from a station to the hub is assumed half of the average
distance of 20 closest (candidate) stations. Note that in the aggregate model a relocation is
composed of two legs: relocating vehicle from its old station to the imaginary hub and to its
new destination from the hub. A similar approach is used for the second leg. The number of
relocations per personnel has values between seven and 15 which results in error not more
than 0.7km per relocation. Since distance per relocation observed is around 4km and the
total cost of relocation is not more than 20% of the objective function value of each case
(see in figures 3.9 and 3.10), this relaxation might not create an error more than 3.5%. Also
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Figure 3.5: Average absolute error of imaginary hub usage in relocation for different number
of relocations. Different n values are compared in order to find the most suitable value for our
case.

post-analysis showed that the difference between the cost of relocation operations calculated
by the aggregate model and the exact model is less than 2% of the operator’s revenue on
average. In order to deal with the extremely large size of the problem, we take advantage of
the sparsity of the matrices of the variables and we do not generate the variables that have
zero value. This decreases the number of variables of aggregate model in order of magnitude
from 10 to 5.

To guarantee generation of feasible solutions in reasonable time, extra cuts are generated with
CPLEX. The runs are taken on a computer with 3.00 Ghz Intel Core 2 Quad CPU and 8 GB
of RAM. All runs are realized as single threaded programs and every run is terminated when
either they reach 2% optimality gap or 9 hours run time. Most of the runs that are represented
here were terminated in less than three hours and all of the runs had an optimality gap less
than 8%.

The summary of the methodology for the entire approach can be seen in Figure 3.6 where
Woperator and Wysers stands for weights of operator and users benefit respectively. The terms
superior and inferior used in finding candidate station section refers to superiority and infe-
riority in coverage respectively. If a candidate station covers one more origin or destination
location in addition to another candidate station’s covered locations, the former candidate
station is superior to the latter and latter is inferior to the former.
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Figure 3.6: Summary of the methodology for the entire approach with the weights woperator
and wysers for the users’ and operator’s benefit respectively
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3.4.1 Car-Sharing System in Nice

The current system operating in Nice is a two-way car-sharing system (no need for relocation
operations). However, the proposed model deals with the case of one-way car-sharing, which
makes the implementation more demanding. Therefore, there was a need to convert the
existing two-way car-sharing data into one-way. This conversion was achieved by looking at
the current database and creating one-way data by splitting the trips into one-way legs when
the idle time of the rented vehicle at a given location was exceeding one hour, and the location
was accessible from a station (i.e. the distance between the location and the stations is less
than 500m). The problem formulation and solution procedure of Section 3.3 are not affected
by this conversion and other methods could be utilized to generate the one-way demand (e.g.
population surveys) (Efthymiou et al., 2013).

We use the origin and destination locations of the real demand in two steps. First, we solve a
maximal set covering problem (Church and ReVelle, 1974) to identify the candidate station
locations for the aggregate model. For each origin and destination, the (existing or candidate)
stations that are accessible (the distance between two points is less than the maximum ac-
cessibility distance) are found. In addition to existing 42 stations, the model was forced to
choose 100 new candidate locations for the stations. Second, we group the locations into
centers. This grouping was done according to the (existing or candidate) stations that are
accessible to them. The locations with the same accessible stations were assigned to the same
centers. The accessibility distance between a center and a station is calculated by taking the
average of the distance between the elements of the center and the station (Figure 3.3). The
graph showing the locations of the origin and destination of the trips (crosses), the operating
(blue) and candidate (red, gray and black) stations’ locations (dots) and their catchment areas
(circles with the same colors) can be seen in Figure 3.7 in which x-axis shows the longitude
and y-axis shows the latitude values. Note that, the covered origin and destination locations
by already operating and/or selected candidate stations have dark gray color, and each grid is
a square with sides of 1 km.

After solving set covering problems, the set of candidate locations for the aggregate model
(defined in Section 3.3.2) is produced. The aggregate model is solved with different weights (of
users’ and operator’s benefit) in order to generate an efficient frontier for the given case. A total
of 8 different scenarios of four seasons (spring, summer, autumn, winter) for two different day
groups (weekdays, weekends) were selected. A working shift is assigned for each time interval.
It was also assumed that the number of operating vehicles and relocation personnel for the
same season is the same. This is because the fleet and crew size decisions are considered
tactical and do not change within the same season. Each scenario was constructed by using
two days of the real demand of the same day group in the same season. The capacity of each
station was set to five vehicles and the model was asked to choose 28 more stations (from a set
of 100 candidates) in addition to 42 stations that are already operating. Each day was divided
into 15 time intervals. The time intervals are generated in such a way that the total duration of
rental time (vehicle-hours) in each time interval in the historical demand are almost equal.
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Figure 3.7: The origin and destinations of the divided trips, the operating (blue) and candidate
(gray, black and red) stations and their catchment areas
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fixed vehicle cost (€/day): 20
vehicle operating cost (€/km): 0.01
average number of trips per scenario: 155.2
average trip length (km): 30
max accessibility distance (km): 0.5
minimum coverage: 20%
subsidy (€/hour): 5
revenue per time interval (€/hour): 8
accessibility cost (€/km): 5
utility (€/hour): 12
relocation speed (km/h): 30
relocation personnel cost (€/h): 18

Table 3.1: Values of the parameters used in the model

Given that: i) each vehicle has a maximum range of 120km, ii) the average trip length is 30km,
and iii) it takes 8 hours to fully charge an empty battery, it follows that each vehicle should be
charged at least for 2 hours before it becomes operationally available. An average value for the
charging duration is utilized for all trips as the operator is not aware of the distance that will
be traveled by the driver at the beginning of the trip. A more detailed model can be solved in
the operational problem, where uncertainty in the duration of charging can be considered.
The values for some of the other parameters applied in the model are presented in Table 3.1.
The fuel cost is low because the system is operating with electric vehicles. Note that, the stated
values have been properly modified to ensure data confidentiality.

Using the parameters presented in Table 3.1, we solved the model and generated the efficient
frontier provided in Figure 3.8 by using weighted sum method Cohon (2004). The selected
candidate stations can also be seen in Figure 3.7. The candidate stations shown with red color
are the candidates that are not selected, the ones with gray and black are the stations selected
atleast once. The intensity of the color given to the selected candidate stations increases as the
frequency of their appearance in the efficient frontier increases. For instance, black means the
candidate station appears in all the efficient solutions whereas the lightest gray suggests that it
appeared in only one of them. The circles around each station shows the stations’ accessibility
area which is a circle with 500m of radius.

As it can be seen in Figure 3.7, although the part of the data used to create the efficient frontier
composed of 16 of the 421 days, selected candidate stations manage to cover locations with
high demand. For instance, there is an accumulation of demand around the coordinates
43.73N-7.19E and the model selects to operate a station there in all efficient solutions.

From the efficient frontier shown in Figure 3.8, it can be seen that the operator should sacrifice
some of its net revenue in order to improve total users’ benefit and vice versa. Although the
revenue and subsidy of the served demand is higher when more demand is served, the rate of
increase of the operational costs (e.g. vehicle operating cost, relocation cost) is higher than
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Efficient Frontier for The Case of Nice
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Figure 3.8: The efficient frontier for the case of Nice, France.

the rate of increase of the associated benefits. Both the number of vehicles in the system and
the increase of relocation operations decrease the utilization of the vehicles.

Another interesting result is associated with the selection of common stations in determining
the efficient frontier. It is observed that (in addition to 42 already operating stations) all seven
efficient solutions select stations among a set of 46 candidate locations. More specifically, 13
of these stations appear in all solutions; 5, 7 and 3 in six, five and four solutions (out of seven)
respectively. This result suggests that from station location point of view, the efficient station
locations are not in conflict when considering the user and the operator objectives and the
solution is robust. Since there is no conflict in station locations, these 28 stations are assumed
to be operating stations in addition to already operating 42 stations in the further analysis.

After deciding about the number and location of the stations (strategic decision), we perform
further analysis in order to explore if different demand levels, coverage distances and subsidy
amounts influence the solution.

3.4.2 Effect of Demand

Firstly, we examine the effect of demand by using five different levels and equal weight for
the users’ and the operator’s objectives. The results of these runs are demonstrated in Figure
3.9. In Figure 3.9, there are two sets of bar charts for each level of demand. These bar
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Figure 3.9: The costs, benefits and revenues with the increased demand

charts correspond to different number of available vehicles, bounded vs. relaxed. Bounded
is referred to the cases where the number of vehicles is forced to be less than or equal the
corresponding number of the baseline scenario. Please note that, in the relaxed case there
is no such constraint. Moving from left to right we generate for both cases (bounded and
relaxed), alternative demand levels by increasing the baseline demand by 50% up to the level
of 200%. The table at the bottom of the graph, summarizes the total number of trip requests,
the number of lost demand and their percentage.

For the relaxed case, the operator’s benefits for increasing levels of demand are increasing
faster than the users’ benefits. In the bounded case we observe the same pattern. As the
demand increases, net benefits are increasing since the model can select to serve the most
profitable customers from a larger pool of candidate customers. In the bounded case, the slope
of users’ and operator’s benefits curves decreases as the demand increases. This is because of
the limitation on the number of vehicles. This is an expected result since the model does not
penalizes lost demand while at the same time increases the value of the objective function
from the served demand. Note that, this increase of demand results to a higher density of
demand, a fact that gives more flexibility to the model to select customers leading to improved
objective function values. For the 50% increased demand, the benefit lost for both the operator
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Figure 3.10: The costs, benefits and revenues for different maximum accessibility distances

and the users are almost imperceptible. However, the difference between the relaxed and
bounded cases becomes significant with a demand increase of 100%. This means that in case
of significant increase in demand, the system has to be redesigned in some aspects to improve
the quality of service and revenues.

Another important finding is the relationship of costs, benefits and revenues. Since the rental
fee is a cost for the users and a benefit for the operator, it has no effect in our objective
function for this specific example since equal weights are used for the users’ and the operator’s
objectives. The subsidy and the users utility are the only two values contributing to the
increase of the value of the objective function and consequently more orders (customers) are
served.

In the calculation of the required relocation personnel, it is observed that relocation cost is
not significantly affecting operator’s income. In the most congested system, not more than 35
hours of relocation personnel are required which corresponds to a cost of €615, about 12% of
the rental charge. This finding suggests that relocation operations donot significantly increase
the operator’s cost.

The accessibility cost is not significant because both the accessibility cost per km (5 €/km)
and maximum accessibility distance (0.5 km) are substantially lower compared to other costs
(e.g. utility: 20€/h, relocation personnel cost: 18€/h).

Another important finding is related to the change in the percentage of unserved requests. The
unsatisfied demand is increasing with the increase of the total number of trips. In the “relaxed”
cases the percentage of lost demand is decreasing until +100% demand. This may be due to
the fact that the cost of unserved demand due to shortage of vehicles is less than the cost of
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acquiring extra vehicles to serve the lost demand. However, we observe an increase in the
percentage of lost demand when demand is more than doubled. From a detailed observation
of the results, it can be inferred that the concentration of demand during specific intervals
at specific geographical locations is high. During these intervals the model either prefers
not to serve additional “orders”, since the cost is more than the benefit or cannot manage
to serve extra demand since it reaches its limitations in busy time intervals. On the other
hand in bounded cases, when demand is increased more than 100%, the number of demand
served does not change. A careful look at the results show that, the bounded system reaches
its limitations and cannot serve more customers without increasing system resources (e.g. the
number of vehicles).

3.4.3 Effect of Accessibility Distance

The effect of maximum accessibility distance was also investigated for two different levels
of demand (e.g. base and +100%). Six different accessibility distances from 500 to 1000m in
every 100m intervals were tested. The demand generated for the 500m accessibility distance
is used for all 6 cases to test only the effect of flexibility. Figure 3.10 shows the value of the
objective function components (left axis) and the operator’s and users’ net benefits (right axis)
as a function of maximum coverage distance.

In both graphs shown in Figure 3.10, it can be seen that the maximum accessibility distance
decreases the net users’ benefit slightly (around 1%) while operator’s revenue is improved
1-4% for each accessibility distance increment. However, the same trend is not followed by
the demand served. These two results are the consequence of the flexibility introduced to
the system. The average number of accessible stations for the covered origin or destination
points increases from 2.30 to 6.65. The increase of the number of accessible stations, results to
an expanded feasible region and leads to an improvement of the operator’s revenue. Since
accessibility cost is low (5€/km) compared to operational costs of the operator, the model
leads to choice that decrease the operational cost when accessibility distance is increased.

This analysis shows the importance of station accessibility. In our model, the effect of other
public transportation systems to accessibility distance is not taken into consideration. It is
assumed that the users can reach stations that are close enough to walk, while they might be
more options in multimodal transport network. This underlines the nature of the car-sharing
systems that work as systems complimentary to public transportation, which contribute to
the improvement of the overall mobility.

3.4.4 Effect of Subsidy

The effect of subsidy on car-sharing system performance was also studied. Three different
levels of subsidy (0, 2.5 and 5€/hour) were investigated for three different levels of demand
(50% decreased, base and 100% increased demand). Alternatively, if an exact model of demand
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Figure 3.11: The costs, benefits and revenues for different subsidy levels

sensitivity to pricing exists, a similar analysis could be made. The results of this analysis are
shown in Figure 3.11. The value of the objective function components (left axis) and the
operator’s and users’ net benefits (right axis) are shown for different levels of subsidy.

The results of this analysis suggest that, the percent of demand served increased by 4-11%.
Unprofitable demand in low or no-subsidy becomes profitable for the operator. Although
5-15% increase of the operator’s cost (fix and variable vehicle, and relocation personnel costs)
is required, the extra revenues generated outweigh the extra costs.

Note that, the increase in subsidy results in increase in the number of vehicles. However, it is
not the case for the relocation personnel. Since increased subsidy enables operator to have
more vehicles, the system becomes less dependent on relocation operations.

Another important finding of the analysis of subsidy levels relates to the effect of demand
balance between demand level and subsidy on net revenues. If the net revenues of the operator
for the same subsidy amount with different demand levels are compared, it can be observed
that the increase in the profit is faster than the increase in demand. The operator earns more
than double with double demand. It is something expected: Increase in demand makes the
system more efficient and profitable as a result the level of subsidy can decrease.

3.5 Concluding Remarks

A multi-objective model for supporting strategic and tactical planning decisions for car-
sharing systems was developed and tested in a large scale real world setting. The model
considers simultaneously the net benefits of both the operator and the users. The proposed
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model closes a gap in the existing literature by considering simultaneously decisions associated
with the allocation of strategic assets, i.e. stations and vehicles of car-sharing systems and
the allocation of personnel for relocation operations (tactical decision). The model provides
decision makers with ample opportunities to perform sensitivity analysis for relevant model
parameters. This feature is particularly useful for cost values that are difficult to establish
empirically (e.g. utility gain of satisfied customers, population coverage, station accessibility
cost). Furthermore, the multi-objective nature of the model allows the decision maker to
examine the trade-off between operator’s profit and users’ level of service. This last feature is of
particular importance if we consider that car-sharing systems are subsidized with public funds.
The results obtained from the application of the model to a case resembling real world decision
making requirements, provides useful information regarding the system performance.

Although the model provides satisfactory results for the case under consideration, it should
be pointed out that the results are dependent on the model parameters used and cannot
be directly generalized. However the proposed model can be utilized in different settings
without difficulty. The value of the research presented herein stems from the innovative model
proposed and its use for supporting strategic and tactical decision for car-sharing systems.

Research work under way involves the integration of the proposed model with a simulation
model that will provide a more realistic representation of the relocation operation costs by
looking on operational decisions. Modeling the operational problem and assigning the vehicle
rosters while taking their electrical charge level into consideration is another future work
directions. A field implementation of the proposed framework for one-way car-sharing is
under preparation. Operational problem will consider different sources of uncertainties, such
as last minute reservations, deviations from scheduled pick up and drop off times, level of
charging and others. An operational model can also influence or redirect demand with pricing
strategies, by giving for example the flexibility to choose the exact station or location (multiple
stations) to the users.
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Operational Framework for One-Way
Car-Sharing Systems

Car-sharing (also known as shared-use vehicle) system is a new model for car rental in which
people rent cars for short periods of time. It is an attractive alternative to the people who
make only occasional use of a vehicle because of its cost-effectiveness and environmental-
friendliness. In addition to that, it has several benefits to the society such as reduction in
congestion, pollution, demand for parking spaces and incentive to drive less. In most of the
real-world applications of car-sharing systems works in two ways, i.e. the vehicle should be
returned to where it is rented from. Although there are some examples of one-way car-sharing
systems in real-world, they are not preferred by the operators because of their operational
difficulties e.g. relocations of vehicles.

In this research we aim to propose an optimization framework for the operational decisions of
one-way electric car-sharing systems. Specifically we work on a model that decides on the
relocation of the vehicles and the schedules of the personnel responsible from scheduling in
general one-way car-sharing systems. For this purpose a mathematical model is formulated
and solved. Since the work is still in progress, only preliminary results will be shown.

4.1 Introduction

As stated in Chapter 3, car-sharing systems have recently become an alternative for car owner-
ship in the big cities. It attracts more people and have various benefits to not only individuals
that uses the system but also to the society (Duncan, 2011).

The level of service offered by car-sharing system has two important components: The acces-
sibility of the stations by the users and the availability of vehicles at the stations. The higher
the accessibility of the stations and availability of the vehicles, the higher the level of service
offered to the potential users, and hence the higher the attractiveness and potential utilization
of the system. On the other hand, the station number and size, the fleet size and availability of
vehicles and similar decisions influence the cost of establishing and operating a car-sharing
system.
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Ensuring the availability of the vehicles is a more serious problem when vehicles can be used
on a one-way basis, i.e. when a vehicle picked-up at a station is not necessary to be returned
back to the same station. It is highly probable to see imbalance of demand for cars, both at the
origin of the trip (pick-up station) and at the destination (drop-off station). This phenomenon
might create shortages of vehicles and empty spots. Vehicle relocation of vehicles is one of
the solutions to these problems (Barth et al., 2006; Kek et al., 2006; Cucu et al., 2009; Fassi
et al., 2012). However, inefficient vehicle relocation strategies might create high cost for the
operators.

The efficient and cost-effective relocation planning and scheduling the operations of the
relocation personnel require the use of models that will determine the movements of both the
vehicles and the personnel. These models should assist decision makers to strike an optimum
balance between the level of service offered and the total cost (including vehicle relocation
costs) for operating the car-sharing systems.

In this research, we are dealing with the operational problems of non-floating one-way electric
car sharing-systems. Although in reality, most of the one-way non-floating systems works with
partial reservation (e.g. does not allow destination reservation), we believe that providing full
reservation will increase service quality and attract more customers to the car-sharing systems.
Here, we are dealing with the operational problem of full reservation and assume that every
reservation provides origin and destination stations in addition to start and end time of the
rentals with some certainty. Our aim is to propose a mathematical model that will help us
to decide on the relocation of vehicles and schedules of the relocation personnel with this
input. In the following section, mathematical model and its description is proposed. In the
next section, recent experimental results are shared. We end up the chapter with conclusions
and future work directions.

4.2 Mathematical Model

The mathematical model of the operational problem has similarities with the strategic model
which is discussed in Chapter 3. We can list important differences between the strategic model
and operational model as follows:

. The strategic model aims to decide on the locations of the parking spots and their capacities.
In the operational model, they are taken as parameters.

. The strategic model decides on the number of vehicles in the system. The arrivals and
departures of the vehicles to the system are predetermined in the operational model.

. In the strategic model, multiple scenarios are used to have a robust model. In the operational
problem, we are dealing with a single scenario since our decisions are daily operations but
not future strategies.

. In the strategic model, relocation personnel is used as a resource. In the operational model,

74



4.2. Mathematical Model

we take them as part of the system and model their movements.

. In the strategic model, in order to keep variable size in tractable limits, long time intervals
are utilized. In the operational model, time intervals are shorter.

. In the strategic model, users are assigned to the stations that are reachable from the users’
origins and destinations of their trips. In the operational model, users are assigned to the
stations that are closest to origins and destinations of the trip.

. In the strategic model, separate objectives are used for the users and the operator. In the
operational model, we deal with a single objective function.

. In the strategic model, we model just stations whereas in the operational model we (plan to)
hubs and intermediary nodes.

Before stating the mathematical model, we can briefly describe the system characteristics.
In the mathematical model, the operating day is divided into time intervals.Each entity (i.e.
vehicles and personnel) can do at most one operation at each interval. In other words, it is
assumed that, every operation (i.e. rental, relocation, charging, movement of personnel) takes
at least one time interval.

We model the infrastructure with nodes and arcs. We assume that the vehicles and the
relocation personnel moves over these arcs and end up their trips on nodes. Each arc has a
distance and travel time with/without a vehicle. Travel time with a vehicle is used in relocation
operations. Travel time without a vehicle applies to movements of relocation personnel when
they use other means of transport (e.g. walking). Although the model supports using different
travel times for different arc pairs and means of transport, in our experiments we use two
different average speeds for with/without a vehicle trips and Euclidean distance to calculate
the distance between nodes. As expected, travel time with a vehicle is shorter than a travel
without one. The vehicles and personnel can travel to the all adjacent nodes and the nodes
that are reachable within one time interval duration.

Nodes are composed of not only stations but also hubs and intermediary nodes. Hubs are
parking spots that allows to keep vehicles but not rentals. Intermediary nodes are the nodes
that are the nodes which connects nodes with each other. We introduce intermediary nodes
to decrease number of variables in the system.

In order to satisfy a demand, a vehicle at the origin station at the starting time interval of
the trip and an empty spot at the destination station at the ending time interval should be
available. In addition, if a vehicle has returned from a trip, it needs to be charged proportional
to the travel distance of the trip it has already finished.

We force but not oblige the system to serve all demand in order not to have infeasible solutions.
Unserved demand is penalized with a high coefficient. As a result model gives a solution which
serves as much trip as possible.
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In this mathematical model, both the vehicles and relocation personnel are regarded as
discrete flows. In other words, vehicles are not differentiated from each other. This assumption
applies for personnel as well. When a vehicle arrives from a trip, with some constraints, we
force the vehicle to stay at the station for some time. We apply this restriction by keeping a
number of vehicles at the station which is a function of the trips served. In addition, in order
to keep solution robust to the users’ arrival and departure times, extra vehicles and empty
spots are kept at the stations where they are needed and possible. We have implemented
soft constraints that enables model to keep extra vehicles before the start time of the trips at
the origins and after the end time of the trips at the destinations. Similar soft constraints are
added to the model to have extra empty spots after the start time of the trips at the origin and
before the end time of the trips at the destinations.

Sets and indices, parameters and variables can be seen below. Afterwards, mathematical
model will be presented with a brief description of each constraint.

Sets and Indices

i€ l: trips

j,1 € J: nodes (stations, hubs, intermediary nodes)
k € K: vehicle arrivals/departures

s e S: personnel shifts

t,u,we T: time interval indices
Parameters

Origin,;/Dest;: origin/destination station of trip i

Start;/End;/C.End;: starting/ending/charging end time intervals of trip i

CAP;: vehicle capacity of node j

start;/end;: start/end time interval of personnel shift s

costg: cost of personnel shift s

DA;/MA;: list of nodes that are accessible from node j in driving/moving

DEnd; ;: ending time interval of a vehicle relocation started at time interval ¢ from node j to [

MEnd;. ;¢ ending time interval of a personnel movement started at time interval 7 from node j
tol

VC: maximum number of personnel that can be carried with a vehicle in any relocation
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wi i /V_Vf j¢ weight of the safety factor of vehicle/empty spot for trip i, node j and time interval
t

RBP;/ RAPlt ratio of the safety factor before/after pick-up for trip i, the origin station of trip i
and time interval ¢

RBP f / RAPlt ratio of the safety factor before/after drop-off for trip i, the destination station
of trip i and time interval ¢

n?: number of vehicles fully charged in node j at the beginning of first time interval

Variables

n]t number of vehicles in node j at time interval ¢
h]‘ number of personnel in node j at time interval ¢

t(u),

it number of vehicles relocated from node j to [ € DA; starting at time interval ¢ and

ending at time interval u = DEnd; !

p;(l”): number of personnel driving from node j to [ € DA; starting at time interval ¢ and

ending at time interval u = DEnd;l

ﬁ;(l”): number of personnel moving from node j to / € DA; starting at time interval ¢ and

ending at time interval u = DEnd;. ;
z;: binary variable showing if trip i is served or not
flt] fulfilled vehicle availability goal at time interval ¢ for trip i
f_f] fulfilled empty spot availability goal at time interval ¢ for trip i
vs: number of personnel used from shift s

a]t./ d]’.: number of personnel started/ending working at time interval ¢ in node j

For the given indices, parameters and variables defined above, we can write the mathematical
model for the operational problem of one-way electric car-sharing systems as follows:
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Constraints 4.3 are used to update the “real” capacity of each node. In our network design, in
order to a have less number of nodes, we prefer not to implement separate nodes for stations.
In other words, when a vehicle is under a long relocation, it might visit some station nodes in
its intermediary steps. However, we do not want to count these vehicles as vehicles parked
to the stations. More precisely, we do not want these vehicles to decrease the capacity of the
stations. Because of this reason, we are assuming that, capacity of a station at any time interval
is increased with the minimum of the number of vehicles arrived from relocation during the
same time interval, the number of vehicles depart for relocation during the next time interval
and the number of personnel at the same time interval. In order to keep mathematical model
neat, constraints 4.3 are written with a minimum function. Note that, this constraint can be
implemented without any extra variables.

Constraints 4.4 ensure that number of vehicles leaving the station is not more than available
number of vehicles at the same station. The same constraints keeps vehicles at the station
that need to be charged as well. More specifically, since we do not differentiate the vehicles,
these constraints ensure that, the number of vehicles at the station is at least the number of
vehicles that need to be charged at a given station at a given time. With these constraints we
satisfy that, for any station at any time interval, number of vehicles at the beginning of the
time interval should be greater than or equal to the number of vehicles need charging, the
number of vehicles rented and the number of vehicles that are relocated from this station at
the same time interval.

Constraints 4.5 are used to connect the relocation operations with the personnel. Constraints
on the left assure that there is at least one personnel driving the vehicle when it is relocated.
Constraints on the right prevent to transport personnel more than the capacity of the vehicle.

Constraints 4.6 are flow conservation equations for the personnel for each node, at each time
interval. Total number of personnel at the beginning of the next time interval is equal to the
total number of personnel at the beginning of the previous time interval plus the net number
of personnel started and ended working and plus the net number of personnel arrived to and
departed from the node at the same time interval with or without a vehicle.

Constraints 4.7 assure, the number of personnel at node j at time interval ¢ is always at
least the number of personnel departed from the node plus the number of personnel ended
working.

Constraints 4.8 keep relationship between the number of personnel used from the personnel
shifts and the number of personnel started/ended working. The constraints on the left assure
that the total number of personnel started working at any node at time interval ¢ should be
covered by the shifts that are starting at time interval ¢. Similarly, the constraints on the right
assure, the total number of personnel ended working at any node at time interval ¢ should be
covered by the shifts that are ended working at time interval ¢.
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Constraints 4.9 and 4.10 are for the safety factor of cars and empty spots respectively. The
former constraints ensure that the number of vehicles that are available to rent from node j
at the beginning of the time interval ¢ should cover as much fulfilled vehicle availability goal
as possible. In a similar way, the latter constraints make the same relationship between the
number of empty spots and the fulfilled empty spot availability goal.

Constraints 4.11 and 4.12 are the upper bounds on the fulfilled vehicle and empty spot avail-
ability goals respectively. If a trip is accepted to be served, availability goals can take values
not more than some predefined values which are a function of time intervals and trips.

Last but not least, it is worth to note here that, although this model is constructed for systems
with electric vehicles it can be applied for the systems with combustion vehicles as well. By
setting, charging end time interval to end time interval of each trip, the model can be used for
the latter systems without any problems.

4.3 Experimental Results

As it is stated above, this part of the thesis is still work in progress. However, in order to validate
the model, some experiments are conducted with the data of Veolia, which is operating in
Nice. In our preliminary analysis, we use the 53 stations that are planned to be operated as a
one-way electric car-sharing system. Only the stations are taken as the nodes of the system
and no hubs or intermediary nodes are added to the model. We created an experimental
network by connecting the adjacent nodes with arcs. The network of the system can be seen
in Figure 4.1.

For relocation of vehicles and movement of personnel, Euclidean distance and two different
speed is used. For relocation operations with a vehicle, average speed is set to 30km/h whereas
it is assumed the the relocation personnel move with a speed of 10km/h without a vehicle.
The mathematical model is solved for a period of 16-hour with the time interval length of 15
minutes which makes in total 64 time intervals.

The demand is generated from the realized two-way car-sharing trips. If a trip is posed for more
than 30 minutes in a location which is closer than 500m to one of the current operating two-
way stations, it is assumed that this trip can be divided into two or more one-way trips. These
generated one-way trips are populated in a list and 9 sets of demand are created randomly
with different number of demands. We make sets of demand with the size of 50, 100 and 200.

Three different shifts with a duration of 4 hours are given as a parameter to the model. It is
assumed that, cost of a relocation personnel is 72€/shift. It is assumed that a vehicle with an
empty battery is fully charged within 8 hours and the range of the electric vehicles are 120km
with a full battery. Distance traveled at each trip are set proportional to the length of the rental.
Vehicle capacity in relocation operations are set to 4. For each station, we set the capacity to
three. Two fully charged vehicles are located at each station at first time interval. Penalty for
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Figure 4.1: The network of Nice utilized in the operational model

lost demand is set to €10000. During relocation operations, we assumed that there is a fuel
cost which is 0.02€/km. We set different safety factor values (RBP; and RAP! ranging from

0.05 to 0.5. Weight of the safety factors (W f i and V_Vlt j) have values between 2 and 10.
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n
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.drop-off after rental

charging
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Figure 4.2: Legend for figures 4.3 and 4.4

We conduct two different analysis. In the first analysis we validate our model with the help of a

Gannt chart prepared for one of the congested instances with a demand of 200. The relocation

operations and the personnel movements are traced to validate the mathematical model. The

whole Gannt chart of the operations can be seen in Figure 4.3. Note that, in Figure 4.3 rows are

the spots belonging to each operating stations and columns are time intervals of 15minutes.
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demand scenarios with relocation without relocation
I II 111 I II 111
run time (s) 175 234 238 6.2 6.8 7.1
objective (€) 8993 49082 -953 108882 178909 148882
3 personnel cost (€) 144 216 216 N/A N/A N/A
# lost customer 1 5 0 11 18 15
% served 98 90 100 78 64 70
run time (s) 473 473 298 6.3 6.3 6.7
- objective (€) 78342 78342 48186 | 357802 357765 327755
S personnel cost (€) 648 648 504 N/A N/A N/A
# lost customer 8 8 5 36 36 33
% served 92 92 95 64 64 67
run time (s) 649 1099 26822 6.5 6.3 7.0
- objective (€) 236084 216090 176258 | 825539 675651 725642
N personnel cost (€) 576 504 648 N/A N/A N/A
# lost customer 24 22 18 83 68 73
% served 88 89 91 58.5 66 63.5

Table 4.1: Comparing one-way car-sharing systems with and without relocation

If there is a vehicle at the spot during the selected time interval, it is shown with a color of
blue. Light blue shows that, the vehicle on the spot has just returned from a trip. Darker blue
states that, the vehicle on the spot needs to be charged for a new operation. Spots that are
indicated with the darkest blue indicates that the vehicle on that spot is fully charged and
ready for a new operation. If a vehicle is rented, the box in the Gannt chart showing the state of
the spot during the time interval that the user supposed to pick-up the vehicle is painted with
gray. Green and red shows the relocation operations between stations. Picked-up vehicles for
relocations are shown with red. If a vehicle is dropped-off to a station after relocation, then the
color of that spot at the end of relocation is green. Relocation operations can also be followed
with the black arrows. Each origin and destination of relocations are connected with these
arrows. The colors and their corresponding states can be seen in Figure 4.2.

In a smaller area of the Gannt chart of Figure 4.3 can be seen in Figure 4.4. In this figure, we
can see the relocation operations and the states of the spots at some stations. For instance,
Station 4 starts with a two available vehicle. During time intervals starting with 08:15 and 8:45,
both vehicles are rented by the users. However, at 8:30-8:45 time interval, the third spot is
filled with a vehicle that is relocated from the first spot of Station 20. This relocated vehicle
stays in the spot until the end of the time horizon we can observe in this figure.

In addition to validation of the model with a Gannt chart, we compare the same instances with
and without relocation operations. The results of these experiments can be seen in Table 4.1.
Note that fuel cost for relocations is not reported since it is too low compared to other costs. In
these experiments, we have observed that the percentage of served demand for the instances
with relocation increase with the increase in demand. However, the effect is dramatic in the
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cases without relocation. Almost half of the demand (around 60%) could not be served, if
relocation operations are not done for the instances with the demand of 200. This value is
around 65-70% for lower demand values. Relocation improves this value and serves 90% of
the demand on average. Please also note, without relocation, vehicles might accumulate in
some specific stations which results in even higher unserved demand ratios in longer time
horizons (e.g. one week). Although the results are from preliminary runs, it is obvious that
continuous relocation operations are needed to have a decent level of service in one-way
car-sharing systems.

4.4 Conclusions and Future Research Directions

In this short chapter, we describe a mathematical model that can be utilized to improve the
efficiency of relocation operations in one-way (electric) car-sharing systems. First, Gannt
chart prepared for an instance is described. We prepare this chart to see the flow of vehicles
and personnel in the system. Second, we compare systems with and without relocation opera-
tions. Although, we need to have broader analysis, preliminary results show that, relocation
operations are considerably improving the quality of the service.

As stated above, we have recently started to work on the operational problem and still working.
We recently have developed a simulation platform to simulate the demand in different car-
sharing systems. We have also started to implement simple heuristics to have simple rules to
handle the changes in the system.

We also plan to implement some changes in the mathematical model. As an example, in our
mathematical model, since we do not differentiate vehicles from each other, we only make
vehicles available when they are fully charged. However, this creates high rates of demand
loss. We want to solve this problem by enabling the vehicles not fully charged to be rented.
However, at the same time we will direct the system to use primarily fully charged vehicles by
putting penalties on utilizing not fully charged vehicles. We also want to implement hubs in
our mathematical models. We think that, a depot with higher capacity than the stations could
increase flexibility of the relocation operations which will help us to increase the availability of
the service with less expenses.
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The Effect of Variability of Urban
Systems in The Network Capacity

Recent experimental analysis has shown that some types of urban networks exhibit a low
scatter reproducible relationship between average network flow and density, known as the
macroscopic fundamental diagram (MFD). It has also been shown that heterogeneity in the
spatial distribution of density can significantly decrease the network flow for the same value of
density. Analytical theories have been developed to explore the connection between network
structure and an MFD for urban neighborhoods with cars controlled by traffic signals. However
these theories have been applied only in cities with deterministic values of topological and
control variables for the whole network and by ignoring the effect of turns. In our study we
are aiming to generate an MFD for streets with variable link lengths and signal characteristics
and understand the effect of variability for different cities and signal structures. Furthermore,
this variability gives the opportunity to mimic the effect of turning movements. Route or
network capacity can be significantly smaller than the capacity of a single link, because of the
correlations developed through the different values of offsets. The above analysis would not
be possible using standard traffic engineering techniques. This will be a key issue in planning
the signal regimes in a way that maximizes the network capacity and/or the density range of
the maximum capacity.

5.1 Introduction

Recent studies (Geroliminis and Sun, 2011a; Mazloumian et al., 2010; Daganzo et al., 2011) have
shown that networks with heterogeneous distribution of link density exhibit network flows
smaller than those that approximately meet homogeneity conditions (low spatial variance of
link density), especially for congested conditions. Also, note that the scalability of flows from
a series of links to large traffic networks is not a direct transformation. For example, route
or network capacity can be significantly smaller than the capacity of a single link as this is
expressed by sG/C (s is the saturation flow, G and C are the durations of green phase and
cycle). This is because of the correlations between successive arterial links, the creation of
spillback queues and the effect of offsets (Daganzo and Geroliminis, 2008). In case of long
links, these effects are negligible and the propagation of traffic is much simpler. Nevertheless,
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congestion often occurs in the city centers with dense topology of short links.

At the link scale, traffic flows can be unpredictable or chaotic when a network is critically
congested because of different driving behavior patterns, the effect of route choice, the fast
dynamics of link travel times and origin-destination tables and the computational complexity
(too many particles/cars). These observations make the development of global traffic manage-
ment strategies, to improve mobility for a large signalized traffic network with a microscopic
analysis, intractable. An alternative is a hierarchical control structure, where a network can be
partitioned in homogeneous regions (with small spatial variance of link density distribution)
and optimal control methodologies can identify the inter-transfers between regions of a city to
maximize the system output, as expressed by the number of trip endings. These policies can
change the spatial distribution of congestion in such a way that the network outflow increases.
This is a challenging task that requires knowledge on how the network flow for a region of a
city changes as a function of topology, control and level of congestion.

The physical tool to advance this research is the macroscopic fundamental diagram (MFD) of
urban traffic, which provides for some network regions a unimodal, low-scatter relationship
between network vehicle density (veh/km) and network space-mean flow (veh/hr). The first
theoretical proposition of such a physical model was developed by Godfrey (1969), while
similar approaches were also initiated by Herman and Prigogine (1979) and Daganzo (2007).
The physical model of MFD was observed with dynamic features through empirical data in
congested urban networks in Yokohama (Geroliminis and Daganzo, 2008). Other empirical or
simulated analysis for MFDs with low or high scatter can be found in Buisson and Ladier (2009),
Daganzo et al. (2011), Geroliminis and Sun (2011b), Gayah and Daganzo (2011), Courbon and
Leclercq (2011), Ji et al. (2010), Saberi and Mahmassani (2012) and others. Nevertheless, it
is not obvious whether the MFDs would be universal or network-specific. More real-world
experiments are needed to identify the types of networks and demand conditions, for which
invariant MFDs with low scatter exist.

To evaluate topological or control-related changes of the network (e.g. a re-timing of the traffic
signals or a change in infrastructure), Daganzo and Geroliminis (2008) and, Helbing (2009)
have derived analytical theories for the urban fundamental diagram, using a density-based
and a utilization-based approaches respectively. The first reference proved, using variational
theory (Daganzo, 2005), that an MFD must arise for single-route networks with a fixed number
of vehicles in circulation (periodic boundary conditions and no turns). The same reference
also gives explicit formulae for the single-route MFD with deterministic topology, control and
traffic characteristics (i.e. all intersections have common control patterns, the length of its
links and their individual fundamental diagrams are all the same. The reference conjectured
that these MFD formulae should approximately expected to hold for homogeneous, redundant
networks with slow-changing demand. The methodology estimates the average speed and
the maximum passing rate (rate that cars can overpass him) for a large number of observers
moving forward or backward and stopping only at traffic lights. Then by considering that each
observer can create a “cut” in the MFD, its shape is estimated as the lower envelope of all these
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cuts.

In this chapter we provide several extensions and refinements of the analytical model for an
MFD. We explore how network parameters (topology and signal control) affect two key charac-
teristics of an MFD, (i) the network capacity and (ii) the density range for which the network
capacity is maximum. We first provide an analytical proof that simplifies the estimation of the
density range for which the network capacity is maximum by utilizing only spatial and control
parameters of the network. We also investigate how sensitive are these two characteristics
in small changes of the parameters. Afterwards, we relax the deterministic character of the
parameters and investigate how variations in the signal offsets and the link lengths affect
network capacity and density range. These results can be utilized to develop efficient control
strategies for a series of signalized intersections as these variations can describe not only
differences in network parameters, but also different characteristics in driver behavior. Later,
we imitate the effect of incoming turns in a long arterial and we show that these turns can
significantly decrease the network capacity even if vehicle density remains unchanged. To
precisely describe all the above phenomena we initially provide some analytical proofs for a
simplification of the variational theory approach and then we develop a simulator to study
the non-deterministic effects.

5.2 A Note on Variational Theory

Daganzo and Geroliminis (2008) developed a moving observer method to show that the
average flow-density states of any urban street without turning movements must be bounded
from above by a concave curve. The section also shows that, under the assumptions of
variational theory, this curve is the locus of the possible (steady) traffic states for the street; i.e.,
itis its MFD.

Their method builds on a finding of Daganzo (2005), which showed that kinematic wave theory
traffic problems with a concave flow-density relation are shortest (least cost) path problems.
Thus, the centerpiece of variational theory (as is the fundamental diagram for kinematic wave
theory) is a relative capacity (“cost”) function (CF), r (u), that describes each homogeneous
portion of the street. This function is related to the known fundamental diagram (FD) of
kinematic wave theory Q. Physically, the CF gives the maximum rate at which vehicles can
pass an observer moving with speed u and not interacting with traffic; i.e., the street’s capacity
from the observer’s frame of reference. Linear CFs correspond to triangular FDs. Daganzo
(2005) assumed a linear CF characterized by the following parameters: ky (optimal density),
uy (free flow speed), x (jam density), w (backward wave speed), s (capacity), and r (maximum
passing rate). CF line crosses points (u f 0), (0, 5), (—w, r) and has a slope equal to —ko. Other
applications of variational theory in modeling traffic phenomena can be found in Laval and
Leclercq (2008) and Daganzo and Menendez (2005).

A second element of variational theory is the set of “valid” observer paths on the (t, x) plane
starting from arbitrary points on the boundary at ¢ = 0 and ending at a later time, 75 > 0. A
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path is “valid” if the observer’s average speed in any time interval is in the range [-w, u f]. If
2?2 is one such path, ug be the average speed for the complete path, and A (£?) is the path’s
cost which is evaluated with r (1), A (2?) bounds from above the change in vehicle number
that could possibly be seen by observer 2. Thus, the quantity:

R(u) = tlilrgoig,f{A (P):up=ullt, (5.1)

is an upper bound to the average rate at which traffic can overtake any observer that travels
with average speed u for a long time. Note that (5.1) is a shortest path problem, and that R (0)
is the system capacity. Building on Equation (5.1), Daganzo and Geroliminis (2008) proved
that a ring’s MFD with periodic characteristics in time and space (traffic signals every L meters
with common green duration G and cycle C and no turns), Q = Q (k), is concave and given
by Equation (5.2), i.e., it is not an upper bound, but a tight relation. Figure 5.1a illustrates
that Equation (5.2) is the lower envelope of the 1-parameter family of lines on the (k, g) plane
defined by g = ku+ R (u) with u as the parameter. Note this equation also describes the passing
rate of an observer moving with constant speed u in a stationary traffic stream with flow g
and density k. The main difference is that traffic signals create non-stationary conditions
as vehicles stop at traffic signals and this relation does not apply in all cases. We call these
lines “cuts” because they individually impose constraints of the form: g < ku + R (1) on the
macroscopic flow-density pairs that are feasible on a homogeneous street.

q=inf{ku+R ()} (5.2)

Because evaluating R (1) in Equation (5.2) for all u can be tedious, Daganzo and Geroliminis
(2008) proposed instead using three families of “practical cuts” that jointly bound the MFD
from above, albeit not tightly. It has been shown (Daganzo, 2005) that for linear CF’s, an
optimal path always exists that is piecewise linear: either following an intersection line or else
slanting up or down with slope uy or —w. The practical cuts are based on observers that can
move with only 3 speeds: uy, 0, or w and stop at intersections during red times and possibly
during green periods as well. Recall that an observer’s cost rate (maximum passing rate) is
g (1) if the observer is standing at intersection with capacity gp () < s and otherwise it is
given by a linear CE i.e. it is either 0, s or r depending on the observer’s speed.

Figure 5.1b-c provide an explanation how the “practical cuts” are estimated for a series of
intersections with common length and signal settings (green G, cycle C and offset §). Offset
is the time difference between the starting of the green phase for two consecutive signals.
If the green phase of the signal in the downstream starts later than the green phase of the
upstream then § is positive for the downstream traffic signal and vice versa. Case (4, F) shows
the fastest moving observer, who runs with speed uy and stops only at red phases once every
4 signals. No vehicles are passing him, the first “cut” crosses the k — g plane at (0,0) and has a
slope equal to the average speed of the observer. The 2nd observer (3, F) still runs at uy but
stops during the green period every third signal. Thus, he has a smaller average speed and
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Figure 5.1: (a) The MFD defined by a 1-parameter family of “cuts” (Daganzo and Geroliminis,
2008) and both forward, backward and stationary observers in a time-space (b) and their
associated “cuts” in a network flow-density diagram (c).

vehicles are passing him at rate s when waiting in green phases. This passing rate is shown
in the second “cut” as the constant of the line that crosses axis g at g > 0. The 3rd observer
(2, F) stops in every two signals whereas the fourth (1, F) stops in every signal, while the fifth
observer named as (S) is the stationary observer with zero speed. Cases (3, B)-(1, B) show the
backward moving observers, who are passed at rate r when moving in the opposite direction
and at rate s when waiting in green phases. The lower envelope of all these “cuts” produces
the MFD.

The authors conjectured that the following regularity conditions should ensure a good analyti-
cal approximation of the MFD: (i) a steady and distributed demand; (ii) a redundant network
ensuring that drivers have many route choices and that most links are on many desirable
routes; (iii) a homogeneous network with similar links; (iv) links with an approximate FD that
is not significantly affected by turning movements when flow is steady. Conditions (i)-(iii)

93



Chapter 5. The Effect of Variability of Urban Systems in The Network Capacity

should create a near-equilibrium as in Wardrop (1952) with similar travel times on all links;
and, since the links are similar, with similar densities too. Condition (iv) implies that the
variational theory method, applied to a single link with many efficient cuts, yields a tight MFD.
The estimated MFD (despite its simplistic approach) fits well empirical and simulated data for
Yokohama and San Francisco, two networks that only roughly meet the regularity conditions.

In this work, we focus on two important parameters of the MFD, produced by the family
of cuts. The first one is g4y, the maximum value of the dimensionless network capacity,
normalized by the maximum capacity of a single link sG/C, where G is the green duration
during a cycle C. The second one is ry, the range of density for which this maximum value
occurs. A negative range does not have any physical meaning, except that capacity is less than
1. Alarge value of positive range can be considered as a metric of robustness for the system,
which can retain its maximum capacity values for multiple congestion levels. We investigate
these two parameters for different types of networks with homogeneous or heterogeneous
characteristics of topology and signal settings.

5.3 Homogeneous Networks

The methodology of moving observers in Section 5.2 could have a potential application in
real cities in cases data from loop detectors are not available or do not cover the whole region.
Nevertheless, the large number of cuts, would make the application not straightforward. In this
section we provide an analytical proof, which significantly decreases the number of required
cuts for the estimation of the range r;. We prove that in case of homogeneous networks,
the slowest forward and backward and the stationary observers suffice to estimate the same
value of r4, by running all observers described in Daganzo and Geroliminis (2008). This proof
provides us the ability to obtain closed form analytical equations for r;. We start with Lemmas
1 and 2, which prove some mathematical operations, necessary for the next steps. In Lemmas
3 (forward) and 4 (backward) we prove that the slowest moving observers provide tighter cuts
than all the non-fastest observers. Lemmas 5 and 6 complete the proof by comparing with
the fastest observers, who run at uy or w and stop only at real red phases. In the end of the
section, Corollary 1 provides the closed form of analytical equations of r; for different cases.
The reader can omit the proofs without lack of continuity for the rest of the chapter.

In Daganzo and Geroliminis (2008), for an observer who stops every y signals for extended red
phase, delay at each stop d, and average speed uy are defined as:

Liug-87 yLlug—6
w=of ===

= C C (5.3)

YL

=— 5.4
“y dy+yLlug 6.4
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Ymax can be calculated as:

Ymax =1+max{y:y(L/us-6)/C—|y(L/ug-56)/C| <GIC}. (5.5)

The time spend in extended red phase, f, equals to:

I 1 (5.6)
fY_YL/Uf“‘dy ory=1,2,...,Ymax— 1. .

Similar formulations can be applied for backward moving observer, by changing uy with
w and 6 with §,, = C - 6. To differentiate them from the values given for forward moving
observers, we define the same values for backward moving observers with d?, u$ vk and f)f’
respectively.

In these set of lemmas and proofs, we want to show that, slowest forward and backward
moving observers’ cuts always have the tightest cut on stationary moving observers cut. We
define, Cut(y, F) and Cut(y, B) as forward and backward moving observers’ cuts which stops
in an extended red or red (if y = ymax O yglax) phase every y traffic signal. Cut(S) is the cut of
stationary moving observer. In order to facilitate proofs’ readability, let us introduce two types
of dimensionless variables ®, and CD$ for forward and backward moving observers such that:

(5.7)

YLlup—6
e

and ®F = {—YL/W_O\W-‘
y = .

C

With the help of these variables, one can find k-coordinates of the intersection points of
moving observers’ cuts with stationary observers cut as follows:

{cut(y, F)ncut®)}, =s| <=C (1o )+i+(C—G)(—i)] (5.8)
v 20 yL 7y CL '
{Cut (ymax, F) nCut(S)}, = 5| ——a +G—5] (5.9)
u Ymax, u k= YmaxL Y max CL °
_[C=G(., C-G(. &) 1
{Cut(y, B)Cut()}, = 5 y—L(q)Y_l)+T(1_E)+u_f (5.10)
G G 11
b _ _ b _ T _ I
{Cut(rhaw B nCut(9)}f = B %L O (5.11)

Lemmal For f(x) = % ([tx1—1) wheret€R, f(1) < f(x) forxe Z*.

Proof1 Assumen<t<n+1 forneZ. Note that, this assumption includes all real values of t.
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From this assumption:

1 1
n<tsn+l=>nx<txsnx+x=>ltx]<nx+x=>fx)=—(Jtx]-1)<n+1-—. (5.12)
X X
Ifwe calculate f(1)
n<t<n+l=1Jtl=n+1=f(1)=n, (5.13)

which means f(1) < f(x) forxe Z*.

max (L/ =6 b vy
Lemma 2 LCW)QiZandMeZ.

Proof2 Assume Mw €Z. Then Y“‘“(Léuf ) _ V‘“‘”‘(Léuf _5)J > GIC from Inequality 5.5.
Ymax(L/uf_6) Z ymax(L/uf—ﬁ) _ ymaX(L/uf—é)
C €4 C = { C J

But this is a contradiction since and Inequality

5.5 does not hold. So Méuf_é) ¢ Z. Similar proof can be applied for the second part of the
Lemma by changing w with uy and 6, withé.

Lemma 3 The slowest forward moving observer is the observer who has the tightest cut on
stationary observers cut among all the other non-fastest forward moving observers.

Proof 3 Let us define ky as the k-coordinate of the Cut(y, F) N Cut(S) which is given in Equation
5.8. We are looking for the value of y that maximizes k,, i.e. this cut will intersect with the
stationary observer at the rightest possible point, creating the tightest cut. Then our problem
can be defined as:

C-G
vL

(1—q>y)+i+(C—G)(—i)]}. (5.14)
ur CL

argmyax{ky} = argmﬁx{s [

Since the last two elements of the RHS of Equation 5.14 is not a function of gamma and s% is

always positive, we can reduce the problem to:

Liur—-0
argmyax{k),} = argmﬁx{% (1 —d)y)} = argm);ax{% [1 - {%—‘ ] } (5.15)
Llug—6 1
Letn=—c—, then argm)gx{xy} = argm)gx{; (1- [ny])} (5.16)
1
= in{ — -1 1
argn%/ln{y ([ny] )} (5.17)
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From Lemma 1, y = 1 is the solution.

Lemma4 The slowest backward moving observer is the observer who has the tightest cut on
stationary observers cut among all the other non-fastest backward moving observers.

Proof 4 Let usdefine k{f as the x-coordinate of the Cut(y, B)n Cut(S), which is given in Equation
5.10. Now the tightest cut is the one that minimizes the value of k2, as the backward moving
observers’ cuts have a negative slope in the k — q plane. Then our problem can be defined as:

- - 1
argrr%/in{kf,’} = argrr%/in{s C}/LG (CI)}'? - 1) + % (1 — %) + u_f } (5.18)
1 Liw-
= argmin{— [ [M-‘ - 1] } (5.19)
Y ly C

since RHS of the function is not a function of y and s% is always positive both are removed.

Letn= L/w——CC-HS’ then argmyin{kf,’} = argmyin{% ([ny] - 1)} (5.20)

From Lemma 1,y =1 is the solution.

Lemma5 The slowest forward moving observer is the observer who has the tightest cut on
stationary observers cut among all the other forward moving observers.

Proof5 In Lemma 3 it is proven that, slowest forward moving observer has the tightest cut
among all the other non-fastest forward moving observers. So it is enough to show € = 0 wheree
is defined as:

€ = {Cut(1,F) N Cut(S)} — { Cut(ymax, F) N Cut(S)}, (5.21)
SN il WL ] (5.22)
- }’:1 uf L YmaXL ¥ max *

Let n € Z that satisfies

Liug—96 Liug—96
n—1<;sn:{u-‘:n, (5.23)
C C
C-G 1 6 G Lius—6
se=s A-m+——2— Ymax (L1g 0) || (5.24)
ur L YmaxL C
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Since ymax is the smallest value that does not satisfy Inequality 5.5, we have:

Liug—6 Liur—0
Ymax (L/us =6) Vmax( f )J LG (5.25)
C c C
Lius—6 Liur—90
N \‘Ymax( f )J < Ymax( f ) _ 9 (5.26)
C C C
By Lemma 2 and Inequality 5.26 we can write:
Liug—-0 Liug—-0 Llur-96
Ymax( f ) 1= Ymax( f ) < Ymax( f ) — E (5.27)
C C C C
By combining Inequality 5.27 with Equation 5.24:
( G) 1 0 G C
e>|s{1-=|||—-=- +1-nm—|. (5.28)
C ug L YmaxL L

We know the first multiplicative in the RHS of Inequality 5.28 is positive. It is sufficient to show
the second one is positive too. If we multiply both sides of Inequality 5.23 by Y max and apply
floor function on both sides:

Ymax (L/tf —6)
C

J = Ymax (n—1). (5.29)

If Inequality 5.27 is combined with Inequality 5.29 then,

Ymax(L/up—6) G

c — o Ymax (n—-1>0. (5.30)
After multiplying both sides of Inequality 5.30 by a positive number Ym—fo we will have:
1 9 C
- - +(1-n)—=>0, (6.31)
ur L YmaxL L

which is the second multiplicative on the RHS of Inequality 5.28. Sincee > 0, the slowest forward
moving observer always has the tightest cut on stationary observer.

Lemma 6 The slowest backward moving observer is the observer who has the tightest cut on
stationary observers cut among all the other backward moving observers.

Proof 6 We will use a method similar to Proof 5. In Lemma 4, it is proven that, the slowest
backward moving observer has the tightest cut among all the other non-fastest backward moving
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observers. So it is enough to show € = 0 wherece is defined as:

e ={Cut(yha B) 0 Cut(S)}k —{Cut(1, B) n Cut(S)} (5.32)
G , G 1 6 C-G_,
| L L T (5.33)
YmaxL L w L L Y max

Let n € Z that satisfies

Liw—-C+6 Liw-6,
n-l1<————=n=>|——| =n, (5.34)
C C
G G 1 6 Cn Gn
Se=s|-— e —t——— — (5.35)
YmaxL Ymax L  w L L L
Sincey? .. is the smallest value that does not satisfy Inequality 5.5, we get:
Yinax (/W =60) | _ Ymax L/ W=0u) G (5.36)
C C C
By combining Lemma 2 with Inequality 5.36 we can write:
Yinax L/ w=84) | Lo | Y L0 =80) | Yiax (LW =8w) G 5.37)
C C C C
If Inequality 5.37 is combined with Equation 5.35
G 1 6 Cn G
e>|[s{l-=|||—+-——~— . (5.38)
C w L L Yglax

We know the first multiplicative in the RHS of Inequality 5.38 is positive. It is sufficient to show
the second one is also positive. If we multiply both sides of Inequality 5.34 by y", .. and apply
floor function on both sides:

yh o (L w—38)
C

J >yl (n-1). (5.39)

If Inequality 5.37 is combined with Inequality 5.39 then,

b b
L C-6) G
y:;aé _ymax(c ) - P —1)>0, (5.40)
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After multiplying both sides of this inequality by a positive number bLL we will have:

max

¢ m-n&so (5.41)
A '

1 C 6§
J— _+__
w L L

which is the second multiplicative of Inequality 5.38. Since € > 0, the slowest backward moving
observer always has the tightest cut on stationary observer.

Corollary 1 The density range of maximum capacity can be calculated by using slowest forward
moving, slowest backward moving and stationary observers. For four different cases, the range
can be formulated as:

many forward . Range _SC—G”L/w—éww+[L/uf—ﬂ_l) (5.42)
many backward Eomm= ST C C ’
1 1 G([Llw-96 Liug—96
one forward :Range;, ;=s (— +—|-s= U d w—‘ + [ / -‘ + 1) (5.43)
one backward w  uf L C C
many forward . Rance _S(C—G[L/uf—&‘ G{L/w—c?w" C—5+ 1) (5.44)
one backward 0 M-1 = L C L C L w '
one forward C-G[Llw-6,] G[Llus=67 6 1
:Range; ;,=s el el e (5.45)
many backward L C L C L uy

Equations 5.42-5.45 provide a closed form description of range. In case range has a negative
value, this means that the network capacity is smaller than 1, i.e. smaller than sG/C. Figure
5.2 provides an illustration of the estimated range for C = 100sec and L = 200m and analytical
formulae for all regions. Note that the highlighted area with blue for G between 70 and 100sec
shows (6, G) pairs with negative range (capacity strictly less than one) and the highlighted area
with red shows (9, G) pairs with zero capacity (i.e. the tightest forward and backward moving
observers’ cuts intersect at the same point on the stationary observers cut). Even if there is
not an analytical proof for the required cuts to estimate the value of capacity when range is
negative, not all cuts are necessary. We run numerous simulations for different values of C, L,
0 and G/C and we find out that by utilizing only the slowest and fastest, forward and backward
moving observers (in total 4), the error in the estimation of capacity when range is negative is
small. A few more observers are needed in case of small L/C values. A description of cases
with smaller capacity is provided in the following sections.

5.4 Simulation Framework

In the previous section we assumed a homogeneous network with deterministic values of
all parameters (link lengths, green durations, offsets) and no turns. However, real life net-
works contain some variability in the network parameters and also drivers’ decisions contain
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Figure 5.2: Regions and formulations of each region according to Corollary (1) for L/us+ L/ w <
C.

stochasticity. By introducing a degree of variability, analytical solutions are not anymore
obtainable. Thus, we develop a simulation platform to estimate the passing rates and average
speeds of forward and backward moving observers running a series of many intersections
with variable characteristics. By analyzing the results of the simulation, we can identify the
effect of heterogeneity in the topology and signal settings at the network capacity and density
range.

While variational theory allows for changes in the network parameters, it does not give the
ability to introduce drivers with different characteristics (free flow speed, capacity headway,
etc.) and turning movements. But, we can mimic the effect of driver stochasticity and incoming
turns by adjusting offsets and green durations. For example, consider an arterial’s signal plan,
which has been designed for a perfect progression, a “green wave”, with offsets equal to L/uy.
By introducing some randomness in the offset, e.g. L/uy 5 sec we can imitate the variability
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in the free flow travel time of the first vehicles in the platoon. Also, we will show how incoming
turns affect the network capacity in cases that network density remains unchanged.

The simulation platform includes a time-space diagram with many links (~ 1000) to produce
more rigorous results. The network parameters (lengths, offsets and greens) are specified
from the user in the beginning of the simulation in column or matrix forms. After creating the
simulation environment, we initiate different types of observers at the start time of a green
phase running at the free flow speed from the upstream in the direction of flow and with
the backward wave speed from downstream in the direction against flow as described by the
theory of Section 5.2. When they are moving all observers on the same direction have equal
speeds (free flow or backward wave) but they have different behavior than the deterministic
case at (normal or extended) red phases, as there is not a repetitive deterministic pattern due
to signal settings and link lengths (e.g. we cannot say that an observer stops every 3 signals).

In simulation, this pattern becomes stochastic by giving probabilities that an observer will
stop if he meets an extended red phase. According to Daganzo and Geroliminis (2008) an
extended red phase is used to make observers stop every 1,2, ..., Y max — 1 traffic signals. Each
observer in the simulation is assigned with a probability of stopping each time he meets a
green phase. Faster observers are assigned with smaller probability and slower observers with
higher one. For instance, if the probability assigned to this observer is 0, this observer will
only stop when he hits red whereas the observer with probability 1 will stop in every signal
even though he hits green. If we consider an observer with probability p, he will pass on green
phases with probability 1 — p. For each observer we have to estimate two values, the average
speed and the average passing rate. Average speed can be calculated by dividing the sum of
link lengths to the total travel time. Similarly, we track the number of passing/passed vehicles
for each observer during the simulation and divide them by the total travel time. For the same
value of p, a number of iterations is performed (~ 10) and different paths can be constructed
because of the stochastic behavior of moving observers. A lower envelope of cuts is estimated
to be consistent with VT. Nevertheless, we have noticed that all iterations for the same value
of p and different random seeds give almost identical results. An informal pseudocode for a
single forward moving observer can be seen below. The one for the backward moving observer
is the same. The only difference is the speed, the start and the direction of the movement.

Note that in the pseudocode given above, green phase matrix G is represented as a set of unions
of real number intervals G; to be consistent with mathematical notations. They represent
the same parameter set. Figure 5.3b shows a time space diagram with the forward (F) and
backward (B) moving observers with different values of stopping probabilities (value is shown
on the top of the figure).
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input: n (number of traffic signals), 1 (link length vector), G; (green set for signal i),
p (extended red phase probability), u (free flow speed) and s (capacity)
output: v (average speed) and PR (average passing rate)

1. Set time ¢ to first green signals start time fy and total passing rate TPR to 0.

2. Repeat if current traffic signal counter i < n

(a) Advance the time by travel time on that link: # — 7+ %;]
(b) Update the current traffic signal counter i — i + 1.
(c) Ifthe trajectory hits a green (t € G;)

i. Ifitis an extended red phase (p > RAND (0, 1))

A. Find extended red phase duration k.

B. Update total passing rate: TPR — TPR + ks.

C. Advance time ¢ to next green.

ii. Ifitis notan extended red phase (p < RAND (0, 1))

A. Do nothing.
(d) elseifhitsared (f ¢ G;)

i. Advance time f to next green.

T Li . _ TPR
3. Calculate the average speed v — B and the average passing rate PR = e
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Figure 5.3: Simulation platform: (a) pseudocode (b) time-space diagram

5.4.1 Incoming Turns

Daganzo and Geroliminis (2008) showed that an MFD must arise for single-route networks
with a fixed number of vehicles in circulation (i.e., periodic boundary conditions and no turns).
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Figure 5.4: Integrating the effect of incoming turns within variational theory: time-space
diagrams for forward (a) and backward (b) moving observers with (F and B) and without turns
(F; and By), flow-density diagrams without (c) and with (d) turns.

The authors also conjecture that the MFD formulae should apply to a network of intersecting
routes if the numbers of vehicles in these routes are similar and roughly constant over time. We
now address the effect of incoming turns in a single-route network by introducing bottlenecks
of variable capacity in the proximity of the traffic signals.

Incoming turns from cross streets can significantly decrease the performance of a signalized
intersection as they (i) interrupt the progression of green waves for properly timed signals
and (ii) decrease the available storage capacity of the link and can cause the occurrence of
spillbacks. This problem is difficult to solve in the general case because inflow needs to be
separated in two classes (upstream through and incoming turns) and the “cuts” approach
cannot directly identify the mixing of the vehicle origins. We address the above phenomena
by changing the signal and cost function characteristics for forward and backward moving
observers. To be consistent with variational theory, these turns should not significantly change
the link density from one link to another, i.e. the incoming turns are considered as local link
phenomena, for example there is a similar number of outgoing turns in every link to keep
density constant. We also assume that incoming turns are served first because they enter
the link when the through approach is in a red phase. This might not be exact when residual
queues still exist or incoming turns might occur from an unsignalized intersection or a parking
lot (internal source).
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Consider now a queue of incoming vehicles from cross streets, Q, which entered when the
signal was red for the through movement (Figure 5.4a). If these vehicles did not exist, a forward
moving vehicle would follow trajectory F (Figure 5.4a) and would stop for some time at the
traffic signal stop line. Because of the queue of incoming turns, the upstream vehicle needs
to stop between points X; and X», follow trajectory F; and cross the intersection 7 seconds
later, where T = sQ. According to variational theory the cost (passing rate) of a forward moving
observer who stops in the middle of a link between X; and X is st where t is the duration of
stop. But, in reality no vehicles can overpass this observer while stopping, because in front of
him there is a queue of vehicles entered from a cross street. This can be shown if one estimates
the change between points X; and X, in the Moskowitz function N (¢, x) which expresses the
cumulative number of vehicles in the # — x plane. It is also known that this change is the same
for all possible paths between A and B (Daganzo, 2005). Moskowitz function value changes
during this extended red phase by an amount 7s. Thus, we imitate this effect by increasing
the red phase of the signal by 7, only for the forward moving observers. So, these observers,
will follow trajectory F; instead of F. But, this extended red in the beginning of the green has
passing rate zero, not s. Nevertheless, the stationary observer in front of the traffic signal
continues to count vehicles for the whole duration of the real green phase as the incoming
turns are served in the first 7 seconds of green.

For the backward moving observer, B; (Figure 5.4b) the approach is slightly different. This
observer does not need to stop in the extended red phase of T seconds. But when traveling
backwards between points X3 and X4, its passing rate is not r, but zero. Thus, the queued
vehicles from cross street, give the ability to the observer to travel in this queue with zero cost.

Based on the above, for the forward moving observers, both the speed and passing rate
decreases; for the backward moving observers, only the passing rate decreases; while for the
stationary observer there is no change. Thus, tighter cuts are created which can decrease
both the range and the capacity of the MFD. An example is shown in Figure 5.4c and d with
and without turning effects. These transformations in the trajectories of the observers are in
accordance with the Lagrangian variational principles, as expressed by Daganzo (2005) and
Leclercq et al. (2007) and they are valid even when the Moskowitz function is not continuous
and experiences step-jumps in the time-space profile (e.g. because of incoming turns in our
case). Analysis of the results is provided in the next section.

In reality, there is often a spatial correlation between incoming turns, i.e. a series of successive
intersections load the main route with net positive inflows from cross streets. In this case
the proposed approach lacks of methodological correctness. The reason is that these turns
might increase the density in the aforementioned links of the main route and result in an
inhomogeneous distribution of density, while our approach considers links with similar
density. This case is not addressed in the current work, but future work can utilize our results
by partitioning the route in sub-routes and estimate individual fundamental diagrams with
variational theory. A research priority should be how to integrate serial or parallel routes of
MEDs, with different average densities to describe the dynamics of traffic flow.
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5.5 Results

In this part, we firstly investigate the deterministic cases which is solved by the analytical
formulae given in “homogeneous networks” section and then continue with the “simulation”
results. In order to generate isoquants either the analytical formulation (Corollary 1) or the
simulation method (Figure 5.3) is used for finite number of (x, y) values which are elements
of Cartesian product of number of predefined points on x and y axis of the given graph.
For example for Figure 5.5a (x,y) € {0.10,0.11,...,0.90} x {0, 1,...,60}, for Figure 5.7¢ (x,y) €
{0.10,0.11,...,0.90} x {U (180,180),U (179,181),...,U (80,280)} where U (*) represents uniform
distribution.

As it is defined in Figure 5.1c, dimensionless capacity (values between 0 and 1) is the ratio
of the maximum flow g, to the flow observed by the stationary observer which equals to
sG/C. Range is the the difference between maximum and minimum density which yields
the maximum flow g,4x. Since the value of the negative range does not mean anything and
capacity equals to 1 if the range is nonnegative, it is possible to merge contour lines for both
range and capacity at the same graph. These merged graphs can be seen in Figures 5.5-5.11.
Note that, blue stands for the range whereas red stands for the capacity.

5.5.1 Deterministic Network Parameters

Figures 5.5 and 5.6 summarizes how range and capacity change for different values of offsets,
green and cycle durations and link length. Figure 5.5a-c plot range and capacity with § and
G/C for three different cases (i) C = 60sec, L = 110m (short link, small cycle), (ii) C = 90sec,
L =225m (long link, medium cycle) and (iii) C = 120sec, L = 180m (medium link, long cycle).
The white area between the blue and red isoquants in graphs represents scenario with capacity
1 and range zero, i.e. tightest forward and backward observers intersect with the stationary
one at the same point. Note that for a range of § (e.g. 8 — 38sec in Figure 5.5a), density range is
invariant with offset. Note also that by increasing G/C after some value, capacity decreases
(remember that the graphs show dimensionless capacity). Note also that the effect of bad
coordination in the capacity of a short link is much more significant in case of short links
and when the cycle is longer (compare Figure 5.5b with Figure 5.5c¢). Notice that not only
perfect coordination in offset (L/u ) but also the values between L/ u f and C - L/w gives the
maximum range for any given G/C ratio. Furthermore, in this region, range is independent of
the offset which was also proved in Section 5.3. Certainly, the positive range region is larger
either when L is larger or C is smaller. This fact can be expected from the Equations (5.42-5.45).

Figure 5.5d shows how combinations of green duration and green over cycle ratio (G vs. G/C)
affect range and capacity for medium size links with L = 180m and bad offset (first vehicle
arrives 13.5sec before the beginning of green phase). Note there is a boundary line which
shows under what cases there is a capacity drop. Note also that this drop occurs for a larger
range of green duration when the cycle is longer. This is an intuitive observation, as longer
cycles create longer queues that can spillback and decrease the output of intersections. For
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Figure 5.5: Deterministic cases (Homogeneous networks). Range and Capacity for different
values of topological and signal characteristics (part 1).

C =90sec, by increasing G/C from 0.5 to 0.7 (40% increase) the improvement in the maximum
number of vehicles that can be served is too small (10% increase), 0.25vh/sec vs. 0.28vh/sec
(the values have been obtained by multiplying the numbers of the graph with sG/C). This
possibly means that the additional G/C can be utilized to serve cross streets with less delays.
Similar graphs can be produced for different values of offsets and link lengths.

Figure 5.6e-f show the effect of the link length on range and capacity. Range is increasing as
the link length increases in both graphs. Note that for the same value of offset, as increase in
G causes a decrease in range, as the stationary observer has a higher passing rate value. An
interesting observation is that routes with higher green durations (mainly the ones that carry
alot of traffic) can experience smaller capacities (q;qx < 1) for a wider range of link lengths
(critical length is 80m for G = 24 and 140m for G = 36sec). When L is large, capacity is always
1 for any value of offset. In this case, we can choose offset in a way to maximize the range, as
this means that the signal can operate at capacity for a wide range of densities. Also, values
in the white regions might not be stable as small changes in demand can create spillbacks or
capacity drops.

In Figure 5.6g-h, we investigate the effect of length and green phase. Note that the boundary
line for capacity less than 1, is a piecewise linear function of L and G/C. The locus of points
that produce capacity drop is much larger set in case of bad offsets (Figure 5.6g). Note also
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Figure 5.6: Deterministic cases (Homogeneous networks). Range and Capacity for different
values of topological and signal characteristics (part 2).

that for 6 = 51.8sec there is a large number of pairs with capacity 1 and range zero, i.e. all tight
cuts are intersecting at the same point. In these cases heterogeneity in the distribution of
congestion in the network might create a significant capacity drop (e.g. Mazloumian et al.,
2010). For example for L = 150m and 6 = 15sec (bad offset where vehicles have to stop in every
signal), G/C ratio greater than 0.43, will cause not full utilization of signal capacity while for
the case of Figure 5.6h there is no capacity drop for any value of G/C. These graphs show the
importance of the described methodology in estimating the effect of signal characteristics
and link length in the network capacity. All of the above analysis would not be possible using
standard traffic engineering techniques (e.g. the Highway Capacity Manual).

5.5.2 Stochastic Network Parameters

We now utilize the simulation platform to identify the effect of variability when compared with
the deterministic cases described before. The results presented assume a uniform distribution
for offsets and link lengths, U(min, max). One can apply different distributions if needed. We
analyze two sets of variations for the different topological and signal parameters: (i) the mean
value is constant and range of the variable changes and (ii) the range is constant and the mean
of the variable changes. The next three subsections present results for variations in the effect
of link lengths, offsets and incoming turns.
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Figure 5.7: Stochastic L (part 1)

Variations in Link Length

In the graphs given in Figures 5.7 and 5.8, both the change in the mean (for a given variance)
and the variance (for a given mean) of the distribution of L are analyzed. In Figure 5.7a-b,
offsets are random at every intersection (varying uniformly between 0 and cycle length) and
link length L has a uniform distribution. In Figure 5.7a, L has a constant range of 100m
and variable mean, while in Figure 5.7b, L has a constant mean (medium length link with
E[L] =180m) and variance varies. In the first case we see that the critical link length for which
a capacity drop occurs increases with the G/C ratio (almost linearly). For G/C < 0.3 capacity is
always fully utilized, while for larger values we might observe a drop up to 10% for G/C = 0.6.
In other words, shorter link lengths are more sensitive to green ratio. Once compared with the
deterministic case of Figure 5.6g (bad offset), we observe that the capacity drop is less intense
in case of random offsets. Figure 5.7b is intuitive to understand, as vertical isoquants mean
that increase in the length variability have no effect in capacity or range for medium length
links and random offsets. Thus, we are interested in identifying the critical length variability
which changes the deterministic results.

In the Figure 5.7c-d, the effect of G/C ratio and variance of link length is analyzed for links with
average length E[L] = 180m in the case of almost perfectly (first vehicle from upstream arrives
in the beginning of green) and badly coordinated signals (first vehicle arrives 15sec before
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Figure 5.8: Stochastic L (part 2)

the end or red phase). A small variation +5sec has been introduced for good and bad offsets.
Results show that length variability increase has no effect for values of G/C smaller than 0.45
(capacity is always 1 for these values). But, when capacity is less than 1 there is a range of
G/C where significant increase in capacity is observed for the case of bad offsets (about 15%
change for G/C = 0.65 once comparing deterministic L and highly variable L between 80 and
280m). Good offsets are not significantly affected (change not more than 2%).

Figure 5.8e-f have the same structure as Figure 5.7a and Figure 5.7b but the offset is determin-
istic at a value of 51.8sec, and the mean length is 150m in Figure 5.8f . This is the value for
which capacity is equal to 1 in the case of Figure 5.6h. It is clear that for small values of G/C
there is a positive range (capacity is always 1) and neither variability in length, nor change of
the mean have an effect. But for G/C = 0.4 the situation is different. In Figure 5.8e, increase of
G/C does not significantly change the capacity for a given length structure (note the horizontal
lines). But, as expected the longer the mean the longer the capacity.

Figure 5.8f has some additional interesting characteristics. We note that when capacity is less
than 1 (G/C = 0.4), increase in the length variability decreases the value of capacity (maximum
drop about 6%). This is the opposite once compared with Figure 5.7c, where in case of bad
offsets, increase in length variability creates an increase in the value of the capacity. To explain
this, we need to look at the deterministic graphs for the specific values of offsets (Figure 5.6g-h).
For example, let’s focus on G/C = 0.7. For L = 150m (Figure 5.6h), an increase in the variability
will result in many short links with smaller capacity, while the longer links will have same value
of capacity (equal to 1). For L = 180m (Figure 5.6g), as variability increases, most of the short
links will have capacity around 0.76 (constant) while capacity will increase for longer links.
Note that this explanation provides is a qualitative insights as the stochastic case (Figures 5.7,
5.8 and 5.9) cannot be reproduced by a linear combination of the deterministic examples.
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Variations in Offset

We first investigate the effect of small (+5sec) and large (+15sec) variations in offset by chang-
ing mean offset and G/C. The results are summarized in Figure 5.9a-b. If these graphs are
compared with the deterministic graphs (Figure 5.5a-c), we can say that small offset variations
have no significant effect both in capacity and range. This means that small differences in
drivers’ characteristics (e.g. free-flow speed, reaction time) cannot decrease the performance
of traffic signals. However, in case of large offset variations (in case of poorly designed signals)
the effect can be significant, especially in regions with capacity less than 1. The choice of
appropriate offsets is more critical for routes or subnetworks which carry high demand and
have large G/C values, e.g. high directional flows in the morning peak with small cross-street
flows. Note that capacity can decrease by an amount of 20-30% for G/C in the range of 60-70%.

In the remaining two graphs, the range of the offset is investigated for good (the first vehicle
from upstream arrives 10sec after the beginning of green) and bad coordination (the first
vehicle arrives 10sec before the end of red). All the parameters except the means of the offsets
are the same in (c) and (d). When capacity is smaller than 1 (for L < 140m), higher offset
variability improves the capacity value in case of bad offsets and has a negative effect in case
of good offsets. This result is intuitive as more (less) vehicles will hit the green phase during
bad (good) coordination. For long links, offset variability decreases the capacity as for a given
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Figure 5.10: The effect of incoming turns in capacity and range (part 1).

L and G/C range is maximized when there are only one forward and one backward observers
(Figure 5.5a-c).

The Effect of Incoming Turns

We now show that incoming turns from cross streets can significantly decrease the perfor-
mance of a signalized intersection in some cases as they interrupt the progression of properly
timed signals and decrease the available storage capacity of the link.

In all graphs of Figures 5.10 and 5.11 the vertical axes is the amount of incoming turns (ex-
pressed as the extended red phase 7 = sQ, which is assumed uniform between 0 and an
increasing value). The first two graphs on the top show the effect of turns as the variability of
offsets increases for good (left graph) and bad (right graph) offsets. In case of almost perfect
offsets the effect of turns is very significant because the value of range for zero turns is very
small. On the other hand, the bad offsets can absorb a high number of turns without capacity
decrease. Notice that the values of the two graphs coincide for § = 90sec as this represents the
case of random offsets. A signal timing with bad offsets can absorb up to 13 seconds of turning
(6.5 vehicles), while even one incoming vehicle can create problems for good coordination.
But even in case of bad offsets, large G/C is problematic as range is smaller even for zero turns.
Thus, in case of incoming turns, the signal plans should be chosen in a way that maximizes the
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Figure 5.11: The effect of incoming turns in capacity and range (part 2).

range as capacity can be significantly decrease. For example in Figure 5.10d one can see that
a bad offset with higher range is much more robust than a good offset with small range. Of
course if signals are undersaturated, they will operate in values much less than capacity and
the effect of turns will be minimal. But, in this work we mainly investigate signal performance
in high demand conditions. Also, from Figure 5.11e-f it is clear that as length increases the
effect of incoming turns becomes smaller because it is more difficult to have queue spillbacks.

5.6 Conclusions

In this chapter we have provided several extensions and refinements in the variational theory
of traffic flow, which provides analytical formulae for the macroscopic fundamental diagram
of urban networks. In our study we investigated the effect that have in the MFD, different
degrees of variability in link lengths and signal characteristics for different city topologies
and signal structures. We have integrated the effect of incoming turns in the estimation of
the MFD and we showed that in many cases network capacity can significantly decrease.
The scalability of flows from a series of links to large traffic networks is not a straightforward
transformation. Route or network capacity can be significantly smaller than the capacity of a
single link, because of the correlations developed through the different values of offsets. The
above analysis would not be possible using standard traffic engineering techniques (e.g. the
Highway Capacity Manual).

There is still a weak understanding on how one can characterize the breakdown dynamics
and congestion spreading phenomena of traffic flows in these types of urban networks. While
cascading phenomena are present in many types of physical or social systems (financing,
interactions) city traffic has interesting irregularities that should be studied. We should identify
the relative traffic variables that would allow a better prediction of the severity of developing
and spreading of traffic congestion. This will provide clearer insights about the large variations
of traffic congestion from one day to another even if demand profiles are similar.
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These results can be of great importance to practitioners and city managers to unveil simple
and robust signal timing planning in such a way that maximizes the network capacity and/or
the density range of the capacity. The results of this chapter can be utilized to develop
efficient hierarchical control strategies for heterogeneously congested cities. A network can be
partitioned in homogeneous regions (with small spatial variance of congestion distribution)
and optimal control methodologies can identify the inter-transfers between regions of a city
to maximize the system output, as expressed by number of trip endings (see for example Ji
and Geroliminis (2011) for partitioning and Daganzo (2007), Geroliminis and Daganzo (2007)
or Haddad and Geroliminis (2012) for optimal control). The main logic of the strategies is that
they try to decrease the inflow in regions with points in the decreasing part of an MFD and
high demand for trip destinations. Given the estimated values from this task, the analysis of
the current work can identify signal parameters in the individual regions of a city to move
traffic smoothly at the desired flows, without concentrating a large number of vehicles at
the boundaries of the regions. By restricting access to congested cities, a city manager can
significantly improve system output, highlighting the importance of a reliable estimator of
subnetwork/route capacity. While there are vast contributions in traffic control problems for
freeways through ramp metering, the area of control for large urban regions or mixed networks
still remains a challenge. Our research provides tools to shed some light towards this direction.

Current extensions of this research are investigating the network capacity and MFD patterns
for cities with more complex structure (multiple modes of traffic competing for the same
urban space). A difficult problem to address is how the redistribution of urban space between
cars and more efficient modes can improve passenger network flows.
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Estimation of the network capacity
for multimodal urban systems

As more people through different modes compete for the limited urban space that is set
aside to serve transport, there is an increasing need to understand details of how this space
is used and how it can be managed to improve accessibility for everyone. Ultimately, an
important goal is to understand what sustainable level of mobility cities of different structures
can achieve. Understanding these outcomes parametrically for all possible city structures
and mixes of transport modes would inform the decision making process, thereby helping
cities achieve their sustainability goals. In this chapter we focus on the network capacity of
multimodal systems with motorized traffic and extra emphasis in buses. More specifically, we
propose to study how the throughput of passengers and vehicles depends on the geometrical
and operational characteristics of the system, the level of congestion and the interactions
between different modes. A methodology to estimate a macroscopic fundamental diagram
and network capacity of cities with mixed-traffic bus-car lanes or with individual bus-only
lanes is developed and examples for different city topologies are provided. The analysis is
based on realistic macroscopic models of congestion dynamics and can be implemented with
readily available data.

6.1 Introduction

Mobility and transportation are two of the leading indicators of economic growth of a society.
As cities around the world grow rapidly and more people and modes compete for limited
urban space to travel, there is an increasing need to understand how this space is used
for transportation and how it can be managed to improve accessibility for everyone. This
research seeks to shed some light in the macroscopic modeling of traffic flow for overcrowded
cities with multimodal transport. To enhance more in this direction, we are interested in
developing a macroscopic methodology to model different types of multi-modal systems,
which contain buses, cars, taxis etc. with emphasis in conflicts for the same road space
(e.g. mixed traffic of buses and cars; vehicles searching for parking while intervening with
moving-to-destination vehicles; taxis or delivery trucks that stop to pick up passengers or
goods etc.). More specifically, we propose to study how the throughput of passengers and

115



Chapter 6. Estimation of the network capacity for multimodal urban systems

vehicles depends on the geometrical and operational characteristics of the system, the level of
congestion and the interactions between different modes. The analysis is based on realistic
macroscopic models of congestion dynamics and can be implemented with readily available
data. The existence and the analytical modeling of a macroscopic fundamental diagram
for multi-modal cities will be developed. Ultimately, the goal of the proposed work is to
develop modeling and optimization tools which will contribute on how to allocate city space
to multiple transportation modes and to understand what sustainable level of accessibility
cities of different structures can achieve.

Despite the different features of these modes in terms of occupancy (number of passengers),
driving behavior (speeds, acceleration and deceleration profiles, length) duration of travel,
scheduled vs. non-scheduled service, a common characteristic is the following: All of these
vehicles when moving to an urban environment make stops related to traffic congestion (e.g.
red phases at traffic signals) and other stops, which also cause delays to the transportation
system as a whole: buses stop at bus stops to board/alight passengers; taxis stop frequently
and randomly when they search/pick up/deliver passengers; cars may stop/manoeuvre when
search/find a parking spot; delivery trucks stop to pick up/deliver goods. While there is a
good understanding and vast literature of the dynamics and the modeling of congestion for
congestion-related stops, the effect of service or general purpose stops in the overall perfor-
mance of a transportation system still remains a challenge. It is intuitive that the effect of
these stops during light demand conditions in the network capacity is almost negligible, but
nowadays city centers are experiencing high level of congestion and the frequency in time and
space of the service or general purpose stops is significantly high. In this chapter we focus on
conflicts service stops of buses, but the developed methodology can be directly applied to all
the aforementioned cases.

The influence of each type of conflict have in the performance of the overall system signifi-
cantly depends on the type of the network (signal and geometric characteristics), the type of
service (BRT vs. regular transit vs. irregular bus services, like in under-developed countries),
the operational characteristics (type of stop, passenger demand) the allocation of the road
space (mixed traffic or individual bus lanes or bus and taxi lanes etc.) and the density of each
mode. It strives to quantitatively estimate how each of the above parameters affect the total
throughput of vehicles. Additionally, we aim to consider the effect of different occupancies
between vehicles because it is important to recognize that some modes are more productive
than others. Given the fact that construction of new infrastructure is not a feasible solution,
we are seeking more sustainable alternatives, where more road space is allocated to public
transit and "car-less cities" are organized with well-operated public transit. Our research will
provide the methodological framework to quantitatively evaluate these changes with models
consistent with the physics of traffic.
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6.2 Literature Review

Traffic in real cities is complex, with many modes sharing streets, and congestion evolving
as demand patterns change over the course of a day. Existing literature on the physics of
urban mobility can be divided generally into city-scale (macroscopic) efforts and street-scale
(microscopic) works. City-scale investigations have thus far looked only at the behavior of car
mode without considering the interactions of different modes in traffic congestion. Studies
of multiple modes, on the other hand, have only been made at the street-level scale for unre-
alistic time-independent scenarios. While recent findings in the macroscopic modeling and
dynamics of traffic in cities have provided knowledge of single-mode, single-reservoir cities
and single-mode, multi-reservoir cities (Geroliminis and Daganzo, 2007, 2008; Geroliminis
and Sun, 2010), our understanding of multi-mode cities is limited. Thus, the existing body of
work leaves a gap to be filled-a physically realistic time-dependent, city-scale model including
multiple modes is much needed.

6.2.1 Traffic Models for Multi-Modal Transport Systems

Until the 1970s the mode was almost always the automobile, but since then some planning
studies have looked at public transport on a city scale, particularly buses on idealized road
networks. Making road space allocation decisions, however, requires consideration of multiple
modes. To date, such considerations have been made only at the much finer street scale and
still in a time-independent (unrealistic) environment. On the public transport side, city-scale
modelers have looked at how systems should be designed. Wirasinghe et al. (1977) considered
how to systematically design a bus transit system for an idealized city with centralized demand.
They developed a model to minimize costs to users and operators by setting stop spacing and
service headways, and then determining where feeder-buses to rail stations versus direct-buses
operate most efficiently. However, these models have been only applied to one mode, and in
the steady state. Work has also been done to look at how multiple modes can share the road,
but only on the street-scale level. Sparks and May (1971) developed a mathematical model to
evaluate priority lanes for high occupancy vehicles on freeways. Later, Dahlgren (1998) and
Daganzo and Cassidy (2008) have studied how different modes use freeways, recognizing that
if different modes serve different numbers of passengers, then analyses should not view all
vehicles the same. But these works are limited to small scale systems. They looked at the effect
on total passenger travel time if a lane on a specific road section were dedicated to multiple
occupant vehicles. This consideration of different occupancies between vehicles is important
because it recognizes that some modes are more productive than others. The importance of
considering passengers rather than vehicles was further voiced by Vuchic (1981). He criticized
street-scale evaluations based only on vehicle flows, because multimodal systems should not
view all modes as the same. The quantitative treatment of the transit process (e.g. network
route design, scheduling) is reflected in a considerable amount of effort in numerous books
and publications (e.g. Ceder, 2007; Ceder and Wilson, 1986; Hickman et al., 2008), and will not
be addressed in this work.
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Many researchers have looked at allocating street space between more than one mode whether
it be through the dedication of a freeway lane to high occupancy vehicles or a lane for buses
on a city street (Radwan and Benevelli, 1983; Black et al., 1992). Like earlier studies, they
focused on passenger travel time, in this case considering various degrees of mixing among
modes in traffic, as well as high occupancy vehicle lanes and bus-only lanes. This method has
limited applicability, however, because it assumes steady state traffic flow which ignores the
fluctuations and spill-over effects that typically characterize urban traffic congestion. More
recently, Currie et al. (2004) argued for a full accounting of impacts including environmental
impacts in planning studies of road space allocation. That analysis is based on a disaggregate
micro-simulation which relies on intensive travel data inputs that are typically unreliable or
unavailable. Also, micro-simulation studies cannot systematically cover the space of possible
inputs, and therefore an understanding of multimodal traffic on the city-scale remains elusive.
While the above-cited methodology, to its credit, promotes accounting for a wide range of
impacts, the analyses have yet to be conducted on a full city scale.

6.2.2 Macroscopic Models of Single-Mode Traffic in Urban Networks

With respect to macroscopic modeling of single-mode traffic, various theories have been
proposed for the past 40 years to describe vehicular traffic movement in cities on an aggregate
level. These works have attempted to predict both the average and the distribution of speed
in an urban area as a function of explanatory variables that characterize the demand and
the network infrastructure (e.g. Smeed, 1967; Wardrop, 1968). But these models cannot be
used to describe the rush hour in a congested city as they contain monotonically decreasing
relationships between average speed and flow.

The first instance of a macroscopic fundamental diagram (MFD) showing an optimum car
density was presented by Godfrey (1969). Earlier studies looked for macro-scale traffic patterns
in data of lightly congested real-world networks (Godfrey, 1969; Ardekani and Herman, 1987;
Olszewski et al., 1995) or in data from simulations with artificial routing rules and static
demand Williams et al. (1987); Mahmassani and Peeta (1993). However, the data from all these
studies were too sparse or not investigated deeply enough to demonstrate the existence of an
invariant MFD for real urban networks.

Support for its existence has been given only very recently (Geroliminis and Daganzo, 2007,
2008). These references showed that (1) the MFD is a property of the network itself (infrastruc-
ture and control) and not of the demand, i.e. the MFD should have a well-defined maximum
and remain invariant when the demand changes both with the time-of-day and across days
and (2) the space-mean flow is maximum for the same value of critical density of vehicles,
independently of the origin-destination tables and (3) there is a robust linear relation between
the neighborhoods’ average flow and its total outflow (rate vehicles reach their destinations).
These properties can be a reliable tool for decision-makers to evaluate demand-side policies
for improving mobility and anticipate the results of smart traffic management policies. For
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example, signals in Ziirich are already controlled dynamically to maintain the speed and relia-
bility of surface transit (Ott, 2002). Nevertheless, MFDs should not be universally expected.
Recently, Geroliminis and Sun (2011a) explored the effect of inhomogeneous distribution of
vehicles in space and time and studied how the spatial variability of vehicle density can affect
the shape, the scatter and the existence of a well-defined Macroscopic Fundamental Diagram.
Daganzo et al. (2011) investigated bifurcation and instability issues of an MFD for a two-ring
network. Buisson and Ladier (2009) and Ji et al. (2010) investigated how different parameters
affect the shape of the MFD with simulation and real data from Toulouse and Amsterdam.
While MFDs should be expected for arterial networks that satisfy the above condition, freeway
networks have topological or control characteristics that are different; non-redundant, no
traffic signals, hysteresis phenomena (Geroliminis and Sun, 2011b). From the above it is clear
that the existing body of work leaves a gap to be filled -a physically realistic time-dependent,
city-scale model including multiple modes is much needed.

6.3 Methodological Description

In this research, for estimating the network capacity, moving observer method is used. With
the help of Variational theory, MFD for a ring road with no incoming or outgoing traffic can
be estimated. Theoretically, this curve is an upper bound for the estimated MFD for the
real urban networks Daganzo and Geroliminis (2008). However findings from experimental
and real networks have shown that, the estimated upper bound is almost tight for equally
congested, redundant urban networks Geroliminis and Daganzo (2008).

The moving observer method, Variational theory and their theoretical background is described
more in Section 5.2. Please refer to this section for further information.

6.3.1 Extension of VT for Multi-Modal Networks

Let’s consider here a street of length L with a fixed number of lanes but any number of inter-
sections. The intersections can be controlled by stop lines, roundabouts, traffic signals or any
type of control that is time-independent on a coarse scale of observation; i.e. large compared
with the signal cycles. We are interested in solutions where the flow at the downstream end of
the street matches the flow at the upstream end; e.g. as if the street formed a ring, because
then the average density does not change. In VT, the street can also have any number of time-
invariant and/or time-dependent point bottlenecks with known capacities. The bottlenecks
are modeled as lines in the (, x) plane on which the "cost" per unit time equals the bottleneck
capacity, gp(t). The only constraint is that all intersections and bottlenecks need to have
periodic characteristics both in time and space, i.e. we cannot model a single accident or a
non-recurrent bottleneck with VT.

The above broad applicability of VT gives us the flexibility to model many different types
of conflicts in traffic movements as hypothetical traffic signals of type p, with the following
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Figure 6.1: A time-space diagram for an arterial with periodical signalized intersections and
bus stops

periodic characteristics: length L, cycle C,, green duration G, offset §,, and capacity during
red phase, C? . For example, Figure 6.1 shows how a bus stop can be treated in VT. It shows
an one-way, one-lane arterial with links of length L, traffic signals G; , 6, C; and mid-block
bus stops without a curb pocket, every two links. The operational characteristics of this
hypothetical signal-bus stop Gz , 82, C» depend on the dwell times (G») and the frequencies of
buses (C), while the capacity during red is C] as buses block traffic when stop for this case.
Differently than normal traffic signals G, , d», C, have strong stochastic characteristics and
fluctuations, which make this formulation more challenging.

Consideration shows that if all the blocks of our street are sufficiently long then the maximum
average flow as expressed by the shortest path (SP) is a horizontal line along the trajectory of
one of the intersections; and the capacity is simply: R(0) = min, {s,G,/C,}. However, if some
of the blocks are short then there could be shortcuts that use red periods at more than one
intersection and the capacity can be significantly smaller. The definition of a short link does
not only include its length but also the signal settings. In other words, very short red periods
(e.g. when a bus stops for 10sec to pick up a passenger 100m upstream of the stopline) may
not have significant effect in the MFD of a city with medium-length links, but a bus stop of
40sec may decrease the capacity of an MFD for the same city structure. Another significant
variable in both cases is the frequency of bus stops or other conflicts.

An MFD for a single-mode is a two-dimensional plot between average network flow and
average network density. In a multimodal system these definitions are vague because (i) there
are more independent variables that affect the network flow (e.g. the density of each mode)
and (ii) each mode has different passenger occupancy. This problem is complex because the
dynamics of vehicle conflicts (as they will be estimated through VT) depend on the vehicle
types and not on their occupancies, but the operational characteristics of the hypothetical
traffic signals may depend on vehicle occupancies, as for example the dwell times of buses.
Once completing all the challenging mathematical formulations and analyses of this work,
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it is meaningful to introduce a new concept of an MFD for cities where now the network
flow is expressed as passenger-kilometers per unit time, instead of the current approach of
vehicle-kilometers per unit time.

The fact that different pairs of conflicts (e.g. bus-bus, bus-car, car-taxi) have a broad range
of operational characteristics, emphasizes the need for careful consideration and analysis of
each case individually. We now describe the characteristics of our methodology and report
upon the estimation of model parameters for different types of multi-use lanes. The moving
observer method of variational theory to estimate an MFD is a powerful tool that can simulate
a broad range of applications.

Individual bus lanes

There are many cities around the world, where bus lines have been designed to fully utilize
the dedicated space. An example of this is Oxford Street in London which is devoted to 18
bus lines, and is so fully utilized that it tends at times to be congested with buses. In case
of individual bus lanes, we first need to estimate the relative capacity ("cost") function (CF),
r(u), that describes each homogeneous portion a street. These parameters can be directly
estimated using GPS data of closely interacting buses or loop detector data. More specifically,
free-flow speed ©2, jam density x” and capacity g%, suffice to estimate the cost function.

Special treatment should be given to model bus stops as hypothetical traffic signals. The
reason is that buses do not run on schedule at all times and dwell times can vary significantly
from bus stop to bus stop or for different buses at the same stop. Thus, both the cycle time
and the duration of the green phase should be modeled with stochastic characteristics. While
analytical solutions can be obtained under some special cases for specific moving observers
using variational theory, we use a simple computer simulation, which will be described later,
to see the effect of different distributions of bus arrivals and dwell times in the performance
of bus lanes as expressed by an MFD. Detailed GPS data can be utilized to estimate these
distributions, such as the behavior of offsets, which we expect to be totally random in many
cases. The location of the bus stop measured as distance from the intersection, LY, is also a
critical variable for the system performance.

The total number of bus lanes and the different types of bus stops should also be considered.
Normal bus stops intervene with main traffic and buses block a whole road lane when stopping
for boarding/alighting passengers. In that case the capacity of the hypothetical signal during
red is C; = 0. Bus bays are the type with an extra lane at the stop site where buses can dwell on
the extra lane. Because of the lower interfering, other vehicles can continue moving and the
effect of a bus stopping is negligible. The number of births is also another key variable, which
expresses the number of buses which can stop simultaneously and serve passengers. When all
berths are full, waiting buses create longer red phases and can block the moving traffic even in
case of bus bays. One can estimate the duration of red periods and cycles for different arrival
profiles using queueing theory formulations. We expect that the maximum throughput of
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two-lanes will be higher than double the throughput of one-lane bus systems.

Mixed traffic bus-lanes with cars

The efficiency of mixed traffic lanes heavily depends on the density of each individual mode
and the geometric characteristics. When these lanes operate close to capacity and car queue
lengths are medium to high, even a small number of buses intervening with car traffic can
cause significant loss of capacity. In case of long links and bus stops located far from the
intersection, the effect of bus operation may be negligible for the rest of the traffic. For given
arterial structures, we will investigate the effect of buses for different densities of buses and
public transit demand (related to dwell times and frequencies). Knowing the shape of a mixed-
traffic MFD is a necessary tool to (i) understand the efficiency of these lanes and (ii) decide if
by separating modes network passenger flow can increase. We will estimate MFDs for different
values of (i) network variables, (network length in lane-km, average link length, number of
lanes); (ii) link variables for 1-lane (uf, x, qp,); (iii) intersection variables (5, C and G); (iv) bus
related variables (type of bus stop, number of births, dwell times and frequency) and (v) car
and bus densities. The above formulation also applies to mixed lanes of buses and taxis, where
taxis are not allowed to start or terminate their service in the bus lanes (commonly used to
many cities).

6.4 Implementation and Results

Daganzo and Geroliminis (2008) and Boyac1 and Geroliminis (2011b) provided analytical
solutions for VT problems with deterministic values of all parameters for single-mode systems.
However, real life multi-mode networks contain some variability in the network or bus oper-
ation parameters, which make analytical solutions difficult. Thus, we develop a simulation
platform to estimate the passing rates and average speeds of forward and backward observers
running a series of many intersections with variable characteristics. The simulation platform
includes a time-space diagram with many links (~ 1000). The network parameters (lengths,
offsets and greens) are specified from the user in the beginning of the simulation in column or
matrix forms. After creating the simulation environment, we send different types of observers
at the start time of a green phase running, (i) at the free flow speed from the upstream in the
direction of flow and (ii) with the backward wave speed from downstream in the direction
against flow. Every observer on the same direction has equal (free flow or backward wave)
speeds but they have different behavior at extended red phases. More specifically each ob-
server is assigned with a probability that she stops if she meets an extended red phase. Faster
observers are assigned with smaller probability and slower observers with higher one. For
each observer we have to estimate the average speed and the average passing rate. Average
speed can be found by dividing the sum of link lengths to the total travel time. Similarly, we
track the number of passing/passed vehicles for each observer during the simulation and
divide them by the total travel time. An informal pseudocode is shown in Figures (6.3) and
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Figure 6.2: Bus stops with correlated offsets

(6.2). Bus stops are like traffic signals with a significant difference in case of multiple lanes.
Normal traffic can overtake buses when they use a bus bay to stop or if there are more available
lanes. Thus, an observer that stops in a "red phase" of a bus stop is overtaken with maximum
passing rate equal to (N — 1) * s, where N is the number of lanes and ¢, the saturation flow.
Note that the interarrival time between buses, C?%S, is estimated among all different bus lines
traveling in the same road section and it is not the headway of a specific bus lane, which can
be much larger (5-15min).

The results presented in Figure (6.4a-d), show the vehicle network capacity of multi-mode
systems with different operational and topological characteristics, while figures (6.5e-h) show
the passenger network capacity. The values have been normalized with the vehicle capacity
of an isolated traffic signal with no buses, i.e. sg. To estimate passenger capacity is fair to
assume that given the same operational characteristics and level of service of buses (stop
frequency, headways, number of bus lines, passengers trip length etc.), the average number
of passengers inside the bus, Np,y is proportional to the number of passengers getting in
and out (consider Little’s formula in queueing theory). Thus, we assume that the relationship
between N, and dwell times rbus jg Npax = (tY%S — 55ec) * a, where 5sec is the time needed
to open and close the doors and a is a parameter depending on the passenger’s trip length
and bus headways. In our calculations we used a conservative value of 1.5, which means for
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input:  observer type, p, 7,1, S, C, G E, T, us, w, q
output: v (average speed) and PR (average passing rate)

1. If current observer is a forward moving observer:

(a) Set current time ¢, , state counter i and passing rate TPR: t — 0,i — 1,TPR —0

(b) Repeat until the end of the states: While i < n’

!

i. Advance the time to the next state: ¢ — t + th—’f

ii. Find the normalized time and the time difference: ¢, = - S/ (mod C), At =t —t,

iii. If the current event is not stopping and extended stop happens: If ¢, < G}, t, > E and
RAND() < pr,

A. Update the total passing rate, TPR and normalized time ¢, — G.
iv. If the current event in the state in stopping: If £, = G;
A. Update the total passing rate, TPR and normalized time ¢, — C;.

v. Update the current time and state counter: t — At+ ¢, and i —i+1

(c) Calculate passing rate and average speed: PR — &;R and v — #

2. If current observer is a backward moving observer

(a) Setstart time to the start of the last event: ty — S'n ,
(b) Set current time, state counter and total passing rate: ¢ — ty and i <— n'TPR — 0
(c) Repeat until the start of the states: While i = 1

i. Find the normalized time and time difference: 7, — t—S/(mod C), At =t—t,

ii. If the current event is not stopping and extended stop happens: If t, < G}, t, > E; and
RAND() < pr,
A. Update the total passing rate, TPR and normalized time ¢, — G.
iii. If the current event in the state in stopping: If ,, > G|
A. Update the total passing rate, TPR and normalized time t,, — C.

!

. . . I
iv. Update the current time and advance it to the next state: t — Ar+ t,and ¢ — £+
v. Update state counter: i —i—1

(d) Calculate passing rate and average speed: PR — %{} and v — Zt’_;;ol‘

3. If current observer is a stationary observer
Z n/ G!
i=1 i

(a) calculate passing rate and average speed: PR — qW and v —0
i=1"1

Figure 6.3: Pseudocode for finding forward and backward moving observer parameters
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Figure 6.4: Vehicle and passenger capacities of networks with buses (part 1).

example that a passenger that stops for 15sec, carries about 15 passengers. There are more
complex formulations for bus dwell time for different parameters (e.g. Zografos and Levinson,
1986; Dueker et al., 2004; Li et al., 2006), we use a simpler approach. But different methods
can be applied for the same analysis.

We analyze an example of a city structure with short links (L = 120m), where the effect of bus
operations will be higher, given that queues can easily spillback and block upstream links. Bus
stops are located close to the traffic signals (/7 = 30m), while spatial frequency of bus stops,
sP4S is every 1 and 2 links. We included results in case of roads with width of one and two lanes.
As mentioned before the difference is that when a bus stops in a two lane street, vehicles can
overpass it from the left lane, while in one-lane street cars have to queue behind the bus. We
estimated vehicle and passenger network capacity for a wide range of signal offsets and dwell
times. Offset 6 = 30sec is a perfect green-wave offset, while larger (smaller) values represent
cases where a free-flowing car from upstream will hit the green (red) phase.

An interesting observation is that in many cases we observe horizontal lines in the graphs
(e.g. for § =30 —40sec, and tP*S = 10 — 25sec in Figure (6.4a)). This means that the effect of
longer bus stops in the network capacity is negligible. This is for example a case where a bus
stops behind a red signal to pick up passengers. For a given city topology and dwell times, city
planners can choose the optimal offsets to minimize the effect of bus operations to the overall
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Figure 6.5: Vehicle and passenger capacities of networks with buses (part 2).

traffic. Note that in some cases, these offsets are different than the perfect green wave offsets.

While the decrease in the vehicle network capacity is small if one considers that buses are
carrying more passengers, there is a significant increase in the passenger network capacity,
i.e. these systems are able to serve a much higher number of passengers per unit time. This is
shown in Figure (6.5e-h). But, if this is not accompanied by modal shift from private cars to
public transit, then this capacity cannot be utilized as the city will operate at congested levels.

To estimate the level of congestion and the flow of passengers or cars in the network one needs
to know the density of cars in the network, i.e. to know at what point of the MFD the city
operates. To answer this question the dynamics of the system should be studied as a function
of the modal shift. More specifically, we currently study what is the minimum level of modal
shift for a given multi-modal city structure to have an increase in passenger capacity when
compared with car-only networks.

We now investigate not only the capacity but also the shape of the MFD for 4 different city
structures as shown in Figure (6.6). For all 4 cases the length of the block is L = 100m, while
the number of lanes per block 7 = 1 or 2 and the spacing of bus stops is s?*S = 1 or 2 links.
All bus stops are located in the middle of the block (L?** = 50m) and the ratio G/C = 0.4. We
investigate the shape of the MFD with and without buses for C = 60sec and for buses carrying
on average 10 and 20 passengers. We also summarize the passenger and network capacity
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Implementation and Results
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Figure 6.6: Vehicle and passenger capacities of networks with and without buses for some

specific cases
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for C = 60 and 90sec for all of the cases. The results are summarized in Figure (6.6). For
Case 1 we plot the MFDs for no bus and mixed traffic with buses carrying 20 passengers. We
also show how the simulator estimates the cuts of the MFD based on the moving observers
trajectories. For Cases 2-4 we plot the MFDs for the mixed traffic with buses carrying 10 and
20 passengers. Note that despite the fact that vehicular network capacity decreases, a larger
number of passengers can be served per unit time. These MFDs can be utilized to estimate
the level of congestion for a cities with a specific demand for cars and buses (ongoing work).

6.5 Conclusions

This work provides useful tools to develop efficient management strategies of urban congestion
to minimize the effect of the general purpose stops to the rest of the traffic. Management
strategies can be implemented to partition a city so that road space is deliberately allocated
between competing modes. Although the allocation of this space is eminently political, it
should be informed by the correct physics of traffic, which is the objective of this work. This
would allow for the analysis of the performance of different modes using the same road space
under different management strategies, such as mixing traffic or separating modes by special-
use lanes. Further tests are needed to investigate the effect of buses in case of individual
bus lanes , especially in case of high frequencies of buses, because queues of buses might be
created in front of a stop with a limited number of births. Queueing analysis can be a useful
tool to identify the distributions of t”**, as this can be extended to large periods if consequent
buses serve the same stop.

Space should be allocated taking into account spatiotemporal differences in the demand and
the geometry of the road. These spatiotemporal decisions are important because, if they are
made incorrectly, space could be wasted. If this wasted space could be productively used
by low-occupancy vehicles without affecting the more productive modes, mobility is being
restricted. For example, recent studies in Californian freeways, have questioned the effective-
ness of high-occupancy lanes (HOVs) and have shown that HOV lanes are underutilized and
the passenger capacity of freeways has decreased, resulting in heavier congestion levels (Chen
etal., 2005).

A transportation system can be treated as an interconnected network of "reservoirs" with
one or more modes moving, where each reservoir represents the streets in a neighborhood.
In this extension, different parts of a city can be subject to different management strategies.
Perhaps bus-only streets are allocated only in the central business district while other parts of
the city allow vehicles to operate in mixed traffic. The effect of changes in one reservoir on the
behavior of adjoining reservoirs will also be considered with this model. Figure (6.7) shows
an example of a multi-reservoir city, with different allocations of road space in each reservoir.
Our understanding of multi-mode, multi-reservoir cities is a research priority.
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Figure 6.7: A multi-reservoir, multimodal system
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7d Conclusions

This final chapter summarizes the results in this dissertation and proposes ideas for future
research. This thesis deals with three complimentary subjects related to urban networks: (i)
Hypercube queueing models are an example of spatial queueing systems and applies in a lot
of problems in urban operational research literature. (ii) Car-sharing is a new concept to rent
vehicles for short period of times; a new model that stays between public transportation and
private ownership. (iii) Travel time, flow and density estimation in congested urban networks
with the help of Variational theory is a new method that needs to be further investigated. The
conclusions and contributions can be seen at the end of each chapter in details. In this final
chapter, we want to state these conclusions briefly and discuss the future research directions
related to all three.

7.1 Hypercube Queueing Models

The contributions of this thesis in the literature of hypercube queueing models give oppor-
tunity to model and solve queueing systems with spatial characteristics that enables service
rates depending on both the server and the incident location. The models existing in the
literature, do not take into consideration the incident location to decide the service rate. It
is assumed that the travel time is negligible compared to service time on-scene. It might
be a valid assumption for some types of queueing systems, as fire brigades. However for
ambulances and taxis, travel time is as significant as on-scene service time. Unfortunately, this
extension increases the problem size. In order to cope with it, we propose an approximation
algorithm that combines two different hypercube models with a new mathematical model
for partitioning. We also make these methods applicable inside optimization procedures and
utilize them to improve system performance of such systems.

In this research, we group the incidents according to the closest servers: If an incident is served
by the closest server, this service is regarded as an intradistrict service. If the same incident is
served by another server that can reach the incident, this service is called interdistrict service.
In our future research, we want to apply a service rate which depends only on the distance
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between the server and the incident. This way, we can make some service range belts, apply
different rates for each belt and calculate system performance for different server location
configurations. Extensions of this work to handle larger sizes of problems is another research
priority.

7.2 One-Way Car-Sharing

There are various different types of car-sharing systems. In this thesis we specifically deal with
non-floating one-way (electric) car-sharing systems. In these systems, there are designated
parking spots for the vehicles and rentals can be started and ended in different parking spots.
In our research we mostly aim systems with reservations. We work on strategic and tactical
decisions first. An optimization framework, that enables to find parking spots and fleet size is
developed. We have also applied our research on an electric car-sharing system operating in
Nice. A current field test in the city of Nice has taken into consideration recommendations that
have been concluded through the work of this thesis. The second part of this research contains
the decisions related to every day operations, e.g. relocation of vehicles and assignment of
relocation personnel to shifts. The operational decision framework is still a work in progress
but we share our preliminary results in this thesis in a short chapter as well.

In addition to work presented here, we are developing a simulator which will enable us to
simulate not only non-floating systems with reservations but any car-sharing models. One
of the other future research direction we are following contains developing heuristics for the
operational problem. These heuristics will be less accurate from the operational model we
present in the thesis but they will give results in short time. They will be used to “correct” our
system if there is a deviation from the system that is planned at the beginning of the day by
using the operational model. Extension of this work to multiple vehicle types and different
types of reservations (only at the origin, with limited time constraints) will also be considered.

7.3 Estimation of Network Capacity in Congested Urban Systems

It has been recently shown that there is a relationship between network flow and density in
the urban networks, known as macroscopic fundamental diagram. This relationship between
flow and density enables to estimate various properties in the urban networks, e.g. travel time,
capacity, flow. It is also shown that for the networks with homogeneous system characteristics
(e.g. distance and offset between traffic signals) macroscopic fundamental diagrams can be
generated mathematically. In our research, we have moved this research to one further step.
First, we propose a closed mathematical formulation for the density range of the maximum
capacity in the networks with homogeneous characteristics. Second, we apply a different
approach to see macroscopic relationship on the networks with heterogeneous system char-
acteristics. We also investigate the effect of left turn and public transportation on the network
performance.

132



7.3. Estimation of Network Capacity in Congested Urban Systems

There are several future research directions in this topic. First of all, we want to see the effect
of the multimodality created by other means of transport. We think that, these analysis could
be useful to decide on efficient allocation of space between different modes. One of the other
research directions is about partitioning the cities to have partition specific space allocations.
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