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Abstract

Spatial queueing systems (SQS) can be defined as a type of queue that mobile servers are
assigned to travel to the customer and provide on-scene service or the customers travel to service
facilities to have service. It has a lot of application areas in literature from emergency response
to vehicle repair services, dial-a-ride to paratransit.

In this research, our aim is to find a rapid approach to calculate performance measures of
SQS. Our ultimate aim is to utilize this rapid approach as an instance solver inside some
optimization algorithms such as simulated annealing (SA) and variable neighborhood search
(VNS) to find better location for systems such as ambulances, fire brigades. For this purpose, we
have developed two methods to calculate performance measures of an instance of SQS. To check
accuracy and efficiency, the approach is compared with simulation results on some instances.
Then the two methods are used with SA and VNS to improve server locations. Results show
that the approach is promising and can be applied as a tool inside some optimization algorithms.
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1 Introduction

Emergency response systems are important for modern societies. They protect public health,
provide assistance and ensure safety. Response areas of ambulances, design of police-beats or
locations of fire brigades are important decisions for these systems. Although the demand rate is
low on average for emergency response systems, the service availability is important when they
are needed. In other words, in addition to adequate coverage, rapid and reliable response times
are also important for emergency response systems.

Location-allocation problems are the set problems in the operations research literature that are
analyzed extensively. Different than the general location-allocation problems, in emergency
response system location problems, both the demand and service time are stochastic which
results in congestion and losses in every system. This stochasticity is addressed in many
researches but the server based state of the system has been taken into consideration in a few
approaches applicable to small-sized systems.

The model proposed by Larson (1974) models the problem as a spatial queueing system (SQS)
which is also known as 2n hypercube queueing model (HQM). In this approach, each emergency
response unit is modeled as a server with two states available and busy. If n is the number of
servers in the system, there are 2n states in these models. In Larson (1974)’s model, time spent
on the way to service is assumed to be negligible. He assumed, service rate is a function of
the dispatched server but not the region receiving the service. This may be acceptable for fire
brigades but not for ambulances.

In this research, we are proposing a new 3n HQM which enables to apply different service rates
for different server-region pairs. In 3n HQM, each server has 3 states: available, busy inside
its primary service area and outside its primary service area. However this new model can be
intractable even more small sized problems (with more than 8 servers). For this purpose, we
also propose and aggregate model namely, 3n aggregate HQM (AHQM). In this last model,
instead of keeping each servers’ condition separately at each state, it keeps number of servers in
different states at each bin (i.e. set of servers). In our research for small cases we use 3n HQM
model whereas for larger instances we implemented an algorithm that combines set of iterations
containing partitioning, 3n HQM and AHQM, mix aggregate hypercube queueing algorithm
(MHQA). Both 3n HQM and MHQA are used to calculate the performance of the locations
of emergency vehicles in Euclidean networks. We also implement two optimization methods,
variable neighborhood search (VNS) and simulated annealing (SA) to improve the locations of
emergency vehicles on two networks.
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We continue the paper with literature survey. Afterwards, the existing 2n HQM and newly
proposed two models 3n HQM and AHQM are defined. In the next section, MHQA is described.
The last two sections contain computational results and, conclusions with future research
directions.

2 Previous Related Research

The early models dealing with the location of emergency response systems assume deterministic
demand. They ignored stochastic nature of the problem and dealt on coverage and median
models.

Median problems locate the facilities on discrete candidate locations that minimize average
response time or distance. Hakimi (1964) proposed p-median problem in which the main aim
is to locate p facilities on a finite set of candidate locations in such a way that minimizes total
transportation cost of n customers. Although it is a combinatorial optimization problem, there
are some exact algorithms (Galvão and Raggi, 1989, Avella and Sassano, 2001) and heuristic
methods (Daskin and Haghani, 1984, Schilling et al., 1993) as well. Mladenović et al. (2007)
wrote a survey which covers most of the literature on meta-heuristics about this subject.

Coverage models are used to locate limited number of facilities (i.e. emergency response
systems) which maximize total coverage. Toregas et al. (1971) and Church and ReVelle (1974)
approach coverage models from two different directions. In the probabilistic version of this
problem, namely maximum availability location problem (MALP), the maximized value is the
regions which are covered with α-reliability (Marianov and ReVelle, 1996). Daskin and Stern
(1981) and Gendreau et al. (1997) altered the MCLP and proposed two models that maximize
the number of regions that are covered more than once.

Although the literature mainly covers static and deterministic location models, in recent models
uncertainty is also taken into account. This uncertainty can be either related to planning future
periods (dynamic models) or input model parameters (probabilistic models). Dynamic models

are suitable for models which, are considering the relocation of vehicles. The first article on this
subject is written by Ballou (1968) in which the main aim is to relocate a warehouse in such
a way that maximizes the profit in a finite horizon. Scott (1971) works with the extension of
this problem with more than one facilities. Schilling (1980) extends MCLP with additional time
constraint.

For urban problems, it is obvious that probabilistic models are the most suitable ones. For
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location and allocation of the emergency response systems, it is more convenient to model both
the demands and the duration of the time the facility serving these demands with probabilistic
models. In these models, with some probability, it is always possible to have demand which
cannot be intervened by any facility, because of stochasticity in both demand and service times.
Manne (1961), Daskin (1983), ReVelle and Hogan (1989) and, Marianov and ReVelle (1996)
are some of the important articles written in this literature.

Larson (1974) proposed a hypercube queueing model (HQM) which is the first model that embeds
the queueing theory in facility location allocation problems. This model analyzes systems such
as emergency services (e.g. police, fire, ambulance, emergency repair), door-to-door pickup
and delivery services (e.g. mail delivery, solid waste collection), neighborhood service centers
(e.g. outpatient clinics, libraries, social work agencies) and transportation services (e.g. bus
and subway services, taxicab services, dial-a-ride systems) which has response district design
and service-to-customer mode (Larson and Odoni, 1981). The solution of this model provides
state probabilities and associated system performance measures (e.g. workload, average service
rate, loss rate) for given server locations. “The HQM is not an optimization model; it is only a
descriptive model that permits the analysis of scenarios” (Galvão and Morabito, 2008). HQM
models the current state as a continuous-time Markov process but does not determine the optimal
configuration. Police patrolling (Sacks and Grief, 1994) and ambulance location (Brandeau and
Larson, 1986) are two applications modeled by HQM. Marianov and ReVelle (1996) extended
the MALP and developed queueing maximum availability location problem.

The first model proposed by Larson (1974) assumes that the service time is independent of
the locations of the calls for service and the dispatched unit. This argument was supported by
the idea that time spend on the road is negligible compared to service time. This can be a fact
for fire brigades but not for the ambulances and on-demand vehicles. However even with this
simplification, as number of servers (n) increases, number of states (2n) grows exponentially. As
an extension, Atkinson et al. (2008) proposed a partial 3n HQM that assumes different service
rates for each server in the system with equal interdistrict or intradistrict responses. Iannoni
and Morabito (2007) and Iannoni et al. (2008) embedded hypercube in a genetic algorithm
framework to locate emergency vehicles along a highway. They extend the problem to enable
multiple dispatch (e.g. more than one server can intervene for the same incident). Geroliminis
et al. (2009) integrate the location and distracting decisions in the same optimization and solve
the problem by using steepest descent for up to 10 servers. Geroliminis et al. (2011) extended
the previous work to deal with larger instances with spatially homogeneous demand. They use a
genetic algorithm that is using an entity called superdistrict which is similar to bin. However,
they have not taken interactions between superdistricts into consideration which seems important
as it is shown later in this paper.
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3 Hypercube Queueing Models

In this section, we start by describing the Larson (1974)’s model. Then we describe the two
models we propose: 3n HQM and 3n AHQM.

3.1 2n Hypercube Queueing Model

2n HQM proposed by Larson (1974). Each state name contains n binary variables where n stands
for the number of servers in the system. ith digit of the state name contains condition of server
i: available (0) or busy (1). For each region, which is named as atom in HQM literature, there
exists a priority list of servers. Atoms are served by the available server that has the highest
priority in their list. If there are no available server that can serve the atom, either the request is
lost or joins to a queue to be served later depending on the system structure. Both interarrival
times of incidents at each atom (λ j) and service times of servers (µi) are exponentially distributed.
A transition diagram with three servers for a 2n HQM can be seen in Figure 1
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Figure 1: Larson (1974)’s 2n HQM for three servers with equal intra and interdistrict service rates
(µi). State “011”, “111” and the transition connecting them is shown with different
colors.

3.2 3n Hypercube Queueing Model

In our first proposed model, we define three states for each server. More precisely, dispatching
servers to primary service area (intradistrict) and secondary service area (interdistrict) are
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differentiated from each other. We use three states: available (0), busy with intradistrict (1) and
busy with interdistrict (2). A transition diagram of a 3n HQM with 3 servers can be seen in
Figure 2. In this figure, µi and µ′i stands for the intradistrict and interdistrict service rates of
server i respectively and λ j is the interarrival rate in atom j. Not that, in this system the server
has always priority for its own intradistrict area. However, this does not prevent to have states
such as “222”.
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Figure 2: 3n HQM model for two servers with different intra (µi) and interdistrict (µ′i) service
rates. State “210”, states directly connected to it and transitions are colored differently.

To have an illustrative example, the transition equation for the state “210” is given below. In
state “210”, the rightmost digit (“0”) represents the first server and shows it is available; the
middle digit (“1”) shows the condition of the second server is busy with intradistrict response
and; the leftmost digit (“2”) indicates the third server is busy with interdistrict response. Please
note Pr shows the steady state probability of state r.

P210
(
λ1 + λ2 + λ3 + µ′3 + µ2

)
= µ1P211 + µ′1P212 + λ2P200 + λ2P010 (1)

3.3 3n Aggregate Hypercube Queueing Model

As stated above, the size of 3n HQM makes it intractable even for medium sized problems. For
his reason, we propose 3n AHQM which is less accurate but more efficient than 3n HQM. In
this new model, we propose a new concept called bin instead of individual servers. Bins can be
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Figure 3: 3n AHQM for two bins containing two servers in each bin with different intra (µb)
and interdistrict (µ′b) service rates, and primary demand areas (λ j). State “10/01” and
states connected to it are filled with different colors to show an example of transition
equations.
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regarded as group of servers. Instead of keeping each servers’ conditions separately in the states,
the number of servers in different states at each bin is kept. Since the total number of servers
is known for each bin, we represent the condition of each bin with two values. The number of
servers in intradistrict and interdistrict response. For µb and µ′b stands for the intradistrict and
interdistrict service rates of each server in bin b respectively and λ j is the interarrival rate in
atom j, the transition diagram for a system with two bins with two servers each can be illustrated
as in Figure 3.

In Figure 3 the transition equation for the state “10/01” (shown with red) can be written as in
Equation 2. Please note, the first line of the state name “10” shows the condition of the first bin.
The value on the left (“1”) shows the number of busy servers in intradistrict response and the
value on the right (“0”) shows the number of busy servers in interdistrict response. Similarly,
“0” and “1” shows the number of busy servers in intra and interdistrict responses in bin 2. To
sum up, in state “10/01” there are one busy server in intradistrict response in bin 1 and one busy
server in interdistrict response in bin 2.

Pr

1 (
∃n : T̃ (r, b, free) , 0

)∑
j

λ j +
∑

b

T̃ (r, b, intra)µb +
∑

b

T̃ (r, b, inter)µ′b


=

∑
q,b:

D̃(q,r,b,intra)=1

Pqµb +
∑
q,b:

D̃(q,r,b,inter)=1

Pqµ
′
b +

∑
q,b:

D̃(r,q,b,intra)=1

Pb

∑
j∈Rb

λ j +
∑
q,b:

D̃(r,q,b,inter)=1

Pb

∑
j∈S (r,b)

λ j

(2)

For a 3n AHQM, if Cb equals to the number of servers in bin b, total number of states equals∏
b

(Cb+2)(Cb+1)
2 which is far less than 3n. For most of the cases with two bins, this value is even

less than 2n (i.e. for the cases with 8 or more servers). For instance, the system with 20 servers
has over one million3 states in 2n and 3.5 billion states in 3n HQM whereas a 3n AHQM of two
bins with 10 servers each has only 4356 states. In the next section, we describe the MHQA that
utilizes the two new 3n models, i.e. 3n HQM and 3n AHQM.

4 Mix Aggregate Hypercube Queueing Algorithm

The increase in the number of states makes 3n HQM not applicable to real life instances. Because
of that, we propose 3n AHQM. However, 3n should be applied in a way that will keep the results
in some accuracy level in an efficient way. In this section we will briefly describe this method.
Further information will be given in a journal paper which is under review right now.

7



Hypercube Queueing Models for Emergency Response Systems May 2014

116 94 95 94 85 112 94 93 104 96 59 54 47 44 50 58 53 48 48 41 60 56 56 51 47 47 49 42 52 40 53 46 56 40 57 42 51 58 42 51

103 96 108 85 96 114 89 101 113 110 55 44 47 43 57 57 58 46 51 41 42 46 56 59 49 57 60 47 57 41 41 49 41 46 52 53 53 49 43 60

113 99 103 103 88 117 119 99 88 113 41 51 57 49 54 46 46 58 58 51 49 58 50 52 40 45 58 55 47 47 52 51 52 56 42 53 41 45 45 44

81 112 85 97 115 86 115 115 87 98 54 49 59 46 58 46 48 44 59 45 54 56 54 45 46 58 46 46 43 49 55 44 47 47 58 50 53 56 52 59

103 92 82 113 120 98 117 103 118 94 47 46 41 49 57 55 58 47 40 58 59 47 56 45 42 46 58 43 51 48 43 44 46 52 58 52 59 56 57 51

89 84 107 84 111 102 120 102 98 103 49 44 46 51 42 41 52 42 51 52 47 55 59 51 42 41 43 42 49 55 45 46 43 44 48 57 52 52 59 43

114 100 86 115 112 112 96 105 109 102 45 50 41 60 58 52 46 56 54 57 44 44 55 46 55 56 49 52 51 41 54 47 55 57 57 56 41 55 52 56

118 120 119 119 110 96 98 85 95 91 43 58 46 57 52 57 45 56 57 58 58 59 56 46 42 43 51 44 49 59 44 54 54 45 58 47 41 51 42 58

85 116 109 111 99 81 108 115 82 101 47 53 56 52 50 48 57 54 46 58 42 44 43 44 52 51 46 41 41 43 56 56 56 50 46 43 53 43 57 43

89 117 107 88 91 113 109 111 102 103 57 43 60 47 47 56 52 45 46 57 60 56 57 57 51 49 58 47 56 51 45 52 59 43 58 47 57 44 60 51

51 43 44 52 52 56 56 42 52 58 50 59 59 49 52 46 49 51 57 54 40 47 51 50 43 51 60 57 51 41 118 98 108 101 96 118 96 118 110 96

57 46 44 54 59 56 46 45 48 44 41 58 54 55 50 48 59 57 60 57 55 49 55 44 60 57 59 56 42 50 84 110 82 116 107 91 89 107 108 86

60 40 45 51 47 49 45 42 55 49 40 41 43 46 45 48 40 50 52 47 57 58 49 53 56 55 59 43 58 56 108 119 114 102 114 99 116 110 117 110

56 57 57 55 50 55 51 54 58 52 54 42 52 44 54 49 47 56 46 54 56 56 49 42 47 40 48 59 42 51 89 87 96 118 116 109 115 101 104 90

60 49 54 57 41 59 51 53 56 43 51 59 60 55 58 52 51 47 47 40 41 47 53 50 52 57 44 54 59 59 115 100 107 93 105 87 85 82 97 95

54 59 43 49 59 51 55 59 57 57 40 43 51 57 51 42 46 47 55 45 55 42 50 46 51 41 53 52 50 49 113 92 97 102 100 116 105 93 97 106

54 45 48 48 49 41 42 55 50 42 59 59 44 43 57 40 43 49 58 60 54 42 41 50 50 57 59 56 58 57 88 113 109 96 100 118 102 92 92 99

45 45 55 41 53 41 41 50 55 52 48 50 57 58 41 49 55 60 53 54 57 44 59 58 47 43 45 46 44 58 114 81 109 89 93 120 113 107 106 92

50 41 47 48 52 46 49 45 59 45 55 54 50 51 42 42 41 48 40 55 58 45 44 54 46 52 57 47 40 42 100 96 108 107 113 117 113 98 97 94

56 47 53 51 57 59 42 57 60 41 41 41 40 45 47 43 42 53 54 54 47 51 44 53 60 43 56 54 41 59 115 87 104 82 88 119 81 104 82 116

4

1 2 3

5

7 8

6

10

11

12

21

15

19 20

22

13

9

14

18

2423

16 17

A

116 94 95 94 85 112 94 93 104 96 59 54 47 44 50 58 53 48 48 41 60 56 56 51 47 47 49 42 52 40 53 46 56 40 57 42 51 58 42 51

103 96 108 85 96 114 89 101 113 110 55 44 47 43 57 57 58 46 51 41 42 46 56 59 49 57 60 47 57 41 41 49 41 46 52 53 53 49 43 60

113 99 103 103 88 117 119 99 88 113 41 51 57 49 54 46 46 58 58 51 49 58 50 52 40 45 58 55 47 47 52 51 52 56 42 53 41 45 45 44

81 112 85 97 115 86 115 115 87 98 54 49 59 46 58 46 48 44 59 45 54 56 54 45 46 58 46 46 43 49 55 44 47 47 58 50 53 56 52 59

103 92 82 113 120 98 117 103 118 94 47 46 41 49 57 55 58 47 40 58 59 47 56 45 42 46 58 43 51 48 43 44 46 52 58 52 59 56 57 51

89 84 107 84 111 102 120 102 98 103 49 44 46 51 42 41 52 42 51 52 47 55 59 51 42 41 43 42 49 55 45 46 43 44 48 57 52 52 59 43

114 100 86 115 112 112 96 105 109 102 45 50 41 60 58 52 46 56 54 57 44 44 55 46 55 56 49 52 51 41 54 47 55 57 57 56 41 55 52 56

118 120 119 119 110 96 98 85 95 91 43 58 46 57 52 57 45 56 57 58 58 59 56 46 42 43 51 44 49 59 44 54 54 45 58 47 41 51 42 58

85 116 109 111 99 81 108 115 82 101 47 53 56 52 50 48 57 54 46 58 42 44 43 44 52 51 46 41 41 43 56 56 56 50 46 43 53 43 57 43

89 117 107 88 91 113 109 111 102 103 57 43 60 47 47 56 52 45 46 57 60 56 57 57 51 49 58 47 56 51 45 52 59 43 58 47 57 44 60 51

51 43 44 52 52 56 56 42 52 58 50 59 59 49 52 46 49 51 57 54 40 47 51 50 43 51 60 57 51 41 118 98 108 101 96 118 96 118 110 96

57 46 44 54 59 56 46 45 48 44 41 58 54 55 50 48 59 57 60 57 55 49 55 44 60 57 59 56 42 50 84 110 82 116 107 91 89 107 108 86

60 40 45 51 47 49 45 42 55 49 40 41 43 46 45 48 40 50 52 47 57 58 49 53 56 55 59 43 58 56 108 119 114 102 114 99 116 110 117 110

56 57 57 55 50 55 51 54 58 52 54 42 52 44 54 49 47 56 46 54 56 56 49 42 47 40 48 59 42 51 89 87 96 118 116 109 115 101 104 90

60 49 54 57 41 59 51 53 56 43 51 59 60 55 58 52 51 47 47 40 41 47 53 50 52 57 44 54 59 59 115 100 107 93 105 87 85 82 97 95

54 59 43 49 59 51 55 59 57 57 40 43 51 57 51 42 46 47 55 45 55 42 50 46 51 41 53 52 50 49 113 92 97 102 100 116 105 93 97 106

54 45 48 48 49 41 42 55 50 42 59 59 44 43 57 40 43 49 58 60 54 42 41 50 50 57 59 56 58 57 88 113 109 96 100 118 102 92 92 99

45 45 55 41 53 41 41 50 55 52 48 50 57 58 41 49 55 60 53 54 57 44 59 58 47 43 45 46 44 58 114 81 109 89 93 120 113 107 106 92

50 41 47 48 52 46 49 45 59 45 55 54 50 51 42 42 41 48 40 55 58 45 44 54 46 52 57 47 40 42 100 96 108 107 113 117 113 98 97 94

56 47 53 51 57 59 42 57 60 41 41 41 40 45 47 43 42 53 54 54 47 51 44 53 60 43 56 54 41 59 115 87 104 82 88 119 81 104 82 116

4

1 2 3

5

7 8

6

10

11

12

21

15

19 20

22

13

9

14

18

2423

16 17

B

4

1 2 3

5

7 8

6

10

11

12

21

15

19 20

22

13

9

14

18

2423

16 17

C

4

1 2 3

5

7 8

6

10

11

12

21

15

19 20

22

13

9

14

18

2423

16 17

D

4

1 2 3

5

7 8

6

10

11

12

21

15

19 20

22

13

9

14

18

2423

16 17

E

1 2

3 4

Figure 4: An illustration of the partitioning approach.
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An illustration of the procedure can be seen in Figure 4. Figure 4a shows the whole problem
area with all servers (red dots). Dark color represents atoms of high demand and lighter color
the ones of lower demand. Figure 4b shows the primary areas of responsibilities of each server
estimated with a Voronoi approach based on Euclidean distance. Figures 4b-d shows the results
of the sequential partitioning method which is briefly described in this section.

In this method, the core subregions are merged to larger compound subregions, which are
modeled as a 3n AHQM. When compound regions are merged to form larger subregions, again
3n AHQM is used. This process is repeated until the whole problem area is covered. Note that,
at each merging step, only two subregions are used.

As stated above we developed MHQA to have accurate results in reasonable time. In order to
have that, we also need a partitioning algorithm that partitions the whole problem area as we
want. We try to develop a partitioning algorithm that satisfies the following properties:

1. The number of servers in each partition should be the parameter of the partitioning
algorithm. We need to set the number of servers in each subregion. There is a maximum
size that is efficiently solvable with both hypercube models and over partitioning (i.e.
using more partitions than needed) decreases the accuracy of the final result.

2. Servers in the same partition should be adjacent to each other. This prevents disconnected
atoms and helps to have connected subregions which improves accuracy of the method.

3. Partitioning should be sequential in order to apply the approximation algorithm.
4. Partitioning should be efficient. Our aim in developing an approximation algorithm is to

evaluate instances in an optimization framework. To do that, we need efficient algorithms
in all steps of the evaluation.

For this purpose an algorithm is developed that generates “cuts” composed of paths on the
problem area and creates subregions. This algorithm is applied on the Voronoi diagram of server
locations. Afterwards, we solve one or more flow problems that divides the whole problem
area into two or more partitions. Readers who are interested in the mathematical model of this
approach can refer to our journal paper which is under review right now.

5 Computational Results

After describing our methods briefly, in this section we first evaluate the accuracy of the model
described in the previous two sections, by comparing them with a discrete event simulation.
Then these methods are combined with two optimization methods variable neighborhood search
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Figure 5: The demand distribution of the network used in experiments.

(VNS) (Mladenović and Hansen, 1997) and simulated annealing (SA) (Kirkpatrick et al., 1983)
to find better facility locations. All of the algorithms in this work are developed under C# .NET
environment. For partitioning algorithm IBM ILOG Cplex 12.4 is used through Concert user
interface. MATLAB 7.9 through MATLAB Automation Server interface is used for matrix
operations. All experiments are conducted on a PC with Intel Core2 Quad 3.00 Ghz processor.

We use an experimental network given in 5. Each square in this figure shows qkm2 area. The
value at each square shows 104 times the ratio of the arrival rate to total arrival rate. Euclidean
norm is used in distance calculation but other norms can also be used with minor changes in the
algorithm. It is assumed that total service time equals to the sum of total travel time (going to
scene and coming back from scene) and on scene service time.

5.1 Accuracy of 3n HQM

In this part, MHQA is compared with discrete event simulation for a case with 12 servers. We
tested following instances with three demand (5, 15, 45 instance/hour), average on-scene service
time (5, 10, 20min) and accessibility distance (10, 15, 20kms) for each demand distribution
which makes 27 scenarios in total and compare lost rates. We set the speed of servers to
1km/min. On-scene service time and inter-arrival times are distributed exponentially. 500
random instances with 12 facilities were generated for each setting. We used partitions of
6 servers in approximation algorithm. Both simulation and our method are run over over
experimental network. The percentage of error in loss rates are reported in Figure 6. The ratio
of the difference of lost rate between each simulation result and the MHQA result to the lost rate
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found by simulation are reported as error.
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Figure 6: The ratio of difference between the loss rates calculated by simulation and the MHQA.

25 parallel simulation instances were created with 11 batches simulating length of 50 days
each. The mean of the last 10 batches of all 25 parallel simulations are reported. Length of the
simulations are selected in a way that calculated values have tight enough confidence intervals
to guarantee steady state.

For each instance, simulation took around 25s whereas our method took around 7s on average.
The comparison showed that compared to simulation, our method gives results with acceptable
error (less than 5% error on average and 10% in the worst case) in less run time (28% of
simulation run time). This error gets even less for increased server range, for the scenarios
with the range of 20km, average error is less than 1% and in 95% of the cases error is less
than 2%. Furthermore, simulation needs to run longer to have accurate results if more detailed
performance measures (e.g. loss rate per number of busy servers) are needed.

5.2 Heuristics for Better Location of Servers

In this section, our exact 3n HQM (for cases with less than or equal to 8 servers) and mix
aggregate hypercube (for cases with more than 8 servers) algorithms are tested inside two
heuristic approaches to identify close-to-optimum locations of servers: variable neighborhood
search (Mladenović and Hansen, 1997) and simulated annealing (Kirkpatrick et al., 1983).
Both methods are initialized with the maximum expected coverage location model (MEXCLP)
(Daskin, 1983). MEXCLP is selected because it is efficient and gives good results. In VNS
algorithm, it is assumed that if two instances’ all but one servers are in different locations, they
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value % impr. value % impr.

6

5
5 0.076 0.055 26.72 0.055 26.67

8 0.725 0.594 18.09 0.594 18.09

10 1.691 1.452 14.1 1.452 14.1

20

5 0.432 0.377 12.63 0.377 12.67

8 2.074 1.926 7.11 1.926 7.11

10 3.626 3.439 5.16 3.439 5.16

7

5
5 0.022 0.013 39.27 0.013 39.27

8 0.343 0.252 26.29 0.252 26.29

10 0.994 0.775 22 0.775 22

20

5 0.207 0.167 19.34 0.168 19.15

8 1.436 1.267 11.81 1.27 11.62

10 2.813 2.566 8.78 2.569 8.69

8

5
5 0.005 0.003 47.51 0.003 47.51

8 0.129 0.098 23.94 0.098 23.94

10 0.483 0.387 19.82 0.387 19.82

20

5 0.084 0.065 22.77 0.068 19.71

8 0.894 0.776 13.21 0.798 10.73

10 2.035 1.826 10.28 1.848 9.21

12

5
10 0.003 <1E-3 84.54 <1E-3 84.54

16 0.263 0.054 79.36 0.054 79.36

20 1.272 0.472 62.90 0.472 62.9

20

10 0.200 0.095 52.49 0.099 50.18

16 2.680 2.062 23.03 2.064 22.99

20 5.714 5.004 12.42 4.989 12.68

16

5
16 0.004 0.001 87.32 0.001 87.32

20 0.068 0.008 87.92 0.008 87.92

30 2.423 0.786 67.58 0.786 67.58

20

16 0.551 0.282 48.85 0.290 47.37

20 2.203 1.458 33.84 1.448 34.29

30 9.947 9.058 8.94 9.172 7.8

Table 1: The best lost rate found by MEXCLP, VNS and SA algorithms for the experimental
network given in Figure 5.
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are neighbors. In every iteration, a randomly selected server’s location is changed. We use the
same neighborhood structure in SA algorithm. We set the starting “temperature” coefficient to
1 and increase it by 10% in every 20 iterations. Temperature is assumed to be the division of
temperature coefficient with the average lost rate in every iteration. We have applied 3n HQM
for cases with 6,7 and 8 servers for total arrival rates of 5, 8, 10, 15 and 20 requests/hour. For
cases with 12 and 16 servers, arrival rates are doubled (i.e. 10, 16, 20, 30, 40 requests/hour),
problems are solved by MHQA with two partitions of equal size. Run times for the former three
(i.e. 6, 7 and 8-server) cases are set to one hour, whereas the latter two (i.e. 12 and 16-server)
cases are run for four hours. We have applied two different on scene service times: 5 and 20
minutes. For all cases, maximum accessibility distance is set to 30km. Found minimum lost rate
and percent lost rate improvements after MEXCLP by both heuristics (i.e. VNS and SA) for
cases with realistic lost ratios (ratio of lost rate to the total arrival rate) can be seen in table 1.

From the experiments, we observed that there is an improvement of more than 20% on average
for the lost rates over MEXCLP. We have not observed any significant difference between VNS
and SA. Since our primary goal in this research is to test the applicability of hypercube models
inside search algorithms, we have not searched for parameters that may give better final results
for both VNS and SA. One can also observe that the lost rates dramatically increase with the
increase of on scene service time. Small increase in demand has also considerable influence on
the lost rate. Queueing systems are unpredictably complex and need custom-built algorithms to
be tested. We also observe that the performance of SA and VNS against MEXCLP get better
with the increase in the number of servers. Last but not least, careful readers might realize that
for the same value we have calculated different percent improvements. This is the consequence
of showing results with limited precision. We also noticed (not shown here) that even after 30
minutes (instead of 4 hours) the VNS and SA methods provide similar improvement with a 4
hour run.

6 Conclusions

In this short paper, we have briefly describe two new 3n hypercube models and two algorithms
that utilize these two methods that we propose. For evaluating our methods, we first compare
our approach’s results with the results of a discrete event simulation and show the accuracy of
our approach for different parameters on an experimental network. To see the applicability of
our two approximation algorithms (3n HQM and MHQA) inside an optimization framework,
the two methods are implemented with variable neighborhood search and simulated annealing.
Experiments have shown that, although hypercube queueing models are not optimization models,
they can be utilized inside optimization frameworks.
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