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We introduce warm quintessential inflation and study it in the weak dissipative regime. We consider 
the original quintessential inflation model, which approximates quartic chaotic inflation at early times 
and thawing quartic inverse-power-law quintessence at present. We find that the model successfully 
accounts for both inflation and dark energy observations, while it naturally reheats the Universe, thereby 
overcoming a major problem of quintessential inflation model-building.
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1. Introduction

Inflation is overwhelmingly the best mechanism for explaining 
the observed structure in the Universe as well as its spatial flatness 
and large-scale homogeneity [1]. In the same time, the discovery of 
dark energy [2] is best attributed to a non-zero, albeit incredibly 
fine-tuned, cosmological constant in the benchmark paradigm of 
�CDM [3]. However, recently both proposals have been challenged 
by the swampland conjectures [4], which stipulate the impossi-
bility of de-Sitter vacua in string theory and also set stringent 
constraints on inflation model-building and undermine �CDM [5]
(but see also Ref. [6]). Such constraints are not possible to meet 
with conventional inflation [7]. A successful way to model infla-
tion while satisfying the swampland conjectures is incorporating 
dissipating effects [8], as in warm inflation [9]. On the dark energy 
front, the observations of the current accelerated expansion can 
be explained by quintessence instead of a non-zero cosmological 
constant � [10], which is also in agreement with the swamp-
land conjectures [11]. In this letter, we attempt to join the two 
and introduce warm quintessential inflation (for a reference list 
on quintessential inflation see Refs. [12,13]), which has the addi-
tional advantage of providing a natural mechanism for reheating 
the Universe. Reheating is of particular significance in quintessen-
tial inflation because the conventional reheating by the decay of 
the inflaton field at the end of inflation cannot occur as the field 
needs to survive until the present and become quintessence. We 
use natural units where c = h̄ = kB = 1 and 8πG = m−2

P , where 
mP = 2.43 × 1018 GeV is the reduced Planck mass.
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2. The model

The original quintessential inflation model is [14]1

V (φ) =
{

λ(φ4 + M4) for φ < 0
λM8

φ4 + M4 for φ > 0
, (1)

where 0 < M � mP . For negative values of the inflaton field 
φ � −M , the above potential reduces to quartic chaotic inflation, 
which has been excluded by observations unless it is “warmed 
up”, by considering significant dissipation effects. During inflation 
φ ∼ −mP . For positive values of the field φ � M the potential be-
comes inverse power-law (IPL) quintessence. Such quintessence 
models feature a tracker solution, which however, is too steep 
to satisfy observations in the case of an inverse quartic poten-
tial V ∝ φ−4. However, in our case, the field does not follow the 
tracker but, after the end of inflation, it rushes down its run-
away potential and freezes at a value φF ∼ mP with some resid-
ual potential density, which explains dark energy. At present, the 
field unfreezes and begins slowly rolling down its potential. Such 
quintessence is called “thawing” [16].

While the field runs from inflation at φ ∼ −mP to quintessence 
at φ ∼ mP it is kinetically dominated and oblivious of the potential 
[17]. Thus, the awkward discontinuity (in the fourth derivative) of 
the potential in Eq. (1) is not felt. In fact, the potential in Eq. (1)
is only experienced by the field when |φ| ∼ mP , which means that 
Eq. (1) is only a guideline to the actual form of V (φ) and should 
not be taken too seriously.

In addition, the field runs over super-Planckian distance from 
the end of inflation to its eventual freezing. It is likely that the 

1 There is recently revamped interest in this model, see for example Ref. [15].
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dissipative properties of the field are different in these two differ-
ent patches of the scalar potential, which are several Planck scales 
apart. Indeed, we assume that dissipative effects are important 
only when the field is slow-rolling during inflation with φ ∼ −mP . 
Additionally, we consider only the weak dissipative regime, where 
the dynamics of the field are not affected by dissipation (no extra 
friction) so this issue is not of our concern.

In the weak dissipative regime, the only effect of dissipation 
is that the quantum fluctuations of the inflaton field during infla-
tion are superseded by its thermal fluctuations, due to a subdom-
inant thermal bath, generated and maintained by the dissipative 
effects. At the end of inflation, this thermal bath suffices to re-
heat the Universe, thereby overcoming one of the major problems 
of quintessential inflation model-building. Indeed, reheating cannot 
be due to inflaton decay, as in conventional inflation, because the 
inflaton must survive until today. A number of reheating mecha-
nisms have been put forward, the most important of which are 
gravitational reheating [18], instant preheating [19], curvaton re-
heating [20] and recently non-minimal reheating [21] (also called 
Ricci reheating [22]). In most cases, an extra degree of freedom 
must be assumed, which is coupled to the inflaton (instant reheat-
ing) or not (curvaton or non-minimal reheating), the only excep-
tion being gravitational reheating, which however is in danger of 
producing excessive tensors [23]. In this paper, efficient reheating 
occurs naturally without any additional assumptions.

3. Warm inflation

The slow-roll equations in warm inflation are

3H(1 + Q )φ̇ � −V ′ (2)

and ρr � 3

4
Q φ̇2 , (3)

where H is the Hubble scale, ρr is the density of the subdominant 
radiation, Q ≡ ϒ/3H with ϒ being the dissipation coefficient and 
the dot (prime) denotes differentiation with respect to time (the 
inflaton field). The scalar power spectrum in warm inflation is [24]

Pζ = H2(1 + Q )2F
8π2εm2

P

, (4)

where ε is the inflationary slow-roll parameter (defined later, in 
Eq. (8)) and

F ≡ 1 + 2N∗ + T

H

2π Q√
1 + 4π

3 Q
, (5)

with N∗ = (eH/T − 1)−1 being the statistical distribution of the 
inflaton field at horizon crossing, and T is the temperature of 
the subdominant thermal bath during inflation.2 In cold inflation, 
Q , T = 0 and F = 1 so that Eq. (4) reduces to the usual expres-
sion. However, in warm inflation T � H and so N∗ � T /H � 1. As 
mentioned, we consider the weak dissipative regime, where Q < 1. 
In this case, Eq. (5) suggests F � 2(1 + π Q )T /H . For the density 
of the subdominant thermal bath we have

ρr = π2

30
g∗T 4 = εQ V

2(1 + Q )2
, (6)

where g∗ is the effective relativistic degrees of freedom and we 
used the slow-roll Friedman equation V � 3m2

P H2 and Eqs. (2) and 
(3) in the last equation. Combining Eqs. (4) and (6) we arrive at

2 There is a minor correction to F when Q > 0.1 which we ignore.
Pζ = 1

4π2

(
45

π2 g∗

)1/4 Q 1/4(1 + Q )3/2(1 + π Q )

ε3/4

(
H

mP

)3/2

.

(7)

Now, we consider the model at hand. Warm quartic chaotic in-
flation has recently been studied in detail in Ref. [25] (for some 
other related works see Ref. [26]). The only difference in our setup 
is that there is a small gap between the inflation and the radiation 
era, during which the Universe assumes an equation of state stiffer 
than radiation. However, we find that this period is very brief and 
serves only to add about one efold in the number of remaining 
efolds of inflation when the cosmological scales exit the horizon. 
As a result, our findings follow closely the much more elaborate 
Ref. [25].

During inflation, Eq. (1) suggests V � λφ4. Then we find

ε ≡ 1

2
m2

P

(
V ′

V

)2

= 8

(
mP

φ

)2

and

η ≡ m2
P

V ′′

V
= 12

(
mP

φ

)2

= 3

2
ε . (8)

The number of remaining efolds of inflation is

N = 1

m2
P

φ(N)∫
φend

V (1 + Q )

V ′ dφ ⇒ N = 1 + Q

8m2
P

(
φ2(N) − φ2

end

)
,

(9)

where ‘end’ denotes the end of inflation and we have taken 
that, during slow-roll, Q � constant. Warm inflation ends when 
ε = 1 + Q , which gives

φ2(N) = 8(N + 1)

1 + Q
m2

P , (10)

with φend = φ(N = 0) < 0.3 Thus, we obtain

ε = 1 + Q

N + 1
. (11)

Combining the above with Eq. (7) we get

Pζ = 1

4π2

(
45

π2 g∗

)1/4

Q 1/4(1 + Q )3/4(1 + π Q )

× (N∗ + 1)3/4
(

H

mP

)3/2

, (12)

where N∗ is the remaining efolds of inflation when the cosmolog-
ical scales exit the horizon. In addition, using that V = 3m2

P H2 =
λ φ4(N) we find

H

mP
= 8

√
λ√

3

N∗ + 1

1 + Q
. (13)

For the tensor-to-scalar ratio we obtain

r ≡ Ph

Pζ

= 2

π2Pζ

(
H

mP

)2

, (14)

where Ph = 2
π2 (H/mP )2 is the tensor spectrum, which is unaf-

fected by dissipative effects. However, we should stress here that 
considering warm inflation reduces the value of r compared to 
cold inflation. The reason is that, because T > H in warm infla-
tion, the scalar perturbations are due to thermal fluctuations of 

3 Recall that, during inflation φ < 0 as it is clear from Eq. (1).
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the inflaton field, which dominate the field’s quantum fluctuations. 
This means that, in warm inflation the value of the scalar spec-
trum Pζ is enhanced compared with cold inflation. Normalising 
Pζ with the observations Pζ = 2.10 × 10−9 [27] implies that we 
may produce the observed curvature perturbation with a lower in-
flation scale, meaning with a lower value of H . In turn, as shown 
in Eq. (14), this corresponds to a lower value of r.

Finally, for the scalar spectral index, in the case of warm infla-
tion we have [28]

ns − 1 = − 17 + 9Q

4(1 + Q )2
ε + 3

2(1 + Q )
η − 1 + 9Q

4(1 + Q )2
β , (15)

where β ≡ m2
P

ϒ′ V ′
ϒV . Considering that the dissipation coefficient 

does not depend on the inflaton field ϒ �= ϒ(φ) (as in Ref. [25]) 
so that β = 0 and using that η = 3

2 ε (cf. Eq. (8)) the above reduces 
to

ns = 1 − 2ε

(1 + Q )2
= 1 − 2

(1 + Q )(N∗ + 1)
, (16)

where we also used Eq. (11).

4. End of inflation

Now, let us focus at the end of inflation. Using that at the end 
of inflation ε = 1 + Q , Eq. (6) readily gives

ρend
r = 1

2

Q

1 + Q
V end . (17)

Using Eqs. (3) and (17), the kinetic density of the inflaton field at 
the end of inflation is

ρend
kin = 1

2
φ̇2

end = 2

3

ρend
r

Q
= 1

3

V end

1 + Q
. (18)

Thus, the total density of the inflaton at the end of inflation is

ρend
φ = ρend

kin + V end = 4 + 3Q

3(1 + Q )
V end . (19)

From Eqs. (17) and (19) we find the density parameter of radiation 
at the end of inflation

�end
r ≡ ρr

ρ

∣∣∣∣
end

� ρr

ρφ

∣∣∣∣
end

= 3Q

2(4 + 3Q )
, (20)

where ρ = ρφ + ρr and we considered (ρr/ρφ)end � 1.
Consider now, what happens after the end of inflation and until 

the thermal bath generated due to dissipation, dominates the Uni-
verse and the radiation era begins. For radiation we have ρr ∝ a−4, 
where we considered that further dissipation is negligible and ra-
diation is an independent fluid. The same is true for the inflaton 
field itself, for which ρφ ∝ a−3(1+w) , where w is its effective equa-
tion of state, taken as constant for simplicity. Thus, the radiation 
density parameter scales as �r = ρr/(ρr + ρφ) � ρr/ρφ ∝ a3w−1, 
with ρr < ρφ . Reheating (denoted by ‘reh’) is the moment when 
ρr = ρφ , which means �reh

r = 1
2 . Therefore, we find

1

2
� �end

r

(
areh

aend

)3w−1

⇒ Treh

Tend
= aend

areh
�

(
3Q

4 + 3Q

)1/(3w−1)

, (21)

where we used Eq. (20) and that T ∝ 1/a. Using that ρr = π2

30 g∗T 4

and Eq. (17), the above gives
V 1/4
end

Treh
�

(
π2 g∗

15

)1/4 (
1 + Q

Q

)1/4 (
4 + 3Q

3Q

)1/(3w−1)

. (22)

When a period of stiff equation of state follows inflation, the value 
of N∗ obtains an addition, given by


N = 3w − 1

3(1 + w)
ln

(
V 1/4

end

Treh

)
, (23)

where the ratio V 1/4
end/Treh is given by Eq. (22) and w is the 

barotropic parameter of the Universe. As long as the radiation bath 
remains subdominant, w = wφ , where wφ is the barotropic pa-
rameter of the inflaton field.

Let us obtain an estimate of how large 
N is. To maximise 
the effect of the period after inflation and before reheating, we 
make the approximation that the field becomes kinetically domi-
nated immediately after the end of inflation, so that wφ = 1. We 
consider the range

0.001 ≤ Q < 0.1 . (24)

Then, taking also g∗ = 106.75 which corresponds to the standard 
model at high energies, Eqs. (22) and (23) suggest 
N � 0.69 −
2.13. In Ref. [25] the number of efolds that correspond to the cos-
mological scales was 58. Thus, in our case (we have to add about 
one because of 
N) we find N∗ + 1 ≈ 60.

In the range shown in Eq. (24) we also obtain the fol-
lowing. Eq. (12) allows us to calculate H , using the fact that 
Pζ = 2.10 × 10−9 [27]. We find H = (0.48 − 1.31) × 10−5mP . Us-
ing these values in Eq. (13) we obtain λ = (0.37 − 2.24) × 10−15, 
which is close to the results found in Ref. [25]. For the in-
flationary observables we find the following. Eq. (16) suggests 
ns = 0.967 − 0.969 which is excellent (it falls within the 1-σ
contours of the Planck observations [27]), while Eq. (14) gives 
r = 0.0023 − 0.0166, which is potentially observable in the near 
future and satisfies the observational constrain r < 0.07 [27].

5. Quintessence

After inflation the field runs down the potential until it 
freezes.4 This occurs even if the field is subdominant to radiation, 
so it does not matter that much that the field remains dominant 
after inflation only for about an efold or two. As we mentioned 
before, the field is kinetically dominated until it freezes. In this 
case, it has been shown in Ref. [12] that the value where the field 
freezes is solely determined by the density parameter of radiation 
at the end of inflation and it is given by

φF = φend +
√

2

3

(
1 − 3

2
ln�end

r

)
mP . (25)

Using Eqs. (10) and (20) the above can be recast as

φF =
[
− 2

√
2√

1 + Q
+

√
2

3
+

√
3

2
ln

(
2(4 + 3Q )

3Q

)]
mP . (26)

In the range shown in Eq. (24) we find φF = (2.23 − 7.65)mP . 
Since φF � M we are deep down the quintessential tail of the 
potential. So we have V � λM8/φ4 and the field now acts as IPL 
quintessence.

4 After inflation, the field transverses a distance of several Planck-scales in field 
space. Because of this we expect the dissipation processes to differ substantially 
compared to the period of inflation. This is why we can assume that dissipation is 
suppressed away from the inflation slope and is negligible afterwards.
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If quintessence remained frozen until the present, its residual 
potential density would act as an effective cosmological constant. If 
that were the case, then the value of this residual potential density 
must be such in order to explain the dark energy observations. In 
turn, this requirement would allow the calculation of the value of 
M . Indeed, assuming that quintessence remains frozen we should 
demand that

V (φF ) = λM8

φ4
F

= ��ρ0 � (2.25 × 10−3 eV)4 , (27)

where �� � 0.692 [27] is the density parameter of dark energy 
at present and ρ0 = 0.864 × 10−29 g

cm3 = 3.72 × 10−47 GeV4 is the 
current density of the Universe. Using the values we have obtained, 
namely φF = (2.23 − 7.65)mP and λ = (0.37 − 2.24) × 10−15, the 
above suggests M = (2.96 − 4.38) × 105 GeV, which is a rather rea-
sonable intermediate energy scale.

However, our model is thawing quintessence [16], which means 
that there is an attractor solution that the field unfreezes and tries 
to follow, when its density ρF = V (φF ) becomes comparable to 
the attractor density. By attractor density we mean the density 
that the field would have if it were following the attractor. For IPL 
quintessence the attractor is called a tracker and it is an exact so-
lution of the Klein-Gordon equation. For a quartic IPL quintessence 
of the form V = M̂8/φ4, the tracker solution is [29]

φA =
(

3M̂4t
)1/3

. (28)

This solution assumes a matter dominated Universe and is valid 
only when quintessence is subdominant. In the range shown in 
Eq. (24), we have M̂ = λ1/8M = (3.49 − 6.46)TeV.

As a zeroth-order approximation we consider that the quintes-
sence field remains frozen provided its density ρA > ρF = V (φF )

at present. This requirement provides a lower bound on the value 
of φF . Indeed, using Eq. (28), we find

ρA = 1

2
φ̇2

A + V (φA) = 3

2

(
M̂

3 t

)4/3

= 3

2
V (φA) . (29)

Evaluating the above at the present time t0 we find

φF > (2/3)1/4φA(t0) = (2/3)1/4(3M̂4t0)
1/3 . (30)

Using our findings, namely that M̂ = (3.49 − 6.46)TeV and that 
t0 = 13.8 Gy = 6.62 × 1041 GeV−1 we obtain φA(t0) = (2.74 −
6.22)mP , which results in the bound φF > (2.48 − 5.62)mP . This 
is very close to the values we have found φF = (2.23 − 7.65)mP . 
The ratio of the corresponding densities today is
ρA(t0)

V (φF )
= 0.66 − 3.44 . (31)

However, the actual situation is more complicated. Indeed, 
when V (φF ) � ρA , we expect quintessence to unfreeze and start 
slow-rolling in an attempt to follow the tracker, as shown in Fig. 1. 
This however, is undermined by the fact that the tracker solution 
is losing its validity at present because we are no more in the pure 
matter era and the dark energy is about to dominate the Universe. 
Therefore, we should numerically investigate the problem, which 
may need a slightly modified value of M to work.

Preliminary study is optimistic and the resulting barotropic 
parameter for dark energy is within the observational bounds 
−1 ≤ wφ ≤ −0.95 [27].5 The same is true of its running. In fact, 

5 If quintessence were following the tracker solution in Eq. (28), then we 
would have ρφ ∝ V ∝ φ−4 ∝ t−4/3 ∝ a−2, which would imply a barotropic param-
eter wφ = −1/3, that is unacceptable.
Fig. 1. Schematic log-log plot of the evolution of densities in thawing quintessence 
with V (φ) ∝ φ−4. V (φF ) = constant is depicted with the horizontal dashed line. 
The attractor (tracker) ρA ∝ a−2 is depicted with the slanted dot-dashed line. The 
slanted thin solid line (blue) depicts the density of matter ρm ∝ a−3, while the 
lower thick solid line (red) depicts ρφ and the upper thick solid line (blue) depicts 
the total density ρtot = ρm + ρφ . The present time is shown with the vertical dot-
ted line. As evident in the figure, recently the density of quintessence unfreezes in 
an attempt to follow the tracker. Today ρm < ρφ < ρA < V (φF ). Note however, that 
the tracker solution is not valid after the end of the matter era and quintessence is 
expected to undergo slow-roll down its potential.

Fig. 2. Behaviour of the barotropic parameter of quintessence wφ (lower solid 
curve - blue) and of the whole Universe w (upper solid curve - orange) as a func-
tion of the logarithm of the scale factor lna, which is normalised to unity today 
a0 = 1. We see that originally the Universe is in the matter era with w = 0 and 
the quintessence field is frozen with constant density V (φF ), such that wφ = −1. 
However, when approaching the present time (depicted by the vertical solid line -
black) the quintessence unfreezes and wφ(t) > −1, while it also begins to dominate 
the Universe so that w(t) < 0. Choosing the limiting case φF = 6.80 mP the present 
values of wφ and w satisfy the Planck bounds, depicted by the horizontal lines. 
In the future, quintessence becomes fully dominant so w ≈ wφ , while it slow-rolls 
down the quintessential tail of the scalar potential, ever more slowly, approximat-
ing w = wφ → −1. It is clear that both wφ and w are running at present, with 
wa ≡ −dwφ/da|a=a0 < 0.

the scenario presents some distinct observational signatures, be-
cause a potentially varying wφ is to be probed by forthcom-
ing observations, such as EUCLID. We find that φF ≥ 6.80mP

and 0 > wa ≥ −0.0659, where wa ≡ −dwφ/da|a=a0 , (which is well 
within the Planck bounds wa =−0.28+0.31

−0.27 [27]), with M̂ =6.25 TeV
and a0 ≡ a(t0) being the scale factor at the present time. The be-
haviour of the barotropic parameter of quintessence wφ and of the 
Universe w is shown in Fig. 2 for the limiting case φF = 6.80mP
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(where wa = −0.0659). We see that the values found satisfy the 
Planck bounds.

From Eq. (26), taking φF = 6.80mP corresponds to choosing 
Q = 0.002. Then, Eq. (12) gives H = 1.16 × 10−5 mP . Using this, 
Eq. (13) suggests λ = 1.77 × 10−15. For the inflationary observ-
ables, Eq. (16) results in ns = 0.967 and Eq. (14) gives r = 0.0130. 
Both comfortably satisfy the observational bounds. The value 
M̂ = 6.25 TeV suggests that M = λ−1/8M̂ = 4.36 × 105 GeV. Finally, 
the potential density when the field is still frozen is

V (φF ) = M̂8

φ4
F

= (2.36 × 10−3 eV)4 . (32)

Comparing the above with ��ρ0 as given in Eq. (27) we have 
V (φF )/��ρ0 = ( 2.36

2.25 )4 = 1.21 > 1, which agrees with the expec-
tation that the field has unfrozen and its density at present is 
smaller than V (φF ), as suggested by Fig. 1.

Before concluding, we briefly discuss the dissipative coefficient. 
By considering ϒ �= ϒ(φ) we implicitly considered the case when 
ϒ = CT T , as in Ref. [25] (see also Ref. [30]). Then we find

CT = 3Q H/T . (33)

In order to have warm inflation T > H . Indeed, in Ref. [25] it is 
found that T /H =O(10). Thus, with Q = 0.002, Eq. (33) suggests 
CT ∼ 10−3.

6. Conclusions

In this paper we have discussed warm quintessential inflation. 
As a toy model we have considered the original quintessential in-
flation model of Ref. [14], which is shown in Eq. (1). We stress 
however, that the scalar potential in Eq. (1) is only experienced 
during the inflation and quintessence regimes when |φ| ∼ mP , 
while the field is kinetically dominated when |φ| � mP , which 
means that it is oblivious of the potential, when crossing the ori-
gin. Because of this fact, the exact form of the potential in Eq. (1)
when |φ| � mP should not be taken too seriously. In fact, warm 
quintessential inflation could in principle be a possibility when 
considering other models of quintessential inflation in the litera-
ture (see for example Ref. [12] and references therein).

The warm quintessential inflation model presented here ap-
pears promising for a more thorough investigation, especially of 
the time near the end of inflation and until reheating (which de-
termines N∗ and indirectly affects the inflationary observables ns

and r) and also of the time near the present, where there is con-
nection with the dark energy observations. It is our intention to 
pursue this study, but we thought that the basic idea should be 
put out there first. Our promising findings suggest that modelling 
warm quintessential inflation can be a fruitful new avenue, espe-
cially when attempting to reconcile inflation, dark energy and the 
swampland conjectures.

Our paper appeared first but it was soon followed by Ref. [31], 
which studies a very similar model. There are aspects of the sys-
tem studied where each paper focuses more than the other (for 
example, our work is more elaborate regarding the behaviour of 
the quintessence field at present) and, in that sense, both works 
complement each other.
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