

The Psycholinguistic Markers of Single Word Recognition for Adult Learners of Literacy

Emma Mills Lancaster University, England

Dr. Robert Davies Lancaster University Dr. Anna Woollams Manchester University

Question?

DDM focusses on per subject model parameters and their variation to describe influence of personlevel variables

Q: Is it feasible to perform a DDM for item words, to be able to use the language level variables as predictors

(Scraping data from megastudies for contrast...)

Does language experience help?

Main study:

- 218 participants
 - 11-12 yrs
 - 16-19 yrs
 - Adults
- 3 time points
 - 6 ability measures
 - 4 tasks

Does language experience help?

Main study:

- 218 participants
 - 11-12 yrs
 - 16-19 yrs
 - Adults
- 3 time points
 - 6 ability measures
 - 4 tasks

4 Tasks

- Letter search
- Lexical decision
- Word naming
- Sentence completion

Variables: Person & Language Level

Variables: Person & Language Level

Phonological

TOWRE nonword Spelling Phonological awareness No. of phonemes Bigram frequency

Semantic

Vocabulary No. of synonyms Semantic diversity Imageability / Concreteness

Orthographical

TOWRE word

Frequency No. of letters Consistency Neighbourhood rating

Drift Diffusion Modelling

Assumptions:

Binary decision tasks Continuous sampling of information over time Single stage decisions Consistency of parameter values over time

Relevance...

• DDM provides simultaneous modelling of response times and accuracy values

• Can handle conditions within one analysis

 May give an insight into approaching word reading because of the different parameters AND the variables of influence

Image from https://jimgrange.files.wordpress.com/2014/05/diffusion-model.png

Model parameters...

• Drift rate

Boundary separation or Threshold

• Starting point

Non-decision component

Image from Pedersen, Frank & Biele (2017), **The drift diffusion model as the choice rule in reinforcement learning.**

Pilot study data

- 16-19 yrs (n = 12) Summer 2016
- Adult data (n = 18) -Summer 2016
- 11-12 yrs (n = 14) Summer 2017
- 6 ability measures

Pilot Study Data

- Lexical decision task
- Fast-dm software (Voss, Voss & Lerche, 2015)
- Linear regression in R (2018), using 'LanguageR', 'gvlma' and 'effects' packages

Modelling steps

- Lexical decision responses are reduced to parameter values per subject = sparse data
 - Drift rate for words and non-words
 - Starting point
 - Boundary values
 - Non-decision component
- Passed to linear regression models as outcomes with ability measures are predictors
- Model selection using AIC and principles of parsimony

Drift Rate for Words

16 yrs & Adults

11-12 yrs

16 yrs & Adults

11-12 yrs

Vocabulary

-0.5

Spelling

-0.5

0.0

0.5

0.0

0.5

5

4

3

2

1

0

5

4

3

2

1

0

DR Nonword

-1.0

DR Nonword

Starting Position

16 yrs & Adults

11-12 yrs

Boundary Values...16 & Adults

Boundary Values...11-12 yrs

Boundary comparison

Non-Decision Component... 11-12 yrs only

To summarise...think broad brush strokes

- There appears to be group differences in predictors for the Word Drift Rate and Start Position....
- In Start Position, nonword reading for older people and phonological awareness plus spelling for younger people may reflect a developmental trajectory in grain size
- Age, Vocabulary and Spelling are shared for NonWord Drift Rate – with the older participants able to use it more efficiently
- The shared predictors for Boundary appear to be similar in effect

Questions: Q-Diffusion Model...

$$P(x_{pi} = 1 | \theta_p, \gamma_p) = \frac{\exp(\frac{\gamma_p \ \theta_p}{a_i \ v_i})}{1 + \exp(\frac{\gamma_p \ \theta_p}{a_i \ v_i})} \text{ with } \gamma_p, a_i, \theta_p, v_i \in \mathbb{R}^+$$

Molenaar, Tuerlinckx, van der Maas (2015)

Question?

DDM focusses on per subject model parameters and their variation to describe influence of personlevel variables

Q: Is it feasible to perform a DDM for item words, to be able to use the language level variables as predictors

(Scraping data from megastudies for contrast...)