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Abstract  

Lanthanides, once termed rare-earth elements, are not as sparce in the environment 

as their traditional name suggests. Mean litospheric concentrations are in faccomparable to 

the physiologically fundamental elements such as iodine, cobalt and selenium. Recent 

advances in medical technology have resulted in accumulation of lanthanides presenting 

potential exposure to  both our central and peripheral nervous systems. Extensive and 

detailed studies on these peculiar active metals in the context of their influence on neural 

functions are therefore urgently required. Almost all neurochemical effects of trivalent 

lanthanide ions appear to result from the similarity of their radii to the key signaling ion 

calcium. Lanthanides, especially La3+ and Gd3+ block different types of calcium, potassium 

and sodium channels in human and animal neurons, regulate neurotransmitter turnover and 

release, as well as synaptic activity. Lanthanides also act as modulators of several ionotropic 

receptors, e.g. GABA, NMDA, and kainate and can also affect numerous signaling 

mechanisms including NF-B and apoptotic-related endoplasmic reticulum IRE1-XBP1, 

PERK and ATF6 pathways. Several lanthanide ions may cause oxidative neuronal injuries 

and functional impairment by promoting reactive oxygen species (ROS) production. 

However, cerium and yttrium oxides have some unique and promising neuroprotective 

properties, being able to decrease free radical cell injury and even alleviate motor 

impairment and cognitive function in animal models of multiple sclerosis and mild traumatic 

brain damage respectively. In conclusion, lanthanides affect various neurophysiological 

processes, altering a large spectrum of brain functions. Thus, a deeper understanding of 

their potential mechanistic roles during disease and as therapeutic agents requires urgent 

elucidation.  
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1. Introduction  

   

Lanthanides, often named “rare earth elements” (REEs) are lustrous, silvery-

white or goldish, relatively soft and plastic metals, whose atomic numbers range from 

57 to 71 (Fig 1.). For almost a century lanthanides were considered intriguing 

laboratory curiosities. Sir William Crookes, an outstanding English chemist described 

them in 1887: ”…These elements perplex us in our researches, baffle us in our 

speculations and haunt us in our very dreams. They stretch like an unknown sea 

before us - mocking, mystifying and murmuring strange revelations and 

possibilities...” Because of their high chemical reactivity, lanthanides never exist in 

nature as pure elements, but only as sparsely distributed compounds that form rare 

minerals. Scandium and yttrium, also classified as REEs are not formal members of 

the lanthanide family, however due to their considerable chemical analogy to this 

group, they are usually described jointly. Importantly, the ionic radii of La3+, Ce3+, Pr3+, 

Nd3+ and Gd3+ are comparable to that of Ca2+, an ion that plays a crucial regulatory role 

in several cell functions (Pałasz and Czekaj 2000). This particular structural similarity 

determines the physiological and toxicological effects of soluble lanthanide salts (Xu 

et al. 2017;Gramowski et al. 2011).  

Lanthanides were long considered biologically inert elements, not involved in 

biochemical pathways. However, a recent discovery of a unique bacterial PQQ-

alcohol dehydrogenases that require lanthanides has shed an intriguing light on the 

physiological actions of these metals (Chistoserdova 2019, Wehrmann et al. 2017; 

Vu et al. 2016). Moreover, there is new surprising evidence for the existence of some 

Ce3+-dependent methanol dehydrogenases also in protozoans and invertebrates (De 

Simone et al. 2018).  

Lanthanide compounds frequently have magnetic, catalytic and optic properties 

and therefore they are currently widely used in industry and medicine. Since both 

metallic lanthanides and their numerous compounds show an accumulating number 

of applications, there is an increased possibility of contamination into tissues and 

organs, potentially affecting metabolic processes.  Of particular note, gadolinium-

based contrast agents are currently widely used in the MRI diagnostics of both the 



CNS and peripheral organs due to their high magnetic moment (Kanda et al. 2014; 

Adding et al. 2006). These standard paramagnetic contrast agents are considered 

safe and non-genotoxic, however some patients with preexisting renal disease have 

reported symptoms of nephrogenic systemic fibrosis or gadolinium deposition 

disease (Lyapustina et al. 2018; Goischke 2017; Perazella and Rodby 2007). 

Although brain depositions of mainly linear gadolinium contrasts may also occur, any 

adverse health effects or structural abnormalities associated with these compounds 

in the human CNS have so far not been reported (Chehabeddine et al. 2019; Choi 

and Moon 2019; El-Khatib et al. 2018). Interestingly, a high resolution small animal 

MRI study revealed that a thulium-based macrocyclic complex may be an accurate 

sensor of temperature and pH in the rat brain (Coman et al. 2009). The luminescent 

marker, europium-albumin can be applied to examine blood-brain barrier 

permeability in experimental lipopolysaccharide induced meningitis (Ivey et al. 2005). 

Europium- superparamagnetic iron oxide particles may be alsoseful for recent 

studies on the role of the brain choroid plexus in the mechanism of monocyte 

movement during neuroinflammatory processes (Milward et al. 2017). Europium 

probes can bind selectively to some drug sites on human serum proteins that 

suggests their potential usefulness in current diagnostics and basic pharmacological 

studies (Shuvaev et al. 2016).  

The potential therapeutic applications of the lanthanides,   primarily based on 

their similarity to calcium, have been the basis for research since the early part of the 

twentieth century (Zhang et al. 2011;Fricker et al. 2006). Currently, cerium nitrate is 

used as a cream with silver sulfadiazene for the treatment of burns (Vitse et al. 

2018;Oen et al. 2012). Lanthanum carbonate (Fosrenol), acts  as a phosphate 

binding agent and has been approved for the treatment of hyperphosphatemia in 

renal dialysis patients and in calciphylaxis (Aaseth and Bjørke-Monsen 2018; Chan 

et al. 2014). A lanthanide texaphyrin complex (motexafin gadolinium) has been 

evaluated in Phase III clinical trials for the treatment of brain metastases in non-small 

cell lung cancer (Mehta et al. 2009). It is also worth noting, that lanthanide 

radionuclides;166Ho (usually in a chitosan biodegradable complex form), 169Yb, 170Tm 

and 177Lu are often applied in oncological brachytherapy in various organs (Ha et al. 

2013; Krishnamurthy et al. 2011; Escala-Cornejo et al. 2018).  

   

   



   

Accumulating reports show that lanthanides may affect several aspects of 

neuronal physiology and brain function through  regulating the opening of ion 

channels, modulating synaptic transmission or potentially modifying cellular oxidative 

equilibrium. As lanthanide ions are able to cross the blood-brain barrier, the 

toxicological properties of these elements also merit attention. However, despite 

these potential drawbacks there are a number of recent suggestions that lanthanide 

oxides, in the form of nanoparticles, may have unique and clinically promising 

neuroprotective properties under conditions such as ischemic brain injury. We have 

therefore comprehensively reviewed the growing literature on lanthanides focusing 

on their role in neuronal physiology.  

   

2. Lanthanides as modulators of neuronal ion channel physiology  

   
   

Due to the aforementioned molecular analogy with calcium, lanthanide ions 

have been shown to affect the activity of some neuronal membrane channels, 

including ionotropic receptors in both the central and peripheral nervous system 

(Fig.2.). Indeed, numerous metal ions, including lanthanides may modify channel 

gating or block  ion currens (Elinder and Arhem 2003).  Because of its uniquely 

strong gating activity, La3+ is sometimes called a “supercalcium” (Brown et al. 1990) 

and the effects of lanthanides on voltage-gated ion channels including potassium 

and calcium have been previously reported in diverse cell types (Pałasz and Czekaj 

2000). Trivalent lanthanide cations directly block ion flow through neuronal voltage-

gated K+ channels (VGKC) with a potency that varies inversely with the ionic radius 

(Alshuaib et al. 2005, Enyeart 1998). However, the suppression of K+ flow by 

lanthanides seems to be regulated by an alternative mechanism to traditional 

channel pore occlusion. Lanthanides reduce K+ currents by altering voltage-

dependent gating and modifying ion interactions with Ca2+ unspecific binding sites 

(Watkins and Mathie 1994). A number of non-voltage-gated K+ channels are also 

blocked by La3+ and Gd3+ (Lesage and Lasdunski 2000; Patel and Honore 2001) and 

an inward rectifier K+ channel in rat corticotropes is in turn insensitive to La3+ 



(Kuryshev 1997). Lanthanides can interact with the Ca2+-binding sites of both T and L 

channels, while calcium-specific or nonspecific lanthanide-binding sites have been 

identified in the structure of some receptors e.g. glutamate mGluR, acetylcholine and 

insulin (Pałasz and Czekaj 2000). The blockade of low-voltage-activated T-type Ca2+ 

channels by lanthanides is caused by pore occlusion with a potency that varies 

inversely with ionic radius (Mlinar and Enyeart 1993); while  L-type Ca2+ channel 

inhibition directly correlates with the radius (Lansman 1990). La3+ may also enhance 

Na+ current (INa) of the voltage-gated sodium channel (VGSC) in isolated rat 

hippocampal CA1 neurons, thus shifting the activation curve to positive potential and 

decrease neuronal excitability (Du and Yang 2009). This effect was concentration 

and voltage-dependent and abolished by both La3+ elimination and wash out. One 

can therefore hypothesize, that the La3+ binding site is located extracellularly to the 

sodium channel. Of note, lanthanum may increase the INa activation even at very low 

micromolar concentrations span style="font-family:Arial; -aw-import:spaces"> (Du and 

Yang 2009).  

-aminobutyric acid (GABA) receptor-dependent pathways are believed to 

establish the main inhibitory system of the brain. La3+ affects GABAA and increases 

receptor affinity to the agonist through special domain binding at the chloride 

channel, distinct from that of picrotoxin, barbiturates, benzodiazepines, Cu2+ and Zn2+.. 

This mode of action was described in the pyramidal neurons of hippocampal CA1 

area where La3+ increases GABAA affinity to the ligand and potentiates GABA-

activated currents (Boldyreva 2005). Lanthanides with higher atomic numbers also 

have stimulatory effects, the potency of which increases with atomic number. For 

instance, a study on cultured rat dorsal root ganglion neurons has shown that Tb3+ 

prolongs the opening time of the GABAA chloride channel (Narahashi et al.1994, Ma 

and Narahashi 1993). An increased GABAA sensitivity and enhanced chloride current 

after La3+ administration is also reported for isolated cerebellar Purkyne cells 

(Kolbaev et al. 2002). It is therefore likely that Tb3+ binds to the allosteric active site of 

the GABAA receptor-ion channel complex, extending its mean opening time by 

increasing the affinity of GABA (Ma et al., 1994). Lanthanides potentiate the GABAA 

response and this effect may vary inversely to the radii of their hydrated ion hence 

the opening time of the channel and the amplitude of the lanthanide-induced voltage 

decreases with the atomic number as follows: Lu3+>Er3+>Tb3+>Eu3+>Nd3+>Ce3+> La3+ 



(Ma et al., 1993). Conversely, a voltage clamp study has shown no correlation 

between the size of the lanthanide ion and the magnitude of the GABAA current 

evoked by La3+, Ce3+, Nd3+, Gd3+, Tb3+, Er3+ and Yb3+ acting on the GABAA receptor of 

cholinergic neurons in rats (Kumamoto and Murata, 1996). Another study shows that 

GABAA-dependent chloride influx to cultured rat cerebellum granule cells was 

inhibited by La3+ (Barila et al. 2001). Lanthanum ions exhibited a potentiating 

influence on recombinant  and but conversely inhibitory modulation 

of and GABAA receptors (Im et al. 1992; Saxena et al. 1997). The 

antagonistic La3+ effect on native GABAA-Rs in mouse granule neurons is probably 

caused by its selective binding to subunit (Mäkelä et al. 1999). There are also 

reports that Gd3+ may inhibit the K+-Cl- co-transporter (KCC) function and increase 

intracellular chloride concentration in cultured rat spinal cord neurons. This Gd3+ 

action was abolished by furosemide, a blocker of both KCC and the Na+-K+-Cl- co-

transporter (NKCC), but not bumetanide, a specific NKCC inhibitor. It is noteworthy 

that Gd3+ did not block the muscimol-induced outward currents recorded by 

conventional whole-neuron patch-clamp technique. Hence, Gd3+ may affect the 

inhibitory action of brain GABA that is a consequence of relatively hyperpolarized, 

KCC-dependent chloride-equilibrium (ECl) potential (Ishibashi et al. 2009). Gd3+ may 

decrease the amplitude of proton activated currents in isolated Purkinje cells in a 

dose-dependent manner, with the intensity of blockade seeming to be independent 

from membrane potential. Interstingly, Gd3+-related inhibition of the activated receptor 

was faster and stronger in comparison to the inactivated one. Lanthanide ions may 

therefore modulate the inhibitory output from cerebellar cortex via regulation of 

GABA-ergic ganglion cell physiology (Sharonova et al. 2008).  

Beyond the modulation of GABA, both La3+ and Gd3+ act as potent blockers of 

the vanilloid-type heat-activated ion channels TRPV2 in cultured rat dorsal root 

ganglion neurons. This finding may help to introduce a new pharmacological tool to 

distinguish between heat signaling of TRPV2 and the similar capsaicin-receptor, 

TRPV1, which is strongly sensitized by lanthanides (Leffler et al. 2007). Of interest, 

Gd3+ strongly blocks stretch-sensitive ion channels (SACs) in the sarcolemma of 

skeletal muscle fibers (Coirault et al. 1999). Both Gd3+ and La3+ were also potent 

inhibitors of the lysoplasmenylcholine-induced current and equally delayed the onset 

of myocyte contractions in the rabbit heart, but surprisingly Gd3+ sensitive SACs were 



not blocked by this ion (Caldwell and Baumgarten 1998). A recent study reports that 

both Eu3+ and Sm3+ exhibit an agonistic affinity to both Ca2+-binding sites of the 

ryanodine receptor (RyR). Interestingly, the voltage-dependent properties of the 

aforementioned ion action suggests that the activating Ca2+ binding domain is located 

in the pore entrance of the RyR channel (Sárközi et al. 2017). Several key aspects of 

synaptic activity and plasticity are strictly controlled by cellular calcium homeostasis 

(Catterall et al., 2013; Maggio and Vlachos, 2014), therefore  some 

neuronal  mechanosensitive, Ca2+-related SACs e.g. Piezo-1 may also play, a so far 

understudied, role in brain function (Velasco-Estevez et al. 2018). Potentially, both 

SACs and transient receptor potential (TRP) channels  in various types of central 

and peripheral sensory neurons may be blocked by Gd3+ (Mueller-Tribbensee et al. 

2015). Among the mammalian transient receptor potential channels (TRPCs) with a 

Ca2+-permeable pore, only two isoforms TRPC4 and TRPC5 are potentiated by La3+ 

(Jun et al. 2003; Schaeffer 2002), others (TRPC 1-3, and 6-7) are in turn blocked by 

both La3+ and Gd3+ (Riccio et al. 2002; Inoue et al. 2001). Interestingly it has also 

been demonstrated that pretreatment with Gd3+ attenuated ischemia/reperfusion-

induced infarct size in rats by the blockage of stretch-activated calcium channels 

(Gulati et al., 2013). 

   

3. Lanthanide action in neurotransmitter release machinery and synaptic function  

   

Lanthanide ions have long been reported to influence synaptic physiology as well as 

mechanisms of neurotransmitter exocytosis in various types of neurons (Fig.2.). 

Almost 50 years ago Ricardo Miledi from University College London perceived that 

La3+ are able to block calcium-related neurotransmission (Miledi 1971). 

Cytophysiological effects of lanthanides result largely from the fact that the sizes of 

their ionic radii are comparable to that of Ca2+ enabling them to compete with calcium 

at various steps of the synaptic transmission process. It was initially reported that 

La3+, Gd3+ and Lu3+ at a concentration of 100 nM–100M can directly trigger the 

release of neurotransmitters (Vaccari et al., 1999) but La3+ blocks the Ca2+-dependent 

pathway of exocytosis (Przywara et al., 1992; Vaccari et al., 1999). Possibly, La3+ 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204357/#B9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204357/#B45


inhibits the binding of Ca2
+ to the synaptosome membrane, decreases the neural Ca2+ 

and Mg2+ ATPase activity (Basu et al. 1982). However, lanthanide ions cannot 

replace Na+ in its neuronal channels. Later studies indicated that fast triggering of 

SNARE-related neurotransmitter release by lanthanum is not dependent of La3+ influx 

into neurons (Chung et al. 2008). Potentially, La3+ activates an extracellular domain 

by binding to a presumable presynaptic receptor e.g. glutamate mGluR or 

nonselective calcium channels (Chung et al. 2008, Smith et al. 2004). Metabotropic 

GluRs possess binding sites for lanthanides (Abe et al. 2003), thus, the rapid effect 

of La3+ can be also mediated by intracellular Ca2+ release from endoplasmic stores. 

The most noteworthy feature of rapid La3+-triggered neurotransmitter exocytosis is a 

very strict dependence on synaptobrevin-2 (VAMP-2) presynaptic protein. In murine 

hippocampal cultured neurons, lack of synaptobrevin-2, but not synaptotagmin-1, 

silenced the rapid action of La3+ in the presynaptic terminal, however the delayed 

neurotransmitter release was still visible (Chung et al. 2008). This seems rather 

unexpected given other calcium-related neurotransmitter release cannot be fully 

blocked in synaptobrevin-2–deficient neurons. Probably, La3+ may act at an 

extracellular site to initiate rapid SNARE-dependent neurotransmission, whereas 

delayed exocytosis may be caused by slow La3+ influx into the neuron (Chung et al. 

2008). The multi-faceted activity of La3+ at the level of the presynaptic neurochemical 

machinery might be connected with neurotoxic effects occurring after long-term 

exposure to soluble lanthanum salts (Feng et al. 2006). On the other hand Gd3+ ions 

trigger calcium-independent neurotransmitter release in a dose-dependent manner 

and facilitate spontaneous release of the glutamate analogue [3H]D-aspartate. It 

may suggest that lanthanides induce a vesicular neurotransmitter exocytosis by the 

mechanisms common for all transitional metals (Lopatina et al. 2005), e.g. Gd3+ and 

La3+ trigger neurotransmitter release in rat brain synaptosomes. Interestingly the 

application of RGDS peptide, an inhibitor of integrins, significantly decreased Gd3+-

induced aspartate release with no effect upon hypertonicity-evoked fusion. 

Genistein, a selective blocker of tyrosine kinases; and citrate, an inhibitor of 

lanthanides-dependent aggregation, did not abolish the neurotransmitter exocytosis. 

It suggests that integrins contribute to the Gd3+-evoked aspartate release (Waseem et 

al. 2008). Interestingly, Eu3+ may inhibithe cellular uptake of norepinephrine acting as 

NERT blocker (Bryan-Lluka  and Bonish, 1997).  



Glutamate signaling plays a fundamental role in the neurochemistry of 

memory, cognitive tasks, attention, affective control and developmental 

synaptogenesis (Robbins and Murphy 2006; Deng et al. 2007). Recent findings 

prove that lanthanides may affect the NMDA receptor-related long-term potentiation 

(LTP) in the rat hippocampal CA1 neurons and damage spatial learning and 

memory. For instance, La3+ increased NMDA receptor NR1, NR2A and NR2B subunit 

expression that may impair cognitive and memory processes (Hu et al. 2018; Du et 

al. 2015). The expressions of glutamate/aspartate transporters (GLAST and GLT-1), 

glutamine syntethase (GS) and phosphate-activated glutaminase (PAG) were 

decreased. This NMDA receptor overactivation causes glutamate-induced 

excitotoxic neuronal injury and is usually connected with Ca2+ excess and apoptosis 

(Sun et al. 2018a).  

Furthermore, disturbed intracellular calcium balance may disintegrate 

mitochondrial physiology and eventually trigger apoptosis. Lanthanum-related 

neurotoxicity may also be due to modulation of NO-cGMP signaling mechanisms; 

La3+ ions increase both calcium and glutamate levels in the rat hippocampus. A 

dose-dependent increase of inducible nitric oxide synthase (iNOS) expression as 

well as elevated NO and cGMP levels were also observed (Du et al. 2015). La3+ and 

Gd3+ are also antagonists of AMPA and kainate glutamatergic receptors (KARs) in 

cultured rat hippocampal, cortical and dorsal root ganglion neurons, possibly due to 

their direct interaction with the ligand molecule rather than competitive antagonism or 

channel pore blockade (Hong et al. 2004, Huettner et al., 1998). Interestingly, AMPA 

receptors require around 20-times higher concentrations of lanthanide ions (100 

micromoles) for their half-maximal blockade than KARs. Gd3+ potently reduces AMPA 

receptor desensitization and exposes some properties of the positive modulators of 

AMPA-R activity (Lei and MacDonald 2001). La3+ may also distinctly reduce p-

IKKand p-IkB in the rat hippocampus that inhibit the NF-B signaling pathway. 

Because NF-B signaling appears to be involved in the process of memory 

consolidation (O’Sullivan et al. 2010), it should not be excluded that learning 

impairment observed in rats exposed to La3+ is due to inhibition of this regulatory 

system. Indeed, the highly decreased expression of c-Fos, c-jun and BDNF seems to 

support this hypothesis (Zheng et al. 2013). A La3+-dependent impairment of 

hippocampal memory processing may be also associated with a suppression of the 



ERK/MSK1 signaling system and presence of significant abnormalities in the 

synaptic ultrastructure e.g. non-uniform membrane curvature and flattened 

postsynaptic density (Liu et al. 2014). 

On the other hand, a recent report suggests that these cognitive disturbances 

may be additionally enhanced by neuronal autophagy process in  hippocampal 

neurons. Possibly, La3+  generates oxidative stress that activates JNK/c-Jun and 

JNK/FoxOs but supresses AKT/mTOR signaling pathways and eventually promotes 

the origin of autophagosomes (Gao et al. 2019). It should also be taken into account 

that La-dependent memory and learning deficits can be related to the inhibition of 

astrocyte-neuron lactate shuttling in the hippocampal neurons, caused mainly by the 

downregulation of astrocyte monocarboxylate transporter 1, 2 and 4 (MCT 1 2 and 4) 

expression and a decrease in lactate dehydrogenase (LDH) content and activity (Jin 

et al. 2017). A suppression of lactate turnover in astrocytes may therefore be 

considered as an alternative mechanism of the potentially neurotoxic action of La3+ in 

the brain (Sun et al. 2018b).  

   

   

4. Lanthanides and neuronal oxidative stress  

   

Oxidative stress is a complex and dynamic process of cellular deterioration, 

caused by an imbalance between the generation of reactive oxygen species (ROS) 

and the availability and action of superoxide scavengers or other antioxidant 

factors  (Du et al., 2009). It is well known that aerobic cells are susceptible to the 

effects of oxidative stress. However, the central nervous system is especially 

vulnerable to the action of ROS due to different causes and mechanisms, including: 

high consumption of oxygen to carry out physiological processes (about 20% of the 

bloodstream oxygen), high composition of polyunsaturated fatty acid and the 

selectivity of the blood-brain barrier which reduces the diffusion of some antioxidants 

such as vitamin E tocopherols (Schula et al., 2011). ROS levels in oxidative stress 

trigger processes of neurodegeneration and cell death, mainly affecting mechanisms 

of lipid peroxidation and structural damage to proteins and DNA (Markesbery et al., 

2007). In the last decade, oxidative stress has been associated with 



neurodegenerative diseases such as Azheimer's disease (Lovell and Markesbery, 

2007), Parkinson's disease (Nikam et al., 2009; Zhou et al., 2008) and amyotrophic 

lateral sclerosis (Chi et al., 2007); disorders of the autistic spectrum (Gónzalez-

Fraguela et al., 2013) and neuronal hyperexcitation (Cardenas-Rodriguez et al., 

2013).  

As mentioned above, lanthanides present different applications in agriculture, 

technological industry, pharmacology and biomedicine, due to the diversity of their 

physical, chemical and biological effects. However, the effects of their accumulation 

on the human body are still controversial, especially at the level of the central 

nervous system. In this regard, Zhao et al (2011) demonstrated that three 

lanthanides produced direct or indirect injury to the mouse brain. In this study, mice 

were injected with LaCl3, CeCl3 and NdCl3 in the abdominal cavity and monitored for 

migration, with the compounds detected in the forebrain, causing nervous tissue 

damage, oxidative stress and subsequently altering the normal metabolism of 

neurochemicals. La3+, Ce3+ and Nd3+ increased both ROS production and lipid 

peroxidation. Brain activities of the main endogenous antioxidant enzymes: 

superoxide dismutase (SOD), catalase, ascorbic acid and glutathione peroxidases 

(APx, GSH-Px) were in turn strongly reduced (Zhao et al. 2011, Fig.3.).  

Posterior studies (Yang et al. 2013) also found that in the hippocampus of rats 

exposed to LaCl3 a neuronal deterioration and increased level of apoptosis occurred. 

This was mainly due to an elevation in the glutamate and intracellular Ca2+ 

concentrations and in the ratio between proapoptotic Bax and antiapoptotic Bcl-2 

protein (Wu et al. 2013). La3+ may therefore affect the neuronal excitability, 

neurotransmitter turnover and metabolic pathways via oxidative stress and 

cholinergic signaling impairment. Of note, La3+ may increase ROS concentration and 

trigger apoptosis in neuroglia. It was found that La3+ downregulated Nrf2 gene 

expression and reduced the activity of SOD, dehydrogenase quinone 1 (NQO1), 

heme oxygenase-1 (HO-1), glutathione peroxidase 1 (GSH-Px1) and glutathione-s-

transferase (GST) in cultured rat astrocytes (Zhang et al. 2017). On the other hand, 

L-cysteine may be cautiously considered as a neuroprotective agent against chronic, 

potentially toxic exposure to soluble lanthanide compounds (Liapi et al. 2009).   

It was also found that intragastric administration of CeCl3 to mice significantly 

affected learning ability, due to an alteration in homeostasis of trace elements, 

enzymes and neurotransmitters in the brain (Zha et al. 2011). Cerium compounds 



are increasingly used in industry, including fertilizers and have been shown to enter 

the ecological environment and human body via food chains (Ni, 2002; Hu; et al.; 

2004; Kostova, 2005), It is therefore paramount to understand potential long-term 

neurotoxic effects. Another study by Zhe et al. (2013) reports that the exposure of 

CeCl3 in mice increases oxidative stress in the hippocampus, besides altering 154 

genes involved in multiple processes such as learning and memory, programmed 

neuron death, response to stress, immunity and inflammation. A study by Cheng et 

al. (2013) reports that long-term exposure to CeCl3 supports ROS production and 

triggers apoptosis in the mouse hippocampus. Ce3+ significantly increased the 

expression of apoptosis-related genes e.g. antagonizing transcription factor (TRB), 

ubiquitin-conjugating enzyme e2 (UBE2V1), cysteine-serine-rich nuclear protein1 

(AXUD1) and cell division 37 homolog (CDC37). The expression of several genes 

involved in the neurochemistry of memory and learning such as Fos, Adcy8 and 

Slc5a7 were in turn down-regulated. Indeed, a significant impairment of spatial 

recognition memory also occurred (Cheng et al. 2013). All mentioned genes are 

therefore considered as potential biomarkers of lanthanides neurotoxicity.  

Gadolinium, a lanthanide whose derivatives have been widely used as a 

contrast medium in magnetic resonance (Adding et al., 2006), has been shown to 

induce the generation of ROS in human liver cells (Liu et al., 2003). A study by Xia et 

al (2011) confirmed that the oxidative stress caused by this element triggers the 

stress of the endoplasmic reticulum in rat cortical neurons, causing neuronal death, 

mainly due to a significant increase in Ca2+ concentration. Gd3+ supports the ROS 

origin in neurons but the mechanism of their action is different from that of La3+ (Dong 

et al. 2009) and the greater studied more toxic ions e.g. Al3+ and Cd2+ (Toimela and 

Tähti 2004; Niu et al. 2005). Furthermore, Gd3+ does not bind to thiol groups and has 

no significant redox activity. It is likely, that Gd3+ may affect the endoplasmic 

reticulum IRE1-XBP1, PERK and ATF6 pathways, increase GRP78 expression that 

finally induces an unfolded protein response (UPR) signaling route. These molecular 

events activate CCAAT/enhancer binding protein homologous protein (CHOP or 

Gadd153) and trigger apoptosis (Xia et al.2011). Interestingly, the N-acetylcysteine 

application may eliminate oxidative neurotoxic effects of Gd3+.  

On the other hand, new drugs containing lanthanide ions have appeared in 

the pharmaceutical industry in recent years, based on the similarity of their biological 

properties with calcium. It has been observed that lanthanides can act as 



antioxidants or pro-oxidants, depending on the environment, nature of binding and 

tissue concentration. Their strong affinity to reactive oxygen species intervenes in 

the elimination of free radicals, producing non-toxic compounds and exerting 

antioxidants in vivo. However, this property is in turn responsible for the competitive 

binding of lanthanides to proteins, altering several biologically relevant electron 

transfer pathways and finally resulting in toxicity (Valcheva-Traykova et al., 2014). 

More research is therefore needed for their application in the field of medicine, since 

its use requires a positive balance between antioxidant activity and toxic effects.  

   

   

   

   

   

   

5. Neuroprotective properties of lanthanide oxides nanoparticles  

   

One of the most intriguing properties of lanthanides is their neuroprotective effect 

– ability to protect different cells from various forms of dangerous oxidative and 

nitrosative stress present in pathological conditions by its modulation (Fig.4.). 

Conventional antioxidants that are currently available scavenge a single free radical 

before they are destroyed in the process, so there is a pressing need to find novel 

targets with therapeutic potential. Most researchers have focused on neuroprotective 

and pharmaceutical properties of cerium oxide (CeO2) nanoparticles (CeNPs), also 

known as nanoceria, which are widely used as inorganic catalysts in industrial 

material applications, because of their potent free radical-scavenging properties via 

dual oxidation state (Rzigalinski et al., 2017). Nanoceria are able to either donate or 

receive electrons as they alternate between the +3 and +4 valence states and their 

catalytic activities mimic those of the neuroprotective enzymes superoxide dismutase 

and catalase.  

A breakthrough study was published by Schubert et al. (2006), where 

nanoparticles composed of cerium oxide or yttrium oxide were seen to protect nerve 

cells from oxidative stress, with neuroprotection independent of particle size. The 



researchers established that both types of lanthanide nanoparticles act as direct 

inorganic antioxidants to limit the amount of reactive oxygen species required to kill 

cells. Two years later it was experimentally proven that the application of a single 

dose of nanoceria at a nanomolar concentration is biocompatible, regenerative and 

provides a significant neuroprotective effect on adult rat spinal cord neurons (Das et 

al., 2008). The possibility of nanoceria application to prevent ischemic insult was also 

suggested from an oxidative injury assay. Estevez et al. (2011) took up this research 

problem and have explored the use of nanoceria as a potential therapeutic agent for 

stroke using animal model of cerebral ischemia. They found that ceria nanoparticles 

reduce ischemic cell death by approximately 50%. This effect was caused by 

reduction of superoxide (O(2)(•-)) and nitric oxide concentrations, decrease of the 

ischemia-induced 3-nitrotyrosine levels and a modification of tyrosine residues in 

proteins affected by the peroxynitrite radicals, which are crucial in the dissemination 

of oxidative injury in biological tissues.  

Nanoceria's efficacy in neutralizing biologically generated free radicals has been 

tested also by the Heckman et al. (2013). They report the in vivo characteristics of 

CeNPs, with ∼4.0 h half-life, in an animal model of immunological and free-radical 

mediated oxidative injury leading to neurodegenerative disease (mice with a murine 

model of multiple sclerosis). The administered intravenously CeNPs were well 

tolerated, able to penetrate the brain, reduce reactive oxygen species levels, and 

alleviate clinical symptoms and motor deficits. Ciofani et al. (2013, 2014) have 

published two articles based on their studies on the PC12 cell line that represents a 

valuable model for many features of central dopaminergic neurons. As it was 

expected nanoceria confirmed a potent anti-reactive oxygen species action but, 

interestingly, also showed beneficial effects on both neuron-like cell differentiation 

and dopamine production. Experimental evidences at a gene level reveal that 

CeNPs modulate transcription of genes involved in natural cell defenses, down-

regulate genes involved in inflammatory processes, and up-regulate some genes 

involved in neuroprotection. Nanoceria may also be potentially helpful in the 

treatment of Alzheimer's disease, because its well known that nitrosative stress 

caused by peroxynitrite and mitochondrial dysfunction participate in the 

pathogenesis of this disorder. Application of CeNPs reduces levels of reactive 

nitrogen species, protein tyrosine nitration Aβ-induced mitochondrial fragmentation 

and neuronal cell death after exposure to peroxynitrite (Dowding et al., 2014). 



Additionally it was presented that nanoceria are internalized by perikarya and 

accumulate at the mitochondrial outer membrane and plasma membrane. 

Assessment of the CeNPs axonal translocation conducted on the frog sciatic nerve 

fibers in an ex vivo preparation have demonstrated, that CeO2 nanoparticles 

translocate within the nerve (Kastrinaki et al., 2015). This movement depends on 

both axonal integrity and electrical activity and its speed is similar to the slow axonal 

transport rate.  

Recently more attention has been focused on the role of microglia in 

neuropathological processes. The ability of CeNPs to mitigate neurodegeneration by 

microglial activation and related inflammatory processes has been studied via 

exposure of rats to high intensity light (Fiorani et al.2015). Nanoceria maintained 

retinal visual response after light-induced damage and reduced neuronal death and 

"hot spot" extension preserving outer nuclear layer morphology. There was also 

recently reported that a single administration of nanoceria into the vitreous body 

exerted long-term neuroprotective effects on rat retina (Tisi et al. 2019).  These 

findings support the hypothesisthat CeNPs may be potent therapeutic agents in 

retinal neurodegenerative events and correlate with a previously published study 

(Kong et al.2011) reporting that in the mutant mouse, which exhibits progressive 

cochlear and retinal degeneration, nanoceria protect the retina by decreasing 

reactive oxygen species, up-regulating of the neuroprotection-associated gene 

expression, down-regulating apoptotic signaling and/or enhancing survival pathways. 

Another example of usefulness and potential of CeNPs for mitigating 

neuropathological effects and modifying the course of recovery after injury is a study 

by Bailey et al. (2016). It was shown that nanoceria reduce neuronal death and 

calcium dysregulation after in vitro trauma, preserve endogenous antioxidant 

systems and decrease macromolecular free radical damage. Furthermore, it 

improves cognitive function in the rat model of mild lateral fluid percussion brain 

injury which generally is associated with oxidative stress, mitochondrial dysfunction 

and poor functional outcome. A neuroprotective and antioxidant role for CeNPs was 

well documented by Ranjbar et al. (2018) using the paraquat-induced model of 

oxidative stress in male rats. CeNPs in groups co-administered with paraquat 

significantly ameliorated lipid peroxidation, DNA damage, and caspase-3 levels while 

increasing antioxidant capacity and total thiol molecule contents as well as 

enhancing nestin and Neurod1 mRNA levels in the brain. According to the current 



state of neurobiological knowledge, one of the possible directions of lanthanide 

therapeutic action is the modulation of neurogenesis. Using polyethylene glycol-

coated CeNPs, Arya et al. (2016) have evaluated the neuroprotective, as well as the 

cognition-enhancing activities, of nanoceria during hypobaric hypoxia via relation 

with generation of reactive nitrogen and oxygen species. A presence of CeNPs in the 

rodent brain resulted in significant reduction of oxidative stress and associated 

hypoxia-related injury. Moreover, nanoceria ameliorated hypoxia-induced memory 

impairment and stimulated neuronal survival and neurogenesis in the hippocampus.  

The most recently published research concerned the anti-inflammatory 

properties of nanoceria (Hekmatimoghaddam et al., 2019). This study, based on the 

brain neuroinflammation model induced by both proteolipid protein and parathion, 

showed that the expression of interleukins (IL-6, 10 and 17) genes and their serum 

levels were significantly decreased after administration of gelatin hydrogel containing 

cerium oxide nanoparticles coated with interleukin-17. Collectively, the above studies 

suggest that nanoceria should be considered as very promising therapeutic agent, 

especially in the treatment of ischemic brain injuries and neurodegenerative 

diseases.  However, there are still many concerns related to the pharmacological 

effects of CeNPs and further studies are needed to confirm their potential clinical 

usefulness.  

   
   

6. Concluding remarks  

   
The era when a few specialized scientists were exposed with lanthanide 

compounds are definitely over. Nowadays, due to the dynamic development of 

electronic technologies and modern medical diagnostics, almost everyone may be 

exposed to lanthanide-containing substances. Screen luminophors, strong magnets, 

computer memories, MRI contrast agents and even flints for lighters are everyday 

sources of these elements. The risk of potential penetration of lanthanides into the 

human body including the central nervous system is therefore significantly increased. 

It is likely that lanthanide ions uniquely modulate several important neurochemical 

processes, thus altering functions in both neurons and glial cells. The majority of 

cytophysiological and potentially toxic effects of lanthanides observed at the level of 

neuronal ion channels, receptor molecules and synaptic machinery result largely 



from the fact that the sizes of their ionic radii are similar to that of calcium. Some 

lanthanide ions are frequently applied in basic pharmacological studies as selective 

blockers of ionotropic receptors. Lanthanides are also considered to impair 

mitochondrial functions and SER functions and initiate the oxidative injuries of the 

nervous tissue. On the other hand, cerium and yttrium oxides in the form of 

nanoparticles seems to be  very promising neuroprotective agents after ischemic 

brain injury in preclinical studies. Given, that all the aforementioned intriguing 

mechanisms of lanthanide effects on neuronal and glial biochemistry are still poorly 

understood, this field  requires urgent further focus.  
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Fig.1. An outline of chemical characteristics of the lanthanides, scandium and 

yttrium.  

   

Fig.2.A collective scheme of the main effects of lanthanides on synaptic transmission 

and neuronal physiology. An expression of several neuronal receptors, membrane 

transporters, regulatory proteins and their genes as well as activity of some enzymes 

can be modulated by lanthanide ions. Lanthanum, the best surveyed member of the 

rare-earths family may facilitate the neurotransmitter release via activation of 

synaptobrevin-2 molecule Lanthanum  may also stimulate the GABAA receptor to 

open chloride channel and cause postsynaptic hyperpolarization. Additionally it is 

able to affect the voltage-gated potassium and sodium channels (VGSC, VGKC), 

AChE activity and to trigger the neural apoptosis through the stimulation of Bax and 

inhibition of Bcl-2 expressions. Cerium increases the expression of apoptosis-related 

genes e.g. antagonizing transcription factor (TRB), ubiquitin-conjugating enzyme e2 

(UBE2V1), cysteine-serine-rich nuclear protein1 (AXUD1) and cell division 37 

homolog (CDC37); while suppressing several genes involved in the neurochemistry 

of memory and learning e.g. Fos, Adcy8 and Slc5a7.Abbreviations: 

AChE;acetylocholinoesterase, AMPA; α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid glutamate receptor, Axud1; cysteine-serine-rich nuclear 

protein1, Adcy8;calcium-stimulated adenylyl cyclase, Cdd37; cell division 37 

homologue, Fos; proto-oncogene AP-1 transcription factor subunit, G; protein G, 

GLAST;glutamateaspartate transporter GS; glutamine syntethase, KAR; kainate 

glutamatergic receptor, mGluR; metabotropic glutamate receptor, NERT; 

norepinephrine transporter, NMDA; N-methyl-D-aspartate glutamatergic receptor, 

PAG; phosphate activated glutaminase, Slc5a7; solute carrier family 5 member 7 

gene, SNARE; soluble NSF attachment protein, TRPVs; vanilloid-type heat-activated 

ion channels,Ube2v1; ubiquitin-conjugating enzyme e2, VGKC; voltage gated 

potassium channel, VGSC; voltage gated sodium channels.  

   

Fig.3. Mechanism of lanthanides-induced oxidative injury in neurons and astrocytes. 

Lanthanum promotes both ROS production and lipid peroxidation in neurons and 

astrocytes and decreases activities of key endogenous antioxidant enzymes: 

superoxide dismutase (SOD), catalase, ascorbic acid and glutathione peroxidases 

(APx, GSH-Px). Gadolinium with a minimal redox activity does not bind to thiol 

groups but affects the endoplasmic reticulum IRE1-XBP1, PERK and ATF6 

pathways, increasing GRP78 expression that finally trigger unfolded protein 

response (UPR) signaling pathways via the CCAAT/enhancer binding protein 

homologous protein (CHOP or Gadd153) activation apoptosis is triggered. 

Abbreviations: CHOP; CCAAT/enhancer binding protein homologous protein, GST; 



glutathione-S-transferase, -GCS; -glutamine cysteine synthase, HO-1; 

hemeoxygenase1, NAC; N-acetylcysteine, NQO1; dehydrogenase quinone 1, 

Nrf2/ARE;nuclear factor erythroid-derived 2-like 2 antioxidant response, 

TBHQ;tertbuthyl-hydroquinone, UPR; unfolded protein responses.  

   

Fig.4.  Neuroprotective effects of lanthanide compounds.  

   

  

 
   

 

 

 

 

 

 

 



 

 

 

 

 

 



 

 



   

   

 


