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Abstract 

Car-sharing systems allow registered users to use cars spread throughout an urban area: 

vehicles are at their disposal anytime they need one against some amount of money per minute 

rental. The customer avoids some issues linked to the ownership of a car such as insurance 

fees, maintenance or parking. Such a system is beneficial for the society in terms of 

environmental, energetic impacts and congestion. It completes the urban transportation 

service by allying the efficiency of public transportation and the flexibility of owning a 

vehicle. Car-sharing systems can be classified in different families depending on the rental 

conditions. For instance, free-floating systems allow people to park the vehicles anywhere in 

city area whereas non-free floating impose to users to park them inside stations with limited 

number of allowed spots. In this last family, another differentiating feature is the “one-

way/two-way” characteristic: two-way systems force the user to return the car to the location 

where it was picked-up whereas one-way systems allow drop-off at any station.  

We focus in this research mainly on non-free-floating one-way electric systems. The system 

operations naturally induce imbalances in the distribution of vehicles that need to be corrected 

by performing relocations. Our aim is to model and simulate those operations to first analyze 

the way the system evolves with time and then to test different management policies for 

operations and especially relocations in order to both maximize customers’ satisfaction and 

make the operation of the system sustainable for the operator. 
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Car-sharing, relocation, one-way system, electric vehicles, event-based simulation, 

optimization 



3 

Introduction  

 

Car-sharing systems have been implemented in various cities all over the world [1]. Their aim is 

to propose a new mobility alternative to people in urban areas who might need a car sometimes 

but do not own any due to different reasons (e.g. costs linked to ownership of a car, availability 

of parking space). It has social benefits such as reducing the number of vehicles in a network as 

well as pollution and congestion [2, 3]. 

 

Different type of systems have been implemented depending on the customers’ expectations, 

operators’ constraints and municipalities. The system explored in this paper can be described as 

a non-floating one-way electric car-sharing system. In such a system, operation conditions are 

the following: 

 

i. Non-floating: vehicles can be picked-up and dropped-off only at specific locations called 

stations.  

ii. One-way system: vehicles can be returned at a different station than the one from which 

they were picked-up. In a two-way system, any vehicle has to be returned to the station 

where it was picked-up. 

iii. Electric: vehicles have limited trip range. Their availability to the customer is based on 

their charging level. 

 

These conditions introduce constraints for the operator and impacts the availability of vehicles at 

different stations. Some other constraints can be added in order to improve customers’ satisfaction 

such as the ability of booking in advance a vehicle and reserve a parking spot at the destination. 

This creates a need for relocation and rental policies to make the system operate in a sustainable 

way for the operator and in a satisfactory way for the customer. In order to design and test these 

policies, an event-based simulator was developed. Different optimization algorithms are 

embedded as different modules to improve system characteristics for the users and the operator. 

 

Simulator framework  

 

The simulator is composed of different components such as Stations, Spots, Vehicles and 

relocation Personnel. Other classes describe actions and movements of personnel and vehicles 

such as Demand (customer’s demand for a vehicle), Trip (displacement of a vehicle due to a 

demand accepted by the system) and Relocation (movement of vehicles performed by personnel 

to redistribute vehicles). 

The creations and modification of the states of these components are ruled by events happening 

with time. A rental request, the beginning/end of a rental/relocation, a personnel’s shift end 

constitute such events. Other events can also be designed to retrieve information from the 

system and store them in other files: this is for instance the case for the calculation of statistics 

to evaluate how the system performs.  

 

Evolution of time in the simulator is modeled through an EventList where events are sorted by 

their time of realization: whenever an event is realized, the first element of the list is retrieved 
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and the simulator time actualized to the retrieved event’s realization time. This EventList is 

filled before the beginning of the simulation with rental requests and any event we wish to see 

happen and is continuously refilled during the simulation since the happening of an event 

triggers generally the creation of a new one. Simulation is stopped either when the EventList is 

empty or at a predetermined time. 

 

 
Figure 1: Simplified structure of events in the simulator and their links to one another  

 

Simulating the operation of a one-way non-floating electric car-sharing system 

 

The operation of the system was simulated for 10 days and for different daily demand levels: 50 

/ 100 / 200 demands per day. Data consist of real demand from a two-way car system currently 

operating in the city of Nice. A technique based on the frequency of stops was utilized to 

transform the two-way to one-way demand [4]. Origin-Destination demand, location of stations 
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and travel times between stations were estimated from real data. No reservation of the vehicles 

was considered: a request was served only if a vehicle was immediately available in a close range. 

The system was also partially free-floating, namely, if no spot was available at drop-off station, 

the vehicle could be parked on the road nearby in a close range (it would be stored into extra spots 

in the simulation). For each demand level, several one-way demand seeds were generated. 

 

The following policies were applied: 

 

i. Battery threshold to allow picking of a vehicle: 20% / 50% 

ii. Resetting vehicle distribution, i.e. perform relocations each night to return the system 

to its initial distribution state every morning. This mimics the effect of relocating 

vehicles and allows us to evaluate the effect of a relocation policy. 

iii. Number and distribution of vehicles in the system 

 

Our analysis showed that battery threshold does not have any impact at the demand levels studied 

on any of the observed system parameters. On the contrary, resetting or increasing the number of 

vehicles in the system increases the rental acceptance and reduces the spatial dispersion of 

vehicles among stations. A table and graphs for different settings are presented. Initial 

configuration 1 (IC1) refers to the initial configuration of vehicles with one vehicle per station 

(60 vehicles in total) and each station has three spots available for parking. Initial configuration 

2 (IC2) means there is one vehicle at each station plus one vehicle more in the 10 stations with 

the highest demand according to the historical data. In those, four spots instead of three are 

available for parking. Demand is 50 rentals per day for the graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Rental acceptance ratio depending on demand level and management policies 

 

To read the following graphs properly, it should be noted that each station has two states: 

 

 an O state that counts the number of vehicles in the spots of the station.  

O1 means there is one vehicle in a station’s spots. 

 

 an E state that counts the number of vehicles dropped-off at a station and parked outside 

(i.e in an extra-spot). E2 means there are two vehicles at station which are not in the spots. 

Demand/day 50 100 200 

No resetting + IC1 73% 68% 62% 

No resetting +  IC2 86% 83% 75% 

Resetting +  IC1 88% 86% 79% 

Resetting +  IC2 97% 96% 92% 
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The larger the number of E states different than E0, the furthest from the initial state the system 

is. Spatial dispersion of vehicles among stations increases with the number of E states observed.  

Besides, statistics were taken each hour from 6 a.m. to 12 p.m. Each bar in the histogram 

corresponds to station states distribution at one of these discrete points. 

 

 
Figure 2: Evolution of station states with respect to time (No resetting and IC1) 

 

Figure 3: Evolution of station states with respect to time (With resetting and IC1) 
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Figure 4: Evolution of station states with respect to time (No resetting and IC2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Evolution of station states with respect to time (Resetting and IC2) 

 

 

Thanks to resetting, many less high E-states are observed. When no resetting is performed, there 

is an accumulation of vehicles in some specific stations over time which leads to an imbalance in 

vehicles distribution. In terms of stations with no vehicles available, the number is on the contrary 

quite constant in time after the initial first days’ increase. 
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Vehicles activity distribution is also to be observed in order to evaluate the level of use of the 

system. Due to the fact that the system is partially free-floating and to charging level threshold 

conditions for allowing rental of a vehicle, some vehicles may be lost to the system because they 

would be undercharged in an extra-spot: this results in a loss of capacity for the system. The 

following graph presents the number of vehicles in each state at every time statistics were 

calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Number of vehicles per state with respect to time  

(100 demands per day, IC1 and no resetting) 
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oc.e  Occupied in 1-way spot (reserved for demand to be served) 

serv  Vehicle is rented and not present in any station 

N
u

m
b

e
r 

o
f 

v
e
h

ic
le

s
 

Time 



9 

The total number of available vehicles in extra spots increases with time. This highlights the need 

for relocation and/or pricing policies that either penalizes cases of vehicles parked outside a 

station or provide bonuses for users that pick up these vehicles at the start of the trip. Number of 

vehicles under service is not constant but almost always less than 10 which means there is only a 

smaller number of vehicles performing service. 

Number of dead vehicles remains low: this small loss of capacity in the system is not problematic 

and can easily be corrected by relocating the specific vehicles to nearby one-way spots. 

The same kind of patterns are observed for any level of demand between 50/100/200 requests and 

for any seed at each of these levels even though whenever a vehicle is needed, priority is given to 

vehicles outside the station that still have a high enough level of charge. 

 

Other statistics are interesting in this study: they concern the number of rejections per station. 

Demand is not equally distributed over the stations. It is bigger in the stations located in Nice and 

especially in the city center where most people are travelling. The goal of the operator is to serve 

as much demand as possible: reasons for rejecting a demand must be analyzed and understood in 

order to improve the service of the customer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Demand rejections per station during 10 days simulation 

 (100 demands per day, IC1 and no resetting) 

 

Figure 7 shows the 20 stations where rejections occur more frequently. Station 1 rejects by far 

much more demand than any other station, because of lack of available vehicles (station as origin). 

In the case of totally non-free-floating system, demand can also be rejected due to lack of 

available spot (station as a destination). Stations 2, 13 and 27 also reject much demand as they 

belong to the top 10 stations with the highest demand. With this analysis, we can define strategies 

at a local level for stations, which face the higher demand, to serve or reject a request because no 

vehicles are available.  
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On-going work: designing relocation policies    

 

Simulations showed that relocation had a significantly good impact on demand acceptance (as 

shown also in [5]) and the goal of our future work is to further investigate this feature. As a matter 

of fact, resetting the system to initial configuration is not fully equivalent to relocating since it 

does not take into account the time needed to perform these relocations for the personnel available 

and does not define from which station to which other the relocation shall be done.  

 

In order to address this matter, a mathematical optimization framework is under development. It 

solves sequentially the problem of defining relocations to perform and when (previous works in 

optimizing relocations have already been partially explored [6]). As a first step, it defines a wished 

distribution of vehicles for the system according to rental and vehicle-spreading constraints over 

the network: these constraints shall take into account the specificities of each station in terms of 

demand and rejection thanks to the analysis made with figure 7.  In a second step, the problem of 

choosing the relocations to do is addressed given the actual vehicle distribution and the previously 

defined wished (ideal) vehicles distribution; stations with too many vehicles are matched with 

those who have too few with an objective to minimize the total distance travelled. Given the 

output of this second step, the optimal relocations’ set is then assigned to the personnel available 

in a third step. It is either done by minimizing the maximum time spent by any personnel to 

perform the assigned relocations or by maximizing the number of relocations realized in a given 

amount of time depending on the way the operator of the system wants to handle relocations.  

 

Dividing the global problem in different steps will allow us to reduce the time needed to compute 

the solution but will not always give us the optimal solution. These different steps can also be 

combined in order to obtain an overall better solution if computational time does not increase too 

much. Various combinations of these steps will be investigated in a mixed integer linear 

programming formulation that will be presented in the full paper.  

 

This optimization framework shall be tested and solved on different datasets and under different 

optimality gaps and computational constraints. It will be included in the simulation framework 

afterwards and linked to the other simulator’s modules. Different policies not yet defined will 

then be tested on various scenarios in order to achieve optimal operation of the system and 

propose an accurate description of how such a car-sharing system could work in the best way. 
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