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Abstract

Commercial quantum annealers from D-Wave Systems make it possible to obtain approx-
imate solutions of high quality for certain NP-hard problems in nearly constant time. Before
solving a problem on D-Wave, several preprocessing methods can be applied, one of them being
the so-called spin reversal or gauge transform. The spin reversal transform flips the sign of
selected variables and coefficients of the Ising or QUBO (quadratic unconstrained binary opti-
mization) representation of the problem that D-Wave minimizes. The spin reversal transform
leaves the ground state of the Ising model invariant, but can average out the biases induced
through analog and systematic errors on the device, thus improving the quality of the solution
that D-Wave returns. This work investigates the effectiveness of the spin reversal transform for
D-Wave 2000Q. We consider two important NP-hard problems, the Maximum Clique and the
Minimum Vertex Cover problems, and show on a variety of input problem graphs that using the
spin reversal transform can yield substantial improvements in solution quality. In contrast to
the native spin reversal built into D-Wave, we consider more general ways to reverse individual
spins and we investigate the dependence on the problem type, on the spin reversal probability,
and possible advantages of carrying out reversals on the qubit instead of the chain level. Most
importantly, for a given individual problem, we use our findings to optimize the spin reversal
transform using a genetic optimization algorithm.

1 Introduction

Commercial quantum computers from D-Wave Systems Inc. D-Wave Systems (2000) are designed
to approximately solve NP-hard optimization problems that can be expressed as the minimization
of a QUBO (quadratic unconstrained binary optimization) or an Ising problem, given by

H(x1, . . . , xn) =

n∑
i=1

aixi +
∑
i<j

aijxixj , (1)

using a process called quantum annealing. In (1), the coefficients ai ∈ R are the linear weights, and
aij ∈ R are the quadratic couplers defining the problem for i, j ∈ {1, . . . , n}. If xi ∈ {0, 1}, (1) is
called a QUBO problem. If xi ∈ {−1,+1}, (1) is called an Ising problem. Both the QUBO and
Ising formulations are equivalent Djidjev et al. (2016). Many important NP-hard problems can be
expressed as the minimization of a quadratic function of the form (1), see Lucas (2014). We denote
the number of variables in the Ising model as n throughout the remainder of the article.

When submitting a problem of the form (1) to the D-Wave annealer, it is preprocessed in two
ways. First, the qubits are arranged on the quantum annealer in a particular graph structure,
called the Chimera graph, consisting of a lattice of bipartite cells on the physical chip Chapuis
et al. (2017). However, the connectivity structure of a QUBO or Ising model, that is its nonzero
couplers in (1), does not necessarily match the Chimera graph. In order to alleviate this issue, a
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minor embedding of the QUBO or Ising connectivity to the Chimera graph can be computed. In
such an embedding, several physical qubits are identified to act as one logical qubit in (1), often
severely limiting the number of available qubits. The set of physical qubits on the chip representing
a logical qubit (problem variable) is called a chain. Second, although ai, aij ∈ R can be arbitrary,
they are rescaled to ai ∈ [−2, 2] and aij ∈ [−1, 1] and subsequently converted to analog currents on
the chip using an 8-bit digital-to-analog converter.

During the annealing, leakage on the physical chip from the coupler aij (i, j ∈ {1, . . . , n}) can
alter the linear weights ai and aj Systems (2019). This effect is reported to be often more serious
for chained qubits. Moreover, during the process of digital-to-analog conversion, the linear weights
ai will not be perfectly mapped to currents on the chip, and thus biased to the above or below.

The so-called spin reversal or gauge transform is a simple way to alleviate this issue for Ising
problems. The spin reversal is based on the observation that, although theoretically quantum
annealing is invariant under a gauge transformation, the calibration of the D-Wave device is not
perfect and breaks the gauge symmetry. This implies that, indeed, spin reversed Ising systems
realize slightly different systems on the annealer, yielding different results which can be averaged.
To apply the spin reversal, we flip the sign of an arbitrary number of variables and coefficients
of the Ising problem, thus resulting in a reinterpretation of an up as a down spin and vice versa.
This leaves the ground state of (1) invariant, but has the potential to reduce analog and systematic
errors on the device as described earlier (by averaging them out), thus improving the quality of the
solution.

In particular, to transform the qubit xi from −1 to +1, we define a new function H ′ with
a′i → −ai as well as a′ij → −aij and a′ji → −aji for all j ∈ {1, . . . , n}. We observe that the
ground state energies of H and H ′ are identical, and that the minimum of H ′ is the minimum of
H with the i-th variable having a flipped sign. As reported in Systems (2019), reversing too few
spins leaves the Ising model almost unchanged, whereas applying the spin reversal transform to too
many qubits likely results in many pairs of connected qubits being transformed, thus effectively
leaving the corresponding quadratic couplers unchanged. In both cases, the spin reversal transform
might only have little effect.

It is important to note that the spin reversal transform can be applied on two different levels:
After embedding the Ising model to be solved onto the D-Wave architecture, the actual embedded
problem that D-Wave solves is read and the spin reversal is applied to any qubit independently –
this is referred to in the remainder of the article as spin reversal on the qubit level. Second, we can
apply the spin reversal in such a way that the physical qubits in a chain (representing one logical
qubit) are all either spin reversed or all left unchanged – we refer to this technique in the remainder
of the article as spin reversal on the chain level.

The SAPI interface of D-Wave allows us to apply a built-in (simple) form of the spin reversal
transform. It is controlled through the parameter num spin reversal transforms (= Ns) in the
function solve ising. In connection with the parameter num reads (= Nr) which specifies the total
number of anneal readouts, D-Wave will generate Ns spin reversed Ising problems and obtain Nr/Ns

readouts for each. The spin reserved Ising models are obtained by flipping each qubit independently
with probability 0.5.

In this work, we aim to assess the effectiveness of the spin reversal transform in a more general
way. The main contribution of this article is twofold. First, we evaluate the performance of the spin
reversal transform: In particular, we apply it to both the raw Ising formulation and the embedded
problem. We are furthermore interested in its performance as a function of the probability of
flipping a single qubit. Lastly, we assess its performance on two different NP-hard graph problems,
the Maximum Clique problem and the Minimum Vertex Cover problem, see Lucas (2014), which
will be introduced later.
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Second, we aim to use our findings to optimize the spin reversal transform in practice. For this
we employ a genetic optimization algorithm which, for a given problem instance given as an Ising
model, finds the set of qubits on which the spin reversal transform is most effective. For this we
consider a separate binary indicator for each qubit (reversed or not reversed), and optimize over
all n indicators to find the best configuration.

In this article, we provide a rigorous assessment of the effectiveness of the spin reversal trans-
form, which to the best of our knowledge has not been presented in the literature previously.
Existing work published in the literature does employ spin reversals, yet only as a tool to possibly
enhance solutions, and only using the in-built D-Wave implementation. In King et al. (2015) the
authors define a new metric, the time-to-target metric, as the time needed by classical solvers to
match the results of a quantum annealer: for their experiments, the authors employ D-Wave’s
native gauge transform, but it is left unclear what the contribution of the transform to the solution
quality is. In Pudenz (2016), the author primarily evaluates several techniques to allocate weights
to chains of qubits, as well as two ways of determining the final value of a chain. The effect of
four spin reversals is also considered briefly, however no further statement is made on the spin
reversal transform apart from the fact that it shows a slight performance gain on certain systems.
In King and McGeoch (2014), the authors conclude that gauge transformations are more effective
on difficult problems. However, in Boixo et al. (2014), the authors demonstrate that significant
correlations exist between different gauge transforms.

The article is structured as follows. Section 2 describes the spin reversal transform in detail,
and presents a genetic algorithm to attempt to solve the optimization over all possible spin reversal
transformations. Section 3 presents simulation results for the Erdős-Rényi graph family, both as
a function of the input graph density as well as of the probability of the spin reversal transform,
and for two NP-hard graph problems. We also present results highlighting the dependence of
the genetic optimization algorithm on its parameters, and show how the effectiveness of the spin
reversal transform can be considerably increased in comparison to the D-Wave transformation over
the course of only a few ’genetic’ generations. The article concludes with a discussion in Section 4.

2 The Gauge Transform

This section describes the setup we employ to apply the spin reversal transform.

2.1 Spin reversal on the qubit level

Given an input Ising model of type (1), we embed it onto the D-Wave Chimera graph first.
Before starting the annealing process, however, we read the embedded Ising model from the

D-Wave connectivity graph. The embedded problem typically consists of more variables, precisely
the physical chain qubits representing the logical qubits.

Given the embedded Ising model on the D-Wave chip with n qubits, we can reverse spins in
the following way. Select a set I ⊆ {1, . . . , n} of qubit indices to be switched. In our experiments,
we will generate the set I by adding each index in {1, . . . , n} to it independently with a given
probability ps.

We then sequentially select one i ∈ I at a time, and set a′i := −ai. Furthermore, we set
a′ij := −aij and aji := −aji for all j ∈ {1, . . . , n}. After having applied this procedure for all i ∈ I,
we use the new sets of linear weights {a′i} and quadratic couplers {a′ij} to form a new Ising problem
H ′.

The new H ′ is then embedded onto the D-Wave chip (instead of the originally embedded
problem) and solved.
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Algorithm 1: Genetic algorithm for spin reversal tuning

input : H, N , pspin, pmat pmut, R, Na;
output: final population of spin reversal vectors;

1 n← number of variables in H;

2 S ← {s1, . . . , sN : si ∈ Bpspin
n };

3 repeat R times
4 for s ∈ S do
5 H ′ ← reverse spins s in H;
6 Request Na anneals for H ′ on D-Wave and store minimal energy among those in es;

7 end
8 E ← {es : s ∈ S};
9 E0 ← proportion pmat of lowest energies in E;

10 S0 ← {s ∈ S : es ∈ E0};
11 S1 ← ∅;
12 repeat N times
13 Draw two random s1, s2 ∈ S0 and combine bits randomly with probability 0.5, store

result in S1;

14 end
15 S2 ← ∅;
16 for s ∈ S1 do
17 Flip each bit in s independently with probability pmut and store mutated s in S2;

18 end
19 S ← S2;

20 end
21 return S;

2.2 Spin reversal on the chain level

Another way of applying the spin reversal is at the chain level. In contrast to Section 2.1, we read
the embedded problem and switch the signs of either all physical qubits in a chain that encode one
logical qubit, or of none of them.

2.3 Optimizing the spin reversal transform

Algorithm 1 presents the genetic algorithm we use to optimize the spin reversal transform for the
D-Wave annealer. Let an input Ising model H with n variables be given which we aim to solve on
D-Wave. In the following, we characterize a spin reversal through a boolean vector of length n,
where each True entry encodes that the corresponding variable is reversed.

Using Algorithm 1, we aim to find the spin reversal transform among all 2n possible binary
vectors that yields the minimal average energy on D-Wave (within a pre-specified number of Na

anneals).
Algorithm 1 works as follows: We use a genetic algorithm to optimize over generations of boolean

vectors (or bitstrings) of length n which are interpreted as spin reversals in the aforementioned sense.
First, in line 2, we draw N random boolean vectors from Bpspin

n , the set of all bitstrings of length n
generated with a probability of pspin for an entry True. Those are stored in a set S.

Next, the initial population in S is evaluated with regards to their fitness, which in our case is
the quality of the solution. For this, we apply the spin reversal to the variables indicated in each

4



s ∈ S, resulting in a new Ising model H ′, perform Na anneals for H ′ on D-Wave, and record the
minimal energy es obtained in this way for s. All those energies are stored in a set E. Afterwards,
we compute a subset E0 of E corresponding to the proportion pmat of lowest energies (those are
the fittest individuals of the current population). We store the boolean strings that correspond to
the energies in E0 in a set S0.

Next, we carry out a crossover operation on the population in line 12. For this, we take two
arbitrary s1, s2 ∈ S0 and combine them into a new boolean vector s3 by choosing the entries of
s3 independently from s1 and s2 with probability 0.5. The new s3 is added to a set S1 which was
initialized as S1 = ∅. This is repeated N times in order to leave the population size invariant in
each generation.

Finally, a mutation step is applied in line 16. We flip the entries of each s ∈ S1 independently
with a low probability pmut and store the resulting s in a set S2 (likewise initialized with S2 = ∅).
After mutations have been applied to all s ∈ S1, we restart the fitness evaluation on the updated
set S2.

We create R generations in this way.
After termination of Algorithm 1, we are left with the last population of boolean vectors which

encode different spin reversals. In order to choose the optimal spin reversal for the Ising model H,
we evaluate their fitness one last time: We can apply each to H (resulting in a new H ′ as before),
record the lowest minimal energy for H ′ in Na anneals on D-Wave, and choose the boolean vector
among the entire population yielding the minimum energy solution.

3 Experiments on D-Wave

3.1 Evaluation of the spin reversal transform

In the following two subsections, we evaluate the spin reversal transform on both the qubit and the
chain level.

The test graphs we employ are G(|V |, pG) Erdős–Rényi graphs with |V | = 65 vertices and edge
probability pG ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The reason for using |V | = 65 vertices stems from the fact
that this is the largest size of an arbitrary graph that can be embedded onto D-Wave 2000Q, see
Pelofske et al. (2019a,b).

In order to generate an Ising model to solve for each test graph, we consider two NP-hard graph
problems: the Maximum Clique problem, which asks for a maximum fully-connected set of vertices
of a graph, and the Minimum Vertex Cover problem, which asks for a minimum set of vertices in
a graph such that each edge is incident to at least one vertex from that set. The QUBO/Ising
formulations of those two problems in the form of (1) can be found in Lucas (2014).

The spin reversal transform requires the index set I which specifies the qubits to be spin-
reversed, see Section 2.1. In the simulations of this section we generate the index sets with varying
probabilities ps ∈ {0.01, 0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95, 0.99}, that is for each element in {1, . . . , n}
we decide with an independent Bernoulli trial of probability ps whether it should be included in I
or not (where n is the number of variables in the Ising model, see (1)).

For each value of ps, we generate 50 graphs, apply the two Ising model formulations for the
Maximum Clique and Minimum Vertex Cover problems, and solve them using the following three
techniques using Na = 1000 anneals on D-Wave: (a) we solve with D-Wave’s spin reversal parameter
using Ns = 1 (see Section 1); we will refer to this technique as D-Wave’s native spin reversal, (b)
with spin reversal on the qubit level, and (c) with spin reversal on the chain level. For every batch
of anneals, we report the best solution found as the mean among the 10% lowest energy solutions
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Figure 1: Mean energy difference of the spin reversal on qubit level of Section 2.1 to D-Wave’s native
spin reversal (black line) as a function of ps. Test graphs generated with edge probabilities 0.1
(blue), 0.3 (green), 0.5 (cyan), 0.7 (magenta) and 0.9 (red). Maximum Clique (left) and Minimum
Vertex Cover (right) problems.

on D-Wave. This is to report a more robust measurement than merely recording the best solution
found.

In this subsection, all lines in the figures are averages over 50 repetitions. For each repetition,
we regenerate both the input graph, the Ising model, and its embedding on D-Wave.

3.1.1 Results for spin reversal on the qubit level

Figure 1 shows experimental results for a comparison of D-Wave’s native spin reversal (black line)
to the more general approach of Section 2.1 as a function of the spin reversal probability ps (x-
axis). We use test graphs of varying density (blue to red) applied to the Maximum Clique (left)
and Minimum Vertex Cover (right) problems. The two plots display the mean energy difference to
D-Wave’s native spin reversal on the y-axis. We display error bars of one standard deviation for
each measurement.

The figure shows that for both the Maximum Clique and the Minimum Vertex Cover problem,
the approach of Section 2.1 almost always yields a solution of higher energy (worse quality) than
the one using D-Wave’s native spin reversal. For the Maximum Clique problem, applying the
spin reversal transform with a low probability ps (roughly ps ∈ [0.1, 0.5]) yields marginally better
solutions for high density graphs only (red line).

For the Minimum Vertex Cover problem, as being related to the complement of the Maximum
Clique problem, the situation is reversed: Only for low density graphs (blue line), using a custom
spin reversal probability of ps ∈ [0.1, 0.5] marginally outperforms D-Wave’s native spin reversal.

The curves in Figure 1 exhibit a minimum (which happens to occur around p = 0.8): Such a
minimum is to be expected, since both very low and very high probabilities leave an Ising problem
essentially unchanged (see Section 1).

3.1.2 Results for spin reversal on the chain level

Figure 2 shows results of a comparison of D-Wave’s spin reversal to the one on the chain level
described in Section 2.2. As in Section 3.1.1, our approach of Section 2.2 is performing worse than
D-Wave’s native spin reversal in almost all cases. The only exception seems to be the application of
our spin reversal approach to high density graphs (Maximum Clique problem, left) or low density

6



0.0 0.2 0.4 0.6 0.8 1.0
probability p

500

400

300

200

100

0

100
m

e
a
n
 e

n
e
rg

y
 d

if
fe

re
n
ce

0.0 0.2 0.4 0.6 0.8 1.0
probability p

500

400

300

200

100

0

100

m
e
a
n
 e

n
e
rg

y
 d

if
fe

re
n
ce

Figure 2: Mean energy difference of the spin reversal on chain level of Section 2.2 to D-Wave’s native
spin reversal (black line) as a function of ps. Test graphs generated with edge probabilities 0.1
(blue), 0.3 (green), 0.5 (cyan), 0.7 (magenta) and 0.9 (red). Maximum Clique (left) and Minimum
Vertex Cover (right) problems.

graphs (Vertex Cover problem, right) in connection with a spin reversal probability ps of around
0.1 to 0.6.

3.2 Results for our genetic algorithm

This section starts by assessing the dependence of the performance of Algorithm 1 on its parameters.
For this, we first define a base set of parameters: N = 30, pspin = 0.5, pmat = 0.5, and pmut = 0.01.
When varying each of those four parameters, we keep the others fixed at their base values.

Figure 3 shows results for graphs of density 0.5 applied to the Ising model of the Maximum
Clique problem. The generated graph and the embedding of the Maximum Clique Ising model onto
the D-Wave architecture were kept fixed. Algorithm 1 was always run over R = 50 generations.
The spin reversal was applied at the chain level. We assess the dependence on N ∈ {10, 30, 50} (top
left), pspin ∈ {0.1, 0.5, 0.9} (top right), pmat ∈ {0.1, 0.5, 0.9} (bottom left) and pmut ∈ {0.01, 0.1, 0.5}
(bottom right). In all subplots of Figure 3, the green lines consistently indicate the smallest value
of the three investigated ones for each parameter, red indicates the medium value and blue the
largest one.

Figure 3 shows that, as expected, larger values of N result in more diverse populations, which
increases the probability of creating fit population members (in our case, those are the bitstrings
indicating which qubits need to be spin reversed) resulting in spin transforms with a low energy.
Likewise, the spin reversal probability pspin (used to create the initial population) should be rather
low, although high values of pspin eventually result in the same low energy solution given enough
generations are created. The mutation probability should likewise be chosen small, since large
values have a tendency to add too much noise to good solutions. The rate pmat specifying the
proportion of fittest population members that are used in the crossover stage should similarly be
small in order to only pass on the best candidates to the next generation.

Note that in Figure 3 (top right) assessing the dependence on the spin reversal probability pspin,
in contrast to the other three plots the blue, red and green lines do not start in the same point in
generation zero. This can be explained as follows: Only the parameters pspin and N appear in the
initialization in line 2 of Algorithm 1. Whereas for large enough N , the lowest energy solution of the
initial population stays roughly the same, the spin reversal probability pspin affects the population
and its overall fitness as a whole in generation zero.

We observe that in all subfigures of Figure 3, our genetic algorithm converges to nearly the same
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Figure 3: Dependence of Algorithm 1 on its parameters N ∈ {10, 30, 50} (top left), pspin ∈
{0.1, 0.5, 0.9} (top right), pmat ∈ {0.1, 0.5, 0.9} (bottom left) and pmut ∈ {0.01, 0.1, 0.5} (bottom
right) when applied to spin reversal at chain level. We consistently use green for the smallest value,
red for the medium value, and blue for the largest parameter value in all subplots.

8



0 10 20 30 40 50
generations

2700

2600

2500

2400

2300

2200

e
n
e
rg

y

0 10 20 30 40 50
generations

2700

2600

2500

2400

2300

2200

e
n
e
rg

y

Figure 4: Comparison of D-Wave’s native spin reversal (red line) to Algorithm 1 with parameters
given in (2), except for pspin = 0.1 (left) and pspin = 0.5 (right). Ising model created by applying
the Maximum Clique problem to a graph of 65 vertices and graph density 0.5.

minimum energy for the best parameter choice, which is to be expected for a good optimization
scheme.

Based on Figure 3, we will use Algorithm 1 in the remainder of the article with parameters

N = 50, pspin = 0.1, pmat = 0.1, pmut = 0.01. (2)

When using Algorithm 1 in connection with spin reversal at the qubit level, results are not as
clear, see Figure 6 in Appendix A.

Using the parameters given in (2), we are able to employ Algorithm 1 to determine a (reasonably)
good set of variables to be spin-reversed (with the aim of creating an equivalent Ising model, which
yields lower minimal energies during annealing).

Figure 4 shows simulation results for D-Wave’s native spin reversal (red constant line) and
8 different realizations of Algorithm 1 over 50 generations. For each datapoint of the genetic
algorithm, we plot the lowest 10% mean energy obtained when applying the current best set of
variables to be spin reversed to the Maximum Clique Ising model.

We observe that for the set of parameters given in (2), after only a handful of generations (around
R = 5), Algorithm 1 has found a combination of variables in the Ising model, which, after spin
reversal has been applied to them, yield a modified (but equivalent) Ising model with substantially
lower energies during annealing for pspin = 0.1. For pspin = 0.5, we observe a slower rate with which
our genetic algorithm reaches the minimum. However, both values cause Algorithm 1 to converge
to roughly the same minimum.

In the run of Algorithm 1 depicted in Figure 4 (left), the initial population of spin reversal
vectors happens to already yield lower energies than D-Wave’s native spin reversal. However,
Figure 4 (right) shows that even when using an initial population containing spin reversal vectors
which yield energies after annealing that are comparable to D-Wave’s native spin reversal, our
genetic algorithm is capable of considerably improving upon D-Wave’s spin reversal within only a
few generations.

3.3 Spatial correlation of spin reversed qubits on the D-Wave chip

It is of interest to investigate if there is a spatial correlation between those qubits for which Algo-
rithm 1 determines that a spin reversal improves the solution quality.

For the Maximum Clique problem on a graph of 65 vertices and graph density 0.5, we apply
Algorithm 1 using the optimized parameters determined in Section 3.2 and R = 50 generations.
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Figure 5: Qubit connectivity graph (the Chimera graph) of D-Wave 2000Q. Spin reversed qubits
in red, non-reversed qubits in blue, and unused qubits in gray for the single current best solution
of Algorithm 1 at initialization (left) and after 49 generations (right).

Figure 5 shows the qubit connectivity graph (the Chimera graph) of D-Wave 2000Q, where we color
single current best solution of spin reversed qubits with red (qubit is reversed) and blue (qubit is
not reversed). The gray qubits are unused.

Figure 5 shows that at initialization (left), the assignment is random. After 49 generations,
the distribution of spin reversed qubits has changed: First, we observe that the proportion of spin
reversed qubits has increased. Second, we observe that often, spin reversed qubits are adjacent
to each other in a cell of the Chimera graph, or in adjacent cells facing each other. Though this
finding was expected, the precise reason behind this can only be speculated. One explanation could
be that qubits which are physically adjacent on the chip suffer from leakage (see Section 1), thus
since the sign of all couplers Jij related to a particular spin i are flipped, it is sensible to assume
that such a manipulation of an Ising model also affects the other qubit j.

4 Conclusions

This paper investigated the spin reversal on the D-Wave 2000Q quantum annealer. In particular,
we applied our own approach of a spin reversal which, in contrast to the native one built into
D-Wave 2000Q, allows us to specify the probability with which spins are reversed, and we apply
the spin reversal to the qubit and chain level. Importantly, we present a genetic algorithm to select
the individual qubits which, if spin reversed, yield a modified Ising model that is easier to minimize
(resulting in a minimum of better quality).

We summarize our findings as follows:

1. The native spin reversal on D-Wave 2000Q seems to be highly optimized for the annealer,
even though D-Wave claims that its spin reversal is applied at a constant flipping probability
of 0.5. In our experiments we did not manage to achieve lower energy solutions in the average
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case except for rare instances involving very dense (for the Maximum Clique problem) or
very sparse (for the Minimum Vertex Cover problem) graphs and spin reversal probabilities
of ps ≤ 0.5.

2. We show using a genetic algorithm that learns the specific spins to be reversed is much more
beneficial, and considerably improves upon D-Wave’s native spin reversal. Importantly, we
show that typically only a handful of generations (around R = 5) is sufficient to arrive at a
combination of individual chained qubits which, if reversed, yield Ising models with solutions
of substantially better quality. Therefore, increasing the computational effort (the number of
anneals) by a constant factor (around R = 5 generations with a population size of N ≤ 50
each) can yield substantially better solutions.

3. We empirically show that those qubits which our algorithm suggests for spin reversal are also
physically adjacent on the D-Wave architecture.

The genetic algorithm we employ to optimize the spin reversal transform is a rather basic
version, and much more sophisticated approaches exist in the literature. Future work includes the
implementation and tuning of such advanced methods, with which we hope to find even better
bitstrings of qubits to be spin reversed, and to decrease the required population size and number
of generations, thus resulting in a reduced overhead when optimizing the spin transform.

Moreover, we are interested in investigating further if the shape of the curves in Figure 2, which
is consistent even though the two Ising models and the input graphs they were applied to are
different, can be explained by some intrinsic property of the Ising model.
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Figure 6: Dependence of Algorithm 1 on its parameters N ∈ {10, 30, 50} (top left), pspin ∈
{0.1, 0.5, 0.9} (top right), pmat ∈ {0.1, 0.5, 0.9} (bottom left) and pmut ∈ {0.01, 0.1, 0.5} (bottom
right) when applied to spin reversal at qubit level. We consistently use green for the smallest value,
red for the medium value, and blue for the largest value in all subplots.
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A Further assessments of Algorithm 1 on qubit level

We repeat the assessments of Algorithm 1 in Section 3.2 for the spin reversal applied at qubit level.
As in Section 3.2, we evaluate the dependence of the genetic algorithm on its parameters N , pspin,
pmat, and pmut while keeping those parameters which are not being varied at their values given in
Section 3.2.

In contrast to the assessment at chain level in Section 3.2, Figure 6 shows that our genetic
algorithm does not seem to converge after the initial burn-in phase. We explain this with the fact
that when applying the spin reversal at qubit level, naturally, chains of qubits are not preserved,
even though those represent the same logical qubit. The individual spin reversal within chains
could therefore lead to more broken chains after annealing, and thus to an overall reduced solution
quality. Additionally, qubit level optimization presents a significantly larger search space which
must be optimized over, compared to the smaller quantity of chains which must be optimized.
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