
Predictive modeling of inbound demand at major
European airports with Poisson and Pre-Scheduled

Random Arrivals

Carlo Lanciaa,∗, Guglielmo Lullib

aLeiden University Mathematical Institute, Niels Bohrweg 1, 2333 CA, Leiden, NL
b Department of Management Science & Center for Transportation and Logistics, Lancaster

University Management School, Bailrigg, Lancaster, LA1 4YX, UK

Abstract

This paper presents an exhaustive study of the arrivals process at eight ma-

jor European airports. Using inbound traffic data, we define, compare, and

contrast a data-driven in-homogeneous Poisson and Pre-Scheduled Random Ar-

rivals (PSRA) point process with respect to their ability to predict future de-

mand. As part of this analysis, we show the weaknesses and difficulties of using

a non-homogeneous Poisson process to model the arrivals stream. On the other

hand, our novel and simple data-driven PSRA model captures and predicts the

main properties of the typical arrivals stream with good accuracy. These results

have important implication for the modeling and simulation-based analyses of

inbound traffic and can improve the use of available capacity, thus reducing

air traffic delays. In a nutshell, the results lead to the conclusion that, in the

European context, the PSRA model provides more accurate predictions.
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1. Introduction

Air congestion is a regular and persistent phenomenon in the air traffic

system in both the US and Europe. Over the years, air traffic demand has

increased at a much faster pace compared to the increment of air traffic sys-

tem capacity. In the last decade, we have witnessed a mitigation of congestion

phenomena, with air traffic demand just recovering from the 2008 economic cri-

sis (EUROCONTROL, 2018, §1.2). Yet, the latest air traffic statistics published

by Eurocontrol show a significant deterioration of on-time performance in

the European Civil Aviation Conference area: the average delay per flight is at

its highest in the last 10 years (EUROCONTROL, 2016a). As a consequence

of these level of congestion, 7,167 flights were canceled and 107,426 delayed in

Europe between November 28 and December 27, 2016. The situation was even

worse in the US, as the numbers of canceled and delayed flights were twice as

great as the figures recorded in Europe (FlightStats). However, for the sake of

completeness, the number of controlled flights in the US is much larger: 15.3

million in the US versus 9.9 million flights in Europe in 2015 (EUROCONTROL

& FAA, 2015).

Airports are the most critical bottlenecks of the air traffic system. The

Arrival Sequencing and Metering Area (ASMA) additional time –which is a proxy

for the average arrival runway queuing time of the inbound traffic flow– during

times when the airport is experiencing high demand, is an indicator of airport

congestion (Cappelleras). In 2015, the average ASMA additional time at the top

30 European airports amounted to 2.27 minutes per arrival, increasing by about

18% with respect to the previous year. The ASMA performance deterioration

in 2015 was largely driven by an increase in average additional ASMA time at

London Gatwick, Stockholm Arlanda, Dublin, and Brussels. London Heathrow

has by far the highest level of average additional ASMA time in Europe, which

is almost 9 minutes per arrival, followed by London Gatwick with more than 4

minutes per flight (EUROCONTROL, 2016b). Similar situations occur in the

US, although with less contrast in additional time reported across airports (EU-

2



ROCONTROL & FAA, 2015). This situation occurs despite the fact that the

principal airports in Western and Central Europe are treated as fully coordi-

nated, meaning essentially that the number of flights that can be scheduled per

hour (or other unit of time) is not allowed to exceed airport declared capac-

ity (de Neufville & Odoni, 2003). In the U.S., scheduling limits are applied only

to airports of the New York region, Washington Reagan, and Chicago O’Hare

airport, under the High Density Rule.

Starting with the pioneering work of Blumstein (1959), airport operations

have attracted the interest of the scientific community in the attempt to alleviate

congestion. Many quantitative methods have been developed to understand the

various causes of congestion. These methods aim to ameliorate the level of

congestion by detecting possible actions for improving the use of capacity and

reducing delays. In particular, a great amount of work has been devoted to

study the arrivals process at airports and the corresponding queues. Given

the stochastic nature of the phenomenon, most of these studies rely on either

queuing theory or simulation models. To estimate congestion with reasonable

accuracy, models should include both i) fluctuations in the inbound demand

rate over time due to hub-and-spoke operations carried out at major airports

and ii) randomness affecting the arrivals. Koopman assumed that the statistics

of arrivals follow a Poisson law, but with an arrival rate that is a strongly-

varying function of time according to quantities actually observed at airports.

According to Hengsbach & Odoni (1975), the assumption of Poisson arrivals

for airport demand has two very appealing properties: i) it is mathematically

tractable and is consistent with observations at major airports, and ii) it has

been extensively used in the transportation literature.

Poisson arrivals have been assumed to study the arrival streams at several

airports: J.F. Kennedy and La Guardia (Koopman, 1972), Toronto Pearson

(Bookbinder, 1986), and Boston Logan (Hengsbach & Odoni, 1975) among oth-

ers. Yet, this assumption has been corroborated only in more recent times (Wille-

main et al., 2004). In that paper, the authors examined data on arrivals to nine

major US airports during December 2003 for evidence of exponentiality in the
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distribution of the interval between two estimated arrival times, i.e. the arrival

times computed by the Enhanced Transportation Management System algo-

rithm in use by the Federal Aviation Administration when the aircraft were 100

miles from their destinations. Willemain et al. (2004) performed the analysis of

these intervals under the assumption that they “are independent samples from

a Weibull distribution with a fixed shape parameter (equal to 1 for an exponen-

tial distribution) and a slowly varying scale parameter.” The results confirmed

the near-exponentiality of the inter-arrivals, therefore supporting the idea of de-

scribing arrivals through a non-homogeneous Poisson process –it is well known

that a process is Poisson if and only if it has independent and exponentially-

distributed inter-arrival times. However, there are some inherent issues with

(in-)homogeneous Poisson arrivals. First, any Poisson process –homogeneous or

not– is by definition not capable of modeling any correlation between arrivals in

consecutive time periods. This leads to an overestimation of the queue length

presumably because the uncaptured correlation is negative (Caccavale et al.,

2014). The overestimation of the queue length has a strong impact on the de-

termination of control actions (decisions) to make efficient use of the available

capacity: models adopting homogeneous Poisson processes may overestimate

congestion and yield too conservative decisions. Second, if we model the ar-

rival stream as a non-homogeneous Poisson process, a possibly large number

of parameters has to be estimated unless the intensity of the process changes

slowly over time. Third, the arrival rates at several major European airports

tend in fact to change rather fast, as highlighted by the average-demand curves

of Figure 4 in Section 3.2; this situation implies that the methods and results

proposed by Willemain et al. (2004) not applicable in a European context.

To overcome these issues, Guadagni et al. (2011) have recently proposed to

model the arrival stream at airports with a Pre-Scheduled Random Arrivals

(PSRA) process, which is obtained from a deterministic schedule by superimpos-

ing Independent Identically Distributed (IID) random delays. The list of actual

arrival times is the result of mixing-up the fixed schedule by the addition of

random perturbations. The resulting process –which has been known since the
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60’s (Kendall, 1964)– was able to provide a very good fit for the simulated con-

gestion levels for arrivals at London Heathrow airport (Caccavale et al., 2014).

Further, the PSRA process is easy to study numerically, and some significant

analytical results have recently been achieved by Lancia et al. (2018). Niko-

leris & Hansen (2012) used PSRA to develop a single-server queuing model for

trajectory-based aircraft operations which accounts explicitly for varying lev-

els of imprecision in meeting prescribed times of arrival at either a point in

the airspace or a runway’s threshold. With the purpose of gaining insight into

the generation of the observed delays and balancing congestion delays more ef-

ficiently between ground and en-route, Gwiggner & Nagaoka (2014) compared

two single-server queuing models (·/D/1 and ·/G/1 in Kendall’s notation) using

both Poisson and PSRA as arrival processes. Using analysis of the east-bound

arrivals at Tokyo International Airport, they concluded that PSRA and a Poisson

stream behave equivalently during moderate congestion but differ substantially

during very high congestion. However, this comparison is based on the output

of queuing models. Analysis of radar data gave arguments both in favor and

against the hypothesis of Poisson arrivals.

In contrast to the work of (Caccavale et al., 2014) and Gwiggner & Nagaoka

(2014), here we focus on the direct comparison of in-homogeneous Poisson ar-

rivals and PSRA, rather than studying the output of a queue model. This rep-

resents a fundamental difference and a strong element of novelty with respect

to the existing literature. Further, Gwiggner & Nagaoka (2014) tested radar

data against the null hypothesis of exponential inter-arrivals without checking

whether arrivals were correlated or not. A thorough analysis of serial correla-

tions in the arrival stream is another important contribution of this paper.

In this paper, we present data-driven models for both PSRA and non-homo-

geneous Poisson and compare their performances in predicting future demand.

Shifting the focus to demand-prediction accuracy offers more appropriate met-

rics for comparing those models in a stochastic optimization framework. An

important element of novelty introduced by this work is the use of a regres-

sion model for PSRA delays ξi (see (3) below) instead of a parametric distribu-
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tion (Ball et al., 2001; Guadagni et al., 2011; Nikoleris & Hansen, 2012). The

use of a regression model allows the modeling of flight delays and enables pre-

cise prediction of the demand. The paper introduces elements of novelty also in

the derivation of the Poisson process, which is learned from the data using an

original combination of online change-point detection and clustering.

We study the arrival process in the period from June 15 to September 15,

2016, at some of the busiest and most congested airports in Europe: London

Heathrow (International Air Transport Association (IATA) code: lhr), Lon-

don Gatwick (lgw), Frankfurt am Main (fra), Amsterdam Schiphol (ams),

and Paris C. De Gaulle (cgd). As we are also interested in the modeling of

medium-intensity traffic, we include in the dataset arrivals at three other im-

portant airports: Madrid Barajas (mad), Rome Fiumicino (fco), and Athens

International (ath).

Inter-arrival data seemingly suggest that the underlying arrival stream is ho-

mogeneous Poisson over three time intervals, namely, 08:00–09:30, 12:00–13:30,

and 18:00–19:30, local time; these intervals were chosen to capture different

operational phases of the airports, especially those hosting hub-and-spoke oper-

ations. Nevertheless, using such a process to model the arrival stream with good

approximation presents some weaknesses and difficulties, which we describe in

detail in the following sections. On the other hand, PSRA combine a simple

formulation with good predictive qualities of the inbound arrival stream. The

results presented below are relevant to analyses and simulation-based studies of

the air traffic system. Indeed, (fast-time) simulation is one of the most common

tools used by practitioners and experts of Air Navigation Service Providers and

Network Manager to determine fine-tuned control actions to improve the perfor-

mances of the air traffic system and to alleviate congestion especially at airports.

The approach described herein will allow more accurate analysis, and therefore

enables better decision-making. As a consequence, it can also contribute to the

improvement of the ATM system efficiency: even a small reduction in terms of

average ASMA time can have a huge impact in terms of fuel costs, greenhouse

emissions, air traffic controllers’ workload and safety.
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In summary, the contribution of this paper is three-fold. First, we ver-

ify that inter-arrivals appear to follow an exponential distribution, translating

(part of) the results of Willemain et al. (2004) and (Gwiggner & Nagaoka,

2014) to a European context; next, we explore serial correlations in the arrival

stream and show how our finding do not directly support the assumption of

(in-homogeneous) Poisson arrivals. Second, we propose a novel data-driven ap-

proach to the modeling of the inbound stream, showing all procedural details to

define a non-homogeneous Poisson process and PSRA. Third, we compare the

processes obtained in this way with respect to the prediction of future demand.

The remainder of this paper is organized as follows. In Section 2, we describe

the dataset and the data analysis methodology used for this study. Section 3

presents the main finding of the paper: in Sections 3.1 and 3.2 we study the

exponentiality of the inter-arrival times and its modeling consequences; in Sec-

tion 3.3, we show how to construct a non-homogeneous Poisson and a PSRA

process in a data-driven manner; in Section 3.4 we compare these processes

with respect to the prediction of future demand. Finally, in Sections 4 and 5 we

discuss the results and provide closing comments.

2. Data and Methods

2.1. Data

Inbound flight data were extracted from Eurocontrol’s Demand Data

Repository (DDR) between June 15 and September 15, 2016. In the summer

period, cancellations, diversions, rerouting, and temporary closures of runways

and airports tend to occur less frequently than in other periods of the year.

Thus, choosing this period allows us to compare the proposed models in a sit-

uation that ideally corresponds to a baseline scenario from the point of view

of the weather-related disruptions. On the other hand, the summer period is

arguably more challenging for the modelling of the demand, since demand lev-

els are notoriously higher than in other periods of the year. In this respect,

the performance results presented in Section 3.4 should not be considered as
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Table 1: Size of inbound sample for each airport considered. Observation period: from June

15 to September 15, 2016.

IATA code sample size

airport name

Frankfurt am Main International Airport fra 58167

London Gatwick Airport lgw 39746

London Heathrow Airport lhr 56716

Amsterdam Airport Schiphol ams 63279

Madrid Barajas International Airport mad 48162

Charles de Gaulle International Airport cgd 60122

Athens International Airport ath 29503

Rome Fiumicino International Airport fco 43333

a worst-case benchmark, but rather as results obtained in a favourable setting

weather-wise. Nevertheless, since models are built on the same data, comparing

their predictive performance is nothing short of fair. Table 1 displays the total

count of inbound flights in the study sample for each airport.

We queried the DDR to extract the so-called regulated and actual flight plans.

The former is the last flight plan agreed with the Network Manager (Euro-

control); it can be negotiated until 20 minutes before departure. The latter is

the flight trajectory actually flown; it reflects adjustments of Air Traffic Control

to the regulated plan. We denote by tr and ta the time at which, according

to the regulated and the actual flight plan (respectively) the aircraft enters a

cylinder of 40 NM (Nautical Miles) around the destination airport. This pro-

cedure is in agreement with the computation of the ASMA times (Cappelleras).

Indeed, the passage time at 40 NM is a proxy for the time when the flight starts

the approach phase and is handed over to the Terminal Control. This time

could have been measured with more accuracy by considering the instantaneous

latitude and longitude of each aircraft as reported by the DDR, yet the general

data analysis methodology and results illustrated hereafter remain valid. Unless
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explicitly stated, times are local.

Time-stamps of the passage at 40 NM form a Time Series (TS) for each

airport. Once the TS has been created, inter-arrival times are defined as the

time lapse in seconds between two successive events. As the arrival rate is not

constant, this TS has no fixed frequency. Since time-stamps are measured as

precisely as the nearest second, the inter-arrival TS generally contains ties, i.e.

a set of two (or more) equal values.

2.2. Exponentiality of the inter-arrival times

We investigate evidence of exponentiality in the inter-arrivals through a QQ-

plot using theoretical quantiles from the Weibull distribution

fW (x;λ, β) =
β

λ

(x
λ

)β−1

e−( xλ )
β

. (1)

The use of a Weibull is in line with Willemain et al. (2004) and is preferable

over an exponential law because the shape parameter β can appreciably modify

the probability of observing small inter-arrivals, i.e. a large number of arrivals

in a fixed interval, while the chance of observing large inter-arrivals still decays

exponentially fast. The presence of ties in the sample is overcome by using the

discrete version of (1) (Nakagawa & Osaki, 1975; Barbiero, 2013)

PW (X = x; q, β) = qx
β

− q(x+1)β , (2)

where q plays now the role of the scale parameter λ in (1). When β = 1, (1)

and (2) become respectively an exponential distribution and a geometric prob-

ability mass function. QQ-plots are drawn for three different time intervals,

namely, 08:00–09:30, 12:00–13:30, and 18:00–19:30, local time; these are meant

to capture different operational phases of the airports considered in this study.

We use the Kolmogorov-Smirnov test (Arnold & Emerson, 2011) to evaluate

goodness of fit.

2.3. Arrival process: average demand and serial correlations

Typical characteristics of the inbound stream are assessed with an explorato-

ry analysis of both average properties and serial correlations of the demand; the
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latter is a key point that can motivate the use of the PSRA process. These

characteristics of the demand are investigated by aggregating the arrivals TS

by intervals of ten minutes. The reason for choosing an interval of ten minutes

is two-fold. On the one hand, it is sufficiently small to capture changes in

the regime of the underlying (stochastic) arrival process. On the other, it is

sufficiently large to overlook noisy variations of the demand that would challenge

the interpretability of the results.

Average demand is estimated per interval of ten minutes, yielding a daily

average profile of the demand; typical fluctuations in the daily average are de-

scribed by 95% point-wise confidence intervals. We look for evidence of se-

rial correlations in the arrival stream by computing the Autocorrelation func-

tion (ACF) on the premise that the capacities of both en-route sectors (airspace)

and airports impose constraints (dependencies) on the number of arrivals in con-

secutive time intervals. Stationarity of the arrivals TS is verified by taking first-

order differences and then performing the augmented Dickey-Fuller test (Fuller,

2009; Seabold & Perktold, 2010) in a 24-hour window. Further, we explore

periodicity of the demand using a continuous wavelet transform based on the

Ricker wavelet (Ryan, 1994). We conclude the descriptive analysis of the arrival

stream by computing demand correlations over consecutive time intervals.

2.4. Data-driven modeling of the arrival processes

Two models for the inbound stream at airports are presented: a non-homo-

geneous Poisson process and PSRA. Instead of doing inference on the Poisson

intensity λ(t) or the distribution of the PSRA delays, we adopt data-driven

modeling procedures described in the following subsections. The two models will

then be compared and contrasted with respect to their prediction capabilities

in Section 3.4.

2.4.1. Construction of the non-homogeneous Poisson process

We approximate the intensity of the in-homogeneous Poisson process with

a step-function. The intensities and the corresponding time intervals are com-
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puted using first the pelt algorithm (Killick et al., 2012) to detect change-

points1 in the arrival stream, and then dbscan (Ester et al., 1996; Pedregosa

et al., 2011) to cluster change-points and estimated intensities in the (t, λ) plane;

the intensity of the learned Poisson process is obtained by the centroid of these

clusters. This results in the formulation of a non-homogeneous Poisson process

whose intensity function is daily periodic. The assumption of a 24-hour periodic

process is partly supported by the results in Figure 5, but it is also a simplifying

one. Airline schedules often change between weekdays and weekends. However,

a relatively simple formulation is an appealing feature if one intends to use

and/or derive analytical results (e.g. by using this arrival process in a queue

model).

The use of pelt is appealing for its low computational cost compared to

other change-point detection methods2 (Killick et al., 2012). dbscan is appro-

priate because it works with areas of high/low density points, which is exactly

the situation depicted in Figure A.2. Both the behavior and performance of

pelt strongly depend on the settings of the penalty function. Thus, Appendix

A in the supplementary material offers a sensitivity analysis using penalties

based on Akaike Information Criterion (AIC) (Akaike, 1998) (our choice) and

Modified Bayesian Information Criterion (MBIC) (Zhang & Siegmund, 2007) (the

R package default). The details of the procedure are described by Algorithm 1

below.

2.4.2. Construction of the PSRA process

For PSRA, we simulate the process

ti = tri + ξi , (3)

1Time points where either the mean or the variance of the arrival TS undergoes a structural

change.
2As a matter of fact, Functional Pruning Optimal Partitioning (Maidstone et al., 2017)

might perform even better since the intensity of the process is the only parameter that is going

to change under the null. However, pelt usage is established and its code well-documented.
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Algorithm 1 Configuration of data-driven non-homogeneous Poisson process
1: B ← time series of binned arrivals

2: H0 ← ‘Poisson’

3: T, L← PELT(B,H0)

4: n,C ← DBSCAN(T, L)

5: {C is a list of length n that contains 2-dimensional lists of clustered t, λ-

points}

6: T̂ ← [ ]

7: L̂← [ ]

8: for k = 1 to n do

9: t̂k, l̂k ← centroid(C[i])

10: Append t̂k to T̂

11: Append l̂k to L̂

12: end for

13: λ∗(t)← step(T̂ , L̂) {A step function taking on value λ̂i for t̂i ≤ t < t̂i+1}

14: return λ∗(t)
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where tri is the regulated arrival time at 40 NM, ξi is a delay that is generated

from a regression model for {tai − tri }i, and tai is the observed arrival time at 40

NM. Since the regulated flight plan can change up to 20 minutes before take-off,

model (3) is tailored for tactical predictions. However, the regulated flight plan

undergoes a number of regulation rounds. This means that model (3) could

be used any time before take-off with the most recent regulations available –

with an expectable predictive-performance reduction compared to the observed

arrival time.

The regression model for the delays ξi’s is obtained by training an ε-support

vector machine (Cristianini & Shawe-Taylor, 2000) on the following features:

flight origin (national, continental, or intercontinental), arrival time according

to the regulated flight plan, and day of the week. The last two features are

encoded as two-dimensional cyclic variables using sine/cosine transformations.

Cross-validation is used both for tuning the hyper-parameters of the support

vector machine and for assessing the model performance. The recommendation

in this case is to use two rounds of cross-validation (Cawley & Talbot, 2010),

respectively called inner and outer, on different train-test splits of the dataset.

Since we are dealing with a TS, we split the dataset into k parts, labeled j =

1, . . . , k; then, for j = 2, . . . , k, parts 1, . . . , j − 1 are used as a training set to

predict part j. An inner cross-validation with k = 6 each is used to search for

the optimal values of the parameters C and ε on a logarithmic grid: ε defines

a margin of tolerance within which no penalty (C) is associated in the hinge

loss function (Rosasco et al., 2004). The limited number of features used and

the resulting impact on this research are discussed in Section 4. The simulation

procedure is outlined in Algorithm 2.

2.5. Prediction capabilities of data-driven Poisson and PSRA

We compare the PSRA and the Poisson process defined in Sections 2.4.1 and

2.4.2 with respect to their capabilities for predicting future demand. Due to

the formulation of the two processes, predictions can be cast for the Poisson

process at any point in time, but predictions for the PSRA are possible after
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Algorithm 2 Simulation of data-driven PSRA process
1: T r ← sequence of regulated arrival times at 40 NM

2: T ← empty list

3: X ← matrix of features

4: Ξ← epsilon-support vector machine

5: C, ε← optimal hyper-parameters via inner cross validation

6: for each t in T r and each row x in X do

7: ξ ← Ξ(x)

8: Append t+ ξ to T

9: end for

10: sort T

11: return T

the regulated flight plan becomes known (as discussed in Section 2.4.2). The

comparison is made on two predictions tasks, namely:

1. predicting the aggregated demand for each 10-minute interval on the last

day of the dataset (September 14);

2. predicting the mean aggregated demand for each 10-minute interval aver-

aged over the last week of the dataset (September 5-11).

Both tasks yield a vector of 144 predictions (one for each 10-minute interval),

upon which we compute the following scores: Mean Absolute Error (MAE), Mean

Squared Error (MSE), and r2. An outer cross-validation with k = 12 is used

to compare true demand with that predicted by model (3). Cross-validation of

the data-driven Poisson model is not meaningful, because the method is based

on clustering and not on the prediction of a known target variable (ground

truth). Evidence supporting this assumption is given in Section 3.2. Further,

this assumption has the desirable property of simplifying the model formulation.

All figures and statistical analyses were produced using Python v.3.6 and R

v.3.3 (via rpy2). The code used for generating the analyses is freely available

at the address http://tiny.cc/yznu8y, a repository maintained by one of the

authors (C. Lancia).
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3. Results

In this section, we present the results of our analysis using the dataset and

the methods described in Section 2.

3.1. Exponentiality of the inter-arrival times

Figures 1-3 show, for each of the eight airports and three time intervals

considered, the QQ-plot of the inter-arrivals against the corresponding fitted

Weibull (2). Regardless of the time interval, there is quite a good accordance

between empirical and theoretical quantiles in the bulk of the distribution. This

can be observed as a general flat adherence of the QQ-plot onto the 45-degrees

dotted line and should be interpreted as the capability of Weibull inter-arrivals

to describe small-to-moderate inter-arrival times, i.e. situations of high demand.

However, the goodness of the fit deteriorates on the tails and it typically shows

over-dispersion, which can be severe at fra, ams, mad, and cgd. A remark-

able exception is lhr, for which the demand fluctuates around the value of 40

aircraft/hour (corresponding to an average inter-arrival of 90 seconds). Accord-

ingly, lhr exhibits the smallest degree of over-dispersion on the tails among the

airports considered in this paper.

Table 2 reports the parameters q and β, the mean of the fitted distribu-

tion, the Kolmogorov-Smirnov D-statistic, and the p-value of the corresponding

goodness-of-fit test for each time interval and airport considered. The fitted

shape-parameter β is always fairly close to 1, meaning that the fitted Weibull

looks like an exponential/geometrical. Very often we can reject the null hypoth-

esis of Weibull inter-arrivals at the 1% significance level. This is due to the large

size of the sample considered, which makes the test very powerful even against

small deviations from the expected behavior.

3.2. Arrival process: average demand and serial correlations

Figure 4 shows the daily mean profile of the demand along its 95% point-

wise confidence band. Most of the airports analyzed in this paper show the
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Table 2: Parameters and goodness of fit of the fitted discrete Weibull (2). The parameter β

is measured in seconds. The interpretation of the p-values of the goodness-of-fit test is not

straightforward due to the large sample size.

q β mean D-stat. p-value

time airport

08:00–09:30 fra 0.992 1.046 93.131 0.020 0.03

lgw 0.998 1.127 214.506 0.032 0.02

lhr 0.995 1.135 103.273 0.024 <0.01

ams 0.993 1.118 82.209 0.033 <0.01

mad 0.996 1.064 166.540 0.019 0.21

cgd 0.993 1.143 71.336 0.033 <0.01

ath 0.996 1.000 261.533 0.021 0.40

fco 0.994 1.060 129.793 0.023 0.03

12:00–13:30 fra 0.994 1.064 122.668 0.018 0.13

lgw 0.997 1.166 137.588 0.033 <0.01

lhr 0.995 1.158 90.262 0.026 <0.01

ams 0.994 1.157 74.990 0.035 <0.01

mad 0.994 1.041 133.073 0.016 0.29

cgd 0.996 1.119 127.154 0.027 <0.01

ath 0.994 1.000 175.291 0.013 0.74

fco 0.992 1.067 88.120 0.021 0.01

18:00–19:30 fra 0.990 1.040 82.466 0.015 0.12

lgw 0.997 1.167 135.505 0.034 <0.01

lhr 0.996 1.199 85.679 0.031 <0.01

ams 0.993 1.195 61.895 0.033 <0.01

mad 0.995 1.095 116.381 0.013 0.43

cgd 0.995 1.130 93.981 0.027 <0.01

ath 0.996 1.064 189.090 0.013 0.77

fco 0.994 1.072 117.987 0.016 0.21
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characteristic wavy pattern for arrivals, typical of airports hosting hub-and-

spoke operations. A notable exception is lhr, which has a fairly constant mean

arrival rate and a corresponding arrival process that is characterized by a single

regime: the demand oscillates around 7 arrivals every 10 minutes –the declared

arrival capacity is 45 aircraft/hour. This also explains why Heathrow shows the

best fit with a nearly-exponential distribution in Figures 1–3.

The correlograms in Figure 5 highlight the presence of two kinds of serial

correlation in the demand. First, all airports present a statistically significant

strong negative lag-1 correlation. These correlations cannot be appreciated in

full from Figure 5 because the y-axis is clipped at ±0.2 for making other correla-

tions more readable. For this reason, their exact numerical values are reported

in Table 3. The presence of these correlations suggests that the net variation of

the demand3 over an interval of 10 minutes is negatively correlated with the de-

mand variation in the following 10 minutes. In other words, intervals where the

demand increases (resp. decreases) are more likely to be followed by intervals

where the demand decreases (resp. increases). This property, which can also

be guessed from Figure 4, might have an interesting connection with capacity

constraints. In fact, if an interval of increased demand were likely followed by

another interval of increased demand, then the capacity of the airport could be

temporarily exceeded.

Second, many airports show the presence of statistically significant correla-

tions at lags of 1, 2, and 3 days. These correlations are not strong in absolute

terms, yet they are the strongest shown by the correlograms, and their relatively

low magnitude can be explained by the presence of natural daily variation of

the demand evolution in a very large sample. Appendix B in the supplementary

material offers a more-in-depth analysis of these serial correlations through a

continuous wavelet transform of the demand. This analysis shows that correla-

tions at lag of one or more days are of practical significance. Thus, we have the

following:

3The demand TS is made stationary by taking first-order differences, see Section 2.3.
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Table 3: Values of lag-1 autocorrelations.

IATA code lag-1 autocorr.

fra -0.447

lgw -0.526

lhr -0.440

ams -0.359

mad -0.466

cgd -0.415

ath -0.479

fco -0.535

Key Point 1. Significant correlations at lags multiple of one day motivate the

idea of learning a daily-periodic non-homogeneous Poisson process in the next

section.

Figure 6 shows the Pearson’s correlation coefficients ρti,ti+1
between the de-

mand variation in the intervals [ti, ti+1) and [ti+1, ti+2). The demand variation

is computed as the difference between the number of arrivals observed from

tai data and the number of arrivals that were expected according to tri data.

The values of ρti,ti+1
are mostly negative, especially during normal operations

hours. The majority of these correlations are different or borderline-different

from zero at a 5% significance level. This finding is expected in view of the

lag-1 autocorrelations reported by Table 3.

Key Point 2. The signs of the correlations are in line with the general result

that PSRA generate negatively autocorrelated streams (Guadagni et al., 2011).

Please note that Guadagni et al. (2011) compute correlations from the observed

inbound stream, but have an equally-spaced-in-time arrival schedule. In our

formulation, pre-scheduled arrivals are not equally spaced, but come from the

regulated flight plan. Accordingly, the correct quantity to consider is the de-

mand variation.
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The negative correlations are a very appealing feature of the model as they

reflect bounds on the available capacity of both the terminal airspace and the

arrival airport. If demand variations were mostly uncorrelated or even positively

correlated, random fluctuations in the inbound flow might cause the capacity

of airports and/or terminal sectors to be temporarily exceed. On the contrary,

the regulated schedule imposes a structure in the sequence of arrivals (3). For

the sake of completeness, correlations computed on simulations of 3 are shown

in Appendix C of the supplementary material.

3.3. Data-driven modeling of the arrival processes

Using the data-driven methodology described in Section 2.4, we now detail

the parameters characterizing the inbound-stream models, i.e. non-homogeneous

Poisson and PSRA, at the considered airport. We begin with the construction of

the Poisson process, which is daily-periodic in our formulation. This modeling

choice is motivated by Key Point 1 above.

3.3.1. Construction of the non-homogeneous Poisson process

Figure 7 shows the dbscan clustering of change-points identified by pelt

and the daily average rate of arrivals at 40 NM per 10-minute interval. For

each cluster, black diamonds mark the average Poisson intensity λ̂i and the

corresponding average time of the day t̂i, where i is the index of the cluster.

In view of the 24-hour periodicity of the demand highlighted in Section 3.2,

we define our data-driven in-homogeneous Poisson model by a periodic step-

function, which takes on value λ̂i for t̂i ≤ t < t̂i+1. The values of t̂i and λ̂i are

reported by Table D.1 in Appendix D of the supplementary material.

Remark 1. Note that the values of λ̂ are substantially in line with the fitted

values from Table 2, since λ ≈ 60×mean−1 in the approximation of exponential

inter-arrivals.
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Table 4: Inner cross-validation of PSRA model (3). The table shows the best values for the

parameters of the support vector machine regression model using a sequential two-weekly

split, and the corresponding average values of Mean Absolute Error (MAE), Mean Squared

Error (MSE), and r2 using 11-fold consecutive weekly splits.

airport C ε MAE MSE r2

fra 100.0 100.000 0.055680 0.330237 0.034639

lgw 1000.0 0.001 0.024724 0.088728 0.027090

lhr 100.0 0.100 0.042192 0.257391 0.026009

ams 10.0 100.000 0.037729 0.296439 0.023622

mad 100.0 100.000 0.042015 0.205384 0.024280

cgd 100.0 0.010 0.025096 0.147226 0.018576

ath 1000.0 1.000 0.034228 0.119433 0.042989

fco 1000.0 1.000 0.024727 0.146581 0.026880

3.3.2. Construction of the PSRA process

Tables 4 and 5 show the results of a nested cross validation of PSRA pro-

cess (3), where the delays ξi are obtained via a regression model. The model

is validated on its capability of predicting the aggregated demand and not the

delays ξi. Based on 5 consecutive two-weekly splits, the inner cross validation

estimates the best parameters C and ε of the support vector machine on a log-

arithmic grid C = 10−2, . . . , 105; ε = 10−5, . . . , 102. The outer cross validation

evaluates demand prediction on an 11-fold cross validation based on consecu-

tive weekly splits. The r2 metric is often around 0.5, meaning that the model

is capturing a significant proportion of the variance of the demand, while the

mean absolute error is about 1.5 aircraft/10 minutes.

Key Point 3. It is clear that even a simple regression model like the one used

for the delays is performing quite well.
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Table 5: Outer cross-validation of PSRA model (3). The table shows average value (µ) and

standard deviation (σ) of Mean Absolute Error (MAE), Mean Squared Error (MSE), and r2

using 11-fold consecutive weekly splits.

airport MAE (µ) MAE (σ) MSE (µ) MSE (σ) r2 (µ) r2 (σ)

fra 1.591 0.071 5.531 0.366 0.594 0.036

lgw 1.436 0.043 3.911 0.204 0.126 0.069

lhr 1.582 0.061 5.414 0.370 0.509 0.033

ams 1.831 0.078 6.490 0.530 0.530 0.041

mad 1.563 0.044 4.765 0.281 0.378 0.035

cgd 1.700 0.059 5.477 0.323 0.500 0.033

ath 1.199 0.040 2.752 0.156 0.141 0.052

fco 1.356 0.037 3.844 0.143 0.514 0.026

3.4. Prediction capabilities of data-driven Poisson and PSRA

The prediction capabilities of both in-homogeneous Poisson and PSRA are

compared by Figures 8 and 9. The first figure shows the average demand pre-

diction obtained for the last week included in the dataset (September 5–11,

2016), while the second figure shows the prediction of the demand for the last

day (September 14, 2016). Results are plotted as differences between true and

predicted demand (solid: PSRA, dotted: Poisson). Figure 8 clearly shows that

PSRA are much more accurate than Poisson in predicting the average future

demand. Table 7 compares the models by presenting MAE, MSE, and r2 scores

for the prediction task at each airport. A close look at Figure 9 shows that,

for the prediction on a single day, the demand predicted by the Poisson model

fluctuates more than PSRA around the true value. Table 7 shows that PSRA still

achieve greater predictive accuracy in this task, due to a smaller error and a

higher r2 score.
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Table 6: Scores of prediction tasks for PSRA and the non-homogeneous Poisson model. True

and predicted aggregated demand, averaged in the week September 5-11, 2016, are compared

using the following scores: Mean Absolute Error (MAE), Mean Squared Error (MSE), and r2.

airport prediction model MAE MSE r2

fra Sep 5-11 PSRA 0.451 0.398 0.964

Poisson 1.624 5.199 0.531

lgw Sep 5-11 PSRA 0.320 0.187 0.920

Poisson 0.748 0.928 0.602

lhr Sep 5-11 PSRA 0.395 0.355 0.957

Poisson 0.959 1.661 0.798

ams Sep 5-11 PSRA 0.629 0.875 0.921

Poisson 1.262 3.635 0.672

mad Sep 5-11 PSRA 0.555 0.593 0.894

Poisson 0.876 1.491 0.733

cgd Sep 5-11 PSRA 0.520 0.516 0.932

Poisson 1.199 2.764 0.635

ath Sep 5-11 PSRA 0.289 0.143 0.906

Poisson 0.704 0.869 0.427

fco Sep 5-11 PSRA 0.354 0.252 0.956

Poisson 1.668 6.104 -0.064
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Table 7: Scores of prediction tasks for PSRA and the non-homogeneous Poisson model. True

and predicted aggregated demand on September 14, 2016 are compared using the following

scores: Mean Absolute Error (MAE), Mean Squared Error (MSE), and r2.

airport prediction model MAE MSE r2

fra Sep 14 PSRA 1.611 5.472 0.597

Poisson 2.597 11.972 0.119

lgw Sep 14 PSRA 1.292 3.069 0.286

Poisson 1.660 5.174 -0.203

lhr Sep 14 PSRA 1.646 5.979 0.427

Poisson 1.944 8.236 0.211

ams Sep 14 PSRA 1.826 6.493 0.541

Poisson 2.375 10.347 0.268

mad Sep 14 PSRA 1.618 5.688 0.332

Poisson 2.042 8.611 -0.012

cgd Sep 14 PSRA 1.958 7.778 0.170

Poisson 2.785 13.813 -0.475

ath Sep 14 PSRA 1.243 3.396 -0.072

Poisson 1.549 4.771 -0.506

fco Sep 14 PSRA 1.222 3.444 0.561

Poisson 2.222 9.097 -0.159
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4. Analysis

Analysis of the inter-arrival times at 40 NM shows a fair accordance between

the data and a Weibull distribution; this has already been observed in the lit-

erature for projected inter-arrivals at some major US airports (Willemain et al.,

2004). The shape parameter of the fitted Weibull is sufficiently close to unity

to seemingly justify the classical assumption of Poisson arrivals4. The null hy-

pothesis of Weibull-distributed IID inter-arrivals can often be rejected based on

the Kolmogorov-Smirnov goodness-of-fit test, yet this finding requires caution:

due to the large sample size, the test is extremely powerful (especially at the

most congested airports) and likely to flag even small deviations of the empirical

distribution from the theoretical one. The average demand plotted in Figure 4

suggests that the goodness-of-fit might be related to the wavy variation of the

demand. On the one hand, QQ-plots in Figures 1-3 show that the best fit is

achieved by airports where the demand is stable over time, e.g. lgw or lhr.

On the other hand, the selected time windows often span moments of lower and

higher demand, so that a better fit might be obtained by letting β, the shape

parameter in (2), vary over time. However, the analysis of the demand cor-

relations in Figure 6 indicates that a non-homogeneous Poisson process is not

realistic anyway due to the independence of its increments. In fact, the demand

over two consecutive intervals is characterized by non-zero correlations (point

estimates mostly negative and often significant at the 5% level), which is not

consistent with the assumption of independent increments.

Homogeneous or not, Poisson processes remain a popular choice for modeling

inbound air traffic (Gwiggner & Nagaoka, 2014). Thus, we have proposed a novel

data-driven approach to the modeling of a non-homogeneous Poisson process by

use of pelt (a change-point detection algorithm) and dbscan (clustering). We

compare the resulting Poisson processes with a PSRA point process, in which the

4A necessary and sufficient condition for a random process to be Poisson is that inter-arrival

times are independent and exponentially distributed.
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observed arrival time is given by the sum of the last-agreed arrival time and a

random fluctuation. A parametric distribution is the typical modeling approach

for the delays ξi in (3), but we introduced an element of novelty by adopting

also for PSRA a data-driven approach. We used a support vector machine,

but other choices, such as ordinary/generalized least squares or other penalized

regressions, are viable options worthy of exploration.

The PSRA model presented here was based on only a small number of real-

world features. While it is true that a larger number of covariates could be

obtained from the DDR, recent constrains imposed to the use of such repository

limited the amount of data that we could use. Further, the use of meteoro-

logical conditions as a predictor of delay would arguably increase the training

performance of the model, but worsen its testing metrics due to the high uncer-

tainty associated with weather forecasts. Tables 6 and 7 show that PSRA often

achieves an r2 score much larger than 0 even with a small number of features,

indicating that a substantial part of the demand variance is already captured by

the model. On the premise that the predictive power of our PSRA formulation

could only increase if a larger number of features were used, this work validates

the idea that PSRA are preferable over a Poisson model for modeling inbound air

traffic.

The predictive accuracy of PSRA over the Poisson process is demonstrated

by Figures 8 and 9, in which Poisson arrivals show a greater fluctuation of

the predicted demand around the true value. As a consequence, using such an

arrival process in a queue model would lead to overestimating the congestion.

As reported by Caccavale et al. (2014), such overestimation can be substantial.

One could argue that the accuracy of the Poisson process could be increased

by modeling the intensity of the process on a finer time scale, i.e. by estimating

it in small prescribed intervals. It is well-known that the Maximum Likeli-

hood Estimator (MLE) of the parameter λ is the sample mean. Thus, a Pois-

son process with λ(t) forced to vary every 10 minutes would exactly reproduce

the daily average aggregated demand. However, it is not obvious that such a

highly-parametric model would score much better than the one presented here.
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Additionally, it would fail to capture the correlation structure of the arrival

data because a non-homogeneous Poisson process has independent increments

regardless of the functional form of the intensity λ(t). Conversely, our PSRA

model preserves the correct correlation structure of the demand by inheriting it

from the regulated flight plan; see Appendix C in the supplementary material.

In addition, PSRA have the general property of converging to a Poisson stream

in the regime of delays with very large standard deviation (Guadagni et al.,

2011).

5. Conclusions

In this paper, we have provided a thorough analysis of inbound air traffic

at eight European airports. We developed two data-driven models for the pre-

diction of the demand, one in the family of Poisson arrivals and the other in

the family of PSRA. In all of the airports considered, the PSRA process pro-

vides better predictions for the arrival stream. The superior predictive power of

the proposed PSRA model over the proposed non-homogeneous Poisson process

is not a reason per se to recommend one model or the other. Yet, given the

correlation of the demand over consecutive intervals, it is clear than a Poisson

process is not a good candidate for the description of the inbound traffic flow

in Europe. Their use for the estimation of inbound congestion might result in

pronounced overestimation, as discussed in the introduction; conversely, PSRA

are correlated, provide more accurate predictions, and can be viewed as a gen-

eralization of Poisson arrivals from a mathematical point of view. For all these

reasons, we recommend the consideration of PSRA as a modelling option because

they are preferable for many reason in a European context.

The proposed approach should be envisioned in simulation-based analysis of

air traffic management initiatives at either the strategic or the planning phase.

More specifically, it can be used as an engine to support and assess flight sched-

ule development and strategic slot allocation schemes. The analysis can target

either a single airport and the implications for its operations or the ATM net-
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work and its overall performance. In the latter case, the proposed model will

be one of the atomic components of a larger embedded simulation model. Over

a longer time horizon, the proposed model can be used to evaluate long-term

growth initiatives such as airport expansions. Several airports around the world,

like London Heathrow and Rome Fiumicino in Europe, are planning to increase

their capacity. Thus, it would be advisable to conduct accurate studies on the

possible gains in terms of available capacity and performance of the system.

The proposed model for inbound air traffic demand also offers the poten-

tial to fine-tune Traffic Management Initiatives on a shorter time scale such as

Ground Delay Programs. However, in this case it might be advisable to ex-

tend the predictive models to include weather features, as in Liu et al. (2017)

and Gopalakrishnan & Balakrishnan (2017).
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