1	Provenance of drinking water revealed through compliance sampling
2	
3	
4	Matthew J. Ascott ^{a*} , Marianne E. Stuart ^a , Daren C. Gooddy ^a , Ben M. Marchant ^b , John C. Talbot ^a , Ben
5	W.J Surridge ^c and David A. Polya ^d
6	
7	^a British Geological Survey, Maclean Building, Benson Lane, Crowmarsh, Oxfordshire, OX10 8BB, UK.
8	^b British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottinghamshire,
9	NG12 5GG, UK.
10	^c Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
11	^d School of Earth and Environmental Sciences and Williamson Research Centre for Molecular
12	Environmental Science, University of Manchester, Manchester, M13 9PL, UK
13	
14	
15	
16	*Corresponding Author: <u>matta@bgs.ac.uk</u> , +44(0)1491 692408
17	
18	
19	

20 Table of Contents Entry

28 https://creativecommons.org/licenses/by/2.0/legalcode)

39 Abstract

40

41 Understanding drinking water hydrochemistry is essential for maintaining safe drinking water 42 supplies. Whilst targeted research surveys have characterised drinking water hydrochemistry, vast 43 compliance datasets are routinely collected but are not interrogated amidst concerns regarding the 44 impact of mixed water sources, treatment, the distribution network and customer pipework. In this 45 paper, we examine whether compliance samples retain hydrochemical signatures of their provenance. 46 We first created and subsequently undertook the first hydrochemical analysis of a novel national 47 database of publically available drinking water compliance analyses (n = 3,873,941) reported for 2015 48 across England and Wales. Principal component analysis and K-means cluster analysis revealed three 49 spatially coherent clusters. Cluster 1 is dominated by groundwater sources, with high nitrate 50 concentrations and mineralisation, and lower organic carbon, residual chlorine and THM formation. 51 Cluster 2 was dominated by surface water sources and characterised by low mineralisation (low 52 conductivity and major ion concentrations), low nitrate and high organic carbon concentrations (and hence residual chlorine and THM formation). Cluster 3 shows a mixture of groundwater overlain by 53 54 confining layers and superficial deposits (resulting in higher trace metal concentrations and 55 mineralisation) and surface water sources. These analyses demonstrate that, despite extensive processing of drinking water, at the national scale signatures of the provenance of drinking water 56 57 remain. Analysis of compliance samples is therefore likely to be a helpful tool in the characterisation of processes that may affect drinking water chemistry. The methodology presented used is generic 58 59 and can be applied in any area where drinking water chemistry samples are taken.

60

62 **1 Introduction**

63

Access to safe drinking water is a human right and a requirement for life ¹. In the developed world, the quality of water supplies has improved substantially in the past 25 years, largely through the introduction of regulation and advances in treatment². In Europe, implementation of the European Union Drinking Water Directive (EUDWD, European Commission ³) has resulted in compliance levels of over 99% in 2016⁴. Similar directives are also in place internationally (e.g. Australia⁵, USA⁶ and China⁷).

Against a backdrop of climate change and increased demand⁸, water utilities are increasingly 70 71 considering the use of raw and treated water transfers to supply customers9. Feasibility studies of 72 local, small scale water transfers in the UK are required to establish the viability of a transfer in terms 73 of environmental water resource availability and both drinking water and environmental water quality¹⁰. However, outside of the UK this is not always the case, as highlighted by the recent Flint 74 75 Water Crisis¹¹. In this case, the addition of highly corrosive surface water into a distribution system 76 without corrosion control resulted in a significant public health incident¹². Outside of the UK switching 77 of supply water chemistry may be done without any systematic evaluation¹³, and assessing the 78 impacts of drinking water chemistry on potential future large scale raw and potable transfers is considered a significant research need¹⁴. 79

80

The hydrochemical analyses required in order to support assessment of the water quality implications of transfers are complex. Changes in water quality associated with the mixing of raw water sources, treatment processes, passage through a utilities' distribution system and customer plumbing make unambiguous interpretation of drinking water chemistry data challenging¹⁵. Despite this, numerous studies have characterised drinking water hydrochemistry using specific sampling and laboratory analyses for research purposes^{15, 16, 17, 18, 19, 20, 21, 22, 23, 24}. A number of studies taking this approach have

shown a strong link between drinking water hydrochemistry and raw water sources. Dinelli, Lima 17 87 88 and Demetriades ²⁵ showed a clear influence of bedrock geology and aquifer composition on major and trace elements in drinking waters in Italy and Greece respectively. Birke, Rauch ²³ showed uranium 89 90 concentrations in drinking water to have a strong geological control. At the European scale, Banks, 91 Birke²¹ and Flem, Reimann¹⁵ showed that drinking water hydrochemistry can be interpreted in terms 92 of source water hydrogeology and land use, as these factors influence raw water chemistry. These 93 authors concluded that drinking water sampling is a highly cost-effective approach to characterise controls on water chemistry at the European scale, with confident interpretation of numerous 94 95 parameters in terms of hydrogeochemical processes. Stable oxygen and hydrogen isotopes of drinking water have also been shown to be a useful tracer of source waters and hydrological processes both at 96 97 the national ^{26, 27, 28} and city scale ²⁹ in the USA and China. In the UK, national scale drinking water trends broadly following the same spatial pattern as unconfined groundwaters ³⁰. 98

There have been substantial reductions in funding for environmental regulators in recent years in 99 some developed countries ^{31, 32}. Consequently, environmental monitoring programmes have declined 100 ³³. In England and Wales the number of water chemistry measurements taken by the environmental 101 102 regulator has declined by 40% between 1993 and 2014³⁴. Environmental water chemistry monitoring 103 is typically devolved to a regional level which results in substantial spatial bias in sampling, as well as both spatial and temporal variability in sampling methodologies, laboratory methods, standards, 104 reporting procedures and data quality assurance ³⁵. With a limited and reducing spatiotemporal extent 105 106 of environmental water chemistry monitoring, it is essential that other data sources are considered 107 for the characterisation of water chemistry required to assess the viability of raw and treated water 108 transfers. In addition to drinking water datasets collected specifically for research purposes, large 109 drinking water chemistry datasets have been and continue to be collected for regulatory compliance across the developed world (e.g. Europe ⁴ and USA ³⁶). Under the EUDWD, around 100,000 water 110 111 supply zones are routinely sampled for regulatory compliance across Europe ³. The need for data for 112 regulatory compliance results in consistent laboratory standards, extensive data quality assurance and a large spatiotemporal sampling extent ^{3, 37}. These datasets have never been analysed in terms of their
 hydrochemical characteristics and, potentially, represent a vast and powerful dataset that could
 complement environmental water chemistry datasets and specific national ^{17, 25} and continental scale
 drinking water research surveys ^{15, 21}.

117

If water transfers are to be developed to meet future demand, it is essential that the hydrochemistry 118 119 of current the drinking water distribution is better understood. Moreover, beyond water quality 120 compliance reports, very little public information is available from water utilities on drinking water sources and associated hydrochemistry. To this end, we examined whether drinking water samples 121 for regulatory compliance retain the hydrochemical signatures of their provenance? In this study we 122 present the first national-scale assessment of the hydrochemistry of drinking water based on 123 124 compliance sampling. Applied to England and Wales, we derived spatially distributed water chemistry 125 datasets based on published water company reports. We then undertook spatial and statistical 126 analyses to determine the likely factors controlling the spatial variation in drinking water chemistry. Finally, we provide an outlook on the use of these datasets for future analysis of drinking water 127 128 hydrochemistry. 129 130

131 2 Materials and Methods

132 2.1 Study area and regulatory context

133

134 The countries of England and Wales were used as a study area for the research reported here (Figure

135 1). Drinking water supplies are obtained from both surface water and groundwater sources,

approximately in the ratio 60:40 overall ³⁸, with raw water characteristics and treatment requirements 136 137 reflecting these different sources. Most water utilities supply water from both surface water and groundwater sources, although in very different proportions depending on geographical location and 138 139 underlying geology. The most important aquifers used for water supply in the study area are the Chalk 140 and the Permo-Triassic rocks (referred to as Permo-Triassic or PT herein), are shown in Figure 1. Figure 1. Figure 1. At 141 one extreme in East Anglia, one utility draws drinking water supplies only from groundwater and 142 predominantly from the Chalk aquifer ³⁹, whereas in Wales over 90% of water supplied is from surface water sources ⁴⁰. 143

As previously discussed, drinking water quality is regulated under the EUDWD. This is transposed into UK law through primary legislation and regulations as the Water Supply (Water Quality) Regulations ⁴¹. Water is deemed to be wholesome if it does not contain substances which contravene the concentrations listed in the Directive or National monitoring categories in Supplementary Table 1. A further group of substances (indicator parameters) are also monitored and reported. Non-regulated substances, such as calcium, magnesium and alkalinity, are measured less frequently and reporting of results is not required.

151

152 2.2 Water quality sampling

153 154

The 27 individual water utilities in England and Wales undertake water quality compliance sampling to meet the requirements of the EUDWD. Measurements are made either at the customer's tap, at a supply point (SP) or at the water treatment works (WTW) exit as set down in the regulations and agreed with the UK Drinking Water Inspectorate (DWI). Monitoring at WTW and service reservoirs (SR) is to quantify levels of residual disinfectant, and control of microbiological parameters and nitrite. Substances can be monitored at designated SPs instead of taps where concentrations are not deemed to change in the distribution network. Supplementary Table 1 shows both compliance and indicator parameters and location of sampling points. Guidance on the analysis of samples to ensure consistency is provided by the DWI, for a full range of aspects including analyst training, suitable equipment and calibration, method specification, internal and external analytical quality control and record retention ³⁷. Pesticides and microbiological parameters are not considered in this assessment.

¹⁶⁶

167Figure 14 Location of the study area of England and Wales within the United Kingdom and the168outcrop of the Chalk and Permo-Triassic rocks. Contains Ordnance Data © Crown Copyright and

169 database rights 2017 . Ordnance Survey Licence no. 100021290

170 2.3 Data extraction, collation and statistical analysis

171

172 Under the Water Supply (Water Quality) Regulations ⁴¹, the water supply utilities in England and 173 Wales provide the results of the routine water quality sampling detailed above as PDF reports to 174 customers on their websites. Water utility supply areas are divided based on operational factors into 175 designated water supply zones (WSZ), which supply up to 100,000 people, have approximately 176 uniform quality and can comprise a combination of small communities in rural areas. Each water 177 quality report is for a defined WSZ and, under normal conditions, on request all customers within a 178 WSZ receive the same report. These reports can be downloaded using a postcode search. The 179 locations of WSZ boundaries are sometimes available but not consistently across the study area. We 180 downloaded all WSZ water quality reports for water companies in England and Wales for 2015. Where WSZ boundary mapping was not available, we derived WSZ areas based on postcode data. We divided 181 182 England and Wales into a series of 1 km square grid cells. For each grid cell, the postcode in the centre of the cell was extracted and the name of the corresponding WSZ recorded. We then merged the 183 184 areas returning the same WSZ report to derive the WSZ area outlines. The downloaded water quality 185 reports for each WSZ were then converted using the tabula software ⁴² and collated in a MS Access 186 database.

187

A large number of parameters are reported in the WSZ water quality reports as listed in Supplementary Table 1. From this list we used the following criteria to exclude parameters which are unlikely to reflect water provenance at the national scale:

Copper, iron, aluminium, fluoride, lead and manganese, as these are all parameters that may
 be significantly impacted by water treatment, the distribution network and customer
 pipework.

195	during water treatment ⁴³ . Whilst chlorine and THMs are also artefacts of water treatment
196	processes, these parameters were included in the analysis as chlorination (and subsequent
197	THM formation) is more extensive in treatment of surface waters than groundwaters 15 and
198	thus may an indicator of provenance.
199	No substantial data gaps at the national scale (<5% of water supply zones with missing data
200	for a certain parameter). As analysis for individual pesticides is assessed on a risk basis,
201	monitoring is not consistent across all WSZs so these were excluded.
202	• No datasets dominated by zero detects (bacterial counts, specific organic compounds (e.g.
203	benzene), radioactivity, taste/odour, pesticides)
204	Applying these criteria resulted in 17 parameters that are likely to reflect provenance, as shown in
205	Table 1. We then undertook further statistical analysis of these parameters. Some authors ⁴⁴ have
206	advocated the use of compositional methods. ⁴⁵ to analyse water quality samples. These approaches
207	acknowledge that the concentrations of constituents in a sample sum to a whole and thus artefacts
208	can arise in standard analyses because an increase in the concentration of one constituent leads
209	directly to a decrease in the concentrations of the other constituents. Also, the sum of independent
210	predictions of each constituent do not generally sum to the whole. In a compositional approach these
211	artefacts are avoided since the concentrations are transformed to relative ratios of (often log-
212	transformed) constituents or products of constituents. We do not believe that such an approach is
213	required here for a number of reasons. First, quantities such as pH, turbidity and conductivity do not
214	form part of composition and could not be included in a compositional analysis. Second, the
215	compositional properties considered in this paper are only a subset of the constituents of a sample
216	and no not include water. Thus they sum to a tiny proportion of the whole and any artefacts in other
217	constituents resulting from an increase in one constituent will be negligible. Furthermore, the primary
218	purpose of compliance monitoring is to determine whether concentrations of individual constituents
219	are above pre-specified thresholds. Breaches of these thresholds will be harder to interpret if the
1	

Phosphorus was not considered further due to the widespread practice of phosphate dosing

220	analysis is conducted in a transformed space which focuses on the ratio of concentrations of different
221	constituents of a sample rather than the magnitude of the concentrations.

223 17 parameters, data were missing for an average of 2.85% of water supply zones. The 224 statistical analysis required measurements of all parameters in all water supply zones. -Of the 17 225 parameters, data were missing for an average of 2.85% of water supply zones. Where data were 226 missing we infilled using the median value of the same parameter at other sites. The median is a robust 227 measure of the expected value that is not unduly influenced by outliers, and the proportion of data 228 requiring infilling is very small. Thus this infilling is unlikely to introduce artefacts into the eventual 229 clusters. Data were infilled for these supply zones using median values for each parameter. The mean 230 and standard deviation was calculated for each determinand spilt up by aquifer type (Chalk, Permo-231 Triassic rocks, Less productive and non-aquifers). The data were not suitable for a conventional 232 analysis of variance because they were spatially correlated and non-normally distributed. We therefore followed the approach described by Lark and Cullis ⁴⁶ to test the significance of any 233 differences in the mean values of each variable for each rock type. Briefly, we transformed the 234 observations of each variable to a normal distribution by a non-parametric (normal-scores) approach 235 236 and then estimated a linear mixed model of the transformed variable. The fixed effects of that linear 237 mixed model were categorical variables corresponding to the three rock types and the random effects were assumed to have an exponential spatial covariance function. A series of Wald tests were then 238 applied to test for significant differences in the mean value of the transformed variable for each pair 239 240 of rock types. The spatial distribution of each parameter was assessed qualitatively by developing 241 national scale maps of the determinands with the outcrop of the principal aquifers overlain. These 242 maps show the raw data across the areal extent of WSZs, with no interpolation undertaken. The 17 243 parameters were standardised and principal component analysis was applied to assess whether the 244 distribution of concentrations of these parameters can be explained by a smaller number of

245 determinands. Wwe then undertook k-means cluster analysis for k = 2 to $k = 5^{47}$ using R⁴⁸. As the 246 choice of an appropriate number of clusters is somewhat subjective, we developed a parsimonious, 247 rule based approach. We identified the smallest number of clusters which (1) produces spatially 248 coherent cluster membership at the national scale and- (2) the spatial patterns of cluster membership 249 correspond to areas of groundwater and surface water supplies-and (3) shows coherent patterns with 250 in the first 2 principal components. Using this approach, 3 clusters were identified as representing 251 drinking water provenance on the basis of groundwater and surface water at the national scale. 252 Increasing the number of clusters above 3 resulted in incoherent patterns of cluster membership. 253 Such patterns are likely to represent more local scale hydrochemical processes effecting tap water 254 chemistry which are not the focus of this national scale study.

255

256 **3 Results**

257 3.1 Database statistics and regulatory compliance

259	The database developed covers 1539 supply zones across England and Wales. Based on the
260	downloaded water quality reports a total of 3,873,941 water chemistry samples were reported in
261	2015. There are 190 unique determinands within the database. For each determinand within a WSZ,
262	a maximum, minimum and mean concentration is reported, in addition to the number of samples
263	taken in the year and the number that exceeded the drinking water limit. For each water supply zone
264	the number of determinands varies substantially. The maximum and median number of determinands
265	reported for a WSZ was 272 and 75 respectively. This wide range in the number of determinands is
266	the result of different water supply zones having different reporting requirements associated with
267	different population levels. Water companies operating water supply zones which have experienced
268	water quality problems associated with certain parameters may have a regulatory obligation to report

these parameters. This is often the case with individual pesticides, which cover 111 of 190 determinands. The sample data, however, show a high level of compliance to DWI and EUDWD standards, with 99.94% of samples compliant. This agrees well with the reported compliance statistics presented by Drinking Water Inspectorate ² for 2014 (99.96% for England).

273

274 3.2 Spatial distribution of determinands

276	In this section, the spatial distribution of concentration data for key parameters within drinking water
277	is presented. Determinands have been grouped based on similarity in their spatial distribution. Table
278	1 shows the mean and standard deviation of the determinands analysed split by principal aquifers
279	(Chalk and Permo-Triassic Rocks) and less productive aquifers and non-aquifers. Also shown are the
280	results of the significance test of Lark and Cullis ⁴⁶ . Statistically significant differences were observed
281	between the rock types for 10 out of the 17 parameters (p < 0.001, for PT-Chalk, PT-Other and Chalk-
282	Other).
283	
284	
285	
286	
287	

Determinend	Unit		Permo-triassic rocks		Chalk		Other rocks		PT - Chalk		PT - Other		Chalk - Other	
Determinand		PCV	Mean	SD	Mean	SD	Mean	SD	sign	р	sign	р	sign	р
Ammonium	mg NH4/l	0.5	0	0.01	0.01	0.03	0.03	0.06	-	0.029	-	<0.001	-	<0.001
Antimony	ug Sb/l	5	0.08	0.13	0.04	0.09	0.08	0.13	+	0.096	-	0.011	-	<0.001
Arsenic	ug As/l	10	0.57	0.95	0.27	0.44	0.4	0.48	+	0.117	-	0.221	-	0.003
Boron	mg B/I	1	0.01	0.02	0.02	0.05	0.03	0.03	-	<0.001	-	<0.001	-	0.011
Chloride	mg Cl/l	250	24.59	18.63	34.24	17.08	34.75	20.73	-	<0.001	-	<0.001	+	0.062
Chlorine	mg Cl2/l		0.38	0.23	0.28	0.12	0.38	0.21	+	<0.001	+	0.027	-	<0.001
Chromium	ug Cr/l	50	0.15	0.28	0.2	0.45	0.14	0.29	+	0.083	+	0.003	+	0.298
Conductivity	μS/cm @ 20 °C	2500	314.25	182.79	571.77	95.32	446.18	215.17	-	<0.001	-	<0.001	+	<0.001
рН	pH Units	6.50-9.50	7.5	0.26	7.41	0.16	7.55	0.25	+	<0.001	-	<0.001	-	<0.001
Nickel	ug Ni/l	20	0.79	1.04	1.07	1.69	1.22	1.11	-	<0.001	-	<0.001	-	0.01
Nitrate	mg NO3/I	50	10.83	10.68	25.26	11.07	13.45	10.58	-	<0.001	-	0.251	+	<0.001
Selenium	ug Se/l	10	0.18	0.3	0.5	0.61	0.28	0.43	-	< 0.001	-	0.009	+	<0.001
Sodium	mg Na/l	200	18.3	12.65	19.2	10.98	23.12	13.06	-	<0.001	-	<0.001	-	0.078
Sulphate	mg SO4/I	250	38.32	25.86	34.51	24.04	49.61	30.99	+	0.431	-	<0.001	-	<0.001
Total Organic Carbon	mg/l		1.03	0.71	0.94	0.58	1.62	0.84	+	0.014	-	<0.001	-	<0.001
Total Trihalomethanes	ug/l	100	26.47	13.41	12.13	8.29	24.44	11.78	+	< 0.001	+	0.897	-	<0.001
Turbidity	NTU	4	0.03	0.06	0.04	0.06	0.06	0.06	-	0.006	-	<0.001	-	0.004

Table 1 Mean and standard deviation for determinands for drinking water samples classified according to bedrock geology (principal aquifers (Permo-Triassic (PT) and Chalk) and less productive aquifers and non-aquifers). Results of the significance test of Lark and Cullis ⁴⁶ are shown in the last 6

290 columns. Positive sign indicates that the parameter is greater in the first rock type is greater than the second.

295 3.2.1 Nitrate

296

297 Figure 2 shows the spatial distribution of nitrate concentrations in drinking waters in England and 298 Wales. High nitrate concentrations are present in south and east England corresponding broadly to 299 the outcrop of the Chalk aquifer and some parts of the Permo-Triassic rocks. Analyses of drinking 300 waters from areas of the Chalk show a very different nitrate concentration distribution to those from 301 the Permo-Triassic sandstones, with higher mean values (25.2 mg/L) and samples most frequently in the 20-40 mg/L range for Chalk compared to 10.8 mg/L and samples in the 0-10 mg/L range for the 302 Permo-Triassic. Low concentrations are present where the Chalk is overlain by low-permeability 303 304 Palaeogene and superficial deposits (primarily till) in East Anglia. Areas which are shown in white 305 show returned no drinking water quality report. These areas can be considered to be where no mains 306 supply is present and drinking water is obtained from local private supplies.

- 317 not at outcrop (Figure 3). Mean Ni and Se concentrations are very low from supplies on the Permo-
- 318 Triassic and approximately double from the Chalk (Table 2).

320 321	Figure <u>3</u> 3 Selenium (a) and Nickel (b) concentrations (µg/L) in drinking water in England and Wales in 2015
322	
323	
324 325	3.2.3 TOC, Chlorine, THMs and Turbidity
326	Figure 4 shows TOC, chlorine, THMs and turbidity concentrations for drinking water in the study area.
327	Elevated TOC concentrations (of up to 3 mg/L) are measured in the northeast coast of England,
328	Anglesey, southwest England, Essex, and an area of central England around Bedford, Northampton
329	and Peterborough (Figure 4). Average concentrations in supplies located on the aquifers of the Chalk
330	and the Permo-Triassic are similar, about 1 mg/L, whereas the average for less productive aquifers
331	and non-aquifers is higher (1.62 mg/L, Table 3).

332	The highest residual chlorine concentrations are seen in northwest England (the Lake District Coast
333	and Cheshire) and parts of Wales and southwest England (Figure 4). Supplies from Chalk areas have
334	the lowest average residual chlorine (0.28 mg/L), with increasing concentrations on the Permo-Triassic
335	and on less productive aquifers and non-aquifers (0.38 mg/L, Table 3). Elevated THM concentrations
336	of up to 50 $\mu\text{g/L}$ occur in south Wales and southwest England, the Weald, easterly East Anglia and the
337	Pennines (Figure 4). Average concentrations in supplies on the Chalk are 12.1 $\mu g/L$, whereas on the
338	Permo-Triassic and less productive aquifers and non-aquifers they are in the range 24 to 26 $\mu g/L$ (Table
339	3). Turbidity values are higher in southwest England and parts of Wales (up to 0.3 NTU) than eastern
340	England (Figure 4). Average values are similar across the study area with the lowest for the Permo-

341 Triassic (0.03 NTU) and highest on less productive aquifers and non-aquifers (0.06 NTU) (Table 3).

343Figure 44 TOC (mg/L, a), THMs (μg/L, b), Chlorine (mg/L, c) and Turbidity (NTU, d) in drinking water344in England and Wales in 2015

347 3.2.4 Conductivity, chloride, sodium and sulphate

348 349

350 Drinking water conductivity is lowest along the west coast and highest in eastern East Anglia where 351 values of up to 900 µS/cm are recorded (Figure 5). Mean conductivity values are considerably higher 352 from areas on the Chalk than on the Permo-Triassic or less productive aquifers and non-aquifers (Table 353 2). Chloride concentrations follows a similar pattern to conductivity but with additional elevated 354 concentrations in Cheshire and the East Midlands (Figure 5). Mean chloride concentrations are higher 355 on the Chalk and less productive aquifers and non-aquifers (34-35 mg/L) than on the Permo-Triassic 356 (24.6 mg/L) (Table 2). Sodium also follows this pattern although average concentrations do not behave 357 similarly. Mean sodium concentrations are higher on less productive aquifers and non-aquifers (23.1 mg/L) than on the Permo-Triassic and on the Chalk (18-19 mg/L). Sulphate is also similar with less 358 359 obvious elevation of concentration in East Anglia and more in the East Midlands and Yorkshire. 360 Average concentrations are in the range 20-30 mg/L. Like sodium, mean concentrations are 361 considerably higher on less productive aquifers and non-aquifers (49.6 mg/L) than on the Permo-Triassic and the Chalk (34 -39 mg/L) (Table 3). 362

365Figure 55 Conductivity (μS/cm, a), chloride (mg/L, b), sulphate (mg/L, c) and sodium (mg/L, d) in366drinking water in England and Wales in 2015

367 3.2.5 Other factors

368

369 A small group of the 17 parameters only provide limited insight into hydrochemical processes. 370 Ammonium concentrations are slightly elevated in confined areas of the Chalk in the London area and 371 in East Anglia with some concentrations above 0.05 mg/L. Average concentrations range from 372 0.03 mg/L on less productive aquifers and non-aquifers to <LOD in the Permo-Triassic. Arsenic concentrations are elevated in a few localities, in Cheshire, and the Bristol area. Average values are 373 374 highest in the Permo-Triassic where it can be naturally occurring and lowest in the Chalk (Table 3). 375 Average antimony concentrations are very low (0.04-0.08 µg/L but also exhibit locally higher 376 concentrations in Cheshire. Boron concentrations are also very low (0.01-0.03 mg/L) with highest 377 concentrations in the Weald and in southern East Anglia.

378

379

380 3.3 Statistical analysis

381

÷.

382	Figure 6 shows the results of the principal component and c luster analysis; three spatially coherent clusters can be identified.
383	Cluster 1 comprises WSZs in the south east of England and some parts of the Midlands, with significant
384	areas overlapping the outcrop of Chalk and Permo-Triassic aquifers. Cluster 2 WSZs are located in
385	Wales and the southwest and the north of England, where there are limited groundwater resources.
386	Cluster 3 is more spatially variable, covering parts of East Anglia and the southeast, the East Midlands
387	and northeast England. In these areas there is a combination of groundwater resources (including the
388	لىكار انىكا، چازىمۇلىلىلارلارلايلىغان بەركىلىكى بەركىزار ئېلەم تارلىغان ئۆز ئېلەم تەرمان كارلانىز تەكىزار ئۇلەر <mark>بۇمەكىرىكى كەرك</mark> ىك
389	(Figure 7 Figure 6 (c)) show the differences between clusters for key determinands. Cluster 1 has high nitrate
390	concentrations and conductivity, low organic carbon, chlorine and THM concentrations in comparison
391	to cluster 2. Cluster 2 has low nitrate concentrations, conductivity, sodium and chloride
392	concentrations and higher chlorine and THM concentrations. Cluster 3 has higher conductivity,

sodium, chloride and sulphate concentrations in addition to higher boron, antimony, nickel and
selenium concentrations. Cluster 3 also has relatively low chlorination and THMs, despite higher TOC
concentrations.

significantly in terms of hydrochemistry compared to that from groundwater or surface water sources,
because it is derived from the tidal zone of the Thames and has undergone demineralisation ⁵⁰.

418

The spatial distribution of nitrate concentrations (Figure 2) shows a clear influence of both underlying 419 420 hydrogeology and land use, identifiable in cluster 1 (Figure 6). Large areas of southern and eastern 421 England obtain the majority of their supplies from groundwater ⁵¹. The high nitrate concentrations in 422 drinking waters derived from the Chalk may reflect the storage of nitrate in the thick Chalk 423 unsaturated zone and slower flushing of nitrate following changes in agricultural management practices ^{52, 53, 54, 55}. This assessment does not include areas of the Chalk where it is not at outcrop, e.g. 424 the eastern part of East Anglia where some elevated values are shown in Figure 2. Drinking water 425 426 chemistry demonstrates a residual land use/geology signature despite treatment of water for elevated 427 nitrate ⁵⁶. This is unsurprising given that nitrate removal by ion exchange is unlikely to be undertaken 428 on raw waters where concentrations are below 50 mg NO₃/L. It would be anticipated that phosphate 429 would be similarly useful were its distribution not obscured by treatment for plumbosolvency ⁴³.

430

The spatial distribution of nickel and selenium (Figure 3) reflects geochemical processes occurring as recharge occurs through overlying superficial deposits. For example, Ander, Shand ⁵⁷ showed that oxidation of sulphide minerals (e.g. pyrite) in overlying till deposits in East Anglia is the primary source of high nickel concentrations in Chalk groundwater.

- 435
- 436

Total organic carbon and other associated parameters (Figure 4) shows a clear influence of surface
water, identifiable in cluster 2 (Figure 6). Higher concentrations of total organic carbon (TOC) would
be expected to occur in areas of hard-fractured rocks or sandstones where superficial deposits may

440	be peaty and/or supplies may be predominantly from surface water ⁵⁸ . These areas correspond to the
441	predominance of surface water supply. Trihalomethanes (THMs) are a long-recognised by-product of
442	water disinfection by chlorine and result from reaction of chlorine with organic carbon ⁵⁹ . The reaction
443	is enhanced in the presence of bromide $^{60, 61}$. Higher dosing of chlorine is required in water with a
444	higher TOC content to obtain an acceptable residual chlorine concentration. In this dataset, the spatial
445	distribution of THMs shows a qualitative relationship to that of TOC (Figure 4). Although quantitatively
446	the relationship has substantial scatter ($R^2 = 0.21$), this is broadly in agreement with the findings of
447	Valdivia-Garcia, Weir ⁶² which showed dissolved organic carbon to be an important predictor variable
448	in the spatial distribution of THMs. Together these substances (TOC, chlorine and THMs) provide a
449	clear indication where water derived from surface water predominates in drinking water.

451 Conductivity and associated parameters (Figure 5) show a strong east-west spatial trend likely to be associated with recharge processes. Rainfall for England and Wales is predominantly from the 452 453 southwest with highest amounts recorded on upland areas of Wales and the Lake District and low 454 values in Eastern England, including London, East Anglia and Lincolnshire. The distribution of conductivity values appears to be inversely related to recharge 63 and therefore predominantly reflects 455 meteorological setting. High chloride concentrations in Cheshire may be associated with halite 456 deposits in the Mercia Mudstone and related salt mining activity ⁶⁴. Conductivity and the major ions 457 included in regulatory monitoring are likely to be little affected by drinking water treatment ⁶⁵ and 458 459 therefore retain their hydrological signature of the raw waters. Chloride could be augmented by 460 treatment for nitrate by ion-exchange (see section 4.2).

461

462

52 **5.2**—Impact of interventions to ensure compliance

463	Thereistelt-possibility/tratside/ficte/interventionaut/bethemedilation/bitheremponentintheraww.da/Sametypeofwdatreatmentaeverywidd/papled
464	
465	
466	5.34.2 Drinking water compliance sample data for hydrochemical
467	characterisation: An outlook
468 469	5.3.1 <u>4.2.1</u> Benefits and limitations of the methodology
470	As previously discussed, the interpretation of drinking water datasets for hydrochemistry has been
471	shown to be challenging due to mixing of water sources, treatment, the distribution network and
472	sampling point location. Nevertheless, the cluster analysis and the data discussed above clearly shows
473	that compliance samples do reveal drinking water provenance in terms of the raw water sources that
474	dominate water supply in the study area. For a number of these determinands, a relatively confident
475	interpretation of the environmental controls on the spatial trends can be made. Flem, Reimann 15
476	suggested that sampling and centralised analysis of drinking water may be an effective low cost
477	method for gaining insights into processes effecting drinking water chemistry. Building on this, here
478	we suggest that significant further understanding into these processes can be gained from analysis of
479	compliance samples. Uniform analytical, sampling and reporting standards mean that datasets from
480	different water companies can be compared. The use of compliance water company samples for
481	hydrochemical characterisation over specific centralised sampling $^{15, 21}$ for research has both
482	advantages and disadvantages. Compliance samples cover a much denser sampling network both
483	spatially and temporally than specific samples. However, the parameter range for routine samples is
484	restricted to determinands which are of concern for human health. Consequently, there are a
485	significant number of parameters which are not consistently reported which would be of significant
486	hydrogeochemical interest (e.g. alkalinity, dissolved oxygen, calcium, magnesium, potassium). As a
487	result, it is unlikely that data from compliance sampling could be used in conventional

hydrogeochemical analyses and modelling (e.g. development of Piper/Durov diagrams, PHREEQC modelling). For example, Shand, Edmunds ⁶⁶ report on baseline groundwater chemistry for England and Wales focussing on major and minor aquifers and Smedley ⁶⁷ examined UK bottled water chemistry, which tends to reflect the relatively minor aquifers. These studies, to which this work is complementary, discuss primarily major ion chemistry and a range of trace elements not necessarily represented in drinking water regulatory monitoring.

494

495 <u>5.3.24.2.2</u> Applications and further work

496

497 Drinking water compliance data have been used extensively in regulatory reporting. Detailed
498 hydrochemical analysis and interpretation of this data has never before been reported. We consider
499 there to be a wide range of potential applications of both the dataset and the analytical methodology
500 used in the research reported here.

501 The data could be used to support management decisions regarding the potential water chemistry 502 implications of raw and treated water transfers. Figure 9 Figure 8 shows the location of the clusters identified 503 in this study and suggested raw and treated water transfers¹⁴. Where transfers are between clusters, 504 addition of water of different hydrochemical typologies may have significant implications for both 505 human and environmental health. Without further water treatment, transfers of corrosive surface 506 waters into areas previously supplied by groundwater may result in dissolution of metals from water 507 mains. Where mains water leakage is significant, transfers may result in a flux of water that is 508 hydrochemically different to the water in the environment. Recent work has shown mains water leakage to be a significant source of phosphorus (P) to the environment 68, 69, 70, 71. Transfer of 509 510 phosphorus dosed mains water into an area without historic P dosing and subsequent leakage into 511 the environment could represent a significant additional source of P. The methodologyApplication of 512 the data presented in this study would be an ideal high-level screening tool to evaluate the water quality implications of water transfers at the national scale. At the level of individual transfers, substantial additional work would be required considering the water quality of both the transferred water and the current water in a supply zone, the distribution network age, material type and location.

516

517

518 Figure **<u>88</u>** Location of water supply zone clusters and suggested ¹⁴ large scale water transfers

The datasets could be reviewed in the context of national scale health datasets. The Environment and Health Atlas ⁷² provides detailed maps of both environmental agents and health conditions in England and Wales. This already includes trihalomethanes but could be extended to consider other potential environmental agents which are reported in the drinking water dataset. Drinking water in England and Wales are compliant with current regulations but such an approach could perhaps provide evidence to be used in future drinking water quality reviews.

527

528 The data collated in this study could also be compared against raw untreated water samples. This has been undertaken at a continental scale in Europe by Flem, Reimann ⁷³ but only using a small sample 529 530 of drinking waters analysed centrally rather than routine compliance samples. This would give an 531 indication of the efficiency of treatment processes. Comparison with groundwater and surface water 532 data would also give an indication of whether water lost through leakage would be significantly 533 different from the water in the environment. In some cases (e.g. phosphorus addition), leakage may 534 be a source of nutrients to the environment. In contrast, in cases where treatment has removed contaminants from the water, leakage may dilute the concentration of pollutants already existing 535 536 within groundwater or surface water.

537

In addition to the parameters reported here, there are a large number of other non-standard parameters reported on a case by case basis. The majority of these parameters (58%) are pesticides. Reporting for pesticides is risk-based and thus some determinands may only be reported for a small number of supply zones. The sporadic nature of these reports would make a statistical analysis such as the methodology presented here challenging, but an overall qualitative interpretation would be possible.

Further work could also explore changes in drinking water chemistry through time. The dataset reported in this study is for 2015. Historically water utilities have reported similar datasets to regulators back to 1993⁷⁴. A wide range of factors are likely to be controlling changes in water quality through time such as changes in source water quality, treatment processes and water source blending. Consequently unambiguous interpretation of such time series data is likely to be challenging.

549 The methodology use of compliance samples used to characterise drinking water provenance based 550 on compliance sampling is likely to be broadly applicable across much of the developed world. In 551 Europe, the EUDWD ³ requires member states to report a number of determinands. High level compliance summaries are reported by the European Commission e.g. $^{\rm 4}\!.$ In the USA, national 552 databases ^{75, 76} are available which report compliance failures. Whilst a few countries hold publically 553 554 accessible national scale databases for drinking water quality data (e.g. France, ⁷⁷), in both the USA 555 and large parts of Europe water quality data are held at the water company level. Given the high level of fragmentation in the water sector in both USA and Europe (>50,000 utilities in USA⁷⁸, >6,200 in 556 Germany alone ⁷⁹ data collation from individual companies would be an extremely labour intensive 557 558 task. Given that water utilities already report compliance data to regulators, it would be helpful if 559 regulators consistently provided these reports to the public in addition to high-level compliance 560 summaries.

561 65 Conclusions

562

This study has shown that compliance samples reveal the hydrogeochemical provenance of drinking waters for the first time at the national scale. Despite extensive modification of source waters through treatment, blending and pipework, compliance data still show a hydrochemical signature of the source waters. The integrated use of principal component and cluster analysis reveals a distinct groundwatersurface water split. The spatial distribution of a number of parameters which control this cluster

568	partition (nitrate, nickel and selenium, TOC, THMs, conductivity) can be interpreted relatively	
569	unambiguously in terms of the source water hydrogeology. The approach developed <u>used</u> in this study	
570	is low cost and utilises existing datasets. It is highly generic and can be applied anywhere where	
571	compliance drinking water sampling is undertaken. The limited range of determinands measured	
572	during compliance sampling make this approach complementary to targeted hydrochemical	
573	investigations. The datasets developed have a wide range of applications including high level	
574	screening of the hydrochemical impacts of future water transfers, assessment of the impacts of water	
575	mains leakage on nutrient fluxes into the environment and comparison with national public health	
576	datasets.	
577		
578 579	7 <u>6</u> Conflicts of Interest	
580	There are no conflicts of interest to declare.	
581 582	87_Acknowledgements	
583		
584	The authors thank the water companies of England and Wales to use their data for this research	
585	published in the public interest. All data are available publically on the websites of the water	
586	companies of England and Wales. Any opinions expressed in this paper are those of the authors and	
587	do not necessarily reflect those of any of these companies. This research was funded by the UKs	
588	Natural Environment Research Council (NERC) National Capability resources devolved to the British	
589	Geological Survey. This paper is published with permission of the Executive Director, British Geological	
590	Survey (NERC).	

592 9<u>8</u>References

593 594	1.	World Health Organisation. Guidelines for Drinking-water Quality 4th Edition. (ed^(eds) (2011).
595 596 597	2.	Drinking Water Inspectorate. Drinking water quality in England: The position after 25 years of regulation. (ed^(eds) (2015).
598 599 600	3.	European Commission. Drinking Water Directive (Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption). (ed^(eds) (1998).
601 602 603 604	4.	European Commission. Synthesis Report on the Quality of Drinking Water in the Union examining Member States' reports for the 2011-2013 period, foreseen under Article 13(5) of Directive 98/83/EC. COM/2016/0666 final. (ed^(eds) (2016).
605 606 607 608	5.	NRMMC. Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. (ed^(eds). National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia (2011).
609 610 611	6.	United States Environmental Protection Agency. Safe Drinking Water Act (SDWA). (ed^(eds) (2017).
612 613 614	7.	Qu W, Zheng W, Wang S, Wang Y. China's new national standard for drinking water takes effect. <i>The Lancet</i> 380 , e8 (2012).
615 616 617	8.	Simpson P. Water stewardship in the twenty-first century. <i>Nature Climate Change</i> 4 , 311-313 (2014).
618 619 620	9.	Committee on Climate Change. CCRA2: Updated projections for water availability for the UK. Final Report. MAR5354- RT002-R05-00. (ed^(eds) (2016).
621 622 623	10.	Environment Agency. Water Resources Planning Guideline: The Technical Methods and Instructions. (ed^(eds). Environment Agency (2012).
624 625 626	11.	Butler LJ, Scammell MK, Benson EB. The Flint, Michigan, Water Crisis: A Case Study in Regulatory Failure and Environmental Injustice. <i>Environmental Justice</i> 9 , 93-97 (2016).
627 628	12.	Flint Water Advisory Task Force. Final Report (ed^(eds) (2016).
629 630 631	13.	Liu G, et al. Potential impacts of changing supply-water quality on drinking water distribution: A review. Water Res 116 , 135-148 (2017).

633	14.	Water UK. Water resources long-term planning framework. (ed^(eds) (2016).
634 635 636	15.	Flem B, Reimann C, Birke M, Banks D, Filzmoser P, Frengstad B. Inorganic chemical quality of European tap-water: 2. Geographical distribution. <i>Appl Geochem</i> 59 , 211-224 (2015).
637 638 639 640	16.	Smedley PL, Cooper DM, Lapworth DJ. Molybdenum distributions and variability in drinking water from England and Wales. <i>Environmental Monitoring and Assessment</i> 186 , 6403-6416 (2014).
641 642 643	17.	Dinelli E, <i>et al</i> . Major and trace elements in tap water from Italy. <i>Journal of Geochemical Exploration</i> 112 , 54-75 (2012).
644 645 646 647	18.	Le Bot B, Lucas J-P, Lacroix F, Glorennec P. Exposure of children to metals via tap water ingestion at home: Contamination and exposure data from a nationwide survey in France. <i>Environment International</i> 94 , 500-507 (2016).
648 649 650 651	19.	Brima EI. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA. <i>Applied Water Science</i> 7 , 401-410 (2017).
652 653 654	20.	M. Carstea E, Levei EA, Hoaghia M-A, Savastru R. Quality assessment of Romanian bottled mineral water and tap water. <i>Environmental Monitoring and Assessment</i> 188 , 521 (2016).
655 656 657	21.	Banks D, Birke M, Flem B, Reimann C. Inorganic chemical quality of European tap-water: 1. Distribution of parameters and regulatory compliance. <i>Appl Geochem</i> 59 , 200-210 (2015).
658 659 660	22.	Patterson KY, Pehrsson PR, Perry CR. The mineral content of tap water in United States households. <i>Journal of Food Composition and Analysis</i> 31 , 46-50 (2013).
661 662 663	23.	Birke M, Rauch U, Lorenz H, Kringel R. Distribution of uranium in German bottled and tap water. <i>Journal of Geochemical Exploration</i> 107 , 272-282 (2010).
664 665 666	24.	Cidu R, Frau F, Tore P. Drinking water quality: Comparing inorganic components in bottled water and Italian tap water. <i>Journal of Food Composition and Analysis</i> 24 , 184-193 (2011).
667 668 669	25.	Demetriades A. Quality of hellenic bottled mineral and tap water as a proxy for groundwater geochemistry. <i>European Geologist</i> 35 , 9-16 (2013).
670 671 672	26.	Bowen GJ, Ehleringer JR, Chesson LA, Stange E, Cerling TE. Stable isotope ratios of tap water in the contiguous United States. <i>Water Resources Research</i> 43 , (2007).
673		

674 675 676	27.	Landwehr JM, Coplen TB, Stewart DW. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA. <i>Hydrological Processes</i> 28 , 5382-5422 (2014).
677 678 679	28.	Zhao S, <i>et al</i> . Divergence of stable isotopes in tap water across China. <i>Scientific Reports</i> 7 , 43653 (2017).
680 681 682 683	29.	Jameel Y, Brewer S, Good SP, Tipple BJ, Ehleringer JR, Bowen GJ. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area. <i>Water Resources Research</i> 52 , 5891–5910 (2016).
684 685 686 687	30.	Darling W, Bath A, Talbot J. The O & H stable isotopic composition of fresh waters in the British Isles. 2. Surface waters and groundwater. <i>Hydrology and Earth System Sciences</i> 7 , 183-195 (2003).
688 689 690	31.	Scientific American. Trump Wants Deep Cuts in Environmental Monitoring. (ed^(eds) (2017).
691 692	32.	The Independent. Massive job cuts at the Environment Agency. (ed^(eds) (2013).
693 694	33.	Acevedo M. Real-Time Environmental Monitoring: Sensors and Systems. CRC Press (2016).
695 696	34.	Environment Agency. Water Quality Archive. (2017).
697 698 699 700	35.	Stuart M, Chilton P, Kinniburgh D, Cooper D. Screening for long-term trends in groundwater nitrate monitoring data. <i>Quarterly Journal of Engineering Geology and Hydrogeology</i> 40 , 361-376 (2007).
701 702	36.	United States Environmental Protection Agency. Drinking Water Tools. (ed^(eds) (2016).
703 704 705	37.	Drinking Water Inspectorate. Guidance on the implementation of the Water Supply (Water Quality) Regulations (as amended) in England. (ed^(eds) (2012).
706 707 708	38.	Department for Environment Food & Rural Affairs. Water abstraction from non-tidal surface water and groundwater: England and Wales. (ed^(eds) (2016).
709 710	39.	Cambridge Water Company. Your Supply. (ed^(eds) (2016).
711 712	40.	Dŵr Cymru. Water resources. (ed^(eds) (2016).
713		

714 715	41.	Water Supply (Water Quality) Regulations. In: <i>S.I. 2016/614</i> (ed^(eds). Stationery Office Ltd (2016).
716 717	42.	Tabula. Tabula 1.1.1. (ed^(eds) (2017).
718 719	43.	Hayes C. Best practice guide on the control of lead in drinking water. IWA Publishing (2010).
720 721 722	44.	Buccianti A, Pawlowsky-Glahn V. New Perspectives on Water Chemistry and Compositional Data Analysis. <i>Mathematical Geology</i> 37 , 703-727 (2005).
723 724 725	45.	Aitchison J. The Statistical Analysis of Compositional Data. <i>Journal of the Royal Statistical Society: Series B (Methodological)</i> 44 , 139-160 (1982).
726 727 728	46.	Lark R, Cullis B. Model-based analysis using REML for inference from systematically sampled data on soil. <i>European Journal of Soil Science</i> 55 , 799-813 (2004).
729 730 731	47.	Webster R, Oliver MA. <i>Statistical methods in soil and land resource survey</i> . Oxford University Press (OUP) (1990).
732 733 734	48.	R Development Core Team. R: A language and environment for statistical computing. (ed^(eds). R Foundation for Statistical Computing (2016).
735 736	49.	Thames Water. Thames Gateway Water Treatment Works. (ed^(eds) (2016).
737 738	50.	Water Projects Online. Thames Gateway Water Treatment Plant. (ed^(eds) (2010).
739 740	51.	Ascott MJ. Groundwater resources in the UK. (ed^(eds) (2017).
741 742 743 744	52.	Ascott MJ, Wang L, Stuart ME, Ward RS, Hart A. Quantification of nitrate storage in the vadose (unsaturated) zone: a missing component of terrestrial N budgets. In: <i>European Geosciences Union 2015</i> (ed^(eds) (2015).
745 746 747	53.	Wang L, <i>et al.</i> Prediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great Britain. <i>Hydrol Processes</i> 26 , 226-239 (2012).
748 749 750 751	54.	Wang L, Butcher A, Stuart M, Gooddy D, Bloomfield J. The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone. <i>Environ Geochem Health</i> 35 , 667-681 (2013).
752		

753 754 755	55.	Wang L, <i>et al.</i> The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150. <i>Sci Total Environ</i> 542 , 694-705 (2016).
756 757 758 759	56.	UK Water Industry Research Ltd. Implications of Changing Groundwater Quality for Water Resources and the UK Water Industry- Phase 3: Financial and Water Resources Impact. (ed^(eds). UKWIR (2004).
760 761 762 763	57.	Ander EL, Shand P, Griffiths KJ, Lawrence AR, Hart P, Pawley J. Baseline Report Series: 13.The Great Ouse Chalk aquifer, East Anglia. (ed^(eds). British Geological Survey Commissioned Report CR/04/236N (2004).
764 765 766	58.	Worrall F, <i>et al.</i> Trends in Dissolved Organic Carbon in UK Rivers and Lakes. <i>Biogeochemistry</i> 70 , 369-402 (2004).
767 768 769	59.	Cotruvo JA. Trihalomethanes (THMs) in drinking water. <i>Environmental Science & Technology</i> 15 , 268-274 (1981).
770 771 772 773	60.	Chowdhury S, Champagne P, McLellan PJ. Investigating effects of bromide ions on trihalomethanes and developing model for predicting bromodichloromethane in drinking water. <i>Water Research</i> 44 , 2349-2359 (2010).
774 775 776	61.	Cooper WJ, Zika RG, Steinhauer MS. Bromide-oxidant interactions and THM formation: a literature review. Journal of the American Water Works Association, 116-121 (1985).
777 778 779 780	62.	Valdivia-Garcia M, Weir P, Frogbrook Z, Graham DW, Werner D. Climatic, Geographic and Operational Determinants of Trihalomethanes (THMs) in Drinking Water Systems. <i>Scientific Reports</i> 6 , 35027 (2016).
781 782 783 784	63.	Mansour MM, Wang L, Whiteman M, Hughes AG. Estimation of spatially distributed groundwater potential recharge for the United Kingdom. <i>Quarterly Journal of Engineering Geology and Hydrogeology</i> , (2018).
785 786 787	64.	Griffiths KJ, Shand P, Ingram J. Baseline report series. 8, the Permo-Triassic sandstones of Manchester and east Cheshire. (ed^(eds). Environment Agency (2003).
788 789 790	65.	Asenbaum A, <i>et al.</i> Influence of various commercial water treatment processes on the electric conductivity of several drinking waters. <i>J Mol Liq</i> 160 , 144-149 (2011).
791 792 793 794	66.	Shand P, Edmunds WM, Lawrence AR, Smedley P, Burke S. The natural (baseline) quality of groundwater in England and Wales. (ed^(eds). British Geological Survey Research Report RR/07/06 and Environment Agency Technical Report NC/99/74/24 (2007).
795		

796 797	67.	Smedley PL. A survey of the inorganic chemistry of bottled mineral waters from the British Isles. <i>Applied Geochemistry</i> 25 , 1872-1888 (2010).
798		
799	68.	Ascott MJ, Gooddy DC, Lapworth DJ, Stuart ME. Estimating the leakage contribution of
800		phosphate dosed drinking water to environmental phosphorus pollution at the national-
801		scale. Science of the Total Environment 572, 1534-1542 (2016).
802		
803	69.	Lapworth DJ, Gooddy DC, Allen D, Old GH. Understanding groundwater, surface water, and
804		hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence
805		properties of dissolved and colloidal organic matter. Journal of Geophysical Research:
806		Biogeosciences 114, G00F02 (2009).
807		
808	70.	Gooddy DC, Lapworth DJ, Ascott MJ, Bennett SA, Heaton TH, Surridge BW. Isotopic
809		fingerprint for phosphorus in drinking water supplies. Environmental Science & Technology
810		49 , 9020-9028 (2015).
811		
812	71.	Gooddy DC, et al. Mains water leakage: Implications for phosphorus source apportionment
813		and policy responses in catchments. Sci Total Environ 579, 702-708 (2017).
814		
815	72.	UK Small Area Health Statistics Unit. Environment and Health Atlas. (ed^(eds) (2016).
816		
817	73.	Flem B, Reimann C, Fabian K, Birke M, Filzmoser P, Banks D. Graphical statistics to explore
818		the natural and anthropogenic processes influencing the inorganic quality of drinking water,
819		ground water and surface water. Appl Geochem, (2017).
820		
821	74.	European Commision. SYNTHESIS REPORT ON THE QUALITY OF DRINKING WATER IN THE
822		MEMBER STATES OF THE EUROPEAN UNION IN THE PERIOD 1993-1995 (ed^(eds). European
823		Commission, (1996).
824		
825	75.	United States Environmental Protection Agency. Enforcement and Compliance History
826		Online (ECHO). (ed^(eds) (2016).
827		
828	76.	United States Environmental Protection Agency. Analyse Trends: Drinking Water Dashboard.
829		(ed^(eds) (2016).
830		
831	77.	Ministry of Social Affairs and Health. Qualité de l'eau potable. (ed^(eds) (2017).
832		
833	78.	Global Water Intelligence. Water Market: USA. (ed^(eds) (2016).
834		
835	79.	Deloitte. Water Country Profiles. (ed^(eds). Deloitte Touche Tohmatsu Ltd (2014).
836		