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Abstract

Extreme events of environmental data sets often display temporal non-stationarity. In this

paper, models are developed for peaks-over-threshold (POT) river flow data sets in which the sizes

of the events are non-stationary. Consider POT data from a single site; for event sizes which are

assumed to be stationary over time, the generalised Pareto distribution provides an appropriate

asymptotically-motivated statistical model. However, the assumption of stationarity is generally

invalid, since the stochastic behaviour of event sizes varies across years under to the influence of

other climatological processes, eg. precipitation. If observations on these underlying processes

are available, parametric and semi-parametric regression methods can be used to model the non-

stationarity. Unfortunately these underlying processes are rarely observed and, even if they are, it
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is often not clear which process, or combination of processes, should be included in the model.

We develop a regional random effects model which accounts for non-stationarity in event sizes

without the need for measurements on any underlying processes. The proposed model can be used

to predict both unconditional extreme events such as the m-year maximum, as well as extreme

events that are conditional on the value of the random effect. Further the random effects can

be used to learn about likely candidates for the underlying climatological processes which cause

non-stationarity in the flood process. The model is applied to UK flood data from 817 stations

split which are between 81 hydrometric regions.

Key words non-stationarity, flooding, random effects, spatial pooling, return levels
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1 Introduction

Extreme events extracted from environmental data sets (river floods, wind speeds, precipitation, droughts

etc) often display non-stationarity in the form of one or more of: seasonal or decadal cycles, long term

trends, inter-year variability and spatial dependence (Cox et al., 2002; Eastoe and Tawn, 2009; Katz,

2010; Chavez-Demoulin and Davison, 2012; Cooley et al., 2012). In this paper we focus solely on mod-

elling temporal non-stationarity. Such non-stationarity is often due to the variables of interest having

dependence on, and interactions with, other climate variables which themselves may interact with each

other through highly complex and non-linear systems. Non-stationarity may also be caused by human

intervention, eg. changes in land-use, or larger-scale effects of climate change. The challenge in extreme

value analysis is to make predictions of events even more extreme than those already observed whilst

accounting for this non-stationarity. The work presented here was developed specifically to address

non-stationarity in extreme river flow events, the methodology should be generally applicable to other

environmental data sets.

Changes in frequencies and magnitudes of flood events are a global concern (Easterling et al., 2000;

Merz et al., 2010) and within the UK a number of destructive flooding events have been experienced in

recent years. For example, flooding which occurred in the aftermath of Storm Desmond in December

2015 caused £400-500 million of damage, mostly in the North West of England and South West of

Scotland. Prolonged, intense rainfall led to river flooding which caused flooding of thousands of homes

and businesses, evacuations, power-cuts to tens of thousands of properties and long-term damage to

transport infrastructure. As this example demonstrates, river flooding in the UK is mostly caused by

heavy and prolonged rainfall events; non-stationarity in the duration, frequency, intensity of these rainfall

events make it unreasonable to model extreme flooding events using traditional models which assume

stationarity. Further, flooding patterns may see step-changes after alterations in land-use (Reynard

et al., 2001) eg. building on previously green land or de-forestation. However whilst there has been

recent interest in accounting for non-stationarity in flood frequency modelling (Milly et al., 2002; Salas

and Obeysekera, 2013; Serinaldi and Kilsby, 2015) there is as yet no universally accepted way to do

this.
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Figure 1: Peaks-over-threshold (POT) data for the River Eden at Sheepmount (dots) with estimated
99% quantiles for the POT sizes under stationary (central full line) and regression (central dashed line)
models. The outer lines show 95% credibility intervals for the stationary (full) and regression (dashed)
models respectively.

The common approach to modelling river floods is to use peaks-over-threshold (POT) data (Lang,

1999). Exceedances of a high threshold are extracted from daily, or hourly, river flow observations.

Exceedances which occur within short time periods are grouped into events, with the time interval

between events chosen so that events are approximately independent. The POT data set used in

this paper was collated, quality controlled and archived by the National River Flow Archive (NRFA)1.

Figure 1 shows an example of the data available at a single site, the River Eden at Sheepmount (in

Carlisle) with details of the full data set given in Section 5. Sheepmount is an urban site in the North-

West of England which was chosen for illustrative purposes as it was affected by major flooding in both

January 2005 and December 2015. Data are available for 46 years (1967–2013), with data missing for

1995 only and an average of 4.8 events per year. Figure 1 plots the peak flows as excesses over the

event identification threshold of 351.6m3s−1.

Modelling POT data of this type requires models for both the frequency and size of events. Whereas

1Details of how POT extraction was carried out for the data that we use can be found at http://nrfa.ceh.ac.uk/
peaks-over-threshold
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Eastoe and Tawn (2010) examined models for event frequencies, here we develop models for event sizes

where size is the peak flow of an event. To illustrate the difference between stationary and non-stationary

models for event sizes, Figure 1 shows two estimates for the 99% quantile. One estimate comes from a

model that assumes stationarity, and the other from a regression model which assumes a yearly trend

in one of the model parameters (further details are given in Section 3). The regression-based estimate

has been extrapolated for 20 years beyond the observation period. During the observation period there

is reasonable consistency between the two point estimates, however the quantile estimated from the

regression model continues to increase over time, gradually moving further away from the estimate

under the stationary model.

The regression-based method demonstrated in Figure 1 is limited since it is only suitable when

measurements on covariates (eg. precipitation) are available; alternative approaches are needed when

this is not the case. We propose, as one possible model for this scenario, an extension of the random

effects model for event frequencies described by Eastoe and Tawn (2010). More detail on the frequency

model is given in Section 2, but the central concept is to first specify a probability distribution to model

the count data (the ‘data model’) and then to model the parameters of this distribution as a function

of an unobserved random effect (Laird and Ware, 1982), which may change value from year to year.

The random effect, which must be estimated, can be viewed as an approximation to any unobserved

processes (eg. precipitation) which alter the expected event count for a given year. In a regression

model, the parameter of the data model is instead assumed to be a linear function of known covariates.

Whilst regression models have lower dimension, since only the coefficients for each covariate must be

estimated, the random effects models do not require measurements on covariates, nor do they impose

as rigid a structure on the way that the parameters change with these covariates.

To develop equivalent non-stationary models for the sizes of the POT events, a model for the

data must first be selected. Pickands (1975) showed that for a random variables Y with common

distribution F which has upper end-point yF , then in the limit as u → yF the excess Y − u|Y > u

follows a generalised Pareto (GP) distribution. The GP has conditional distribution function given, for
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y > 0, by

Pr[Y − u ≤ y|Y − u ≥ 0] = 1−
[
1− k

ψ
y

]1/k
+

, (1)

where s+ = max(0, s) and ψ > 0 and k are scale and shape parameters respectively. This result

holds for almost all distributions F and the value of k is determined by the rate at which the tail of

F decays. Following Davison (1984), the simplest model for POT sizes is to assume that all event

peaks are independent draws from a GP distribution. We refer to this as the stationary model. This

model, and the non-stationary extensions introduced later, are all based on the assumption that the

limiting result in equation (1) can be assumed to hold exactly for exceedances of a ‘high threshold’ u.

In the case of the UK POT data, site-specific thresholds were selected to identify the events, so we use

these thresholds for our statistical models. In many cases a threshold is not pre-specified and must be

selected by the analyst; Scarrott and MacDonald (2012) provide a comprehensive review of ways to do

this.

Smith (1989), Davison and Smith (1990) and many subsequent authors, have investigated extensions

to the stationary model in which one, or both, of the GP parameters are modelled as functions of

covariates, using either linear or smooth functions. Semi- or non-parametric smoothing models, such as

locally weighted regression (Hall and Tajvidi, 2000), generalised additive models (Chavez-Demoulin and

Davison, 2005) and vector generalised additive models (Yee and Stephenson, 2007), are less restrictive

than linear models (Davison and Smith, 1990) since the functional form of the relationship between

covariates and model parameter has many more degrees of freedom. However whilst smoothers describe

well the current behaviour of the process, they cannot be used for extrapolation into the future. A viable

alternative to both approaches is to model the GP parameters instead as functions of annual random

effects. Such a model should give similar within-sample results to the semi-parametric smoothers but,

as it is fully parametric, also allows extrapolation. Further, random effects models should be more

flexible than fully parametric regression models since they do not impose any structural constraint on

the relationship between parameters and covariates. Finally covariates need not be observed, or even
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known in order for a random effects model to be fitted.

The rest of the paper is outlined as follows. Section 2 reviews random effects methodology for

event frequencies, with new models for the POT event sizes introduced in Section 3. Model fitting

procedures are described in Section 4. Due to the hierarchical structure of the model, a Bayesian

inference approach is most natural, however this does necessitate the use of computationally intensive

Markov Chain Monte Carlo methods to draw from the posterior distributions. A detailed analysis of

the UK POT data is given in Section 5. This includes predictions made on future extreme events using

the proposed model. Finally, some observations and thoughts for future work are given in Section 6.

2 Background

2.1 Random effects model for counts

The following overview of the random effects model which Eastoe and Tawn (2010) used to model event

frequencies provides an introduction to the concept of random effects modelling which is fundamental

to the non-stationary GP models developed in Section 3. Let {Ni : i = 1, . . . , ny} denote a sequence

of annual flood counts where ny is the number of years. The simplest model for count data assumes

that the Ni are independent and identically distributed (IID) with

Ni ∼ Poisson(λ), λ > 0. (2)

The rate parameter λ is constant over time following the assumption that the counts are identically

distributed. A generalised linear modelling approach can be taken if it is thought that the mean

behaviour of the count distribution varies in response to some observed covariates. Let x1, . . . ,xny

be vectors of covariates which are observed on an annual scale e.g. annual mean precipitation. Then
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model (2) can be extended by setting

Ni ∼ Poisson(λi)

log λi = λ′xi, (3)

where λ is a vector of coefficients each of which describes the effect of a covariate on the Poisson

rate. Note that the Ni are still assumed to be independent, and the log link function ensures that λi

is always positive.

The regression model in equation (3) can only be fitted when all covariates are known and observed.

Further it enforces a fairly restrictive form on the relationship between covariate and parameter, and

hence also between covariate and expected annual count. An alternative approach is to model the rate

as a function of an unknown random effect γi which varies across years:

Ni ∼ Poisson(λγi), λ > 0,

γi ∼ Gamma(1/α, 1/α), α > 0. (4)

The unknown random effects {γi} can be viewed as an approximation to any unobserved annual-

scale covariates (eg. mean annual precipitation) which influence the flooding process. Since the

values of the γi are unknown, they must be estimated from the data, for example by specifying an

additional parametric model for the random effects. The simplest such model is to assume that the

γi are IID random variables from some pre-defined distribution, which in the above definition is the

Gamma(1/α, 1/α) distribution, and the parameter(s) of this distribution must also be estimated during

the model fit. For further details of this model, including generalisation to a point process model for

event occurrences, we refer the reader to Eastoe and Tawn (2010).
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2.2 Stationary model for event sizes

Turning now to event sizes, recall from Section 1 that a suitable model for the sizes of POT events is

the two-parameter GP distribution. For data sets of independent and stationary event sizes, numerous

methods have been proposed to estimate the GP parameters, including: method of moments, proba-

bility weighted moments (Hosking and Wallis, 1987), maximum likelihood (Davison, 1984), likelihood-

moments (Zhang, 2007), elemental percentile (Castillo and Hadi, 1997), Bayes (Coles and Tawn, 1996;

Castellanos and Cabras, 2007) and empirical Bayes (Zhang and Stephens, 2009) approaches. Each

method has advantages and disadvantages, with some being more robust when applied to small data

sets and others being more suited to heavy tailed data sets. Mackay et al. (2011) provide a thorough

review of these and other methods, as well as a comparison via a simulation study. Given the range

of choice, we choose the Bayesian framework since moments-based inference does not easily extent to

non-stationary models, and inference for random effects is more natural random effects in the Bayesian

setting than the likelihood one (see discussion in Section 4).

Let y = (y1, . . . , yn) denote event sizes from a POT data set. Assuming that the data are indepen-

dent draws from a GP(ψ, k) distribution, the posterior distribution for the parameters (ψ, k) is found

using Bayes theorem,

π(ψ, k|y) = L(y|ψ, k)π(ψ, k)

where L is the likelihood function

L(y|ψ, k) = ψ−n
n∏
i=1

[
1− k

ψ
yi

]1/k−1
+

,

and π(ψ, k) is a prior distribution on the parameters. No conjugate prior exists, so uninformative

priors are usually specified and a sampling method, such as Markov Chain Monte Carlo (MCMC)

sampling, is used to estimate the posterior distribution. Expert information about the parameters can

be incorporated via the prior distribution (Coles and Tawn, 1996); since extreme events are scarce by
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definition, this can be extremely beneficial. However it is also rare for such information to be available.

Since the GP is fitted conditional on observing a threshold excess, this conditioning must then be

undone to estimate the full marginal distribution for the tail of Y . Let φ = Pr[Y > u] then, for y > 0,

Pr[Y ≤ u+ y] = 1− Pr[Y − u > y|Y − u > 0] = 1− φ
[
1− k y

ψ

]1/k
+

. (5)

Consequently, there is now a third parameter φ which must be estimated. Assuming that events

occurrence is stationary in time, φ is estimated using the Poisson model of Section 2.1. If λ is the

expected number of extreme events per year and npy is the total number of observations per year,

then φ = λ/npy, and the probability of exceeding any level above u follows from equation (5). For

stationary data it is also common to estimate the return level rN , the level exceeded on average once

every N years. Since it follows that rN has probability of exceedance p = 1/(Nnpy), equation (5) can

be inverted to give

rp =
ψ

k

[
1−

(
1− p
φ

)]k
.

As we discuss below, it is less obvious what this quantity means in the context of non-stationarity.

3 Methods for non-stationarity

3.1 Review of existing methods

There is a substantial literature on the use of parametric and semi-parametric regression models for

extremes (see Section 1). We shall work within the parametric regression framework, first proposed in

the context of extreme value modelling by Smith (1989) and Davison and Smith (1990). These models

account for non-stationarity in the events sizes y by allowing one or both of the GP parameters to be a

linear function of covariate(s). Let xt = (xt,1, . . . , xt,p) denote a vector of p covariates corresponding

to event peak yt and let ψ = (ψ1, . . . , ψp) and k = (k1, . . . , kp) denote vectors of unknown regression
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coefficients. Then for t = 1, . . . , n,

Yt − u|Yt > u ∼ GP(ψ(xt), k(xt))

logψ(xt) = ψ′xt

k(xt) = k′xt. (6)

We refer to this as the GP regression model. For river flooding, ideal covariates would reflect both

meteorological conditions and the recent state of the catchment, eg. precipitation over the last week

and soil moisture deficit integrated over recent months.

Before considering interpretation of the model, there are several things to note about the model

implementation. Firstly, a log link function is used to ensure that the scale parameter is always pos-

itive. Secondly, the two parameters need not both include all p parameters and covariate selection,

eg. comparison of likelihood ratio statistics or Bayes factors, should be used to select the significant

covariates. Covariate effects in the shape parameter can be hard to identify and it is often assumed that

k(xt) = k. As with the stationary GP model, the parameters (regression coefficients) can be estimated

using either maximum likelihood or Bayesian inference. Recent variations on this model which we do

not investigate further include using a covariate-dependent threshold or pre-processing the data prior to

fitting the GP model. For the former: Kyselỳ et al. (2010) and Northrop and Jonathan (2011) obtain

such a threshold using quantile regression, whereas Sigauke and Bere (2017) use a cubic smoothing

spline. See Eastoe and Tawn (2009) for an implementation of pre-processing.

Now consider interpretation of the model. The regression coefficient ψj (kj) measures the effect of

the jth covariate on the scale (shape) parameter. By construction, the effect size is the same across the

covariate domain, so it is unwise to extrapolate the model beyond the observed range of the covariate.

To see why, suppose there is a single covariate xt which is the year in which observation t occurred.

Whilst it might be reasonable to assume that the scale parameter increases linearly across years during

the observation period, it is unlikely that this rate of increase will carry on indefinitely over, say, the

next century. This makes prediction of future extreme events difficult and is a distinct disadvantage of

11



regression models, further motivating the need for an alternative approach.

3.2 Random effects models

Random effects have been used to capture spatial heterogeneity in the GP parameters when modelling

precipitation (Cooley et al., 2007; Cooley and Sain, 2010; Sang and Gelfand, 2010) and wildfires

(Turkman et al., 2010). We refer the reader to Section 4 of Davison et al. (2012) for a full review of

these methods. Our model differs from these since the goal is to capture temporal, rather than spatial,

trends. We start by introducing the basic separate-site GP random effects model. Once this has been

defined, we motivate a regional model which uses a spatial pooling approach, similar to that used in

regional frequency analysis (RFA) (Hosking and Wallis, 1997; Fowler and Kilsby, 2003), to gain power

in estimating the time-varying random effects for sites with short record lengths. However, unlike in

RFA in which all data within a pre-defined region is pooled, our model has a time-varying random

effect which is shared across all sites within a region whilst all other parameters in the model remain

site-specific.

Let {Yji : j = 1, . . . , ny; i = 1, . . . , nj} denote a sequence of random variables representing the

POT event sizes for a particular site. The variable Yji corresponds to event i in year j, ny denotes

the number of years in the observation period and nj denotes the number of points in year j. The GP

random effects model is then defined for j = 1, . . . , ny and i = 1, . . . , nj as

Yji − u|Yji > u ∼ GP(ψj , k)

logψj = ψ0 + ζj

ζj
IID∼ N(0, τ), τ > 0 (7)

Further, the excesses are assumed to be independent conditional on the random effects. In this model,

the shape parameter is constant in time and the scale parameter varies randomly over years since it is

a function of the random effects ζ = (ζ1, . . . , ζny
). Inter-year variability is controlled by the random

effects parameter τ , with larger τ corresponding to greater variability. The link function ensures that
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the scale is always positive without needing constraints on either the intercept ψ0 or the random effects.

As in the Poisson model, the random effects ζ can be viewed as a proxy for unobserved climate-related

processes. There are ny + 3 parameters to estimate: θ = (τ, ψ0, k) and ζ = (ζ1, . . . , ζny
).

The UK POT data sets used in Section 5 typically have an average of 5 events per year, with sites

having between 10 and 100 years of data. Initial implementations of model (7) showed that it was

hard to identify the random effects in many of these data sets due to relatively small sample sizes

and at sites with short record lengths any signal in the estimated random effects was eclipsed by the

sampling and parameter uncertainty. This led to the development of a regional random effects model.

For the UK POT data, region refers to areas known as hydrometric regions. These regions are mostly

integral river catchments which share one or more common outlets, or occasionally multiple adjacent

catchments which have separate outlets but share similar topography. It can therefore be assumed that

any climate-related processes which influence flood sizes will act on a spatial scale that encompasses all

sites within a particular region, and so a common annual random effect for all sites within one region

is reasonable.

Let Y hsji define the ith event peak in year j at site s in hydrometric region h. Let nh be the number

of sites in hydrometric region h then, for s = 1, . . . , nh,

Y hsji − us|Y hsji > us ∼ GP(ψhsj , ks)

logψhsj = ψs,0 + ζhj

ζhj
IID∼ Normal(0, τh), τh > 0. (8)

Conditional on the annual random effects, the event peaks are assumed to be independent in both

time and space. The scale parameter intercept ψs,0 and the shape parameter ks vary freely across

sites whereas the annual random effects ζh = (ζh1 , . . . , ζ
h
nh

) and the random effects parameter τh are

common to all sites. For the UK POT data, pooling the random effects in this way increased their

identifiability, thus increasing confidence in the model fit and predictive abilities (see Section 5). The

random effects are now a proxy for any climatological processes which act at a regional scale. For any
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hydrometric region, the model has 2nh + ny + 1 parameters. Further not all sites in the region will

contribute to the estimate of the random effect for a given year; if there were no events observed at

that site in that year then there is no information on the random effect.

On a technical note, because the scale and shape parameters in the GP distribution are negatively

correlated, Chavez-Demoulin and Davison (2005) show that reparameterising the scale parameter in the

GP distribution to be ν = ψ/(1− k) leads to asymptotically uncorrelated parameters and consequently

a likelihood (posterior) surface which is easier to explore. The same re-parameterisation seemed to

help considerably in inference for the random effects model. We therefore re-parameterise the GP

distribution in equation (8) to be in terms of (νhsj , ks), placing the regional random effects directly on

the logarithm of νhsj .

3.3 Mixture model

The GP regression model defined in equation (6) and the regional random effects model in equation (8)

can be combined to create a regional mixed effects model. Let xsji denote the vector of p covariates

corresponding to the ith event in year j at site s, and let ψs by a vector of p regression coefficients

which are specific to site s, then the regional mixed effects model is defined as follows:

Y hsji − us|Y hsji > us ∼ GP(ψhsji, k
h
s )

logψhsji = ψs,0 +ψ
′
sxsji + ζhj

ζhj
IID∼ Normal(0, τh). (9)

The regression coefficients and shape parameter are site specific, with only the random effects shared

across the hydrometric region h, although this could be altered so that regression coefficients are also

shared over the region. Covariates are not restricted to be at the same spatial-temporal resolution as

the random effects, thus we could include covariates that vary within a year alongside annual random

effects and because both covariates and regression coefficients are site-specific, the random effects

account for any inter-year variability that is not already accounted for at the site-level by the covariates
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(precipitation, soil moisture etc).

For the UK POT data (see Section 5), no physical covariates are available and a simplified version

of this model is used with a single site-specific covariate xsji taken to be the year of observation j. The

scale parameter of this model has three components: intercept, site-specific annual linear trend, and

regional annual random effect. Comparison of this model with the GP regional random effects model,

allows assessment of the contributions to the inter-year variability from the monotonic linear trend and

the unobserved climate processes respectively.

4 Inference

In a likelihood framework, estimation of parameters and random effects is complicated by the fact

that the former are treated as fixed but unknown values, whereas the latter are random variables. In

a Bayesian framework both parameters and random effects are treated as random variables, which

conceptually simplifies the inference. In addition, the resulting posterior distributions provide a natural

basis for prediction (Section 4.2). Writing ν0 = (ν0,1, . . . , ν0,ns
) and k = (k1, . . . , kns

) as the vectors

of site-specific scale intercept and shape parameters respectively, the full joint posterior for the GP

regional random effects model is

π(ν0,k, τ
h, ζh|y) ∝ L(y|ν0,k, ζ

h)f(ζh|τh)π(ν0)π(k)π(τ
h). (10)

This posterior distribution combines the likelihood function for the data,

L(y|ν0,k, ζ
h) =

nh∏
s=1

ny∏
j=1

{
nsj∏
i=1

ψhsj
−1
[
1− ks

ψsj
ysji

]1/ks−1
+

}Isj

with the conditional prior for the random effects,

f(ζh|τh) =

ny∏
j=1

φ(ζhj ; 0, τ
h),
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and prior distributions for each of the parameters, π(ν0), π(k) and π(τh). In the above expressions,

nsj is the non-zero number of events in year j at site s, Isj is an indicator function taking the value 1 is

there is at least one event at site s in year j and zero otherwise, and φ(·;µ, σ) denotes the probability

density function of the Normal(µ, σ) distribution. In this paper it is assumed a priori that the parameters

ν0, k and τh are independent, with the components of each of ν0 and k also assumed to be mutually

independent. Flat Normal priors are then place on each component of ν0 and k, and on τh.

For the mixture model, the posterior is very similar, except that a prior for the regression coefficients

must be specified. The analysis conducted in this paper takes a simple uninformative prior, with all

coefficients across all sites assumed to be mutually independent, and a flat Normal prior placed on each

of the site-specific coefficients νs. Let ν = (ν1, . . . ,νns
), then the posterior distribution for the mixed

model is

π(ν0,ν,k, τ
h, ζh|y) ∝ L(y|ν0,ν,k, ζ

h)f(ζh|τh)π(ν0)π(ν)π(k)π(τ
h),

where the likelihood for the data and the conditional prior for the random effects can both be derived

from the model specification given in equation (9).

4.1 MCMC scheme

For some random effects models, including the Poisson model in equation (4), it is possible to integrate

the random effects out of the likelihood so that inference for the parameters is carried out independently

to inference for the random effects. This is not possible for either of the GP regional random effects

models. Further, for both models neither the joint nor conditional posterior distributions are available in

closed form, and so these must be estimated by sampling. Since the joint posterior distributions for both

random effects and mixture models are only known up to an unknown normalising constant, sampling

methods from the MCMC toolkit must be used (Gilks et al., 1995). In what follows, ‘parameters’ refers

to both model parameters and random effects.

MCMC sampling provides iterative schemes designed to converge to the target posterior distribution
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after an initial ‘burn-in’ period. These algorithms must be tuned to ensure both convergence, since

the length of the burn-in period is unknown, and adequate mixing (Brooks and Roberts, 1998), where

mixing means that the posterior parameter space is fully explored. Since the random effects models

have a large number of parameters, tuning is a time-consuming process and so we use an adaptive

MCMC algorithm (Andrieu and Thoms, 2008; Roberts and Rosenthal, 2009) which automatically tunes

the sampling mechanism to ensure mixing and enables inference to be automated to a greater degree

than with a non-adaptive algorithm. For us, this makes it easier to fit the model to all hydrometric

regions without needing to manually tune the MCMC algorithm each time. Despite the automation,

‘spot-checks’ of the trace plots of the parameter draws are still made for randomly chosen regions and

sites.

We considered three adaptive algorithms. The first was proposed by Haario et al. (2001) and

the second is an adaptation of the first by Roberts and Rosenthal (2009). Both algorithms allow

joint updating of all parameters, however both have additional tuning parameters which we found

made both algorithms difficult to automate. The third algorithm, an adaptive Metropolis-Within-Gibbs

scheme proposed by Roberts and Rosenthal (2009), worked much better. This algorithm updates

each parameter separately via a Metropolis-Hastings Random Walk (MHRW) step, allowing the scaling

parameter used for these updates to evolve and eventually to converge to an optimum value, resulting

in an optimal acceptance rate for each parameter.

Consider a generic parameter vector θ, with ith component θi, data y and a posterior distribution

π(θ|y). For a non-adaptive componentwise MHRW with Normal update, a scaling parameter σθ,i is

fixed in advance so that at the jth iteration of the sampling scheme, a proposed value for the parameter

θpi is simulated from the current value of the chain θj−1i using the equation

θpi = θj−1i + σθ,iZi, Zi ∼ Normal(0, 1).

The proposal is accepted with probability proportional to the ratio of the posterior density at each of the

proposed and current values; if the proposal is rejected, then θji is set equal to θj−1i . The optimal value
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of the scaling parameter σθ,i, ie. the value which gives the optimal acceptance rate (Roberts et al.,

2001), depends on the unknown parameter space. In practice, σθ,i is selected by running multiple chains

each with a different value for σθ,i and comparing diagnostics, eg. trace plots and effective sample

size. For multi-parameter models, components of the parameter vector can be updated either jointly

or sequentially at each iteration of the algorithm. For further details see Chib and Greenberg (1995).

In the adaptive version given by Roberts and Rosenthal (2009), the components of the parameter

vector are updated sequentially at each iteration, but now the component-wise scaling parameters are

adjusted by a pre-defined amount every B iterations. Adjustment depends on (i) the component-wise

acceptance rate within the preceding block of B iterations and (ii) how many blocks of B iterations

have already run. For (i), if the acceptance rate is lower (higher) than the pre-defined optimal rate,

then the scaling parameter is decreased (increased). For (ii), changes in the absolute value of the

scaling parameter decrease as the algorithm progresses. We follow Roberts and Rosenthal (2009),

taking B = 50, aiming for a component-wise optimal acceptance rate of 0.44 and setting the scaling

parameter change as min(0.01, n
−1/2
B ) where nB is the current number of blocks of B iterations.

We found the algorithm to be relatively slow, since components are updated separately, however the

increased computational burden was off-set by the speed-up in convergence due to automatic selection

of the scaling parameter.

4.2 Prediction

One common output from an analysis of extreme events is the return level curve. However under

non-stationarity, the traditional concept of a return level may be somewhat misleading. For example,

consider a process {Yt} with N -year return level rN . From the definition of a return level in Section 2,

the expected waiting time between exceedances of rN is N years. Letting npy be the number of

observations per year, eg. npy = 365 if data are observed daily, it follows that for all t,

Pr[Yt > rN ] =
1

Nnpy
.
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That is, for any t, the probability of the N -year return level being breached is (Nnpy)
−1. If the process

is non-stationary it is not reasonable to assume the existence of a value rN for which the exceedance

probability is constant in time. For example, suppose the distribution of flood event sizes changes

according to a climate regime which, for any given year, will be in one of two unknown and randomly

selected states. Intuitively, we should first define an N -year return level for each state in the climate

regime; these are referred to as ‘conditional’ return levels by Eastoe and Tawn (2009). The overall

(or marginal) return level should then account for the frequencies of the climate states. This becomes

increasingly complicated if the climate state space is continuous not discrete, there are multiple climatic

or geophysical processes involved and/or the process(es) are unobserved.

One solution is to use simulation to predict extreme events such as the m-year maximum, ie. the

largest event in m years of concurrent data. This has several advantages: simulated values can be fed

directly into numerical risk models, simulation of extreme events over different time intervals is trivial,

and interpretation of such events is no longer in terms of probabilities. By combining the GP random

effects model with a model for annual counts, eg. the Poisson random effects model of Section 2.1, it is

extremely straightforward to simulate m years of POT data. First the number of events for each of the

m years is simulated using the counts model. For the event peaks, m years of regional random effects

ζ1, . . . , ζm are then drawn from the Normal(0, τh) distribution. Given both the simulated counts and

the regional random effects, event peaks are then simulated from the GP(ψsj , ks) distribution described

in equation (8), and any summary statistic W , eg. the m-year maximum, is extracted directly. Carrying

out this procedure for multiple draws from the posterior distribution results in both a point estimate

and a credibility interval for W .

5 Analysis of UK POT data

The UK POT data set introduced in Section 1 contains POT events for 826 sites over 90 hydrometric

regions. Of these regions, 9 have only one site and so are excluded from the anaylsis, leaving 817

sites over 81 hydrometric regions. The median number of sites in a region is 7, with lower and upper
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quartiles of 3 and 12 respectively. Due to the fact that not all sites in the network were established

at the same time, the number of years of data per site varies considerably across sites. The longest

record is 159 years, with two further sites having over 100 years of data; 113 sites have over 50 years

of data, and 604 sites have 20-50 years. There is no spatial clustering evident in the record lengths,

though there is very little data in the Highlands of Scotland - possibly because the region is sparsely

populated and flooding there would have minimal impact. Some sites have missing data but since we

have no information to the contrary, we treat this as missing at random and therefore ignorable.

The adaptive MCMC algorithm discussed in Section 4 was used to sample from the joint posterior

distribution of the parameters and random effects in the GP regional random effects model. For each

region, the algorithm was run with a burn-in of 53000 iterations, after which the chains were thinned to

reduce auto-correlation by keeping only every 10th iteration. Inspection of trace plots for a randomly

selected subset of the region suggested that some could have had a far shorter burn-in. A smaller

number may have benefitted from slightly longer chains and a longer thinning lag to reduce further the

sample auto-correlation. The thinning lag selected was a compromise between computational time and

an adequate sample size.

5.1 Single regional analysis

To enable a detailed investigation of the model, and to compare the separate-site stationary, separate-

site regression, separate-site random effects, regional random effects and regional mixed models, we

first present results for a single hydrometric region. Region 76 was chosen because it contains the city

of Carlisle which lies on the River Eden (see Section 1). Carlisle experienced severe flooding in both

January 2005 and December 2015 and although it escaped the 2011 floods which affected many nearby

areas, nearby transport infrastructure was badly affected. The aftermath of the 2005 event has been

well documented in the hydrology (Neal et al., 2009; Roberts et al., 2009; Horritt et al., 2010), public

health and well-being (Carroll et al., 2009, 2010) and planning (Crichton et al., 2009) literatures.

Estimates of the shape parameter k, from the separate-site stationary GP and both separate-site

and regional random effects GP models, are shown in Table 1 for each site in the region. For most
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sites the tail becomes lighter once non-stationarity is accounted for. For this region not properly

accounting for inter-year variability in the scale parameter results in this variability being absorbed into

the shape parameter leading to a heavier tailed distribution. Uncertainty in the estimates is largest for

the separate-site random effects model. Whilst the regional regional random effects model might be

expected to have the narrowest credibility intervals due to the sharing of information across sites, there

is a trade-off between information gained and the increased number of model parameters, so this is not

always the case.

Site ID Separate-site (stationary) Separate-site (random effects) Regional
76001 -0.158 (-0.450,0.043) 0.051 (-0.279,0.350) -0.114 (-0.409,0.105)
76002 -0.080 (-0.324,0.095) -0.060 (-0.315,0.150) 0.123 (-0.112, 0.309)
76003 -0.076 (-0.289,0.081) -0.052 (-0.278,0.130) 0.131 (-0.065,0.296)
76004 -0.087 (-0.2240.027) -0.038 (-0.184,0.094) 0.085 (-0.051,0.195)
76005 -0.230 (-0.455,-0.064) -0.151 (-0.415,0.137) 0.007 (-0.205,0.177)
76007 -0.068 (-0.229,0.047) -0.045 (-0.214,0.108) 0.155 (-0.010,0.291)
76008 0.019 (-0.120,0.135) 0.049 (-0.094,0.181) 0.104 (-0.024,0.212)
76010 -0.065 (-0.238,0.052) 0.030 (-0.184,0.338) 0.014 (-0.151,0.146)
76011 -0.053 (-0.195,0.037) -0.037 (-0.184,0.086) -0.023 (-0.158,0.065)
76014 0.133 (-0.057,0.286) 0.138 (-0.058,0.296) 0.157 (-0.038,0.308)
76015 -0.101 (-0.303,0.023) -0.086 (-0.294,0.088) 0.011 (-0.195,0.158)
76017 -0.119 (-0.354,0.029) -0.040 (-0.311,0.247) 0.155 (-0.084,0.355)
76019 -0.025 (-0.276,0.138) 0.301 (-0.15,0.841) 0.045 (-0.206,0.212)
76806 -0.232 (-0.809,0.150) -0.190 (-0.788,0.247 -0.104 (-0.649,0.235)
76809 -0.039 (-0.344,0.155) -0.008 (-0.322,0.259) -0.029 (-0.329,0.169)
76811 -0.166 (-0.602,0.095) 0.097 (-0.480,0.858) -0.110 (-0.535,0.132)

Table 1: Shape parameter estimates (posterior median) for separate-site stationary, separate-site random
effects and regional random effects GP models. Numbers in brackets are 95% credibility intervals.

The posterior density for the regional random effects parameter τh is shown in Figure 2. The

posterior median (95% credibility interval) for this parameter is 0.37 (0.29, 0.47). Also shown are the

individual site random effects parameters from the separate-site random effects models, for which point

estimates lie between 0.11 to 0.52, with a cross-site median of 0.21. Sharing random effects between

sites results in an increase in the inter-year variability of the random effects and a decrease in the

uncertainty of this variability. These changes may be attributed to increased information from pooling

across sites which increases the information on the unobserved process.

Figure 3 shows estimates of the time-varying scale parameter ψs,j for each of the sites in region

76; the plot is shaded to show variability with site latitude. It is clear that the scale parameter varies
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considerably across years and this is particularly evident at sites with larger scale parameters. There

appears to be some North-South trend, with northerly sites generally having larger scale parameters.

No similar East-West trend was evident, and it is possible that the North-South pattern simply reflects

the fact that the catchments to the North are larger and therefore see bigger floods (see comment on

this below). A similar analysis of the shape parameter estimates (not shown) showed that these had

neither a North-South nor an East-West trend. Also shown in Figure 3 are the separate-site and regional

random effects model estimates of the scale parameter ψs,j for the River Eden at Sheepmount (see

Section 1). The stationary fit at this site gives ψ̂ = 136.6 (113.0, 164.3). The plots show clearly that

there is more power to describe inter-year variability when the additional assumption of shared regional

random effects is made; the regional model estimates are significantly different from each other in many

years, and from the stationary estimate in most years. The uncertainty in the separate-site model (not

shown) is far greater than that in either the stationary model or the regional model. Similar results

were seen across the remaining sites.

Separate-site regression and regional mixed models with a linear time trend were also fitted. In

the mixed model only the random effects are shared across sites, and the linear trend is site-specific.

Comparison of the scale parameters for the mixture model and the regional random effects model

show negligible differences both in terms of point estimates and credibility intervals, suggesting that

the linear trend is very weak in comparison to that of the random effects. Table 2 shows the linear

trend under both models with a regression component. Under the mixed model only three sites have a

credibility interval which does not contain zero, and in each case zero lies just below the interval and

the remaining 13 sites have no significant trend. Under the separate-site regression model, only two of

the sites have a significant trend, although the actual coefficients are similar in value to those estimated

under the mixed effects model. A comparison of the scale parameters from the regional random effects

and separate-site regression models for the River Eden at Sheepmount is shown in Figure 3. The trend

seen in the regression model is reflected in the more flexible random effects model, even though a trend

is not explicitly defined. The random effects show greater variability around the longer-term trend since

they are not restricted to change monotonically.
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Model fit was assessed through a visual inspection of quantile-quantile (QQ) plots (see Figure 10

and following section for discussion). These QQ plots suggest that all models were a good fit to the

data, with the random effects models showing the best fit due to their smoothing effect and so we move

to prediction of extreme events. Figure 4 shows, for each year in the observational period, model-based

estimates of (i) the conditional probability of exceeding the marginal 90% quantile of the observations

and (ii) the conditional 99% quantile of the peak sizes, for the River Eden at Sheepmount. Quantities

(i) and (ii) condition both on an event being above the threshold and on an event being in a given year.

Under the separate-site stationary model, the estimated exceedance probability is 0.11 (0.080,0.14) and

the estimated quantile is 742.3 (606.7,1024.8). Results for the regional mixed model are not shown

since they were almost identical to results from the regional random effects model.

There are considerable differences between estimates from the three models. Consider the separate-

site regression and random effects models; the probabilities estimated using the former appear to be

a smoothed version of those from the latter model. On the other hand, the quantiles estimated from

the random effects model do not appear to have the same increasing trend as those predicted by

the regression model, yet the magnitudes of the quantiles estimated under the two models are not

dissimilar. In contrast, estimates of both extreme probabilities and quantiles from the regional random

effects model show far more inter-year variability than the estimates from either separate-site model. It

can be concluded that both the likelihood of an extreme event, and the size of an extreme event with

a given waiting time, vary hugely from year to year; inspection of the credibility intervals (final plot in

Figure 4) suggests that these changes are not just down to random variability.

Finally, we remove the water year 2004 from the data set to assess model sensitivity to the exceptional

event of January 2005 which resulted in major flooding to parts of this region. Separate-site stationary,

regional random effects and separate-site regression models were re-fitted, with time-trend coefficients

for the latter displayed in Table 2. With this year excluded, there was a decrease in time trend

estimates at almost all sites, and at Sheepmount the coefficient is less than a fifth of what it was

with 2004 included. Figure 5 shows the conditional 99% quantile of the POT sizes at Sheepmount,

estimated from separate-site regression and regional random effects models. These results suggests
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Site ID Regression Mixed Regression w/o 2004
Separate-Site Separate-Site

76001 1.11 (-0.117,2.23) 0.765 (-0.573,2.07) 1.12 (-0.977,2.24)
76002 0.66 (-0.311,1.57) 1.10 (0.223,1.90) 0.619 (-0.339,1.56)
76003 0.549 (0.0247,1.06) 0.740 (0.17,1.33) 0.467 (-0.0355,1.00)
76004 -0.153 (-0.572,0.262) 0.0679 (-0.452,0.588) -0.190 (-0.611,0.299)
76005 0.530 (-0.204,1.29) 0.709 (-0.0368,1.45) 0.364 (-0.346,1.10)
76007 0.173 (-0.403,0.761) 0.250 (-0.377,0.903) 0.0478 (-0.488,0.613)
76008 0.238 (-0.181,0.683) 0.401 (-0.171,0.932) 0.209 (-0.209,0.646)
76010 1.07 (0.377,1.81) 0.937 (0.136,1.73) 0.902 (0.220,1.61)
76011 -0.478 (-1.07,0.11) -0.518 (-1.20,0.18) -0.535 (-1.11,0.0609)
76014 0.175 (-0.343,0.725) 0.0453 (-0.608,0.720) 0.119 (-0.399,0.677)
76015 0.261 (-0.660,1.12) 0.0201 (-0.905,0.953) 0.200 (-0.724,1.05)
76017 0.226 (-2.26,2.80) 0.104 (-1.82,2.24) 0.367 (-1.78,2.50)
76019 0.465 (-2.30,3.11) 0.747 (-1.71,3.23) 1.17 (-1.41,3.55)
76806 -0.269 (-5.72,4.46) 0.703 (-3.05,4.15) 0.657 (-4.92,5.48)
76809 2.38 (-0.329,4.86) 2.24 (-0.29,4.55) 2.80 (0.104,5.11)
76811 -3.09 (-6.77,1.77) -1.27 (-4.56,2.93) -2.45 (-6.51,2.56)

Table 2: Coefficients for linear trend in the separate-site regression and regional mixed models. Years
were standardised by the observed range prior to fitting the model to improve stability in the model
fit. Third column shows the same coefficient for the separate-site models, but with water year 2004
removed.

that the regression model is most sensitive to the exceptionally large event in January 2005; once this

is excluded the predicted return level is approximately stationary over the observational period. By

contrast, predictions under the regional random effects model for the remaining years are unchanged

by the exclusion of 2004.

5.2 Full UK analysis

We now fit the regional random effects model to all regions in mainland UK. The mixed model is

not implemented as the above case study suggests that, at least when no climate-related variables are

available, it performs no differently to the random effects model. Plots of the random effects parameter

τh are given in Figure 6 show evidence for inter-region variability in the parameter and, although

there is no evidence for spatial trends, many neighbouring sites do seem to have similar values for τh.

Figure 7 shows the site-specific scale intercept νs,0 increasing with increased DPLBAR (a measure of

the catchment size), reflecting the fact that larger catchments will generally have capacity for larger

floods. There is also some evidence that sites in the North and West of the country have a higher

ν0,s than sites with an equivalent catchment size in the South and East; this is not unexpected since
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Northern and Western areas of the UK suffer most from winter storms originating over the Atlantic.

Similar plots for the shape parameter ks (not shown) suggested no relationship with either catchment

size or latitude/longitude. Impact on the shape parameter of the random effects can be seen in Figure 8.

In contrast with region 76, generally inclusion of random effects seems to result in a heavier tail.

Estimated random effects are shown in Figure 9 for 1967, 2000 and 2006. These years were

chosen as extensive flooding occurred at some point during the year in at least one region. High

(low) random effects tend to cluster across neighbouring regions, again illustrating the flexibility of the

model: although there is no term in the model to enforce this clustering, it can still reflect that in some

years the scale parameter is larger (smaller) across multiple hydrometric regions. The advantage of not

incorporating larger-scale spatial homogeneity is that the extent of this homogeneity is not pre-defined;

the disadvantage is that we cannot make use of it for predictive purposes.

Standardised QQ plots were inspected for model fit at a random selection of sites with four such

plots are shown in Figure 10, for sites in north-west England, south-west Scotland, eastern England

and south-west England. The fit is good at all sites, with the possible exception of the Scottish site for

which the model over-predicts the highest value. This observation corresponds to an event in December

1994 which caused the worst flooding ever seen in this region, which may explain the poorer fit. The

smoothing effect of the model is reflected in the smoothness of the QQ plots; QQ plots from the

stationary model are far more jagged.

Estimated exceedance probabilities at all sites are shown in Figure 11 for 1969, 2000 and 2005. As in

the previous section, these are the model-based probabilities of exceeding the site-specific 90% quantile

v calculated from the observed POT data, and are conditional on being above the POT modelling

threshold. High (low) exceedance probabilities cluster spatially, with this clustering often extending

over multiple hydrometric regions. The plots show that in 2006 the most extreme events were relatively

localised occurring mostly in Yorkshire and Lincolnshire, whereas in 1967 and 2000 extreme events were

seen over a much wider area. Similar plots (not shown) for higher quantiles v show that more extreme

events tend to be more localised.

Finally, the posterior distributions of the m-year maxima were simulated for m = 10, 50, 100. These
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maxima correspond to the size of the largest event that might be expected in m years, and are not

the same as m-year return levels. The distribution for the m-year maxima was obtained by simulating

m years of POT events from each of 10000 draws from the posterior distribution of the parameters.

Using a different seed for each simulation enables integration over simulation uncertainty, which should

anyway be small relative to data and parameter uncertainty. Since this simulation requires a model for

event frequencies, the Poisson random effects model given in equation (4) was used.

Posterior distributions of the 10-, 50- and 100-year maxima for the River Eden at Sheepmount are

shown in Figure 12. Point estimates for each of these quantities are 937 (675,1562), 1196 (899,1929)

and 1306 (992,2098). Both point estimates and plots are consistent with the data. The largest

observed data point over the 47 year observation period is 1164, which lies just under the estimated

50-year maxima, and the five largest observations lie above the 10-year maximum with the sixth largest

lying just below it. As expected the uncertainty in the estimates increases with the size of the block,

reflecting the increase in extrapolation, and the posterior distributions for all the maxima have heavy

upper tails, again because of extrapolation uncertainty. Such plots allow visualisation of the kinds of

extreme event that might occur once every m years after allowing for inter-year variability.

6 Discussion

We have introduced a GP-based model for non-stationary POT event sizes by assuming that inter-year

variability in the scale parameter of the GP distribution varies is due to dependence on one or more

unobserved climate-related process. Existing methods based on parametric or semi-parametric regression

models cannot be used since the process(es) are unobserved. Instead both the process itself and its

effect on the scale parameter are estimated within a random effects modelling framework. Estimation is

possible by assuming that the unobserved process(es) can be approximated by an annual random effect

which is modelled as an independent sample from some underlying probability distribution. To help

identification of these random effects, it is further assumed that, for any given year, all sites within a

particular hydrometric region share a common random effect. Such a model is physically justified, since
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the sizes of these regions relative to the scale of the surface pressure systems which generate storm

events allow the assumption that sites within a region also share a common climatology.

Unlike regression models, the estimated random effects, which can be viewed as a proxy for annual

precipitation or some other climate index, can be used to help scientists to look for suitable physical

processes to use in a regression model. The random effects model does not place as strong an assumption

on the functional form of the model parameters as a fully parametric regression model, allowing greater

modelling flexibility, and unlike semi-parametric regression models, can be used to simulate forwards in

time hence enabling predictions of the future.

Under the random effects model, it is straightforward to produce estimates of tail probabilities and

quantiles for the conditional distribution of POT sizes, where conditioning is on being above the POT

modelling threshold. To obtain the equivalent unconditional estimates, a model for event frequencies,

such as those in Eastoe and Tawn (2010), is required. Predictions for unconditional extreme events

can then be obtained by simulation (Sections 4.2 and 5). When making predictions using a parametric

regression model it is possible to make predictions for a particular year if covariate values for that

year are known. A conditional prediction can only be made using the random effects model if we are

willing to assume what the value of the random effect will be for that year; it is not possible to obtain

conditional predictions automatically, since the model has no way of predicting whether the unobserved

process (random effect) will be high or low in that year. Conversely, it is much easier under the random

effects model to predict unconditional events such as the m-year maximum since the distribution of the

(unobserved) process follows from the model.

We now outline possible extensions to the current work, all of which are beyond the current scope,

but are worthwhile future projects. The random effects model presented here makes two strong as-

sumptions: (i) that the distribution of the random effects remains the same over time, and (ii) that the

random effects are uncorrelated over time. For many climate-related processes the former is unlikely

since many processes show decadal cycles or long term trends. It is also possible that the process may

be correlated, at least at short time lags. Building non-stationarity into the random effects distribution

is non-trivial, and requires extra assumptions. The simplest approach would be to incorporate decadal
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cycles, change points or time-trends into the mean of the random effects distribution using linear re-

gression. An alternative is to model the mean as a function of a Gaussian process or a dynamic linear

model (Huerta and Sansó, 2007). The Gaussian process would explicitly allow for autocorrelation in the

random effects, whereas the simpler approach of including a decadal cycle would explain autocorrelation

only if the dependence were caused by similarities in the random effects of the model.

The model as proposed does not fully exploit the spatial structure of the data since it is assumed that,

conditional on the regional random effects, the sites are mutually independent. This is unlikely to be the

case, particularly for sites in the same catchment. Extensions could model spatial structure in the GP

parameters using Gaussian processes (Cooley et al., 2007; Cooley and Sain, 2010; Sang and Gelfand,

2010; Sharkey and Winter, 2017), or in the regional random effects parameters using a conditional

autoregressive (CAR) prior (Besag et al., 1991). Alternatively, it may be possible to model the extremal

dependence in the data directly using a multivariate extreme value model. One difficulty with the latter

approach is that extreme events do not always occur simultaneously across neighbouring sites. A third

possibility would be to extend the ‘magnitude adjustment’ of the independent log-likelihood (Ribatet

et al., 2012; Sharkey and Winter, 2017) to the case of temporally non-stationary data.
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Figure 2: Regional random effects parameter τh for region 76: posterior density (left) and comparison
of regional estimate with separate-site estimates (right). Vertical lines on the posterior for τh show
posterior median (centre) and 95% credibility interval. On the right-hand plot, vertical lines show 95%
credibility intervals for the separate-site models. Horizontal lines show estimate (full line) and 95%
credibility intervals (dashed lines) for the regional model.
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Figure 3: Top: scale parameters for the River Eden at Sheepmount from the regional (full line) and
separate-site (dashed line) random effects models (left), and the regional random effects (full line) and
separate-site regression (dashed line) models (right). Shaded regions indicate 95% credibility intervals
for the regional model (left) and the separate-site regression model (right). Bottom: Scale parameters
ψs,j as a function of water year for each of the sites in region 76 estimated using the GP regional
random effects model. Shading indicates latitude, with more northerly sites given a lighter shading.
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Figure 4: Model-based estimates for Sheepmount of the probability of a POT event exceeding
328.8m3s−1, ie. the 90% quantile of the observed POT data (top left) and the 99% quantile of
the POT event sizes (top right). Estimates from: separate-site time-trend (dotted line), separate-site
random effects (dash-dot line) and regional random effects (full line) models. Bottom plot shows the
quantile estimates from the regional random effects model with 95% credibility intervals.
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Figure 7: GP site specific scale intercept νs,0 plotted against the logarithm (ln) of DPLBAR, a measure
of catchment size. Points shaded according to Easting (left) and Northing (right); darker points are
further West and North respectively.
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Figure 8: GP shape parameter for the regional random effects and separate site stationary models. Gray
line shows the line y = x.
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Figure 9: Regional random effects for 1967 (top left), 2000 (top right) and 2006 (bottom). Darker
(lighter) regions have larger negative (positive) random effects. White regions had no observations that
year.
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Figure 10: QQ plots for the regional random effects model for four stations. Clockwise from top left:
R. Eden at Sheepmount (NW England), R. Camel at Camelford (SW England), R. Don at Doncaster
(E England) and R. Kelvin at Killermont (SW Scotland). Dashed lines show 95% credibility intervals
and gray line shows y = x.
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Figure 11: Conditional probabilities pv of exceeding the site-specific empirical 90% quantile v in 1967
(top left), 2000 (top right) and 2006 (bottom). Darker shading indicates a higher probability. In all
cases, probabilities are conditional on exceeding the POT modelling threshold and the 99% quantile is
calculated using all POT data at the site assuming stationarity.

36



●●●●●●●●●●0.0000

0.0005

0.0010

0.0015

0.0020

1000 2000 3000 4000

Flow

P
os

te
rio

r 
D

en
si

ty

Figure 12: Posterior distribution of the 10- (black), 50- (dark gray) and 100-year (light gray) maxima
for the River Eden at Sheepmount. Points show the largest 10 events over the observation period
(1967–2013, with one missing year).
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