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Abstract

Tidal flow velocity asymmetry (FVA) plays a crucial role in residual sediment

transport and has been shown to impact significantly on the amount of tidal energy

that is technically extractible by tidal-stream turbines (TSTs). TSTs are known to

alter tidal hydrodynamics locally, and large arrays of turbines do this on regional

scales. However, less is known about the effect of TSTs on the FVA. This thesis

explores changes to the FVA and therefore the shallow-water tidal constituents

resulting from the deployment of TSTs. Numerical experiments in a uniform

rectangular channel were undertaken, using the MIKE21 software package. The

effects of single TSTs and multiple TSTs on tidal hydrodynamics were simulated,

as well as those of a single TST on sediment transport. Flood-ebb asymmetry in

the spatial distribution of current attenuation by the turbines altered the FVA. The

overall attenuation of the current led to predictable changes in the total available

tidal energy per tidal cycle, and the gross volume of sediment transported. The

attenuation of the current by the TSTs was of greater importance to these aspects

of the environment than any changes to the FVA that they caused. Changes in the

FVA led to changes in the flood-ebb asymmetry of the available power, and the

net volume of sediment transported, and were of far greater importance than the

overall attenuation of the current in these respects. Multiple turbines deployed in

a line along the channel, such that their areas of effect overlapped, had an additive

effect on the FVA. When deployed as a row across the channel width, the total

area affected by the turbines remained similar to that of a single turbine, so long

as an inter-turbine spacing of at least three turbine diameters was maintained.
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Chapter 1. Introduction

Chapter 1

Introduction

This thesis is concerned with the extraction of energy from the natural tidal motions

of the sea, specifically their kinetic, or “tidal-stream” energy. It reports research

carried out using numerical models, and focuses on potential environmental impacts

of this extraction. In this chapter, the wider concept of marine renewable energy is

first introduced, in the context of its potential to meet the future energy demand in

the UK relative to other renewable sources (§1.1). This is followed by a review of the

current state of the tidal-stream industry (§1.2) and a review of the environmental

impacts related to its development (§1.3). Having given this broad context, the

structure of the rest of the thesis is outlined (§1.4).

1.1 Case for Tidal-Stream Energy

The UK Climate Change Act [2008] established the world’s first legally binding

climate change target, with the aim of reducing the UK’s carbon emissions to 20% of

the 1990 baseline value by 2050. One of the “common messages”, identified through

exploration of different strategies to meet this target in the 2050 Pathway Analysis

was that decarbonisation of the electricity supply is required [H.M. Government,

2010]. At about the same time, the European Union set a target of 20% of energy

consumption from renewable sources by 2020, within which the UK target is 15%

by 2020 [European Union, 2009], which at the time of writing still applies to the

UK. In response to this directive, the UK published a national energy plan in which

“purely illustrative” targets of 30% renewable electricity, 12% renewable heat and
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10% renewable transport were outlined. This has since been confirmed as “the

UK’s plan” by then Secretary of State for Energy and Climate Change Amber

Rudd [Energy and Climate Change Committee, 2015].

In the latest Digest of UK Energy Statistics, for 2016, it was reported that 8.9%

of UK energy consumption came from renewable sources [BEIS, 2017]. Renewable

sources made up 24.6% of total electricity generation, renewable heat made up

6.2% of overall heat, and energy from renewable sources in transport made up

4.5% of total energy consumption. According to this report, the UK is on track

to “comfortably exceed” it’s target of 30% of electricity generation by 2020 [BEIS,

2017], a view echoed by the National Grid [2016]. However, the National Grid are

less optimistic about heat and transport, stating:

“While we believe the electricity sector can achieve its contribution to

the 2020 renewable targets, we believe the progress required in the heat

and transport sector is beyond what can be achieved on time. As a result,

none of our [future energy] scenarios achieve the 15 percent [of energy

consumption met by renewable sources] level by the 2020 date.”

– National Grid [2016], p. 135

The best- and worst-case scenarios from the National Grid [2016] estimate the

15% target being met in 2022 and 2029 respectively, with the best-case scenario

being the only scenario to meet the 2050 deadline on time. In order to meet the 2050

target in this best-case scenario the electricity sector requires 100% decarbonisation

(i.e. 100% of electricity from renewable sources). In all of the National Grid

scenarios from 2016 [National Grid, 2016], and again from 2017 [National Grid,

2017] marine energy (tidal-stream, tidal-range, and wave combined) made up only a

very small part of the energy mix. This is despite the significant amount of energy

contained within the seas surrounding the UK.

For the M2 (principal lunar) tide, Cartwright et al. [1980] estimated that tidal

energy flux from the open ocean into the seas around Great Britain is 250 GW.

Robinson [1979] calculated the M2 accounts for >80% of the energy flux in the

Celtic sea. Assuming this applies to the other seas surrounding Great Britain, then

the total tidal energy flux into the seas around Great Britain is jT ∼ 313 GW . This
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is approximately an order of magnitude larger than the electricity consumption of

the UK, CE ∼ 35 GW, and of the same order as the total energy consumption of

the UK, CN ∼ 236 GW [ENERDATA, 2017]. Although jT is not a good indication

of the practical extractable resource, the ratio jT/CN = 1.33 hints at the potential

importance of the tide as an energy source in the UK. This is an energy source as

yet largely untapped, both in the UK and worldwide.

The energy in the tide may be converted into electricity using turbines rotated

by the movement of water caused by the tide. There are two methods of doing

this, one of which is suited to areas of high tidal kinetic energy, and one suited

to areas of high tidal potential energy, splitting the tidal resource in to two parts,

namely the tidal-stream resource and the tidal range resource respectively. In some

regions the passage of the tide is constricted as it passes through channels between

two islands, or an island and a headland, or as it passes around a headland. In

these regions large tidal currents occur and a turbine may be placed directly in the

flow in order to generate electricity. In other regions such as bays and estuaries

resonance effects amplify the tidal range. In such regions barrages or lagoons can

be used to trap the tide, causing a pressure head difference to occur. The trapped

water can then be released through turbines to generate electricity.

Technological restrictions, i.e. limits on maximum/minimum depth and mini-

mum velocity for tidal-stream energy extraction, mean that only a small fraction of

the tidal resource may be extracted. Current tidal-stream technology, so-called first-

generation devices, operate in waters 25–50 m deep with peak currents ≥ 2.5 m/s

[Iyer et al., 2013]. The area of British seas meeting these criteria is 1450 km2 [Lewis

et al., 2015], approximately 0.19% of the UK Exclusive Economic Zone (EEZ),

excluding overseas territories. As such the total estimated tidal-stream resource is

1.9 GW, only 0.6% of the estimated total tidal energy flux into British waters. Next

generation devices will aim to operate in both deeper and shallower waters and for

lower currents. Lewis et al. [2015] in their study for the Irish sea found that moving

to a “second generation” device where the peak current requirement was reduced to

≥ 2 m/s increased the tidal-stream resource by a factor of 6. Multiplying the UK

wide resource by this factor1, the second generation tidal-stream resource increases

1This factor is not necessarily applicable UK wide but has been used here for purely illustrative
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to 3.6% of the estimated tidal energy flux into UK waters, 32.6% of UK electricity

consumption or 4.8% of total UK energy consumption.

In addition to the tidal-stream resource the estimated UK tidal range resource

is 4.6 GW2 [Crown Estate, 2013] and the estimated UK wave resource is 26 GW,

with a practical resource of 8 GW [Crown Estate, 2013]. Taking the practical UK

wave resource, the approximate combined UK tidal and wave resource is 14.5 GW,

or ∼41% of the 2016 UK electricity demand. Given the local (UK) and global

trend of increasing electricity demand [BEIS, 2016, 2017, ENERDATA, 2017], and

that future UK electricity supply will need to be 100% renewable in order to meet

the government’s 2050 target [National Grid, 2016] this considerable, and as yet

largely untapped resource could play an important role in the UK’s energy future.

As a comparison, in the UK, insolation (amount of solar energy reaching a

given area) varies over the year and with latitude, as it does globally. Burnett

et al. [2014] calculated the average UK annual solar resource to be 101.2 W/m2.

Multiplying this by the area of the UK gives a total theoretical resource of 24.5 TW,

approximately two orders of magnitude larger than the tidal energy flux into UK

waters. Taking the Photovoltaic (PV) cell efficiency to be 20%, the total marine

energy resource is the equivalent to ∼0.29% of the UK land area covered by PV

cells (∼703 km2, or about the area of Anglesey completely covered by PV cells).

It was seen above that the marine renewable energy resource is small in compar-

ison to the solar resource. However, one of the chief advantages that tidal energy

generation holds over other renewable sources, such as solar, or even wave, is its

predictability. The tide is forced by the Sun and the Moon and varies with a set of

fixed periodicities originating from the orbital periodicities of the Earth-Moon-Sun

system (this is discussed further in Chapter 2, §2.1). As such, once the relative

strength of the periodicities at a site are known, one can predict reasonably ac-

curately the variation of that resource over any given day in the future3. This

purposes.
2This figure has been arrived at by summation of the Annual energy output of tidal barrage

schemes taken from the literature in Crown Estate [2013], Appendix C, Table 1.
3Wave-tide interaction, tide-surge interaction and rising sea-level may all impact on the tidal

resource, and all three topics are areas of on-going research (e.g. Hashemi et al. [2015], Lewis

et al. [2017], Chen et al. [2017] etc.).
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characteristic of tidal energy makes it extremely useful in terms of supply of energy

to the grid. Although it is not completely free of the issue of intermittency faced

by renewable sources, as at times no energy will be generated (around slack water

for tidal-stream) and at other times more energy than required may be generated.

But this intermittency is at least known well in advance, and in the case of tidal

range developments there is the potential for energy storage [MacKay, 2007, 2009].

Above tidal energy has been introduced in the UK context, and in the context

of electricity demand and the potential of tidal energy, and specifically tidal-stream

energy, to meet this demand relative to other renewable sources. In summary, first

generation tidal-stream energy has the potential to meet 5% of 2015 UK electricity

demand, a significant fraction. Moreover, the total UK marine energy resource

(tidal-stream, tidal range and wave) could meet ∼ 41% of the 2015 UK electricity

demand. The realisation of this resource faces many challenges, in for example

deployment and maintenance, and potential environmental impacts. The last of

these points will be expanded upon in §1.3.

1.2 The Tidal-Stream Industry in the UK

The history of tidal power in the UK considerably pre-dates the existence of the UK

itself, tidal mills having possibly been operational in the 11th century [Minchinton,

1979] and maybe even in Roman Britain [Spain, 2002], thus pre-dating even the

constituent states of the UK by several centuries. These historical tidal mills would

have been used primarily for milling grain, operating in a fashion similar to mills

exploiting riverine flows, but also using sluices to trap the tide [Minchinton, 1979].

The use of the tide to generate electricity anywhere in the world did not occur

until some nine centuries later4, with the completion of the La Rance tidal power

station in 1966, the world’s first tidal range power station.

In the UK, the effective birth of tidal energy extraction occurred in 1994, when

the world’s first tidal-stream turbine, a 10 kW system, was tested on Loch Linnhe.

This provided the proof of concept for tidal-stream energy generation [Fraenkel,

4The principle of electromagnetic induction was discovered in 1831 by Michael Faraday, and

steam-powered dynamos employing this principal have only been used to generate electricity at

industrial scales since the Gramme machine in 1871 [Urbaninsky, 1896].
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2010]. Following this, Marine Current Turbines Ltd. (MCT) deployed a pilot-scale

300 kW device, called “Seaflow”, near Lynmouth, Devon, in 2003 [Marsh, 2004].

This was followed by MCT’s 1.2 MW “SeaGen” turbine deployed in Strangford

Lough, Co. Down, which came online in 2008 [Fraenkel, 2010]. This turbine was the

world’s first operational commercial-scale tidal-stream turbine, and was operational

until 2017, when it was decommissioned. The most recent development in the UK

tidal-stream industry is the completion of phase 1A of the “MayGen” project in

February 2017, which saw 4 1.5 MW rated turbines deployed in the inner sound of

Stroma in the Pentland Firth [Atlantis Resources Ltd., 2017a].

The MeyGen project is currently the largest planned tidal-stream project in the

world and is being developed by Atlantis Resources Ltd., who in 2015 purchased

MCT from Siemens, acquiring all technology, staff seabed rights and the SeaGen

project in Strangford Lough [reNEWS, 2015]. The MeyGen project consists of

multiple phases: phase 1A, which is currently operational, consists of four 1.5 MW

rated turbines, phase 1B consists of a further four 1.5 MW turbines, in phase 1C

an additional forty-nine 1.5 MW turbines will be deployed [Atlantis Resources

Ltd., 2017b]. The project consists of a further two phases, phase 2 which will take

the project to the current grid capacity at the site of 252 MW (equivalent of an

additional 111 1.5 MW turbines), and phase 3 which would upgrade the sites grid

capacity and take the project up to the lease capacity of 398 MW (equivalent to

an additional 97 1.5 MW turbines).

Many other sites around the UK have been leased from the Crown Estate by

tidal-stream developers. Tables 1.1 & 1.2 list tidal-stream projects planned for

Scotland and the rest of the UK respectively. These developments amount to

507 turbines UK-wide, supplying ∼570 MW (∼1.6% of UK electricity demand).

These numbers do not include the second and third, as-yet un-planned phases of

the MeyGen project, and similarly, some other large developments, such as, for

example, the Ness of Duncansby, are also not included.
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1.3 Potential Environmental Impacts Related to

the Development of the Tidal-Stream Indus-

try

Tidal-stream energy projects may impact on the marine environment. The distinc-

tion between effects and impacts is made by Boehlert and Gill [2010], who define

impacts as the consequences of the “severity, intensity or duration” (Boehlert and

Gill [2010], p. 71) of the effects that the deployment, operation and decommission-

ing (henceforth collectively referred to as development) of Tidal Stream Turbine

(TST)s have on the marine environment. It is helpful when discussing the effects

of TST developments to do so in terms of environmental stressors and receptors, a

method employed by both Boehlert and Gill [2010] and Polagye et al. [2010].

Environmental stressors are defined as any aspects of TST developments that

affect the environment. Their identification needs to include their spatial and

temporal extents [Boehlert and Gill, 2010]. Receptors are the aspects of the marine

environment that may be affected by stressors [Polagye et al., 2010]. The effects of

Offshore Renewable Energy Developments (OREDs) are discussed by Gill [2005].

These effects can be summarized loosely as:

• the disruption to the marine environment at all stages of development due to

the resuspension of sediment

• increased turbidity

• the mobilization of contaminants contained within sediment and the resus-

pension of organic matter contained within sediment

• the alteration of local water movements due to the presence of the devices

• loss of habitat during decommissioning if devices are colonized during their

deployment

• increased marine noise associated with all stages of development

• the presence of electromagnetic fields associated with power cables

• the potential for direct collision of marine fauna with devices
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Table 1.1: List of tidal-stream energy developments around Scotland. Information

take from UKRED Marine Map.

Site Owner(s) Developer
No. Total

Turbines Power [MW]

Mull of Galloway Atlantis Resources Ltd. (100%) - 30 30

Sanda Sound Oceanflow Energy Ltd. (100%) - 1 0.04

Mull of Kintyre Nautricity Ltd. (100%) - 7 3.5

Atlantis Resources Ltd. (92%);

Sound of Islay
ScottishPower Renewables (6%); ScottishPower

8 12
Dredging, Environmental & Marine Renewables

Engineering (2%)

West Islay

Tidal Energy DP Energy (100%) - 30 30

Farm

Wave Net
Albatern Ltd. (100%) Albatern Ltd. 6 0.45

Array

SeaGen Kyle
Atlantis Resources Ltd. (100%)

Atlantis Resources
4 8

Rhea Ltd.

MeyGen Atlantis Resources Ltd. (86.5%);
MeyGen Ltd. 57* 85.5*

Pentland Firth Scottish Enterprise (13.5%)

Atlantis Resources Ltd. (92%);

Ness of ScottishPower Renewables (6%);
- In Planning

Duncansby Dredging, Environmental & Marine

Engineering (2%)

SeaGen
Atlantis Resources Ltd. (100%) - 66 99

Brough Ness

Brims Tidal OpenHydro (50%); Brims Tidal
200 200

Array SSE Renewables (50%) Array Ltd.

Westray
DP Energy (100%) DP Energy In Planning

South

Lashy Sound Scotrenewables Tidal Power Scotrenewables
15 30

Ltd. (100%) Tidal Power Ltd.

Shetland Tidal
Nova Innovation Ltd. (100%)

Nova Innovation
6 0.6

Array Ltd.

Bluemull North Yell Development Council Nova Innovation 1
0.03

Sound (100%) Ltd.
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Table 1.2: List of tidal-stream developments around the rest of the UK.

Information taken from UKRED marine map.

Site Owner(s) Developer
No. Total

Turbines Power [MW]

England

Portland Bill Atlantis Resources Ltd.
- 30 30

Tidal Site (100%)

Northern Ireland

DP Energy (50%); Dredging, Fair Head

In PlanningFair Head Environmental & Marine Tidal Energy

Engineering (50%) Park Ltd.

Minesto

Strangford Minesto AB (100%) - 1 0.03

Lough

Seagen

Strangford Atlantis Resources Ltd. (100%) - 20 20

Lough Array

SeaGen

Strangford Atlantis Resources Ltd. (100%) Sea Generation Ltd. Decommissioning

Lough

Wales

Bardsey Sound Nova Innovation Ltd. (50%);
- In Planning

Tidal Array Ynni Llŷn (50%)

Holyhead Deep Minesto AB (100%) - 20 10

Ramsey Sound Tidal Energy Ltd. (100%) - Inactive

SeaGen Anglesey
Atlantis Resources Ltd. (100%) - 5 10

Skerries

St. David’s Head
Tidal Energy Developments Tidal Energy Develop-

Inactive
South Wales Ltd. (100%) ments South Wales Ltd.

These effects, and additional considerations are laid out in terms of environmental

stressors by Boehlert and Gill [2010] and Polagye et al. [2010] as;

• the physical presence of the devices

• the dynamic effects of the devices

• chemical effects (resulting from biofouling and increased marine traffic)

• acoustic effects

• electromagnetic effects
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• energy removal

The associated environmental receptors are;

• the near-field physical environment

• the far-field physical environment

• the benthic environment

• the pelagic environment

• migratory fish

• resident fish

• marine mammals

• seabirds

• ecosystem interactions

As a measure of the relative importance of the stressor-receptor interactions one

can use risk, which “can be defined as the likelihood of an adverse outcome from an

action and can be evaluated by the probability of the occurrence of an event, as well

as the resulting consequence” (Copping et al. [2016], p. 10). Copping et al. [2016]

drew from the current state of knowledge in the scientific literature the level of risk

– real or perceived – of each potential stressor at the single-device and small-, O(10)

turbines, and large-scale, O(100) turbines, commercial scales. The potential risk

was classified as either low, medium, or high, and is presented for each stressor, at

each scale, in Table 1.3.

At the single-turbine-scale the potential risk to the environment is considered

low for all stressors bar dynamic device effects. The main concern here is the

collision of marine mammals, fish and diving birds with the turbine rotor [Wilson

et al., 2007]. The environmental monitoring programme associated with the SeaGen

turbine at Strangford Lough recorded the impact of the project on marine mammals

and diving birds at the site and detected no major impacts on either [Keenan

et al., 2011]. As the scale of the development increases so too does the potential
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risk associated with the dynamic device structures, with a high potential risk for

large-scale commercial developments assigned by Copping et al. [2016].

For large-scale commercial developments the potential risk is considered greater

for all stressors bar chemical effects, which are better understood given the similarity

of this stressor to the effects of other marine industries [Copping et al., 2016]. With

more turbines there will be more environmental stress, which in part explains the

greater potential risk at larger scales. However, uncertainty also contributes to the

level of risk assigned [Copping et al., 2015], and large-scale commercial developments

do not yet exist, so their impact is not yet well understood. The same can also

be said of small-scale commercial developments. The environmental monitoring

programme associated with the MayGen project will improve the understanding

at this scale. At the time of writing, four 1.5 MW turbines have been deployed.

Following phase 1b this will rise to eight turbines, which may be classified as a

small-scale commercial development. Eventually this project will reach the size

of O(100) turbines, moving it to the large-scale development classification, and

as such, environmental monitoring of this project will reduce the uncertainty of

environmental risk at this scale.

Table 1.3: Potential risk posed by the various stressors associated with TST

developments, reproduced from Copping et al. [2016]. Green: low risk, orange:

medium risk, red: high risk.

Stressor
Single Device Small-Scale Large-Scale

Deployment Commercial Commercial

Static Device

Dynamic Device

Acoustic

Energy Removal

Electromagnetic

Chemical

The only other stressor whose level of risk increased at the O(10) turbine scale

was energy removal. The removal of kinetic energy from tidal flows will alter the

nature of the flow local to the turbine (e.g. Myers and Bahaj [2010], Stallard
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et al. [2015], etc.), and for larger arrays, possibly at a regional scale [Karsten et al.,

2008, Hasegawa et al., 2011, De Dominicis et al., 2017]. The physical and dynamic

presence of the devices will also lead to changes in the local hydrodynamics as an

object in a (high Reynolds number) fluid flow will disturb the flow as it is forced

to move around the object. Behind the object there will be a disturbed region

of the flow, known as the wake, characterised by reduced velocity and rotational

flow, which will recover to approximately ambient flow conditions some distance

downstream of the object [Tritton, 1988]. Therefore, in the near-field, the presence

of a turbine will result in a turbulent wake downstream of the turbine. The rotation

of the turbine blades adds additional rotation to the wake (e.g. Chen and Lam

[2014a]). Also, the turbine will also offer a blockage to the flow, resulting in

acceleration of the flow around the turbine (e.g. Masters et al. [2013]).

In the far-field, turbines cause the tidal flow speed to be reduced (e.g. Garrett

and Cummins [2004, 2005], Karsten et al. [2008], Defne et al. [2011], Hasegawa et al.

[2011], Ahmadian et al. [2012], Ramos et al. [2013], Fallon et al. [2014], O’Hara-

Murray and Gallego [2017], De Dominicis et al. [2017] etc.). The blockage effect also

alters the tidal regime and for certain cases can interfere with bay or estuary flushing

[Nash et al., 2014]. The effects of TSTs on the far-field physical environment will

vary on a site-by-site basis. The alteration to the flow environment in both the near

and far field will have a knock-on effect on sediment transport with implications

for coastal morphodynamics (e.g. Neill et al. [2009, 2012], Robins et al. [2014] etc.),

turbidity, water quality and oxygen demand, due to the resuspension of sediments

and contaminants and organic matter contained within those sediments [Gill, 2005].

The alteration to water column hydrodynamics and sediment transport could alter

the vertical movement of marine organisms and nutrients and impact benthic

species through habitat loss [Boehlert and Gill, 2010]. The flow of water is also

important to sessile species for the transport of food, waste, propagules etc. [Shields

et al., 2011]. Changes to the hydrodynamics at a site may also have implications

for the ability of benthic suspension feeders to feed and on the propagation of odour

with an impact on species dependent on olfaction for hunting prey [Shields et al.,

2011], larvae identifying suitable adult habitats [Munday et al., 2009], recognising

appropriate food, mate recognition, alarm responses, homing and social behaviour
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[Carr and Derby, 1986]. At the regional-scale the large-scale extraction of tidal

kinetic energy has also been seen to impact on seasonal stratification, which may

have knock-on effects for marine ecosystem dynamics and species behaviour [De

Dominicis et al., 2017].

In conclusion, changes to the hydrodynamics at both the near- and far-field

scales are likely to have important consequences for the marine environment. De-

spite considerable attention in the literature, there is still much that remains to

be understood in this respect, particularly with regards to the ecological conse-

quences. This study addresses this issue, building on current understanding of

the hydrodynamically-mediated environmental consequences of tidal-stream energy

extraction.

1.4 Synopsis

In Chapter 2 of this thesis a background to the physics of the tides is presented and

a review of the state-of-the-art in tidal asymmetry leading to the first statement

of the hypotheses and associated research questions that will be explored in this

work. Chapter 3 will look at the numerical modelling approach to addressing the

research questions presented in Chapter 2. Along with verification of the model,

and model sensitivity tests. Chapters 4, 5 & 6 present the results of the experiments

undertaken to address the research questions presented in Chapter 2, along with

brief discussions of the results. Chapter 7, brings the discussion of results from

Chapters 4, 5 & 6 together, relates the findings back to the original hypothesis and

considers the limitations of the work. Finally, Chapter 8 draws conclusions from

this discussion in Chapter 7 and discusses potential future work.
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Chapter 2

Theoretical Background and

Development of Hypothesis and

Research Questions

In this chapter the tidal forcing on Earth will be discussed to introduce the origins

of the astronomic frequencies found in a tidal record (§2.1). The mechanisms

through which the higher frequency shallow-water tides are introduced through the

non-linear interaction of these astronomic tidal frequencies in shallow waters (§2.2).

This will then be followed by a discussion of flood-ebb asymmetries in the tides and

how they can be understood through the interaction of certain tidal constituents

(§2.3) and the implications of the asymmetries in tidal flows for transport processes

and the technically exploitable resource (§2.4). Finally, the discussion throughout

the chapter will be brought together to form hypotheses of how the processes that

have been discussed will be impacted by tidal-stream turbines (§2.5.1). These

hypotheses will then be used to form a set of research questions (§2.5.2) and a brief

outline of the experimental methodology that will be employed to address these

questions will close out the chapter (§2.5.3).

2.1 The Astronomic Tide

For an understanding of the tides one must begin with Newton, his laws of motion

and his theory of gravity. The latter of these states that two bodies, with masses

14



Chapter 2. Background & Hypothesis

m1 and m2, attract each other with a force defined as:

FG,1,2 = G
m1m2

r1,2
2

(2.1.1)

where G is the universal gravitational constant and r1,2 is the distance between

the two bodies. To give the gravitational force between the Earth and Sun or the

Earth and Moon, m1 becomes the mass of the Earth, mE, m2 becomes the mass of

the Sun, mS, or the mass of the Moon, mM , and r1,2 becomes the distance between

the centre of the Earth and the centre of the Sun, rS, or the distance between the

centre of the Earth and the centre of the Moon, rM . If we define the gravitational

potential of the two bodies as:

ΩG,1,2 = −Gm1m2

r1,2

(2.1.2)

then the gravitational force is also given by:

FG,1,2 = −∇ΩG,1,2 (2.1.3)

The gravitational potential at a point P on the Earth’s surface is given by:

ΩG,P,M = −G mM√
RE

2 + rM 2 − 2RErM cos(ϕ)

= −GmM

rM

{
1 +

RE
2

rM 2
− RE

rM
cos(ϕ)

}− 1
2

(2.1.4)

where RE is the radius of the Earth and ϕ is the lunar angle, illustrated in Figure

2.1. The denominator in (2.1.4) comes from applying the cosine rule to the triangle

EPM to give the length of the side PM.

The ratio RE/rM , can be approximated to be constant, and thus (2.1.4) can

be expanded in powers of RE/rM , using Legendre polynomials (Whittaker and

Watson [1963], §15.1):

ΩG,P,M = −GmM

rM

{
1 +

(
RE

rM

)
cos(ϕ)

+

(
RE

rM

)2(
1

2

)
(3 cos2(ϕ)− 1) + . . .

}
(2.1.5)
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It is the third term in (2.1.5) that is primarily responsible for lunar tides, as it is

the gradient of the potential which gives the gravitational force, (2.1.3). As such,

the first term results in no force, and the second results in the force that keeps

the Earth in orbit about the Earth-Moon system’s centre of mass [Stewart, 2008].

Therefore, the tide-generating potential is given by:

ΩT,P,M = −GmERE
2

2rM 3
(3 cos2(ϕ)− 1) (2.1.6)

The tide generating force resulting from the potential ΩT,P,M can be decomposed

into components tangential and perpendicular to the sea’s surface, given by:

− 1

RE

∂ΩT,P,M

∂ϕ
= 2αg sin(2ϕ) (2.1.7)

and

− ∂ΩT,P,M

∂RE

= −2αg

(
cos2 ϕ− 1

3

)
(2.1.8)

respectively, where g = GmE/RE
2 is acceleration due to gravity and:

α =
3

2

mM

ME

(
RE

rM

)3

(2.1.9)

The size of α is ∼ 8.4× 10−8, thus the component normal to the sea’s surface is

not large enough to overcome the Earth’s own gravitational force (mg for a body of

mass m). The tangential component, whilst still small does not have an opposing

force, thus it is this component which produces the tides. Figure 2.2 presents a

schematic of the tangential component of the tide generating force.

Figure 2.1: Schematic of Earth-Moon system showing a general point P .

Reproduced from Pugh [1987], Figure 3:4.
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Figure 2.2: Schematic of the tangential component of the tide generating force.

The marked point is the point on the Earth’s surface directly below the Moon.

The above derivation assumes that the Earth is covered entirely by water and

ignores the rotation of the Earth (considering only the rotation of the Moon around

the Earth) and the influence of inertia and currents in the ocean. Under these

circumstances, the gradient in the gravity field acting on the Earth would result

in two ‘bulges’ of water, one facing the Moon and one on the opposite side of the

Earth. As the Moon rotates around the Earth, the bulges move with it.

The tide generating force due to the Sun can be derived in a similar manner, and

the result is the same as (2.1.6) but with mM replaced with mS and rM replaced

with rS.

When the rotation of the Earth about its tilted axis is taken into account, the

position of the Moon in the sky, as observed from a fixed point, e.g. P , will vary

with time. One can re-express the lunar angle ϕ in terms of the latitude of P , ϕP ,

i.e. the angular distance P lies north or south of the equator, the declination of the

Moon north or south of the Earth’s equator, δ, and the hour angle of the Moon, χ,

which is the difference in longitude between the meridian1 of P and the meridian

of the sub-lunar point2:

cos(ϕ) = sin(ϕP ) sin(δ) + cos(ϕP ) cos(δ) cos(χ) (2.1.10)

1Imaginary arc from the North Pole to the South Pole connecting points of equal longitude.
2The point at which the moon is directly overhead.
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Substituting (2.1.10) into (2.1.6) gives:

ΩT,P,i =
1

4
Gmi

RE
2

r3
i

(3 sin2(ϕP )− 1)(3 sin2(δ)− 1)︸ ︷︷ ︸
(a)

+ sin(2ϕP ) sin(2δ) cos(χ)︸ ︷︷ ︸
(b)

+ cos2(ϕP ) cos2(δ) cos 2(χ)︸ ︷︷ ︸
(c)

 (2.1.11)

where the i may be replaced by M or S so that (2.1.11) gives the tidal potential of

the Moon or Sun at the point P respectively. For the case where i = S then δ and

χ in must be the declination and hour angle of the Sun, not the Moon. The period

of the solar hour angle is 24 hours and the period of the lunar angle is 24.8412

hours. The three terms enclosed in square brackets therefore separate the lunar

and solar periods into three, meaning there are three groups of tidal frequencies;

twice daily, (c), daily, (b), and long period, (a), [Pugh, 1987, Stewart, 2008]. These

frequency groups will vary both spatially and temporally. Considering only the

temporal variation by remaining at the fixed point P , the long period species

will vary with the declination of the Moon/Sun and the daily (diurnal) and twice

daily (semi-diurnal) species will both vary with twice the frequency of lunar/solar

declination.

From (2.1.11) one can arrive at the equilibrium tide by integrating over finite

space a differential equation formed by equating spatial gradients of ΩT,P,i to spatial

gradients of the free-surface on the water covered Earth (see Pugh [1987]). This

equilibrium tide has amplitudes much smaller than those observed in the real world.

However, the energies of the observed tide occur at the same frequencies as those

of the equilibrium tide, meaning the development of the equilibrium tide can be

used to inform the harmonic development3 of the observed tide. The equilibrium

tide is given by Pugh [1987] as:

3The decomposition of the tide into the infinite series of sine / cosine waves, which, when

superimposed, reproduce the tidal record.
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η = RE

(
mM

mS

)[
C0(t)

(
3

2
sin2(ϕP )− 1

2

)
+ C1(t) sin2(2ϕP )

1

2
+ C2(t) cos2(ϕP )

]
(2.1.12)

where:

C0(t) =

(
RE

rM

)3(
3

2
sin2(δ)− 1

2

)
(2.1.13)

C1(t) =

(
RE

rM

)3(
3

4
sin2(2δ) cos(χ)

)
(2.1.14)

C2(t) =

(
RE

rM

)3(
3

4
cos2(δ) cos(2χ)

)
(2.1.15)

Up to this point the orbit of the Moon around the Earth and the Earth-Moon

system around the Sun has been considered circular. In practice both the orbits of

planets around the Sun or moons around planets are elliptical. Figure 2.3 presents

a schematic of an elliptical orbit, where a body C is orbiting around the larger body

A. The point O denotes the centre of the ellipse and the points A and B are the

foci of the ellipse, with body A located at point A. The eccentricity of the ellipse,

e, is defined as the ratio OA/OCA. When body C is at the point CA the distance

AC is at its minimum, and when body C is at point CP the distance AC is at its

maximum. These points are called the apogee and perigee of the orbit. The ratio

of the distances AC at apogee and perigee, ACA/ACP, is given by (1 + e)/(1− e).

The position of the Sun and Moon in the sky can be stated with reference to

declination from a plane intersecting the equator and the right ascension. The right

ascension is the eastward angular distance along the celestial equator from the

vernal equinox, which is the point at which the ecliptic plane4 and the equatorial

plane intersect. Right ascension and the vernal equinox are illustrated by the

schematic in Figure 2.4. The angle between the ecliptic and the equatorial planes,

the obliquity, ε, is 23.45o.

4The circular path on the celestial sphere which the Sun appears to follow, see Figure 2.4.
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Figure 2.3: Schematic illustrating the properties of an elliptical orbit. Reproduced

from Pugh [1987], Figure 3:9.

For the Earth-Sun system, the equilibrium tide, (2.1.12)–(2.1.15), is given in

terms of rS, δS (the solar declination) and χS (the solar hour angle). The solar

distance, rS is given by [Pugh, 1987]:

rS
rS

= (1 + e cos(h− p′)) (2.1.16)

where rS is the mean solar distance, h is the geocentric mean ecliptic longitude5,

and p′ is the longitude of solar perigee, or perihelion6.

According to Kepler’s second law, the two segments swept out in equal time

shown in Figure 2.3 have equal area. This means that the angular speed of C

observed from A is not constant, and that C will have maximum angular speed at

CA and minimum angular speed at CP. This leads to a variation in the elliptical

longitude of the Sun, with the true ecliptic longitude, λS, given by [Pugh, 1987]:

λS = h+ 2e sin(h− p′) (2.1.17)

Due to the tilt of the Earth’s axis there is a regularly varying difference between

5Angular distance along the ecliptic eastwards from the vernal equinox.
6The perihelion is the point in a planets orbit about the Sun at which it is closest to the sun.

Due to the perturbing effect of the other planets orbiting the sun the eccentricity of the Earths

orbit will vary over long time-scales and so too will the date of perihelion. The perihelion of the

Earth’s orbit varies with a period of 21,000 (Julian) years.

20



Chapter 2. Background & Hypothesis

the ecliptic longitude and right ascension. This results in a modulation of the

(solar) right ascension, ΛS, given by [Pugh, 1987]:

ΛS = λS − tan2
(εS

2

)
sin(2λS) (2.1.18)

where εS is the solar ecliptic latitude7. Finally, the solar declination is given in

terms of λS and εS, by:

sin(δS) = sin(λS) sin(εS) (2.1.19)

For the Earth-Moon system there is a twofold complication due to the effect

of the Sun on the system and the regression of the ascending lunar node. The

ascending lunar node is the point at which the Moon, in its orbit, crosses the

ecliptic from south to north (illustrated in Figure 2.5). Over a period of 18.61 years

this node rotates westward along the ecliptic, resulting in a modulation with a

period of 18.61 years in the lunar terms of the equilibrium tide. The lunar distance,

rM , is given by [Pugh, 1987]:

rM
rM

= (1 + e cos(s− p) + solar pertubations) (2.1.20)

where rM is the mean lunar distance, s is the geocentric mean longitude and p is

the longitude of lunar perigee, which rotates with a period of 8.85 years. The mean

eccentricity of the lunar orbit is e = 0.0549, with variations from this mean caused

by the effect of the Sun’s gravity. The true ecliptic longitude and right ascension

of the moon are given by:

λM = s+ 2e sin(s− p) + solar perturbations (2.1.21)

and

ΛM = λM − tan2
(εM

2

)
sin(2λM) (2.1.22)

where εM is the lunar ecliptic latitude, given by:

sin(εM) = sin(λM −N) sin(5.15o) (2.1.23)

7Angular distance north or south of the ecliptic.

21



Chapter 2. Background & Hypothesis

where N is the mean longitude of the ascending lunar node and the 5.15o is the

mean angle between the lunar orbital plane and the ecliptic.

Figure 2.4: Schematic illustrating vernal equinox and right ascension.

Figure 2.5: Schematic illustrating the ascending & descending lunar nodes.

From these modulations to the lunar and solar equilibrium tides described

above one can identify 6 fundamental frequencies summarised in Table 2.1. The

equilibrium tide can be expanded as a Fourier series into groups of similar harmonic

terms, the angular speeds of these terms have the general form:

ωn =
6∑
i=1

niωi (2.1.24)

where ωi are given in Table 2.1, n1 = 0, 1, 2 for the long period, diurnal and

semi-diurnal frequency groups respectively, and n2–n6 are integer values which
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define the tidal constituent.

Table 2.2 lists some of the largest harmonic constituents of the equilibrium tide

for each of the three frequency groups. This is not an exhaustive list of constituents.

The table in Pugh [1987] (Table 4:1), upon which this table is based, contains

more constituents and the table presented by Doodson [1921] contains yet more

constituents. From inspection of the relative coefficients presented in this table, one

can see that a reasonable approximation of the equilibrium tide may be obtained

for only a small number of constituents. The size of these constituents in oceans

and seas in the real world and their sizes relative to the M2 (principal lunar tide,

the largest harmonic component of the tide) will be different to the equilibrium tide

due to propagation of the tide in ocean basins, and the hydrodynamic responses

of the tidal wave to the topology of these basins, the Coriolis force and other

reasons discussed in more detail in Pugh [1987] (Chapter 5). The importance of

the equilibrium tide is that the actual tide observed at any point in the real world

will have its energy at the frequencies of these harmonic constituents.

Table 2.1: Fundamental frequencies of the astronomical motions, from Pugh [1987].

Frequency Angular Speed

Name
Period

Period
f [cycles per σ [o per m.s.

Symbol
Rate of

Units m.s.d.] hours] Change

Mean Solar Day (m.s.d) 1.0000 1.00 15.0 ω0 χM

Mean Lunar Day
[m.s.d]

1.0351 0.9661369 14.4921 ω1 χS

Sidereal Month 27.3217 0.0366009 0.5490 ω2 s

Tropical Year 365.2422 0.0027379 0.0411 ω3 h

Moon’s Perigee 8.85 0.00030937 0.0046 ω4 p

Regression of Moon’s [Julian
18.61 0.0001471 0.0022 ω5 N

nodes Year]

Perihelion 20,942 - - ω6 p′
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Table 2.2: Largest (in terms of relative amplitude) harmonic tidal constituents

from Pugh [1987], Table 4:1 (m.s.d.: mean solar day). From left to right is the

name given to the harmonic constituent, then comes n2–n6, which along with n1

are known as the Doodson numbers, after Arthur Doodson who performed the

expansion of the equilibrium tide [Doodson, 1921], then the period of the

constituent, followed by the relative coefficient of the constituent, which indicates

its size relative to the M2, and finally comes a description of the origin of the

constituent.

n1 = 0, Astronomical long-period tides

s h p N p′

Period [m.s.d.]
Relative Coefficient

Origin
n2 n3 n4 n5 n6 M2 = 1.00

Sa 0 1 0 0 -1 364.96 0.0127 Solar Annual

Ssa 0 2 0 0 0 182.70 0.0802 Solar Semi-Annual

Mm 1 0 -1 0 0 27.55 0.0909 Lunar Monthly

Mf 2 0 0 0 0 13.66 0.1723 Lunar Semi-Monthly

n1 = 1, Astronomical diurnal tides

s h p N p′

Period [m.s.d.]
Relative Coefficient

Origin
n2 n3 n4 n5 n6 M2 = 1.00

O1 -1 0 0 0 0 1.076 0.4151 Principal Lunar

K1

1 0 0 0 0 0.997 0.3990 Principal Lunar

1 0 0 0 0 0.997 0.1852 Principal Solar

P1 1 -2 0 0 0 1.003 0.1932 Principal Solar

Q1 -2 0 0 0 0 1.120 0.0794 Larger Elliptical Lunar

M1

0 0 -1 0 0 1.035 0.0326 Smaller Elliptical Lunar

0 0 -1 0 0 1.035 0.0117 Smaller Elliptical Lunar

0 0 -1 0 0 1.035 0.0075 Lunar Parallax

J1 2 0 -1 0 0 0.962 0.0326 Elliptical Lunar

n1 = 2, Astronomical semi-diurnal tides

s h p N p′

Period [m.s.d.]
Relative Coefficient

Origin
n2 n3 n4 n5 n6 M2 = 1.00

M2 0 0 0 0 0 0.518 1.0000 Principal Lunar

S2 2 -2 0 0 0 0.500 0.4652 Principal Solar

N2 -1 0 1 0 0 0.527 0.1915 Larger Elliptical Lunar

K2

2 0 0 0 0 0.499 0.0865 Declination Lunar

2 0 0 0 0 0.499 0.0402 Declination Solar

ν2 -1 2 -1 0 0 0.526 0.0346 Larger Evectional

µ2 -2 2 0 0 0 0.536 0.0306 Variational

L2

1 0 -1 0 0 0.508 0.0283 Smaller Elliptical Lunar

1 0 1 0 0 0.508 0.0071 Smaller Elliptical Lunar
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2.2 The Shallow-Water Tides

The previous section discussed the tide-generating potential and equilibrium tide.

As mentioned in that section the tide observed in the ocean or near the coast

may vary considerably from the equilibrium tide in terms of the amplitudes of the

harmonic constituents. For example, the large seaward extent of the Patagonian

shelf, and the lengths of basins such as the Bay of Fundy, Canada, and the Bristol

Channel, UK, leads to amplification of the astronomic tide through resonant effects

[Howarth, 1982]. Further discussion of alteration to the astronomic tide is given

by Pugh [1987]. Hereinafter, only the distortion to the ocean tide through shallow

water processes will be discussed further.

The impact of shallow water processes on the ocean tide will be explored through

the hydrodynamic equations, i.e. the mass (or volume) continuity and momentum

equations, following Parker [1984]. The momentum and continuity equations for

a Newtonian fluid, contained within a basin on the Earth, in a reference frame

stationary with respect to the Earth are derived in Appendix A. These equations

are, respectively:

Dv

dt
+ 2Ω× v = −1

ρ
∇p+ g̃ + ν∇2v (2.2.1)

∂ρ

∂t
+∇ · (ρv) = 0 (2.2.2)

where v = v(r, t) is the velocity field, r = xx̂+ yŷ + zẑ is a point in the fluid, x̂, ŷ

and ẑ describe the Cartesian coordinate system, Ω is the angular velocity field of

the Earth, ρ(r, t) is the fluid mass density, p(r, t) is pressure, g̃ is the combined

effect of gravity and the centrifugal force due to the Earth’s rotation, and ν is the

kinematic viscosity.

2.2.1 Tidal-Stream Turbines

The deployment of tidal-stream turbines (TSTs) in this basin can be accounted for

by modifying (2.2.1) to include a momentum sink. This momentum sink is based

on actuator disk theory, and is derived in Appendix B. The resulting, modified

momentum equation is:
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Dv

dt
+ 2Ω× v = − 1

ρ0

∇p+ g̃ + ν∇2v − 1

2
δTCTv|v| (2.2.3)

where CT is the turbine thrust coefficient, and:

N∑
i=1

∫
V

δiT dV = NA (2.2.4)

where N is the number of turbines deployed in the basin, and A is the swept area

of the turbine rotor. In deriving this momentum sink term it has been assumed

that the fluid is an incompressible, ideal fluid.

Equations (2.2.2) & (2.2.3) will now be considered in one-dimensional form.

The process of converting these equations into a one-dimensional form is presented

in Appendix C. A number of assumptions about the basin containing the fluid (and

turbines) must be made first. Namely, that:

• the depth of the basin is small compared to the width and length,

• the width is small compared to the length,

• the condition L0 � C0D0B0 sinϕ is satisfied (L0 – basin length scale, C0 –

characteristic wave propagation speed, D0 – basin depth scale, B0 – basin

width scale, and ϕ is latitude),

• the flow has a high Reynolds number,

• the basin is uniform and rectangular, i.e. mean water depth and basin width

are constant, and the width constant for all tidal elevations,

• the deviation of the flow speed from the cross-sectionally averaged value

varies little in the along channel direction,

• if turbines are deployed, they are deployed away from the bed, such that the

flow speed at the blades is approximately the cross-sectionally averaged value,

and varies little over the swept area of the blades,

• there is no wind shear,

• and friction may be represented by a quadratic friction law.
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Perhaps the most questionable of these assumptions is that the channel is

rectangular and uniform along its the length. In reality, tidal straits and channels

are often topographically complex. Souza and Hill [2006] derived an analytical

solution for the tidal hydrodynamics in an open channel using this assumption. They

found that when applied to the topographically complex Menai Strait, this solution

described the tidal hydrodynamics surprisingly well. For a uniform rectangular

channel much shorter than the tidal wavelength the assumption that the tidal

current velocity does not deviate much from the cross-sectionally averaged value

along the length of the channel will be valid away from the channel entrances where

flow expansion and constriction may occur.

The length scales of some tidal channels of interest for tidal-stream development

are such that they would satisfy the length-scale conditions imposed above. For

example Ramsey Sound and the Sound of Islay. Thus, these assumptions are

considered appropriate. The assumption of high Reynolds number is also considered

appropriate. Flows through tidal channels are typically highly turbulent due to

the high flow speeds, shallow water and complex topography, e.g. Zangibadi et al.

[2015] and Milne et al. [2017]. Finally, given that higher in the water column flow

speeds will be higher, and the flow less turbulent (e.g. Milne et al. [2017]) it is

considered an appropriate assumption that developers will target these regions.

Indeed, some developer are targeting floating tidal devices, which exploit these

flows and potentially offer reduced installation and maintenance costs, e.g. Orbital

Marine Power [2019]

The one-dimensional continuity and momentum equations are:

∂η

∂t︸︷︷︸
(a)

+h
∂û

∂x︸︷︷︸
(b)

+
∂(ηû)

∂x︸ ︷︷ ︸
(c)

= 0 (2.2.5)

∂û

∂t︸︷︷︸
(d)

+ û
∂û

∂x︸︷︷︸
(e)

= −g ∂η
∂x︸ ︷︷ ︸

(f)

− CF û|û|
h(1 + η/h)︸ ︷︷ ︸

(g)

− ε0CT û|û|
2(1 + η/h)︸ ︷︷ ︸

(h)

(2.2.6)

Equation (2.2.5) contains a single non-linear term, (c), which will be termed

the Continuity Term (CT). Equation (2.2.6) contains three non-linear terms, the

Advection Term (AT), (e), the Friction Term (FT), (g), and the Turbine Term (TT),

(h). However, on closer inspection, the FT and TT both contain two non-linear
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aspects identifiable through the binomial expansion of the (1 + η/h)−1 part of both

terms:

1

1 + η/h
=
(

1 +
η

h

)−1

=
∞∑
n=0

(−1)n
(η
h

)n
∼ 1− η

h
(2.2.7)

It will be assumed that terms of order n = 2 and higher are negligible (as η/h < 1,

so (η/h)2 � 1). Therefore, (2.2.6) becomes:

∂û

∂t︸︷︷︸
(d)

+ û
∂û

∂x︸︷︷︸
(e)

= −g ∂η
∂x︸ ︷︷ ︸

(f)

− CF
h
û|û|︸ ︷︷ ︸

(g)

+
CF
h2
ηû|û|︸ ︷︷ ︸
(h)

− 1

2
ε0CT û|û|︸ ︷︷ ︸

(i)

+
1

2h
ε0CTηû|û|︸ ︷︷ ︸

(j)

(2.2.8)

Both the FT and TT have a quadratic aspect, henceforth referred to as the

Quadratic Friction Term (QFT) and Quadratic Turbine Term (QTT), (i) and (k)

respectively, and an aspect influenced by the free-surface elevation, henceforth

referred to as the Elevation Friction Term (EFT) and Elevation Turbine Term

(ETT), (j) and (l) respectively.

The steps taken to arrive at (2.2.5) and (2.2.8) (Appendix C) follow closely

those taken by Parker [1984] with the exception of the discussion surrounding the

turbine terms. Additionally, the harmonic expansions of the non-linear terms in

the following sub-sections, and Appendices D and E, will also bare resemblance to

those carried out by Parker [1984].

2.2.2 Overtides

If a single-constituent tide forces the free-surface then η and û will be given by:

η(x, t) = η0 cos(θ(x, t) + γ(x)) (2.2.9)

and

û(x, t) = û0 cos(θ(x, t)) (2.2.10)

respectively, where η0 and û0 are the amplitudes of η and û, θ = σt− ψ(x), σ is

the tidal frequency, ψ is the phase of û, γ = ψ(x)− φ(x), and φ is the phase of η.

Substituting (2.2.9) and (2.2.10) into the CT and AT gives:
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∂(ηû)

∂x
=
η0û0

2

[
∂(φ+ ψ)

∂x
sin(2θ + γ) +

∂γ

∂x
sin(γ)

]
(2.2.11)

and

û
∂û

∂x
=
û2

0

2

∂ψ

∂x
sin(2θ) (2.2.12)

(see Appendix D). Substituting (2.2.9) and (2.2.10) into the QFT and EFT and

expanding as a Fourier series (expansions carried out in Appendix D) gives:

CF
h
û|û| = 8û2

0CF
3πh

[
cos(θ) +

1

5
cos(3θ)− 1

35
cos(5θ)

]
+ . . . (2.2.13)

and

CF
h2
ηû|û| = 4η0û

2
0CF

πh2

[(
2

6
+

2

5
cos(2θ) +

1

35
cos(4θ) +

2

315
cos(6θ)

)
cos(γ)

+

(
4

15
sin(2θ)− 2

7
sin(4θ) +

1

21
sin(6θ)

)
sin(γ)

]
+ . . . (2.2.14)

Physically, γ is the phase difference between maximum flood and high water.

When γ = ±π/2, maximum flow occurs when η = 0. At the other extreme, if

γ = 0, maximum flood would occur at η = η0 (and maximum ebb at η = −η0).

These two cases describe a standing tide and a progressive tide respectively and

either of these cases simplify the expressions (2.2.9), (2.2.11) and (2.2.14). For a

progressive tide, γ = 0, in this case (2.2.9) simplifies to:

η = η0 cos(θ) (2.2.15)

(2.2.11) simplifies to:

∂(ηû)

∂x
= −η0û0

2

∂(φ+ ψ)

∂x
sin(2θ) (2.2.16)

and (2.2.14) simplifies to:

CF
h2
ηû|û| = 4η0û

2
0CF

πh2

(
2

6
+

2

5
cos(2θ) +

1

35
cos(4θ) +

2

315
cos(6θ)

)
+ . . . (2.2.17)

In reality the general case, γ 6= 0, is most likely to apply at a tidal site, i.e. it is

unlikely that the tide will be purely progressive in general. However, we will persist
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with the assumption that γ = 0 in order to greatly simplify the expansions for the

two-frequency tide (§2.2.3).

From the expansions (2.2.12), (2.2.13), (2.2.16) and (2.2.17) one can see how

a single-constituent tide interacts with itself, through the non-linear terms to

introduce harmonics, known as shallow water tides. If, for example, the astronomic

tide is comprised of only the M2, then (2.2.12) and (2.2.16) will introduce the M4,

(2.2.13) will introduce the M6, M10, etc., and (2.2.17) will introduce the M4, M8,

M12, etc.. This type of shallow water tide, is known as an overtide, and henceforth

overtides with frequencies 2noθ, where no are odd intergers, will be termed odd

overtides, and overtides with frequencies 2neθ, where ne are even integers, will be

termed even overtides.

2.2.3 Compound Tides

If one now considers the case where the free-surface is forced by a two-constituent

tide, equations (2.2.9) and (2.2.10) are rewritten:

η = η0 cos(θ) + η′0 cos(θ′ + γ′) (2.2.18)

û = û0 cos(θ) + û′0 cos(θ′) (2.2.19)

where primed terms relate to the second constituent, but are otherwise denoted

the same way as for the first constituent. Substitution of (2.2.18) and (2.2.19) into

the CT and AT gives:

û
∂û

∂x
= −1

2

(
û2

0

∂ψ

∂x
sin(2θ) + û‘2

0

∂ψ′

∂x
sin(2θ′)

+û0û
′
0

(
∂(ψ + ψ′)

∂x
sin(θ + θ′) +

∂(ψ − ψ′)
∂x

sin(θ − θ′)
))

(2.2.20)
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∂(ηû)

∂x
= −1

2

(
η0û0

∂(φ+ ψ)

∂x
sin(2θ) + η′0û

′
0

∂(φ′ + ψ′)

∂x
sin(2θ′ + γ′)

− η0û
′
0

∂(φ′ + ψ)

∂x
sin(θ + θ′)− η′0û0

∂(φ+ ψ′)

∂x
sin(θ + θ′ + γ′)

+ η0û
′
0

∂(φ′ − ψ)

∂x
sin(θ − θ′)− η′0û0

∂(φ− ψ′)
∂x

sin(θ − θ′ − γ′)

+η′0û
′
0

∂γ′

∂x
sin(γ′)

)
(2.2.21)

(see Appendix E). For the two-constituent case, one runs into a problem when

attempting to substitute (2.2.18) and (2.2.19) into the QFT and EFT and expand

as a Fourier series. The terms are a function of both θ and θ′, so one can no longer

expand as a series of θ. To circumnavigate this problem Godin and Gutiérrez [1986]

used the Babylonian method (or Hero’s method) to approximate a square-root, and

the substitution of |û| =
√
û2 to avoid the Fourier-series expansion (see Appendix

E). The result of this is the approximate expansions of the QFT and EFT for a

two-constituent tide:

CF
h
û|û| ∼ CF

2h

(
û0

((
m+

3

2m

(
1

2
û2

0 + û
′2
0

))
cos(θ) +

1

2
û2

0 cos(3θ)

+
3

2
û0û

′
0(cos(2θ − θ′) + cos(2θ + θ′))

)
+ û′0

((
m+

3

2m

(
û2

0 +
1

2
û‘2

0

))
cos(θ′) +

1

2
û‘2

0 cos(3θ′)

+
3

2
û0û

′
0(cos(2θ′ − θ) + cos(2θ′ + θ))

))
(2.2.22)
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CF
h2
ηû|û| ∼ CF

4h2

(
η0û0

(
m+

1

m

(
û2

0 +
3

2
û′20

))
cos(2θ)

+
3

4m
η′0û

2
0û
′
0 cos(2θ − γ′) +

3

2m
η0û0û

′2
0 cos(2θ′)

+ η′0û
′
0

(
m+

3

2m

(
û2

0 +
1

2
û′20

))
cos(2θ′ + γ′)

+
1

4m
η′0û

′3
0 cos(2θ′ − γ′) +

1

4m
η0û

3
0 cos(4θ) +

1

4m
η′0û

′3
0 cos(4θ′ + γ′)

+ η0û
′
0

(
m+

3

4m

(
3û2

0 + û′20
))

cos(θ − θ′)

+ η′0û0

(
m+

3

4m

(
û2

0 + 3û′20
))

cos(θ − θ′ − γ′)

+ η0û
′
0

(
m+

3

4m

(
3û2

0 + û′20
))

cos(θ + θ′)

+
3

4m
η′0û0û

′2
0 cos(θ + θ′ − γ′)

+ η′0û0

(
m+

3

2m

(
1

2
û2

0 + û′20

))
cos(θ + θ′ + γ′)

+
3

4m
η0û

2
0û
′
0 cos(3θ − θ′) +

1

4m
η′0û

3
0 cos(3θ − θ′ − γ′)

+
1

4m
η0û

′3
0 cos(3θ′ − θ) +

3

4m
η′0û0û

′2
0 cos(3θ′ − θ + γ′)

+
3

4m
η0û

2
0û
′
0 cos(3θ + θ′) +

1

4m
η′0û

3
0 cos(3θ + θ′ + γ′)

+
1

4m
η0û

′3
0 cos(3θ′ + θ) +

3

4m
η′0û0û

′2
0 cos(3θ′ + θ + γ′)

+
3

4m
η0û0û

′2
0 cos(2(θ − θ′)) +

3

4m
η′0û

2
0û
′
0 cos(2(θ − θ′)− γ′)

+
3

4m
η0û0û

′2
0 cos(2(θ + θ′)) +

3

4m
η′0û

2
0û
′
0 cos(2(θ + θ′) + γ′)

+ η0û0

(
m+

3

2m

(
1

2
û2

0 + û′20

))
+η′0û

′
0

(
m+

3

2m

(
û2

0 +
1

2
û′20

))
cos(γ′)

)
(2.2.23)

where m is a non-negative, real test value (see Appendix E). If it is assumed that the

two constituents making up the tide are the M2 and S2, then the assumption that

η′0 ∼ η0/2 and û′0 ∼ û0/2 will be made. This assumption is based on the coefficients

of these constituents in the tide-generating potential [Doodson, 1921] (see also

Table 2.2). With this assumption, and assuming that γ = γ′ = 0, (2.2.20)–(2.2.23)

simplify to:
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û
∂û

∂x
= − û

2
0

2

(
∂ψ

∂x
sin(2θ) +

1

4

∂ψ′

∂x
sin(2θ′) +

1

2

(
∂(ψ + ψ′)

∂x
sin(θ + θ′)

+
∂(ψ − ψ′)

∂x
sin(θ − θ′)

))
(2.2.24)

∂(ηû)

∂x
= −η0û0

2

(
∂(φ+ ψ)

∂x
sin(2θ) +

1

4

∂(φ′ + ψ′)

∂x
sin(2θ′)

− 1

2

((
∂(φ′ + ψ)

∂x
+
∂(φ+ ψ′)

∂x

)
sin(θ + θ′)

−
(
∂(φ′ − ψ)

∂x
− ∂(φ− ψ′)

∂x

)
sin(θ − θ′)

))
(2.2.25)

CF
h
û|û| ∼ CF û0

2h

((
m+

9û2
0

8m

)
cos(θ) +

1

2

(
m+

27û2
0

16m

)
cos(θ′)

+
1

2
û2

0 cos(3θ) +
1

16
û2

0 cos(3θ′) +
3

4
û2

0(cos(2θ − θ′) + cos(2θ + θ′))

+
3

8
û2

0(cos(2θ′ − θ) + cos(2θ′ + θ))

)
(2.2.26)

CF
h2
ηû|û| ∼ CFη0û0

4h2

((
m+

7û2
0

4m

)
cos(2θ) +

1

4

(
m+

133û2
0

16m

)
cos(2θ′)

+
û2

0

4m
cos(4θ) +

û2
0

64m
cos(4θ′) +

(
m+

60û2
0

32m

)
(cos(θ − θ′) + cos(θ + θ′))

+
û2

0

2m
(cos(3θ − θ′) + cos(3θ + θ′)) +

û2
0

8m
(cos(3θ′ − θ) + cos(3θ′ + θ))

+
6û2

0

16m
(cos(2(θ − θ′)) + cos(2(θ + θ′))) +

(
5

4m
+

99û2
0

64m

))
(2.2.27)

As the two constituents have been taken to be the M2 and S2, for the two-

constituent case, the expansions (2.2.24) and (2.2.25) introduce the M4, S4, MS4

and MS, (2.2.26) introduces the M6, S6, 2MS2, 2MS6, 2SM2 and 2SM6, and (2.2.27)

introduces the M4, S4, M8, S8, MS4, MS, 3MS8, 3MS4, 3SM8, 3SM4 and the first

overtide of MS4. Here we see the overtides of both the M2 and S2 introduced, and

also tidal constituents with frequencies that are a combination of the M2 and S2

– compound tides. These compound tides are the result of the two constituents

interacting, with each other, through non-linear processes. The expansions (2.2.26)
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and (2.2.27) are written as approximations, whereas in reality they would be infinite

series, like the expansions (2.2.13) and (2.2.14). From comparison of these two sets

of expansions, one can discern the higher order terms omitted from (2.2.26) and

(2.2.27) in the approximation. In the above expansions, the compound tide terms

have the form nθ ± n′θ′. When n± n′ = 2ne the compound tide will be referred

to as even, and when n± n′ = 2no the compound tide will be referred to as odd,

i.e. (3θ + θ′)→ 3MS8, is an even compound tide, and (2θ + θ′)→ 2MS6, is an odd

compound tide.

2.2.4 The Impact of Tidal-Stream Turbines on the Over-

tides and Compound Tides

The expansions of the turbine terms have not been carried out above. However, if

one was to do so one would find that the expansions would be the same as those

for the friction term, with CF/h replaced by ε0CT/2. The importance of this is

that the turbines will impact both odd and even overtides and compound tides.

Adcock and Draper [2014] discuss the effect of turbines on the higher harmonics

of the astronomic tidal constituents. Their equations (1) and (2) are the same as

(2.2.5) and (2.2.6) in this work, except that the cross-sectional area of the channel

is considered uniform in x here. They assume η � h and L� λ, which leads to the

loss of the CT, AT, EFT and ETT. This in turn leads to considerable simplification

of the momentum equation necessary in order to arrive at an analytical solution to

the equation. However, these assumptions will not be made here (as detailed in

the following sub-section).

Adcock and Draper [2014] concluded that turbines will always reduce the

even overtides, unless the channel is inertia dominated or the turbine term varies

asymmetrically. They reached this conclusion by relaxing the L� λ assumption

and reasoning that the turbines will reduce the volume flux of water through

the channel, thus reducing the AT (written (Q/A)[∂(Q/A)/∂x] by Adcock and

Draper [2014], where A is the channel cross-section, E in this text), and therefore

generation of the even overtides. However, local to the turbine the change to

u resulting from turbine operation will be more complex, with flow slowed as it

passes through the turbines, and accelerated as it is forced around the turbine.
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Such changes to the flow suggest increased spatial gradients of velocity local to the

turbine, implying a larger AT (u∂u/∂x) and therefore augmented even overtide

generation. Thus, it is reasoned here that even overtides may be both augmented

and reduced by turbines, regardless of the dynamic balance of the channel8, or

asymmetric variation of the turbine term (however this may also alter the even

overtide generation e.g. ETT, expansion (2.2.17)).

In the discussion above a distinction was made between the odd and even

overtides and compound tides. The reasoning for this is illustrated in Figures 2.6 &

2.7, and described below. From examination of Figures 2.6 & 2.7, one can see that

with the introduction of the harmonics of the fundamental frequency, a distortion

to the total tide is introduced. More correctly, it is the distortions to the tide, by

processes such as friction, or indeed the introduction of tidal-stream turbines, that

introduce these harmonics of the tide. From Figure 2.6 one can see that the first

even overtide represents asymmetric distortion to the tide, whilst from Figure 2.7

it can be seen that the odd overtide represents symmetric distortions to the tide.

It was for this reason that the distinction was made between the odd and even

harmonics above.

Parker [1991, 2007] gives physical descriptions of some natural mechanisms for

the distortion to the astronomic tidal constituents (see Parker [1991] and Parker

[2007], §7.6.5). Armed with an understanding of the physical origins of these

shallow-water tidal constituents, one can, through a detailed examination of these

constituents, gain a strong understanding of the shallow-water distortions to the

tide and its cause. In this work this approach will be applied to investigate the

changes to the hydrodynamics resulting from the operation of tidal-stream turbines.

Beyond reductions to the astronomic tide, as reported by various authors in the

literature, e.g. Karsten et al. [2008], which will manifest themselves as reductions

to the fundamental constituents (e.g. M2, S2, O1, K1, etc.), this analysis will look

for changes to the shallow-water constituents, with augmentation of the first even

harmonic, indicating increased asymmetric distortion to the total tide, being of

specific interest.

8The balance of forces in the channel, indicating the relative importance of, e.g. frictional and

inertial forces to the hydrodynamics. See e.g. Vennell [1998].
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Figure 2.6: Superposition (solid line) of a normalised M2 wave (dashed line) and a

normalised M4 wave (dotted line) with an amplitude 10 times smaller for various

values of the relative phase between the two waves, Ψ.

2.3 Tidal Asymmetry

The term “tidal asymmetry” may be used to refer to a number of types of asymmetry

that can occur in the tide. One might first distinguish between horizontal and

vertical asymmetries, as in Wang et al. [1999], with vertical asymmetries pertaining

to the rise and fall of the tide, i.e. changing water surface elevation, and horizontal

asymmetries pertaining to the associated flows, i.e. tidal currents. A further

distinction between duration-asymmetry and magnitude-asymmetry (e.g. Dronkers

[1986], de Swart and Zimmerman [2009], Gong et al. [2016]) can be made. In the

horizontal tide the former refers to an asymmetry in the length of time from peak

flood to peak ebb and from peak ebb to peak flood, and the latter refers to an

asymmetry in the magnitudes of the peak ebb and peak flood currents. In the

vertical tide the former refers to an asymmetry in the duration of the rising and

falling tides, whilst the latter refers to an asymmetry in the amplitude of the rise

and fall of the tide. In this work the focus will be on changes to tidal currents.

Following Gong et al. [2016] the abbreviations FVA (Flow Velocity Asymmetry)

and FDA (Flow Duration Asymmetry) will be used to refer to magnitude and
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duration asymmetry in the horizontal tide respectively. A tide may be referred to

as flood-dominant if the magnitude of the peak flood current exceeds the magnitude

of the peak ebb current, and ebb-dominant if the opposite is true. In semi-diurnal

tidal regimes, i.e. regions where the semi-diurnal tidal constituents dominate,

and the total tide has two high and low tides of approximately equal size, the

asymmetry is commonly, largely dictated by the interaction of the M2 and M4 tidal

constituents (e.g. Pingree and Griffiths [1979] for UK waters). In diurnal (regions

where diurnal tides dominate and there is a single high and low tide per day), or

mixed tidal regimes (regions where neither diurnal or semi-diurnal constituents

dominate and there are two high and low tides of different heights per day) tidal

asymmetry may also be introduced through the interaction of diurnal (e.g. K1, O1,

etc.) and semi-diurnal (e.g. M2, S2, etc.) constituents [Nidzieko, 2010].
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Figure 2.7: Superposition (solid line) of a normalised M2 wave (dashed line) and a

normalised M6 wave (dotted line) with an amplitude 10 times smaller for various

values of the relative phase between the two waves, Ψ.

The introduction of asymmetry through the interaction of the M2 & M4 con-

stituents is illustrated in Figure 2.6. This figure bears resemblance to figures in,

for example, Pingree and Griffiths [1979], van de Kreeke and Robaczemska [1993]

and Neill et al. [2009], as will, therefore, the proceeding discussion. If one takes
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the waves in Figure 2.6 to be time-series of the M2 (dashed line) and M4 (dotted

line) tidal current along with the superposition of the two (solid line), with positive

values indicating flow in the flood-direction and negative values indicating flow

in the ebb-direction, then one can see that the type of current asymmetry of the

current depends on the relative phase between the two constituents, Ψ. In Figures

2.6b & 2.6d, Ψ = π/2 and Ψ = 3π/2, and for these two cases there is a FDA

with, respectively, the time between peak ebb and peak flood shorter than the time

between peak flood and peak ebb and vice-versa. In Figures 2.6a & 2.6c, Ψ = 0

and Ψ = π, and for these two cases there is flood-dominant and ebb-dominant

FVA respectively. For intermediate values of Ψ some combination of the two types

of asymmetry will occur. Compare what is seen in Figure 2.6 with what is seen

in Figure 2.7. The sixth-diurnal overtide, despite distorting the tide does not

introduce either type of asymmetry9. This is the reason for the distinction between

the odd and even overtides and compound tides in the previous sections, as it is

primarily the first even overtide that represents asymmetry in UK waters [Pingree

and Griffiths, 1979].

The variation of the types of asymmetry with relative phase is periodic. If one

defines the maximum flood-dominant FVA case +1 and the maximum ebb-dominant

FVA case -1 then the variation in FVA with Ψ behaves like cos(Ψ). If the ratio of

the amplitudes, A, of the two waves, AM4/AM2 , grows larger then the distortion

to the resultant tide, and therefore the degree of asymmetry, will also grow larger.

From this one may define a metric for the degree of FVA:

AS,1 =
AM4

AM2

cos(Ψ) (2.3.1)

Bruder and Haas [2014] employ a different method for quantifying FDA and

FVA, taken from gravity wave analysis [Elgar and Guza, 1985]. This method uses

the skewness, Sv, of the velocity time-series:

9However, the triplet interaction of the M2, M4 and M6 will introduce asymmetry [van de

Kreeke and Robaczemska, 1993, Blanton et al., 2002].
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Sv =

1
t

T∑
t=1

(v(t)− v)3

(
1
T

T∑
t=1

(v(t)− v)2

) 3
2

(2.3.2)

where T is the total number of time-indices, v(t) is the velocity at time t, v is the

temporal mean of v(t), to quantify the FVA. The asymmetry of the time-series,

Av, was then used to quantify the FDA. This is obtained via the skewness of the

imaginary portion of the Hilbert transform of the velocity time-series, H(v):

Av = Simag(H(v)) (2.3.3)

Bruder and Haas [2014] applied this methodology to synthetic time-series for the

M2 and M4. Nidzieko [2010] used a similar method to investigate the asymmetry

introduced through the interaction of the K1, O1 and M2 tides along the western

coast of the USA. The skewness of the time-derivative of the surface elevation, η′,

was calculated rather than the velocity. The skewness of the full time-series gives

the mean asymmetry over the duration of observation [Nidzieko, 2010], but in an

approach akin to the calculation of the moving average, Nidzieko [2010] calculated

the skewness of η′ for 1 lunar day (24.84 hour) sub-sets of the total record using

(2.3.2) and showed this method to give a very good approximation of traditional

methods using the harmonic analysis, e.g. (2.3.1). The method of Nidzieko [2010]

was extended by Song et al. [2011] allowing for the sets of constituents leading to

asymmetry to be identified, and for the relative contributions of each of these sets

to be determined. The method of Song et al. [2011] is extremely powerful, not only

for mixed tidal regimes but also for semi-diurnal regimes as further constituent

interactions which contribute to the asymmetry can be considered, and their relative

importance determined.

Song et al. [2011] derived the following relationship between the skewness in

the time-series of the time derivative of the water surface elevation, ζ = ∂η/∂t, for

N constituents, and the interactions between pairs and triplets of constituents:

Sζ,N =
N∑
i

β (2.3.4)

where β is the relative contribution of each interaction where for a pair interaction:
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β = Sζ,2 ·

η2
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2
1 + η2

0,2σ
2
2
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η2
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2
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3
2

(2.3.5)

and for a triplet interaction:

β = Sζ,3 ·

η2
0,1σ

2
1 + η2

0,2σ
2
2 + η2

0,3σ
2
3

N∑
i

η2
0,iσ

2
i


3
2

(2.3.6)

where η0,i is the surface elevation amplitude for constituent i, σi is the frequency

of constituent i,

Sζ,2 =
3
2
η2

0,1σ0,2 sin(2ψ1 − ψ2)
1
2
(η2

0,1 + 4η2
0,2)

(2.3.7)

and

Sζ,3 =
3
2
η0,1σ1η0,2σ2η0,3σ3 sin(ψ1 + ψ2 + ψ3)[

1
2
(η2

0,1σ
2
1 + η2

0,2σ
2
2 + η2

0,3σ
2
3)
] 3

2

(2.3.8)

The pair and triplet interactions are between sets of constituents that satisfy the

frequency relationships 2σ1 = σ2 and σ1 + σ2 = σ3 respectively.

So, with this methodology, following the harmonic analysis of a sufficiently long

time-series the relative contribution of the many pairs or triplets of constituents

that may introduce Tidal Duration Asymmetry (TDA), an asymmetry in the

durations of high and low water, may be determined. To do likewise for the FDA

and FVA, following Gong et al. [2016] the above methodology can be applied to

the time-series of ∂u/∂t and u respectively. When combined with the knowledge of

the physical origins of the shallow-water constituents, the knowledge of the relative

contribution of the interaction of these shallow-water constituents and astronomic

constituents (e.g. the M2-M4 or M2-S2-MS4 interactions) gives a good insight into

the relative importance of the various physical processes leading to distortions to

the tide and therefore to the resulting tidal TDA, FDA or FVA. The expansions

presented in §2.2 lead to an understanding of the physical origins of the various

distortions, and texts such as Parker [1991, 2007], discuss these physical origins in

more detail.
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The downside to this method in relation to real-world applications is the

sparsity of observations. Time-series are usually only available at tide-gauge

stations. However, HF radar campaigns (e.g. Thiébaut and Sentchev [2017]),

satellite altimetry data (e.g. Egbert and Erofeeva [2002]) or numerical modelling

could be used to generate time-series over an area to allow such an analysis.

2.4 Implications of Tidal Asymmetry for Trans-

port and Power

The asymmetry of a tidal flow has little practical importance in itself. The

significance of asymmetry in a tidal flow lies in its importance for other processes,

such as sediment transport. In the literature, discussion of tidal asymmetry

can often be found within a larger discussion regarding sediment transport or

morphodynamics, often with regards to estuarine environments. For example,

consider bed-load sediment transport. The driver of this transport is the bed-shear

stress, τ , resulting from tidal currents (or waves, or both, but only tidal currents

will be discussed here), with τ ∝ v2, where v is the current velocity vector. Given

this relationship, any FVA will be exaggerated in τ , leading to net transport in

the direction of the dominant current. This is of particular importance for coarser

sediments as the threshold for particle motion, the shear-stress required to move

sediment of a given size, is higher. The closer the associated threshold velocities to

the peak flood/ebb velocities, the greater the degree of asymmetry as the threshold

will be exceeded for less and less of the inferior tidal phase in comparison to the

dominant tidal phase. Alternatively, the threshold may be exceeded only on the

dominant tide. For suspended-load sediment transport the effect of asymmetry

is more complicated and it is FDA that is of greater importance to net transport

[Groen, 1967, Dronkers, 1986].

For bed-load sediment transport van de Kreeke and Robaczemska [1993] derived

an analytical expression for the long-term averaged bed-load sediment transport:

qs,bl
fu3

M2

=
3

2

uM0

uM2

+
3

4

uM4

uM2

cos(γM4) +
3

2

uM4

uM2

uM6

uM2

cos(γM4 − γM6) (2.4.1)
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where ui is the amplitude of the velocity constituent i, γi is the relative phase

between the constituent i and the M2 (γMn = nψM2/2 − ψMn), and f is some

function of the sediment and fluid characteristics. This latter term arises from the

sediment-transport formula used by van de Kreeke and Robaczemska [1993]:

qs,bl = f |u|2 · sign(u) (2.4.2)

based on Bagnold [1966]. The long-term average refers to a period of “several

months”, long enough that the variation over the spring-neap cycle, and other beat

frequencies is negated. The derivation also makes the assumption that the M2

current is at least an order of magnitude larger than all other constituents.

From (2.4.1), one can take away that in addition to the interaction between

the M2 and M4, the interaction of the M2 with a mean-flow (M0) and the triple

interaction of the M2, M4 and M6 will also lead to net transport, with the magnitude

of the latter being an order of magnitude smaller than that resulting from the two

former interactions [van de Kreeke and Robaczemska, 1993]. This is despite the

interaction between the M2 and M6 not introducing net transport, a point also

illustrated in Blanton et al. [2002]. On a larger scale Pingree and Griffiths [1979]

noted a similarity between bottom stress vectors resulting from the interaction

between the M2 & M4 and net sediment transport pathways in the waters around the

British Isles. This suggests that asymmetry resulting from the M2-M4 interaction

plays an important role in dictating net bed-load transport pathways not just at

the scale of an estuary, but also at the scale of shallow shelf seas such as the North

Sea, Irish Sea, English Channel, etc.. This differentiates the study of Pingree and

Griffiths [1979] from other key asymmetry texts, e.g. Speer and Aubrey [1985],

Dronkers [1986], Friedrichs and Aubrey [1988], Speer et al. [1991], van de Kreeke

and Robaczemska [1993] etc., which concern the role of current asymmetry in net

transport at the estuary/tidal inlet system scale.

The discussion above regards bed-load transport, which will be of importance for

coarser sediment clasts, ≥ 200 µm, rolling or jumping over the bed [Dronkers, 1986].

Sediment may also be transported as suspended load when the upwards fluid forces

exceed gravitational particle settling [Bagnold, 1966]. In estuarine environments

suspended load is mainly composed of finer sediments between 1–100 µm [Dronkers,
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1986]. However, in regions of large tidal currents, such as sites of interest for

tidal-stream exploitation, larger clasts may be suspended. The description of

suspended-load transport is complicated by cohesive properties, for finer sediments,

and time lag effects, applicable to all grain sizes. A time lag between slack water

and minimum suspended-load concentration has been observed, e.g. Postma [1954],

which can be explained by the fact that during times of increasing current a certain

amount of time is needed for the material to be brought into suspension, and during

times of decreasing current a certain amount of time is needed for the material to

settle out of suspension [Postma, 1954]. Postma [1961] later noted a FDA with

the time between maximum ebb and maximum flood being shorter than the time

between maximum flood and maximum ebb led to a net transport of suspended

material in the flood direction in the Dutch Wadden Sea. Groen [1967] developed

a simple quantitative model of the mechanism responsible for the net transport of

suspended material resulting from FDA.

Groen [1967] identified, for the case where all current constituents are negligible

compared to the M2, bar the M4 which has an amplitude half the size of the M2,

and where the M2 and M4 currents are in phase, a 38% asymmetry in the volume

of sediment transported as suspended-load over the flood and ebb of the tide,

favouring the flood. Figure 2.8 presents a reproduction of Figure 1 from Groen

[1967], which is essentially an exaggerated version of the plot in the top left panel

of Figure 2.6. This plot clearly shows the distortion to the wave leading to a FDA.

The time between peak flood and peak ebb is longer than the time between peak

ebb and peak flood. Over the former time period there is a longer slack water

allowing for more material to settle out of suspension following the flood, leading

to a net flood-wards transport of sediment.

Neill et al. [2009], discussed FVA in relation to sediment transport and the impact

of Tidal Stream Turbines (TSTs). Based on the theory of Pingree and Griffiths

[1979], Neill et al. [2009] hypothesised that TSTs would have a greater impact on

large-scale sediment dynamics when deployed in a region of FVA compared to a

region where the flow velocities of the flood and ebb tide are symmetric. Through

one-dimensional modelling of the Bristol Channel, UK, Neill et al. [2009] offered

support for this hypothesis, with as much as 20% difference in bed-level change
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Figure 2.8: Reproduction of Groen [1967] Figure 1, showing an FDA asymmetric

wave.

seen between the symmetric and asymmetric cases, averaged over the length of the

system.

For reasons similar to those discussed above for sediment transport, asymmetries

in tidal currents may also impact the power production of TSTs. This has been

discussed in a number of texts in the literature, e.g. Neill et al. [2014], Bruder and

Haas [2014], and Robins et al. [2015]. Neill et al. [2014] modelled the deployment of

a tidal-stream turbine across 21 different sites in a region suitable for tidal-stream

energy exploitation, representing diverse natural FVA conditions. The authors

noted the exaggeration of the asymmetry in the current in the turbine power

due to the cubic relation between the two, and their modelling indicated a 100%

asymmetry turbine power density resulting from a 30% asymmetry in the tidal

current (FVA).

Gooch et al. [2009] claim that asymmetry in the power productions leads to

less overall power production than if the asymmetry were not present. This is in

addition to the skewing of the power supply from four roughly even peaks to two

large peaks and two smaller peaks (per day).

In Figure 8 of Robins et al. [2015], hypothetical combined M2 and M4 time

series for Ψ = π/2 and Ψ = π, are plotted along with the practical power that
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would be produced over the spring-neap cycle by the prototype 1.2 MW SeaGen-S

turbine. Robins et al. [2015] found reduced energy conversion by the turbine for

the “asymmetric” (FVA) case compared to the “symmetric” (FDA) case. In their

calculations Robins et al. [2015] employed cut-in and cut-out speeds based on

the SeaGen-S turbine. Extending their calculation across all sites of interest for

tidal-stream energy development across the northwest European shelf seas Robins

et al. [2015] noted that where “relatively strong asymmetries” occur there tended

to be less practical power production when one considers the M4 compared to when

one does not consider the M4.

Bruder and Haas [2014], as mentioned above, used the statistical skewness,

Sv, (2.3.3), and asymmetry, Av, (2.3.4), to represent FVA and FDA respectively,

in combinations of hypothetical M2 and M4 time-series. In their study Bruder

and Haas [2014] employ Probability Density Functions (PDFs) of the velocity and

power. The beauty of using PDFs is that the relative contributions of velocities to

the overall power can be assessed. The peak velocities contributed the most to the

overall power, and in the case of a FVA tide, the PDF was bi-modal due to the two

differing peaks. In such a tide a turbine designed with a large cut-in speed and

rated speed – designed to capture the energy at the peak velocity values – would

only capture 65% of the available energy. Compared to 90% for the undistorted

and FDA cases, as much of the energy of the lower peak would be excluded.

The above does not account for turbine efficiency however. When Bruder and

Haas [2014] considered the turbine efficiency, based on the Betz-limit, 0.59, for two

turbines, one with a high cut-in speed and rated speed (first turbine), and another

with a moderate cut-in speed and rated speed and reduced efficiency at higher

speeds (second turbine), it was the latter that converted energy more efficiently

whether the tide was FVA, FDA or undistorted. This is despite the peak velocities

contributing most to the available power. For the FVA case a difference of 10%

between the two turbines was seen. This was due to the larger cut-in speed leading

to much of the power of the smaller peak not being captured by the turbine. For

the FDA case the difference was only 6%. The percentage difference in the available

energy between the FVA and FDA case was only 2%. However, the percentage

difference in the technically exploitable energy between the FVA and FDA cases
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was 8% for the second turbine and 12% for the first turbine.

To paraphrase the findings of Bruder and Haas [2014]; as FVA increases more

energy is concentrated at the lower end of the velocity distribution, as FDA grows

more energy is concentrated near the higher end of the velocity distribution. The

implication of this is that when cut-in speeds are considered FVA leads to reduced

technically exploitable energy compared to an undistorted tide, whilst for the FDA

case, compared to an undistorted tide; for higher rated turbines the technically

exploitable energy is increased, and for lower/moderate rated turbines it is reduced.

Bruder and Haas [2014] made no mention of cut-out speed in their study, but

it is easy to extrapolate the findings of their work to include this. As the larger

velocities contribute more to the available power, if peak velocities exceed the

turbine cut-out speed then the most important contribution to the available power

is excluded, greatly reducing the technically exploitable power. When the cut-out

speed is close to the peak current velocity value for the undistorted case, FVA will

have the greatest impact on the technically exploitable energy.

2.5 Hypothesis, Research Questions and Experi-

mental Outline

2.5.1 Hypothesis Development

Thus far in this chapter, the periodic motions of the Earth-Moon-Sun systems have

been introduced, and it has been shown how the frequencies of these motions lead

to the harmonic development of the equilibrium tide (§2.1). The generation of the

harmonics (overtides and compound tides) of these astronomic frequencies has then

been introduced (§2.2). It has been shown that, when modelled using a quadratic

drag description, the distortions to the tide resulting from a TST introduce the

same species of overtides and compound tides as bed friction. That is, all odd

and even harmonics. The validity of this statement depends on the characteristic

length-scale of the water surface elevation, N0, being non-negligible in comparison

to the characteristic channel depth, D0. Or, stated more physically, all species of

the shallow-water tides will be impacted by the TST so long as the effect of the
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TST is flood-ebb asymmetric. This may result from a flood-ebb asymmetry in

the blockage ratio of the channel, or due to a FVA in the tidal current in which

the turbine is deployed. The former requires N0 non-negligible compared to D0.

However, the latter may arise in deeper water due to topographic effects on the

flow, such as flow separation around a headland, island, or at a channel outlet, or

flow constriction at a channel inlet, all of which lead to the generation of the M4

through the momentum-advection and continuity terms (spatial gradients in the

current).

Whilst the harmonic expansions of the non-linear terms can suggest which

shallow-water constituents may be impacted by TSTs, they do not offer any insight

into how they might be impacted. The analytical work of Adcock and Draper

[2014] suggests that the even harmonic tides will be reduced, unless the channel

is inertia dominated, or the turbine term is flood-ebb asymmetric. However, this

conclusion is based on the reasoning that the volume flux of water in the channel

is reduced. In this chapter it was further reasoned that local to the turbine, the

pattern of change to the current will be more complex, and thus augmentation

of the even overtides may be possible more generally. Further, there are multiple

non-linear processes at play, so without solutions to the governing equations it is

not possible to say how the even harmonics will be altered. From the above, the

first hypothesis that this study will test is therefore that:

both odd and even harmonic tides will be altered by the introduction of a

TST, locally, as the turbine terms are local, with reductions expected to

the odd harmonics and an unknown, and not necessarily similar, change

to the even harmonics.

In the section that followed (§2.3), the way in which the interaction of astronomic

tides with their harmonics can introduce asymmetry was discussed. It was seen

that in diurnal or mixed regimes the interaction between diurnal and semi-diurnal

astronomic tides may also lead to asymmetry. However, this will be set aside as

such a regime would lead to a less even temporal distribution of power supply,

and will therefore be assumed to be of less interest to a tidal energy developer.

Thus, the focus of this study will be on a semi-diurnal regime. Assuming that
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in a semi-diurnal regime the M2 tide dominates (i.e. all other constituents are

negligible in comparison), then it will be the M2-M4 interaction that dictates

the flood-ebb asymmetry (henceforth asymmetry will be taken to refer to FVA

and FDA collectively) of the tide. With the form of asymmetry (FVA or FDA)

dependant on the phase relationship between the M2 and M4 constituents, Ψ, and

the strength of the asymmetry dictated by the amplitude ratio of the constituents.

Thus, changes to the amplitude and phase of the M2 or M4 will alter ambient

asymmetry. Reductions to the M2 amplitude and increases to the M4 amplitude

will increase the size of the asymmetry and vice-versa. Changes to the phase may

change both the form of the asymmetry, which, when looking at either FVA or

FDA in isolation will also affect their size.

For the flow passing through the turbine the energy at the astronomic frequencies

will be reduced, whilst for the flow passing around the turbine the energy at

these frequencies will be increased. With no consideration of the change to the

even overtides one would expect reduced asymmetry in bypass flow and increased

asymmetry in the wakes (inverse relationship between asymmetry and M2 amplitude,

see equations (2.3.1) and (2.3.2)). Taking into account the changes to the M4 could

significantly alter this prediction. All this says nothing about the change to the

phases of the constituents. For the M2 one might expect a phase lag to be added

due to the blockage to the tide offered by the turbine(s). Although for a single

turbine this effect would be small. Physical intuition cannot be employed to predict

the changes to the M4 phase caused by the turbines in the same way. For the

dominant M2 case, the phase of the M2 constituent will represent the phase of the

tide itself. In contrast, the phases of the harmonics of the M2 are a mathematical

description of the topographic distortion to that tide. Thus, a general prediction

of the change to the phase of the harmonics, based on physical intuition is difficult,

perhaps impossible, at least prior to a study of the (numerical) solutions to the

governing equations. From the above the second hypothesis is therefore that:

changes to the current due to a TST will lead to changes to the asym-

metry of the flow, both augmentation and reduction, and the changes

can be understood through the changes to the constituents that interact

to introduce asymmetry.
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Finally, the importance of asymmetry for sediment transport was discussed

along with its importance in determining the technically exploitable resource (§2.4).

Summarising the two previous hypotheses, TSTs will alter the harmonics of the

tide which will alter the ambient flow asymmetry. Combining these hypothesis

with the discussion in §2.4 leads to the final hypothesis that:

changes to the flow asymmetry will lead to changes in net sediment

transport and the technically exploitable resource.

2.5.2 Research Questions

To focus the experiments that will be carried out to test these hypotheses, they

will first be reformulated into a set of research questions. Respectively the three

hypotheses may be reformulated into the three following research questions:

1. How are the harmonic tides altered locally by TSTs?

2. How is the flow asymmetry altered locally by TSTs?

3. How is net sediment transport and the technically exploitable resource altered

locally by TSTs?

Accounting for the discussion in the preceding sections these three research

questions each lead to a set of further sub-questions:

1. How are the harmonic tides altered locally by TSTs?

(a) How is the alteration to the odd and even harmonics similar/different?

(b) What effect does the variable efficiency of a TST have on its impact on

the harmonic tides, in particular cut-in and cut-out speeds?

(c) How sensitive is the effect of a TST to ambient conditions, in particular

ambient asymmetry?

(d) How does the impact of a single TST scale across an array of TSTs?

2. How is the flow asymmetry altered locally by TSTs?
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(a) Can the change to the flow asymmetry be predicted from the changes to

the tidal constituents (fundamentals and harmonics)?

(b) What effect does the variable efficiency of a TST have on its impact on

the flow asymmetry, in particular cut-in and cut-out speeds?

(c) See 1c).

(d) See 1d).

3. How is net sediment transport and the technically exploitable resource altered

locally by TSTs?

(a) Can the change to the technically exploitable resource be predicted from

the changes to the flow asymmetry?

(b) Can the change to net sediment transport be predicted from the changes

to the flow asymmetry?

Prior to giving an outline of how these research questions will be addressed, the

sub-questions will first be qualified briefly. First, for question 1a), the discussion

around the first hypothesis in §2.5.1 outlines the origin of this question, and

likewise, the origin of question 2a) can be found in the discussion around the second

hypothesis.

On the origin of questions 1b) and 2b), consider the turbine term in the

momentum equation:

1

2

ε0CT û|û|
(1 + η/h)

(2.5.1)

along with the generic CT -curve from Bastón et al. [2014], Figure 2.9. The CT -curve

may be broken down into three parts, a part where the turbine is not operational,

below the cut-in speed (1 m/s) or above the cut-out speed (4 m/s), a part where

the turbine operates with a constant efficiency, between 1 m/s and 2.5 m/s, and a

part where the turbine operates at reduced efficiency, between 2.5 m/s and 4 m/s.

This may be approximated by the mathematical function:

CT (û) =


0.85, where 1 ≤ û ≤ 2.5 m/s

aû2 + bû+ c, where 2.5 < û ≤ 4 m/s

0, otherwise

(2.5.2)
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as the reduced efficiency region fits a quadratic relationship with û (taking the

current speed to be the 1D velocity û), where a, b and c are unknown coefficients.

Whilst the turbine is operating in the lower efficiency (quadratic) region the turbine

term (2.5.1) will be more complex:

1

2

ε0aû
3|û|

(1 + η/h)
+

1

2

ε0bû
2|û|

(1 + η/h)
+

1

2

ε0cû|û|
(1 + η/h)

(2.5.3)

than when the turbine is operating in the standard efficiency region:

0.425× ε0û|û|
(1 + η/h)

(2.5.4)

As such one might expect a different impact on the flow, given the difference in the

harmonic expansions of (2.5.3) and (2.5.4) one expects to see.

The even harmonic tides were introduced by the asymmetric effect of the turbine

on the flow due to the variation in the blockage ratio caused by the variation of

the water surface elevation, as seen in §2.2. Given the dependence of the turbine

term on the current speed then one may also expect an asymmetric impact of

the turbine on the tide if the flow is initially asymmetric. It is this that leads to

questions 1c) and 2c), as one might therefore expect the effect of the turbine on the

even overtides, and therefore asymmetry to vary for varying ambient asymmetry

conditions.

Current Speed [m/s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2.9: Reproduction of the generic tidal-stream turbine thrust coefficient (CT )

curve from Bastón et al. [2014].
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Questions 1d) and 2d) arise naturally from main questions 1) and 2). The

changes to the hydrodynamic conditions by a turbine will alter the hydrodynamic

conditions experienced by neighbouring turbines from ambient conditions. Further

to this there may be interactions between multiple turbines which alter the nature

of the hydrodynamic changes resulting from arrays of turbines.

Finally, in §2.4, the importance of flow asymmetry for both sediment transport

and the technically exploitable resource was discussed at length. This discussion

implies that changes to the ambient flow asymmetry conditions will lead to changes

to the ambient net sediment transport and technically exploitable resource. With

this being the case, it leads to questions 3a) and 3b) which ask if these changes

to the flow asymmetry might be used as a predictor of the knock-on effect for

transport and the resource.

2.5.3 Experimental Approach

The lack of publicly available data from TST deployments, and at the time of writing,

a lack of commercial-scale TST arrays, leaves only the possibility of a modelling,

either physical or numerical, or analytical study to address the above research

questions. The analytical approach can be discounted as analytical solutions to

the fully non-linear forms of the Navier-Stokes equations are not known, and

maintaining the non-linear form of the equations is required as it is the non-linear

terms which are responsible for the generation of the harmonic tides. Therefore,

a numerical modelling approach will be employed to address the above research

questions, as numerically, solutions to the non-linear form of the Navier-Stokes

equations can be arrived at. Through numerical experiments it will be feasible

to address the previously stated research questions, at least in terms of a first

preliminary exploration of this topic.

Three groups of experiments will be carried out to address the three research

questions and their associated sub-questions. In the first group of experiments a

single TST will be deployed in a channel and the change in the harmonic analysis

and asymmetry will be explored. This experiment will be repeated for a fixed- and

variable-CT turbine. For these experiments only the M2 and its overtides will be

looked at, as for a semi diurnal regime – which the focus of this thesis has been
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restricted to – the M2-M4 interaction will have the most significant influence on

asymmetry if other astronomic constituents are assumed negligible in comparison

to the M2 [van de Kreeke and Robaczemska, 1993]. The final experiment in this

first group will repeat the fixed-CT experiment including the S2 to account for the

most significant tidal beat, the spring-neap cycle. These experiments will address

questions 1a), 1b), 2a) and 2b).

The second group of experiments will contain three experiments. The first will

deploy a single fixed-CT turbine at multiple locations along the channel to address

questions 1c) and 2c), as the ambient asymmetry conditions will differ at different

locations along the channel. The next two experiments will look at multiple TSTs

deployed in lines and rows. These two experiments will look to address questions

1d) and 2d).

The final group of experiments will look to address questions 3a) and 3b). To

look at the impact of TSTs on the technically exploitable resource, question 3a),

will not require any further simulations, simply for additional analysis of the single

TST experiments to be performed. Looking at the impact of TSTs on sediment

transport, question 3b), will require additional simulations as the model will need to

be expanded to include calculations of sediment transport processes. For simplicity

and brevity, the impact of only single turbines will be investigated in this group of

experiments.
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Chapter 3

Model Description

In this chapter, the modelling system used to carry out the numerical experiments

to address the research questions developed in the previous chapter is introduced

(§3.1) along with the model geometry used (§3.2). The model output is verified

against analytical solutions (§3.3) found in the literature and sensitivity tests are

performed to explore how the results of the analysis change with varying model

parameters (§3.4).

3.1 The Modelling System

The modelling system employed in this work is DHI’s MIKE21 FM, a two-

dimensional, Flexible Mesh (FM) modelling system, which solves the depth-

integrated incompressible Reynolds-averaged Navier-Stokes equations [DHI, 2016a].

MIKE21 FM is comprised of a number of modules; those used here are the hydro-

dynamic and sediment transport modules. More detail on these modules is given

in the proceeding subsections.

3.1.1 The Hydrodynamic Module

The two-dimensional version of MIKE, MIKE21, which will be the version used in

this work solves the following two-dimensional equations [DHI, 2016b]:

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
= HS (3.1.1)
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∂(Hu)

∂t
+
∂(Hu2)

∂x
+
∂(Huv)

∂y
− fHv = −gH ∂η

∂x
− H

ρ0

∂pa
∂x
− gH2

2ρ0

∂ρ

∂x
+
τ sx
ρ0

− τ bx
ρ0

− 1

ρ0

(
∂sxx
∂x

+
∂sxy
∂y

)
+

∂

∂x
(HTxx) +

∂

∂y
(HTxy) +HusS (3.1.2)

∂(Hv)

∂t
+
∂(Hvu)

∂x
+
∂(Hv2)

∂y
− fHu = −gH ∂η

∂y
− H

ρ0

∂pa
∂y
− gH2

2ρ0

∂ρ

∂y
+
τ sy
ρ0

− τ by
ρ0

− 1

ρ0

(
∂syx
∂x

+
∂syy
∂y

)
+

∂

∂x
(HT xy) +

∂

∂y
(HT yy) +HvsS (3.1.3)

where:

u =
1

H

η∫
−h

u dz, v =
1

H

η∫
−h

v dz (3.1.4)

are the depth averaged u and v velocity components, H = h+ η is the total depth:

Txx = 2AH
∂u

∂x
, Txy = AH

(
∂u

∂y
+
∂v

∂x

)
, Tyy = 2AH

∂v

∂y
(3.1.5)

are the lateral stresses (including viscous and turbulent friction and differential

advection):

AH = cs
2l2
√

2SijSij (3.1.6)

is the horizontal eddy viscosity, cs is the Smagorinsky constant, l is a characteristic

length of eddies:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2 (3.1.7)

is the deformation rate, sij are components of the radiation stress tensor, pa is

atmospheric pressure, ρ0 is the reference density of water, τsi and τbi are the

surface and bottom components of the radiation stress tensor, S is the magnitude

of discharge due to point sources and us and vs are the velocity that water is

discharged into the ambient. The above apply for a barotropic model using the

Smagorinsky [1963] formulation, which will always be the case considered in this

work.
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If no sources, wind stress, Coriolis forcing or wave radiation stress are used in

the model then (3.1.1)–(3.1.3) become:

∂H

∂t
+
∂(Hu)

∂x
+
∂(Hv)

∂y
= 0 (3.1.8)

∂(Hu)

∂t
+
∂(Hu2)

∂x
+
∂(Hvu)

∂y
= −gH ∂η

∂x
− H

ρ0

∂pa
∂x
− gH2

2ρ0

∂ρ

∂x
− τbx
ρ0

+
∂

∂x
(HTxx) +

∂

∂y
(HTxy) (3.1.9)

∂(Hv)

∂t
+
∂(Hvu)

∂y
+
∂(Hv2)

∂y
= −gH ∂η

∂y
− H

ρ0

∂pa
∂y
− gH2

2ρ0

∂ρ

∂y
− τby
ρ0

+
∂

∂x
(HTxy) +

∂

∂y
(HTyy) (3.1.10)

In most cases the effect of density gradients in 2D models is small and so the

density gradient terms can be neglected [DHI, 2016a]. With this in mind, and if

the model is designed in such a way that v ≈ 0 and ∂η/∂y ≈ ∂u/∂y ≈ 0, then

(3.1.8)–(3.1.10) become:

∂η

∂t
+ h

∂u

∂x
+
∂(ηu)

∂x
= 0 (3.1.11)

∂(Hu)

∂t
+
∂(Hu2)

∂x
= −gH ∂η

∂x
− H

ρ0

∂pa
∂x
− τbx
ρ0

+
∂

∂x

(
H2A

∂u

∂x

)
(3.1.12)

0 = −H
ρ0

∂pa
∂y

(3.1.13)

The momentum equation for the y-direction disappears leaving only the x momen-

tum equation. For constant atmospheric pressure and τbx = ρ0CFu|u|, (3.1.12)

is almost identical to (2.2.6) with N = 0 (the 1D momentum equation with no

turbines), with the difference being the additional stress terms. The continuity

equation is the same as the 1D continuity equation (2.2.5) if û = u. If one were to

set the Smagorinsky coefficient cs = 0 (alternatively when setting up the model the

user can select the no eddy option under the eddy viscosity menu), then (3.1.12)

becomes:

56



Chapter 3. Model Description

∂u

∂t
+
∂(u2)

∂x
= −g ∂η

∂x
− CF
h+ η

u|u| (3.1.14)

which is identical to (2.2.6) if û = u and ∂(u2)/∂x ≈ u∂u/∂x and N = 0.

In summary, MIKE21 can be used to model (2.2.5) and (2.2.6) if the following

conditions are met:

1. no sources are included in the model,

2. wind stress is not included in the model,

3. Coriolis forcing is not included in the model,

4. density gradients are negligible,

5. the lateral components of the velocity are negligible,

6. the lateral gradients of the surface elevation and longitudinal velocity compo-

nent are negligible,

7. a quadratic friction law is used,

8. the cross-sectionally averaged longitudinal velocity is equal to the depth

averaged longitudinal velocity,

9. eddy viscosity is not included in the model,

10. the gradient of the xx stress tensor is negligible

11. and ∂(u2)/∂x ≈ u∂u/∂x.

MIKE21 employs a quadratic friction law using the depth averaged velocity [DHI,

2016b] which satisfies condition 7. The conditions 1, 2, 3, 9 and 10 can be satisfied

by choosing the correct options in the respective menus in the model set-up. The

conditions 5 and 6 can be met in a uniform rectangular channel if uniform-along-

the-boundary surface elevation or velocity (longitudinal component only, no lateral

component) is input at the open boundaries, and the land boundaries use the

full slip boundary condition (additionally conditions 1-3 will also be needed). If

conditions 5 and 6 are met then condition 8 will also be met. Finally, conditions 4

and 11 will be assumed.
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It is noted here that, whereas in an unoccupied channel the hydrodynamics will

be essentially 1D if eddy viscosity is neglected (since L� λ), when turbines are

added to the channel this will no longer be the case. The deployment of turbines

will interrupt the 1D nature of the hydrodynamics because flow is accelerated

as it is forced around the turbines, or slowed as it passes through the turbines.

This will also introduce strong lateral velocity gradients and sub-grid scale turbu-

lence, necessitating the inclusion of the eddy viscosity turbulence parameterisation.

Therefore, the lateral stress term (the last term on the right-hand side of (3.1.12))

is retained despite this not being included in the equations in the previous chapter.

In addition, note that a more accurate representation of the turbines would also

include source and sink terms in the turbulence model (e.g. Roc et al. [2013]).

The model area is sub divided into triangular or quadrilateral elements and

the governing equations solved using the finite volume method. The governing

equations are converted into integral form, with the integral evaluated over each

cell. The user has the option of a first or second order solution. Here, the second

order solution will be used; this is obtained using an approximate Riemann solver

– Roe’s scheme [Roe, 1981] – to calculate fluxes across cell interfaces. A linear

gradient-reconstruction technique is then used to achieve second order accuracy

using the approach of Jawahar and Kamath [2000]. Finally, the van Leer 2nd order

TVD slope limiter [Hirsch, 1990, Darwish and Moukalled, 2003] is used to avoid

numerical oscillations [DHI, 2016b].

Based on the discussion above, the hydrodynamic model parameters to be used

throughout this thesis are summarised in Table 3.1. The higher order solution

methods are described above. MIKE uses a variable time-step in the solution

of the governing equations, within the bounds of the maximum and minimum

time-step, and less than the critical CFL number [DHI, 2016a]. Elements of the

hydrodynamic module not included in the table, namely the depth correction,

flooding and drying, Coriolis forcing, wind forcing, ice coverage, tidal potential,

precipitation – evaporation, infiltration, wave radiation and sources elements, were

not included in the model. The reasons for their exclusion were discussed previously.

The maximum and minimum time-step, critical CFL number, Manning number and

Smagorinsky coefficient were all left at their default values. More information on
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each of the elements in MIKE21’s Hydrodynamic Module is given by DHI [2016a].

The boundary forcing setting to be used is a water surface elevation that is

constant along the boundaries and varying in time. A single elevation time-series

was used for each boundary. These were synthesised using MATLAB, and the

equation:

η(t) =
n∑
i=1

η0,i cos(σit− φi) (3.1.15)

where n is the number of constituents supplied at the boundaries, η0,i is the

amplitude of constituent i, σi is the frequency of constituent i and φi is the phase

of constituent i at the boundary in question.

3.1.2 The Sediment Transport Module

Sediment transport as bedload, and suspension of sediment into the water column

are driven by shear stresses resulting from the flow of water over the bed. In the

sediment transport simulations carried out in this work the shear stresses from the

hydrodynamic module were used. This is given by a quadratic friction law as:

τbx = ρ0CFu|u| (3.1.16)

τby = ρ0CFv|v| (3.1.17)

where ~τb = (τbx, τby) is the bed shear stress and CF is the friction coefficient, which

is given by:

CF =
g

(Mh1/6)2
(3.1.18)

where M is the Manning number.

The flow shear stress, τ , may be split into two components, the form drag, τ ′′,

and the skin friction, τ ′, where τ = τ ′ + τ ′′. In this work, the van Rijn [1984a,b]

(VR84) sediment transport model was used for both bed- [van Rijn, 1984a] and

suspended-load transport [van Rijn, 1984b]. In the derivation of the equations in

this model the non-dimensional form of the shear stress, or the Shield’s parameter,

Θ, was used, defined as:
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Table 3.1: Model parameters for hydrodynamic module. † – Parameter kept at

default value, ∗ – Parameter varied in sensitivity tests (Section 3.4), constant

otherwise.

Module Element Parameter Setting / Value

Solution Technique

Time Integration Higher Order

Space Discretisation Higher Order

Minimum Time-Step† 0.01 s

Maximum Time-Step† 30 s

Critical CFL Number† 0.8

Density Density Type Barotropic

Eddy Viscosity

Eddy Type Smagorinsky Formulation

Format Constant

Constant Value†∗ 0.28

Minimum Eddy Viscosity† 1.8× 10−6 m2/s

Maximum Eddy Viscosity† 1.0× 1010 m2/s

Bed Resistance

Resistance Type Manning Number

Format Constant

Constant Value†∗ 32 M1/3/s

Initial Conditions

Type Constant

Surface Elevation 0 m

u-Velocity 0 m/s

v-Velocity 0 m/s

Type Specified Level

Format
Varying in Time, Constant

Boundary Conditions:
Along Boundary

Open Boundaries
Soft Start: Type Sinus Variation

Soft Start: Time Interval 86400 s

Soft Start: Reference Value 0 m

Interpolation Type: In Time Linear

Boundary Conditions:
Type

Land (Zero Normal

Land Boundary Velocity)
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Θ =
τ

ρ0g(s− 1)d50

(3.1.19)

where s = ρ0/ρs is the relative density of the sediment, ρs is the density of the

sediment and d50 is the median sediment grain diameter. Beyond a critical value

of the Shield’s parameter, Θc, transport of sediment will be initiated. In the VR84

model Θc varies with the non-dimensional sediment diameter:

Dast = d50

(
(s− 1)g

ν2

) 1
3

(3.1.20)

where ν is the kinematic viscosity, taken here as 10−6 m2/s. The values of Θc for

the VR84 model are given in Table 3.2.

Table 3.2: Critical Shield’s parameter as a function of Dast for various ranges of

Dast used in the VR84 model.

D∗ Range Θc

D∗ < 4 0.24/D∗

4 < D∗ < 10 0.14D−0.64
∗

10 < D∗ < 20 0.04D−0.1
∗

20 < D∗ < 150 0.013D0.29
∗

D∗ > 150 0.055

Should the conditions in Table 3.2 be met, then bed-load transport will com-

mence, with the bed-load volumetric transport rate given in the VR84 model

by:

qs,bl = 0.053
T 2.1

D0.3
∗

√
(s− 1)gd3

50 (3.1.21)

where:

T =

(
u′f
uf,c

)2

− 1 (3.1.22)

is the non-dimensional transport stage parameter, u′f is the effective friction velocity,

estimated by:

u′f = v

√
g

C ′
(3.1.23)
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where C ′ is the Chézy number originating from skin friction and is given by:

C ′ = 18 log

(
4h

d90

)
(3.1.24)

where d90 is the grain diameter for which 90% of grains are finer, and uf,c is the

critical friction velocity given by:

uf,c =
√

Θc(s− 1)gd50 (3.1.25)

If the shear stress is large enough then suspended-load transport of the sediment

will occur. The conditions for suspended-load transport and the suspended-load

volumetric transport rate are given by:

uf >

 4ws
Dast

, for Dast < 10

0.4ws, for Dast > 10
(3.1.26)

and:

qs,sl = fcavh (3.1.27)

respectively, where uf is the friction velocity, ws, is the settling velocity, given by:

ws = 10
ν

d

(√
1 +

0.01(s− 1)gd3

ν2
− 1

)
(3.1.28)

for particles with a diameter, 100 µm ≤ d ≤ 1,000 µm, and by:

ws = 1.1
√

(s− 1)gd (3.1.29)

for particles with d > 1,000 µm [van Rijn, 1984b], v is the current velocity, ca is

the volumetric bed concentration, given by:

ca = 0.015
d50T

1.5

aDast
0.3

(3.1.30)

where a is a reference level at which the bed concentration is determined and is

given by:

a = max

 0.01h

2d50

 (3.1.31)
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and f is a correction factor, given by:

f =

(
a
h

)Z − ( a
h

)1.2(
1− a

h

)Z
(1.2− Z)

(3.1.32)

where Z is the Rouse suspension parameter given by:

Z =
ws
βκuf

+ ϕ′ (3.1.33)

where κ = 0.4 is the von Karman constant, and β and ϕ′ are correction factors

applied to the hydrodynamic diffusion coefficient (in order to convert it into a

diffusion coefficient for sediment) and concentration profile respectively, and are

given by:

β = 1 + 2

(
ws
uf

)2

(3.1.34)

and:

ϕ′ =
5

2

(
ws
uf

)0.8 ( ca
0.65

)0.4

(3.1.35)

For suspended-load transport, if the concentration of sediment in suspension is

greater than an equilibrium concentration then sediment will begin to settle out

of suspension. Conversely, if the concentration of sediment in suspension is less

than an equilibrium concentration, the bed will erode as sediment is brought into

suspension. In the VR84 model, the equilibrium concentration, ce, is given by:

ce =


ca(((2.21Z − 6.41)Z − 3.95)Z + 0.97) Z ≤ 1

ca(((0.007Z − 0.06)Z − 0.347)Z + 0.22) 1 ≤ Z ≤ 3

ca(((4.10− 6Z − 1.2× 10−4)Z − 7.67× 10−3)Z + 0.018) Z > 3

(3.1.36)

Within MIKE the movement of sediment in suspension is described by a standard

advection-dispersion equation, which uses as a boundary condition at the bed ca,

as given by (3.1.30). Neither the transport equation, or its derivation are presented

here in the interest of brevity. Further information can be found in DHI [2016c].

The above models for the bed-load and suspended-load transport give the

respective volumetric transport rates as vectors. In the case that the hydrodynamics
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are 1D following the discussion in §3.1.1 the transport of sediment will also be 1D,

with transport in the x-direction only. Positive and negative values of qs,bl and qs,sl

therefore indicate transport of sediment in the positive and negative x-directions

respectively.

3.1.3 Turbine Implementation

In MIKE, tidal-stream turbines are “. . . modelled as sub-grid structures using a

simple drag-law to capture the increasing resistance imposed by the turbine blades

as the flow speed increases. . . ” with the turbines assumed to “. . . always have their

axis aligned with the flow direction. . . ” (DHI [2016a], pp. 96). The turbine drag

and lift forces are calculated as [DHI, 2016a]:

~FD =
1

2
ρ0CDA~V0|~V0| (3.1.37)

~FL =
1

2
ρ0CLA~V0|~V0| (3.1.38)

where CD and CL are the turbine drag and lift coefficients respectively, A is the

turbine swept area, ~V0 = (u0, v0) is the upstream velocity, u0 and v0 are its x- and

y-components.

Equations (3.1.37) and (3.1.38) and be derived through actuator disk theory, e.g.

Appendix B. So although implemented as a momentum sink in a model element,

the sink term has a physical basis. The derivation of these forces uses the upstream

velocity. However, in the model, as the size of the element reduces the velocity

within the element, ~Vlocal, diverges from the upstream velocity. Kramer et al. [2014]

proposed a correction factor to address this issue, defined as:

~V0 = α~Vlocal =
2

1 +
√

1− γ
~Vlocal (3.1.39)

where:

γ =
CDA

H∆y
(3.1.40)

where ∆y is the width of the element perpendicular to the flow.
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For the 1D case ~V0 and ~Vlocal will reduce to u0 and ulocal, and in the present

work the lift force will not be considered, so that the thrust force is equal but

opposite to the drag force. The 1D thrust force is therefore:

FT = −1

2
ρ0CTAu0|u0| (3.1.41)

To add (3.1.41) to the 1D momentum equation, (3.1.14), one must divide

(3.1.41) by ρ0E, where E = b(h+ η) as (3.1.14) has been divided through by this

factor. The resulting equation is then:

∂u

∂t
+
∂(u2)

∂x
= −g ∂η

∂x
− CF
h+ η

u|u| − ε0CT
2(1 + η/h)

u0|u0| (3.1.42)

where ε0 = NA/bh is the blockage ratio for η = 0 m, which is the same form as

the momentum equation in Chapter 2, (2.2.6), if one assumes that u0 = u.

Turbines are implemented in the model though the turbine structure element

of the hydrodynamic module. The parameter settings used in this element are

summarised in Table 3.3. The turbine location, and therefore the turbine correction

factor (which is a function of the local element area (3.1.39) & (3.1.40)) vary on a

turbine-by-turbine basis. In the case of the variable-CT turbine the drag (CD) and

lift (CL) coefficient values used in the CD and CL look-up tables are given in Table

3.4. Values are given for two current directions (relative to the turbine), and lift

forces are neglected by supplying CL = 0 for all speeds and directions. The CD

value from Table 3.4 are plotted in Figure 2.9.

3.2 Model Geometry

Section 3.1.1 discussed how one might use MIKE 21 FM to reach numerical

approximations of solutions to (2.2.5) and (2.2.6). So that the lateral components

of the velocity and the lateral gradients of the surface elevation and longitudinal

velocity component might be considered negligible, a uniform, rectangular geometry

is employed, as the derivation of (2.2.5) and (2.2.6) make this assumption about

the channel (see Appendix C). Additionally, in going from the 3D to the 1D

forms of (2.2.5) and (2.2.6) it is assumed that the shallow water and narrow basin

approximations hold for the channel, that is:
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Table 3.3: Model parameters in turbine structure element of MIKE21’s

hydrodynamic module. ∗ – Parameters vary on a turbine-by-turbine basis.

Turbine Type Parameter Setting / Value

Fixed CT

Position Variable∗

Diameter 20 m

Description Fixed Drag Coefficent

Current Correction Factor:
Constant

Format

Current Correction Factor:
Variable∗

Constant Value

Variable CT

Position Variable∗

Diameter 20 m

Description
Tabulated Drag and

Lift Coefficient

Orientation 90◦

Current Correction Factor:
Constant

Format

Current Correction Factor:
Variable∗

Constant Value

D0 � B0, L0 (3.2.1)

and:

B0 � L0 (3.2.2)

where D0, B0 and L0 are the length scales of the depth, width and length of the

channel respectively. Given that tidal-stream turbines will be deployed in the

channel, this will impose limits on the depth. The absolute minimum depth, h,

that can be employed, so that a turbine of radius, R, may be deployed in a region

where the tidal elevation is η0, is:
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Table 3.4: Drag (CD) and lift (CL) coefficient values used in look up tables for

variable-CT turbine runs.

Current Speed [m/s]

CD CL

Current Direction Current Direction

0◦ 360◦ 0◦ 360◦

1.00 0.850 0.850 0.000 0.000

1.25 0.850 0.850 0.000 0.000

1.50 0.850 0.850 0.000 0.000

1.75 0.850 0.850 0.000 0.000

2.00 0.850 0.850 0.000 0.000

2.25 0.850 0.850 0.000 0.000

2.50 0.850 0.850 0.000 0.000

2.75 0.635 0.635 0.000 0.000

3.00 0.490 0.490 0.000 0.000

3.25 0.385 0.385 0.000 0.000

3.50 0.308 0.308 0.000 0.000

3.75 0.250 0.250 0.000 0.000

4.00 0.205 0.205 0.000 0.000

h > 2R + η0 (3.2.3)

In this case the turbine would be deployed with the lower-most extent of the

turbine swept area grazing the bed, and at the lowest tide, the upper-most extent

of the turbine swept area grazing the water surface. So that there is more realistic

clearance of the swept area from the bed and the tidal wave from the swept area,

the condition:

h > 3R + η0 (3.2.4)

is employed. The dimensions related to this condition are illustrated in Figure 3.1

If it is assumed that if X is 10 times larger than Y , then X � Y , then according

to (3.2.1) and (3.2.2), the width, b, and length, L, must satisfy:
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Figure 3.1: Schematic illustration of depth condition upon which model geometry

design is based.

b ≥ 10(3R + η0) (3.2.5)

L ≥ 100(3R + η0) (3.2.6)

In the derivation of (2.2.5) and (2.2.6), so that the Coriolis force could be neglected,

a more stringent condition on the width-length-ratio was imposed (see Appendix

C). However, since the Coriolis force may simply be switched off in MIKE, this

condition will not be imposed on the model geometry. One might simply imagine

the channel to be located exactly along the equator.

For a turbine radius of 10 m, and a tidal amplitude of 5 m, the channel

dimensions:

h = 36 m, b = 1.08 km, L = 32.4 km (3.2.7)

are used. This value of the depth satisfies (3.2.4) allowing the turbine to be deployed

with a hub height of 20 m, so that there is 10 m clearance between the swept area

and the bed, and 1 m clearance between the swept area and the water surface at
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low tide. The width is then 30 times larger than the depth, and the length 30 times

larger than the width, so that both (3.2.5) and (3.2.6) are comfortably satisfied.

MIKE 21 allows the user to fit the model domain with a uniform quadrilateral

mesh or an unstructured triangular mesh with multiple scales. Both of these mesh

options will be discussed in §3.4.

3.3 Model Verification

The numerical experiments that will be discussed in the preceding chapters will

be carried out in the hypothetical channel described in §3.2. As such, validation

of the output against observations is not possible. Instead, the model output is

verified through comparison with analytical results. As the hypothetical channel

has been designed so that the tidal dynamics are approximately one-dimensional,

profiles of the model output may be compared to analytical solutions to the 1D

Navier-Stokes equations.

At the time of writing no analytical solutions for the harmonics of the funda-

mental in an open channel have been identified in the literature. However, Kabbaj

and Le Provost [1980] give an analytical solution to the one-dimensional equations

of the form (2.2.5) and (2.2.6) for a channel closed at one end. Souza and Hill [2006]

do present an analytical solution for an open channel. However, their solution is

presented for a non-linear form of the governing equations and as such does not

include the harmonics (M4 & M6) of the fundamental tide (M2). Given the interest

in the shallow water tides in this thesis, the M4 in particular, the Kabbaj and Le

Provost [1980] will be used as the verification case to test MIKE21’s ability to

represent harmonics in a channel, albeit a channel closed at one end.

Kabbaj and Le Provost [1980] (KLP) solve the set of equations (2.2.5) and

(2.2.6) with the number of turbines set to zero, i.e.:

∂û

∂t
+
∂û

∂x
= −g ∂η

∂x
− 1

1 + η/h

CF
h
û|û| (3.3.1)

Through the method of characteristics, KLP obtained the boundary conditions:

û = 0, at x = L (3.3.2)
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û+
√
g(h+ η) = 2 + 2A cos(σt), at x = 0 (3.3.3)

where (3.3.3) corresponds to “an incident wave of frequency ω̃ [sic, here σ] coming

from deep water where nonlinearities are assumed negligible” and “Ã [sic, here A]

characterises the order of magnitude of this incident wave” (Kabbaj and Le Provost

[1980], pp. 144). Non-dimensionalising the variables in the equation by; x∗ = x/L,

t∗ = tc/L, c =
√
gh, η∗ = η/h, û∗ = û/c, σ∗ = σL/c, A∗ = A/c and k = CFL/h

the dimensionless form of the equations to be solved and the boundary conditions

are:




∂η∗

∂t∗
+ ∂û∗

∂x∗
+ ∂(η∗û∗)

∂x∗
= 0

∂û∗

∂t∗
+ û∗ ∂û

∗

∂x∗
+ ∂η∗

∂x∗
= −k û

∗|û∗|
1+η∗ û∗ = 0, at x∗ = 1

û∗ + 2
√

1 + η∗ = 2A∗ cos(σ∗t∗) + 2, at x∗ = 0

(3.3.4)

By assuming that A∗ � 1, KLP approximated the solution to (3.3.4) using linearised

equations obtained by the perturbation method. Substituting:


η∗(x, t) =

∑
A∗jη∗j(x, t)

û∗(x, t) =
∑
A∗jû∗j(x, t) with j = 1, 2, . . . , n

F =
∑
A∗jFj

(3.3.5)

and:

√
1 + η∗ = 1 + A∗

η∗1
2

+ A∗2
(
η∗21

2
− η∗21

8

)
+ A∗3

(
η∗3
2
− η∗1η

∗
2

4
+
η∗31

16

)
+ . . . (3.3.6)

where F = k(1 + η∗)−1û∗|û∗|, into (3.3.4) and arranging according to powers of A∗,

KLP found:




∂η∗j
∂t∗

+
∂û∗j
∂x∗

= −
∑

k+l=j

∂(η∗kû
∗
l )

∂x∗

∂û∗j
∂t∗

+
∂η∗j
∂x∗

= −
∑

k+l=j

û∗k
∂û∗l
∂x∗

+ Fj û∗j = 0 at x∗ = 1

û∗j + η∗j = Lj at x∗ = 0

(3.3.7)

where:
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L1 = 2 cos(σ∗t)

L2 =
η∗1(0,t)

4

L3 =
η∗1(0,t)η∗2(0,t)

2
− η∗31 (0,t)

8
...

(3.3.8)

They then solved (3.3.7) for each order of j with:

F = λA∗û∗1 − λA∗2û∗1η∗1 + λ′A∗2û∗2 + λ32A
∗2û∗211 cos(3(σ∗t∗ + ψ11))

+ λ52A
∗2û∗211 cos(5(σ∗t∗ + ψ11)) + . . .+O(A∗3) (3.3.9)

where:

λ =
8k

3π
A∗û∗11, λ′ =

4k

π
A∗û∗11, λ32 =

8k

15π
, λ52 = − 8k

105π
(3.3.10)

The first order solution is obtained from (3.3.7) for j = 1, F1 is simply the O(A∗)

terms from F with A∗û∗11 set to its mean value so that λ is constant and the system

of equations is linear. The solutions to this system of equations are:

 η∗1 = α11 = η∗11 cos(σ∗t∗ + φ11)

û∗1 = µ11 = û∗11 cos(σ∗t∗ + ψ11)
(3.3.11)

where:



η∗11 = 2
√

Re(α11)2 + Im(α11)2

û∗11 = 2
√

Re(µ11)2 + Im(µ11)2

φ11 = tan−1
(

Im(α11)
Re(α11)

)
ψ11 = tan−1

(
Im(µ11)
Re(µ11)

) (3.3.12)

 α11 = iB
√

1− i λ
σ∗

cos
(
σ∗
√

1− i λ
σ∗

(x∗ − 1)
)

µ11 = B sin
(
σ∗
√

1− i λ
σ∗

) (3.3.13)

where B is a constant set by the open boundary condition.

The second order solution is obtained from (3.3.7) for j = 2, F2 is the O(A∗2)

terms from F . The solutions (3.3.11) may be substituted into the sets of differential

equations for terms of zero frequency, frequency σ∗, 2σ∗ and 3σ∗, which can then

71



Chapter 3. Model Description

be solved. The solutions for the terms of frequency 2σ∗ and 3σ∗ are of the same

form as (3.3.11) and (3.3.12) with:



µ22 = E sin
(

2σ∗
√

1− j λ′

2σ∗
(x∗ − 1)

)
aaaaaaaaaaaaaaaaaaaaaaaaaa

+3
2

σ∗

2λ−λ′B
2
(
1− i λ

σ∗

) 3
2 sin

(
2σ∗
√

1− i λ
σ∗

(x∗ − 1)
)

α22 = iE
√

1− i λ′
2σ∗

cos
(

2
√

1− i λ′
2σ∗

(x∗ − 1)
)

+i σ∗

2λ−λ′B
2
(

3
2
− iλ+λ′

2σ∗

) (
1− i λ

σ∗

)
cos
(

2σ∗
√

1− i λ
σ∗

(xast − 1)
)

(3.3.14)


µ33 = Le+Arg +Me−Arg + P +Q cos

(
2σ∗
√

1− i λ
σ∗

(x∗ − 1)
)

α33 =
√

1− i λ′
3σ∗

[−LeArg +Me−Arg]

−j 3
2Q
√

1− i λ
σ∗

sin
(

2σ∗
√

1− i λ
σ∗

(x∗ − 1)
) (3.3.15)

where E, L and M are constants set by the open boundary condition and:


Arg = 3iσ∗

√
1− i λ

σ∗
(x∗ − 1)

P = 3σ∗eiΩ

9σ∗2+λ′2
λ32B

2
(
1 + i λ

′

3σ∗

)
Q = 3e−iΩ

25σ∗2+(4λ−3λ′)2λ32B
2(5σ∗ − i(4λ− 3λ′))

(3.3.16)

with ψ11 = tan−1(cot(σ∗)) = Ω coming from the first order solution for the case

with no friction, an approximation used to make the frequency 3σ∗ set of equations

analytically solvable.

A test model run was carried out for a channel, closed at one end, with the

dimensions matching those used for the numerical illustration in KLP. The test

model had a length of 495 km, a depth of 50 m, a width of 16.5 km (factor

of 30 smaller than length, the example in KLP is one-dimensional so has no

width) and used a Manning number M = 29.79 m
1
3 /s (approximately equivalent to

CF = 3×10−3 used in KLP). The open end of the channel was forced using velocity

values at the boundaries. A velocity curve was constructed with an amplitude

of 0.6671 m/s and a phase value of 9.444o, derived from the analytical solution

at x = 0 from KLP. Other than the above, the model parameters remained the

same as outlined in Table 3.1. Harmonic analysis of the output of this test run

was analysed as described in §3.2. The results from this analysis are presented in

Figures 3.2 & 3.3, along with values digitised from the figures in KLP.
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Figure 3.2: Profiles of the M2 (top panels), M4 (middle panels) and M6 (bottom

panels) of the surface elevation (amplitude left panels & phase right panels) along

the channel from the test run (solid line), along with the analytical solution

(dashed line), analytical-numerical solution (circles) and numerical solution

(pluses) from Kabbaj and Le Provost [1980].

For the M2, the agreement between the 3 KLP solutions and the model is almost

exact. For both harmonics, the pattern of both phase and amplitude is repeated

in all 4 solutions. There is a slight difference between the analytical solution and

the other two KLP solutions for M4; this difference increases for M6 and in the M6

amplitudes there is also a difference between the analytical-numerical and numerical

solutions of KLP. The amplitudes of both the velocity and surface elevation are

larger in the test model than in all three solutions from KLP. A possible cause of

this difference could be the bed resistance used in the test model being too small,

however the M2 amplitudes agree well.

The reproduction in the model output of the analytical, analytical-numerical

and numerical solutions of KLP gives confidence in MIKE’s ability to correctly

simulate the harmonics of a fundamental and harmonic generation in a similar

model geometry, at least in terms of the pattern of harmonics along the channel

length.
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Figure 3.3: Profiles of the M2 (top panels), M4 (middle panels) and M6 (bottom

panels) of the current velocity (amplitude left panels & phase right panels) along

the channel from the test run (solid line), along with the analytical solution

(dashed line), analytical-numerical solution (circles) and numerical solution

(pluses) from Kabbaj and Le Provost [1980].

3.4 Sensitivity Tests

In this section the sensitivity of three aspects of the model will be explored: first,

the effect of changing model parameters on the harmonics generated within the

model; second, the sensitivity of the elevation and velocity at the boundary to the

deployment of turbines, to ensure the effect of the turbines is not felt at the model

boundary; and finally, the sensitivity of the turbine wake to the model turbulence

parameters.

The model parameters outlined in Table 3.1 and the geometry (3.2.7) will be

used throughout these tests. Those parameters marked with a ∗ in Table 3.1 are

parameters which will be tested in these sensitivity tests. When not being tested

the value stated in Table 3.1 will be used. In the turbine sensitivity tests fixed-CT

turbines will be tested, using the parameters outlined in Table 3.5.

In these tests the model will be forced at the boundary by only the M2. Forcing

elevation time-series were synthesised using equation (3.1.15) with n = 1, η0,1 = 5

74



Chapter 3. Model Description

m for both boundaries, σ1 = 1.9323 cycles per day, φ1 = 0◦ at the left hand

boundary, and φ1 = 60◦ at the right hand boundary. Finally, a uniform 30x30 m

structured square mesh will be employed.

3.4.1 Sensitivity of Harmonics to Model Parameters

The harmonic sensitivity tests that were carried out can be divided into two

categories. The first are tests of what will be termed “physical model parameters”,

such as the Manning number, and second are tests of “numerical model parameters”,

such as mesh element size.

In (3.1.11) and (3.1.12) there are four non-linear terms: the Continuity Term

(CT) (in (3.1.11)), the Advection Term (AT), Friction Term (FT) and Lateral

Stress Term (LST) (all in (3.1.12)), provided eddy viscosity is not switched off. The

sizes of CT and AT are dictated by size of η0 and u0 (the amplitudes of the surface

elevation and longitudinal component of the depth averaged velocity respectively),

the size of FT is dictated by both CF (the friction coefficient) and u0, and the size

of LST will be dictated by cs, l and u0. The MIKE user has control of η0, u0, cs

and CF through M , where:

CF =
g

(Mh
1
6 )2

(3.4.1)

The values of η0 and u0 are set through the definition of new forcing time-series at

the boundary and are altered simultaneously given their inter-dependence, whereas

the values of cs and M are set in the eddy viscosity and bed resistance menus

respectively. The parameters that will make up the physical tests will be M

(Test-1), cs (Test-2) and η0 (as only η will set at the boundary) (Test-3).

Xing et al. [2011] found that for adjacent cells in shallow regions of their model

there was significant spatial variability in the size of the non-linear momentum

advection terms (AT here). They took this to suggest insufficient grid resolution at

this location to accurately resolve the non-linear terms. The numeric parameter

that will be tested will therefore be the model mesh grid-size (Test-4).

The values used in each of the 5 tests discussed above are given in Table 3.5.

Also presented in Table 3.5 is the Relative Percentage Range, RPR, of each set of

parameter values. Where:
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RPR = 100× max(X)−min(X)

X
(3.4.2)

X is one of the parameters from Table 3.5 and X is the mean of X.

Table 3.5: Values of the parameters altered in each of the 5 sensitivity tests.

Test Parameter Values RPR

1 M [m1/3s−1] 8 16 24 32 40 48 56 148.02

2 cs 0.07 0.14 0.21 0.28 0.35 0.42 0.49 150

3 η0 [m] 1 2 3 4 5 133.33

4 ∆x [m] 15 40 65 90 115 140 165 166.67

3.4.1.1 Physical Model Parameter Tests

Elevation and current time series were calculated by the model for each run.

Harmonic analysis of this output was carried out and the standard deviation across

each set of runs calculated at each element. This data is presented as patch plots for

the amplitude and phase of the surface elevation and current velocity for Test-1 in

Figures 3.4–3.7, for Test-2 in Figures 3.8–3.11, and for Test-3 in Figures 3.12–3.15.

Tables 3.6 and 3.7 presents statistics, minimum, maximum, mean and standard

deviation, of the standard deviation, for each parameter, for each test.

For Test-1 the standard deviation over the channel retains a 1D character. The

effect of varying the bottom roughness is quite large. For η, the standard deviation

is O(10−2) m in the fundamental and O(10−3) m in the harmonics for O(10−2)

standard deviation in CF (RPRM = 150%, and via (3.4.1), RPRCF = 450%). For

φ, the standard deviation is O(100)o for M2 and M4 and O(101)o for M6. As one

might expect when altering friction, the effect on the current velocity was much

greater. A standard deviation of O(100) m/s was seen in the amplitude of the M2

current velocity, and O(10−2) m/s and O(10−1) m/s standard deviations were seen

for the M4 and M6 respectively. For ψ, the standard deviations were O(101)◦ for

all constituents. These results imply that the model is quite sensitive to the choice

of M . When building a model of a real-world site, therefore, it will be important

to use the correct value for M . Greater accuracy might also be obtained if M is
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allowed to vary over the model area as may be the case in nature (e.g. Nicolle and

Karpytchev [2007]).

For Test-2 the variation in the standard deviation of η over the channel area

was not as one-dimensional as for Test-1, but could be approximated as such.

However, for û this approximation is much less appropriate. A O(10−1) variation

in cs (RPRcs = 150%) was used in this test, the result being very small, essentially

negligible variation in η (O(10−8)–O(10−7) m), φ (O(10−6)–O(10−3)o), û (O(10−8)–

O(10−7) m/s) and ψ (O(10−7)–O(10−5)o). This implies that variation in the LST

has little impact on the harmonics, therefore for the unoccupied channel the LST

could be neglected. However, as discussed previously, the LST will be retained as

it will become more important when turbines are deployed in the channel.

For Test-3 the variation in standard deviation was again one-dimensional, but

larger standard deviations were seen. For the M2 η, the largest standard deviations

(∼1.55 m) were seen at either end of the channel, as one would expect given

this parameter was varied at the boundaries. Near the centre of the channel the

variation reduced to ∼1.3 m. The opposite was true for φ. Near the boundaries,

the standard deviation was almost zero, whilst at the centre it was at its maximum.

However, the standard deviation remained negligible throughout the channel at

< 0.7o. Variations in the M4 and M6 η were O(10−3)–O(10−2) m, with the largest

standard deviations near the channel centre and the smallest near the boundaries.

For φ, standard deviations of ∼ 10o were seen in the immediate vicinity of either

boundary for the M4 with much smaller values over most of the model area, whilst

for the M6, standard deviations of between 10–20o were seen over much of the model

area. For û, standard deviations of up to ∼1.2 m/s, ∼1.6 cm/s and ∼2.1 cm/s

were seen for the M2, M4 and M6 respectively, and between ∼ 9.7o and ∼ 9.95o,

between ∼ 1o and ∼ 7o, and ∼ 39o for the M2, M4 and M6 ψ respectively. The

variation in η0 was O(100) or RPR = 133.3̇%. This resulted in standard deviations

comparable to those seen in Test-1. However, in Test-1 RPR = 450% for CF , much

larger than the RPR of η0 in Test-3. This is taken to suggest a greater sensitivity

of the harmonics to η0 than to CF . Variation in η0 will lead to variation in u0, and

therefore changes in all non-linear terms directly, which may be why the harmonics

are most sensitive to η0. Whilst CF only affects the FT, the FT will affect both η0
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and u0, so variation in CF directly changes the FT and indirectly all other terms,

so the results are also sensitive to CF .

Figure 3.4: Standard deviation in the amplitude of the M2 (top), M4 (middle), M6

(bottom) harmonics of the surface elevation across the runs in Test-1.

3.4.1.2 Numerical Model Parameter Tests

For Test-4 the grid-size was changed as part of the experiment. Therefore, in order

to compare the results from the different runs, the output from each of the runs

was interpolated / extrapolated onto a 15x15 m uniform grid, which may impact

on the results. This extra step for Test-4 aside, the analysis of Test-4 was the

same as described for the physical tests above. Contour plots for the amplitude

and phase of the surface elevation and current velocity for Test-4 are presented in

Figures 3.16–3.19. Table 3.7 presents statistics for the standard deviation, for each

parameter.

In Test-4 the standard deviation in the channel was one-dimensional, however,

this may be a product of interpolating onto the uniform grid. The standard

deviation in the M2 η was small, up to O(10−3) m, and similar values, O(10−4)–

O(10−3) m, were seen for the M4 and M6 η. For the M6 this is considered negligible
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Table 3.6: Minimum, maximum, mean and standard deviation of the standard

deviation of the amplitude and phase of the surface elevation and current velocity

across the runs in the physical parameter tests, Test-1 and Test-2, over the whole

channel.

Test-1 Test-2

Min Max Mean σ Min Max Mean σ

A [m]

M2 1.2× 10−4 3.7× 10−2 2.0× 10−2 1.0× 10−2 4.9× 10−10 3.86× 10−8 1.0× 10−8 5.2× 10−9

M4 8.0× 10−5 1.2× 10−2 6.9× 10−3 3.2×−3 5.0× 10−10 4.65× 10−8 1.3× 10−8 7.0× 10−9

M6 1.6× 10−5 1.0×−2 7.1×−3 2.9×−3 8.7×−10 3.64× 10−8 9.9×−9 5.1× 10−9

φ [o]

M2 3.4× 10−3 2.3 1.5 0.7 1.1× 10−8 6.94× 10−7 2.0× 10−7 1.3× 10−7

M4 3.3 7.4 5.7 1.1 2.9×−7 1.60× 10−3 9.6× 10−6 3.5× 10−5

M6 17.2 55.8 21.2 3.5 1.2× 10−6 9.4× 10−3 4.8× 10−5 2.0× 10−4

V [m/s]

M2 2.0 2.0 2.0 1.5× 10−2 9.3× 10−10 6.8× 10−8 1.3× 10−8 9.0× 10−9

M4 2.5× 10−2 9.5× 10−2 4.9× 10−2 2.0× 10−2 6.8× 10−10 3.7× 10−8 7.0× 10−9 3.3× 10−9

M6 0.1 0.1 0.1 3.3× 10−3 4.6× 10−10 2.3× 10−8 5.9× 10−9 2.6× 10−9

ψ [o]
M2 12.0 13.3 12.3 0.3 7.5× 10−9 3.7× 10−7 8.2× 10−8 4.6× 10−8

M4 2.3 20.0 11.7 6.3 2.0× 10−7 1.5× 10−5 2.6× 10−6 1.4× 10−6

M6 48.4 51.6 49.4 1.0 7.4× 10−8 5.3× 10−6 8.3× 10−7 4.2× 10−7

Figure 3.5: Standard deviation in the phase of the M2 (top), M4 (middle), M6

(bottom) harmonics of the surface elevation across the runs in Test-1.

as it is two orders of magnitude smaller than the amplitude of the harmonic; for

the M4 this variation will be considered appreciable, but small.
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Figure 3.6: Standard deviation in the amplitude of the M2 (top), M4 (middle), M6

(bottom) harmonics of the current velocity across the runs in Test-1.

Figure 3.7: Standard deviation in the phase of the M2 (top), M4 (middle), M6

(bottom) harmonics of the current velocity across the runs in Test-1.
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Figure 3.8: Standard deviation in the amplitude of the M2 (top), M4 (middle), M6

(bottom) harmonics of the surface elevation across the runs in Test-2.

Figure 3.9: Standard deviation in the phase of the M2 (top), M4 (middle), M6

(bottom) harmonics of the surface elevation across the runs in Test-2..
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Figure 3.10: Standard deviation in the amplitude of the M2 (top), M4 (middle),

M6 (bottom) harmonics of the current velocity across the runs in Test-2.

Figure 3.11: Standard deviation in the phase of the M2 (top), M4 (middle), M6

(bottom) harmonics of the current velocity across the runs in Test-2.
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Figure 3.12: Standard deviation in the amplitude of the M2 (top), M4 (middle),

M6 (bottom) harmonics of the surface elevation across the runs in Test-3.

Figure 3.13: Standard deviation in the phase of the M2 (top), M4 (middle), M6

(bottom) harmonics of the surface elevation across the runs in Test-3.
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Figure 3.14: Standard deviation in the amplitude of the M2 (top), M4 (middle),

M6 (bottom) harmonics of the current velocity across the runs in Test-3.

Figure 3.15: Standard deviation in the phase of the M2 (top), M4 (middle), M6

(bottom) harmonics of the current velocity across the runs in Test-3.
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Figure 3.16: Standard deviation in the elevation of the M2 (top), M4 (middle), M6

(bottom) harmonics of the surface elevation across the runs in Test-4.

Figure 3.17: Standard deviation in the phase of the M2 (top), M4 (middle), M6

(bottom) harmonics of the surface elevation across the runs in Test-4.
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Figure 3.18: Standard deviation in the elevation of the M2 (top), M4 (middle), M6

(bottom) harmonics of the current velocity across the runs in Test-4.

Figure 3.19: Standard deviation in the phase of the M2 (top), M4 (middle), M6

(bottom) harmonics of the current velocity across the runs in Test-4.
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The standard deviation of the M2 φ, O(10−2), was considered negligible, whilst

for the M4 the standard deviation, up to O(100), was small but appreciable near

the boundary, and negligible elsewhere. Similarly, the variation of the M6 was

important, O(101)o, near the boundary, and negligible elsewhere, O(10−1)–O(10−2).

The standard deviation of ψ for M2, M4 and M6, up to O(10−1), was considered

negligible. For û the standard deviation of the M2 was up to O(10−3), and for the

M4 and M6 the standard deviations were O(10−5)–O(10−4) m/s. As these are at

least two orders of magnitude smaller than the amplitudes of these constituents

they were again considered negligible.

These results imply that changes to mesh grid-size has an appreciable effect

on the amplitude of the harmonics of the surface elevation and the phase of the

M6 near the boundaries, and a negligible effect on the remaining terms elsewhere.

This is something that should be considered when designing a mesh as variation

in grid-size across the mesh may result in small changes in the amplitude of the

harmonics of elevation and velocity, which may be important when looking for small

changes relating to turbines. However, these changes were seen near the boundaries

and good modelling practice dictates that turbines should not be deployed near

the boundaries (see §3.4.2).

3.4.2 Sensitivity of Boundaries to Turbines

As a rule of thumb, the boundaries of a model should be far enough away from the

turbine(s) simulated in the model so that the turbine(s) have “a negligible effect on

the boundary conditions and that perturbations resulting from the turbine array

are not amplified by the boundary” (Adcock et al. [2015], pp. 10). The model

used in the experiments undertaken in this work employed a boundary with the

variation in M2 surface elevation set at the boundary. However, in this work the

harmonics of the tide generated within the model are of interest, with only the M2

tidal elevation input at the boundary, therefore changes in the M4 and M6 elevation

will be examined along with the M2, M4 and M6 for the current velocity.

These tests started with the same mesh as used in the previous subsection

(30 m structured mesh for a channel with dimensions (3.2.7)). The change in

the M4 and M6 amplitude and phase for the surface elevation and the M2, M4

87



Chapter 3. Model Description

and M6 amplitude and phase for the current velocity at the elements along both

boundaries are presented in Figure 3.20. Changes to the velocity following the

deployment of a turbine at both boundaries appeared to be acceptably small: < 2%

in amplitude and < 4o for the phase. However, for the harmonics of the elevation,

very large changes were seen, approaching 20% and 100% for the amplitude at the

x/L = 1 boundary for the M6 and M4 respectively, along with large phase changes.

Approaching the boundary, the amplitude of the M4 and M6 tends to zero as these

tides are not input at the boundary, therefore small changes to the amplitude of the

tides will appear as large percentage changes. However, even when their expression

as percentages is considered, these changes are due to just a single turbine, and

seem unphysically large O(10) km from the turbine.
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Figure 3.20: Changes to amplitude (left column) and phase (right column) of the

M4 and M6 surface elevation (first and second rows respectively) and the M2, M4

and M6 current velocity (third, fourth and fifth rows respectively) at the x/L = 0

(dashed line) and x/L = 1 (dotted line) boundaries following the addition of a

single turbine (extent shown by vertical grey lines) using the structured mesh.
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Table 3.7: Minimum, maximum, mean and standard deviation of the standard

deviation of the amplitude and phase of the surface elevation and current velocity

across the runs in the physical parameter test, Test-3, and the numerical

parameter test, Test-4, over the whole channel.

Test-3 Test-4

Min Max Mean σ Min Max Mean σ

A [m]

M2 1.4 1.6 1.4 6.5× 10−2 2.8× 10−5 3.4× 10−3 1.1× 10−3 4.2× 10−7

M4 1.5× 10−4 6.4× 10−2 4.3× 10−2 1.9× 10−2 4.8× 10−6 1.1× 10−3 2.7× 10−4 3.0× 10−7

M6 1.0×−5 1.6×−2 1.0× 10−2 4.8× 10−3 4.5× 10−6 2.9× 10−4 7.1× 10−5 2.1× 10−7

φ [o]

M2 6.5× 10−4 0.8 0.5 0.2 1.4−2 9.1× 10−2 4.9× 10−2 7.6× 10−6

M4 1.0 12.7 1.5 0.5 1.6× 10−3 3.6 4.6× 10−2 5.9× 10−4

M6 4.6 22.7 19.1 2.8 1.1× 10−2 33.5 0.3 8.2× 10−3

V [m/s]

M2 0.8 0.9 8.6 4.3× 10−2 1.1× 10−4 2.5× 10−3 4.2× 10−4 3.2× 10−6

M4 3.8× 10−2 7.8× 10−2 4.7× 10−2 1.1× 10−2 4.7× 10−6 6.5× 10−4 1.5× 10−4 2.1× 10−6

M6 0.1 0.1 0.1 2.1× 10−3 3.3× 10−6 8.3× 10−5 2.5× 10−5 3.1× 10−7

ψ [o]

M2 11.3 11.6 11.4 0.1 1.6× 10−3 2.1× 10−2 5.9× 10−3 2.2× 10−5

M4 1.6 9.8 5.5 2.7 1.08× 10−2 0.2 8.9× 10−2 2.9× 10−4

M6 44.8 45.1 45.49 0.3 3.6× 10−3 2.6× 10−2 1.4× 10−2 7.2× 10−5

The effect of the turbine appeared to be largely localised to the elements sharing

the same y-value as the element containing the turbine. This effect then extends all

the way to the boundary as seen in Figure 3.20. This result was seen when using a

structured 30× 30 m mesh. An unstructured run was also undertaken using the

same model geometry (3.2.7) but with a multi-scale unstructured mesh where the

central 10 km had a target element area of 750 m2, increasing to 1,600 m2 for the

5 km either side of the central region then increasing further to 6,300 m2 for the

final 6.2 km either side. The changes at the boundary between the no turbine and

turbine runs for this mesh are presented in Figure 3.21.

As before, for the velocity, the changes at the boundary for all tides and both

amplitude and phase were acceptably small (< 0.2% and < 0.1o respectively). The

effect of the turbine was also no longer localised to the y-values where the turbine

was deployed. The impact on the harmonics of the tide was also reduced with

changes of up to ∼2.5% and ∼25% in the amplitude of the M4 and M6 respectively

and up to ∼ 3o and ∼ 12o in the phase of the M4 and M6 respectively. The

smaller changes at the boundary indicate the unstructured mesh is more suitable

for the future experiments than the structured mesh, the changes were however
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still considered too large, so the model domain was extended.
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Figure 3.21: Changes to amplitude (left column) and phase (right column) of the

M4 and M6 surface elevation (first and second rows respectively) and the M2, M4

and M6 current velocity (third, fourth and fifth rows respectively) at the x/L = 0

(dashed line) and x/L = 1 (dotted line) boundaries following the addition of a

single turbine (extent shown by vertical grey lines) using the multi-scale

unstructured mesh.

A further model geometry was designed, the length of the channel was increased

to 80 km. A multi-scale unstructured grid was again used with the same distribution

of scale as described in the previous paragraph, with the additional 23.8 km added

to either side having a target element area of 25,000 m2. A schematic illustration

of the model geometry and target mesh areas is presented in Figure 3.22, and

summarised in Table 3.8. To achieve similar velocities in the extended mesh

the value of phase of the tide input at the right hand boundary was changed to

φ1 = 100◦. This value was reached through trial and error.

The changes at the boundaries between the no turbine and turbine runs for

this extended geometry are presented in Figure 3.23. For this extended geometry

the effect of a single turbine was negligible at the boundary with < 0.1% change in

amplitude and < 0.1o change in phase of the harmonics of surface elevation and
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< 0.03% change in amplitude and < 0.01o change in phase for the fundamental

and harmonics of velocity.
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Figure 3.22: Outline of model geometry, (a), with snap-shots of the mesh at the

central 10 km (central region), (e), for the 5 km either side (inner regions), (d), for

the next 6.2 km either side (intermediate regions), (c) and for the final 23.8 km

either side (outer regions), (b). The red boxes in (a) outline the location of the

snap-shots (b), (c), (d), (e) in the model domain, and the bold red line in (b)

indicates the location of the turbine in the turbine runs.

With sufficiently small changes seen at the boundary for a single turbine in the

extended channel additional turbines were added to the channel as a single row. A

run where 26 turbines were added to the channel with a spacing of approximately 1

turbine diameter was carried out. The changes at either boundary for this run are

presented in Figure 3.24. The changes to the amplitude and phase of the harmonics

of elevation are < 4% and < 2.5o respectively and changes to the amplitude and

phase of the fundamental and harmonics of the current velocity are all < 1% and

< 0.25o respectively. These changes were all considered acceptably small, and, as
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no more than 26 turbines will be deployed in future experiments, the mesh was

therefore considered suitable.

Table 3.8: Mesh generation parameters. Region marked with ∗ only present in

extended mesh.

Region Maximum Element Area [m2] Target Element Length [m]

Central 750 ∼ 40

Inner 1600 ∼ 60

Intermediate 6300 ∼ 120

Outer∗ 25000 ∼ 240

3.4.3 Sensitivity of Turbine Wake to Model Turbulence

Settings

The turbulence characteristics of a flow will dictate the characteristics of the turbine

wake, such as the velocity deficit, wake recovery and size of the wake [Blackmore

et al., 2014], and through these characteristics the impact of the turbine on the

wider hydrodynamics. The turbulence parameterisation employed in this work is

that of Smagorinsky [1963], which expresses sub-grid scale turbulence by an effective

eddy viscosity, A, (3.1.6). In MIKE 21 the user has control of the expression of

A through the Smagorinsky constant, cs, and setting upper and lower bounds on

A [DHI, 2016a]. In this sensitivity test, Test-5, the effect of varying cs, using the

values from Table 3.5, on a turbine wake will be explored.

The aim of this test was not to gain an understanding of the effect of ambient

turbulence on the turbine wake (e.g. Blackmore et al. [2014]) but to understand

how the choice of cs influences the simulated effect of the turbine. In Figures

3.25 and 3.26 the standard deviation in the difference in the amplitude and phase

(respectively) of the velocity constituents between runs with and without (without

turbine minus with turbine) a single turbine at the channel centre are plotted. For

this test the extended unstructured mesh and the single turbine from §3.4.3 were

used.

92



Chapter 3. Model Description

−b/2 0 b/2

∆
η
M

4
[%

]
0.02

0.04

0.06
M4 – Elevation – Amplitude

−b/2 0 b/2

∆
φ
M

4
[o
]

0.01

0.02

0.03
M4 – Elevation – Phase

−b/2 0 b/2

∆
η
M

6
[%

]

-0.1

0

0.1
M6

−b/2 0 b/2

∆
φ
M

6
[o
]

0

0.05

0.1
M6

−b/2 0 b/2

∆
u
M

2
[%

]

0.01

0.02

0.03
M2 – Velocity – Amplitude

−b/2 0 b/2

∆
ψ
M

2
[o
] ×10−3

0

1

2
M2 – Velocity – Phase

−b/2 0 b/2

∆
u
M

4
[%

]

0.018

0.02

0.022
M4

−b/2 0 b/2

∆
ψ
M

4
[o
]

-0.01

-0.005

0
M4

Channel Width
−b/2 0 b/2

∆
u
M

6
[%

]

-0.01

0

0.01
M6

Channel Width
−b/2 0 b/2

∆
ψ
M

6
[o
] ×10−3

-8

-6

-4
M6

Figure 3.23: Changes to amplitude (left column) and phase (right column) of the

M4 and M6 surface elevation (first and second rows respectively) and the M2, M4

and M6 current velocity (third, fourth and fifth rows respectively) at the x/L = 0

(dashed line) and x/L = 1 (dotted line) boundaries following the addition of a

single turbine (extent shown by vertical grey lines) using the extended multi-scale

unstructured mesh.

The largest variation in both the amplitude and phase across all constituents

was in the vicinity of the turbine. With the maximum values in the region closest

to the turbine, the near-wake. The variation in the current amplitude was O(10−4)–

O(10−3) m/s, four to five orders of magnitude larger than the variations seen in

Test-2 (the previous cs experiment). For the M2 and M6 this may be considered

negligible as it is two orders of magnitude smaller than the amplitude of the

constituent, however, this variation may be appreciable at the scale of changes to

these constituents resulting from the turbine operation. For the M4, variation of

this size may be appreciable given its only around an order of magnitude smaller

than the amplitude of the constituent itself. Again, this may be important at the

order of the changes to this harmonic resulting from the operation of the turbine.

The variation in the current phase was O(10−3)o, O(10−2)o and O(100)o for the

M2, M6 and M4 respectively. As for the amplitudes, the variation to the M2 and
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M6 phase may be considered negligible, whilst appreciable variation to the M4

phase was seen. For the M4 this variation will likely be important when it comes

to changes to the phase due to the turbine. For the other two constituents these

variations may remain negligible.

Figure 3.24: Changes to amplitude (left column) and phase (right column) of the

M4 and M6 surface elevation (first and second rows respectively) and the M2, M4

and M6 current velocity (third, fourth and fifth rows respectively) at the x/L = 0

(dashed line) and x/L = 1 (dotted line) boundaries following the addition of 26

turbines with an approximate 1 diameter spacing turbine (extent shown by shaded

grey areas) using the extended multi-scale unstructured mesh.

These results suggest that the parameterisation of the turbulence is indeed

something that should be considered when exploring the effect of the turbine

on the hydrodynamics, with even the value of cs influencing the results. For a

real-world site one should take care to ensure that ambient turbulence conditions

are reproduced so that the impact of the turbine may be properly understood. In

fact, one might look to account for the way in which the turbine operation will

interfere with the ambient turbulence in the very definition of the model, such as

through source and sink terms in the turbulence closure scheme [Roc et al., 2013].

The luxury afforded by the hypothetical modelling scenario is that a real-world
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site is not being recreated, as such MIKE’s default value of cs = 0.28 will be used

and will remain fixed throughout all experiments. It will be recognised however

that a different choice may change the results.

Figure 3.25: Standard deviation of the difference in amplitude of the M2 (top), M4

(middle), M6 (bottom) constituents of the current velocity between runs with and

without (with minus without) a turbine at the channel centre, across the runs in

Test-5.

3.5 Summary

This chapter has laid out and discussed (i) the assumptions required to model

(2.2.5) and (2.2.6) using MIKE21; (ii) the model geometry design to be employed in

proceeding chapters; (iii) a comparison of MIKE21 results with analytical solutions

to the one-dimensional governing equations; (iv) tests of the sensitivity of model

output to variations in input parameter values, (v) tests of the sensitivity of the

boundary conditions to turbine deployments and (vi) a sensitivity test of turbine

effect to choice of Smagorinsky constant.

The model compared well with analytical solutions for the fundamental tide,

but less well for the harmonic tides. The model did however reproduce the patterns
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of amplitude and phase of the harmonics giving some confidence in the modelling

system’s ability to simulate the physics of harmonic generation. Future work

might look at the simulation of a real-world site which might be validated against

observations. For this work however, an idealised channel was employed so as

to minimise the influence of bathymetry on the harmonic tides, simplifying the

analysis of the impact of the turbine.

Figure 3.26: Standard deviation of the difference in phase of the M2 (top), M4

(middle), M6 (bottom) constituents of the current velocity between runs with and

without (with minus without) a turbine at the channel centre, across the runs in

Test-5.

Sensitivity tests for input parameters showed the solution to be sensitive to the

Manning number and amplitude of elevation input at the boundaries, but not the

Smagorinsky constant. However, when it comes to the effect of the turbine, the

results may be sensitive to the choice of Smagorinsky constant, the M4 in particular.

Also, there was suggestion from the results of the test of a non-negligible effect on

the solution of grid-size. However, it must be noted that this experiment involved

the interpolation of the output to the same structured grid for comparison, which

will have impacted on the results. For simulations of real-world sites the correct

tides at the boundaries and Manning number across the domain would be very
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important for the accuracy of the model. However, in the hypothetical scenario

considered in this work the default value for M and the 5 m tide used at the

boundary will suffice.

Finally, the channel dimensions (3.2.7) were shown in a boundary sensitivity

test to be not suitable for turbine deployments and the effect of the turbines was

seen at the boundary. A larger model geometry of:

h = 30 m, b = 1, 080 m, L = 80 km (3.5.1)

was shown to be large enough for a row of 26 turbines to be deployed in the channel

with only a small change seen at the boundary. Another finding to come from this

test was that the structured grid did not seem to be suitable for the turbine study

as the effect of the turbine appeared to be localised in the y-direction to the near

turbine region along the length of the channel, resulting in larger effects in this

region compared to the unstructured case (cf. Figures 3.20 & 3.21).

To address this a multi-scale unstructured mesh was employed. The target

element sizes used in the generation of this mesh are summarised in Table 3.8, and

a schematic of the model geometry, along with snapshots of the mesh are presented

in Figure 3.22. In this mesh the element length scale is similar to the turbine

length scale. As such the correction to the turbine term (3.1.39) & (3.1.40) will be

applied.
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Chapter 4

Effect of Single Turbine on

Overtides and Compound Tides

This chapter will introduce a set of experiments undertaken to address research

questions 1a), 1b), 2a) and 2b), presented in Chapter 2. The experiments will be

introduced along with the reasoning behind them in §4.1. In §4.2–§4.4 the results

from the experiments will be presented and discussed. Finally, in §4.5 the findings

from these experiments will be summarised.

4.1 Introduction

This first set of experiments consisted of five model runs. First the channel free

of tidal turbines, forced by only the M2 tide, was simulated. For the next two

runs, a single turbine was deployed at the centre of the channel. In the first of

these two runs, the turbine had a fixed thrust coefficient and in the second the

thrust coefficient varied with flow velocity using the generic thrust coefficient curve

from Bastón et al. [2014] (Figure 2.9). For the next two model runs, the channel

was forced by both the M2 and S2 tides. In the first of the two runs the channel

remained unoccupied, in the second a single fixed thrust coefficient turbine was

deployed in the channel.

The above model runs were numbered as follows: Run-1 – unoccupied channel

forced by M2, Run-2 – single fixed-CT turbine in M2 forced channel, Run-3 – single

variable-CT turbine in M2 forced channel, Run-4 – unoccupied channel forced by
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M2 and S2 and Run-5 – single fixed-CT turbine in M2 and S2 forced channel. These

five runs made up 3 experiments. The first using Run-1 and Run-2 looked at the

effect of a fixed-CT turbine on the overtides of the M2. The second used Run-1,

Run-2 and Run-3 and looked at the difference in effect of a fixed- and variable-CT

turbine. The final experiment used Run-4 and Run-5 and looked at the effect of a

fixed-CT turbine on the compound tides of the M2 and S2. Turbine implementation

in the model is as outlined in Tables 3.3 and 3.4. The run labelling described above

is summarised in Table 4.1.

Table 4.1: Chapter 4 model runs.

Run Name Experiment No. Turbines CT Type Forcing Constituents

Run-1 1 & 2 0 N/A M2

Run-2 1 1 Fixed M2

Run-3 2 1 Variable M2

Run-4 3 0 N/A M2 & S2

Run-5 3 1 Fixed M2 & S2

The model geometry used for all the above runs was identical, (3.5.1), and the

mesh presented in Table 3.8 and Figure 3.22 was used. The turbine was deployed

in a location as close to the channel centre as possible whilst only occupying a

single element, the turbine hub location was x = 40,010 m, y = −10 m (channel

centre at x = 40,000 m, y = 0 m). The channel spans from 0 to 80,000 m in the

x-direction and -540 m to 540 m in the y-direction. In the figures throughout this

work the x- and y-coordinates will be normalised by either (x− x0)/L and y/b or

(x− x0)/D and y/D where x0 = 40,000 m, L is the channel length (= 80 km) and

D is the turbine diameter (= 20 m).

For the runs forced only by the M2 tide, a M2 amplitude of 5 m was used

(3.1.15). The model run time was 4 days, including a 24-hour model spin-up time.

For the runs where the S2 was added the model run time was increased to 17 days.

This was done so that the length of the time-series output from the model (minus

the spin-up period) was greater than the synodic period1 for the M2 and S2, 14.8

1The interval between two consecutive conjunctions of phase of two tidal constituents (Parker

[2007], p 84)
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days. This is a condition required for the two frequencies to be resolved in the

harmonic analysis. The M4 and M6 for example have a synodic period of 0.5 days

with respect to the M2 and M4 respectively, whilst the MS4 and S4 both also have a

synodic period of 14.8 days with respect to the M4 and MS4 respectively. For both

the M2 and S2 phases of φ1 = φ2 = 0◦ at the left boundary and φ1 = φ2 = 100◦ at

the right hand boundary was used. Amplitudes of η1 = 3.25 m and η2 = 1.75 m in

(3.1.15) so that ηS2 ∼ ηM2/2 and spring peak floods at the boundary were 5 m. All

other model parameters are as outlined in Table 3.1.

The model output time-series of surface elevation, η, and easterly and northerly

velocity components, u and v respectively, at each mesh element. These time-series

underwent harmonic analysis using the t tide MATLABR© function [Pawlowicz et al.,

2002] so that the model output was converted into a set of harmonic constituents

for each time-series at each mesh element. For the channel forced by only the M2

the set of harmonic constituents comprised the M2, M4 and M6; and for the channel

forced by the M2 and S2, the set of harmonic constituents comprised the M2, S2,

MS, M4, S4, MS4, M6, 2MS6 and 2SM6.

4.2 Experiment 1: Effect of Fixed-CT Turbine on

Overtides

4.2.1 Run-1 Results

The results of the harmonic analysis of Run-1 are presented in Figure 4.1. The first

thing that one takes from these results is the lack of cross-channel variation. The

channel was designed so that the hydrodynamics were one-dimensional. Therefore,

the results from Figure 4.1 can be represented by a profile along the channel with

little loss of information. This is also why the v-component of the velocity is not

included in this figure, as it is negligible.

The profiles of the results from Figure 4.1 along y = −10 m (which will be

the y position of the turbine hub in Run-2, Run-3 and Run-5) are presented in

Figure 4.2. The profile of the M2 for the surface elevation amplitude (Figure 4.2a)

took the form of a parabola (u-shaped) with a minimum near the channel centre.
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The profiles of the M4 and M6 surface elevation (Figure 4.2a & 4.2c) were also

parabola-like but with a maximum near the channel centre (n-shaped). The M2 and

M6 surface elevation phase (Figure 4.2d & 4.2f) increased from west to east along

the channel whilst for the M4 (Figure 4.2e) it took an n-shaped parabola form. The

profile of the M2 current velocity amplitude (Figure 4.2g) decreased monotonically

from west to east, the M6 profile (Figure 4.2i) decreased monotonically from west

to east, and the M4 profile (Figure 4.2h) took the form of a u-shaped parabola with

a minimum near the channel centre, and an eastern maximum 27% smaller than

its western maximum. The patterns seen in the current velocity phase profiles are

more complicated. The M2 and M6 profiles (Figures 4.2j & 4.2l) took on skewed

positive and negative parabola shapes and the M4 profile (Figure 4.2k) took on

an arctangent-like shape which might still be described as a monotonic west-east

decrease.

4.2.2 Run-1 – Run-2 Comparison Results

The changes in the results of the harmonic analysis of the u-velocity component,

between Run 1 (no turbine) and Run 2 (fixed CT -turbine) along the y = −10 m

profile are shown in Figure 4.3. For the amplitude of the M2 and M6 (Figures 4.3a

& 4.3e), sharp peaks of decrease of up to 7.92% and 7.91% respectively were seen

around the turbine. Within 10 km either side this change fell to 0.1% for the M2

or within 6 km for the M6. For the M4 (Figure 4.3c) an increase of up to 38% was

seen to the west of the turbine, and a decrease of up to 12% was seen to the east of

the turbine. Within 12 km either side of the turbine the size of the change fell to

less than 0.5%. The largest phase change was seen for the M4 (Figure 4.3d), with

a decrease to the phase of up to 19o to the west of the turbine and an increase in

phase of up to 46o to the east of the turbine. The changes to the phase of the M2

and M6 were less severe (Figures 4.3b & 4.3f), with decreases to the phase of both

tides of at most 0.17o for the M2, just to the west of the turbine, and ∼ 1o either

side of the turbine for the M6.

The addition of the turbine to the channel caused the one-dimensional form

of the hydrodynamics to break down as flow was accelerated around the turbine,

or slowed as it passed through the turbine, introducing lateral velocity gradients.
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As such, though informative, profiles along the channel showing changes in the

results of the harmonic analysis do not give the full picture. Therefore, area plots of

changes to the harmonic analysis are presented in Figure 4.4. One can see from this

figure that there is lateral variation in the effect on current velocity with wake-like

structures seen extending in either direction, originating at the turbine.

Figure 4.1: Results of harmonic analysis of the surface elevation and u-velocity

component (v-component negligible) for Run-1. Along channel distances

normalised by channel length, L, and subtracted by L/2 so that channel centre is

at 0. Across channel distances normalised by channel width b, channel centre

naturally at 0, see Figure 3.24. First row – amplitude of surface elevation, second

row – phase of surface elevation, third row – amplitude of velocity, fourth row –

phase of velocity, first column – M2, second column – M4, third column – M6.

4.2.3 Discussion

The effect of the turbine on the M6 tide was similar to the effect on the M2 whilst

different patterns of change, and much larger changes, to the M4 tide were seen.

This is an important finding as it is the M4 tide which dictates flood-ebb asymmetry,

which in turn dictates net sediment transport pathways and may also affect the
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tidal resource itself (Chapter 2, §2.4). The flood-ebb magnitude asymmetry (FVA)

in the model output was quantified using two different measures. The first was

introduced in §2.3:

AS,1 =
uM4

uM4

cos(2ψM2 − ψM4) = ru cos(Ψ) (4.2.1)

where uM2 and ψM2 are the amplitude and phase of the M2 u-velocity, uM4 and

ψM4 are the amplitude and phase of the M4 u-velocity, ru is the ratio of the M4–M2

u-velocity amplitudes and Ψ is the relative phase of the M2 and M4. The second

measure comes from Neill et al. [2014]:

AS,2 = 100× uf − |ue|
〈|u|〉

(4.2.2)

where uf is the magnitude of the current at maximum flood, |ue| is the absolute

value of the magnitude of the current at maximum ebb and 〈|u|〉 is the mean

current speed over a tidal cycle.

In the top panel of Figure 4.5 the transition from ebb-dominated FVA near

the western boundary, west (left) of (x− x0)/L ≈ −0.2, to flood-dominated FVA,

east (right) of (x − x0)/L ≈ −0.2, can be seen. In Run-2 the turbine increased

the strength of flood domination to the west and reduced it to the east, almost

to the point of magnitude symmetry. The middle panel in Figure 4.5 plots the

difference between the runs along the profile, focusing on the region between

(x − x0) = ±L/10 = ±400D, where change is most apparent. This plot echoes

the discussion above. However, it is interesting when compared with the profile in

the bottom panel, in which the profile of the change in AS,1 is plotted across the

same region. The patterns seen in the two profiles were identical but with slightly

different absolute values. This indicates that AS,1 is a suitable predictor of regions

of a/symmetry and flood/ebb dominance. It does not however give a percentage

measure of the asymmetry as is the case with AS,2. It does however require less

information: AS,2 requires a time-series, whilst AS,1 requires only the amplitude

and phase of the M2 and M4 which is more likely to be known over a wide area.

For example, using the co-range and co-phase charts of a region, the flood/ebb

a/symmetry for that region could be estimated with relative ease. The measure

AS,2 is however considered a direct measure of asymmetry.
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Figure 4.2: Results of harmonic analysis of the surface elevation and u-velocity

component (v-component negligible) as profiles along y = −10 m. Along channel

distances normalised by the channel length, L, and subtracted by L/2 so that

channel centre is at 0. First row – amplitude of surface elevation, second row –

phase of surface elevation, third row – amplitude of velocity, fourth row – phase of

velocity, first column – M2, second column – M4, third column – M6.

Figure 4.6 plots AS,2 against AS,1 for each element in the model. For Run-1

there is a strongly linear relationship with a correlation coefficient of 0.9974. The

addition of the turbine in Run-2 appeared interfere somewhat with the relationship

between AS,1 and AS,2, reducing slightly the overall correlation to 0.9965. This

apparent change should be borne in mind if one were to use AS,1 to make an initial

estimate of the effect of a turbine on the flood-ebb-asymmetry of a region. The

equation of the line of best fit to the Run-1 plot was:

AS,2 =
AS,1 − 0.02

0.24
(4.2.3)

which allows for an approximate conversion from AS,1 to AS,2. However, given

the changes caused by the deployment of a turbine, conversion between the two

measures may not be suitable in this situation. It is not clear that this change to

the AS,1-AS,2 relationship has a physical origin. It being model related cannot be
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ruled out at this stage and may warrant future investigation.

The significance of the sensitivity of the effect of the turbine to the choice

of cs identified in §3.4.3 is explored in Figure 4.7. This figure plots the range of

differences in the M2, M4 and M6 current across Test-5, where the effect of the

turbine was tested for different values of cs, normalised by changes when cs = 0.28,

the default value, and the value used in the experiment above, R′∆uX . Where:

R′∆uX =
max(|∆uX |)−min(|∆uX |)

|∆uX,E|
X = M2, M4 or M6 and ∆uX,E is the change in uX with cs = 0.28, as seen in the

experiment above.
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Figure 4.3: Profiles of change in the results of the harmonic analysis of the current

velocity between Run-1 and Run-2 (Run-1 minus Run-2) along y = −10 m, i.e.

through the centre of the turbine. Along channel distances normalised by the

turbine diameter D and defined so that 0 is the channel centre. Left column –

change to amplitude of current velocity constituents, right column – change to

phase of the current velocity constituents, top row – M2, middle row – M4, bottom

row – M6.
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Figure 4.4: Plots of change in the results of the harmonic analysis of the current

velocity between Run-1 and Run-2 (Run-1 minus Run-2) over the area surrounding

the turbine. The along channel and across channel distances are normalised by the

turbine diameter, D and the along channel normalisation designed in such a way

that the centre of the channel lies at 0. The area covered spans 14 km (700D) east

and west of the channel centre along the channel (left and right) and 300 m (15D)

either north and south of the channel centre across the channel (up and down).

Left column – change to current velocity amplitude, right column – change to

current velocity phase, top row – M2, middle row – M4, bottom row – M6.

Across the majority of the model domain the ratio is small to negligible sug-

gesting little significance in the choice of cs. However, near the edge of the turbine

wake the ratio becomes larger indicating an increased significance of the choice of

cs. Also, for the M4 there is a band at approximately (x− x0)/L ∼ 0.35 where the

ration is large. This is is causes by M4 being approximately zero. Overall Figure

4.7 shows that the choice of cs has little significance to the conclusions above.
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Figure 4.5: (a): flood-ebb-asymmetry measured by AS,2 for Run-1 (solid) and

Run-2 (dashed) along y = −10 m, (b): change in AS,2 between Run-1 and Run-2

(Run-1 minus Run-2) along y = −10 m between (x− x0) = ±L/10, (c): change in

AS,1 between Run-1 and Run-2 (Run-1 minus Run-2) along y = −10 m between

(x− x0) = ±L/10. Along channel distances normalised by the turbine diameter D

and defined so that 0 is the channel centre.

4.3 Experiment 2: Difference in Effect of Fixed-

and Variable-CT Turbines on Overtides

4.3.1 Results

In Figure 4.8 profiles of the difference in the harmonic analysis of the current

velocity between Run-1 and Run-3 (solid line) are plotted, with reference to the

change between Run-1 and Run-2 (dashed line). The peak amplitude changes for

the M2 and M4 (both peaks) were smaller in the variable-CT experiment (Run-1

minus Run-3: R13 hereinafter) than the fixed-CT experiment (Run-1 minus Run-2:

R12 hereinafter). In the variable-CT experiment (R13) the peak M2 amplitude

reduction was 30% smaller, and the peak M4 amplitude reduction and augmentation

were 61% and 15% smaller respectively, compared to the fixed-CT experiment (R12).

Conversely, the peak reduction to the M6 amplitude was 35% larger in R13 than
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R12. As for the phase, larger changes to the M2 phase were seen in R13 than

R12. Here the runs aren’t so easily compared, but the maximum value of M2 phase

change in R13 was 48% larger than the maximum value for R12. For the change

to the M6 phase in R13 the pattern of change was completely reversed compared

to R12. In R12 reduction to the M6 was seen local to the turbine, but for R13

large augmentation to the M6 phase was seen. Finally, for the M4 phase both the

augmentation and reduction peaks were smaller in R13 than R12, 87% and 54%

respectively.
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Figure 4.6: AS,1 against AS,2 at each model element Run-1 (blue) and Run-2 (red).

4.3.2 Discussion

Figure 4.9a shows the change in AS,2 between Run-1 and Run-3 along with the

change between Run-1 and Run-2 for reference. One can see that the variable-CT

turbine has a much smaller effect on the local flood-ebb asymmetry than does

the fixed-CT turbine. Figure 4.9b shows the change in AS,2 between Run-2 and

Run-3 (Run-2 minus Run-3). In terms of the amount of difference between the two

runs the largest differences are seen at the two peaks (augmentation and reduction

peaks), the AS,2 augmentation peak was 41% smaller for the variable-CT turbine

and the reduction peak is 59% smaller.
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Figure 4.7: Standard deviation of the effect of the turbine on the current

amplitude from sensitivity test-5 (Figure 3.25) normalised by the change caused by

turbine using default cs = 0.28 (Figure 4.4).

These changes can be understood through the changes to the M2 and M4 seen in

Figures 4.8a–4.8d, using (4.2.1) and the relationship between AS,1 and AS,2 (Figure

4.6 & (4.2.3)). As seen through most of the results in Figure 4.8, the majority of

the difference between the effect of the fixed- and variable-CT turbines was that

the variable-CT turbine has a smaller effect. Physically, the reason for this is most

likely that the fixed-CT turbine is extracting energy from the flow continuously

whilst the variable-CT turbine only cuts in when the flow velocity is above 1 m/s,

meaning the turbine is only operational for 44% of the tidal cycle, as opposed to

100% for the fixed-CT turbine. Additionally, when the current is above 2.5 m/s

(63% of operational time) there is a polynomial relationship between CT and û, and

reduced turbine efficiency, which may go some way towards explaining the changes

in pattern seen in, for example, the phase of the M6 current velocity. According to

the expansions in §2.2, only the elevation element of the friction and turbine terms

introduce the M6 harmonic, making changes to the elevation turbine term, through

changes to CT at speeds above û = 2.5 m/s the most obvious source of this change.
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Figure 4.8: Profiles of change in the harmonic analysis between Run-1 and Run-3

(Run-1 minus Run-3) (solid line) and between Run-1 and Run-2 (dashed line),

along y = −10 m, i.e. through the centre of the turbine. Along channel distances

normalised by the turbine diameter D and defined so that 0 is the channel centre.

Left column – change in amplitude of current velocity, right column – change in

phase of current velocity, top row – M2, middle row – M4, bottom row – M6.

In order to look at this in more detail, estimates of the size of the non-linear

terms from the 1D governing equations were made using the model output. Figure

4.10 shows the mesh in the immediate vicinity of the turbine. The turbine location

is denoted by the bold red line, located within the element highlighted in red. The

two elements highlighted in blue were used in the calculation of the size of the

Continuity Term (CT) and Advection Term (AT) east and west of the turbine.

These calculations used the x-locations of the element centres, x1, x2 and xT , and

the values of û and η in these elements, û1, û2, ûT , η1, η2 and ηT , also given at the

element centres. The two terms were estimated as follows:

∂(ηû)

∂x
∼ ηTuT − η1,2u1,2

xT − x1,2

(4.3.1)

û
∂û

∂x
∼ uT

uT − u1,2

xT − x1,2

(4.3.2)
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Figure 4.9: (a): profiles of change in AS,2 between Run-1 and Run-2 (dashed line)

and Run-1 and Run-3 (solid line) along y = −10 m between (x− x0) = ±L/8. (b):

profile of change in AS,2 between Run-2 and Run-3 (Run-2 minus Run-3) along

same profile. Along channel distances normalised by the turbine diameter D and

defined so that 0 is the channel centre.

Time-series of these estimates over the model run, for Run-1 (R1), Run-2 (R2) and

Run-3 (R3) are plotted in Figure 4.11. The quadratic and elevation parts of the

friction and turbine terms were estimated in a similar fashion, except none of these

terms involved a gradient, and as such they were calculated only in the element

containing the turbine. These terms were estimated as follows:

CF
h
û|û| ∼ CF

h
uT |uT | (4.3.3)

CF
h2
ηû|û| ∼ CF

h2
ηTuT |uT | (4.3.4)

1

2
ε0CT û|û| ∼

1

2
ε0CTuT |uT | (4.3.5)

ε0CT
2h

ηûû ∼ ε0CT
2h

ηTuT |uT | (4.3.6)
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Time-series of the estimates of these terms over the model run time are presented

in Figure 4.12 for R1, R2 and R3.
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Figure 4.10: (a): Elements used in the estimation of the non-linear terms. Red

element contains the turbine (location denoted by bold red line) and blue elements

used in the calculations of spatial gradients in advection and continuity terms. (b):

Location of snapshot of mesh in the channel, red box is the extent of (a).

The first thing apparent from Figure 4.11 is that in the two runs containing

the turbine term both the AT and CT were much larger. This was most likely

the result of the velocity gradients resulting from the operation of the turbine. In

the expansions of these terms, (2.2.11) and (2.2.12), the first even overtide was

introduced, in this case the M4, meaning that indirectly the turbine was resulting

in the generation of the M4, i.e. the turbine operation impacted the AT and CT

which impacted the M4. Secondly, to the west of the turbine both the AT and CT

grow large during the flood tide, and to the east they grow large during the ebb

tide. This offers a potential explanation for the pattern of increases in asymmetry

to the west and decreases to the east seen in the profiles of ∆AS,2 and ∆AS,1.
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Figure 4.11: Time-series of estimates of size of advection term (right column) and

continuity term (left column) to the west (top row) and east (bottom row) of

turbine for Run-1 (black), Run-2 (blue) and Run-3 (red). Shaded areas mark

times of ebb and unshaded areas times of flood

In Figure 4.12 attention shifts to the friction and turbine terms. When the

turbine was deployed, both the quadratic and elevation elements of the friction

term were reduced with less effect when a variable-CT turbine was deployed. This

was the result of the reduction in the velocity due to the turbine, and the smaller

effect for the variable-CT turbine was due to the turbine not operating at low

velocities, and operating less efficiently at higher velocities, as discussed previously.

This smaller effect can be seen in the time-series for the Quadratic Friction Term

(QFT) where the peaks for Run-3 are larger than for Run-2. The flood-ebb shading

has also been included in this figure despite the sign indicating flood and ebb

cycles for the QFT and Quadratic Turbine Term (QTT) as the directionality of

the Elevation Friction Term (EFT) and Elevation Turbine Term (ETT) deviates

from the flood-ebb cycle (see Chapter 3 for definition of these terms).
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Figure 4.12: Time-series of estimates the quadratic friction term (a), elevation

friction term (b), quadratic turbine term (c) and elevation friction term (d) for

Run-1 (black), Run-2 (blue) and Run-3 (red) in the element containing the

turbine. Shaded areas mark times of ebb and unshaded areas times of flood.

The peaks for the EFT and ETT were also larger in Run-3 compared to Run-2

which is of significance as these terms introduce even overtides. However, the

difference was small, and these terms remain at least an order of magnitude smaller

than the AT and CT which also introduce the first, even overtide. Also, the ETT,

the larger of the two terms only exists in the presence of turbines, and so will only

exist in the cell containing the turbine. Given the extent of the changes to the M2

and its overtides, it is physically intuitive that the turbine indirectly causes these

changes by introducing a wake, and therefore steep velocity gradients, rather than

directly generates these overtides. The QFT was larger for Run-3 than Run-2 at

its peak values which may explain the larger M6 amplitude seen in this run (Figure

4.8e). In Run-1 there is no QFT or EFT as there are no turbines in the channel,

thus with the addition of the turbines these terms grew from 0 to O(10−2) and

O(10−3) respectively. The growth of the QFT is of the same order as the growth in

the AT and , with the growth in the EFT an order of magnitude smaller. Therefore,

it is the QFT to which the local change to the M2 and M6 tides is attributed, as
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the expansion of this term, (2.2.13), shows it is these tides that the QFT impacts

upon.

Figure 4.13: Results of harmonic analysis of the surface elevation for Run-4.

Distances normalised as in Figure 3.24. First row – M2, second row – S2, third row

– MS, first column – amplitude, second column – phase.

Figure 4.14: As Figure 4.13 but first row – M4, second row – S4, third row – MS4.
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Figure 4.15: As Figure 4.13 but first row – M6, second row – 2MS6, third row –

2SM6.

Figure 4.16: As Figure 4.13 but for u-velocity.
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Figure 4.17: As Figure 4.14 but for u-velocity.

Figure 4.18: As Figure 4.15 but for u-velocity.
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4.4 Experiment 3: Effect of Variable-CT Turbine

on Compound Tides

4.4.1 Results

The results of the harmonic analysis of the output from Run-4, an unoccupied

channel forced by the M2 and S2 tides are presented in Figures 4.13–4.18. In the

analysis of Run-4 (and Run-5) output, 9 constituents were identified: the M2, M4

and M6, as seen in the previous runs, the S2, the second forcing tide, and the

S4, MS4, MS, 2MS6 and 2SM6. The first of these is an overtide of S2 and the

remainder are compound tides of the M2 and S2. These constituents have been

grouped according to frequency for plotting, the quarter-diurnal tides (M4, S4 &

MS4: Figures 4.14 & 4.17) together and the sixth-diurnal tides (M6, 2MS6 & 2SM6:

Figures 4.15 & 4.18) together and the low-frequency MS tide together with the two

forcing diurnal tides (M2 & S2: Figures 4.13 & 4.16). The latter of these groupings

is a grouping of convenience rather than a grouping chosen because the results are

expected to be comparable.

Figures 4.13–4.15 present the results of the harmonic analysis of the surface

elevation. In terms of the pattern of the results, for the amplitude, the two forcing

tides showed a similar pattern, maxima at either boundary and minima near the

centre, and the remaining tides showed a similar pattern of minima at either

boundary and maxima near the centre. There was a slight phase difference between

the three tides. For the two forcing tides and the three sixth-diurnal tides, phase

increases from west to east were seen. For the remaining tides there were phase

minima either side and maxima towards the channel centre, although the variation

of phase along the channel was small.

Figures 4.16–4.18 present the results of the harmonic analysis of the current

velocity. As for the surface elevation, similar patterns of amplitude and phase

across the channel were seen for the diurnal, semi-diurnal, quarter-diurnal and

sixth-diurnal constituents, as described above.

The change to the amplitude and phase of the constituents of the current

velocity with the addition of a turbine are presented in Figures 4.19–4.21 as profiles
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along y = −10 m between (x− x0) = ±L/16 = ±250D, and in Figures 4.22–4.24

as 2D plots covering the area surrounding the turbine.
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Figure 4.19: Profiles of change in the harmonic analysis between Run-4 and Run-5

(Run-4 minus Run-5) along y = −10 m. Distances normalized as in Figure 4.3.

First row – change in amplitude of current velocity, second row – change in phase

of current velocity, first column – M2, second column – S2, third column – MS.

The patterns of change in Figures 4.19–4.21 again show similarity between

tides, as in the contour plots from Run-4 (Figures 4.13–4.18). Both the forcing

tides had a sharp reduction peak for the amplitude, centred around the turbine,

with a similar sized peak, in percentage terms, for each of the tides (Figures 4.19a

& 4.19c). The pattern of change to the phase was also similar for both tides, as

was the size of the change (Figures 4.19b & 4.19d). The pattern of change to the

amplitude of the MS (Figure 4.19e) more closely resemble the patterns seen for

the M4 and MS4 tides (Figures 4.20a & 4.20e) than the diurnal tides, with larger

changes nearer the turbine and smaller changes moving away from the turbine

in either direction. The pattern of change to the phase of the MS was unique to

this tide, with a sharp reduction peak centred around the turbine, with a small

overall increase to the west and a small overall decrease to the east (Figure 4.19f).

The M4 and MS4 tides showed similar patterns of change for the amplitude and
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phase (Figures 4.20a, 4.20b, 4.20e & 4.20f). For the S4 amplitude there was an

augmentation peak centred around the turbine (Figure 4.20b). The phase of the

S4 (Figure 4.20d) follows a more similar pattern to the other phase changes but

with greater symmetry between the augmentation and reduction (whereas the M4

and MS4 phase changes saw much larger augmentation than reduction). Finally,

the pattern of change to both the amplitude and the phase of the sixth-diurnal

tides was very similar across all tides (Figure 4.21). The2D plots of change to the

current constituents (Figure 4.22–4.24) tell a similar story to the proiles (Figures

4.19–4.21).
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Figure 4.20: As Figure 4.19 but first column – M4, second column – S4, third

column – MS4.

4.4.2 Discussion

The primary finding of this experiment is that there is some similarity in the effect

of the interaction between the turbine and the tides within the same frequency

bands, i.e. the pattern of change to the M2 is similar to the pattern of change to

the S2 and the pattern of change to the M4 is similar to the MS4. However, the

pattern of change to the S4 differed from the pattern of change to the M4. This

means that inference of the kind of change one might see in tides not included in
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the experiment above, e.g. N2, K2 MN4, 2MN6, etc. may not be possible. There

was however a high degree of similarity across the M4 and MS4 and the M6, 2MS6

and 2SM6.
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Figure 4.21: As Figure 4.19 but first column – M6, second column – 2MS6, third

column – 2SM6.

This similarity is most likely an indication of the similar origins of these changes.

In expansion (2.2.26) (Chapter 2, §2.2) it was seen that the QFT and QTT introduce

the M6, 2MS6 and 2SM6, and the change in these three constituents, with the

addition of a turbine, was similar, along with the change to the M2 and S2, which

is also accounted for in these expansions. Additionally, the change was local to the

turbine. These two facts, along with Figure 4.12, which shows the change in the

QTT to be the larger than the change in the QFT between Run-1 and Run-2 are

good evidence that it is the change in the QTT that accounts for the change in

these constituents.

In expansions (2.2.24), (2.2.25) and (2.2.27) (Chapter 2, §2.2) it was seen that

the CT, AT, EFT and ETT all introduce the M4, S4, MS4 and MS constituents.

The effect of the ETT will be local to the turbine and the changes seen to these

constituents are further reaching than the changes to the M6, 2MS6 and 2SM6

(compare Figure 4.20 and Figure 4.21). The change in the ETT between Run-1
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and Run-2 was negligible compared to the change in the AT and CT (compare

Figure 4.11 and 4.12). This is good evidence that it is the change to the AT and

CT resulting from the introduction of steep velocity gradients in the turbine wake

is the cause of the change to the M4, S4, MS4 and MS.

Figure 4.22: Plots of the change in the results of the harmonic analysis of the

current velocity between Run-4 and Run-5 (Run-4 minus Run-5) across the area

surrounding the turbine. Distances normalised as in Figure 4.4 and area spans

that of Figure 4.4. First row – M2, second row – S2, third row – MS, first column –

amplitude, second column – phase.

The addition of the S2 introduced the spring-neap cycle to the system. This

leads one to question whether there is a difference in the flood-ebb asymmetry

between spring and neap tides, and, whether there is a difference in the effect of

the turbine on the asymmetry between spring and neap tides. From Figure 4.25

one can see that the answer to both of these questions is yes. The asymmetry was

smaller towards the neap tide and larger towards the spring tide (Figure 4.25a),

and likewise the effect of the turbine on the asymmetry (Figure 4.25c). In this

figure the time-series was split into 1-day bins and the asymmetry calculated using

(4.2.1) for Run-4 and Run-5. From inspection of the time-series one can see that

due to the spring neap cycle the amplitude of the tide reduces/increases from one
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day to the next, this effect will also occur from one tidal cycle to the next, and

even from flood to ebb, which will impact on the asymmetry. As for the difference

in the effect of the turbine, if one considers that the effect of the turbine depends

on u, and that u is smaller at neap tides and larger at spring tides, then it follows

that the effect of the turbine will also be smaller at neap tides and larger at spring

tides.

Figure 4.23: As Figure 4.22 but first row – M4, second row – S4, third row – MS4.

The calculation of flood-ebb asymmetry for the 1-day bins was repeated for

the whole model area. In Figure 4.26a the profile of the average of the asymmetry

across these 1-day bins along the channel length is presented, along with the

standard deviation, which is given by the amplitude of the envelope. The width

of the envelope therefore indicates the spring-neap variability of ambient tidal

asymmetry, (a), and impact the turbine has on the asymmetry, (b). The mean

of AS,2 in this figure looks very much like AS,2 from Figure 4.5a, i.e. the average

AS,2 over the spring neap cycle for Run-4 is similar to Run-1. The variability of

the envelope, or the magnitude of the temporal variation, along the channel shows

the largest variability to be near either boundary and the smallest variability at

around (x− x0) = −L/8. Figure 4.26b presents the mean and standard deviation

of the change to AS,2 with the deployment of a turbine in a similar fashion. In this
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case, the largest temporal variation was seen near the turbine where the largest

mean changes were seen.

Figure 4.24: As Figure 4.22but first row – M6, second row – 2MS6, third row –

2SM6.

The inclusion of the S2 in the model and therefore the introduction of S4, MS4,

and the spring-neap cycle means that AS,1 will no longer be as good a representation

of the asymmetry as in the M2-only runs as none of these new elements are included

in AS,1, whilst all will impact on the asymmetry. As an illustration, profiles of

mean AS,2 and mean ∆AS,2 are presented along with profiles of AS,1 and ∆AS,1 in

Figure 4.27. The patterns of mean AS,2 (Figure 4.27a) and mean ∆AS,2 (Figure

4.27c) are no longer reproduced in AS,1 (Figure 4.27b) and ∆AS,1 (Figure 4.27d) as

was the case in the M2-only runs. Equation (4.2.1) requires modification to include

the impact of S2, S4, and MS4. Equation (4.2.1) was modified as follows:

AS,1
∗ =

uM4

uM2

cos(2ψM2 − ψM4) +
uS4

uS2

cos(2ψS2 − ψS4)

+
2uMS4

uM2 + uS2

cos(ψM2 + ψS2 − ψMS4)

+
2uM6

uM2 + uM4

cos(ψM2 + ψM2 − ψM6) (4.4.1)
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Figure 4.25: (a): Time-series of u from the element containing the turbine for

Run-4. Intermediate white and grey shading delineate successive days. (b):

Flood-ebb asymmetry calculated using (4.2.2) for a single day, dashed grey lines

delineate days, circles are asymmetries calculate for Run-4 and crosses are

asymmetries calculated for Run-5. (c): Change in flood-ebb asymmetry between

Run-4 and Run-5 for given one-day period.

(in this extension of (4.2.1) the M2-M4-M6 triplet interaction was also included

along with the S2-S4 pair and M2-S2-MS4 triplet interaction)2. Figure 4.28 shows

profiles of mean AS,2 (Figure 4.28a) and mean ∆AS,2 (Figure 4.28c) along with

profiles of AS,1
∗ (Figure 4.28b) and ∆AS,1

∗ (Figure 4.28d). From a comparison of

Figures 4.27 & 4.28 one can see that the modified relationship (4.4.1) gives a more

accurate representation of the temporal mean of the asymmetry. This relationship

2This extension includes all the tidal constituent interactions from the harmonic analysis

satisfying the frequency conditions 2σA = σB and σA + σB = σC , and therefore contributing

to asymmetry (c.f. Song et al. [2011]). Information on the relative contributions to asymmetry

isn’t given directly from (4.4.1). One could however repeat the plots in Figures 4.27 & 4.28 for

various combinations of the interactions to determine their importance. Given the sizes of the

constituents, Figures 4.16 & 4.17, the M2-S2-MS4 interaction will most likely contribute the most

to asymmetry after the M2-M4. Additionally the role of the M2-M4-M6 triplet interaction is

known to be minimal given the reproduction of the AS,2 by AS,1.
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does not however give an indication of temporal variation as seen in Figure 4.26.

Equation (4.4.1) may be written more generally as:

AS,1
† =

N∑ uj
ui

cos(2ψi − ψj) +
M∑ 2um

uk + ul
cos(ψk + ψl − ψm) (4.4.2)

where N is the total number of cases where the frequency condition 2σi = σj is

satisfied, M is the total number of cases where the frequency condition σk+σl = σm,

ui and ψi are the amplitude and phase of the constituent i and likewise for the

constituents j, k, l and m (cf. Song et al. [2011])3. With this form of the expression

the effect on the flood-ebb asymmetry of additional semi-diurnal tides that may

be of importance, for example the N2 and K2, and their related overtides and

compound tides may be considered. Likewise, the asymmetry introduced through

the interaction of diurnal and semi-diurnal constituents in a mixed tidal regime

may also be considered through (4.4.2).

4.5 Summary

In this chapter the results from three experiments have been described. These

experiments investigated the effect of a fixed-CT and variable-CT turbine on the

overtides in a channel forced by the M2 only and the effect of a fixed-CT turbine

on the overtides and compound tides in a channel forced by both the M2 and S2.

These experiments offer confirmation that both augmentation as well as re-

duction of the quarter-diurnal tides is possible, as predicted from the analytical

discussion in Chapter 2 (question 1a)). The pattern and size (in percentage terms)

of the effect was similar for the M2 and M6, hinting that the effect on odd tides

(i.e. harmonics with odd integer multiples) may be similar. In order to confirm

this the analysis would have to look at further odd and even tides, up to M12 for

3 odd and 3 even overtides. In practice, however, it is unlikely that tides beyond

the sixth-diurnal band will have an important effect on the overall tide. The size

of the change to the M4 was considerably larger than for the other tides which

3In theory both N and M will equal infinity. In practice however a finite number of interactions

will accurately describe the asymmetry.
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is important given the dominant role of this tide in flood-ebb asymmetry. The

variable-CT tide had a considerably (up to 59%) smaller effect, which is suspected

to be a result of the turbine only operating for 44% of the tidal cycle due to the

cut-in speed introduced, compared to 100% for the fixed-CT turbine.
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Figure 4.26: (a): Profile of the average flood-ebb asymmetry in current velocity

across 1-day bins along channel length (solid line) with an envelope whose

amplitude is given by the standard deviation. (b): as above for change to

flood-ebb asymmetry. Distance normalised as in Figure 4.3.

From estimations of the non-linear terms in the vicinity of the turbine it is

suspected that changes to the advection and continuity term, resulting from the

velocity gradients introduced by the turbine wake cause the larger effect on the

M4 compared to the other tides. The changes to the friction terms were negligible

and the elevation turbine term introduced in the turbine runs, which would also

introduce the M4 tide, was an order of magnitude smaller than the advection and

continuity terms. Also, these two terms are many orders of magnitude larger in

Run-2 and Run-3 than in Run-1. Additionally, the turbine terms only exist in the

presence of turbines and therefore would only lead to highly local generation (not

seen) or reduction (seen for M2 and M6). The much larger extent of the changes

seen further supports the idea that it is the turbine wakes that lead to the changes
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seen to the M4.

With the addition of the S2 forcing tide, a further overtide and compound

tides were introduced to the discussion. The addition of the S2 also introduced

the spring-neap cycle and with this a variation in the asymmetry over time in the

natural case. As a result, a difference in the effect of the turbine over time was

seen, namely less asymmetry and a smaller effect of the turbine at the neap tide

and more asymmetry and a larger effect of the turbine at spring tide.
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Figure 4.27: (a): Profile of averaged asymmetry from Figure 4.26, (b): profile of

(4.2.1) along channel, (c): Profile of change in averaged asymmetry from Figure

4.26, (d): profile of change to (4.2.1) between Run-4 and Run-5 along channel.

Distance normalised as in Figure 4.3.

The similarity in the changes to the M2, S2, M6, 2MS6 and 2SM6 across the runs,

along with the estimations of the sizes of the terms that effect these constituents led

to the conclusion that it is the introduction of the turbine to the channel that was

responsible for the changes to these constituents, through the QTT. Likewise, for

the M4, S4, MS4 and MS, it was concluded that it was the changes to the AT and

CT resulting from the turbine wake that was responsible for the changes to these

constituents. This also explains why the effect was not localised to the turbine.
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Figure 4.28: (a): Profile of averaged asymmetry from Figure 4.26, (b): profile of

(4.4.1) along channel, (c): Profile of change in averaged asymmetry from Figure

4.26, (d): profile of change to (4.4.1) between Run-4 and Run-5 along channel.

Distance normalised as in Figure 4.3.

Finally, for the M2 only runs AS,1, given by (4.2.1), was seen to be a useful

indicator of flood/ebb dominance and could also indicate the size of the asymmetry

through (4.2.3). With the addition of the S2 equation (4.2.1) may be modified to

(4.4.1) to account for the effect of this new tide and its overtides and compound

tides, and further generalised to (4.4.2), allowing consideration of forcing due to

additional semi-diurnal tides, such as N2 and K2, and diurnal tides.
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Chapter 5

Effect of Multiple Turbines on

Overtides

This chapter introduces the second set of experiments undertaken to address

research questions 1c) and 2c), presented in Chapter 2. The experiments are

introduced along with the reasoning behind them in §5.1. In §5.2–§5.4 the results

from the experiments are presented and discussed. Finally, in §5.5 the findings

from these experiments are summarised and conclusions drawn.

5.1 Introduction

Given that a single turbine alters the nature of the tide in an extended area

around, and particularly downstream of itself (see Chapter 4), there are likely to

be interactions between the effects of multiple turbines. This chapter, therefore,

investigates the effects on the tides of multiple turbines arrayed in lines (along the

length of a channel) and rows (across the width of a channel). However, the nature

of the tides (particularly their asymmetry) varies along the channel length even in

the absence of turbines (see Figures 4.1, 4.2 & 4.5a). Firstly, therefore, differences

in the impact of single turbines on the tides due to their position along the channel

(and therefore the nature of the tidal forcing they experience) are investigated.

Three experiments, which between them explore the effects on tides of multiple

turbines, are discussed in this chapter. The first investigates interactions between

a single turbine and the tide when the turbine is placed at different positions
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along the channel, and therefore experiences different natural tidal forcing. This

experiment has been undertaken to address research questions 1c) and 2c). The

second considers the effects of multiple turbines deployed in a line along the length

of the channel on the tides, and interactions between the effects of each turbine.

The third considers the effects of multiple turbines deployed in a row across the

width of the channel. Together, these two experiments look to address research

questions 1d) and 2d).

In the first experiment, four model runs were carried out. In each one, a single

turbine was deployed at the AS,2 = 0, AS,2 = 0.1, AS,2 = 0.2 and AS,2 = 0.3

contours1 (see Chapter 4, Figure 4.5). In all four of these runs, the channel was

forced by only the M2 tide and the turbine had a fixed-CT . The differences amongst

these four runs and Run-1, from Chapter 4 (the unoccupied channel), have been

calculated to assess the differing effects of the turbine at the four locations.

In the second experiment, nine model runs were carried out. Three of these runs

had three turbines deployed in a line along the channel with longitudinal spacings

of ∼ 120D, ∼ 60D and ∼ 20D. The other six runs used only the westernmost and

easternmost turbines from the arrays. The largest of these spacings, 120D, was

chosen as at this distance from a turbine, its effect on tidal asymmetry falls below

2% (see Chapter 4). The smallest spacing, 20D, was chosen as an approximation

of the distance of wake recovery based on Malki et al. [2011]. The 60D spacing was

chosen as an intermediate value. The additional six runs, along with Run-2, from

Chapter 4 (the single fixed-CT run), allowed for comparison between the turbines’

individual effects, and their effects within an array.

In the final experiment, five further runs were undertaken with turbines deployed

in a row across the channel, with different numbers of turbines and therefore

different across-channel spacings. Spacings of approximately 5D, 4D, 3D, 2D and

1D were used, which correspond to channel width-filling arrays of 9, 10, 13, 17 and

26 turbines respectively. The 1D spacing was considered the minimum realistic

spacing, and the further spacings were simply integer multiple (of D) increases to

the spacing.

1Where AS,2 is a measure of the Flow Velocity Asymmetry (FVA), calculated via (4.2.2)

following Neill et al. [2014].
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The runs described above a summarised in Table 5.1. Across all runs the model

parameters are as outlined in Table 3.1. All runs including turbines use fixed-CT

turbines, implemented as outlined in Table 3.3. Unless stated otherwise the same

mesh was uses as illustrated in Figure 3.22, and summarised in Table 3.8. Boundary

forcing was M2 only for all runs, using η1 = 5 m in (3.1.15) at both boundaries,

and φ1 = 0◦ at the left boundary and φ1 = 100◦ at the right boundary.

Table 5.1: Chapter 5 model runs. Line runs marked with a ∗ are runs that

simulate turbines from the line runs operating individually.

Run Name Experiment No. Turbines Array Configuration Turbine Spacing AS,2 Contour

Run-1 1, 2 & 3 0 N/A N/A N/A

Run-2 2 1 Line∗ N/A N/A

Run-6 1 1 N/A N/A 0

Run-7 1 1 N/A N/A 0.1

Run-8 1 1 N/A N/A 0.2

Run-9 1 1 N/A N/A 0.3

Run-10 2 3 Line 120D N/A

Run-11 2 1 Line∗ 120D N/A

Run-12 2 1 Line∗ 120D N/A

Run-13 2 3 Line 60D N/A

Run-14 2 1 Line∗ 60D N/A

Run-15 2 1 Line∗ 60D N/A

Run-16 2 3 Line 20D N/A

Run-17 2 1 Line∗ 20D N/A

Run-18 2 1 Line∗ 20D N/A

Run-19 3 9 Row 5D N/A

Run-20 3 10 Row 4D N/A

Run-21 3 13 Row 3D N/A

Run-22 3 17 Row 2D N/A

Run-23 3 26 Row 1D N/A

5.2 Experiment 1: Effect of Natural Asymmetry

Conditions on Turbine Impact

5.2.1 Results

In this experiment, a single turbine was deployed approximately on the contour

lines of asymmetry (FVA) from the unoccupied channel run (Run-1), AS,2 = 0, 0.1,
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0.2 and 0.3. However, in order to conduct this experiment a new mesh was required,

so that the flow-facing element width, ∆y, for the western-most and eastern-most

turbine deployments more closely resembled ∆y at the more central deployments.

The reasoning for the new mesh is discussed further in Appendix F.

The y-coordinates of the turbine deployments remained constant for all turbine

placements, at y = −10 m, and the x-coordinates used were, (x−x0)/L ≈ −0.2041,

−0.0790, 0.0660 and 0.2338 ((x− x0) = −816.5D, −316D, 264D, 935D). These

coordinates correspond approximately to the AS,2 = 0, 0.1, 0.2 and 0.3 contours,

respectively. The changes to the amplitude and phase of the M2, M4 and M6

along-channel velocity component are presented in Figures 5.1 and 5.2 respectively,

and the changes to the FVA (∆AS,2) presented in Figure 5.3. The changes to the

along channel current amplitude in Figure 5.1 are given by the normalized along

channel current amplitude change, ∆ũ, defined as:

∆ũ = 100× u0 − uT
u0

(5.2.1)

where u0 is the along channel current amplitude in Run-1 and uT is the along

channel current amplitude in any of the turbine runs. The changes to the phase

and FVA are given by:

∆X = X0 −XT (5.2.2)

The profiles of change to the M2 and M6 amplitude and phase (Figures 5.1a

& 5.1c and 5.2a & 5.2c respectively) each show the same pattern as was seen in

the fixed-CT experiment in Chapter 4. The size of the change to the M2 and M6

phases appeared reasonably constant across the deployment, with the deployment

on the AS,2 = 0.3 contour perhaps seeing a slightly larger change. Similarly, there

was only a small difference in the percentage change to the M2 and M6 amplitudes

across the 4 deployments. Crucially, there did not appear to be a consistent pattern

in the variation of the size of the turbine effect on the M2 and M6 amplitude and

phase across the 4 deployments.
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Figure 5.1: Changes to the M2 [(a)], M4 [(b)] and M6 [(c)] current amplitude with

the turbine located at the AS,2 = 0 contour (black), the AS,2 = 0.1 contour (blue),

the AS,2 = 0.2 contour (red) and the AS,2 = 0.3 contour (green). Along channel

direction normalised by length of channel, L, in such a manner that the channel

centre value is 0.

A much more prominent variation in the M4 amplitude and phase (Figures

5.1b & 5.2b) can be seen across the 4 deployments. The pattern of change to

the M4 amplitude varies across the deployments, with augmentation seen to the

east (positive x-direction) and reduction to the west (negative x-direction) for

the deployment on the AS,2 = 0 contour, opposite to the deployments on the

AS,2 = 0.2 and 0.3 contours, and what was seen in the experiments in Chapter

4. For the deployment on the AS,2 = 0.1 contour the pattern is that of almost

entirely reduction. The variation to the pattern of change to the phase of the

M4 across the 4 deployments is much less extreme. In all cases reduction is seen

to the west and augmentation to the east, as was the case in the experiments in

Chapter 4. In the deployments to the west of the channel centre, on the AS,2 = 0

& 0.1 contours, the reduction peak is larger than the augmentation peak, and

vice-versa for the deployments to the east of the channel centre, on the AS,2 = 0.2

& 0.3 contours. In terms of the overall size of the changes to the phase the largest

change was seen for the deployment on the AS,2 = 0.1 contour, smaller but roughly
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similar sized changes for the deployments on the AS,2 = 0 & 0.2 contours, and

the smallest overall change for the deployment on the AS,2 = 0.3 contour. The

overall size of the change to the M4 amplitude showed a different pattern, with

the smallest and largest changes seen for the deployments on the AS,2 = 0.1 & 0

contours respectively, with roughly similar sized intermediate changes seen for the

deployments on the AS,2 = 0.2 & 0.3 contours.
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Figure 5.2: As Figure 5.1, but for phase of M2, [(a)] M4, [(b)] and M6 [(c)].

Finally, the changes seen to the FVA (Figure 5.3) were all similar in over-

all size across the 4 deployments with all having the same east/west reduc-

tion/augmentation pattern. The change seen for the deployments on the AS,2 = 0

and 0.3 contours were almost identical, with larger augmentation than reduction

peaks. The deployment on the AS,2 = 0.1 contour also had a larger augmentation

peak than reduction peak. The augmentation peak for this deployment is of a

similar size to the AS,2 = 0 contour deployment but the reduction peak was smaller

than both the AS,2 = 0 and 0.3 deployments. This pattern appears almost exactly

opposite to the AS,2 = 0.2 contour deployment, with a reduction peak similar in

size to the augmentation peaks of the other deployments, and an augmentation

peak of a similar size to the reduction peak of the AS,2 = 0.1 deployment.
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Figure 5.3: Changes to the FVA with the turbine located at the AS,2 = 0 contour

(black), the AS,2 = 0.1 contour (blue), the AS,2 = 0.2 contour (red) and the

AS,2 = 0.3 contour (green). Measured by AS,1 [(a)] and AS,2 [(b)]. Along channel

length normalised as in Figure 5.1.

5.2.2 Discussion

Two things are clear from inspection of Figures 5.1–5.3; (i) the relationship between

the natural tidal asymmetry and the change to the natural asymmetry due to the

turbine does not exist and (ii) no consistent pattern is seen in the variation of

change to the considered parameters across the four deployments. In Figure 5.4

profiles of some physical parameters from the unoccupied channel run (Run-1) are

plotted to look for hints of potential physical causes for the variation that is seen

across the 4 deployments.

These parameters are; the amplitudes of the M2 current, uM2 , and surface

elevation, ηM2 , which are proxies for the overall tidal amplitudes of the current and

surface elevation, the phase difference between high water and maximum flood, γ,

which indicates whether the tide is standing or progressive, and the FVA, given by

AS,2. Both uM2 and ηM2 are normalised by their maximum values, i.e.

ũM2 =
uM2

max(uM2)
(5.2.3)

136



Chapter 5. Effect of Multiple Turbines

and

η̃M2
=

ηM2

max(ηM2)
(5.2.4)

A normalisation was also devised for γ, given by:

|γ̃| =
∣∣∣∣2γ + π

π

∣∣∣∣ (5.2.5)

This normalisation is based on the fact that tide is a standing tide when γ = ±π/2

(±90o), a progressive tide when γ = 0, and the range of values of γ encountered

in the channel was between around −50o to −150o. When |γ̃| = 0, the tide is a

standing tide, when |γ̃| = 1, the tide is a progressive tide. The negative values

of γ seen in the channel indicate peak flood (ebb) occurs before max high (low)

water in the channel. When the modulus is not taken, γ̃ may take both positive

and negative values, with positive values indicating that max flood occurs before

the surface elevation returns to mean-sea-level (η = 0) following max high water

(η = η0), and negative values indicating that max flood occurs after η = 0 following

η = η0. In Figure 5.4 only |γ̃| is plotted, but values of γ̃ to the west of γ̃ = 0 are

negative, and values to the east are positive.

Finally, AS,2 is normalised by definition, (4.2.2), the absolute value is plotted

in Figure 5.4, but from Figure 4.5, one can see that the values of AS,2 to the west

of AS,2 = 0 are negative, and values to the east are positive, with negative values

indicating a larger ebb than flood and positive values indicating a larger flood than

ebb.

It is not obvious from of Figures 5.1 & 5.2 that the changes to the M2 and M4

current constituents lead to the changes to FVA seen in Figure 5.3. For example,

the change to the M4 amplitude for the AS,2 = 0 deployment sees reduction to the

west and augmentation to the east, the change to the FVA for this deployment

shows the opposite pattern. To illustrate that the changes to the harmonics do

indeed lead to the changes to the FVA, the values of uM2 , uM4 , ψM2 , ψM4 and AS,2

at the points of peak augmentation/reduction to AS,2 are presented in Table 5.2,

along with the associated ru = uM4/uM2 and cos(Ψ) values, for the AS,2 = 0, 0.1,

0.2 turbine deployments, and the changes between Run-1, and the turbine runs.
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Figure 5.4: Profiles of the normalised M2 surface elevation (blue line), η̃M2
,

normalised M2 current (black line), ũM2 , absolute FVA (green line), |AS,2|, and a

parameter indicating the point on standing/progressive spectrum of the tide, at

that point along the profile (red line), |γ̃|. Along channel distance normalised as in

Figure 5.1.

Forgetting the changes to the M4 constituent for a moment, the findings above

are that the ambient FVA conditions do not have much influence on the magnitude

of the change to the FVA (in percentage terms) resulting from the turbine. Similarly,

whether the tide is standing or progressive also seems to have little influence on

the resulting effect of the turbine. Variation in the change to the M4 tide across

the deployments was seen, a variation that possibly coincides with the variation of

γ along the channel. However, given the changes to the M2 constituent and the

FVA are similar across the four deployments, and it is these parameters that have

the most physical significance (the M2 is a proxy for the tidal current and the FVA

indicates is flood-ebb magnitude asymmetry in this current, the M4 and M6 simply

indicate distortions to the M2 tide, and not propagating tidal waves).

One can then be confident that the difference in the effect of turbines seen when

multiple turbines are deployed, compared to the effect of a single turbine, will be

mostly due to the interaction of the multiple turbine effects, rather than the result

of a variation in initial conditions due to the different turbine locations. As the

model geometry has been designed so that the hydrodynamics in the unoccupied

channel are approximately one-dimensional, the variation in AS,2, and γ, with

turbine position, will only be of importance when the along channel position is

varied considerably, as in the next experiment.
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5.3 Experiment 2: Effect of Multiple Turbines

on Turbine Impact – Lines of Turbines

5.3.1 Results

The second experiment consisted of three sets of runs for a line of three turbines

with three different spacings. In the first set of runs a spacing of 120D, or 2.4

km was used; in the second set, the spacing was 60D, or 1.2 km, and in the final

set the spacing was 20D, or 400 m. In each of the sets of runs the three turbines

were deployed together, then the outermost turbines were run individually (central

turbine deployed at the same location as runs in Chapter 4), thus there are three

runs in total, per set. The coordinates the turbines were deployed at are given in

Table 5.3. From the turbine locations one can see that in all cases the turbines will

be deployed within 5 km (250D) of the channel centre, and thus are all within the

central region of the channel where the element will have the same target element

size, 750 m2 (see Figure 3.22). Therefore, the potential influence of grid-size on the

effect of the turbine, identified in the previous section, should be lesser, and the

mesh used for the experiments in Appendix F will again be used.

As was seen in the previous section, the variation of the turbine position (and

therefore ambient conditions) will have little influence on the magnitude of the

effect that the turbine has on the M2 and the FVA. The variation in element size

may however still be an issue. The variability of the flow-facing width, ∆yElem =

max(yElem)−min(yElem), of the elements containing the turbines across the 120D,

60D and 20D lines was 3%, 22% and 14% respectively. Where these values are

expressed as a relative percentage range, RPR∆y = 100×(max(∆y)−min(∆y))/∆y,

where ∆y is the mean of ∆y. This suggests, as per Appendix F, that there will

indeed be some numeric influence on the results as they are transposed to profiles.

These values compare to RPR∆y = 148% and RPR∆y = 2% for the uncorrected

and corrected meshes used in the previous experiment. To minimise any numeric

influence on the results, runs where the outermost turbines are deployed individually

were also carried out (Run-11, Run-12, Run-14, Run-15, Run-17 and Run-18).

Therefore, the difference in the effect of the turbine operating alone and as part of

an array, deployed longitudinally, can be explored.
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Table 5.2: Values of M2 and M4 current amplitude and phase, and the associated

ru = uM4/uM2 , cos(2ψM2 − ψM4) = cos(Ψ) and AS,1 = ru cos(Ψ) at the locations of

peak augmentation / reduction to AS,2 resulting from the AS,2 = 0, 0.1 & 0.2

turbine deployments. Changes to each of these parameters is also presented to

illustrate how the changes to the harmonics lead do in fact describe the changes to

the FVA seen. ∗change not given as percent, but as XRun−1 −XRun−2)

AS,2 Run Peak uM2 [m] uM4 [m] ru ψM2 [o] ψM4 [o] cos(Ψ) AS,1

0

1
+ve 3.5408 0.0969 0.0274 142.0225 71.2908 -0.8410 -0.0230

-ve 3.5393 0.0959 0.0271 142.0505 70.9654 -0.8374 -0.0227

2
+ve 3.4100 0.0660 0.0194 141.8908 50.4144 -0.5967 -0.0116

-ve 3.4345 0.1235 0.0356 141.9561 77.1025 -0.8925 -0.0318

∆ [%]
+ve 3.6940 31.8885 29.1970 0.1317∗ 20.8764∗ 29.0488 -0.0114∗

-ve 2.9610 -28.7800 -31.3653 0.0944∗ -6.1371∗ -6.5799 0.0091∗

0.1

1
+ve 3.4423 0.0514 0.0149 143.5003 26.9145 -0.1722 -0.0026

-ve 3.4448 0.0517 0.0150 143.4706 28.6227 -0.2025 -0.0030

2
+ve 3.3706 0.0620 0.0184 143.4218 47.0283 -0.5028 -0.0093

-ve 3.3202 0.0588 0.0177 143.3259 -12.0127 0.4797 0.0085

∆ [%]
+ve 2.0829 -20.6226 -23.4899 0.0785∗ -20.1138∗ -191.9861 0.0067∗

-ve 3.6170 -13.7331 -18 0.1447∗ 40.6354∗ 336.8889 -0.0115∗

0.2

1
+ve 3.3178 0.0820 0.0247 144.5355 -33.6840 0.7961 0.0197

-ve 3.3203 0.0810 0.0244 144.5217 -33.2017 0.7906 0.0193

2
+ve 3.1927 0.0624 0.0195 144.4708 -6.3526 0.4273 0.0083

-ve 3.2442 0.0997 0.0307 144.3776 -40.4465 0.8590 0.0264

∆ [%]
+ve 3.7706 23.9024 20.9547 0.0647∗ -27.3314∗ 46.3258 0.0114∗

-ve 2.2920 -23.0864 -25.8197 0.1441∗ 7.2448∗ -8.6517 -0.0071∗

Figures 5.5–5.7 show differences in the current amplitude, phase and flood-ebb

magnitude asymmetry between cases where the turbines were deployed as an array

with a spacing of 120D, and individually, respectively. Figure 5.8–5.10 show the

same differences for the 60D spacing case, and Figure 5.11–5.13 for the 20D spacing

case.

For the M2 and M6 amplitudes the reduction peaks were larger when the

turbines were deployed as an array, with a larger difference between the individual

deployments and the array the closer together the turbines were deployed (Figures

5.5a, 5.5c, 5.8a, 5.8c, 5.11a & 5.11c). In the regions between the turbines the

amplitude reduction levelled-off, but not at zero, and the value appeared to increase
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with reduced turbine spacing, implying less wake recovery between the turbines.

For the M4, the difference between the array and individual turbine cases changed

depending on the turbine in question (Figures 5.5b, 5.8b & 5.11b). For the central

turbine the reduction and augmentation peaks were both smaller in the array

deployment. For the west-most turbine the augmentation peak was larger and the

reduction peak smaller in the array deployment, whilst for the east-most turbine

the opposite was true. The differences between the peaks appeared to increase as

the turbines were more closely spaced. However, this is not immediately clear from

inspection of Figures 5.5, 5.8 and 5.11 and a more detailed analysis is required.

This can be found in §5.3.2.
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Figure 5.5: Change to the amplitude of the M2 [(a)], M4 [(b)] and M6 [(c)]

currents for 120D spaced array (solid black) and the turbines individually

(coloured dashed lines). Along channel distance normalised by the turbine spacing,

D, with the normalisation defined in such a way that the channel centre lies at 0.

The patterns of change to the phase for the M2 and M6 tides were somewhat

similar (Figure 5.6a, 5.6c, 5.9a, 5.9c, 5.12a & 5.12c). For both tides and for

each of the spacings, the change to the phase due to the array was much larger

than for individual turbines. The array phase change appeared to be almost the

superposition of each of the individual phase changes. For closer turbine spacing
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the overall effect was large, and therefore the difference between the overall change

and the individual changes was larger. For the M4 phase the pattern was very

similar to the M4 amplitude, but reversed (Figure 5.6b, 5.9b & 5.12b). In the case

of the central turbine, the reduction peak was slightly smaller for the array than for

the individual turbine, but the augmentation peak was the same. For the west-most

turbine the reduction peak was larger for the array and the augmentation peak

smaller, and vice-versa for the east-most turbine. This difference again appeared to

grow for smaller turbine spacings, but closer analysis is needed, and can be found

in §5.3.2.
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Figure 5.6: As Figure 5.5 but for the phase of the M2 [(a)], M4 [(b)] and M6 [(c)].

The changes to asymmetry showed similar patterns to the changes to the M4

tide (Figures 5.7, 5.10 & 5.13), due to the important role that the M4 plays in

describing asymmetry. The difference between the array and individual central

turbine changes was small regardless of spacing. The main difference was seen in

the region between the turbines where the difference between the array run and

the individual runs were large, growing larger as the turbine spacing was reduced

and the opposing peaks of the adjacent turbines moved closer. For the west-most

turbine the augmentation peak was larger and the reduction peak smaller for the

array run than the individual run, and vice-versa for the east-most turbine. Again,
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the difference seemed to grow larger as the spacing reduced. Also, the combined

effect of the array reached further east and west than the east-most/west-most

effect of the east-most/west-most turbine. This effect also appeared to grow with

reduced turbine spacing.

Table 5.3: Coordinates of turbines in line arrays.

Run-10 Run-11 Run-12

(xT − x0)/D -119.5 0.5 199.6 -119.5 119.6

y/D -0.5 -0.5 -0.5 -0.5 -0.5

Run-13 Run-14 Run-15

(xT − x0)/D -59.65 0.5 60.5 -59.65 60.5

y/D -0.5 -0.5 -0.5 -0.5 -0.5

Run-16 Run-17 Run-18

(xT − x0)/D -19.5 0.5 20.95 -19.5 20.95

y/D -0.5 -0.5 -0.5 -0.5 -0.5
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Figure 5.7: Change to the FVA for 120D spaced array (solid black) and the

turbines individually (coloured dashed lines). Along channel distance normalised

as in Figure 5.5.

5.3.2 Discussion

From inspection of Figures 5.5–5.13, a pattern of larger overall impact when

turbines are deployed closer together was seen. In this sub-section a more detailed

quantitative analysis of the results is carried out to either confirm or deny this

initial, subjective interpretation. In Table 5.4 the values of the peaks, both positive
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and negative (or reduction and augmentation respectively), from Figures 5.5–5.13,

are given for the array runs and individual runs, along with the difference between

the peaks values for the array and individual runs (array difference minus individual

difference). These differences are calculated as:

-400 -300 -200 -100 0 100 200 300 400

∆
u
M

2
[%

]

0

5

10

(a)

∆R1,13

∆R1,14

∆R1,2

∆R1,15

-400 -300 -200 -100 0 100 200 300 400

∆
u
M

4
[%

]

-100

-50

0

(b)

(x− x0)/D
-400 -300 -200 -100 0 100 200 300 400

∆
u
M

6
[%

]

0

5

10

(c)

Figure 5.8: As Figure 5.5, but for 60D spaced array.

-400 -300 -200 -100 0 100 200 300 400

∆
ψ
M

2
[o
]

0

0.2

0.4

(a)

∆R1,13

∆R1,14

∆R1,2

∆R1,15

-400 -300 -200 -100 0 100 200 300 400

∆
ψ
M

4
[o
]

-40

0

40
(b)

(x− x0)/D
-400 -300 -200 -100 0 100 200 300 400

∆
ψ
M

6
[o
]

0

2

4
(c)

Figure 5.9: As Figure 5.6, but for 60D spaced array.
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∆(∆X) = ∆XA −∆XI (5.3.1)

for all parameters, X, where the subscripts A and I denote parameters pertaining

to the array and individual runs respectively and ∆X is as defined in (5.2.2).
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Figure 5.10: As Figure 5.7, but for 60D spaced array.
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Figure 5.11: As Figure 5.5, but for the 20D spaced array.

In Figure 5.14 the differences in the peak changes to the amplitudes and phase of

all tides between the individual and array runs are plotted against the inter-turbine

spacing. In this plot the absolute changes to ∆uM4 and ∆ψM4 are considered

(Figures 5.14b & 5.14e). A trend of increasing difference in the peak change to the

tides between the individual and array runs with decreasing turbine spacing can be
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seen across all parameters except ψM2 . Figure 5.15 shows the equivalent plot for

the FVA metric AS,2. This figure shows little variation in the impact of the central

turbine on AS,2, whilst for the easternmost turbine a larger difference is seen with

smaller turbine spacing, likewise for the augmentation peak for the westernmost

turbine.

-400 -300 -200 -100 0 100 200 300 400

∆
ψ
M

2
[o
]

0

0.2

0.4

0.6
(a)

∆R1,16

∆R1,17

∆R1,2

∆R1,18

-400 -300 -200 -100 0 100 200 300 400

∆
ψ
M

4
[o
]

-50

0

50
(b)

(x− x0)/D
-400 -300 -200 -100 0 100 200 300 400

∆
ψ
M

6
[o
]

0

2

4
(c)

Figure 5.12: As Figure 5.6, but for the 20D spaced array.

Summarising what is shown by this analysis; there is a suggestion that closer

longitudinal turbine spacing leads to an increased impact on the asymmetry as the

impacts of the individual turbines interact within the array. Much larger effects

on both the amplitude and phase of all tides were seen when the turbines were

more closely spaced. However, for each of the plots the number of data-points was

small, meaning more runs, covering a larger number of inter-turbine spacings and

possibly more turbines would be required to better understand any trends.

For the smallest turbine spacing, the difference in the change to the asymmetry

between the array and individual runs for the east most turbine becomes very

large. The introduction of a longitudinal array of turbines causes step-like changes

to asymmetry. The augmentation peak of the west most turbine is larger and

the reduction peak smaller, and vice-versa for the east-most turbine. This is an

indication of an additive effect of each turbine to the overall effect of the array.
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The augmentation peaks for asymmetry are consistently larger than the reduction

peaks, and the peak values of the effect of the west-most turbine individually

has been larger than the east-most turbines. Combined, these effects lead to this

larger difference between the individual and array effects for the east-most turbines

compared to the west-most turbine.
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Figure 5.13: As Figure 5.7, but for the 20D spaced array.
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Figure 5.14: Difference in the change in the amplitude, (top row), and phase,

(bottom row), of the M2 (left column), M4 (middle column) and M6 (right

column), between the array and individual runs, against turbine spacing.
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Figure 5.15: Difference in the change to the flood-ebb amplitude asymmetry

between the array and individual runs, against turbine spacing.

5.4 Experiment 3: Effect of Multiple Turbines

on Turbine Impact – Rows of Turbines

5.4.1 Results

In the third set of experiments, five additional model runs were undertaken, the

first with 9 turbines deployed in a row across the channel, the second with 10

turbines, then 13, 17 and 26 turbines. These deployments correspond to rows

with an inter-turbine spacing of 5D, 4D, 3D, 2D and 1D respectively. These five

runs are assigned the row numbers Run-19, Run-20, Run-21, Run-22 and Run-23

respectively. The spacings were not exact as all turbines were deployed so that

they only occupied a single mesh element. The coordinates of the turbines are

given in Table 5.5, and Figure 5.16 shows their locations.

For this experiment the results are presented differently from the form adopted

in the previous sections since, in that form, up to 26 profiles of the change to the

harmonic analysis would be required. The up to 26 profiles running the length

of the channel through each of the turbines in the row were calculated. Then,

at each point along the profile, the average across all profiles for that run was

calculated, along with the maximum and minimum values across the profiles, at

that point. In Figures 5.17–5.21 the mean profiles of the change to the M2, M4
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and M6 amplitude and phase are plotted along with the envelope given by the

maximum and minimum values, along with the single turbine (Run-2) profile, for

Run-19, Run-20, Run-21, Run-22 and Run-23 respectively. In addition to these

plots, Figures 5.22–5.26 show 2D plots of the change to the harmonic analysis

between Run-1 (the no-turbine case) and Run-19, Run-20 and Run-21 respectively.

Figures 5.17–5.21 use the same axis for each of the parameters of the harmonic

analysis between the three figures for comparison, likewise Figures 5.22–5.26 use

the same colour-axis for each parameter between the three figures. Finally, the

mean and envelope of the asymmetry change profiles are given in Figure 5.27, and

the 2D plots of asymmetry change are given in Figure 5.28.

For the 5D (Figure 5.17), 4D (Figure 5.18) and 3D (Figure 5.19) spaced rows

the mean profiles retained approximately the same pattern as seen for a single

turbine, for each parameter. In each case however the magnitude of peak change

along the mean profile was considerably smaller than for the single turbine profile.

From the envelope in these figures one can also see that the magnitude of the peaks

for all profiles in for the 5D, 4D and 3D rows were also smaller than single turbine

profile, and the pattern of change along the profiles was reasonably consistent, as

indicated by the narrow envelope.

As the number of turbines in the row is increased, the envelope widens and the

magnitude of the peak changes in the mean profile becomes smaller. This widening

of the envelope indicates a greater variation in the pattern of change seen in the

individual profiles, which also explains the flattening out of the mean profiles. The

mean profiles for the 2D row (Figure 5.20) still show the pattern of change seen in

the single turbine profile, but for the 1D row, most of this pattern is lost for the

M2 phase and M4 amplitude and phase (Figures 5.21b–5.21d). A more detailed

analysis of these subjectively-identified trends will be undertaken in §5.4.2.
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Figure 5.16: Turbine locations for Run-19 [(a)], Run-20 [(b)], Run-21 [(c)], Run-22

[(d)] and Run-23 [(e)]. The along and across channel distances have been

normalised by the turbine diameter, D. The definition of the along channel

normalisation defined in such a way that the channel centre lies at zero, in the

across channel the channel centre naturally lies at 0.

In the contour plots for the 5D (Figure 5.22), 4D (Figure 5.23), 3D (Figure

5.24) and 2D (Figure 5.25) rows one can see repeating patterns of change, further

indicating a regular pattern of change across the array for these greater inter-turbine

spacing runs. This pattern was less clear for the 1D row (Figure 5.26) which used

the smallest inter-turbine spacing. If one compares the turbine locations in Figure

5.16 with the patterns of change in Figure 5.26, one can see that the largest changes

appeared to coincide with the larger gaps in the row of turbines. This seems to

imply that for smaller inter-turbine spacings, uniformity of the inter-turbine spacing

is important for the uniformity of the pattern of turbine impact.
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Table 5.4: Peak values from Figure 5.5–5.13 and the normalised differences

between these peak values in the array and individual runs (grey shaded). Red. –

Reduction peak, Aug. – Augmentation peak.

Spacing Turbine(s)
∆uM2 [%] ∆uM4 [%] ∆uM6 [%] ∆ψM2 [o] ∆ψM4 [o] ∆ψM6 [o] ∆AS,2 [%]

Red. Red. Aug. Red. Red. Red. Aug. Red. Red. Aug.

120D

A
rr

ay

West-Most 8.7974 -4.9323 -48.4918 9.3676 0.3696 27.7451 -28.0469 2.0541 6.748 -11.539

Centre 10.6094 11.0079 -43.3522 10.0199 0.4191 20.3665 -52.1714 2.8187 14.4928 -10.4071

East-Most 9.4252 26.0109 -22.1073 8.9176 0.382 12.6093 -46.1983 2.2526 14.3532 -5.8795

S
in

gl
e

West-Most 7.9749 8.6499 -33.2737 8.7221 0.1628 25.4837 -37.0072 1.0305 9.8715 -8.5805

Centre 9.4415 11.6045 -46.388 8.9946 0.1684 21.2909 -52.2483 1.279 14.373 -10.7458

East-Most 8.5259 18.3383 -37.1434 8.3522 0.1628 14.267 -37.4686 1.0419 11.1889 -9.16

∆
(∆
X

) West-Most 0.8225 -13.5822 -15.2181 0.6455 0.2068 2.2614 8.9603 1.0236 -3.1235 -2.9585

Centre 1.1679 -0.5966 3.0358 1.0253 0.2507 -0.9244 0.0769 1.5397 0.1198 0.3387

East-Most 0.8993 7.6726 15.0361 0.5654 0.2192 -1.6577 -8.7297 1.2107 3.1643 3.2805

60D

A
rr

ay

West-Most 12.1811 -4.9321 -108.2076 11.5555 0.49 36.7363 -40.4294 3.2678 10.6134 -23.137

Centre 11.3359 9.8932 -42.0833 10.9961 0.4388 19.191 -52.1482 3.1414 14.5285 -10.1885

East-Most 9.4389 24.1376 -14.7833 9.1023 0.4228 9.7303 -49.2743 2.6143 14.3287 -3.93

S
in

gl
e

West-Most 10.7171 10.4057 -83.3286 10.1268 0.2361 34.4536 -55.9346 1.5583 16.4464 -17.9218

Centre 9.4415 11.6045 -46.3888 8.9946 0.1684 21.2909 -52.2483 1.279 14.373 -10.7458

East-Most 7.8561 14.3967 -40.073 7.6347 0.1643 17.019 -31.9769 0.9528 9.0623 -9.5597

∆
(∆
X

) West-Most 1.464 -15.3378 -24.879 1.4287 0.2539 2.2827 15.5052 1.7095 -5.833 -5.2152

Centre 1.8944 -1.7113 4.3055 2.0015 0.2704 -2.0999 0.1001 1.8624 0.1555 0.5573

East-Most 1.5828 9.7409 25.2897 1.4676 0.2585 -7.2887 -17.2974 1.6615 5.2664 5.6297

20D

A
rr

ay

West-Most 13.7845 -10.4145 -128.6649 12.9798 0.5154 36.4607 -7.1942 3.5817 0.022 -27.8154

Centre 12.7845 6.2945 -41.8452 12.633 0.4267 17.3276 -51.83 3.1937 14.7576 -9.9138

East-Most 11.343 24.5738 -9.9499 11.064 0.3878 -6.9231 -64.4921 3.0177 19.3776 1.6139

S
in

gl
e

West-Most 11.0692 11.6261 -10.9418 10.0873 0.2247 30.5146 -41.2889 1.6638 10.8445 -17.6173

Centre 9.4415 11.6045 -11.3851 8.9946 0.1684 21.2909 -52.2483 1.279 14.373 -10.7458

East-Most 8.6685 12.5554 -12.5055 8.2162 0.1624 17.9455 -35.5933 1.1276 9.522 -8.7875

∆
(∆
X

) West-Most 2.7153 -22.0406 -117.7231 2.8925 0.2907 5.9461 34.0947 1.9179 -10.823 -10.1981

Centre 3.343 -5.31 -30.4601 3.6384 0.2583 -3.9633 0.4183 1.9147 0.3846 0.832

East-Most 2.6745 12.0184 2.5556 2.8478 0.2254 -24.869 -28.8988 1.8901 9.8556 10.4014

5.4.2 Discussion

In order to give a more quantitative comparison of the similarity of the profiles of

the change to parameter X due to the 5D, 4D, 3D, 2D and 1D rows, the parameter

SiX will be used, defined as:

SiX =
1

N

N∑
j,k


√√√√ N∑

i=1

(X(j, i)−X(k, i))2

n

 (5.4.1)

In each of the aforementioned runs, for each parameter X there are m profiles,

each of length n. Therefore X has dimensions m× n. Defining i = 1, . . . , n, and

j, k = 1, . . . ,m and N =

 m

2

. Equation (5.4.1) is therefore the root-mean-

square-difference of profiles j and k, averaged over all combinations of j and k.
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Figure 5.29 plots SiX for each parameter, including the asymmetry metric AS,2,

for each experiment. Smaller values of Si indicate greater similarity between the

profiles. From Figure 5.29 one can see that there is indeed a trend of less similarity

between the profiles for each turbine when the inter-turbine spacing is reduced.

Figure 5.17: Mean (solid line) and envelope (shaded grey area) of all profiles of

change in amplitudes (left column) and phases (right column) of the M2 (top row),

M4 (middle row) and M6 (bottom row), between Run-1 and Run-19, the 5D

spaced row, along with the respective profiles of change between Run-1 and Run-2

(dashed black line). The along channel distance has been normalised by the

turbine diameter, D, with the definition of the normalisation defined in such a way

that the channel centre lies at 0.

Comparison of Figures 5.16 and 5.26, suggests that non-uniformity of the inter-

turbine spacing may also play a role in the lack of conformity between profiles.

From the turbine locations given in Table 5.5, a measure of the uniformity of the

spacing can be calculated as:

Us =

√√√√ 1

N

N∑
j

(
Ãsj −

1

N

N∑
j

Ãsj

)2

(5.4.2)
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Figure 5.18: As Figure 5.17, but for the 4D spaced array (Run-1–Run-20

difference).

Figure 5.19: As Figure 5.17, but for the 3D spaced array (Run-1–Run-21

difference).
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Figure 5.20: As Figure 5.17, but for the 2D spaced array (Run-1–Run-22

difference).

Figure 5.21: As Figure 5.17, but for the 1D spaced array (Run-1–Run-23

difference).
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Table 5.5: Turbine locations for Run-19, Run-20, Run-21, Run-22 and Run-23.

Run-19 Run-20 Run-21 Run-22 Run-23

(xT−x0)

D
yT

D

(xT−x0)

D
yT

D

(xT−x0)

D
yT

D

(xT−x0)

D
yT

D

(xT−x0)

D
yT

D

0.05 23.75 -0.40 22.35 0.05 23.75 0.05 23.75 0.10 25.00

-0.25 15.05 0.35 17.15 -0.20 20.15 -0.30 20.75 0.20 23.25

0.00 12.00 0.00 12.50 -0.55 16.40 -0.35 18.10 -0.30 20.75

0.25 5.80 0.15 7.50 0.00 12.00 0.30 15.25 -0.25 18.75

0.00 -0.30 0.00 2.40 -0.15 8.40 0.00 12.00 0.10 17.00

0.45 -5.70 0.00 -2.50 0.25 4.00 -0.35 8.75 0.30 15.25

-0.80 -11.55 0.70 -7.10 0.00 -0.30 0.25 5.75 0.15 12.50

0.35 -18.40 -0.40 -12.35 0.05 -4.00 -0.5 3.35 0.00 10.75

-0.25 -24.45 0.00 -17.35 0.15 -8.10 0.00 -0.30 -0.35 8.75

-0.15 -22.65 0.35 -12.50 0.00 -2.50 -0.65 7.00

-0.10 -16.00 0.45 -5.60 -0.50 4.75

0.10 -21.00 -0.20 -8.65 -0.50 3.35

0.70 -24.50 0.35 -12.50 0.15 0.85

0.50 -14.85 0.05 -0.75

0.40 -18.40 0.00 -2.50

0.10 -21.00 -0.40 -4.85

0.70 -24.50 -0.25 -6.90

-0.20 -8.65

0.15 -11.00

0.10 -13.00

0.50 -14.85

-0.20 -17.15

0.00 -19.00

0.10 -21.00

0.00 -23.00

0.00 -25.00

where Ãs is the normalised actual turbine spacing, given by:

Ãsj =


xi−xi+1−D/2

Is
if i = 1, N

xi−xi+1−D
Is

otherwise
(5.4.3)

where i, j = 1, . . . , N , N is the number of turbines in the row, D is the turbine

diameter and Is is the intended turbine spacing, i.e., 1D, 2D, 3D, 4D or 5D.
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Table 5.5, gives the locations of the turbine hubs, therefore the diameter must be

subtracted from the difference between these values to give the spacing between

turbines. The locations of the channel walls must also be included so, xi=1 = b/2

and xi=N+1 = −b/2, and in these cases D/2 used. Equation (5.4.2) is then the

standard deviation of Ãs. For the intended spacings 1D, 2D, 3D, 4D and 5D, the

values of Us are 0.33, 0.24, 0.17, 0.06 and 0.34 respectively. These values of Us do

not support the hypothesis that the variability in the inter-turbine spacing increases

with reduced target inter-turbine spacing, as the variability of inter-turbine spacing

for the most sparsely spaced row is in fact the largest of all the tested rows.

Figure 5.22: Contour plots of change to amplitudes (left column) and phases (right

column) of the M2 (top row), M4 (middle row) and M6 (bottom row) between

Run-1 and Run-19, 5D spaced row. For this figure x-axis is the across channel and

the y-axis is the along channel. The along channel distances have been normalised

by the turbine diameter, D, and the across channel distances by the channel width,

b. The definition of the along channel normalisation defined in such a way that the

channel centre lies at zero, in the across channel the channel centre naturally lies

at 0.
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Figure 5.23: As Figure 5.22, but for the 4D row (Run-1–Run-20 difference).

Figure 5.24: As Figure 5.22, but for the 3D row (Run-1–Run-20 difference).
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Figure 5.25: As Figure 5.22, but for the 2D row (Run-1–Run-20 difference).

Figure 5.26: As Figure 5.22, but for the 1D row (Run-1–Run-20 difference).
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Figure 5.27: Mean (solid black line) and envelope (shaded grey area) of all profiles

of change to the FVA between Run-1 and Run-19 [(a)], Run-20 [(b)], Run-21 [(c)],

Run-22 [(d)] and Run-23 [(e)], along with the profiles of change between Run-1 and

Run-2 (dashed black line). Along channel distances normalised as in Figure 5.17.

In Figure 5.30 the peak values of all parameters, averaged across all turbine

profiles are plotted against the target turbine spacing2. For the M2 and M6 there was

a clear trend of decreased peak changes in amplitude with decreasing turbine spacing

and therefore more turbines (Figures 5.30a & 5.30c) and increased peak changes in

phase with decreased turbine spacing (Figures 5.30d & 5.30f). Physically this can

be interpreted as each turbine having a smaller effect on the current amplitude and

a greater impact on the current phase per turbine when it is within a more densely

packed row. For the M4 this trend is less clear with the number of data-points

available, but the indication here is that more turbines results in a smaller peak per

turbine effect on both the amplitude and phase (Figures 5.30b & 5.30e). Physically,

this implies less augmentation and reduction of the M4 amplitude and phase per

turbine when there are more turbines, and greater augmentation and reduction per

turbine when there are more turbines. Finally, the indication from the AS,2 plot

2These are the averages of the peak values across the profiles in each row experiment rather

than the peak values of the average profiles.
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(Figure 5.30g) is that more turbines in the row again results in a lower per-turbine

peak change to the FVA.

Figure 5.28: Contour plots of change to asymmetry between Run-1 and Run-2

[(a)], Run-19 [(b)], Run-20 [(c)], Run-21 [(d)], Run-22 [(e)] and Run-23 [(f)]. Axes

and normalisation of along and across channel distances as in Figure 5.22.

Even if peak changes per turbine were smaller for the larger array, given that

there were multiple turbines, the footprint3 of change due to the turbine(s) would

be expected to be larger for larger arrays. This is tested in Figures 5.31 & 5.32.

The changes to the asymmetry, measured using the metric AS,2 (4.2.2), and the M2

current, were split into bins 1% wide from -11% to 15%, and from -7% to 10%, and

mesh elements falling into each of these bins found. The areas of these elements

were calculated and summed to give the values seen in Figure 5.31 & 5.32. In

these figures the areas where the absolute change was <0–1% were not plotted, as

most of the channel area falls into this category, thus this area dwarfs the areas

experiencing all other ranges of change. The values used in Figures 5.31 & 5.32 are

given in Tables 5.6 & 5.7, including those for the -1% to 0% and 0% to 1%.

3The total spatial area that, due to the effect of the turbine(s), experiences a change above a

decided threshold.
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Figure 5.29: Plots of profile similarity parameter, Si, against inter-turbine spacing

for the amplitude (crosses) and phase (circles) of the M2 (a), M4 (b), M6 (c) and

the asymmetry metric, AS (d).

From Tables 5.6 & 5.7 and Figures 5.31 & 5.32 one can see that the smaller

changes account for most of the area of the array footprint, Fp, which is the total

area where the absolute change is greater than 1% (note that -1 to 0% and 0 to

1% contributions are not included in Fp). Raising the threshold used to define

Fp to |∆AS,2| >3% would result in an order of magnitude drop in the size of

Fp across all rows. Raising the threshold to |∆AS,2| >6% would lead to further

order of magnitude drop in the size of Fp across all rows. For the |∆AS,2| > 1%,

|∆AS,2| >3% and |∆AS,2| >6% thresholds the size of Fp for the five array runs was

approximately O(106) m2, O(105) m2 and O(104) m2, whilst the size of Fp for the

single turbine runs was O(105) m2 throughout, bringing the size of Fp for the array

runs into line with the single turbine run. This highlights the importance of the

choice of threshold. However, the choice of threshold is a complex issue. What is

an acceptable level of change? The answer to this question is not known. Without

knowing what constitutes an acceptable level of change it is not possible to set an

appropriate threshold. This question lies beyond the scope of this thesis. However,

the choice of threshold is not as important when the data is presented in Figures
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5.31 & 5.32 and Tables 5.6 & 5.7 as all changes are presented, so any threshold

may be applied the data to interrogate the results, so long as it is a change to the

M2 current and/or the FVA, expressed as a percentage change.
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Figure 5.30: Plots of absolute peak values (crosses – positive peaks, circles –

negative peaks) of the amplitude (top row) and phase (middle row) of the M2 (first

column), M4 (middle column, top and middle rows) and M6 (right column) and

the asymmetry metric, AS,2 (bottom row).

From Table 5.7 one can see that for the 5D and 4D spaced rows the area of -1

to -2% change is larger than the area of 1 to 2% change, and for the 5D and 3D

spaced rows, the area of -2 to -3% changes is larger than the area of 2 to 3% change.

The negative changes to the M2 current represents the flow that is accelerated

around the turbines, the bypass flow. For the wider spaced rows there is more area

between the turbines, so naturally these negative changes were seen over a larger

area. For the 13 turbine (ε0 ≈ 0.10) row the total area of negative change (>1%)

falls, before rising again for the 17 turbine (ε0 ≈ 0.14) row, then falling again for

the 26 turbine (ε0 ≈ 0.21) row. For the highest blockage row the largest negative

changes are seen whilst for the single turbine the largest positive changes are seen,

i.e. the greatest velocity reductions occurred for the single turbine and the largest

flow acceleration occurred for the highest blockage row.
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Table 5.6: Areas experiencing changes of -11% to 15% to the FVA, divided into 1%

bins, for each of the five row runs and the single turbine run.

N 1 9 10 13 17 26

∆AS,2 δFp [m2] δFp×

-11 to -10% 1.08 0.00 0.40 0.00 0.00 0.55 ×103

-10 to -9% 0.93 0.00 2.04 0.00 0.36 0.77 ×103

-9 to -8% 3.72 1.35 0.65 0.00 2.48 1.74 ×103

-8 to -7% 0.35 0.37 0.43 0.21 0.96 1.23 ×104

-7 to -6% 0.76 0.56 0.68 0.36 1.78 0.95 ×104

-6 to -5% 1.34 1.81 1.25 0.95 3.43 1.45 ×104

-5 to -4% 2.95 2.33 3.62 1.43 5.34 4.50 ×104

-4 to -3% 0.48 0.46 0.72 0.37 1.15 1.32 ×105

-3 to -2% 1.21 0.86 1.74 1.13 3.17 4.22 ×105

-2 to -1% 0.39 0.47 0.71 0.43 0.89 1.36 ×106

-1 to 0% 2.40 2.51 2.28 2.57 2.39 2.34 ×107

0 to 1% 6.11 6.00 6.14 5.94 5.95 5.83 ×107

1 to 2% 0.42 0.44 0.80 0.45 1.06 1.96 ×106

2 to 3% 1.39 0.86 1.67 1.29 2.77 4.28 ×105

3 to 4% 0.54 0.51 0.77 0.40 1.22 1.56 ×105

4 to 5% 2.63 2.87 4.55 2.20 5.79 6.02 ×104

5 to 6% 1.07 2.03 2.90 1.43 3.11 2.53 ×104

6 to 7% 0.83 0.46 0.70 1.51 1.86 1.67 ×104

7 to 8% 0.00 3.79 3.77 0.07 1.26 0.50 ×104

8 to 9% 0.00 0.09 0.11 0.06 1.23 0.41 ×104

9 to 10% 1.63 0.00 0.00 0.70 1.53 1.34 ×103

10 to 11% 0.00 0.00 0.00 0.00 3.42 2.16 ×102

11 to 12% 0.92 1.02 0.00 0.00 0.00 0.00 ×103

12 to 13% 0.00 0.00 0.00 0.00 0.00 0.00 -

13 to 14% 3.94 0.00 0.00 0.00 0.00 0.00 ×102

14 to 15% 6.29 0.00 0.00 0.00 0.00 0.00 ×102

Fp [m2] 1.28 1.29 2.15 1.28 3.04 4.66 ×106
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Figure 5.31: Areas of effect of percentage bins of change to FVA, measured using

the asymmetry metric AS,2, for the single turbine (navy blue bar), 5D spaced row

(blue bar), 4D spaced row (cyan blue bar), 3D spaced row (green bar), 2D spaced

row (orange bar) and 1D spaced row (yellow bar).

From Figures 5.16 & 5.26 one can see that the regions of highest flow acceleration

coincided with the largest inter-turbine / turbine-wall spacing. For the higher

blockage rows the pressure build up across the row will be higher, this higher

pressure must then force the flow through these wider gaps leading to the larger

flow accelerations. According to Garrett and Cummins [2007] and Vennell [2010]

for higher blockage rows the by pass flow should have a lower velocity than in

higher blockage rows. This is not seen in these results. From Figure 5.16, one can

see that for the two most densely packed rows (Figures 5.16d & 5.16e) elements

containing turbines are adjacent to one another, i.e. the inter-turbine spacing is

not resolved. Therefore, the flow can only pass through the larger turbine spacings

which are resolved, which is why larger flow acceleration is seen for these larger

turbine spacings than the smaller turbine spacings.

The above raises the larger issue that rather than a row of turbines, a partial

tidal fence is in-fact being simulated, and therefore the impact of these denser two

rows is most likely overpredicted. This then raises questions over the steep increase
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in the array footprint for these more densely packed rows. Potentially the footprint

may remain at a similar level to the more sparsely packed rows. Higher resolution

simulations, which adequately resolve the inter-turbine spacing of even the most

densely packed rows would be required to explore this further.

Figure 5.32: Areas of effect of percentage bins of change to uM2, for the single

turbine (navy blue bar), 5D spaced row (blue bar), 4D spaced row (cyan blue bar),

3D spaced row (green bar), 2D spaced row (orange bar) and 1D spaced row

(yellow bar).

5.5 Summary

In this chapter the results from three experiments were presented, described and

analysed. These experiments looked at the effect of multiple turbines and the

interaction of the effects of multiple turbines. In the first experiment a single turbine

was deployed in various locations based on the natural flood-ebb asymmetry of

the current. In the second experiment a line of 3 turbines was deployed with

longitudinal spacings 120D, 60D and 20D, and in the third experiment a single row

of turbines with lateral turbine spacings of 5D, 4D, 3D, 2D and 1D, and therefore

9, 10, 13, 17 and 26 turbines respectively, equivalent to row blockages of ε0 = 0.07,
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0.08, 0.11, 0.14 and 0.21 were deployed. It is important to note that it is the effect

of changing row blockage that is tested here rather than across channel spacing,

for the latter to be tested the blockage would need to be fixed.

In the first experiment no trend between the ambient FVA, and the magnitude

of the effect of the turbine on the FVA, was identified. In fact, little variation in the

effect of the turbine on the FVA was seen. Greater variation on the impact of the

turbine on the M4 tide was seen, but these variations did not lead to a significant

difference in the effect of the turbine on the FVA.

Table 5.7: Areas experiencing changes of -7% to 10% to the M2 current, divided

into 1% bins, for each of the five row runs and the single turbine run.

N 1 9 10 13 17 26

∆AS,2 δFp [m2] δFp×

-7 to -6% 0.00 0.00 0.00 0.00 0.00 7.83 ×102

-6 to -5% 0.00 0.00 0.00 0.00 0.00 1.84 ×103

-5 to -4% 0.00 0.00 0.00 0.45 3.27 2.70 ×103

-4 to -3% 0.00 0.12 0.12 0.99 1.22 0.33 ×104

-3 to -2% 0.00 1.77 2.63 2.17 2.74 1.79 ×104

-2 to -1% 0.09 9.02 10.70 4.53 10.80 4.15 ×104

-1 to 0% 1.52 0.08 0.16 0.05 0.09 0.05 ×107

0 to 1% 7.11 8.53 8.45 8.57 8.50 8.41 ×107

1 to 2% 0.16 0.08 0.07 0.09 0.36 1.72 ×106

2 to 3% 1.59 1.56 1.88 1.03 3.29 5.15 ×104

3 to 4% 0.43 0.76 0.75 0.80 1.33 0.70 ×104

4 to 5% 1.28 5.41 6.12 6.20 9.38 2.53 ×103

5 to 6% 1.12 2.89 2.49 4.94 1.35 0.38 ×103

6 to 7% 0.39 2.95 3.61 0.92 0.49 0.35 ×103

7 to 8% 0.93 1.03 1.46 1.28 1.32 0.00 ×103

8 to 9% 0.00 9.02 8.17 4.88 0.00 0.00 ×102

9 to 10% 4.36 0.00 0.00 0.00 0.00 0.00 ×102

Fp [m2] 0.19 0.22 0.25 0.20 0.57 1.85 ×105
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In the second experiment the results suggest that when multiple turbines are

deployed along the longitudinal axis of the channel, there is an additive effect where

the areas of effect interact. There was also a trend of increased overall effect when

the turbines were deployed closer together. Turbines on the easternmost extremity

of the line caused a greater difference in the effect on asymmetry when deployed

in an array compared with their individual deployment than their westernmost

counterparts. For the central and east-most turbine the reduction peak (positive

peak to the east) is larger than the augmentation peak (negative peak to the west),

whilst the situation is reversed for the west-most turbine. Therefore, if there is

indeed an additive effect then the turbine to the east is superimposed upon the

larger reduction peak to the east of the central turbine and the turbine to the west

is superimposed upon the smaller augmentation peak to the west of the central

turbine. In this case one would expect to see a larger difference between the turbine

deployed individually and the individual turbine in the array for the east-most

turbine and a smaller difference for the west-most turbine. Which is what is seen.

In the third experiment it was seen that with increased row blockage the

peak per-turbine change to all parameters but the M2 and M6 phase was reduced

(Figures 5.17–5.21 & 5.27). For the M2 and M6 phase an increase in row blockage

led to an increase in the per-turbine phase reduction (Figures 5.17–5.21 & 5.27).

Physically this means smaller velocity deficits (and increases in the case of the M4

current) in the turbine wakes in rows compared to individual turbines, with the

difference growing larger with increased row blockage (Figure 5.30). At the same

time the phase lag on the M2 and M6 tide introduced by the row increased with

increased blockage, but for the M4 the positive and negative phase shift imparted

by the row reduced with increased blockage (Figure 5.30). Of these constituents

the M2 represents the progression of the forcing tidal wave, thus the phase lag

indicates an impediment to the tidal wave resulting from the row of turbines. An

impediment that is increased with increased blockage. According to Vennell [2012,

2013] increased blockage leads to an increased head difference across the turbine row.

The power produced by the turbines then derives from both this head difference

and the momentum of the flow, which leads to reduced velocity deficits in the

turbine wakes at higher row blockage values. Which is indeed what is seen in this
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experiment.

The spatial extent of the changes resulting from the turbine rows were also

explored in this experiment, using the footprint of the row, Fp, on the FVA and M2

current, where the footprint is defined as the total area where the absolute change

exceeds some threshold. The footprint, Fp, and the variation in Fp with N , the

number of turbines in the row, was sensitive to the choice of threshold. However,

what constitutes a suitable threshold is at best subjective and at worst unknown

and was therefore not considered in this thesis.

Across all row runs smaller changes made up most of Fp (Figures 5.31 & 5.32

and Tables 5.6 & 5.7). When a low threshold is chosen, e.g. 1%, Fp was larger for

higher blockage rows, which had larger N . The difference between the footprint of

a single turbine and rows up to N = 13 was small (Table 5.7).

The difference between the two highest blockage rows runs and the remaining

row runs may be explained by the lack of mesh resolution to adequately resolve all

inter-turbine spacings in the higher blockage rows. This numerical issue means it

is likely that the footprint of the row is overestimated, as the bypass flow between

some turbines is not resolved, and therefore wake recovery will be underestimated.

Simulations using a higher resolution mesh would be required to address this issue.
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Chapter 6

Implications of Changes to

Flood-Ebb Asymmetry: Turbine

Power and Sediment Transport

6.1 Introduction

In the previous chapters it has been shown that turbines alter the Flow Velocity

Asymmetry (FVA) and therefore the M4 current. Such changes to the FVA may

have knock on effects for sediment transport given the role FVA plays in sediment

transport (see Chapter 2, §2.4). Also, the FVA will affect the technically exploitable

tidal resource, and therefore energy generation (see Chapter 2, §2.4).

In §6.2, model output from Chapters 4 & 5 will be re-analysed to investigate

energy conversion by the turbines, addressing research question 3a) (§2.5.2). In

§6.3, additional model runs will be carried out using the sediment transport module

from MIKE 21 coupled with the hydrodynamic module. These experiments will

look at the effect of changes to the asymmetry due a single turbine on sediment

transport. This section addresses research question 3b) (§2.5.2). Finally, in §6.4,

the findings from this chapter will be summarised.
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6.2 Flood-Ebb Asymmetry and Turbine Power

The turbine power (neglecting internal losses) is given by the product of the force

on the turbine and the velocity of the flow through the turbine. Taking the turbine

force from the MIKE 21 manual (see also Chapter 3, §3.1.3), the power produced

by the turbine is given by:

PT =
1

2
ρCTAα

2u3
T (6.2.1)

where α is a velocity correction factor, CT is the turbine thrust coefficient, A is the

swept area of the turbine rotor and uT is the flow velocity in the turbine element.

The correction factor is required as turbine forces are defined using the free-stream

velocity, but as the size of the model element is reduced the velocity value in the

element diverges from the free-stream value. The correction factor is given by

Kramer et al. [2014] as:

α =
2

1 +
√

1− γ
(6.2.2)

where γ = CTA/(h∆y), h is the water depth and ∆y is the width of the element

perpendicular to the flow direction.

The energy conversion over the flood or ebb phases of the tide by the turbine,

Ef,e, may then be calculated by:

Ef,e =

∫
f,e

|P | dt (6.2.3)

i.e. the power integrated over either the flood or ebb phase of the tidal cycle. The

difference between the energy converted over the flood and ebb phases, ∆E, and

the energy converted over the whole tidal cycle, Et.c., can be calculated by:

∆E = 100× 2(Ef − Ee)
Ef + Ee

(6.2.4)

and

Et.c. = Ef + Ee (6.2.5)

respectively.
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Figure 6.1: Time-series of u-velocity component, u, (top left), turbine power, P ,

(top right), turbine energy conversion over phases of the tide (either flood or ebb),

E, (bottom left), and energy conversion over a tidal cycle, Et.c., and difference

between energy conversion over the flood and ebb of the tide, ∆E, (bottom right).

In the bottom right time-series the circles denote Et.c. and the amplitude of the

error bars ∆E.

In the analysis in Section 6.2.1, equation (6.2.1), and the dependant equations

(6.2.3) to (6.2.5), are applied to elements not containing turbines. Whilst (6.2.1)

has been derived for a turbine. The aim of this was a first order investigation of

the influence of the hydrodynamic changes identified in Chapter 4 on the power

available to additional turbines. What is not accounted for in this analysis is the

co-effect of multiple turbines. This is explored in Sections 6.2.2 and 6.2.3.

6.2.1 Single Turbine

On the way to addressing research question 3a), “Can the change to the technically

exploitable resource be predicted from the changes to the flow asymmetry?”, the

intermediary question “how does the change to the hydrodynamics resulting from

the turbine operation impact on the energy conversion of further turbines” will
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be addressed first. To answer this, the changes between Run-1 (no-turbine run)

and Run-2 (single fixed-CT turbine run) will be revisited, along with the changes

between Run-1 and Run-3 (single variable-CT turbine (defined §2.5.2, (2.5.2) &

Figure 2.9) run). In Figure 6.1, time-series of u, P , E, Et.c. and ∆E for the

turbines in Run-2 and Run-3 are plotted. These time-series show that, once the

model stabilises following the spin-up period, the values of Et.c. and ∆E stabilise.

Therefore, the changes to these stable values between Run-1 and Run-2, and, Run-1

and Run-3, can be compared to changes to the M2 current amplitude (uM2) and

flood-ebb magnitude asymmetry (or FVA: AS,2), both of which will also have stable

values at each model element.
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Figure 6.2: Comparisons of change in energy conversion over a tidal cycle, ∆Et.c.,

top row, and change in the difference in energy conversion over the flood and ebb

of the tide, ∆(∆E), bottom row, against the change in M2 amplitude, ∆uM2 , left

column, and the change in the asymmetry, ∆AS,2, right column, for a fixed-CT

turbine and additional fixed-CT turbines. Pluses (+) denote elements in the

eastern half of the channel, (x− x0)/L < 0, and circles (o) denote elements in the

western half of the channel, (x− x0)/L > 0 (x0 – x-coordinate of channel centre).

The changes to uM2 (∆uM2) and AS,2 (∆AS,2) between these two sets of runs

will be compared to the changes to ∆E (∆(∆E)) and Et.c. (∆Et.c.) for further
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fixed- or variable-CT turbines added to the channel, estimated from u time-series

in the elements throughout the model. The changes are defined as:

∆X =
X1 −X2,3

X1

(6.2.6)

for X = uM2 , AS,2 and Et.c., and

∆(∆E) = ∆E1 −∆E2,3 (6.2.7)

where the subscripts 1, 2 and 3 denote terms related to Run-1, Run-2 and Run-3

respectively. These changes are compared in Figure 6.2 for the fixed-CT turbine

case and in Figure 6.3 for the variable-CT turbine case.
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Figure 6.3: As Figure 6.2 but for a variable-CT .

In Figures 6.2 and 6.3 the eastern ((x−x0)/L < 0)1 and western ((x−x0)/L > 0)

halves of the channel have been plotted separately, as augmentation to AS,2 was

seen to the east of the turbine and reduction to the west (Chapter 4, Figures 4.5

and 4.8). Clear linear trends between ∆uM2 and ∆Et.c., and between ∆(∆E) and

∆AS,2 can be seen in Figures 6.2a and 6.3a, and Figures 6.2d and 6.3d, respectively.

Both these trends are simple to understand, and expected. With lower currents

1Where x0 is the x-coordinate of the channel centre.
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there will be less power, and therefore less energy conversion and, as the largest

constituent of the current, the M2 will have the greatest impact on Et.c.. As the

FVA, quantified as AS,2, increases/decreases, one expects greater/less asymmetry

in the energy conversion over the flood and ebb phases of the tide, given by ∆E.
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Figure 6.4: Difference in the energy conversion per tidal cycle between the turbine

operating individually and as part of an array, ∆Et.c., for different longitudinal

turbine spacings, (a). Plots ∆Et.c. against the difference in the change in M2

current amplitude, ∆(∆uM2), (b), the difference in the change in asymmetry,

∆(∆AS,2), (c).

In Figures 6.2b, 6.2c, 6.3b and 6.3c twin tails are seen in the plots, identified

as western and eastern tails by the separate plotting of elements lying to the east

and west of the channel centre. These twin tails are the result of the eastern

augmentation and western reduction in AS,2 resulting from the turbine operation.

Conversely, reduction to the M2 was seen in both directions (Chapter 4, Figures

4.3 and 4.7) as the result of the turbine operation, and is seen in Figures 6.2a, 6.2c,

6.3a and 6.3c2. The linear trends in Figures 6.2a and 6.3a and lack of such trends

in Figures 6.2b and 6.3b imply that changes to AS,2 do not play an important role

2In some elements an increase in uM2
was seen (negative values). This is due to the acceleration

of the flow around the turbine due to the pressure build up resulting from the blockage the turbine

offers to the flow.
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in changes to Et.c., compared to the changes to the M2 current. Similarly, the linear

trends in Figures 6.2d and 6.3d and lack of such trends in Figures 6.2c and 6.3c

imply that changes to uM2 do not play as important a role in the changes to ∆E

as changes to AS,2, which in turn implies it is the changes to the M4 current that

dictate the changes to AS,2.

Comparing Figures 6.2 and 6.3; the gradient of the lines of best fit are shallower

in Figure 6.3, suggesting that variable-CT turbines are less sensitive to changes to

the current magnitude and FVA than fixed-CT turbines. The R2 values show that

the lines of best fit, fit less well in the variable-CT case. From visual inspection of

Figure 6.3 one can see that it is the largest changes that diverge from the trend

the most. Given that these largest changes will occur closest to the turbine, and

that additional turbines will not be deployed in such close proximity, the linear

trends can then be considered applicable in practice.

The 95% confidence intervals of the uM2-∆Et.c. and AS,2-∆(∆E) regressions

from the fixed-CT plot are 0.15% and 0.05% respectively, and 0.05% and 0.10%

respectively for the variable-CT regressions. From these linear models it is estimated

that a 1% change to uM2 will lead to a 2.95±0.15% change to Et.c. for a fixed-CT

turbine or a 1.01±0.05% change for a variable-CT turbine, and a 1% change to

AS,2 will lead to a 1.79±0.05% change to ∆E for a fixed-CT turbine or 0.89±0.10%

change for a variable-CT turbine.

6.2.2 Lines of Turbines

The energy conversion for the turbine arrays aligned along the channel discussed

in Chapter 5 §5.3 are compared against the energy conversion for those turbines

had they been deployed individually in Figures 6.4 and 6.5. In these figures the

behaviour of Et.c. and ∆E for a line of turbines are explored respectively. The

differences in Et.c. and ∆E between the turbine, i, operating individually and as

part of an array is given by:

∆Et.c.
∗i =

Ei
t.c.,A − Ei

t.c.,I

Ei
t.c.,A

(6.2.8)

and
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∆(∆Ei)∗ = ∆Ei
A −∆Ei

I (6.2.9)

where the subscripts A and I denote parameters pertaining to the array and

individual runs respectively.
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Figure 6.5: Difference in the flood-ebb energy conversion asymmetry between the

turbine operating individually and as part of an array, ∆(∆E), for different

longitudinal turbine spacings, (a). Plots ∆(∆E) against the difference in the

change in M2 current amplitude, ∆(∆uM2), (b), and the difference in the change in

asymmetry, ∆(∆AS,2), (c).

In Figure 6.4a, one can see that for all spacings, and for all turbines, Et.c. is

smaller in the array run than the individual run. As the inter-turbine spacing

decreases, the smaller Et.c. becomes compared to the individual case. In Figure

6.4b, ∆Et.c.
∗ is plotted against ∆(∆uM2), where:

∆(∆uiM2
) =

∆uiM2,A
−∆uiM2,I

∆uiM2,A

(6.2.10)

From this plot one can see that there was a strong linear trend between ∆(∆uM2)

and ∆Et.c.
∗ across all turbines. Physically this may be interpreted as the turbine in

the array having a larger impact on the M2 current than the turbine individually,

with the difference increasing with reduced spacing. The knock-on effect of this is
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then less energy conversion per tidal cycle for the turbines. Finally, in Figure 6.4c,

∆Et.c.
∗ is plotted against ∆(∆AS,2), where:

∆(∆AS,2
i) = ∆AS,A −∆AS,I (6.2.11)

No apparent trend between ∆(∆AS,2) and ∆Et.c.
∗ is seen in this plot. This, along

with what was seen in Figures 6.2 and 6.3, was taken to suggest that it was the

impact of the surrounding turbines on the M2 current that caused the differences in

the energy conversion per tidal cycle between the turbine operating as an individual

and as part of an array rather than the impact of the surrounding turbines on AS,2.

These findings for the the line of turbines are in-line with the predictions made

from the single turbine analysis.
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Figure 6.6: (a): Mean (across all turbines in array) energy conversion per tidal

cycle for various inter-turbine spacings. (b): Mean difference in energy conversion

per tidal cycle between the turbine operating as part of an array or individually.

(c): Mean difference in energy conversion over the flood and ebb of the tide. (d):

Mean absolute difference in the flood-ebb energy conversion asymmetry between

the turbine operating individually and as part of an array. Envelope given by

maximum and minimum values.
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Figure 6.5 presents a similar set of plots to Figure 6.4, but for ∆(∆E)∗ rather

than ∆Et.c.
∗. From Figure 6.5a, one can see that, as the inter-turbine spacing of

the array reduced, ∆(∆E)∗ increases for all turbines (in absolute terms). The

differences for the easternmost and westernmost turbines are similar. However,

in the case of the westernmost turbine, ∆E was larger for the individual turbine,

whilst the opposite is true for the other two turbines. For the central turbine the

difference is small. The plot of ∆(∆E)∗ against ∆(∆uM2) tells a similar story to

the plot of ∆Et.c.
∗ against ∆(∆AS,2). The suggestion from this subplot and Figures

6.2 and 6.3 is that it is not the effect of the surrounding turbine on the M2 current

that is of the most importance to ∆(∆E)∗, but the effect on ∆(∆AS,2). This is

seen in Figure 6.5c. In this figure ∆(∆E)∗ is plotted against ∆(∆AS,2) and a linear

trend between ∆(∆E)∗ and ∆(∆AS,2) can be seen. This, along with Figures 6.2

and 6.3, is taken to imply that the changes to asymmetry due to the surrounding

turbines lead to changes to ∆E for each turbine in the array, compared to that

turbine operating individually.

In the final figure relating to the line array experiment, Figure 6.6, the averages

of Et.c., ∆E, ∆Et.c.
∗ and ∆(∆E)∗ across all turbines in the array are plotted

against the inter-turbine spacing, along with an envelope given by the maximum

and minimum values. From this set of figures ((a)–(d)) one can see that, on average,

each turbine will convert more energy per tidal cycle if the inter-turbine spacing is

larger, and as seen previously, the turbines will convert less energy than if they

were deployed individually. The mean of ∆E remains similar regardless of the

inter-turbine spacing. However, with reduced spacing the spread of ∆E increases.

6.2.3 Rows of Turbines

Finally, the energy conversion of turbines deployed in rows across the channel is

explored. In Figure 6.7 the difference between the peak values of profiles of ∆uM2

and ∆AS,2 for each individual turbine that makes up the rows discussed in Chapter

5 (§5.4) are plotted against the respective difference in Et.c. and ∆E between array

and individual runs, defined as in (6.2.8) and (6.2.9). The mean values across all

turbines in the row are also plotted in red and connected by a line. Of these plots,

only that of ∆(∆uM2) against ∆Et.c.
∗ hints at any trend. The positive values of
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∆Et.c. mean there is greater energy conversion per tidal cycle for the turbines in

the array than an individual turbine, and the negative values of ∆(∆uM2) mean

there is less impact, per turbine, on the M2 current by the turbines when they are

part of the array. The trend is that of larger ∆Et.c.
∗ with larger |∆(∆uM2)|, and

larger |∆(∆uM2)| for denser arrays. The modulus sign is used here as ∆(∆uM2) is

negative due to the per turbine ∆uM2 being smaller in the array than individually.
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Figure 6.7: Plots of peak values of change to M2 current, ∆uM2 , (left column) and

absolute change to positive (centre column) and negative (right column) ∆AS,2

peaks, against the change to energy conversion per tidal cycle, ∆Et.c., (top row)

and change to the energy conversion asymmetry, ∆(∆E), (bottom row).

For ∆(∆AS,2) the positive and negative ∆AS,2 peaks (see Chapter 4, Figures 4.5

and 4.8 and Chapter 5, Figure 5.23) have been plotted separately against ∆Et.c.
∗

and ∆(∆E)∗ in Figure 6.7. The comparisons of ∆Et.c.
∗ and ∆(∆E)∗ against the

positive and negative ∆AS,2 peaks appear similar, somewhat symmetric about the

y-axis. The positive ∆AS,2 peaks are smaller in the array runs, and the negative

∆AS,2 peak is larger in array runs, compared to the individual run. Therefore,

similar but opposite patterns are seen in the ∆(∆AS,2) plots (Figure 6.7b, 6.7c, 6.7e

and 6.7f). On average, the difference in ∆E is small between the array runs and

the individual run, ∼4%, but as seen in Figure 6.7 the variation between turbines
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is large, increasingly so for the denser rows3. This variation could be caused by the

increased variability of the inter-turbine spacing, longitudinal turbine location and

element size, as discussed in Chapter 5 (§5.4.2), shown in Table 5.5 and discussed

in Appendix F respectively. A clear trend between ∆(∆E)∗ and ∆(∆AS,2) is not

apparent from Figure 6.7, and likewise for ∆(∆E)∗ and ∆(∆uM2). Figures 6.2 and

6.3 suggest that it should be changes to ∆AS,2 that lead to changes to ∆E, but this

is not what is seen in Figure 6.7. It may be that the differences seen in ∆E between

the array runs and the individual run is due to a combination of the change to

∆uM2 , ∆AS,2 and variability of the location of the turbine / inter-turbine spacing /

element size, and as such no simple trend between ∆(∆E)∗ and the change in any

one other parameter is identifiable.

In Figure 6.8 the mean values of Et.c., ∆Et.c.
∗, ∆E and ∆(∆E)∗ are plotted

against the inter-turbine spacing along with an envelope defined by the maximum

and minimum values. From this figure one can see that as the inter-turbine spacing

is reduced there is a greater difference between the mean Et.c. per turbine in the

array and an individual turbine, with the mean values of Et.c. increasing with

reduced inter-turbine spacing (Figure 6.8a). This can be attributed to a number

of factors, first, with increased blockage the turbine wakes have less opportunity

to mix with the bypass flow due to their closer proximity [Garrett and Cummins,

2007, 2008, Vennell, 2010]. Second, with the increased blockage there is increased

impediment to the flow, thus a head difference across the row of turbines develops,

and the turbines produced their energy from this head difference in addition to

the momentum of the flow which leads to a reduced velocity deficit in the turbine

wakes [Vennell, 2012, 2013]. With this reduced velocity defect mixing of the wake

with the bypass flow is again reduced leading to more efficient energy conversion by

the turbines. Figure 6.8b echoes what is seen in Figure 6.8a. Turbines convert more

energy per turbine when deployed in a row compared to deployed individually.

3One sees this even more clearly in Figure 6.8.
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6.3 Flood-Ebb Asymmetry and Sediment Trans-

port

The driver of sediment transport is bed shear stress, τ , resulting from the flow of

water over the sea-bed. The bed shear stress is given by:

~τ = ρ0CF
~V |~V | (6.3.1)

where CF is the friction coefficient and ~V = (u, v) is the depth averaged current

velocity vector and u and v are the depth averaged velocity components in the

x- and y-directions respectively. Many models of sediment transport exist based

on empirical and deterministic principals. The methodology used to describe

sediment transport in this thesis was that of van Rijn [1984a,b]. A summary of

that methodology is given in Chapter 3 (§3.1.2), and will not be repeated here.

The rates of bed-load and suspended-load transport are both functions of the

size and density of the grains of sediment, the water depth and the current velocity

(see §3.1.2). In the experiments throughout this thesis the water depth was kept

constant. To simplify the sediment transport experiment the same grain density is

used throughout, namely a density relative to that of water of 2.65. Of the two

remaining variables, in the experiments in this chapter, the mean grain diameter

was altered, whilst the current velocity magnitude was kept constant, with the only

other change being the addition of turbines to the channel.

For this experiment, eight additional runs are carried out, four where the channel

is unoccupied, and four where a single fixed-CT turbine is deployed in the channel.

Each of the four runs in the two groups uses a different mean grain diameter,

classifying the sediment as very coarse, coarse, medium and fine sand according

to the Wentworth [1922] scale. The model run numbers and details are given in

Table 6.1. These model runs (Table 6.1) will be used to explore the impact of the

changes to the hydrodynamics due to the turbine on sediment transport, and how

this impact differs for various sediment grain sizes.

The model parameters in the hydrodynamic module remain as described in

Table 3.1. The mesh depicted in Figure 3.22 and summarised in Table 3.8 was

applied to geometry (3.5.1). Fixed-CT turbines were implemented as outlined in
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Table 3.3.

In these additional runs the pure current (i.e. no waves), non-equilibrium (i.e.

sediment transport phase lag included) form of the sediment transport model

was employed. Varying bed layer thickness was not turned on. However, the

morphodynamic module was included, with the feedback between morophology,

hydrodynamics and sediment transport also switched on.
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Figure 6.8: Plots of mean energy conversion per tidal cycle per turbine (top left),

mean difference in energy conversion per tidal cycle between single turbine and

array per turbine (top right), mean difference in energy conversion over the flood

and ebb of the tide per turbine (bottom left) and mean difference in the difference

between energy conversion over the flood and ebb of the tide between a single

turbine and a turbine in the array per turbine (bottom right) (circles). Means are

over all turbines in array. Envelope given by maximum and minimum values in

array (shaded area).

At the two open boundary the “zero gradient” boundary condition was used

for the sediment transport, and the “zero sediment flux gradient for outflow, zero

bed change for inflow” condition was used for morphology module. The initial

concentration of sediment in suspension was set to a constant value of 0 g/m3

across the model.
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Table 6.1: Run numbers and description for sediment transport experiment.

No. Turbines Grain Size [mm] Grain Size [φ] Grain Classification Run Numbers

0 1.5 -0.585 Very Coarse Sand Run-24

0 0.75 0.415 Coarse Sand Run-25

0 0.375 1.415 Medium Sand Run-26

0 0.1875 2.415 Fine Sand Run-27

1 1.5 -0.585 Very Coarse Sand Run-28

1 0.75 0.415 Coarse Sand Run-29

1 0.375 1.415 Medium Sand Run-30

1 0.1875 2.415 Fine Sand Run-31

A single sediment fraction was defined using the default bedload and suspended

load factors of 1, and maximum concentration of 1 × 104 g/m3. The solution

methods for time-integration and space-discretisation were both set to higher order.

The time parameters for the sediment transport module, “start time” and “time

step factor” were set to 0 and 1 respectively.

Figure 6.9: Contours of bed-load (a), suspended-load (b) and total-load (c)

sediment transport rate for current speed and sediment grain-size.

For the horizontal dispersion of sediment the scaled horizontal eddy viscosity

formulation with used, applying a constant value of 1 across the model domain.

In the sediment properties window a sediment porosity of 0.4 was chosen (the
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mid-point of the recommended values in the model documentation), whilst the

relative density was chosen as 2.65 and the sediment grain size was varied across

the model runs as described previously (and summarised in Table 6.1).

Finally, in the morphodynamic module, a maximum bed-level change of 1 m/d

was set, and a start timestep of 432 was chosen, which is the timestep at which the

hydrodynamic model spin-up ends. Further explanation of the above settings is

given in DHI [2016c,d].
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Figure 6.10: Time-series of u-velocity (a), volumetric sediment transport rates, qs,

(b), transported sediment volume per tidal phase, Qs, (c) and transported

sediment volume per tidal cycle, Qt.c.
s , (d: line) and net volume of sediment

transported per tidal cycle, ∆Qs, (d: error bar).

In Figure 6.9 contours of the bed-, suspended- and total-load (suspended-load

plus bed-load) transport rates for varying current speed and sediment grain size are

given, obtained from the model output from Run-24, Run-25, Run-26 and Run-27.

In this figure, and in remaining figures in this section the sediment grain size will

be given by the φ-scale:

φ = −log2

(
d

d0

)
(6.3.2)

where d is the sediment grain size, and d0 = 1 mm [Krumbein and Aberdeen, 1937].
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Table 6.2: Depth-averaged velocity thresholds of bed-load, uc,b, and

suspended-load transport, uc,s and associated parameters for the calculations.

From left to right the parameters were calculated using equation 3.1.20, Table 3.2,

equation 3.1.25, equation 3.1.24, equation 3.1.23, equations 3.1.28 & 3.1.29,

equation 3.1.26 and equation 3.1.23, with g = 9.81 m/s2, s = 2.65, ν = 1× 10−6

m2/s, h = 36 m and d = d90 = d50.

d50 [mm] D∗ Θc uf,c,b [mm] C′ uc,b [mm] ws [m/s] uf,c,s [m/s] uc,s [m/s]

1.5 37.94 0.037 0.030 89.68 0.86 0.171 0.069 1.96

0.75 18.97 0.030 0.019 95.10 0.58 0.098 0.039 1.19

0.375 9.49 0.033 0.014 100.52 0.46 0.056 0.023 0.75

0.1875 4.74 0.052 0.013 105.94 0.42 0.023 0.020 0.67

From Figure 6.9 one can see that most sediment transport occurs at peak

current values, as one would expect given the dependence of sediment transport

rate on bed shear stress, which varies as the square of current speed. One can also

see from this figure that transport in the channel will be dominated by suspended

load transport, for all grain sizes. Sediment transport is initiated when the bed

shear stress exceeds a threshold value. As the current increases, when it exceeds

another threshold based on the settling velocity of the sediment the sediment will be

transported as suspended load. The methodology for calculating these thresholds

is laid out in Chapter 3, §3.1.2, and the thresholds are given as depth-averaged

velocities in Table 6.2.

Near the centre of the channel, where the lowest peak velocities are seen (see

Figure 4.1) and where the turbine will be deployed, the bed-load transport thresholds

for d50 = 1.5, 0.75, 0.375 and 0.1875 mm were exceeded for 44%, 46%, 47% and

47% of the tidal cycle respectively, and the suspended-load transport thresholds

were exceeded for 33%, 41%, 44% and 46% of the tidal cycle respectively. Thus,

for 76%, 90%, 94% and 97% of the time that the d50 = 1.5, 0.75, 0.375 and 0.1875

mm bed-load transport thresholds are exceeded the respective suspended-load

thresholds will be exceeded also.

At peak velocities, for bed-load transport, the rate of transport initially increases

as the grain size decreases, then decreases with decreasing grain size beyond 0.375

mm (φ = 1.42). This is in contrast to suspended-load transport where the transport
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rate always increases with decreasing grain-size. In the non-equilibrium, pure current

case (which was the case considered), the sand transport module of MIKE21 uses

the following equation to reduce the bedload transport [DHI 2016d (ST user guide)]:

qs,bl,reduced = qs,bl

(
∆h

∆hcrit

)2

(6.3.3)

where ∆h is the local (sediment) layer thickness and ∆hcrit is a critical value below

which the transport will be reduced. The values were not altered from pre-set

values. It must thus be that the increased transport of sediment for finer grains

reduces ∆h below ∆hcrit around peak flow, thus reducing qs,bl.
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Figure 6.11: Plots of change in volume bed-load transport over a tidal cycle,

∆Qt.c.
s,bl, (top row) and change in the net volume bed-load transport, ∆(∆Qs,bl),

(bottom row) against the change in M2 current amplitude, ∆uM2 , (left column)

and the change in the asymmetry, ∆AS,2, (right column) between an unoccupied

channel and a channel containing a single fixed-CT turbine at its centre. Plot are

repeated for grain-sizes of 1.5 mm (black), 0.75 mm (blue), 0.375 mm (red) and

0.1875 mm (green). Changes normalised by the value of parameter in unoccupied

channel run.

A similar methodology will be used to assess the impact of changes to uM2 and

AS,2 on sediment transport as was used for turbine energy conversion. In Figure
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6.10a the u-velocity time-series at the site where the turbine is to be deployed

in Run-24 is plotted. Along with this, the bed- and suspended-load sediment

volumetric transport rates, qs,bl & qs,sl respectively, are plotted in Figure 6.10b.

The volumetric transport rates were converted into volumes of sediment transported

over the phases of the tide by integrating the volumetric transport rates over the

phases of the tide:

Qf,e
s =

∫
f,e

qs dt (6.3.4)

Time-series of volume transport of sediment are given in Figure 6.10c. As for

the energy conversion over the phases of the tides, the total volume transport per

tidal cycle and the net volume transport per tidal cycle are defined as:

Qt.c.
s = Qf

s + |Qe
s| (6.3.5)

and

∆Qs = 100× 2(Qf
s − |Qe

s|)
Qf
s + |Qe

s|
(6.3.6)

with positive values of ∆Qs, indicating net transport in the flood direction and

negative values indicating net transport in the ebb direction. Time-series of these

two parameters are given in Figure 6.10d with the line giving Qt.c.
s and the amplitude

of the error bars giving Qf
s − |Qe

s|.

As was the case for Et.c. and ∆E, once the spin-up period ends, the values of

Qt.c.
s and ∆Qs remain approximately constant for the rest of the simulation. This

allows for an analysis similar to that in Figures 6.2 and 6.3 to be carried out for

sediment transport. As was done for Et.c. and ∆E, the changes in Qt.c.
s and ∆Qs

between an unoccupied channel run and a run containing a single fixed-CT turbine

were calculated at each model element and plotted against the changes in uM2

and AS,2, producing plots similar to Figure 6.2 and 6.3. These plots are given in

Figures 6.11–6.13, and in these plots ∆uM2 and ∆Qt.c.
s have been normalised by

their values from the unoccupied channel runs. These figures also include plots for

each of the 4 grain-sizes listed in Table 6.2.
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The twin tailed structures seen in Figures 6.2 and 6.3 were also seen in the plots

of ∆̃Qt.c.
s against ∆AS,2 and ˜∆(∆Qs) against ∆̃uM2 . The eastern and western halves

of the channel have not been plotted separately in these plots but the reason for the

twin-tails is as described in §6.2.2 for Figures 6.2 and 6.3. Linear trends between

∆̃Qt.c.
s against ∆̃uM2 and ˜∆(∆Qs) against ∆AS,2 were seen, implying that the total

transport either as bed-load or suspended-load reduces with reduced M2 current,

as expected, and as the flood-ebb asymmetry of the current increases/decreases,

the net sediment transport also increases/decreases.
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Figure 6.12: As Figure 6.11 but for suspended-load.

The differences between these trends for the different grain-sizes is small and is

not clear from Figures 6.11–6.13. Therefore, the trendlines fitted to each scatter-

plot in Figures 6.11a–6.13a are plotted in Figures 6.14a–6.16a and likewise the

trendlines associated with the scatter-plots in Figures 6.11d–6.13d are plotted in

Figures 6.14b–6.16b. In Figures 6.14c-6.16c & 6.14d–6.16d the gradients of each

of the trendlines are plotted against grain-size, expressed as φ. For each of the

trendlines the y-intercept, c, was approximately zero. The numerical values of the

gradients and y-intercepts of each linear fit are presented in Table 6.3, along with

the associated R2 and 95% confidence intervals.
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Figure 6.13: As Figure 6.11 but for total-load.
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Figure 6.14: Lines of best-fit associated with Figures 6.11a (a) and 6.11d (b), and

plots of the gradients of the lines of best fit against sediment grain-size (c & d

respectively).
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Figure 6.15: Lines of best-fit associated with Figures 6.12a (a) and 6.12d (b), and

plots of the gradients of the lines of best fit against sediment grain-size (c & d

respectively).
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Figure 6.16: Lines of best-fit associated with Figures 6.13a (a) and 6.13d (b), and

plots of the gradients of the lines of best fit against sediment grain-size (c & d

respectively).
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The gradients of the lines of best-fit from Figures 6.14–6.16 can be physically

interpreted as the sensitivity of the sediment transport rates to the hydrodynamic

changes. For larger/smaller values of m the same changes to ∆̃uM2 or ∆AS,2 will

lead to larger/smaller changes to ∆̃Qt.c.
s or ˜∆(∆Qs) respectively, as illustrated in

equations (6.3.7) and (6.3.8):

m =
∆y

∆x
→ m∆̃uM2 = ∆̃Qt.c.

s (6.3.7)

m =
∆y

∆x
→ m∆AS,2 = ˜∆(∆Qs) (6.3.8)

Therefore, what is seen in Figures 6.14 is that for finer grain-sizes the total

bed-load volume transport per tidal cycle is less sensitive to changes to the current

magnitude, and likewise, the net bed-load volume transport per tidal cycle is less

sensitive to changes to the flood-ebb asymmetry in the current for finer grain-

sizes. Figure 6.15 shows that for finer grain-sizes the total suspended-load volume

transport per tidal cycle is more sensitive to change to the current magnitude,

and likewise, the net suspended-load volume transport per tidal cycle is more

sensitive to changes in the flood-ebb asymmetry in the current for finer grain-sizes.

Finally, the total-load transport shows the same patterns as seen for suspended-load

transport, as suspended-load transport dominates the total-load, as seen in Figure

6.10, where the volumetric transport rates for suspended-load transport were an

order of magnitude larger than for bed-load.

From the midpoints and midranges of the sets of gradients in Table 6.3, it can

be estimated that a 1% change in uM2 leads to a 4.33±0.14% change to Qt.c.
s,bl, a

3.76±0.62% change to Qt.c.
s,sl and a 3.87±0.50% change to Qt.c.

s,tl and a 1% change

to AS,2 leads to a 5.84±0.07% change to ∆Qs,bl, a 5.69±0.34% change to ∆Qs,sl

and a 5.69±0.21% change to ∆Qs,tl. Including the 95% confidence intervals of the

linear regressions it is estimated that a 1% change in uM2 leads to a 4.33±0.48%

change to Qt.c.
s,bl, a 3.76±1.39% change to Qt.c.

s,sl and a 3.87±1.27% change to Qt.c.
s,tl

and a 1% change to AS,2 leads to a 5.84±0.64% change to ∆Qs,bl, a 5.69±1.08%

change to ∆Qs,sl and a 5.69±1.01% change to ∆Qs,tl.
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Table 6.3: Parameter of the lines of best-fit associated with Figures 6.14a–6.16a

and 6.14b–6.16b.

d [mm] φ m c R2 p CI95% [%]

˜∆Qt.c.
s,bl

1.5 -0.585 4.465 -4.0×10−5 0.988 0.000 0.34

0.75 0.415 4.263 -4.4×10−5 0.988 0.000 0.32

0.375 1.415 4.205 -3.2×10−5 0.988 0.000 0.31

0.1875 2.415 4.186 -2.8×10−5 0.988 0.000 0.31

˜∆Qt.c.
s,sl

1.5 -0.585 3.133 -4.6−5 0.986 0.000 0.25

0.75 0.415 3.626 -3.7×10−5 0.988 0.000 0.27

0.375 1.415 4.115 3.2×10−5 0.988 0.000 0.31

0.1875 2.415 4.381 1.3×10−4 0.937 0.000 0.77

∆̃Qt.c.
s,tl

1.5 -0.585 3.373 -4.5×10−5 0.987 0.000 0.26

0.75 0.415 3.775 -3.8×10−5 0.989 0.000 0.28

0.375 1.415 4.132 2.0×10−5 0.988 0.000 0.31

0.1875 2.415 4.368 1.2×10−4 0.942 0.000 0.73

˜∆(∆Qs,bl)

1.5 -0.585 5.913 1.5×10−3 0.992 0.000 0.47

0.75 0.415 5.810 1.5×10−3 0.989 0.000 0.54

0.375 1.415 5.764 1.5×10−3 0.986 0.000 0.57

0.1875 2.415 5.849 1.5×10−3 0.989 0.000 0.50

˜∆(∆Qs,sl)

1.5 -0.585 5.537 1.1×10−3 0.995 0.000 0.27

0.75 0.415 5.728 1.2×10−3 0.999 0.000 0.16

0.375 1.415 5.928 1.3×10−3 0.996 0.000 0.34

0.1875 2.415 5.457 1.7×10−3 0.977 0.000 0.84

˜∆(∆Qs,tl)

1.5 -0.585 5.620 1.2×10−3 0.997 0.000 0.25

0.75 0.415 5.749 1.2×10−3 0.998 0.000 0.22

0.375 1.415 5.897 1.4×10−3 0.996 0.000 0.32

0.1875 2.415 5.480 1.6×10−3 0.979 0.000 0.80

6.4 Summary

In this chapter additional analysis of model output from Chapters 4 & 5 was carried

out to look at the impact of the changes to the hydrodynamics identified in those
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chapters on the energy conversion of surrounding turbines. Also, an additional

experiment looking at the effect of changes to the hydrodynamics on sediment

transport was presented and analysed.

From comparisons between a run where the channel was unoccupied and a run

with a single fixed-CT turbine at the channel centre it was seen that changes to

the M2 current were most important for the total energy conversion per tidal cycle

and the total volume transport of sediment (by either mode) over a tidal cycle.

Whilst changes to the flood-ebb magnitude asymmetry (FVA), largely resulting

from changes to the M4 current, were most important for the flood-ebb asymmetry

in energy conversion and the net volume transport of sediment (by either mode)

per tidal cycle. From linear models fitted to the normalised changes between the

runs it is estimated that, for a fixed-CT turbine a 1% change to the M2 current will

lead to a 3.0±0.2% change in energy conversion per tidal cycle, and a 4.3±0.5%

or 3.8±1.4% change to the total volume of transported sediment per tidal cycle

as bed-load or suspended-load respectively. Similarly, a 1% change to the FVA

will lead to a 1.8±0.1% change to the flood-ebb asymmetry in energy conversion,

and a 5.8±0.6% or 5.7±1.1% change to the net volume of sediment transported as

bed-load or suspended-load respectively. The ranges in the percentage changes for

the sediment transport parameters arise because of the variation of the effect of

the turbine on sediment transport with grain-size. For finer grains, changes to the

M2 current had less effect on bed-load transport but more effect on suspended load

transport.

For multiple fixed-CT turbine deployments, when deployed as a row, each

individual turbine on average impacted the M2 current less and converted more

energy per tidal cycle than it would had it been deployed individually. Whilst when

deployed as a line, each individual turbine on average impacted the M2 current

more and converted less energy per tidal cycle than they would had they been

deployed individually. The difference in the impact on the FVA varied between the

turbines for the line deployment test, but with reduced spacing the differences grew

larger, leading to larger differences in changes to the flood-ebb asymmetry in energy

conversion between the individual and array cases. For the row deployment the

inter-turbine spacing was reduced by adding turbines to the row, which increases the
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row blockage. With increased row blockage the difference in the energy conversion

per tidal cycle between the individual and array cases increases. Changes to

the row blockage appeared to have little effect on the average difference in the

flood-ebb-variation in the energy conversion between the individual case and array

cases.
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Chapter 7

Discussion & Limitations

In this chapter the findings from the numerical experiments presented in Chapters

4, 5 and 6 will be related to the research questions set out in Chapter 2. This will

be done in §7.1. All the findings from the experiments will be brought together and

discussed in §7.2. Finally, in §7.3 the limitations of the work will be considered.

7.1 Research Questions

7.1.1 Research Question 1): “How are the harmonic tides

altered locally by TSTs (tidal-stream turbines)?”

7.1.1.1 Research Question 1a): “How is the alteration to the odd and

even harmonics similar/different?”

This question was addressed by numerical experiments undertaken in Chapter 4.

In these experiments the changes to the overtides (§4.2) and compound tides (§4.4)

resulting from the addition of a single fixed-CT turbine to the channel were explored.

There was a significant difference in the changes to the odd and even harmonics.

The changes to the M2, S2 (two forcing tides), M6, S6 and 2SM6 were similar, in

both pattern and size (in percentage terms). There was only reduction seen, and

this occurred approximately symmetrically to either side of the turbine (Figures

4.3, 4.19 & 4.21). In contrast, there was a much larger change (in percentage

terms) to the M4, MS4 and MS, with augmentation in the negative x-direction

and reduction in the positive x-direction (Figures 4.3 & 4.20). The change to the
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S4 was also much larger than the change to the forcing tides and odd harmonics,

but the pattern of change differed from all other constituents, in that there was

an augmentation peak centred on the turbine. The similarities in the (percentage)

size and pattern of change amongst the groups of harmonics is an indication of

similar physical origins of the changes. A potential physical interpretation of these

differences is an alteration to the current asymmetry. This will be expanded upon

in §7.2 and §7.1.2.

In answer to research question 1a):

The amplitudes of the odd harmonics are predominantly reduced (some

augmentation in bypass flow) by the operation of tidal turbines, whilst

both augmentation and reduction to the amplitude of the even harmonics

may occur.

7.1.1.2 Research Question 1b): “What effect does the variable effi-

ciency of a TST have on its impact on the harmonic tides, in

particular cut-in and cut-out speeds?”

This question was addressed by Experiment 2 of Chapter 4 (§4.3). In this experiment

a variable-CT turbine was deployed in the channel, and the change to the tidal

constituents resulting from the operation of this turbine were compared to the

changes seen due to the operation of a fixed-CT turbine as explored in Experiment

1 of Chapter 4 (§4.2). In all cases but that of the phase of the M6 the pattern of

change caused by the turbine was the same (Figure 4.8). In terms of the size of the

change, the change to the M2 and M4 amplitudes and the M4 phase was smaller

for the variable-CT turbine (compared to the fixed-CT turbine) and the change to

the M6 amplitude and the M2 and M6 phase was larger for the variable-CT turbine

(Figure 4.8). The reduced effect on the M2 amplitude is suspected to be related

to the cut-in speed of the variable-CT turbine, which means the turbine is only

operational for 44% of the tidal cycle, compared to 100% of the tidal cycle for the

fixed-CT turbine. The smaller reduction to the M2 amplitude implies a reduced

velocity deficit in the turbine wake. This appears to be the cause of the reduced

effect on the M4 tide. The changes to the M6 tide are suspected to be related to

the reduced turbine efficiency of the variable-CT at higher current speeds.
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In answer to research question 1b):

Compared to the fixed-CT turbine the variable-CT turbine caused a

smaller velocity deficit, apparently due to the cut-in speed. Within the

area of effect of the turbine, the asymmetric distortion to the current

time series is less than in the fixed-CT case, and the symmetric distortion

is increased.

7.1.1.3 Research Question 1c): “How sensitive is the effect of a TST on

the harmonic tides to ambient conditions, in particular ambient

asymmetry?”

To address this research question, and research question 2c) (§7.1.2.3) Experiment

1 in Chapter 5 was undertaken (§5.2). In this experiment a single fixed-CT turbine

was deployed at four different locations along the channel based on the contours of

ambient asymmetry, i.e. at AS,2 = 0, 0.1, 0.2 and 0.3, where AS,2 is a measure of

the flood-ebb current magnitude asymmetry (FVA) (Figure F.1). There was only a

minor difference in the effect of the turbine on the M2 and M6 tides across the four

deployments (Figure 5.1 & 5.2). Conversely, there was a much greater variation in

the effect of the turbine on the M4 tide (Figure 5.1 & 5.2). However, this variation

is simply due different ambient conditions meaning a difference change to the M4

tide is needed to represent the same change to the asymmetry (Figure 5.3).

In answer to research question 1c):

The effect of the turbine on the fundamental astronomic tide and the first

odd overtide does not appear sensitive to ambient conditions (percentage

change to amplitude considered). The effect of the turbine on the first

even overtide did however appear sensitive to ambient conditions, but

not ambient asymmetry.

7.1.1.4 Research Question 1d): “How does the impact of a single TST

on harmonics scale across an array of TSTs?”

To address this research question and research question 2d) (§7.1.2.4) Experiments 2

and 3 in Chapter 5 were undertaken. These experiments looked at a line of turbines
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and a row of turbines respectively. For the line of turbines, there was a greater effect

on the M2 and M6 amplitude and phase at all turbines in the array, when deployed

as an array compared to them being deployed individually (Figures 5.5a, 5.5c, 5.6a,

5.6c, 5.8a, 5.8c, 5.9a, 5.9c, 5.11a, 5.11c, 5.12a, 5.12c). In this arrangement, the

effects of the turbines appear to be superimposed upon one-another. Thus, for the

west-most turbine (west – negative x-direction) the augmentation peak is larger in

the array run than the individual run and the reduction peak is smaller, and for

the east-most turbine (east – positive x-direction) the opposite is seen. For the

central turbine the difference was minimal (Figures 5.5b, 5.6b, 5.8b, 5.9b, 5.11b,

5.12b). The difference between the array and individual deployments increased as

the spacing between the turbine was reduced.

In the row experiments, the blockage of the row (the ratio of the total swept

area of all turbines to the cross-sectional area of the channel, ε0) was altered. In

the row runs the per-turbine peak change to the M2, M4 and M6 amplitude and

the M4 phase was smaller than in an individual turbine run, and the per-turbine

peak change to the M2 and M6 phase was larger. As the row blockage increased,

by adding additional turbines to the row, the difference between the per-turbine

peak changes grew across all tides (amplitude and phase) (Figure 5.30). Moving

from a single turbine (ε0 = 0.008) to a row of 13 turbines (ε0 = 0.105) only a small

change in the area of effect of the array is seen (defined as the area where change

to M2 > 2%) (Table 5.7). This suggests that there is perhaps a balance between

the reduced per-turbine effect with additional turbines, and the fact that there

are more turbines in the row each with its own area of effect. Beyond ε0 = 0.105

with additional turbines in the row the area of effect of the array quickly increased,

likely due to a lack of resolution in the mesh to resolve the turbine bypass flow,

leading to underprediction of the wake recovery.

In answer to research question 1d):

The effect of a TST scales differently depending on the array config-

uration. When deploying turbines as a row, smaller peak per turbine

changes to the amplitude of all tides and the phase of the M4 is seen,

and a larger peak per turbine change to the phase of the M2 and M6 is

seen, compared to a turbine operating individually. As the number of
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turbines in the row increases, and therefore so too does the row blockage,

the difference between the per-turbine effect of the turbines in the row

and a turbine operating individually increases. Up to ε0 ∼ 0.1 there is

little difference in the area of effect of the array with additional turbines

as it appears there is a balance between more turbines being added to the

row and the reduced per-turbine effect with increased blockage. When

deploying turbines as a line it appears there is a linear superposition of

the individual turbine effects. This leads to larger augmentation peaks

and smaller reduction peaks for some turbines and larger reduction peaks

and smaller augmentation peaks for other turbines, whilst there is little

difference between the array and individual case for the central turbine.

This is for the more complex pattern of change to the M4 tide. For M2

and M6 tides the peak reduction to the amplitude and phase per-turbine

is larger in the array compared to the individual runs, and in the inter-

turbine region the current amplitude does not return to ambient levels,

but to some reduced intermediate (between peak and ambient) value. The

difference that is seen increases as the spacing between the turbines is

reduced, the velocity reduction seen in the inter-turbine regions becomes

larger.

7.1.2 Research Question 2): “How is the flow asymmetry

altered locally by TSTs?”

7.1.2.1 Research Question 2a): “Can the change to the flow asymme-

try be predicted from the changes to the tidal constituents

(fundamentals and harmonics)?”

This research question was explored as part of Experiments 1 and 3 in Chapter

4 (§4.2 & §4.4 respectively). In §4.2 two metrics are used to measure the change

to the FVA. The first, AS,1, is based on the interaction of the M2 and M4 tides,

as illustrated in Figure 2.6 and requires knowledge of the amplitude and phase of

the M2 and M4 tidal constituents. It is this metric that this research question is

concerned with. The second metric used, AS,2, was taken from Neill et al. [2014]
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and is seen as a direct measure of the FVA as it takes the peak values from the

current time-series. There was strong linear correlation (R2 = 0.9976) between the

two metrics for the unoccupied channel case (Figure 4.6). This trend does however

appear to break-down somewhat in the vicinity of the turbine. Plots of the change

to the FVA as measured by the two metrics appeared near identical in terms of

pattern (Figure 4.5).

With the addition of the S2 as a forcing tide and therefore the introduction

of the spring-neap cycle a temporal variation in the FVA was introduced (Figure

4.25 & 4.26a) and the metric AS,1 appeared to no longer reproduce the average

pattern of FVA obtained through the metric AS,2 (Figure 4.27). The metric AS,1

was extended to also account for the S2-S4, M2-S2-MS4 and M2-M4-M6 interactions,

(4.4.1), and this extended metric reproduced the patterns of average FVA measured

using the metric AS,2.

In answer to research question 2a):

The change to the flow asymmetry can be predicted from the changes to

the tidal constituents. In general, the largest constituent interactions

satisfying the frequency conditions 2σA = σB and σA + σB = σC must

all be considered for an accurate reproduction of the pattern of change

to FVA by the turbine(s). If knowledge of the change to the FVA alone

is the goal of the study then a direct measure of asymmetry such as that

used in Neill et al. [2014] and Bruder and Haas [2014] are sufficient

and harmonic analysis is not required. However, in general there is a

temporal variation in the FVA as the tide cycles through its beat periods

(e.g. the spring-neap cycle). Thus, a time-series with a length equal to

the length of the longest beat period that is of significance to the overall

tide must be considered.

7.1.2.2 Research Question 2b): “What effect does the variable effi-

ciency of a TST have on its impact on the flow asymmetry, in

particular cut-in and cut-out speeds?”

Experiment 2 of Chapter 4 (§4.3) was undertaken to address this question along

with research question 1b) (§7.1.1.2). The pattern of change to the FVA was the
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same for the fixed- and variable-CT turbines. The overall size of the changes seen

due to the variable-CT turbine were smaller. This is believed to be due to the

cut-in speed, which meant that the turbine was operational for less of the tidal

cycle (44%), and therefore had a lesser effect on the FVA.

In answer to research question 2b):

The variable-CT turbine has a similar (in terms of pattern) but reduced

(in terms of magnitude) effect on the FVA compared to the fixed-CT

turbine. The reason for this reduced effect is likely to be the turbine

cut-in speed. This reduces the M2 current deficit, which in turn reduces

the M4 augmentation / reduction, implying reduced FVA augmentation

/ reduction.

7.1.2.3 Research Question 2c): “How sensitive is the effect of a TST

on asymmetry to ambient conditions, in particular ambient

asymmetry?”

Experiment 1 of Chapter 5 (§5.2) addressed this research question along with

research question 1c) (§7.1.1.3). There was only a small variation to the (percentage)

change to the FVA resulting from the turbine operation when the turbine was

deployed at the four different locations with different ambient conditions in §5.2.

The small variation that was seen did not appear to coincide with any of the

ambient physical parameters considered in §5.2 (Figure 5.4). It has not been ruled

out that the variation that is seen may be related to the variation in the size and

shape of the elements that the turbines are deployed in. Even with the steps taken

to mitigate such an effect, as described in Appendix F.

In answer to research question 2c):

It does not appear that the effect of the TST is sensitive to ambient

conditions, including ambient FVA and whether or not the tide is

standing or progressive. The effect of the turbine on the M4 was seen

to change however. Therefore, in different ambient conditions the

representation of the changes to the FVA by changes to the M4 differs,

but overall, the change to the FVA is the same.
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7.1.2.4 Research Question 2d): “How does the impact of a single TST

on asymmetry scale across an array of TSTs?”

Experiments 2 and 3 of Chapter 5 (§5.3 & §5.4 respectively) were undertaken to

address this research question along with research question 1d) (§7.1.1.4). As seen

in Figures 5.7, 5.10, 5.13 & 5.15, for the line arrangement of turbines difference

in the change to the FVA seen in the array and individual turbines is similar

to as described for the M4 current in §7.1.1.4. For the west-most turbine the

augmentation peak was larger in the array run, the reduction peak was smaller in

the array run and vice-versa for the east-most turbine, with minimal difference for

the central turbine. This difference grew as the spacing between the turbines was

reduced.

For the row arrangement with increased blockage the peak per-turbine change

to the FVA was reduced and there appeared to be a balance between this reduced

per-turbine effect and the introduction of new turbines (each with their own area of

effect) which meant that the variation in the area of effect of the array as a whole

did not vary a great deal until ε0 > 0.105, as was the case for the area of effect on

the M2 current. However, beyond ε0 > 0.105 the model lacked the resolution to

adequately resolve the bypass flow between turbines, which is suspected to have

led to an overprediction of the area of effect of the array on the asymmetry.

In answer to research question 2d):

As for the changes seen to the harmonic tides, the way the change to the

FVA scales with multiple turbines depends on the turbine configuration.

For rows of turbines the peak change to the FVA per-turbine is reduced

as the row blockage is increased. There is suggestion of a balance between

the reduced per-turbine effect and the addition of turbine to the row

which means that there is only a small difference in the total area of

effect of the row (on the FVA) as its size is increased up to a blockage

of ε0 ∼ 0.1. For lines of turbines there is an additive effect across the

line with some turbines having a reduced augmentation peak and an

increased reduction peak, others having a smaller reduction peak and a

larger augmentation peak, and the central turbine showing little change,

202



Chapter 7. Discussion & Limitations

compared to each turbine operating individually.

7.1.3 Research Question 3): “How is net sediment trans-

port and the technically exploitable resource altered

locally by TSTs?”

7.1.3.1 Research Question 3a: “Can the change to the technically ex-

ploitable resource be predicted from the changes to the flow

asymmetry?”

To address this research question additional analysis of Experiments 1 and 2

of Chapter 4 (§4.2 & §4.3 respectively) and Experiments 2 and 3 of Chapter 5

(§5.3 & §5.4 respectively) was performed. This analysis made use of the turbine

power time-series output by MIKE, and power time-series calculated from current

speed time-series at elements not containing turbines. Plots of the change to the

M2 current against the change to the energy conversion per tidal cycle showed

linear trends and stronger correlations for the fixed- and variable-CT turbines

(R2 = 0.99 and 0.98 respectively, Figures 6.2a & 6.3a) for a turbine operating

individually. Similarly, plots of the change to the FVA against the change to the

Energy Conversion (flood-ebb) Asymmetry (ECA) also showed a linear trend with

strong correlations for the fixed- and variable-CT (R2 = 1.00 and 0.98 respectively,

Figures 6.2d & 6.3d). These results suggest that there is indeed a predictability to

the change in the technically exploitable resource one expects to occur due to the

changes to the hydrodynamics caused by TSTs. However, this analysis does not

consider the interaction of the turbines with each other, and the implications for

their power production.

When multiple turbines were deployed in a line along the channel, the energy

conversion per tidal cycle by the turbines in the array was less than when those

turbines were deployed individually (Figure 6.6a & 6.6b). This is consistent with

the conclusion from the single turbine analysis, which showed a linear trend of

reduced energy conversion per tidal cycle with reduced M2 current. As the turbines

were deployed closer together the difference between the array and individual cases

grew. This is due to larger reductions to the M2 current being seen closer to the
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turbine (Figure 4.8a). The ECA is more complex to explain as there is an east-west

difference in the change to the FVA (e.g. Figures 4.5 & 6.2d). On average the

ECA for the turbines across the array is larger when the turbines are deployed in

an array rather than individually, however in some cases the ECA may be lower in

the array.

When the turbines were deployed as a row, the changes seen for the individual

turbine are not reflected in the changes seen for the row. Given the rectilinear

nature of the flow in the experiments, the changes to the flow occur mainly in

the along-channel direction. Therefore, these changes have little influence on the

turbines across channel neighbours. Turbines deployed as a row convert more

energy per tidal cycle per turbine with lower M2 velocity reduction. The ECA in

the row-configuration runs is slightly larger than in the individual turbine case,

∼5% on average. This difference changed little with increasing blockage, however

the variability in the ECA seen across the turbine in the row did increase as the row

blockage increased. However, it is not clear if this is an artefact of the experimental

set-up.

In answer to research question 3a):

Changes to the magnitude of the M2 current are of greater importance

to the overall energy conversion by a turbine than changes to the FVA.

Therefore, the short answer to this research question is “no”. When

it comes to the ECA the opposite is true and changes to the M2 are

of little importance in comparison to the changes to the FVA. So,

there may still be some value in understanding the changes to the

FVA from a resource point of view if one wishes to understand the

temporal variability of the energy supply. The changes caused by a

single turbine lead to predictable changes to the total (fixed-CT ) and

technically exploitable (variable-CT ) resource within the area of effect

of that turbine. Additional turbines deployed in that area of effect

experience qualitatively predictable changes to the total energy conversion

and ECA. When deployed outside of the area of effect of the turbine,

such as in a row, the changes seen due to a single turbine do not

predict the difference in energy conversion for turbines in this array
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configuration compared to an individual deployment.

7.1.3.2 Research Question 3b): “Can the change to net sediment trans-

port be predicted from the changes to the flow asymmetry?”

To address this research question an additional experiment, described in Chapter 6

(§6.3), was undertaken. In this experiment a fixed-CT turbine was deployed in a

channel with a bed with a uniform grain-size, with four different grain-sizes tested.

Similar to the effects on energy conversion, linear correlations were found between

the change to the M2 current and gross volume of sediment transported as bed-load

and suspended-load. Likewise, there were linear trends between the change to

the FVA and the net volume of sediment transported as bed-load and suspended-

load. This was the case across all tested grain-sizes, with grain-size influencing

the gradient of the linear trend. For bed-load transport the coarsest grain-size

had the steepest gradients in both linear trends, with the gradients flattening

as the grain-size decreased. For suspended-load the opposite was seen, and the

coarsest grain-size had the shallowest gradients, with the gradient steepening as the

grain-size increased. This is interpreted as finer sediment transported as suspended

loads being more sensitive to changes to the hydrodynamics than their coarser

counterparts, and for bed-load transport, coarser grains were more sensitive to the

changes in the hydrodynamics.

In response to research question 3b):

Changes to net sediment transport can be predicted from changes to the

FVA. However, further work is needed to explore this problem in greater

detail due to the complex nature of sediment transport.

7.2 Discussion of Findings

In this section, the results of the experiments and analysis of the previous chapters

(Chapters 4–6) are discussed together. §7.2.1 considers the physical processes leading

to the changes observed; §7.2.2 covers the impact of, and the energy conversion by

arrays of turbines compared to individual turbines and §7.2.3 addresses what the

changes to the hydrodynamics mean for sediment transport.
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7.2.1 Changes to the Flood-Ebb Current Asymmetry Re-

sulting from Tidal-Stream Turbine Operation

The operation of a TST alters the ambient FVA with augmentation to the west

(negative x-direction) and reduction to the east (positive x-direction) (Figures 4.5,

4.8 & 4.26b). In comparison to the change in the M2 current (Figure 4.3, 4.8 &

4.19), which is a proxy for the tidal current, the change to the FVA extended over

a much greater area. The change to the M2 takes the form of a velocity deficit

at the turbine location, which decays in both directions. This deficit to the M2

current is the turbine wake, which forms on both sides of the turbine as the flow is

bi-directional and the turbine operates in both directions. The pattern of change

to the S2, M6, 2SM6 and 2MS6 follows that of the M2 as they are all influenced by

the quadratic turbine term (QTT: (i) in equation (2.2.8)) as shown by expansions

(2.2.13) and (2.2.26). With the addition of the turbine both the QFT and the

elevation turbine term (EFT: (j) in equation (2.2.8)) are introduced. However, the

EFT is an order of magnitude smaller than the QFT and thus of lesser importance

(Figure 4.12). Both these terms only exist in the presence of a turbine, which

explains why the largest change occurs at the turbine, and the deficit recovers with

distance from the turbine.

With the introduction of the turbine the (momentum) advection term (AT: (e)

in (2.2.8)) and the continuity term (CT: (c) in (2.2.5)) both grow in size close to the

turbine, to the the same order as the QFT (cf. Figures 4.11 & 4.12). Expansions

(2.2.12), (2.2.16), (2.2.24) and (2.2.25) show that the AT and CT alter the M4, S4,

MS4 and MS tides (even harmonics, except MS, but this term has the same origin

as the aforementioned tides). Both these terms have a dependence on the spatial

gradient of velocity. The introduction of the wake introduces a strong velocity

gradient, between the wake flow and the bypass flow, increasing the size of the AT

and CT (Figure 4.11). It was therefore concluded that the wake of the turbine is

the physical mechanism by which the FVA was altered.

The physical explanation for the east-west reduction-augmentation pattern to

the FVA is simple. When the current is flowing in the negative x-direction (ebb

current) the turbine wake will extend from the turbine in the negative x-direction,
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i.e. to the west of the turbine. When the current is flowing in the positive x-

direction (flood current) the wake will extend from the turbine in the positive

x-direction. Thus, there will be attenuation of the ebb current to the west of the

turbine and attenuation of the flood current to the east of the turbine.

At the turbine location, the current is flood-ebb asymmetric, favouring the

flood (Figure 4.5a). Attenuation of the ebb current in a region of flood dominant

current will augment the FVA whilst attenuation of the flood current in a region of

flood dominant current will reduce the FVA. Therefore, there is augmentation of

the FVA to the west and reduction to the east. If the ambient current was ebb

dominant, then reduction would have been seen to the west and augmentation to

the east.

When the turbine is deployed at different locations the pattern of change to the

FVA appears approximately the same at each location (Figure 5.3). This seems to

be at odds with the previous explanation as to why augmentation occurs to the

west and reduction to the east, as for the turbine on the AS,2 = 0 contour the tide

is flood dominant to the east and ebb dominant to the west. This is a sign issue

with AS,2, as in the definition of AS,2 used, AS,2 may be positive (flood-dominant)

and negative (ebb-dominant). The change to AS,2 is more correctly given by:

∆A†S = (AS,0 − AS,T )× sign(AS,0) (7.2.1)

where AS,0 is the FVA in the unoccupied channel and AS,T is the FVA in the

channel following the deployment of the turbine. Defined this way, whether the tide

is flood or ebb dominant, ∆A†S > 0 indicates reduction to the FVA and ∆A†S < 0

indicates augmentation of the FVA. Using ∆A†S rather than ∆AS Figure 5.3b is

re-plotted in Figure 7.1. In this figure the difference in the effect of the turbine

at the AS,2 = 0 contour compared to the other deployments is more obvious. On

the AS,2 = 0 contour the turbine can clearly be seen to reduce the FVA in both

directions, in line with the predictions above.

The ambient asymmetry conditions do therefore influence the effect of the

turbine, as there is a difference in the effect of the turbine on the FVA when the

turbine is deployed in a magnitude asymmetric current compared to a magnitude

symmetric current. However, it did not appear that stronger ambient FVA led to
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a greater impact on FVA by the turbine. Figure 7.2 presents a flow chart which

considers the form the change to the FVA will take depending on the natural

asymmetry conditions. Six possible effects are identified:

1. augmentation to the FVA in the flood-wards direction and reduction in the

ebb-wards direction,

2. augmentation to the FVA in the ebb-wards direction and reduction in the

flood-wards direction,

3. augmentation to the FVA in both directions,

4. reduction to the FVA in both directions,

5. augmentation to the FVA in the direction of the current used to convert

energy by the turbine,

6. reduction to the FVA in the direction of the current used to convert energy

by the turbine.

1–4 are possible when the turbine operates on both phases of the tide, and 5 and 6

are possible when the turbine operates on only one phase of the tide.
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Figure 7.1: Correction to Figure 5.3b, using (7.2.1).

In practice, at sites of interest for tidal energy extraction, such as the Raz de Sein

[Gillou and Chapalain, 2017b] and Fromveur Strait [Thiébaut and Sentchev, 2017]

(both in Brittany, France), the Raz Blanchard [Thiébot et al., 2015, Gillou et al.,

2018] (in Normandy, France) and the Westray Firth, Fall of Warness, Stronsay Firth
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system in Orkney, Scotland [Neill et al., 2014], a range of asymmetry conditions

are seen across the sites. Thus, a range of effects to the FVA at these sites by TST

operation is expected, given the discussion above.

Figure 7.2: Flow chart of the possible pattern of change to the FVA for different

turbine types deployed in regions of differing FVA.

In the Fromveur Strait, Gillou and Chapalain [2017a] considered the change to

the residual circulation resulting from energy conversion by an array of TSTs. In

their results it appeared that the magnitude of the residual currents were reduced

slightly in large residual eddies that were seen to either side of the channel due to

the addition of tidal turbines to their model. If the turbines were deployed within

the region of magnitude symmetry that exists within the Fromveur Strait [Thiébaut

and Sentchev, 2017, Gillou et al., 2018] then this is in line with the predictions

above. However, it is difficult to draw any conclusions either way from the results

presented by Gillou and Chapalain [2017a], a study of the change to FVA by TSTs

was not the objective of their work.

Stronger support is given by Thiébot et al. [2015], who explored the impact of

TST arrays deployed in the Raz Blanchard (Alderney Race) on residual sediment

transport. Their work presents the different areas experiencing current attenuation

on the flood and ebb of the tide. They also show the operation of the arrays to

alter residual transport, suggesting alteration to the FVA, and report increased
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FVA in the areas affected by the arrays. Thiébot et al. [2015] also, independently,

offer the same explanation for the change to the FVA, the flood ebb asymmetry in

the spatial distribution of current attenuation resulting from turbine operation.

In theory any down-stream reduction to the tidal current by a turbine will lead

to a change to the flow velocity asymmetry. When do the changes caused by the

turbines become of significance? One approach to addressing this question may

be to compare changes by the turbine to the natural variability in asymmetry. A

similar approach was taken by Robins et al. [2014].

In Section 4.4 it was seen that there is a temporal variation in asymmetry

(e.g. Figure 4.26). One might consider changes caused by the turbine to be

“significant” if they alter the asymmetry beyond the range it would be altered

naturally. However, the original natural asymmetry will be superimposed upon any

change and also may be altered by the turbine(s) operation. Further, the effect of

the turbine varies temporally (Figure 4.26). In addition, other physical processes,

such as wind induced currents, waves or surge may also induce variability in the

current asymmetry. Changes to asymmetry induced by turbines could be compared

to these potential natural sources of variation in asymmetry. With the turbine

induced changes considered significant when they are on the order of or exceed

natural sources.

7.2.2 The Impact of Arrays of Tidal-Stream Turbines and

Their Energy Conversion

When multiple turbines were deployed in the channel as a row, the effect of the

array did not scale from the effect of a single turbine as one might expect. However,

when deployed as a line along the length of the channel the effect of the turbines

on the tide seemed to combine in an additive fashion. Reductions were larger in

regions where multiple turbines would be expected to simultaneously introduce

reductions, based on the changes seen when they operated individually (Figures

5.5a, 5.5c, 5.6a, 5.6c, 5.8a, 5.8c, 5.9a, 5.9c, 5.11a, 5.11c, 5.12a, 5.12c). In regions

where reductions and increases were superimposed, the net result was either lesser

augmentation or reduction (Figures 5.5b, 5.6b, 5.7, 5.8b, 5.9b, 5.10, 5.11b, 5.12b,

5.13). Thus, the effect of a single turbine scales as one might expect when the
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turbines are deployed in the area of effect of their neighbours, i.e. “upstream” or

“downstream” from one-another.

When they were deployed in a row, i.e. outside of the area of effect of their

neighbours, the effects of each turbine did not scale as one might expect. The array

of turbines did not act as a group of individual turbines. The peak reduction to the

tidal current caused by each turbine in the row was reduced when the turbines were

deployed as a row compared to an individual turbine (Figure 5.30a). Conversely,

the phase lag introduced by each turbine was larger when they were deployed in a

row (Figure 5.30d). The phase lag suggests increased impediment of the tidal wave

for a row of turbines compared to a single turbine, with the degree of impediment

increasing with increased blockage of the channel by the row (Figure 5.30d). The

impediment of the flow introduced an increased head difference, and therefore a

pressure differential across the turbines. This pressure differential will contribute

to driving the turbines, thus the turbines draw less energy from the current, and

the velocity deficit this introduced is reduced compared to the velocity deficit of an

individual turbine [Vennell, 2012, 2013]. These smaller wakes then lead to smaller

(peak) changes to the FVA (Figure 5.30g).

In the row configuration, there are multiple turbines in operation, thus, despite

the smaller wakes per turbine, given the larger number of turbines one expects a

larger overall effect. Again, this is subtler than one might at first expect. When the

total area experiencing a change to the M2 current of >1% was calculated, there

was only a small difference in this area for rows containing 9, 10 and 13 turbines,

and in each case the area was similar to that of a single turbine. This suggests a

balance between the reduction in the size of each turbine’s wake and the increases

in the number of turbines, and therefore the total size of all wakes combined. At

blockages above ε0 ≈ 0.1 this balance was overcome and the total area of effect of

the array increases as the number of turbines in the row is increased.

The suspected explanation for this is that the model lacked the resolution to

resolve the inter-turbine bypass flow. Elements containing turbines were located

adjacent to one another, with no unoccupied element between them (Figures 5.16d

& 5.16e). This will have implications for wake recovery, leading to an over prediction

of the area of effect of the array. Higher resolution simulations will therefore be
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required in order to investigate if the two highest blockage rows also have a similar

area of effect.

The above only considers the local, or near-field effect of the row of turbines.

For example, as previously discussed, with increased blockage of the channel by

TSTs there is an increased impediment to the propagation of the tidal wave. This

will alter the times of high and low tide in the region surrounding the array [Nash

et al., 2014] which may interfere with shipping and other maritime activities in

the region. Similarly, this influence on the propagation of the tidal wave will

alter the inundation of inter-tidal zones that may surround the array [Nash et al.,

2014] and in bay / estuary systems the flushing and residence time will be affected

[Nash et al., 2014, Wang and Yang, 2017]. Outside of the subtleties of the array

effects, in general larger arrays will lead to greater attenuation of tidal currents

(e.g. O’Hara-Murray and Gallego [2017]).

As it appears the asymmetric attenuation to the currents at different locations

that leads to changes to the magnitude asymmetry the effect seen for a single

turbine may scale up simply for arrays with regional scale effects. This is supported

by the results of Thiébot et al. [2015], who concluded that the asymmetry in the

spatial distribution of current attenuation by the array as a whole led to the changes

to FVA that they saw.

The per turbine energy conversion of the turbines deployed as a line was reduced

compared to the energy conversion of a single turbine (Figures 6.6a & 6.6b). This

difference increased as the turbines were deployed closer together (Figures 6.6a

& 6.6b). This is the result of the turbines being deployed in the area of effect of

their neighbours. When deployed as a row the per turbine energy conversion was

increased compared to the energy conversion of a single turbine (Figures 6.8a &

6.8b). With the difference increasing as the row blockage increases (Figures 6.8a &

6.8b). The cause of this was touched upon previously. With increased blockage the

head difference across the row increases and the turbines convert energy from this

as well as from the current itself [Vennell, 2012, 2013]. Additionally, with increased

blockage the velocity of the bypass flow is reduced, decreasing energy lost to mixing

of the bypass flow and the wake flow [Garrett and Cummins, 2007, Vennell, 2010].

The significance of the flow asymmetry effect on overall power production
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could again be determined by comparison against natural variability. However, an

assessment of the effect on the economics of the array may be a more effective

measure. It was seen that changes to the flow velocity asymmetry due to the

addition of turbines did not significantly contribute towards the observed changes

in energy conversion over a tidal cycle in comparison to changes to the amplitude

of the current velocity (Figure 6.2). Therefore, when it comes to the optimisation

of turbine positions for maximising power production, changes to the flow velocity

asymmetry are not likely to be an important consideration.

Asymmetric power supply to the grid may be of concern. This will perhaps

be of more concern to national grid managers looking to flatten variability in

energy supply than to tidal-stream developers. Unless there is some imposed

economic penalty for variability in supply. It is at this level that the significance of

energy conversion asymmetry will be seen, especially for large numbers of turbines

connected to the grid in potentially interacting turbine arrays. This lies outside

the scope of the present work but is worthy of further consideration in future work.

7.2.3 The Implication of Hydrodynamic Changes for Sedi-

ment Transport

It was seen that the changes to the theoretically and practically extractible resource

resulting from the operation of a single TST could be predicted from the changes

to the hydrodynamics (Figures 6.2 & 6.3 respectively). Similarly, it was seen that

changes to gross and net volume of sediment transported could be predicted from

changes to the hydrodynamics (Figures 6.11–6.13). Changes to the magnitude of

the tidal current led to linear changes to the gross volume of sediment transported

per tidal cycle, by both bed- and suspended-load transport. Whilst changes to

the FVA led to changes to the net volume of sediment transported by both bed-

and suspended-load transport. To the east of the turbine, reductions to the net

volume of transported sediment were seen, whilst increases to the net volume of

transported sediment were seen to the west.

The above results can be extrapolated to the different turbine locations that

were tested in Experiment 1 of Chapter 5, with the conclusion that reduction

to the net volume of sediment transported as bed- and suspended-load will be
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seen to both sides of the turbine when it is deployed on the AS,2 = 0 contour. In

general, one might further extrapolate these conclusions to all possible patterns of

change to the FVA resulting from TST operation identified in Figure 7.2. From

this extrapolation one reaches the conclusion that:

1. augmentation to the net volume of sediment transported to the flood-wards

side of the turbine and reduction to the ebb-wards side,

2. augmentation to the net volume of sediment transported to the ebb-wards

side of the turbine and reduction to the flood-wards side,

3. augmentation to the net volume of sediment transported to both sides,

4. reduction to the net volume of sediment transported to both sides,

5. augmentation to the net volume of sediment transported downstream of the

turbine,

6. reduction to the net volume of sediment transported downstream of the

turbine,

will occur when situations leading to the corresponding six outcomes from Figure

7.2 are satisfied. In all of these cases, the gross volume of sediment transported

will be reduced in both directions for bi-directional turbines, or downstream for a

uni-directional turbine (Figure 6.11a, 6.12a & 6.13a).

The reduction to the gross volume of sediment transported and the potential

reduction to the net volume of sediment transported implies accumulation of

sediment in the vicinity of the turbine. Would such an effect be seen in reality?

Scour around marine structures is well known (e.g. McGovern et al. [2014]) and

when one considers the turbine supporting structure, which was not considered in

this work, one expects to see scour (erosion of the bed) in the vicinity of the turbine

[Chen and Lam, 2014b]. Also, when one considers the flow in three dimensions

there will be accelerated bypass flow beneath the turbine [Chen and Lam, 2014a],

accompanied by increased bed shear stress, a driver of sediment transport. The

turbine wake itself is characterised by increased turbulence [Masters et al., 2013,

Stallard et al., 2013]. Near the bed, below the wake, both the speed and vorticity
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of the flow will be increased compared to ambient conditions, leading to enhanced

erosion of the bed sediment [Vybulkova, 2013].

Martin-Short et al. [2015] found accumulation of sediment in the vicinity of an

array of turbines in the inner Sound of Stroma, Pentland Firth, Scotland. However,

the authors also raise similar points regarding the three-dimensional nature of the

flow around a turbine. In a three-dimensional simulation of energy extraction at

the same location Fairley et al. [2015] did not identify accumulation of sediment

with the array located within the inner Sound of Stroma. However, the study of

Fairley et al. [2015] looked at the cumulative extraction at multiple sites which

may contribute to this difference.

It appears Martin-Short et al. [2015] saw only FVA reduction (based on change

to residual shear stress as shown in Figure 6 of Martin-Short et al. [2015]) in the

vicinity of the array, with the array located in a region of ebb dominant flow (cf.

Figures 4 & 6 of Martin-Short et al. [2015] and Figure 11 of Fairley et al. [2015]

for indication of array location in flood dominant region). Due to the complex

pattern of residual flow in the region, the tide is flood-dominant ebb-wards of the

array location (approximately west), and ebb dominant flood-wards of the array

location (approximately east) (Figure 6 of Martin-Short et al. [2015]). Hence, one

would expect reduced asymmetry, and therefore reduced residual bed shear stress

either side of the array, given the discussion of §7.2.1 and §7.2.2. Martin-Short

et al. [2015] take this as an indicator of increased sediment deposition.

It is interesting to note here the different apparent changes to the FVA between

the works of Martin-Short et al. [2015] and Thiébot et al. [2015] with the turbine

arrays deployed in differing ambient FVA conditions. The differences fit with

the predictions made in Figure 7.2. Thus, with an understanding of this simple

mechanism for the change to the FVA and knowledge of the ambient asymmetry

conditions, the effect of an array of turbines on the asymmetry may be broadly

predictable prior to simulation or measurement of the effect. A detailed under-

standing of the spatial distribution of change to the FVA will required simulation

to determine, especially at real-world sites with complex bathymetries. Likewise,

an understanding of the morphodynamic implications of any changes will also

require that simulations are undertaken. However, it will certainly be helpful when
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analysing the results of simulations to know roughly what changes to expect.

7.3 Limitations of the Work

It was concluded above that it is the attenuation of one phase of the tide (and not

the other) within the wake that leads to the change to the magnitude asymmetry.

Given this, it is therefore important that the wake is represented in the model

as accurately as possible. A blade element momentum theory or actuator line

representation of the turbine rather than an actuator disk representation would

result in a more realistic turbine wake (e.g. Masters et al. [2013] and Churchfield

et al. [2011] respectively). However, these turbine representations both require

much higher mesh resolution and therefore computational power.

Roc et al. [2013] proposed the addition of source and sink terms to the turbulence

closure scheme in a coastal model for more accurate representation of a turbine wake.

With a code that incorporates the method of Roc et al. [2013] the experiments in

this thesis could be repeated with better representation of a TST with relative ease.

The code used for this work, DHI’s MIKE, is a commercial ‘blackbox’ code, thus a

different code is required, such as ROMS [Shcheptkin and McWilliams, 2005], the

code which Roc et al. [2013, 2014] originally used, or FVCOM [Chen et al., 2003],

a code in which the Roc et al. [2013] turbine representation been has successfully

implemented (e.g. Li et al. [2017]).

Ultimately one might question the benefits of a more complex model without

sufficient observational data to validate the model. Future efforts with respect to the

effect of a turbine on tidal asymmetry may be better focused on measurements in

nature. However, the prohibitive cost and commercial sensitivity of data may mean

such work is not practical at the present stage of development of the tidal-stream

industry.

In the multiple turbine experiments (Chapter 5) maintaining a uniform element

size across the turbine deployments was important, especially when results were

presented as profiles (Appendix F). Initially the experiments were intended to be

carried out using a uniform square grid, which would have maintained the uniformity

of the grid size across the domain. In the model sensitivity tests (Chapter 3) when
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using such a grid there was a large change in the turbine run at the boundary

(Figure 3.21). It appeared the effect of the turbine was largely contained within

a single element width along the channel. A similar effect was seen by Waldman

[2018] in MIKE3. Therefore, the structured grid was abandoned in favour of an

unstructured grid, which was seen in Chapter 3 to significantly reduce the effect of

the turbine at the boundary (Figure 3.22).

Waldman [2018] took a different approach to the problem and nested a structured

mesh for the region of turbine deployment within and unstructured mesh for the

remaining domain. Such an approach may be more favourable than the use of a

purely unstructured mesh and the work that would be required to ensure that all

triangular elements that contain turbines are uniform. The differences in the two

approaches could be explored in future work.

In the row experiment, the model mesh lacked the resolution to resolve the

bypass flow between turbines, which may have led to the overprediction of the area

of effect of the higher blockage rows. The mixed structured and unstructured mesh

approach discussed above could also be applied to the row experiment, with the

unstructured mesh of high enough resolution to resolve the inter-turbine regions,

and therefore the turbine bypass flow. Future work should look to repeat the row

experiment with such a model set-up.

Additionally, the row blockage was altered by adding additional turbines to the

row. In doing this the distance between the turbines was reduced. In the interest

of completeness, a further experiment could have been undertaken to establish the

effect of the spacing between the turbines. The physical modelling study of Stallard

et al. [2013] suggests that for a spacing of 3D, turbine wakes act individually,

whereas at spacings of 2D or less the wakes begin to merge. A future numerical

study could be compared against these physical modelling results.

Further to the above, uncertainty surrounding the representation of a single

turbine by the model casts doubt over the results obtained for multiple turbines.

These doubts could be reduced by increasing the confidence in the single turbine

results. This could be achieved through comparison of the wake effects of a single

turbine against physical modelling results (better still against observations but

these are not available at the time of writing). As part of any future work a steady
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flow simulation of a turbine wake should be compared against physical experiment

results using actuator disks, e.g. Myers and Bahaj [2010].

The sediment transport experiments that were undertaken lack the detail

required to give an accurate picture of the morphodynamic change one might

expect in the presence of an operational tidal turbine. The model was run for just

4 days and the boundary was forced only by the M2 tide. As a two-dimensional

model the slipstream below the turbine is not represented and the turbulence of the

turbine wake may not be adequately represented. The simulations of Vybulkova

[2013] show in fine detail the expected changes to the local sediment transport

associated with the operation of a tidal turbine, with the rotating blades of the

turbine and the associated turbulence resolved.

However, a detailed study of the changes to the sediment transport with view

to understanding local erosion and accretion patterns was not the goal of this

experiment. The goal was to establish if a predictable link between the change

to the asymmetry in the current and any changes in net transport exists. This

goal was met. However, in a more complex bathymetry, one more representative of

reality the link may be more tenuous and less predictable. Thus, the simple linear

trend identified should be treated with caution until a comparison in made in a

more complex, realistic bathymetry.

The results from the experiments showed that for the grain-sizes used, suspended-

load transport dominated the total load transport. However, in the experiment

the initial condition for suspended load sediment concentration was zero, and no

suspended sediment was input at the boundaries. Model sensitivity tests, where

the effect of these settings, and for example the choice of sediment transport model

e.g. Engelund and Fredsøe [1976], should be carried out to check the sensitivity of

the model predictions to the user’s choice of these settings.

More generally, the specific values of the grain-sizes that were tested were based

on the Wentworth [1922] scale and the range of values was based on the range over

which the van Rijn [1984a,b] sediment transport model is applicable. A uniform

bed of fine, medium or even coarse sand is unlikely to be found at the kind of high

energy site of interest for tidal energy development. For example, at the Holyhead

Deep site, of interest to the tidal energy developer Minesto, Potter [2014] undertook
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sediment grab samples of the site. The 13 sediment grab samples classified the bed

(following Wentworth [1922]) as either exposed bedrock (2/13), gravel (9/13) or

very coarse sand (1/13), with the lowest d50 = 1.5 mm. The study of Fairley et al.

[2015] ascribed much of the area of the Pentland Firth a grain size classifying it

as coarse sand or fine / very fine gravel, with regions of finer sand and exposed

bedrock (Figure 5, Fairley et al. [2015]). Gillou and Thiébot [2016] describe the

seabed of the Fromveur Strait and wider Moléne archipelago as being comprised of

successive sections of gravel deposits in a region of exposed bed rock (see Figure 2,

Gillou and Thiébot [2016]). These examples highlight both the heterogeneity of the

bed sediments at high energy tidal sites as well as the presence of swept bedrock.

The M2 current range of ∼2.8–3.8 m/s seen in the model (Figure 4.1) is similar

to the M2 current values at Moléne archipelago [Gillou and Thiébot, 2016], slightly

larger than the range of current values seen at Holyhead Deep (e.g. Lewis et al.

[2017]) and within the range of current values seen in the Pentland Firth (e.g.

Waldman et al. [2017]). Therefore, a more realistic model design would have a

bed sediment distribution more reflective of these sites. The issue here is that the

van Rijn [1984a,b] sediment transport model is not appropriate for such coarse

sediments. An approach similar to Martin-Short et al. [2015] could be used, where

the thresholds of sediment motion and the bed shear stress is used as a proxy

for expected changes to sediment transport, rather than a full sediment transport

model.

In the compound tide experiment (§4.4), the multiple turbine experiments

(Chapter 5) and the sediment transport experiment (§6.3) only the fixed-CT turbines

were studied. The variable-CT turbine is a more realistic representation of a real-

world TST. Thus, the accuracy of these experiments would all be improved by

also looking at the changes due to this type of turbine in addition to the fixed-CT

turbine.

The methodology of using changes tidal harmonic constituents to represent

changes to asymmetry has been successful in the experiments presented in this

thesis. However, the presented experiments are physically simple; the bathymetry

as simple as possible and the model for the most part forced by only the single most

important tidal frequency, the M2. In the experiment where a second constituent
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was added the methodology required modification to account for the increased

non-linearity this simple change introduced (Chapter 4, Section 4.4.2). In nature

the number of harmonic constituents that would be needed in the analysis for an

accurate description of the asymmetry and its temporal variation may be prohibitive.

In such a non-linear environment a method involving taking the skewness of a

sufficiently long time-series, coupled with harmonic analysis of the time-series, such

as those outlined in Section 2.3 may be more favourable.
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Chapter 8

Conclusion & Future Work

The main goal of this work was to understand how the operation of tidal-stream

turbines alters the flood-ebb asymmetry of tidal currents. Emphasis was put

on understanding this problem through changes to the shallow-water tides, and

consideration was given to the potential effect of observed changes for sediment

transport and the technically exploitable resource of neighbouring turbines. For this

investigation harmonic expansions of the non-linear terms in the governing equations

were first considered to determine which shallow-water tides might be affected.

Numerical experiments were then undertaken to simulate turbine operation in a

highly idealised model geometry, to gain a more detailed understanding of the

changes to these tides. The effect of a single turbine and multiple turbines with

fixed or variable turbine efficiencies was explored in a channel forced by either

the M2 tide only, or by both the M2 and S2 tides. Also tested was the effect of

a turbine in various ambient conditions, and the effect of a turbine on sediment

transport rates. The conclusions drawn from this work are discussed in §8.1, and

recommendations on how this work may be expanded and potential future work

are discussed in §8.2.

8.1 Conclusions

The most fundamental result of this work is the understanding of the way in which

the turbine alters the flood-ebb magnitude asymmetry of the current that is gained

from the simple numerical experiments for a single turbine. This change to the
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current magnitude asymmetry can be explained by the flood-ebb asymmetry in

the areas experiencing current attenuation over a tidal cycle. This result is far

simpler than the suggested origin of changes to the current magnitude asymmetry

hypothesized at the outset of this work. Namely the non-linear interaction of the

turbine with the tide. However, these non-linear interactions may still contribute

to the observed changes to the asymmetry, but it is the mechanism described

above which appears to be the dominant mechanism by which turbines alter the

asymmetry. The simplicity of the mechanism makes it scalable to arrays of turbines

with far-field effects. Thus, prior to modelling, one might broadly predict the effect

that the turbine will have on asymmetry prior to detailed modelling, provided one

has prior knowledge of the ambient asymmetry conditions and flow directions at

the intended site.

A simple link between the observed changes to the surrounding technically

exploitable resource and the changes to the hydrodynamics by the turbines was

observed. The overall reduction to the current was the primary driver of reduced

available practical resource surrounding a turbine, rather than changes to the

asymmetry. The changes to the current asymmetry do lead to changes to the

flood-ebb asymmetry in the available resource. Similarly, the overall reduction to

the current led to a reduction to the gross volume of sediment transported, and the

changes to the current asymmetry altered the net volume of sediment transported.

In all the above cases the knock-on changes were greater than the hydrodynamic

changes. A 1% reduction to the current magnitude led to a ∼3% reduction to

the theoretically available energy and a ∼4% reduction in the gross volume of

sediment transported as bed-load and suspended load per tidal cycle. A 1% change

to the current asymmetry led to a ∼2% change to the flood-ebb asymmetry of the

theoretically available energy and a ∼6% change to the net bed-load transport.

There was a linear trend between the hydrodynamic changes and the knock-on

effects.

When multiple turbines were deployed in the channel, their effects were seen to

combine where their areas of effect overlapped. Therefore, when deployed as a line

each turbine converted less energy per tidal cycle and caused greater hydrodynamic

changes than had it been deployed individually. The effect the turbine interactions
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had on the asymmetry in the energy conversion depended on where in the array

the turbine was located. When multiple turbines were deployed in a row, and

therefore not within the area of effect of their neighbours, the peak changes caused

by each of the turbines were reduced compared to an individual turbine. The area

of effect of rows containing 9, 10 and 13 turbines was similar to the area of effect

of a single turbine. For denser rows however, the area of effect increased with

additional turbines. The per turbine energy conversion per tidal cycle was greater

when the turbines were deployed in rows, compared to an individual turbine, with

slightly increased, ∼5%, asymmetry in the energy conversion.

8.2 Recommendations for Future Work

In the previous chapter the limitations of the work described in this thesis were

considered (§7.3). A number of expansions of, or improvements to this work could

be made in order to address these limitations.

The turbine row experiment could be expanded so that small numbers of

turbines, e.g. 2, 3, 4, are deployed in the channel with large spacings, as very low

blockage rows are not represented in the present experiment. A more complete

experiment might add a single turbine at a time to the row, increasing the number

of turbines from 1 to 26. Future work examining arrays of turbines should ensure

the mesh is designed in such a way that the elements occupied by turbines are

uniform in size. The turbine row experiment should also be accompanied by a

study of the effect of the across channel inter-turbine spacing on the hydrodynamic

changes by the turbines, as the row experiment in this work varies both blockage

and inter-turbine spacing simultaneously.

All experiments that were performed in this work might be improved by the mesh

refinements suggested above, and the use of an improved turbine representation.

The experiments which tested only a fixed-CT should be expanded to also examine

the effect of variable-CT , in particular arrays of variable-CT turbines.

The most obvious avenue for the continuation of this work is to investigate the

changes to asymmetry for a real-world site, and array. This could be achieved by

performing additional analysis of simulations already discussed in the literature, or
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through a new modelling study. Analysis of the changes to the current asymmetry

across a range of sites with a range of ambient asymmetry conditions should be

undertaken to fully test all of the predictions made in this thesis.

A potentially interesting avenue of further study would be to look at the effect

of tidal-stream turbines on the tidal asymmetry in an estuarine or tidal inlet system,

rather than a channel. In an estuarine system the inundation of the intertidal

zones impacts on the flood-ebb asymmetry of the tides. Previous work has found

that energy extraction in estuaries can alter the inundation of inter-tidal zones.

This alteration to the inundation of the inter-tidal zones may have implications for

the asymmetry in both the vertical (change in surface elevation) and horizontal

(associated currents) tides.

Finally, beyond improvements to this work specifically field observations of the

impacts of tidal-stream turbines are needed. This will help to validate this and

other work and is perhaps the most important avenue of future work within the

topic of the impacts of tidal-stream energy.
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Appendix A. Derivation of the Governing Equations

Appendix A

Derivation of the Governing

Equations1

Consider a fluid. Each point within the fluid may be described by the position

vector:

r = xx̂+ yŷ + zẑ (A.1)

At each point, r, at a time t, the fluid has the mass density ρ(r, t), where ρ(r, t) ≥ 0

for all r and t. Now consider an infinitesimal element of the fluid with mass dM

and volume dV at the point r and the time t, these will be such that:

dM = ρ(r, t)dV (A.2)

The element is acted on by both body forces, which act on the entire element, and

contact forces, which act across only the surfaces of the element. The body force

acting on the element is:

dF body = f
body

(r, t)dV (A.3)

where f
body

is the body force density, and the contact force acting across a surface

of the element dS, with normal n is:

1The derivation of the Navier-Stoke equations in this section follows closely notes taken from

the from the ‘Physics of Fluids’ lecture course (PHYS323) given by Dr Jonathan Gratus at

Lancaster Universtity.
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dF n
contact = fn

contact
(A.4)

where fn

contact
is the contact force per unit area acting across dS. The total force,

dF total on the element is:

dF total = dF body +

NS∑
i

dF
ni
contact (A.5)

where Ns is the total number of surfaces of the element.

According to Newton’s second law, the rate of change of linear momentum of

the element equals the force on the element:

d

dt
(vdM) = dF body +

NS∑
i

dF
ni
contact (A.6)

where v = v(r, t) is the velocity of the element. According to Newton’s third law,

the contact forces across adjoining faces of neighbouring elements cancel. This

leaves only the sum of the outer surfaces of the fluid, ∂V , for a fluid of total volume

V . The global equation of momentum balance is therefore:

d

dt

∫
V

ρv dV =

∫
V

f
body

dV +

∫
∂V

fn

contact
dS (A.7)

A fundamental principle of nature is that of mass conservation. Applying this

principle to the fluid under consideration yields:

d

dt

∫
V

ρ(r.t) dV =

∫
V

∂ρ

∂t
dV +

∫
∂V

ρv · n dS = 0 (A.8)

By application of the divergence theorem:

∫
V

∇ · v dV =

∮
∂V

v · n dS (A.9)

equation (A.8) becomes:

∫
V

(
∂ρ

∂t
+∇ · (ρv)

)
dV = 0 (A.10)

which is true for all V , therefore:
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∂ρ

∂t
+∇ · (ρv) = 0 (A.11)

which is the continuity equation.

The only body force that will be considered to be acting on the fluid in question

will be gravity. The body force density due to gravity is:

f
body

= ρg (A.12)

where g = g(r, t) is the vector field describing gravitational acceleration. Contact

forces are comprised of two components, a shear force, fn

shear
, tangential to the

surface, and a pressure force, fn
pressure

, normal to the surface:

fn

contact
= fn

shear
+ fn

pressure
(A.13)

The pressure force density is given by:

fn

pressure
= −p(r, t)n (A.14)

where p(r, t) is pressure, a scalar field. The total pressure force is then:

dF n
pressure =

∫
∂V

(−p(r, t)n) dS (A.15)

which, by equation (A.9) (the divergence theorem), becomes:

dF n
pressure = −

∫
V

∇p dV (A.16)

Applying equation (A.13) to equation (A.7), one arrives at:

d

dt

∫
V

ρv dV =

∫
V

f
body

dV +

∫
∂V

fn

shear
dS +

∫
∂V

fn

pressure
dS (A.17)

Similar to the steps shown in equations (A.8)–(A.10), (A.17) becomes:

∫
V

ρ

(
∂v

∂t
+ (v · ∇)v

)
dV =

∫
V

f
body

dV +

∫
∂V

fn

shear
dS +

∫
∂V

fn

pressure
dS (A.18)
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Substituting (A.12) and (A.16) into (A.18), and applying the divergence theorem,

(A.9), to the shear term in (A.18) gives:

∫
V

ρ

(
∂v

∂t
+ (v · ∇)v

)
dV =

∫
V

ρg dV +

∫
∂V

fn

shear
dS −

∫
V

∇p dV (A.19)

If the concept of viscosity is now introduced, i.e., a measure of the fluid’s resistance

to a shear force, and the fluid is assumed to be a Newtonian fluid (viscosity remains

constant regardless of the applied shear force or temperature), then Newton’s law

of viscosity can be applied:

f
shear

= µ
du

dy
x̂ (A.20)

for a fluid element moving with velocity v = ux̂, where µ is the coefficient of

viscosity. The shear force acts on the x-y plane who’s normal, n, is in the ẑ

direction. On this surface, (A.20) can be written:

f
shear

= µn · (∇u)x̂ (A.21)

Substituting (A.21) into (A.19):

∫
V

ρ

(
∂v

∂t
+ (v · ∇)v

)
dV =

∫
V

ρg dV + µx̂

∫
∂V

(∇u) · n dS −
∫
V

∇p dV (A.22)

Applying the divergence theorem, (A.9), to (A.22) gives:

∫
V

ρ

(
∂v

∂t
+ (v · ∇)v

)
dV =

∫
V

ρg dV + µ

∫
V

∇2v dV −
∫
V

∇p dV (A.23)

This holds for all V , therefore:

∂v

∂t
+ (v · ∇)v = g + ν∇2v − 1

ρ
∇p (A.24)

where ν = µ/ρ is the kinematic viscosity.

If the fluid in question is a body of water within a basin on the Earth, the

observer may want to consider (A.24) from a frame of reference stationary with
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respect to the Earth, i.e. rotating with the same angular velocity as the Earth, Ω.

If one rewrites (A.24) as:

Dv

dt
= g + ν∇2v − 1

ρ
∇p (A.25)

where

D

dt
=

(
∂

∂t
+ v · ∇

)
(A.26)

is the convective derivative. In a rotating frame of reference:

(
DvI
dt

)
I

=

(
DvR
dt

)
R

+ 2Ω× vR + Ω×Ω× r (A.27)

where a subscript I and R denote the inertial and rotating frames of reference

respectively, and Ω is the angular velocity field of the Earth. The second term on

the r.h.s. is the Coriolis force, and the third term the Centrifugal force. Substituting

(A.27) into (A.25) and combining the centrifugal and gravity terms (both ‘forces’

act along the axis perpendicular to the axis of rotation), gives:

Dv

dt
+ 2Ω× v = −1

ρ
∇p+ g̃ + ν∇2v (A.28)
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Appendix B

Derivation of Turbine Term1

Consider a fluid at rest, so that fn

shear
= 0, and equation (A.13) reduces to:

fn

contact
= fn

pressure
= −pn dS (B.1)

The total force on the fluid must be zero for the fluid to be at rest, thus:

∫
V

f
body

dV −
∫
∂V

pn dS = 0 (B.2)

Which is the global equation of hydrostatic equilibrium. By application of the

divergence theorem, (A.9), this becomes:

∫
V

f
body

dV −
∫
V

∇p dV = 0 (B.3)

Which leads to the local equation of hydrostatic equilibrium:

f
body
−∇p = 0 (B.4)

Applying (A.12) to (B.4) gives:

ρg −∇p = 0 (B.5)

If g is independent of x and y, which will be assumed to be the case, then so too is

the pressure. This reduces (B.5) to:

1In this section, the discussion surrounding streamlines again closely follows notes taken from

the ‘Physics of Fluids’ (PHYS323) lecture course given by Dr Jonathan Gratus at Lancaster

University.
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∂p

∂z
+ ρg = 0 (B.6)

[g = −gẑ] where g is the acceleration due to gravity. Equation (B.6) is solved

by integrating over z, which, taking the pressure at the water surface to be the

atmospheric pressure, pa, gives:

p0 = −ρgz + pa (B.7)

Which is the hydrostatic pressure. Assume the existence of a fluid, for which:

fn

contact
= −p0n (B.8)

holds when the fluid is in motion. Such a fluid is an ideal fluid (i.e. no shear force

when in motion). For such a fluid, from the global equation of momentum balance,

(A.18), we arrive at the Euler equation:

ρ
Dv

dt
= −∇p0 + ρg (B.9)

The additional condition, that the volume of the fluid does not change with time

(i.e. the fluid is incompressible), will be imposed:

d

dt

∫
V

dV = 0 (B.10)

Using the convective derivative in (B.10) gives:

d

dt

∫
V

dV =

∫
V

∇ · v dV (B.11)

Since (B.11) must hold for all V :

∇ · v = 0 (B.12)

which is the local equation of incompressibility. Comparing (B.12) with the

continuity equation, (A.11), implies that the density is constant, ρ = ρ0.

For a steady flow, fluid particles follow streamlines. If a fluid particle were to,

by some means, leave a trail behind it, then the path it traces is the streamline.

Mathematically, the streamline, r(t), is the solution to the equation:
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dr(t)

dt
= v(r(t)) (B.13)

Now, for an ideal, incompressible fluid, in a steady flow, the governing equations

are:

∇ · v = 0 (B.14)

ρ0(v ·∇)v = −∇p0 + ρ0g (B.15)

Introducing the potential gravity, Φ, where:

g = −∇Φ (B.16)

and the identity:

(∇ · v)v = (∇× v)× v +∇
(

1

2
|v|2
)

(B.17)

equation (B.15) may be written:

(∇× v)× v = −∇
(
p0

ρ0

+ Φ +
1

2
|v|2
)

(B.18)

The Bernoulli field, H, will now be introduced:

H =
1

2
|v|2 +

p0

ρ0

+ Φ (B.19)

Therefore:

(∇× v)× v = −∇H (B.20)

→ v · [(∇× v)× v] = −v ·∇H (B.21)

Using the identity:

A · (B ×C) = B · (A×C) = C · (A×C) (B.22)

(B.21) becomes:
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(∇× v) · (v × v) = −v ·∇H (B.23)

however, v × v = 0, so (B.23) becomes:

v ·∇H = 0 (B.24)

The value of H(r) on the streamline r(t) is H(r(t)), therefore, using the convective

derivative:

d

dt
H(r(t)) =

dr(t)

dt
·∇H (B.25)

Applying (B.13) to (B.25) gives:

d

dt
H(r(t)) = v ·∇H (B.26)

However, given (B.24), (B.26) becomes:

d

dt
H(r(t)) = 0 (B.27)

which is Bernoulli’s theorem. This implies that the H function for a steady flow of

an incompressible, ideal fluid is constant along streamlines.

The idea of a streamline will now be extended to a streamtube. For a streamline,

there is no flow across the line, a stream tube will be a long cylinder with a

boundary comprised of streamlines so there is no flow across the boundary of the

streamtube.

Consider now a turbine in the flow, and assume that the fluid upstream and

downstream of the turbine, affected by the turbine remains separate from the fluid

that is not affected, then a streamtube can be formed surrounding the former. As

the fluid is incompressible, as the speed of the fluid reduces, the cross-sectional

area of the stream tube must expand. As the flow approaches the turbine it slows,

if the potential gravity remains constant, then to compensate for the reduced

velocity there is an increase in pressure (B.19), as no work has yet been done by

the turbine. Due to the decrease in the velocity there will also be an expansion of

the streamtube.
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When the fluid passes through the turbine there is a designed drop in pressure,

below the ambient pressure. The fluid downstream has a reduced velocity and

pressure (same Φ), implying a reduction in energy, due to the turbine. This

downstream flow is the wake. Far downstream the pressure returns to ambient

levels.

In order to quantify the momentum reduction due to the turbine a conceptual

tool known as an actuator disk will be employed. An actuator disk is a theoretical,

infinitely thin, permeable disk with an area equal to the swept area of the turbine,

Ad. As with the turbine above, the streamtube up-stream of the disk will have a

cross-sectional area A∞ < Ad, and Aw > Ad in the wake. The mass flow rate must

be conserved within the stream tube, therefore:

ρ0A∞u∞ = ρ0Adud = ρ0Awuw (B.28)

where the subscripts ∞, w and d refer to far-up-stream, at the disk and the wake

respectively. The velocity at the disk is given by [Burton et al., 2001]:

ud = u∞(1− a) (B.29)

where a is the axial induction factor, i.e. the fractional reduction in flow velocity.

The fluid passing through the disk experiences a reduction in velocity. The change

in momentum is given by:

ρ0
du

dt
= (u∞ − ud)ρ0Adud (B.30)

The force causing the momentum change results from the pressure drop across the

disk:

Fd = (p+
d − p

−
d )Ad = (u∞ − uw)ρ0Adu∞(1− a) (B.31)

where the superscript + and – denote the pressure just up-stream and down-steam

of the disk. From (B.19):

1

2
ρ0u

2 + p+ ρ0gz = const. (B.32)

Upstream of the disk, for horizontal flow:
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1

2
ρ0u

2
∞ + p∞ =

1

2
ρ0u

2
d + p+

d (B.33)

similarly, downstream of the disk:

1

2
ρ0u

2
w + p∞ =

1

2
ρ0u

2
d + p−d (B.34)

Subtracting (B.34) from (B.33):

(p+
d − p

−
d ) =

1

2
ρ0(u2

∞ − u2
w) (B.35)

applying this to (B.31) gives:

1

2
ρ0(u2

∞ − u2
w)Ad = (u∞ − uw)ρ0Adu∞(1− a) (B.36)

and therefore:

uw = (1− 2a)u∞ (B.37)

The force exerted on the disk by the flow, and therefore on the flow by the disk (by

Newton’s 3rd law of motion) is given by substituting (B.37) and (B.35) into (B.31):

Fd = (p+
d − p

−
d )Ad = 2ρ0Adu

2
∞a(1− a) (B.38)

A thrust coefficient will be defined by non-dimensionalising (B.38) by a force on

the same area in a flow with no actuator disk:

CT =
Fd

1
2
ρ0Adu2

∞
(B.39)

→ CT = 4a(1− a) (B.40)

The force exerted on the flow by the actuator disk, representing a turbine, is:

FT = −1

2
ρ0CT δTv|v| (B.41)

where,

NT∑
i=1

∫
V

δiT dV = NA (B.42)

251



Appendix B. Derivation of Turbine Term

where the subscript d has been dropped, so A is the turbine swept-area, and N is

the number of turbines. In (B.41) the minus sign represents the turbine acting on

the flow, the horizontal velocity component has been replaced with the velocity

vector, and finally the modulus has been included to preserve the directionality

of the force. The delta-function employed in (B.41) implies that the turbine force

only exists in the presence of a turbine.
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Appendix C

One-Dimensional Form of the

Governing Equations

In Appendix A the Navier-Stokes equations were derived, consisting of a momentum

equation, (A.28), and a continuity equation, (A.11). Both these equations will be

reduced to a one-dimensional (1D) form. However, first the momentum equation

will be modified to include the effect of tidal turbines (B.41), as derived in Appendix

B:

Dv

dt
+ 2Ω× v = − 1

ρ0

∇p+ g̃ + ν∇2v − 1

2
δTCTv|v| (C.1)

The following steps towards the 1D equations closely follows those of Parker [1984],

Appendix A, with the addition of the turbine momentum sink.

To deal with turbulent motion the velocity will be decomposed into mean and

fluctuating parts, along with the pressure:

v = v + v′ (C.2)

p = p+ p′ (C.3)

where an overbar denotes the mean and a prime the fluctuation. Substituting (C.2)

and (C.3) into (C.1) gives:
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∂

∂t
(v + v′) + (v + v′) · ∇(v + v′) + 2Ω× (v + v′) = −1

ρ
∇(p+ p′) + g̃

+ ν∇2(v + v′)− 1

2
δTCT (v + v′)|(v + v′)| (C.4)

The temporal average of the fluctuating part of the fluid motion is zero. So, taking

the temporal average and writing the momentum equation for each Cartesian

coordinate one gets:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p

∂x
−
(
∂

∂x
(u′u′ +

∂

∂y
u′v′ +

∂

∂z
u′w′

)
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
− 1

2
δTCTu|u| (C.5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p

∂y
−
(
∂

∂x
v′u′ +

∂

∂y
v′v′ +

∂

∂z
v′w′

)
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
− 1

2
δTCTv|v| (C.6)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂x
+ g −

(
∂

∂x
w′u′ +

∂

∂y
w′v′ +

∂

∂z
w′w′

)
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
− 1

2
δTCTw|w| (C.7)

where f = 2Ω sinϕ is the Coriolis frequency, ϕ is latitude, u, v and w are the

x, y and z components of the velocity field. The averaged pairs of fluctuating

velocities are interpreted as turbulent stresses. For flows of high Reynolds number,

the viscous stresses (second last terms r.h.s.) can be neglected relative to these

turbulent stresses.

The pressure can be decomposed into the hydrostatic pressure and the pressure

resulting from fluid motion:

p(r, t) = phydrostatic + pmotion = −ρgz + p̃(r, t) (C.8)

Applying (C.8) to equations (C.5)–(C.7) and assuming a high Reynolds number

flow gives:
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p̃

∂x
−
(
∂

∂x
u′u′ +

∂

∂y
u′v′ +

∂

∂z
u′w′

)
− 1

2
δTCTu|u| (C.9)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p̃

∂y
−
(
∂

∂x
v′u′ +

∂

∂y
v′v′ +

∂

∂z
v′w′

)
− 1

2
δTCTv|v| (C.10)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p̃

∂x
−
(
∂

∂x
w′u′ +

∂

∂y
w′v′ +

∂

∂z
w′w′

)
− 1

2
δTCTw|w| (C.11)

It will be assumed that the body of fluid under consideration is well-mixed sea-water

in a channel, acted upon only by tidal forces. This will allow the assumption of

uniform density (due to the fluid being well mixed) to be made, which reduces

equation (A.11) to:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (C.12)

It will also be assumed that characteristic length, velocity and time scales exist:

• a vertical length-scale, D0, characterised by a mean/representative basin

depth,

• a lateral length-scale, B0, characterised by a mean/representative basin width,

• a longitudinal length-scale, L0, characterised by basin length,

• velocity scales, U0, V0 and W0, in the longitudinal, lateral and vertical,

• a pressure scale for the tidal motion, P0,

• and a time scale, T0, characterised by the tidal period.
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Scales for the turbulent motion, L′0, B′0, D′0, U ′0, V ′0 and W ′
0, are also assumed to

exist.

Equation (C.12),

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (C.12)

therefore scales as follows:

U0

L0

(+)
V0

B0

(+)
W0

D0

(= 0) (C.13)

From which one arrives at:

V0 ∼
U0B0

L0

(C.14)

W0 ∼
U0D0

L0

(C.15)

Likewise, the turbulent equivalents to (C.14) and (C.15) are:

V ′0 ∼
U ′0B

′
0

L′0
(C.16)

W ′
0 ∼

U ′0D
′
0

L′0
(C.17)

Equation (C.9),

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p̃

∂x

−
(
∂

∂x
u′u′ +

∂

∂y
u′v′ +

∂

∂z
u′w′

)
− 1

2
δTCTu|u| (C.9)

scales like:

U0

T0

(+)
U2

0

L0

(+)
U0V0

B0

(+)
U0W0

D0

(−) fV0 (= −)
P0

ρL0

(+)
U
′2
0

L0

(+)
U ′0V

′
0

B0

(+)
U ′0W

′
0

D0

(−) NR2CTU
2
0 (C.18)

where R is the radius of the turbines. Dividing (C.18) through by U2
0/L0 and

substituting in the Strouhal number, S0 = L0/(U0T0) = C0D0 (where C0 =
√

(gD0)
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is the characteristic wave propagation velocity), the Rossby number, R0 = U0/(fL0),

and equations (C.14), (C.15), (C.16) and (C.17) gives:

S0 (+) 1 (+) 1 (+) 1 (−)
B0

R0L0

(= −)
P0

ρU2
0

(−)

(
U ′0
U0

)2

(−)
U
′2
0 L0B

′
0

U2
0B0L′0

(−)
U
′2
0 L0D

′
0

U2
0D0L′0

(−) NR2CTL0 (C.19)

Likewise, (C.10),

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p̃

∂y

−
(
∂

∂x
v′u′ +

∂

∂y
v′v′ +

∂

∂z
v′w′

)
− 1

2
δTCTv|v| (C.10)

scales like:

V0

T0

(+)
U0V0

L0

(+)
V 2

0

B0

(+)
V0W0

D0

(+) fU0 (= −)
P0

ρB0

(−)
V ′0U

′
0

L0

(−)
V
′2

0

B0

(−)
V ′0W

′
0

D0

(−) NR2CTV
2

0 (C.20)

which becomes:

S0
B0

L0

(+)
B0

L0

(+)
B0

L0

(+)
B0

L0

(+)
1

R0

(= −)
P0L0

ρB0U2
0

(−)
U
′2
0 B

′
0

U2
0L
′
0

(−)
U
′2
0 B

′2
0 L0

U2
0B0L

′2
0

(−)
U
′2
0 B

′
0D
′
0L0

U2
0D0L

′2
0

(−)
NR2CTB

2
0

L0

(C.21)

And (C.11):

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p̃

∂x

−
(
∂

∂x
w′u′ +

∂

∂y
w′v′ +

∂

∂z
w′w′

)
− 1

2
δTCTw|w| (C.11)

scales like:

U0D0

T0L0

(+)
U2

0D0

L2
0

(+)
U2

0D0

L2
0

(+)
U2

0D0

L2
0

(= −)
P0

ρL0

(−)
U
′2
0 D

′
0

L0L′0
(−)

U
′2
0 B

′
0D
′
0

B0L
′2
0

(−)
U
′2
0 D

′2
0

D0L
′2
0

(−)
NR2CTU

2
0D

2
0

L2
0

(C.22)
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which becomes:

S0
D0

L0

(+)
D0

L0

(+)
D0

L0

(+)
D0

L0

(= −)
P0

ρL0

(−)
U
′2
0 D

′
0

U2
0L
′
0

(−)
U
′2
0 B

′
0D
′
0L0

U2
0B0L

′2
0

(−)
U
′2
0 L0D

′2
0

U2
0D0L

′2
0

(−)
NR2CTD

2
0

L0

(C.23)

A number of assumptions will be made, in order to simplify equations (C.9), (C.10),

and (C.11), firstly, it will be assumed that the depth length-scale is much shorter

than both the length and width length-scales, i.e.:

D0 � L0 (C.24)

D0 � B0 (C.25)

which is the shallow-water approximation. From (C.24) one can see that D0/L0 � 1.

With this in mind, consider the last but one terms in (C.19) and (C.21), these terms

will dominate the turbulent stress terms. Equations (C.9) and (C.10) therefore

become:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p̃

∂x
− ∂

∂z
u′w′ − 1

2
δTCTu|u| (C.26)

S0 (+) 1 (+) 1 (+) 1 (−)
B0

R0L0

(= −)
P0

ρU2
0

(−)
U
′2
0 L0D

′
0

U2
0D0L′0

(−) NR2CTL0 (C.27)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p̃

∂y
− ∂

∂z
v′w′ − 1

2
δTCTv|v| (C.28)

S0
B0

L0

(+)
B0

L0

(+)
B0

L0

(+)
B0

L0

(+)
1

R0

(= −)
P0L0

ρB0U2
0

(−)
U
′2
0 B

′
0D
′
0L0

U2
0D0L

′2
0

(−)
NR2CTB

2
0

L0

(C.29)
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With D0/L0 � 1 again in mind consider (C.23), all terms on the l.h.s. will be

considered small and neglected. The vertical turbulent stress term will again

dominate the horizontal terms. However, relative to the remaining turbulent stress

terms in (C.26) and (C.28), this term will be considered small, and therefore

neglected, likewise with the turbine term. This reduces (C.11) to:

0 = −1

ρ

∂p̃

∂z
(C.30)

Applying (C.8) to (C.30) and integrating w.r.t z, results in the hydrostatic equation:

p = −ρg(η − z) + pa (C.31)

where η is the elevation of the water surface. If the atmospheric pressure is assumed

constant then differentiating (C.31) w.r.t. x and y yields:

1

ρ

∂p̃

∂x
=

1

ρ

∂p

∂x
= g

∂η

∂x
(C.32)

1

ρ

∂p̃

∂y
=

1

ρ

∂p

∂y
= g

∂η

∂y
(C.33)

Substituting (C.32) and (C.33) into (C.26) and (C.28) respectively, gives:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −g ∂η

∂x
− ∂

∂z
u′w′ − 1

2
δTCTu|u| (C.34)

S0 (+) 1 (+) 1 (+) 1 (−)
B0

R0L0

(= −)
gN0

U2
0

(−)
U
′2
0 L0D

′
0

U2
0D0L′0

(−) NR2CTL0 (C.35)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −g∂η

∂y
− ∂

∂z
v′w′ − 1

2
δTCTv|v| (C.36)

S0
B0

L0

(+)
B0

L0

(+)
B0

L0

(+)
B0

L0

(+)
1

R0

(= −)
gN0L0

B0U2
0

(−)
U
′2
0 B

′
0D
′
0L0

U2
0D0L

′2
0

(−)
NR2CTB

2
0

L0

(C.37)

where N0 is the length-scale for the tidal amplitude.
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Now the additional assumption that the lateral length-scale is much smaller

than the longitudinal length-scale will be made, i.e.:

B0 � L0 (C.38)

This reduces (C.34) and (C.36) to:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −g ∂η

∂x
− ∂

∂z
u′w′ − 1

2
δTCTu|u| (C.39)

S0 (+) 1 (+) 1 (+) 1 (−)
B0

R0L0

(= −)
gN0

(U2
0

(−)
U
′2
0 L0D

′
0

U2
0D0L′0

(−) NR2CTL0 (C.40)

fu = −g∂η
∂y

(C.41)

1

R0

(=)
gN0L0

U2
0B0

(C.42)

The scaling (C.40) will be re-written:

1 (+)
1

S0

(+)
1

S0

(+)
1

S0

(−)
B0

LD
(= −)

S0N0

D0

(−)
U
′2
0 L0D

′
0

S0U2
0D0L′0

(−)
NR2CTL0

S0

(C.43)

where LD = σL0

f
is the constant density Rossby radius of deformation, and σ is the

tidal frequency. If:

B0

LD
� 1

S0

(C.44)

then then Coriolis term may be neglected. The condition (C.44) may be re-written:

2T0 sinϕ

Tsr
� L0

C0D0B0

(C.45)

where ϕ is latitude, and Tsr is the sidereal day (period of 1 Earth rotation). On

the l.h.s. of (C.45), 2T0/Tsr ∼ 1, therefore if:

L0 � C0D0B0 sinϕ (C.46)
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is satisfied, then the Coriolis terms may be neglected, it will be assumed that this

condition is met, reducing (C.39) and (C.41) to:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −g ∂η

∂x
+

1

ρ

∂τxz
∂z
− 1

2
δTCTu|u| (C.47)

0 = −g∂η
∂y

(C.48)

where τxy = −ρu′w′ is the longitudinal-vertical Reynolds stress component.

In order to convert (C.12) and (C.47) to their proper one-dimensional form

they must be integrated over the cross-sectional area of the basin containing the

fluid. The integral for (C.12) is:

b∫
0

η∫
−h

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz dy = 0 (C.49)

for a uniform rectangular basin of width b and depth h. Following Parker [1984],

this integration will be performed using Leibnitz’s Rule:

B(X)∫
A(X)

∂

∂X
F (X,T ) dT =

d

dX

B(X)∫
A(X)

F (X,T ) dT −F (B, T )
dB

dX
+F (A, T )

dA

dX
(C.50)

Applying (C.50) to (C.49):

b∫
0

 ∂

∂x

 η∫
−h

u dz

− u(η)
∂η

∂x
− u(−h)

∂h

∂x
+

∂

∂y

 η∫
−h

v dz


 η∫
−h

v dz

− v(η)
∂η

∂x
− v(−h)

∂h

∂x
+ w(η)− w(−h)

 dy = 0 (C.51)

h is constant, so (C.51) becomes:

b∫
0

∂

∂x

 η∫
−h

u dz

 dy +

b∫
0

∂

∂y

 η∫
−h

v dz

 dy

−
b∫

0

(
u(η)

∂η

∂x
+ v(η)

∂η

∂x
− (w(η)− w(−h))

)
dy = 0 (C.52)
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Applying (C.50) to (C.52):

∂

∂x

 b∫
0

η∫
−h

u dz dy

+

η∫
−h

v(b) dz

−
b∫

0

(
u(η)

∂η

∂x
+ v(η)

∂η

∂x
− w(η) + w(−h)

)
dy = 0 (C.53)

as b is also constant. At the walls and bed the no slip boundary condition will be

applied, meaning the second term in (C.53) equals zero, as does w(−h). If a fluid

particle on the boundary of a surface specified by F = 0, stays on the boundary,

then:

DF

dt
= 0 =

∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
(C.54)

If F is the free surface:

F = η − z = 0 (C.55)

Applying (C.55) to (C.54) gives:

∂η

∂t
+ u(η)

∂η

∂x
+ v(η)

∂η

∂y
− w(η) = 0 (C.56)

which is the boundary condition for the free-surface. Rearranging (C.56) and

substituting into (C.53) gives:

∂

∂x

 b∫
0

η∫
−h

u dz dy

+

b∫
0

∂η

∂t
dy = 0 (C.57)

Applying (C.50) to (C.57):

∂

∂x

 b∫
0

η∫
−h

u dz dy

+
∂

∂t

b∫
0

η dy − η(b)
∂b

∂t
= 0 (C.58)

The channel is uniform, and it will be further assumed that it is uniform above

the mean water level to a height greater than the maximum elevation, so that b

does not change with time. Also, recall (C.48), which implies that η is uniform in

y. Finally, the cross-sectionally averaged flow velocity is defined as:
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û =
1

E

b∫
0

η∫
−h

u dz dy (C.59)

where E = b(h+ η) is the cross-sectional area of the basin. With all this, (C.58)

becomes:

∂(Eû)

∂x
+
∂(bη)

∂t
= 0 (C.60)

Which can also be written:

∂η

∂t
+ h

∂û

∂x
+
∂(ηû)

∂x
= 0 (C.61)

Returning to (C.47) and adding to it (C.12) multiplied by u gives:

∂u

∂t
+ 2u

∂u

∂x
+

(
v
∂u

∂y
+ u

∂v

∂y

)
+

(
w
∂u

∂z
+ u

∂w

∂x

)
= −g ∂η

∂x
− 1

ρ

∂τxz
∂z

− 1

2
δTCTu|u| (C.62)

Applying the product rule:

dY

dX
= U

dV

dX
+ V

dU

dX
, if Y = UV (C.63)

to (C.62) we get:

∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
= −g ∂η

∂x
− 1

ρ

∂τxz
∂z
− 1

2
δTCTu|u| (C.64)

Integrating (C.64) over the cross-sectional area gives:

b∫
0

η∫
−h

(
∂u

∂t
+
∂u2

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
+ g

∂η

∂x
− 1

ρ

∂τxz
∂z

+
1

2
δTCTu|u|

)
dz dy = 0 (C.65)

Applying (C.50) to (C.65) gives:
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b∫
0

 ∂

∂t

η∫
−h

u dz − u(η)
∂η

∂t
− u(−h)

∂h

∂t

 dy

+

b∫
0

 ∂

∂x

η∫
−h

(u2) dz − u2(η)
∂η

∂x
− u2(−h)

∂h

∂x

 dy

+

b∫
0

∂

∂y

 η∫
−h

(uv) dz − u(η)v(η)
∂η

∂y
− u(−h)v(−h)

∂h

∂y

 dy

+

b∫
0

(u(η)w(η)− u(−h)w(−h)) dy

+ g

b∫
0

η∫
−h

∂η

∂x
dz dy − 1

ρ

b∫
0

η∫
−h

∂τxz
∂z

dz dy +
1

2
CT

b∫
0

η∫
−h

δTu|u| dz dy = 0 (C.64)

h is again constant in space and time, τxz is not a function of y, and the no-slip

boundary condition is taken at the bed, so (C.64) simplifies to:

b∫
0

 ∂

∂t

η∫
−h

u dz − u(η)
∂η

∂t

 dy +

b∫
0

 ∂

∂x

η∫
−h

(u2) dz − u2(η)
∂η

∂x

 dy

+

b∫
0

 ∂

∂y

η∫
−h

(uv) dz − u(η)v(η)
∂η

∂y

 dy +

b∫
0

(u(η)w(η)) dy + gE
∂η

∂x

− b

ρ
(τxz(η)− τxz(−h)) +

1

2
CT

b∫
0

η∫
−h

δTu|u| dz dy = 0 (C.67)

Applying (C.50) to (C.67) gives:
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∂

∂t

b∫
0

η∫
−h

u dz dy − ∂b

∂t

η∫
−h

u(b) dz

−
b∫

0

[
u(η)

(
∂η

∂t
+ u(η)

∂η

∂x
+ v(η)

∂η

∂y
− w(η)

)]
dy

+
∂

∂x

b∫
0

η∫
−h

u2 dz dy − ∂b

∂x

η∫
−h

u2(b) dz +

 η∫
−h

(uv) dz

b
0

+ gE
∂η

∂x

− b

ρ
(τxz(η)− τxz(−h)) +

1

2
CT

b∫
0

η∫
−h

δTu|u| dz dy = 0 (C.68)

Using (C.56), applying the no-slip boundary condition at the basin walls and as b

is constant in space and time, (C.68) simplifies to:

∂

∂t

b∫
0

η∫
−h

u dz dy +
∂

∂x

b∫
0

η∫
−h

u2 dz dy + gE
∂η

∂x
− b

ρ
(τxz(η)− τxz(−h))

+
1

2
CT

b∫
0

η∫
−h

δTu|u| dz dy = 0 (C.69)

The shear stress at the free-surface will be due to wind shear. In this example wind

will be ignored reducing the shear at the free-surface to zero. The term u|u| will be

replaced with u2 · sign(u), which is equivalent. Then substituting in (C.59) gives:

E
∂(û)

∂t
+ E

∂(û2)

∂x
= −gE ∂η

∂x
− b

ρ
τxz(−h)− 1

2
NACT û

2 · sign(û) (C.70)

where, as the integral is over the cross-section rather than the volume, N can be

split into NT and NR, the number of turbines in a row (assumed uniform) and the

number of rows of turbines respectively. For simplicity, it will be assumed that

NR = 1, so that NT = N . In order to integrate the u2 terms additional assumptions

have been made. If the flow at the point r at time t is given by:

u(r, t) = û(x, t) + u′′(r, t) (C.71)

where u′′ is the deviation of the flow from û at r, then:
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b∫
0

η∫
−h

u′′(r, t) dz dy = 0, and,

b∫
0

η∫
−h

û(x, t) dz dy = Eû (C.72)

and,

b∫
0

η∫
−h

u2 dz dz =

b∫
0

η∫
−h

(û2 + 2ûu′′ + u′′2) dz dy = Eû2 +

b∫
0

η∫
−h

u′′2 dz dy (C.73)

If the deviation is small then the final term in (C.73) may be neglected. For the

second term in (C.69), (C.73) will be differentiated w.r.t. x. Therefore, if the final

term in (C.73) varies little with x, which will be assumed for our uniform (along x)

basin, then it may be neglected, leading to the second term in (C.70).

The turbine term requires a different approach, as it only exists in the presence

of turbines, therefore the integration over the cross-section does not lead to Eû2, as

turbines will not be present over the whole cross-section, the result is seen in (C.70).

The value of the flow averaged over the turbine swept area will be assumed to be û.

So, for the turbine term, u′′ will assumed to be small, which may be approximately

true if the turbine is deployed away from the bed. Ignoring concerns regarding

navigation of the basin by ships, given the larger currents will be nearer the surface

than the bed, it is regarded to be a reasonable assumption that turbines will be

deployed away from the bed, and that the assumption of small u′′ at the turbine

holds.

If the bed stress is now represented using a quadratic friction law, then (C.70)

can be rewritten:

∂û

∂t
+ 2û

∂û

∂x
= −g ∂η

∂x
− 1

1 + η/h

(
CF
h

+
1

2
ε0CT

)
û|û| (C.74)

where ε0 = NA/E is the turbine blockage ratio, which is the ratio of the total

swept area of all turbines in a row to the basin cross-section. The second term in

(C.74) results from application of the product rule to the second term in (C.70),

the factor of 2 may be removed using (C.60) for time-scales where η is constant in

time, in a similar manner as was done in going from (C.62) to (C.64). However,

equation (C.74) will be left as is to avoid this assumption. In reaching this equation

it is also assumed that the blockage ratio for each row is uniform.
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Appendix D

Expanding the Non-Linear Terms

for a Single-Constituent Tide

If the free-surface is forced by a single-constituent tide then η and û will be given

by:

η = η0 cos(θ(x, t) + γ(x)) (D.1)

and

û = û0 cos(θ(x, t)) (D.2)

respectively, where η0 and û0 are the amplitudes of η and û, θ = σt− ψ(x), σ is

the tidal frequency, ψ is the phase of û, γ = ψ(x)− φ(x), and φ is the phase of η.

The 1D governing equations were derived in Appendices A, B & C as:

∂η

∂t︸︷︷︸
(a)

+h
∂û

∂x︸︷︷︸
(b)

+
∂(ηû)

∂x︸ ︷︷ ︸
(c)

= 0 (D.3)

and

∂û

∂t︸︷︷︸
(d)

+ û
∂û

∂x︸︷︷︸
(e)

= −g ∂η
∂x︸ ︷︷ ︸

(f)

− CF
h
û|û|︸ ︷︷ ︸

(g)

+
CF
h2
ηû|û|︸ ︷︷ ︸
(h)

− ε0CT
2

û|û|︸ ︷︷ ︸
(i)

+
ε0CT
2h

ηû|û|︸ ︷︷ ︸
(j)

(D.4)

Substituting (D.1) and (D.2) into the continuity term (CT: (c) in (D.3)) and

(momentum) advection term (AT: (e) in (D.4)) gives:
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∂(ηû)

∂x
= η0û0

∂

∂x
(cos(θ + γ) cos(θ)) (D.5)

û
∂û

∂x
= û2

0

∂φ

∂x
cos(θ) sin(θ) (D.6)

Using the product-to-sum identity:

2 cos(X) cos(Y ) = cos(X − Y ) + cos(X + Y ) (D.7)

and the double-angle formula:

sin(2X) = 2 sin(X) cos(X) (D.8)

in (D.5) and (D.6) respectively gives:

∂(ηû)

∂x
=
η0û0

2

[
∂

∂x
(cos(γ)) +

∂

∂x
(cos(2θ + γ))

]
=
η0û0

2

[
∂(φ+ ψ)

∂x
sin(2θ + γ) +

∂γ

∂x
sin(γ)

]
(D.9)

and

û
∂û

∂x
=
û2

0

2

∂ψ

∂x
sin(2θ) (D.10)

In (D.9) the last term on the l.h.s. implies a residual resulting from this term.

Substituting (D.2) into the quadratic friction term (QFT: (g) in (D.4)) and

expanding as a Fourier series:

CF
h
û|û| = CF

h

[
aQ0
2

+
∞∑
n=1

aQn cos(nθ) +
∞∑
n=1

bQn sin(nθ)

]
(D.11)

where

aQ0 =
û2

0

π

2π∫
0

cos(θ)| cos(θ)| dθ (D.12)

aQn =
û2

0

π

2π∫
0

cos(θ)| cos(θ)| cos(nθ) dθ (D.13)
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0 π/2 π 3π/2 2π
-1

-0.5

0

0.5

1

cos(θ)

cos2(θ)

cos(θ)| cos(θ)|

Figure D.1: Plots of a cos(θ) (solid), cos2(θ) (dashed) and cos(θ)| cos(θ)| (dotted).

bQn =
û2

0

π

2π∫
0

cos(θ)| cos(θ)| sin(nθ) dθ (D.14)

The limits of the integrals above are 0 to 2π representing a complete tidal cycle.

Figure D.1 shows the behaviour of cos(θ)| cos(θ)| and cos2(θ) over a tidal cycle.

The two functions differ between θ = π/2 and θ = 3π/2 where they are equal, but

opposite in sign. Taking this into account the integrals (D.12)–(D.14) become:

aQ0 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) dθ (D.15)

aQn =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) cos(nθ) dθ (D.16)

bQn =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) sin(nθ) dθ (D.17)

The integrals (D.15)–(D.17) can be solved by applying the angle-reduction formulae:

cos2(X) =
1

2
+

1

2
cos(2X) (D.18)
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and

cos3(X) =
3

4
cos(X) +

1

4
cos(3X) (D.19)

and the product-to-sum identities, (D.7), and:

2 cos(X) sin(Y ) = sin(X + Y )− sin(X − Y ) (D.20)

The solution to (D.15) is:

aQ0 =
û2

0

2π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 (1 + cos(2θ)) dθ =

[
θ +

1

2
sin(2θ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

=
π

2
− π +

π

2
= 0 (D.21)

For n = 1, the solutions to (D.16) & (D.17) are:

aQ1 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos3(θ) dθ

=
û2

0

4π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 (3 cos(θ) + cos(3θ)) dθ

=
û2

0

4π

[
3 sin(θ) +

1

3
sin(3θ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

=
û2

0

π

(
2

3
+

4

3
+

2

3

)
=

8û2
0

3π
(D.22)

bQ1 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) sin(θ) dθ

=
û2

0

2π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 (sin(θ) + cos(2θ)) sin(θ) dθ

= − û
2
0

4π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 (sin(θ)− sin(3θ)) dθ

= − û2
0

12π

[
3 cos(θ) +

1

3
cos(3θ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

= − û2
0

12π

[
2

3
− 0− 2

3

]
= 0 (D.23)
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For n = 2,

aQ2 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) cos(2θ) dθ

=
û2

0

4π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 (1 + 2 cos(2θ) + cos(4θ)) dθ

=
û2

0

4π

[
θ + sin(2θ) +

1

4
sin(4θ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

=
û2

0

4π

[π
2
− π +

π

2

]
= 0 (D.24)

bQ2 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) sin(2θ) dθ

=
û2

0

4π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 (2 sin(2θ) + sin(4θ)) dθ

= − û
2
0

4π

[
cos(2θ) +

1

4
cos(4θ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

=
û2

0

4π
[2− 0− 2] = 0 (D.25)

For n = 3,

aQ3 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) cos(3θ) dθ

=
û2

0

4π

[
sin(θ) +

2

3
sin(3θ) +

1

5
sin(5θ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

=
û2

0

π

[
2

15
+

4

15
+

2

15

]
=

8û2
0

15π
(D.26)

bQ3 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) sin(3θ) dθ

= − û
2
0

4π

[
cos(θ) +

2

3
cos(3θ) +

1

5
cos(5θ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

= − û
2
0

4π

[
28

15
− 0− 28

15

]
= 0 (D.27)
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For n = 4,

aQ4 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) cos(4θ) dθ

=
û2

0

4π

[
1

2
sin(2θ) +

1

2
sin(4θ) +

1

6
cos(6θ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

= 0 (D.28)

bQ4 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) sin(4θ) dθ

= − û
2
0

4π

[
1

2
cos(2θ) +

1

2
cos(4θ) +

1

6
cos(4θ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

= 0 (D.29)

For n = 5,

aQ5 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) cos(5θ) dθ = − 8û2
0

105π
(D.30)

bQ5 =
û2

0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos2(θ) sin(5θ) dθ = 0 (D.31)

For n = 6,

aQ6 = 0 (D.32)

bQ6 = 0 (D.33)

Applying (D.21)–(D.33) to (D.11) results in:

CF
h
û|û| = 8û2

0CF
3πh

[
cos(θ) +

1

5
cos(3θ)− 1

35
cos(5θ)

]
+ . . . (D.34)

The process above [(D.11)–(D.34)] will be repeated for the elevation friction

term (EFT: (h) in (D.4)), this time both (D.1) and (D.2) will be substituted in

and expanded as a Fourier Series:

272



Appendix D. Single-Constituent Expansions

CF
h2
ηû|û| = CF

h2

[
aE0
2

+
∞∑
n=1

aEn cos(nθ) +
∞∑
n=1

bEn sin(nθ)

]
(D.35)

where:

aE0 =
η0û

2
0

π

2π∫
0

cos(θ + γ) cos(θ)| cos(θ)| dθ (D.36)

aEn =
η0û

2
0

π

2π∫
0

cos(θ + γ) cos(θ)| cos(θ)| cos(nθ) dθ (D.37)

bEn =
η0û

2
0

π

2π∫
0

cos(θ + γ) cos(θ)| cos(θ)| sin(nθ) dθ (D.38)

Figure D.2 shows the behaviour of cos(θ + γ) cos2(θ) and cos(θ + γ) cos(θ)| cos(θ)|

over a tidal cycle for a range of γ values. As before the functions are equal, but

opposite in sign between θ = π/2 and θ = 3π/2 for all values of γ. Therefore,

(D.36)–(D.38) may be written:

aE0 =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) dθ (D.39)

aEn =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) cos(nθ) dθ (D.40)

bEn =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) sin(nθ) dθ (D.41)

Using (D.7) & (D.18)–(D.20), the integrals (D.39)–(D.41) can be solved:
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θ

0 π/2 π 3π/2 2π
-1

0

1

γ = 0

θ

0 π/2 π 3π/2 2π
-1

0

1

γ = π/4

θ

0 π/2 π 3π/2 2π
-1

0

1

γ = π/2

θ

0 π/2 π 3π/2 2π
-1

0

1

γ = 3π/4

θ

0 π/2 π 3π/2 2π
-1

0

1

γ = π

θ

0 π/2 π 3π/2 2π
-1

0

1

γ = 5π/4

θ

0 π/2 π 3π/2 2π
-1

0

1

γ = 3π/2
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1

γ = 7π/4

θ
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-1

0

1

γ = 2π

Figure D.2: Plots of cos(θ + γ) cos2(θ) (solid) and cos(θ + γ) cos(θ)| cos(θ)|

(dashed) for various values of γ.

aE0 =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) dθ

=
η0û

2
0

2π


π
2∫

0

−

3π
2∫

π
2

+

4π∫
3π
2

 (cos(θ − γ) + 2 cos(θ + γ) + cos(3θ + γ) dθ

=
η0û

2
0

4π

[
sin(θ − γ) + 2 sin(θ + γ) +

1

2
sin(3θ + γ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

=
η0û

2
0

π

[
1

3
(2 cos(γ)− sin(γ)) +

4

3
cos(γ) +

1

3
(sin(γ) + 2 cos(γ))

]
=

8

3
cos(γ) (D.42)
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For n = 1,

aE1 =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos3(θ) dθ

=
η0û

2
0

8π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 (3 cos(γ) + cos(2θ − γ) + 3 cos(2θ + γ)

+ cos(4θ + γ)) dθ

=
η0û

2
0

8π

[
1

2
sin(2θ − γ) +

3

2
sin(2θ + γ) +

1

4
sin(4θ + γ)

1

2
+ 3θ cos(γ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

=
η0û

2
0

π

[
1

2
(3π cos(γ)− 4 sin(γ))− 3π cos(γ)

+
1

2
(4 sin(γ) + 3π cos(γ))

]
= 0 (D.43)

bE1 =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) sin(θ) dθ

=
η0û

2
0

8π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 (− sin(γ) + sin(2θ − γ) + sin(2θ + γ)

+ sin(4θ + γ)) dθ

= −η0û
2
0

8π

[
4θ sin(γ) +

1

2
cos(2θ − γ) +

1

2
cos(2θ + γ)

+
1

4
cos(4θ + γ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

= −η0û
2
0

8π

[
1

2
(4 cos(γ)− π sin(γ)) + π sin(γ)

−1

2
(π sin(γ) + 4 cos(γ))

]
= 0 (D.44)
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For n = 2,

aE2 =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) cos(2θ) dθ

=
η0û

2
0

8π

[
2 sin(θ − γ) + 2 sin(θ + γ) +

1

3
sin(3θ − γ)

+
2

3
sin(3θ + γ) +

1

5
sin(5θ + γ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

=
η0û

2
0

π

[
1

15
(6 cos(γ)− sin(γ)) +

4

5
cos(γ)

+
1

15
(sin(γ) + 6 cos(γ))

]
=

8η0û
2
0

5π
cos(γ) (D.45)

bE2 =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) sin(2θ) dθ

= −η0û
2
0

8π

[
2 cos(θ − γ) +

1

3
cos(3θ − γ) +

2

3
cos(3θ + γ)

+
1

5
cos(5θ + γ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

=
η0û

2
0

π

[
1

15
(6 cos(γ)− 4 sin(γ))− 8

15
sin(γ)

− 1

15
(4 sin(γ) + 6 cos(γ))

]
= −16η0û

2
0

15π
sin(γ) (D.46)

For n = 3,

aE3 =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) cos(3θ) dθ

=
η0û

2
0

8π

[
θ cos(γ) + sin(2θ − γ) +

1

2
sin(2θ + γ) +

1

4
sin(4θ − γ)

+
1

2
sin(4θ + γ) +

1

6
sin(4θ + γ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

= 0 (D.47)
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bE3 =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) sin(3θ) dθ

= −η0û
2
0

8π

[
θ sin(γ) + cos(2θ − γ) +

1

2
cos(2θ + γ) +

1

4
cos(4θ − γ)

+
1

2
cos(4θ + γ) +

1

6
cos(6θ + γ)

]π
2
− 3π

2
+2π

0−π
2

+ 3π
2

= 0 (D.48)

For n = 4,

aE4 =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) cos(4θ) dθ =
8η0û

2
0

35π
cos(γ) (D.49)

bE4 =
η0û

2
0

π


π
2∫

0

−

3π
2∫

π
2

+

2π∫
3π
2

 cos(θ + γ) cos2(θ) sin(4θ) dθ = −32η0û
2
0

105π
sin(γ) (D.50)

For n = 5,

aE5 = 0 (D.51)

bE5 = 0 (D.52)

For n = 6,

aE6 =
8η0û

2
0

315π
cos(γ) (D.53)

bE6 =
16η0û

2
0

315π
sin(γ) (D.54)

Applying (D.42)–(D.54) to (D.35) results in:

CF
h2
ηû|û| = 4η0û

2
0CF

πh2

[(
2

3
+

2

5
cos(2θ) +

2

35
cos(4θ) +

2

315
cos(6θ)

)
cos(γ)

−
(

4

15
sin(2θ)− 8

105
sin(4θ) +

4

315
sin(6θ)

)
sin(γ)

]
+ . . . (D.55)
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Appendix E

Expansion of Non-Linear Terms

for a Two-Constituent Tide

If the free-surface is forced by a two-constituent tide then η and û will be given by:

η = η0 cos(θ + γ) + η′0 cos(θ′ + γ′) (E.1)

û = û0 cos(θ) + û′0 cos(θ′) (E.2)

where η0 and û0 are the amplitudes of η and û for the first constituent, θ = σt−ψ(x),

σ is the tidal frequency for the first constituent, ψ is the phase of û for the first

constituent, η′0, û
′
0, θ

′ = σ′t − ψ′(x) are like said for the second constituent and,

γ′ = ψ′(x)− φ′(x) is the phase difference between high water and maximum flood

for the second constituent, and φ′ is the phase of η for the second constituent. The

1D governing equations were derived in Appendices A, B & C as:

∂η

∂t︸︷︷︸
(a)

+h
∂û

∂x︸︷︷︸
(b)

+
∂(ηû)

∂x︸ ︷︷ ︸
(c)

= 0 (E.3)

and

∂û

∂t︸︷︷︸
(d)

+ û
∂û

∂x︸︷︷︸
(e)

= −g ∂η
∂x︸ ︷︷ ︸

(f)

− CF
h
û|û|︸ ︷︷ ︸

(g)

+
CF
h2
ηû|û|︸ ︷︷ ︸
(h)

− ε0CT
2

û|û|︸ ︷︷ ︸
(i)

+
ε0CT
2h

ηû|û|︸ ︷︷ ︸
(j)

(E.4)

Substituting (E.1) and (E.2) into the continuity term (CT: (c) in (E.3)) and

(momentum) advection term (AT: (E.4)) gives:
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û
∂û

∂x
= −û2

0

∂ψ

∂x
cos(θ) sin(θ)− û0û

′
0

∂ψ

∂x
cos(θ′) sin(θ)

− û0û
′
0

∂ψ′

∂x
cos(θ) sin(θ′)− û′20

∂ψ′

∂x
cos(θ′) sin(θ′)) (E.5)

∂(ηû)

∂x
=

∂

∂x
(η0û cos(θ + γ) cos(θ) + η0û

′
0 cos(θ + γ) cos(θ′)

+ η′0û0 cos(θ′ + γ′) cos(θ) + η′0û
′
0 cos(θ′ + γ′) cos(γ′)) (E.6)

Applying (D.20) to (E.5) gives:

û
∂û

∂x
=
û2

0

2

∂ψ

∂x
sin(2θ) +

û′20
2

∂ψ′

∂x
sin(2θ′)

+
û0û

′
0

2

(
∂(ψ − ψ′)

∂x
sin(θ − θ′) +

∂(ψ + ψ′)

∂x
sin(θ + θ′)

)
(E.7)

Applying the product-to-sum formulae:

2 cos(X) cos(Y ) = cos(X − Y ) + cos(X + Y ) (E.8)

to (E.6) gives:

∂(ηû)

∂x
=

∂

∂x

(
η0û0

2
(cos(γ) + cos(2θ + γ)) +

η′0û
′
0

2
(cos(γ′) + cos(2θ′ + γ′)

+
η0û

′
0

2
(cos(θ − θ′ + γ) + cos(θ + θ′ + γ))

+
η′0û0

2
(cos(θ − θ′ − γ′) + cos(θ + θ′ + γ′))

)
(E.9)

which becomes:

∂(ηû)

∂x
= −1

2

(
η0û0

∂(2ψ + γ)

∂x
sin(2θ + γ) + η′0û

′
0

∂(2ψ′ + γ)

∂x
sin(2θ′ + γ′)

+ η0û
′
0

∂(ψ − ψ′ + γ)

∂x
sin(θ − θ′ + γ) + η′0û0

∂(ψ − ψ′ − γ′)
∂x

sin(θ − θ′ − γ′)

+ η0û
′
0

∂(ψ + ψ′ + γ)

∂x
sin(θ + θ′ + γ) + η′0û0

∂(ψ + ψ′ + γ)

∂x
sin(θ + θ′ + γ′)

+η0û0
∂γ

∂x
sin(γ) + η′0û

′
0

∂γ′

∂x
sin(γ′)

)
(E.10)
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For the two-constituent case, one runs into a problem when attempting to

substitute (E.1) and (E.2) into the quadratic friction term (QFT: (g) in (E.4)) and

elevation friction term (EFT: (h) in (E.4)) and expand as a Fourier series. The

terms are a function of both θ and θ′, so one a can no longer expand as a series of θ.

To circumnavigate this problem a mathematical trick shall be employed following

Godin and Gutiérrez [1986]. First, |û| will be replaced with
√
û2, the square root

will then be estimated using the Babylonian method (or Hero’s method), which is

an iterative algorithm used to approximate a square root. The algorithm works in

the following way, first, one takes a test value, ideally as close to the actual value of

the square root as possible: m0 ∼
√
S. This estimate is then improved by taking

the average of m0 and S/m0, giving m1. This process is repeated many times with

the estimate converging towards the true value. In general:

mn+1 =
1

2

(
mn +

S

mn

)
(E.11)

where
√
S = lim

n→∞
mn. Applying this to the QFT and EFT one gets:

CF
h
û|û| = CF

h
û
√
û2 ∼ CF

2h

(
mû+

û3

m

)
(E.12)

CF
h2
ηû|û| ∼ CF

2h2

(
mηû+

ηû3

m

)
(E.13)

Substituting (E.2) into (E.12):

CF
h
û|û| ∼ CF

2h

(
m[û0 cos(θ) + û′0 cos(θ′)] +

1

m
[û3

0 cos3(θ)

1

2
+ 3û′0û

2
0 cos(θ′) cos2(θ) + 3û′20 û0 cos2(θ′) cos(θ) + û′30 cos2(θ′)]

)
(E.14)

Applying (D.18), (D.19) and (E.8) to (E.14) gives:
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CF
h
û|û| ∼ CF

2h

((
m+

3û2
0

2

(
û2

0

2
+ û′0

))
cos(θ′)

+

(
m+

3û′0
2

(
û2

0 +
û′20
2

))
cos(θ′) +

û3
0

4
cos(3θ) +

û′30
4

cos(3θ′)

+ 3û0û
′
0(û0 cos(2θ − θ′) + û′0 cos(2θ′ − θ))
1

2
+ 3û0û

′
0(û0 cos(2θ + θ′) + û′0 cos(2θ′ + θ))

)
(E.15)

Likewise, substituting (E.1) and (E.2) into (E.13) gives:

CF
h2
ηû|û| ∼ CF

2h2

(
m[η0û0 cos(θ + γ) cos(θ) + η0û

′
0 cos(θ + γ) cos(θ′)

1

2

+ η′0û0 cos(θ′ + γ′) cos(θ)] +
1

m
[η0û

3
0 cos(θ + γ) cos3(θ)

+ 3ηû2
0û
′
0 cos(θ + γ) cos2(θ) cos(θ′)

+ 3ηû0û
2
0 cos(θ + γ) cos2(θ′) cos(θ) + η0û

′3
0 cos(θ + γ) cos3(θ′)

+ η0û
3
0 cos(θ′ + γ′) cos3(θ) + 3η′0û

2
0û
′
0 cos(θ′ + γ′) cos2(θ) cos(θ′)

1

2
+ 3η0û0û

′2
0 cos(θ′ + γ′) cos2(θ′) cos(θ) + η′0û

′3
0 cos(θ′ + γ′) cos3(θ′)]

)
(E.16)

Applying (D.18) and (D.19) to (E.16) and rearranging gives:

CF
h2
ηû|û| ∼ CF

2h2

(
m[η0û0 cos(θ + γ) cos(θ) + η0û

′
0 cos(θ + γ) cos(θ′)

1

2

+ η′0û0 cos(θ′ + γ′) cos(θ)] +
1

m

[
3η0û0

2

(
û2

0

2
+ û′20

)
cos(θ + γ) cos(θ)

+
3η0û

′
0

2

(
û2

0 +
û′20
2

)
cos(θ + γ) cos(θ′) +

η0û
3
0

4
cos(θ + γ) cos(3θ)

+
η0û

′3
0

4
cos(θ + γ) cos(3θ′) +

3η0û
2
0û
′
0

2
cos(θ + γ) cos(2θ) cos(θ′)

+
3η0û0û

′2
0

2
cos(θ + γ) cos(2θ′) cos(θ) +

3η′0û0

2

(
û2

0

2
+ û′20

)
cos(θ′ + γ′) cos(θ)

+
3η′0û

′
0

2

(
û2

0 +
û′20
2

)
cos(θ′ + γ′) cos(θ′) +

η′0û
3
0

4
cos(θ′ + γ′) cos(3θ)

+
η′0û

′3
0

4
cos(θ′ + γ′) cos(3θ′) +

3η′0û
2
0û
′
0

2
cos(θ′ + γ′) cos(2θ) cos(θ′)

+
3η′0û0û

′2
0

2
cos(θ′ + γ′) cos(2θ′) cos(θ)

])
(E.17)
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Applying (E.8) to (E.17) and rearranging gives:

CF
h2
ηû|û| ∼ CF

h2

(
η0û0

2

(
m+

3

2m
(
û2

0

2
+ û′20 )

)
cos(2θ + γ) +

η0û
3
0

8m
cos(2θ − γ)

+
3η0û

2
0û
′
0

8m
cos(2θ + γ′) +

3η′0û
2
0û
′
0

8m
cos(2θ − γ′) +

3η0û0û
′2
0

8m
cos(2θ′ + γ)

+
3η0û0û

′2
0

8m
cos(2θ′ − γ) +

η′0û
′
0

2

(
m+

3

2m

(
û2

0 +
û′20
2

))
cos(2θ′ + γ′)

+
η′0û

′3
0

8m
cos(2θ′ − γ′) +

η0û
3
0

8m
cos(4θ + γ) +

η′0û
′3
0

8m
cos(4θ′ + γ′)

+
η0û

′
0

2

(
m+

3

2m

(
û2

0 +
û′20
2

))
cos(θ − θ′ + γ) +

3η0û
2
0û
′
0

8m
cos(θ − θ′ − γ)

+
3η′0û0û

′2
0

8m
cos(θ − θ′ + γ′) +

η′0û0

2

(
m+

3

2m

(
û2

0

2
+ û′20

))
cos(θ − θ′ − γ′)

+
η0û

′
0

2

(
m+

3

2m

(
û2

0 +
û′20
2

))
cos(θ + θ′ + γ) +
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′3
0

4m
cos(3θ′ − θ − γ)

+
3η′0û0û

′2
0

8m
cos(3θ′ − θ + γ′) +

3η0û
2
0û
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Appendix F

Chapter 5 Mesh Correction

The simplest approach to introducing the reasoning for the mesh correction is to

present the issue with the analysis of the uncorrected mesh. In experiment 1 in

Chapter 5 (§5.2) turbines are to be deployed on the contours of flood-ebb current

magnitude asymmetry (FVA), as illustrated in Figure F.1 for the uncorrected mesh

(Mesh-1). Across the four locations shown in Figure F.1 the element size varies

considerably. The profiles of change to the amplitude and phase of the M2, M4 and

M6 tides, and the resulting change to the FVA, due to the turbine deployments are

presented in Figures F.2–F.4.

The variation in effect across the four turbine deployments does not appear to

correlate with the variation in natural FVA across the four deployment locations.

The correlation in-fact appears to be with the distance the turbine is deployed from

the channel centre. This is supported by the Pearson correlation coefficient, ρ(X,Y ),

and p-value between the peak values of the various change profiles and the distance

from channel centre, |∆x̃|, and the natural FVA at the location AS,n, given in Table

F.1. In the calculation of these parameters the change profile from the fixed-CT

experiment from Chapter 4 was also included to increase the number of datapoints

involved in the analysis. In Table F.1 low values of ρ(X,Y ) and high p-values suggest

no relationship between AS,n and any of the peak change values. Higher ρ(X,Y ) and

lower p-vales hint at a possible relationship between |∆x̃| and the peak change

values. However, only the p-values for the |∆x̃|-∆ψM2 and |∆x̃|-∆ψM6 relationships

met the p < 0.05 criteria commonly considered strong evidence against the null

hypothesis. The sample size was however only 5 points.
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Figure F.1: Locations of turbines on asymmetry contours in Mesh-1.

Despite the stronger suggestion of a pattern between the effect of the turbines

and the distance from channel centre a physical mechanism for this relationship

could not be identified. However, the scaling of the element size was based on the

distance from the channel centre, and comparison of Figure F.1 with Figure F.2–F.4

does hint that there may indeed be a relationship between the element size and

the impact of the turbine. This subjective interpretation is supported by Pearson

correlation coefficients and p-values calculated as in Table F.1 but for the element

area, AE, and the flow facing width of the element, ∆yE = max(yE) −min(yE),

presented in Table F.2.

From Table F.2 one can see that there is suggestion, by the reasonably large

ρ(X,Y ) values and reasonably low p-values between the peak change values and the

flow facing width of the element, with the exception of the changes to the M4 phase.

Although the statistical significance of the relationship between turbine impact

and the flow facing width of the element is on the whole weaker there is a potential
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explanation for this pattern.
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Figure F.2: Change to M2 (a), M4 (b) and M6 (c) current amplitudes due to a

single fixed-CT turbine deployed on various asymmetry contours.
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Figure F.3: Change to M2 (a), M4 (b) and M6 (c) phase amplitudes due to a single

fixed-CT turbine deployed on various asymmetry contours.
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Figure F.4: Change to current FVA due to a single fixed-CT turbine deployed on

various asymmetry contours, measured by (4.2.1) (a) and (4.2.2) (b).

Table F.1: Pearson correlation coefficients, ρ(X,Y ), between changes to harmonic

analysis and asymmetry caused by turbines and the natural asymmetry, and

longitudinal distance from centre at the locations of the turbines,

∆x̃ = (x− x0)/L. Colour-scale shading based on p-value, p ≤ 0.01 – green,

0.01 < p ≤ 0.05 – yellow, 0.05 < p ≤ 0.1 – orange and p > 0.1 – red.

∆ũM2 ∆ũM4 ∆ũM6 ∆ψM2 ∆ψM4 ∆ψM6 ∆AS,2

Max Min Max Max Max Min Max Max Min Max

AS,n

ρX,Y -0.009 0.188 0.087 -0.029 -0.017 0.066 -0.236 -0.087 0.052 -0.11

p 0.9886 0.7616 0.8898 0.9631 0.9778 0.9156 0.7028 0.8892 0.9339 0.8604

|∆x̃|
ρX,Y -0.946 0.936 -0.755 -0.954 -0.998 0.867 -0.75 -0.98 0.943 -0.898

p 0.015 0.0191 0.1397 0.0117 0.0001 0.0572 0.1444 0.0035 0.0161 0.0387

The turbine representation requires modification based on the flow facing width

of the element, due to the fact that in smaller elements, the local velocity diverges

from the free-stream velocity for which the turbine term is defined [Kramer et al.,

2014, Waldman et al., 2015]. This correction is built into the MIKE21 modelling

system. The correction was however tested after the effect illustrated in Figures

F.2–F.4 was discovered, by reproducing the test case from Waldman et al. [2015]
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in 2D. This test case looked at the turbine thrust for a fixed steady current across

a range of turbine element sizes. Testing confirmed the correction to the turbine

thrust. This testing also illustrates the origin of the pattern of change seen Figures

F.2–F.4.

Table F.2: Pearson correlation coefficients, ρ(X,Y ), between changes to harmonic

analysis and asymmetry caused by turbines and element size parameters.

Colour-scale shading based on p-value, p ≤ 0.01 – green, 0.01 < p ≤ 0.05 – yellow,

0.05 < p ≤ 0.1 – orange and p > 0.1 – red.

∆ũM2 ∆ũM4 ∆ũM6 ∆ψM2 ∆ψM4 ∆ψM6 ∆AS,2

Max Min Max Max Max Min Max Max Min Max

AE

ρX,Y -0.787 0.791 -0.691 -0.812 -0.895 0.449 0.101 -0.855 0.790 -0.743

p 0.1140 0.1114 0.1967 0.0954 0.0402 0.4482 0.8717 0.0648 0.1122 0.1503

|∆x̃|
ρX,Y -0.887 0.0581 -0.653 0.917 -0.963 0.168 -0.251 -0.909 0.890 -0.829

p 0.0446 0.0581 0.2327 0.0282 0.0084 0.7877 0.6837 0.0324 0.0434 0.0827

Figure F.5 shows the velocity deficit downstream of the turbine from Waldman

et al. [2015] for the different element sizes tested. It shows a larger velocity deficit

near the turbine for smaller elements. This is simply a resolution issue as the

same momentum reduction, resulting from the same thrust exerted by the turbine,

applied to a larger volume of water, and therefore larger mass, will result in a

smaller reduction to the velocity of that volume of water. This then becomes an

issue when the velocity deficit values are presented as a profile which says nothing

of the size of the elements the data points are taken from. This is the suspected

origin of variation in the turbine effect seen in Figures F.2–F.4, an artefact of the

analysis rather than a physical difference in the change caused by the turbine.

To correct for this the mesh was redesigned so that the element flow facing

area was approximately constant across the turbine deployment elements. The

flow facing widths of the elements where the turbines are to be deployed in this

new mesh are: ∆yE = 30.6, 30.3, 30.4, 30.9 and 30.8 m for the AS,n = 0, 0.1, 0.2

and 0.3 deployments, and the deployment from Chapter 4 respectively. This is

compared to values of ∆yE = 176.5, 42.5, 59.0, 173.9 and 32.3 m respectively for

the original mesh.
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Figure F.5: Wake of D = 20 m, CT = 0.9 turbine in a steady flow of v0 = 2.07

m/s for various mesh resolutions. Meshes reproduced from Waldman et al. [2015],

Figure 1.

Experiment 1 in Chapter 5 is where this effect is of greatest importance. In

Chapter 4 the original mesh was used, but the turbine was always located in the

same element. Likewise, in Chapter 6. Thus, comparison were always like-for-like.

In the remaining experiments in Chapter 5 this effect will be at play, but to a much

smaller degree as the additional turbines will always be located in the central 10

km high-resolution region of the original mesh. There will be some small variability

of the flow facing width across the elements in this region, which will account for

some of the variability that will be seen when looking at turbine change profiles.

This variation will be quantified in the discussion around those experiments.

The equivalents of Figures F.2–F.4 obtained using the corrected mesh are given

in Figures F.6–F.8. One can see from comparison of this set of figures with the

those obtained using the original mesh element size pattern has been removed

from the change profiles. A more detailed analysis of these figures is carried out in

Chapter 5 §5.2.
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The equivalents of Figures A.4 – A.6 obtained using the corrected mesh are

given in Figures A.8 – A.10. One can see from comparison of this set of figures with

the those obtained using the original mesh element size pattern has been removed

from the change profiles. A more detailed analysis of these figures is carried out in

Chapter 5 §5.2.

Figure F.6: Change to M2 (a), M4 (b) and M6 (c) current amplitudes due to a

single fixed-CT turbine deployed on various asymmetry contours (locations shown

in Figure F.1) obtained from the updated mesh.
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Figure F.7: Change to M2 (a), M4 (b) and M6 (c) current phases due to a single

fixed-CT turbine deployed on various asymmetry contours (locations shown in

Figure F.1) obtained from the updated mesh.
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Figure F.8: Change to current FVA due to a single fixed-CT turbine deployed on

various asymmetry contours (locations shown in Figure F.1), measured by (4.2.1)

(a) and (4.2.2) (b), obtained from the updated mesh.
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