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Abstract: The well-known electrical analogy for thermal modelling is based on the observation
that Fourier’s equation for one dimensional heat transfer takes the same form as Ohm’s law.
This provides a system for creating and resolving complex heat transfer problems using an
established set of physically-based equations. In this article, such a model is developed and
evaluated for a four-floor modern university building. The model is represented in state space
form for optimisation and simulation purposes. The electrical analogy is chosen so that the
model can be extended and used for future research into distributed, demand—side control of
multiple buildings on the university network, requiring a fast computation time. The estimation
of occupancy, representing a significant internal heat source, is also investigated. Here, wifi usage
and return CO> data are combined in novel manner to improve the model response.
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1. INTRODUCTION

The research behind this article ultimately concerns con-
trol system robustness and overall system optimisation, for
the regulation of temperatures in buildings that are linked
to a controllable external heating supply network. This
is the case, for example, with the Lancaster University
campus, for which a central energy centre supplies the hot
water used to heat around 50% of the buildings. More gen-
erally, Heating, Ventilation and Air Conditioning (HVAC)
systems have high energy requirements, hence there is
considerable interest in the development of improved op-
timisation tools, micro—climate control algorithms and en-
ergy management systems. Examples include Price et al.
(1999); Taylor et al. (2004); Yang and Wang (2013); Kim
(2013); Goyal et al. (2013); Kossak and Stadler (2015);
Uribe et al. (2015); Mayer et al. (2017); Gorni and Visioli
(2017); Zhuang et al. (2018); Tate et al. (2018).

Numerous approaches for modelling heat transfer phe-
nomena and energy use have been developed. The models
obtained are commonly categorised into physically—based
models and models that are statistically identified from
data (Foucquier et al., 2013). Within this context, various
zonal and multi—zone approaches exist. Of particular rele-
vance to the present article, these include thermal models
constructed using an analogy with electrical systems. This
is based on the observation that Fourier’s equation for one
dimensional heat transfer takes the same form as Ohm’s
law. An early reference by Paschkis and Baker (1942)
describes how components of a building are considered to
store or resist heat flows, equivalent to capacitors and re-
sistors in electrical systems (Ramirez-Laboreo et al., 2014).
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This is useful as it provides a system for creating and
resolving heat transfer problems using an established set
of physically—based laws. Whilst page constraints preclude
a full literature review here, relevant research includes
e.g. multiple layered walls (Peng and Wu, 2008), heat
exchanger networks (Chen et al., 2015), global building
models (Fraisse et al., 2002), parameter estimation, opti-
mal model order identification and model reduction (Pen-
man, 1990; Gouda et al., 2002; Goyal and Barooah, 2012).
Relatively high order resistor—capacitor (RC) networks are
sometimes employed in order to model building compo-
nents. For example, Peng and Wu (2008) represent a wall
consisting of multiple layers of materials with air gaps, as
a system with three resistors and one capacitor (denoted
3RI1C). However, as a greater number of zones are mod-
elled concurrently, the network diagrams can become very
large. In such cases, programs such as TRNSYS (Klein
et al., 1978) are used to collate the models.

The present article considers the freestanding Charles
Carter Building, in the south part of Lancaster Univer-
sity’s main campus. The electrical analogy is chosen so
that the models obtained can be straightforwardly ex-
tended and used for future research into demand-side
control (Kim, 2013) of multiple buildings on the university
network, requiring a fast computation time for energy
optimisation purposes. With this objective in mind, the
models should be simple to construct and implement,
initially using readily available physical parameters, such
as room dimensions and estimates of thermal resistance.
Nonetheless, since the University’s Building Management
System (BMS) includes comprehensive data collection for
many parts of campus, the model is optimised directly
from data where possible, using the physically—based pa-
rameters as initial conditions.



Analysis of the initial model highlights a limitation,
namely the lack of a suitable internal heat source to
represent changing occupancy rates. The rooms are office
spaces, hence human occupancy and electrical equipment
will contribute heat (Luo et al., 2018; Tabak and de Vries,
2010; Yang and Becerik-Gerber, 2014). As a result, the
model is extended to include occupancy estimated using
data on (floor by floor) wifi usage and CO; levels (asso-
ciated with each of the air handling units) in the Charles
Carter Building. The new model is expressed in state—
space form and evaluated at full building scale.

2. CASE STUDY

Lancaster University campus has several recently con-
structed buildings fully instrumented with a range of sen-
sors and actuators, and seems well suited for research
into the optimisation of energy efficiency because of the
associated BMS data collection capacity. The architects
of the Charles Carter Building, for example, integrated
various energy-reducing features into the building design,
which achieved a BREEAM Excellent rating. The south
elevation is designed to shade the building while the con-
crete roof protects the top floor from heating up in the sun.
The building footprint is 33 m by 36 m, while there are
four floors (A-D), as illustrated by Fig. 1. Internally the
building is laid out around a central atrium that is open
from the floor to the roof. Surrounding this area are lecture
theatres, offices, meeting rooms and break-out spaces.

Micro-climate data are collected by the BMS every 10
minutes including, for example, the supply and return air
temperatures for various rooms, ventilation power levels
and HVAC set points. For purpose of the present article,
the main occupied rooms are represented as 16 zones
in Fig. 1, each representing an individual Air Handling
Unit (AHU) with measured ‘return’ air temperature T;(t)
(i =1,...,16). Illustrative temperature measurements are
shown for two such zones in Fig. 2 (degrees Celsius, °C).

3. MODEL FORMULATION

The model is expressed in conventional continuous-time
state space form, as follows,
&(t) = Az(t) + Bu(t) 1)
y(t) = Cx(t) + Du(t)
where y(t) is a 16 x 1 vector of output variables, i.e.
the temperature T;(t) in each zone and wu(t) is a 34 x 1
vector of input variables, with elements w;(t) (section 3.1).
In the physically-based model developed below, C is an
identity matrix and D = 0 is a matrix of zeros, hence the
state vector x(t) = y(t). Finally, A and B are matrices
with elements a;; (4,7 =1,...,16) and b;; (¢ =1,...,16,
j=1,...,34) respectively (see sections 3.2 and 3.3).

3.1 Heat inputs

The total heat input to each zone, ¢;(t) (i = 1,...,16)
(W), consists of three components as follows,
¢i(t) = ei(t) +7ilt) + Gi(t) (2)

where €;(t) = h; ¢ m;(t) dT;(t) is the controlled heat flow
from the AHU (either cooling or heating), v;(t) = (w +

0;)g:(t) is an internal heat source and (;(t) = ¢; M (t) is the
heat supplied from the campus hot water heating system.

Here, cj is the the specific heat capacity of air; m;(t) is
the mass flow of the air handling unit in zone i (m® s~!);
0T;(t) = S;(t)—T;(t) is the temperature difference between
the supply and return air, in which S;(¢) is the inlet air
temperature; and h; = 0.9 Vi (initial assumption, prior to
optimisation) is an empirical mixing coefficient, introduced
since not all of the incoming air mass will be fully mixed
before it is extracted at the outlet. The mass flow is not
directly measured and so is determined as follows,

mii(t) = fpari(t) (3)
where f = 0.006 m® kg™! is a fan properties coefficient,
representing the effective diameter and pitch, p, is the
air density and 7;(t) represents the fan RPM/60 i.e.
revolutions per second. Hence, €;(t) = (h; ¢ fpa) - 7i(t) -
0T;(t), which is bilinear in r;(¢) and 6T;(¢), and a function
of the zone temperature, raising identifiability challenges
that are the subject of current research by the authors.

With regard to the internal heat source, g;(t) represents
the time—varying number of occupants in each room, while
w = 100 W is based on an assumed average heat output
per person (Luo et al., 2018). The additional heat gain
coefficients 0; = 10 W for i = 1,...,5 and 0; = 50 W
for ¢ = 6,...,16 are associated with electronic equipment.
These initial values (prior to optimisation) are based on
an assumption that Floor A is primarily used for teaching,
whilst on floors B-D staff utilise desktop computers.

In (;(t), M(t) represents the heat supplied by hot water
entering the building from the campus-wide heating sys-
tem (W), while the proportion of this heat that reaches a
particular zone is denoted ¢;. There are a number of data
collection limitations associated with these terms, hence
they are the subject of on-going research. For the purpose
of the present article, 50% of the heat is assumed to reach
the modelled zones, and ¢; is initially assumed to be split
equally between these zones, hence ¢; = 0.03 Vi (retaining
the index since this coefficient can potentially be optimised
from data for each zone ).

To represent these heat inputs via equations (1), the
first sixteen elements of w(t) are defined u;(t) = g¢;(¢)

(i = 1,...,16), i.e. the number of occupants; and the
next sixteen elements, u;(t) = r;(t)0T;(t) (j = 17,...,32;
i = 1,...,16) are the input signals associated with the

controlled heat flow from each AHU. Finally, uss(t) =
M(t), while ugs(t) = Tg(t) is an additional exogenous
variable, namely the outdoor temperature. The various
time—invariant coefficients alluded to above are embedded
in A and B, defined from first principles or estimated from
data, as discussed below.

3.2 Heat balance equations

The thermal model for each zone consists of a first order
differential equation, analogous to a RC network. In the
analogy, R is the thermal resistance of the walls and C
is the capacitance of the constituent material. As the
intention is to formulate a simple model, a 1R1C system is
initially assumed for each room. To illustrate the principle,



! Double Doors o
Seminar Room | .- Offices
| i eminar Room
| I
I L____l_-l__ Sliding
| | | * Dividing
star! : Wall o
air air
I Zone 6 Zone 8
Zone 1 o :
Zone 2 Atrium
Zone 7 Atrium
Zone 3
T
A_ 8 _ I . !
Zone 4 ! o
I Lift | F--—-— o ‘
| siing Divising Wall _ oo e e e ;
_________ I . Corridor | Swr
] Stair : eminar Rooms
Zone 5 ““"“i“‘_"l
wc |
Offices Offices
iSlidin P Ea— ==
ééj‘j;’igg : | Dvidng : |
I stair ! wall I stair!
Zone 13 Zone 15 ol Zone 9 Zone 11 ol
: - : -
! !
Zone 14 Atrium  |zone 16 Zone 10 Atrium  |zone 12
[ TTT T
|t | | ouR !
[ ! [ !
e NI Sl Coridor 1 __swr __ ;1%

Fig. 1. Floor layouts showing zone numbers corresponding to model states: clockwise from top left, floor A, B, C and D.
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Fig. 2. Illustrative room (return) and supply (air condi-
tioning) temperatures, Friday 1st to 7th Sept. 2017.

consider the temperature T5(¢) for zone 2 on A-floor.
The temperature in this zone is coupled to the adjacent
zones 1 and 3, with temperatures Tj(t) and T3(t), and

Ts(t) above on B—floor. Hence, assuming heat capacity Cs
and walls/floors of thermal resistance Ry 2, Ra 3, Ro g and
Rs g, standard heat balance equations yield,

32(t) = Cy dj;?t(t) + TQ(t)R: le(t) T2(t)R;_53(t)
To(t) — To(t)  To(t) — Tr(t)
+ : Ry : + : R27EE (4)

in which go(t) represents the total heat flow (2). Re-
arranging to isolate the relevant state yields,

dT>(t)  qo(t) n Ty (t) T5(t) Ts(t)

d Oy CoRip  CaRp3  CaRog
Te(t) Ta(t) [ 1 1 L, ]
CoRy Cy [Rip Roz Rog Rop



Noting that us(t) = g¢2(t) and wis(t) = ro(t)oTa(t),
equation (5) is represented in the state space model (1),
by defining the following elements for A and B,

1 1 1 1 1 (6)
Qg9 = ——
2 Cy |Ri2 Re3 Ros Rop
1 1 1
- - . - . - (7
92,1 CoRip ' 92,3 CoRa3 ' 92,6 CoRy 6 0
w + 09 h Cg fpa
bpo—= 2102 g LTl g
2,2 & 2,17 G (8)
1 o
bogs = ———— s boga = 22 (9
233 = Eop b = (9)

The remaining elements on the second row of A and B are
zero. Similar 1R1C models are developed for each zone of
the building and embedded in (1).

3.3 Physically-based parameters

Initial values for the model coefficients are obtained by
mechanistic considerations, as detailed below. The thermal
capacitance of each zone (i = 1,...,16), summarised in
Table 1, is the sum of the capacitance associated with the
air, room objects (e.g. furniture) and walls, as follows,

Ci=Ct+Cf v oy (10)
where Cf' =V p, ¢, C’if = Vz-f Pf cIJ: and C}* =V py, ¢,
in which V;* is the volume of the air in the zone, Vif is the
volume of objects in the zone and V;* is the volume of
the walls/floor/ceiling surrounding the zone. In a similar
manner, pq, pr and p,, are the respective densities, whilst

Cps c-; and ¢, are the specific heat capacities.

Here, air density p, = 1.225 kg m~3 and air specific heat
capacity ¢, = 1.005 kJ kg=! K are taken as homogeneous
across the building, since the properties of air change very
little within a realistic temperature range e.g. ¢; = 1.013
kJ kg~! K at 150°C. The density and specific heat capacity
of objects and walls are initially assumed py = p,, = 1000

kg m~? and ¢f = ¥ = 0.9 kJ kg™ K respectively.

Bespoke room volumes V,* (i = 1,---,16) are determined

from the building layout, whilst Vif (the volume of carpets,
furniture, etc.) is initially assumed to be in the region of
1-2 m?. Finally, the wall volumes are,

n

Vz‘w = Z %lphp

p=1

(11)

where n is the number of walls (usually 6 including floor
and ceiling), d, is the wall depth (0.01-0.2 m), halved as
it assumed that half the volume is included in each zone,
I, is the length (5-10 m) and h, height (3 m). Using these
values, the heat capacitance of room objects and walls are
1000-2000 J K1, which fits with expected values from the
literature e.g. Wolisz et al. (2015).

Wall thermal resistances are based on,

(12)

Table 1. Thermal capacitance.

Physical Parameters
i Jve [Vl Jvele [ o [cp ] c
1 165 2 3 203 | 1800 | 2700 | 4703
2 165 2 3 203 | 1800 | 2700 | 4703
3 165 2 3 203 | 1800 | 2700 | 4703
4 154 | 1.5 2.5 190 | 1350 | 2250 | 3790
5 154 | 1.5 2.5 190 | 1350 | 2250 | 3790
6 97 1 1 119 | 1800 | 2700 | 4703
7 194 2 1 239 | 1800 900 2939
8 73 1 1.5 90 900 1350 | 2340
9 97 1 1 119 | 1800 | 2700 | 4703
10 | 194 2 1 239 | 1800 900 2939
11 73 1 1.5 90 900 1350 | 2340
12 | 243 2 0.5 | 300 | 1800 450 2550
13 97 1 1 119 | 1800 | 2700 | 4703
14 | 194 2 1 239 | 1800 900 2939
15 73 1 1.5 90 900 1350 | 2340
16 | 243 2 0.5 | 300 | 1800 450 2550

where d;; is wall depth (m), A thermal conductivity
(W/km) and A; ; wall area (m?), with the indices repre-
senting the relevant zone numbers. The wall depth is typi-
cally 0.01-0.02 m for glass panels and 0.03-0.08 m for the
internal walls. Composite walls are modelled using their
‘U’ value, i.e. the thermal transmittance, which is the sum
of reciprocals of the resistances of the wall elements, also
including convection and radiation from the internal and
external surfaces. The relevant calculations are developed
using U-value conventions from Anderson (2006).

Hence, using units of K W~! throughout, the resistance
of the outer offices to the external temperature on floors
B-DisR;p =372 (i=6,---,16), whilst the glass panels
on A floor yield R; g = 0.1 (i = 1,---,6). Internal walls
of gypsum and celcon yield R 2 = Ra3 = R34 = Reg =
Ry 11 = Ri3,15 = 0.4. The resistance of floors is dominated
by an air gap, yielding Ri g = Rog = R37 = Ra7 =
Rs7 = Reg9 = Re 10 = Rr10 = Rg 11 = Ry13 = Rip14 =
Rigis = Ritg2 = Ris = Ri16 = Rizi6 = 1.0.
Finally, R4’5 = 0.01, R677 = Rg’lo = R13,14 = 0.05 and
Rip,12 = Ri1,12 = Ria,15 = Ri5,16 = 0.8.

4. OCCUPANCY ESTIMATION

In the simplest case, 7;(t) in equation (2) is either based on
assumed average occupancy rates or as a set of arbitrary
coefficients to be optimised from the temperature mea-
surements (together with all the other parameters). Alter-
natively, the model is potentially improved by explicitly
addressing how the occupancy levels vary over the course
of the day in different parts of the building. Unfortunately
occupancy is not normally measured directly. Hence, two
sets of data gathered by the BMS are combined to provide
estimates: the number of devices connected to the wifi hubs
and the returning COs levels.

There are four wifi hubs in the Charles Carter Building,
one per floor, which log the total number of connected
devices every 10 minutes. This aspect of the estimate
assumes that everyone posses a wifi connected device,
and doesn’t account for individuals possessing two devices
e.g. a smart phone and laptop. However, as the staff and
research student offices have desktop PCs with a wired
connection, one device per person seems a reasonable ini-
tial approximation. Furthermore, this somewhat simplistic
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Fig. 3. Observed (GT: ground truth) occupancy and
change from minimum CO; level on C-floor for
zones 9, 10 and 11; and (lower right subplot) total
C—floor observed occupancy and C—floor wifi data.

approach is appealing since existing sensors and readily
available data sets are used i.e. there is scope for general
implementation throughout the university, without requir-
ing the installation of bespoke sensors.

However, since there is only one wifi hub per floor, this
count provides no insight into to how the occupants are
distributed between different rooms or zones on the floor.
The latter is provided by the relative changes in CO2
levels. To illustrate the approach, the occupancy g;(t) for
the four zones on C—floor are estimated using,

_p) 4Hi(t +0b) — mm(Hl)
> i1 (Hi(t + b) — min(H;))

where P.(t) is the total number of occupants on C—floor
as recorded by the wifi hub, H;(t) the COq level (ppm)
and b is the time—delay. For a preliminary evaluation,
‘ground truth’ measurements were taken by the present
first author every 10 minutes during a week day in both a
university holiday (25th Sept. 2018) and during term-time
(30th Jan. 2019). As illustrated by Fig. 3, the wifi hub
data generally conforms to the real occupancy trend, albeit
with consistent over-estimation. This offset is addressed
by suitable estimation of w and o;. The lower—left plot
of Fig. 3 clearly displays that an appreciable rise in COq
level is associated with an increase in the number of
occupants. Hence, there is evidence that COs and wifi
data provide an indication of occupancy, sufficient at least
to subsequently yield good estimates of the temperature
response, as demonstrated in the following section.

9i(t) (13)

5. RESULTS

The elements of the transition matrix A and matrix B of
the state space model (1) relate to the physical properties
of the zone. In this case, the system matrices also include
numerous zero elements e.g. where there is no wall, ceiling
or floor linking two rooms. One limitation of this method
is that it ignores relatively small but sometimes potentially
significant coupling effects e.g. most zones in the building
share a wall with the central atrium. Hence, for improved
model performance, selected composite parameters are
numerically optimised from the available data. To illus-
trate, MATLAB ssest is utilised for iterative parameter

Table 2. RMSE for: (i) constrained optimisa-
tion, (ii) constrained optimisation with initial
conditions based on physical coeflicients, (iii)
unconstrained optimisation of [A,B] and (iv)
optimisation of B only.

Zone | (i) Const.  (ii) Imit.  (iii) Free (iv) Opt. B
1 10.05 4.99 0.44 1.12
2 10.49 5.61 0.47 1.09
3 10.27 5.62 0.40 1.14
4 9.85 5.69 0.39 0.99
5 8.33 4.28 0.66 1.03
6 11.15 6.38 0.44 1.22
7 11.10 6.30 0.42 1.25
8 9.70 5.46 0.56 1.02
9 11.46 6.47 0.55 1.22
10 11.05 6.09 0.57 1.29
11 9.84 5.53 0.77 1.17
12 10.32 5.89 0.42 1.11
13 10.36 6.28 0.43 1.19
14 10.41 6.13 0.40 1.13
15 10.24 5.93 0.44 1.09
16 10.00 5.82 0.41 1.09
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estimation via a subspace Gauss—Newton or Levenberg—
Marquardt least squares search. Figure 4 illustrates a
typical model fit when using unconstrained optimisation
of [A,B] in this manner, with column (iii) of Table 2
showing the Root Mean Square Errors (RMSE) between
the simulated and actual return temperatures. Here, if
the purely mechanistic model is utilised the fit is very
poor, hence Table 2 only summarises the results for vari-
ous optimisation approaches: column (i) uses zero for the
coefficient initial values, whilst (ii) utilises the physically—
based values of the coefficients developed in section 3.3,
demonstrating the value of determining these.

Although yielding the lowest RMSEs in Table 2, com-
pletely free optimisation can yield unsuitable coefficients
for when the model is applied to other scenarios in val-
idation experiments. In this regard, preliminary analy-
sis suggests that a hybrid approach in which only B is
optimised yields the best performance overall. Finally,
although details are omitted for brevity, the introduction
of the occupancy estimates can yield an improved fit com-
pared to an assumed time-invariant internal heat, although
this requires further research.



6. CONCLUSIONS

A model of a four-floor building on a university campus
has been developed using the thermal-electrical analogy.
Physically-derived parameters yield relatively poor perfor-
mance, which is improved when the model is combined
with occupancy estimation and numerical optimisation of
the coefficients using data from the BMS. In this regard,
one novelty of the proposed approach is the utilisation
of occupancy estimates based on a bespoke combination
of wifi and CO, data. However, to validate the approach
and to compare with other modelling methods from the
literature, additional observation days are required and
this is the subject of current research by the authors.

An energy centre provides hot water for heating the build-
ing, and contains multiple methods of heat production,
such as gas boilers and a biomass generator. Therefore, in
future research, this type of model will be used to explore
options for a hierarchical control system, with a particular
focus on optimising the use of the boilers and generator. In
this regard, the authors are presently developing demand—
side control concepts to address multiple buildings on the
network i.e. the control actions for one building are ac-
counted for when choosing actions for the other buildings.
This will be achieved within a non-minimal state space
model predictive control framework (Taylor et al., 2013).
Moreover by incorporating weather into the control system
and so making full use of the available data from the local
Hazelrigg weather station, it is anticipated that the entire
network can be better optimised.
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