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Majorana zero modes are non-Abelian quasiparticles that emerge on the edges of topological phases of
superconductors. Evidence of their presence have been reported in transport measurements on engineered
superconducting-based nanostructures. In this manuscript we identify signatures of a topologically protected
dynamical manipulation of Majorana zero modes via continuous transport measurement during the manipu-
lation. Specifically, we show that, in a two-terminal geometry, the heat pumped across the terminals at low
temperature and voltage bias is characterized by a universal value. We show that this feature is inherent to the
presence of Majorana zero modes and discuss its robustness against temperature, voltage bias and the detailed
coupling to the contacts.

Introduction Majorana zero modes are non-Abelian
quasiparticles bound to the surface and to defects in topolog-
ical supercoductors.[1–3] Driven by the promise of exploit-
ing their non-Abelian statistics for fault-tolerant information
processing [4], proposals for engineering such a topological
phase in superconductor-based nanostructures have shifted the
focus on Majorana zero modes form a purely theoretical fea-
ture [2, 5, 6] to an experimentally observable entity [7–9].
While the first wave of experiments [10–15] were designed
solely to detect these exotic excitations, the next generation
of experiments [16–18] and theoretical proposals [19–24] aim
at probing directly their non-local topological properties, with
the ultimate goal of optimising and controlling their manipu-
lation.

A key feature of topological phases based on supercon-
ducting nanostructures is the multitude of available detec-
tion schemes. To date, transport properties, such as conduc-
tance and tunneling density of states [25], have provided the
predominant evidence of Majorana zero modes [10–15], and
charge sensing schemes have been proposed to effectively im-
plement braiding protocols [26–28]. Indeed, having an open
apparatus, where the topological material is coupled to non
interacting leads, allows to define new topological invariants
based on scattering states[29–31].

In this manuscript we look at an intermediate benchmark to-
wards the implementation and detection of topologically pro-
tected operations by examining the transport signatures of a
braiding protocol. For this purpose we consider the minimal
setup for the exchange of Majorana modes, in a Y-junction
layout, see Fig. 1. In a sequence of operations shown in Fig.
2, the Y-junction setup is then driven to perform Majorana
braiding. We show that a combination of the density of heat
and charge pumped during the braiding cycle is a universal
quantity, independent of the details of the driving and of the
couplings to the external leads. We further discus how this
measurable feature is affected by temperature and by the con-
tact geometry. This universal value stems directly from the
geometric properties of the braiding cycle in parameter space,
and can be used as a signature of such a topologically pro-
tected operation. It also provides a new potential tool for en-
gineering heat pumping device.
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Figure 1. Schematics of a junction of three 1d p-wave supercon-
ductors. The Majorana zero-modes at two ends of the junction are
connected to external leads. The effective couplings between pairs
of Majorana can be tuned independently.

Model — The system we consider is schematically de-
picted in Fig. 1. It consists of three topological superconduct-
ing (TSC) wires arranged in a Y-junction configuration. The
wires can be realized in proximity coupled semi conducting
wires with a strong spin orbit coupling, subjected to a mag-
netic field and proximity coupled to a superconductor [8, 9].
Throughout the manuscript we will assume that the supercon-
ductors are large enough such that charging effects can be
neglected. Each topological superconducting wire hosts two
Majorana zero modes at its end. At energies well below the
induced superconducting gap, ∆, the Hilbert space is spanned
by three Majorana bound states γi where i = x, y, z which
appear at the three ends of the Y-junction, and a single Majo-
rana bound state at the center γ0, as shown in the figure. (The
junction may host additional sub gap states. We restrict to
energies which are well below any accidental subgap excita-
tions). The four Majorana zero modes can be gapped in pairs,
and the effective low energy Hamiltonian of the Y junction is

HY = iγ0
~∆ · ~γ (1)

where ~∆ = ∆(sin θ cosφ, sin θ sinφ, cos θ) and ~γ =
(γx, γy, γz).

In order to study the transport properties of the system we
couple the Y-junction to two single channel leads, denoted by
L,R. The full Hamiltonian is then given byH = HY +HT +

ar
X

iv
:1

80
7.

06
85

6v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
8 

Ju
l 2

01
8



2

✓

�

�x

�y

�z

C1

C2

C3

Figure 2. Schematic representation of the driving cycle. Grey lines
represent the pairwise coupling between Majoranas (∆j 6= 0 for full
lines and ∆j = 0 for dotted lines). The corresponding stages of the
evolution are represented as a path in the parameter space spanned
by ~∆.

∑
α=L,RHα, where

HT = tL

(
cLk − c†Lk

)
γx + tR

(
cRk − c†Rk

)
γy (2)

Hα =
∑
k

ξkc
†
αkcαk,

with ξαk the lead energy dispersion and with the tunneling
charcterised by the rates Γα = πνα|tα|2, να the energy den-
sity of sates.

The Y-junction is the simplest proposed setup that allows to
perform Majorana braiding. This can be achieved by adjusting
the pairwise coupling ∆i between in an adiabatic sequence us-
ing gates or magnetic fluxes [32, 33]. The pairwise coupling
sequence and the corresponding cycle in the parameter space
are depicted in Fig. 2. The induced operation on the state of
the system can be better understood by applying an orthogonal
rotation on HY to obtain Hd

Y = i∆γ0γr, where γr = ~γ · êr,
and the two zero modes γθ = ~γ · êθ and γφ = ~γ · êφ, with
êr, êθ and êφ the basis vectors in spherical coordinates, and
êθ and êφ span a two fold degenerate subspace. The evolution
induced by adjusting the pairwise coupling shown Fig. 2 cor-
responds to adiabatically changing the projection of the Majo-
rana bound states physically coupled to the leads γx,y,z on to
the degenerate subspace spanned by γθ, γφ. Importantly the
operation is exponentially protected regardless of the fluctua-
tions in controlling the system parameters [33].

Adiabatic change of scattering matrix — The adiabatic
manipulation of the system parameters depicted in Fig. 2 can
be regarded as pumping cycle when the system is coupled to
external leads, see Fig. 1. In order to study the transport prop-
erties of the braiding cycle, we compute the scattering matrix
defined as Ψout(ε) = S(ε)Ψin(ε) where the scattering states
Ψin = (Φe,L,Φh,L,Φe,R,Φh,R) are in the basis of electrons

(e) and holes (h) in the left (L) and right (R) leads. The
scattering matrix can be expressed as [34]:

S(ε) = 11 + 2πiW †
(
H0 − ε− iπWW †

)−1
W (3)

Where W is the matrix that encodes the coupling to the
leads. Eq. (3) is more transparent in the rotated basis:
Ψ̃ = (Φ+

L ,Φ
+
R,Φ

−
L ,Φ

−
R) where Φ±α = 1√

2
[Φe,α ± Φh,α].

From Eq (2) it follows that in this basis the scattering ma-
trix takes a block diagonal form with only two channels cou-
pled to the Y-junction. We therefore restrict to the two di-
mensional basis of coupled channels, namely ψ = (Φ−L ,Φ

−
R).

Here the coupling matrix takes the simplified form W =√
2tL|x〉〈L−| +

√
2tR|y〉〈R−|, and the scattering matrix can

be written as S(ε) = 12⊕ S̃(ε), where the S̃(ε) ∈ U(2) is the
non-trivial block of the scattering matrix.

At energies well below the induced superconducting gap,
ε � ∆, only the two fold degenerate ground-space of the
Hamiltonian takes part in the transport, and we need to ac-
count for the lead-system coupling terms projected on the
ground state only. Defining a projection operator Pg =
|θ〉〈θ| + |φ〉〈φ|, we can rewrite the expression for the scat-
tering matrix in Eq. (3) by replacing W with its projected
equivalent,

PgW =
√

2tL
[
cos θ cosφ|θ〉〈L−| − sinφ|φ〉〈L−|

]
+
√

2tR
[
cos θ sinφ|θ〉〈R−|+ cosφ|φ〉〈R−|

]
. (4)

where 〈θ|x〉 = cos θ cosφ, 〈θ|y〉 = cos θ sinφ, 〈φ|x〉 =
− sinφ, 〈φ|y〉 = cosφ. Using Eq. (4) in Eq. (3), the resulting
scattering matrix takes a simplified form:

S̃(ε) = e−iη(ε)e−iχ(ε)(cos δ(ε)σz+sin δ(ε)σx)

= e−iη [cosχ− i sinχ (cos δσz + sin δσx)] , (5)

where an analytical expression for η(ε) ∈ [0, 2π), χ(ε) ∈
[0, π], and δ(ε) ∈ [0, π) which depend on the parameters con-
trolled along the cycle, θ and φ, is given in the supplemental
material [39]. For equal coupling strength ΓL = ΓR the map-
ping takes a compact form:

tan δ(ε) = tan 2φ

tanχ(ε) =
εΓ sin θ2

ε2 + Γ2 cos θ2

tan η(ε) =
εΓ(1 + cos θ2)

ε2 − Γ2 cos θ2
. (6)

Eq. (5) maps the path in parameter space depicted in Fig. 2 to
a path in the space of scattering matrices, as depicted in Fig.
3. In the limit of low excitations energies ε � min ΓL,ΓR
and for generic coupling strength ΓL 6= ΓR, the path C of
S̃(ε) approaches the solid line in Fig. 3. Note that ε = 0 gives
a trivial path. This reflects the fact that the zero-energy limit
conflicts with the exponentially small energy splitting due to
the overlap of Majorana zero modes, ε0, and a non trivial limit
requires ε� ε0.
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Figure 3. S̃(ε) along the braiding cycle. The color codes identifies
the segments of the loop in parameter space depicted in Fig. 2. Here
ΓL/ΓR = 0.3, ε/ΓR = 0.01 (solid curve) and ε/ΓR = 0.1 (dashed
curve). The inset shows a plot of the U(1) phase of the scattering
matrix, η, for general ΓL/ΓR = 0.3 and ε/ΓR = 1 × 10−3. (the
two curves are shifted for clarity, the blue segment is not visible since
η is not affected)

.

Pumped charge and heat — In order to identify a suitable
transport property which reflects the global geometric proper-
ties of the path in parameter space (cf. Fig.2), we consider first
the charge and heat current at lead α, Ie,α = e/h

∫
dε[fin(ε)−

fout](ε) and Iε,α = 1/h
∫
dε(ε − µ)[fin(ε) − fout] respec-

tively, where fin(ε) and fout(ε) are the ingoing and outgoing
electronic energy distribution functions in the leads, kept at
temperature T and voltage bias eV = µ. The latter is deter-
mined by the time dependent scattering matrix of the system.
Following a well established procedure [1], the scattering ma-
trix is expanded to include the leading small slow-varying cor-
rections, to obtain the expression for the pumped charge and
heat Qe(ε),α =

∫ τ
0
dt Ie(ε),α(t) in terms of the parametric de-

pendence of the scattering matrix [36]. The result are known
for the case superconducting leads[1–3], and we extend them
here to a normal-superconducting junction with a Majorana
zero modes – see [39].

At finite bias µ 6= 0, the braiding manipulation gives
rise to heat and charge currents, both accompanied by time-
independent contributions. However, at µ = 0, as a di-
rect consequence of particle-hole symmetry of the Majorana-
lead coupling, the charge current is identically zero even in
the presence of a driving. That is not generally the case
for the heat current, which embeds the geometrical contribu-
tion resulting from the braiding protocol. In this limit, the
heat pumping is given by Qε,α(µ = 0, T ) =

∫ τ
0
dt Iε,α =

2
∫∞

0
dε εQ0,α(ε)∂f(ε)/∂ε with

Q0,α(ε) =

∮
C

(
dn(α)

dθ
dθ +

dn(α)

dφ
dφ

)
, (7)
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Figure 4. The heat pumped into the left lead during a braiding
process, Qε,L

2 ln 2T
, as a function of the temperature T/ΓL. Different

curves correspond to different values of the coupling ΓR/ΓL = 1
(blue curve), ΓR/ΓL = 2 (yellow curve), ΓR/ΓL = 4 (Green
curve). Inset shows the combined current and heat pumped during
a braiding process as a function of the chemical potential µ/ΓL at
zero temperature, for different values of the coupling constants (same
color code).

where f(ε) is the Fermi distribution function and

dn(α)

dX
=

1

2π

∑
β,ν

Im
∂Se,να,β
∂X

Se,να,β
∗

=
1

4π

∑
r

Im
∂S̃α−,r

∂X
S̃∗α−,r −

1

4π
Im

∂S̃α−,α−

∂X
. (8)

Here β = L,R, ν = e, h and r = L−, R−. At low tempera-
tures, T → 0, this expression reduces to:

Qε,L
T

= 2 ln 2 lim
ε→0

Q0,L(ε) +O(T ). (9)

The zero energy limit of Q0,α can be conveniently computed
using the mapping of the path in parameter space to that in the
scattering matrix space, portrayed in Fig. 3. In this limit, the
heat pumped approaches a universal value independent on the
coupling parameters ΓL,ΓR. Form Eq. (5) and Eq. (7) we
find:

Qε,L
2 ln 2T

=
1

4
(10)

Eq. (10) is the main result of our paper. A few comments
are in place. We first note that the braiding protocol defines
a path in parameter space (see Fig. 2). At low scattering en-
ergies ε → 0 this path is mapped onto a distinctive path in
the scattering matrix space, independent on the coupling to
leads, which in turns leads to the universal value of Qε,α/T .
This universal value is therefore inherited from the geometri-
cal properties of the path in parameter space, and reflects its
topological protection, i.e. the measured heat pumped is pro-
tected against fluctuations of the coupling and the cycle driv-
ing. Second, in the absence of Majorana zero energy excita-
tions, the ground state degeneracy is lifted. This corresponds
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to setting ε = 0 in Eqs. (5,6), where the path in parameter
space would be trivial and there would be no pumped charge
or heat. Finally, we see from Eq. (8) thatQε,R = −Qε,L. This
anti-correlation of pumped heat at the two leads is distinctive
of the Majorana braiding cycle, and can be used to distinguish
the presence of Majorana bound states from a local zero en-
ergy Andreev bound state, which would generically result in
uncorrelated heat transfer at the two leads.

The value of the pumped heat Qε,α, is plotted as a func-
tion of T in Fig. 4. The universal value Qε,α/2 ln 2T =
1/4 is obtained under the physical conditions T � µ �
min{ΓL,ΓR}. Away from this limit, at finite T , the pumped
heat deviates form the universal value in a parameter de-
pendent fashion. Applying a finite bias µ, introduces time-
independent contributions to the charge and heat currents
which originate from Andreev reflection processes, present
also in the absence of the adiabatic manipulation. In this
case, the combination that singles out the contribution from
the braiding process is Qα ≡ Qε,α + µ

eQe,α expressed by:

Qα =

∫ ∞
0

dε εQ0,α(ε)

[
∂f(ε− µ)

∂ε
+
∂f(ε+ µ)

∂ε

]
,(11)

with Q0,α given by Eq. (7). As long as µ � T , a finite
bias induces small corrections of the universal value. When
T � µ, instead, we have a different picture and a finite value
of Qα is induced by the finite chemical potential. In the limit
T = 0, and µ→ 0 we have

QL
µ

= lim
ε→0
Q0,L(ε) =

1

4
(12)

Here the role of temperature is replaced by the chemical po-
tential. The non abelian phase acquired during the pumping
cycle is embedded in the linear dependence on the pumped
heat on chemical potential. The general dependence on the
bias µ is shown in the inset of Fig. 4. As in the limit of µ = 0
and finite temperature, the deviation from the universal value
occurs at µ ∼ min{ΓL,ΓR}.

Three-terminal geometry — We next study the case
where the three arms of the Y-junction setup are cou-
pled to leads. This is described by the Hamiltonian
H = HY + H3T +

∑
αHα with the same notation as in the

two-leads case and where H3T = HT + tU

(
cUk − c†Uk

)
γz

and α = L,R,U . Following the steps outlined above,
we calculate the scattering matrix using Eq. (3). In the
rotated basis: Ψ̃ = (Φ+

L ,Φ
+
R,Φ

+
U ,Φ

−
L ,Φ

−
R,Φ

−
U ) where

Φ±α = 1√
2

[Φe,α ± Φh,α], the scattering matrix takes a block

diagonal form, S(ε) = 13 ⊕ S̃(ε), with S̃(ε) ∈ U(3).
Restricting to the three dimensional basis of coupled
channels, ψ = (Φ−L ,Φ

−
R,Φ

−
U ) and projecting onto the

ground state manifold, the coupling matrix takes the form
PgW =

√
2tL [cos θ cosφ|θ〉〈L−| − sinφ|φ〉〈L−|] +√

2tR [cos θ sinφ|θ〉〈R−|+ cosφ|φ〉〈R−|] +√
2tU [sin θ|θ〉〈U−|]
In the three terminal geometry, S̃(ε) takes a more compli-

cated form than that in Eq. (5)(cf. Ref. [39] for details). The

Figure 5. The differential heat per energy pumped into the left lead
during a braiding process in the three lead configuration. Plots where
calculated for ΓL/ΓR = 1 and different coupling of the third lead
ΓU/ΓL = 0 (blue curve), ΓU/ΓL = 0.01 (yellow curve), ΓU/ΓL =
0.1 (Green curve) and ΓU/ΓL = 0.3 (red curve). Inset shows the
differential heat pumped into the left lead as a function of the ratio
ΓU/µ. Here ΓL/ΓR = 0.3 and µ/ΓL = 0.01.

combined heat and charge pumped along the cycle is then cal-
culated using Eq. (7). Fig. 5 depicts the combined heat and
charge, QL/µ pumped during a braiding process for different
values of the coupling strength to the upper lead. Interest-
ingly, the universal value at vanishing energy is lost once the
broadening due to the coupling to the third lead is of the or-
der of µ. Therefore QL/µ approaches 1/4 only in the regime
ΓU � µ � min ΓR,ΓL. This result is to be expected, as the
limit µ � min ΓU ,ΓL,ΓR is adiabatically connected to the
limit of equal coupling, where we expect no charge transfer as
a result of symmetry.

Conclusions– In conclusion, we have analysed a quantum
device in which Majorana zero modes undergo a dynamical
braiding operation, while the system is continuously probed
by external leads. Considering explicitly the implementation
in superconducting nanostructures where two Majorana end-
states are contacted to external leads, we have related the ac-
cumulated non-abelian geometric phase to a surface integral
in the space of scattering matrices. In the limit of low energy,
this results in a universal value of the heat density pumped
during a cycle. (Notably, the pumped charge is identically
zero). We have analysed the robustness of the effect against
the variation of parameters, temperature, and setup geometry.
Our results establishes a first connection between transport
properties and topologically protected dynamical operations
in Majorana based devices. The identified universal property
can provide a new ingredient for engineering heat pumping
devices and for understanding the role of topological protec-
tion in thermodynamic processes.
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Supplementary Materials
Here we present the derivation of the general form of the scattering matrix for the geometry with 2 and 3 contact leads. We
derive a general formulas for pumped heat and charge for a system consisting of both superconducting and normal leads and
apply it to the device considered in the paper.

GENERAL FORM OF THE SCATTERING MATRIX FOR 2 AND 3 LEADS

We study first the case where we couple the superconducting Island to 3 leads. The setup is described by the Hamiltonian:

H0 = 2iγ0
~∆ · ~γ

HT = tL

(
cLk − c†Lk

)
γx + tR

(
cRk − c†Rk

)
γy + tU

(
cUk − c†Uk

)
γz

Hα =
∑
k

ξkc
†
αkcαk

Analogously to the procedure in the paper, we calculate the unitary scattering matrix: Ψout(ε) = S(ε)Ψin(ε) where the scattering
states Ψin = (Φe,L,Φh,L,Φe,R,Φh,R,Φe,U ,Φh,U ) are in the basis of electrons (e) and holes (h) in the left and right leads. The
scattering matrix can be expressed as:

S(ε) = 11 + 2πiW †
(
H0 − ε− iπWW †

)−1
W (S1)

Where W is the matrix that encodes the coupling to the leads. It is possible to perform a unitary transformation that decouples
some of the leads degrees of freedom form the system. We work in this rotated basis defined by Ψ̃ = (Φ+

L ,Φ
+
R,Φ

+
U ,Φ

−
L ,Φ

−
R,Φ

−
U )

where Φ±α = 1√
2

[Φe,α ± Φh,α]. It follows directly that From Eq. (S1) that, in this basis, the scattering matrix takes a block
diagonal form with only three channels coupled to the dot. We therefore restrict to the three dimensional basis of coupled
channels, namely ψ = (Φ−L ,Φ

−
R,Φ

−
U ) . Denoting ΓU the coupling to the third lead, the coupling matrix takes the form:

W =


√

ΓL 0 0
0
√

ΓR 0
0 0

√
ΓU

0 0 0

 =
√

ΓL|x〉〈L−|+
√

ΓR|y〉〈R−|+
√

ΓU |z〉〈U−| (S2)

Projecting onto the ground state manifold: Pg = |θ〉〈θ|+ |φ〉〈φ|. We can write:

PgW =
√

ΓL
[
〈θ|x〉|θ〉〈L−|+ 〈φ|x〉|φ〉〈L−|

]
+
√

ΓR
[
〈θ|y〉|θ〉〈R−|+ 〈φ|y〉|φ〉〈R−|

]
+
√

ΓU
[
〈θ|z〉|θ〉〈U−|+ 〈φ|z〉|φ〉〈U−|

]
=
√

ΓL
[
cos θ cosφ|θ〉〈L−| − sinφ|φ〉〈L−|

]
+
√

ΓR
[
cos θ sinφ|θ〉〈R−|+ cosφ|φ〉〈R−|

]
−
√

ΓU
[
sin θ|θ〉〈U−|

]
(S3)

The non-trivial part of the scattering matrix follows:

S̃(ε) = 11 + 2iW †
(
Pg[H0 − ε− iWW †]Pg

)−1
W

= 11− 2iW †
(
ε+ iPgWW †Pg

)−1
W

= |L−〉〈L−|

{
1− 2iΓL

[
(ε+ iΓR) cos2 θ + (ε+ iΓU ) sin2 θ sin2 φ

(ε+ iΓU ) sin2 θ
(
ε+ iΓL sin2 φ+ iΓR cos2 φ

)
+ (ε+ iΓL) (ε+ iΓR) cos2 θ

]}

+ |R−〉〈R−|

{
1− 2iΓR

[
(ε+ iΓL) cos2 θ + (ε+ iΓU ) sin2 θ cos2 φ

(ε+ iΓU ) sin2 θ
(
ε+ iΓL sin2 φ+ iΓR cos2 φ

)
+ (ε+ iΓL) (ε+ iΓR) cos2 θ

]}

+ |U−〉〈U−|

{
1− 2iΓU sin2 θ

[ (
ε+ iΓL sin2 φ+ iΓR cos2 φ

)
(ε+ iΓU ) sin2 θ

(
ε+ iΓL sin2 φ+ iΓR cos2 φ

)
+ (ε+ iΓL) (ε+ iΓR) cos2 θ

]}

− 2i
√

ΓLΓR
[
|L−〉〈R−|+ |R−〉〈L−|

]{ (ε+ iΓU ) sin2 θ cosφ sinφ

(ε+ iΓU ) sin2 θ
(
ε+ iΓL sin2 φ+ iΓR cos2 φ

)
+ (ε+ iΓL) (ε+ iΓR) cos2 θ

}

+ 2i
√

ΓUΓR
[
|U−〉〈R−|+ |R−〉〈U−|

]{ (ε+ iΓL) cosφ cos θ sin θ

(ε+ iΓU ) sin2 θ
(
ε+ iΓL sin2 φ+ iΓR cos2 φ

)
+ (ε+ iΓL) (ε+ iΓR) cos2 θ

}

+ 2i
√

ΓUΓL
[
|U−〉〈L−|+ |L−〉〈U−|

]{ (ε+ iΓR) sinφ cos θ sin θ

(ε+ iΓU ) sin2 θ
(
ε+ iΓL sin2 φ+ iΓR cos2 φ

)
+ (ε+ iΓL) (ε+ iΓR) cos2 θ

}
(S4)



Figure S1. The evolution the x and y angles of the scattering matrix, Eq. (S5) during the first segment of the pumping cycle. The solid line
was calculated for ΓU/ΓL = 0.3 and ε/ΓL = 10−4, while the dashed line shows the limit of uncoupling the upper leadΓL � ε� ΓU , where
ε/ΓL = 10−2 and ΓU/ΓL = 10−5.

The expression in Eq. (S4) simplifies considerably when the scattering matrix is evaluated along the path in parameter space
of the pumping cycle. We obtain, for the three branches of the cycle:

S(C1) = e
−ix~C1

[
cosx~C1

41 + 3λ3 −
√

3λ8

6
+ i sinx~C1

cos y~C1

√
3λ8 + λ3

2
+ i sinx~C1

sin y~C1
λ4

]
+ e−2iζR

21− 3λ3 +
√

3λ8

6

S(C2) = e
−ix~C2

[
cosx~C2

21 +
√

3λ8

3
+ i sinx~C2

cos y~C2
λ3 + i sinx~C2

sin y~C2
λ1

]
+ e−2iζU

1−
√

3λ8

3

S(C3) = e
−ix~C3

[
cosx~C3

41− 3λ3 −
√

3λ8

6
+ i sinx~C3

cos y~C3

1

2

[√
3λ8 − λ3

]
+ i sinx~C3

sin y~C3
λ6

]
+ e−2iζL

21 + 3λ3 +
√

3λ8

6

where ~C1 = (L,U, θ), ~C2 = (R,L, φ), ~C3 = ~C3 = (U,R, φ) and tanx(α,β,ψ) = (Γα cosψ2 + Γβ sinψ2)/ε, tan y(α,β,ψ) =

(2
√

ΓαΓβ cosψ sinψ)/(Γβ sinψ2 − Γα cosψ2) and tan ζα = Γα/ε. The scattering matrix dependence on the parameters is
represented graphically in Fig. S1, which presents the x and y components along the path in parameter space.

GENERAL FORM OF THE SCATTERING MATRIX FOR 2 LEADS

Upon decoupling one of the leads, by setting ΓU = 0 in Eq. (S4), the scattering matrix reduces to that of the two-leads
geometry, S̃(ε) ∈ SU(2), which can be parametrised in terms of scattering matrices as

S̃(ε) = e−iη(ε)e−iχ(ε)(cos δ(ε)σz+sin δ(ε)σx) = e−iη(ε) [cosχ(ε)− i sinχ(ε) (cos δ(ε)σz + sin δ(ε)σx)]

with

tan δ(ε) =
2
√

ΓLΓR sin θ2 sin 2φ

(ΓL − ΓR)(1 + cos θ2)− (ΓL + ΓR)(sin θ2 cos 2φ)

ΓL→ΓR−−−−−→ tan 2φ

tanχ(ε) =
ε

√
[(ΓL − ΓR)(1 + cos θ2)− (ΓL + ΓR)(sin θ2 cos 2φ)]

2
+ 4ΓLΓR sin θ4 sin 2φ2

2 [ε2 + ΓLΓR cos θ2]

ΓL→ΓR−−−−−→ εΓ sin θ2

ε2 + Γ2 cos θ2

tan η(ε) =
ε
[
ΓL(cos θ2 + sin θ2 sinφ2) + ΓR(cos θ2 + sin θ2 cosφ2)

]
ε2 − ΓLΓR cos θ2

ΓL→ΓR−−−−−→ εΓ(1 + cos θ2)

ε2 − Γ2 cos θ2
(S5)

In the limit of equal coupling we recover the simplified expressions (6) in the paper.



PUMPED CHARGE AND HEAT WITH NORMAL AND SUPERCONDUCTING LEADS

The main result of the paper establishes a relation between the geometric phases associated with the braiding of Majorana
zero modes and transport across the system. Specifically the pumped heat across the cycle encodes informations on the geo-
metric phase. We derive here the general expression for the pumped charge and heat in setups consisting of both normal and
superconducting leads, and use it for the Majorana-based device studied in the paper.

The starting point for our derivation are the results obtained for charge pumping [S1–S3]. The system under consideration
consists of N normal leads contacted to a mesocopic device in the presence of a grounded superconductor. The amplitude for
electrons and holes injected from lead α to be reflected /transmitted as electrons or holes at lead β is determined by the scattering
matrix S(ij)

β,α (t), where i, j ∈ {e, h}, with the same notation used in the paper. The outgoing charge and energy currents at lead
α are given by

Ie,α =
e

h

∫ ∞
0

dE [fout,α(E)− fin,α(E)] , (S6)

Iε,α =
1

h

∫ ∞
0

dE(E − µα) [fout,α(E)− fin,α(E)] , (S7)

Here the distribution of the ingoing particles at lead α is the equilibrium distribution set by the external temperature and chemical
potential, fin,α(E) = f0(E − µα), and the outgoing one is determined by the scattering properties of the systems.

In the following we simplify [fout,α(E)− fin,α(E)], and the result can be used for both the charge and heat current. We
assume that all the leads are kept at the same chemical potential, µα = µ. Moreover, the time dependence of the scattering
matrix on time is due to the weak slow periodic driving of external parameters, Xj(t) = Xj +Xj,ωe

i(ωt−φj) +Xj,ωe
−i(ωt−φj).

The time-dependence of the scattering matrix is then expressed given by

Ŝ(t) = Ŝ + Ŝωe
−iωt + Ŝ−ωe

iωt, (S8)

with

Ŝ±ω =
∑
j

Xj,ωe
∓iφj ∂Ŝ

∂Xj
. (S9)

This essentially corresponds to including the scattering process involving the nearest energy side-bands. The distribution of
outgoing electrons at energy E is therefore determined by the distribution of ingoing electrons and holes at energies E, E + ω

and E − ω. With the observation that the ingoing equilibrium distribution of holes is given by f (h)
in,β(E) = f0(E + µ), we get

fout,α(E) =
∑
β

[
|Seeα,β |2f0(E − µ) + |See−ω,α,β |2f0(E − µ+ ω) + |Seeω,α,β |2f0(E − µ− ω)

+|Sehα,β |2f0(E + µ) + |Seh−ω,α,β |2f0(E + µ+ ω) + |Sehω,α,β |2f0(E + µ− ω)
]
. (S10)

Expanding Eq. (S10) at leading order in ω → 0, and using the unitarity of the scattering matrix,
(
Ŝ + Ŝωe

−iωt + Ŝ−ωe
iωt
)
·(

Ŝ† + Ŝ†ωe
+iωt + Ŝ†−ωe

−iωt
)

= 1, we get

Ie,α =
e

h

∫ ∞
−∞

dE
[
(f0(E + µ)− f0(E − µ))

(
1− |Seeα,β |2 − |Seeω,α,β |2 − |See−ω,α,β |2

)
+~ω

∂f(E − µ)

∂E

(
|See−ω,α,β |2 − |Seeω,α,β |2

)
+ ~ω

∂f(E + µ)

∂E

(
|Seh−ω,α,β |2 − |Sehω,α,β |2

)
,

]
(S11)

and

Iε,α =
1

h

∫ ∞
−∞

dE(E − µ)
[
(f0(E + µ)− f0(E − µ))

(
1− |Seeα,β |2 − |Seeω,α,β |2 − |See−ω,α,β |2

)
+~ω

∂f(E − µ)

∂E

(
|See−ω,α,β |2 − |Seeω,α,β |2

)
+ ~ω

∂f(E + µ)

∂E

(
|Seh−ω,α,β |2 − |Sehω,α,β |2

)]
, (S12)

where we have shifted the energy to be measured from the superconductor chemical potential and we have neglected the effect
of finite band size in extending the integral over all energies.



The expressions for Ie and Iε can be simplified using the symmetries of the scattering matrix. In fact, Seeα,β(−E) =(
Seeα,β(E)

)∗
, and as a consequence:

1− |Seeα,β(−E)|2 − |Seeω,α,β(−E)|2 − |See−ω,α,β(−E)|2 = 1− |Seeα,β(E)|2 − |Seeω,α,β(E)|2 − |See−ω,α,β(E)|2

T eeα,β(−E) ≡ |See−ω,α,β(−E)|2 − |Seeω,α,β(−E)|2 = −|See−ω,α,β(E)|2 − |Seeω,α,β(E)|2 = −T eeα,β(E)

T ehα,β(−E) ≡ |Seh−ω,α,β(−E)|2 − |Sehω,α,β(−E)|2 = −|Seh−ω,α,β(E)|2 − |Sehω,α,β(E)|2 = −T ehα,β(E). (S13)

Using the parity properties of the fermi function, we can therefore rewrite the heat and charge currents as integrals over positive
energies only

Ie,α = 2

∫ ∞
0

dE
[
(f0(E + µ)− f0(E − µ))

(
1− |Seeα,β(E)|2 − |Seeω,α,β(E)|2 − |See−ω,α,β(E)|2

)]
+
eω

2π

∑
β

∫ ∞
0

dE

[
∂f(E − µ)

∂E

(
T eeα,β(E)− T ehα,β(E)

)
+
∂f(E + µ)

∂E

(
T ehα,β(E)− T eeα,β(E)

)]
, (S14)

Iε,α = −µ
e
Ie,α +

ω

2π

∑
β

∫ ∞
0

dE E

[
∂f(E − µ)

∂E

(
T eeα,β(E) + T ehα,β(E)

)
+
∂f(E + µ)

∂E

(
T ehα,β(E) + T eeα,β(E)

)]
. (S15)

Note that at µ = 0 Ie,α = 0 identically. This is a consequence of the symmetry of the scattering matrix, and is in contrast with
usual results for which the scattering matrix is approximated to be independent of energy. In that case the expressions in (S13)
are even under energy reversal and one has a vanishing heat current as opposed to a finite charge current.

The expressions can be further simplified by computing explicitly∑
β=L,R

T eeL,β =
1

4
δX1δX2Im

[
∂SL−,L−
∂X1

∂S∗L−,L−
∂X2

+
∂SL−,R−
∂X1

∂S∗L−,R−
∂X2

]
=
∑
β=L,R

T ehL,β , (S16)

and similarly for T eeR,β . This leads to the expressions

Ie,α = 2

∫ ∞
0

dE
[
(f0(E + µ)− f0(E − µ))

(
1− |Seeα,β(E)|2 − |Seeω,α,β(E)|2 − |See−ω,α,β(E)|2

)]
, (S17)

Iε,α = −µ
e
Ie,α +

ω

π

∑
β

∫ ∞
0

dE E

[
∂f(E − µ)

∂E
T eeα,β(E) +

∂f(E + µ)

∂E
T eeα,β(E)

]
, (S18)

which appear in the manuscript. Note that the only time dependence enters through X1 and X2, and one can perform the time
integral over the pumping cycle inside the energy integral. In particular we consider the combinationQα(µ, T ) =

∫ τ
0
dt (Iε,α +

µIe,α/e), so that

Qα(µ, T ) =

∫ τ

0

dt (Iε,α +
µ

e
Ie,α) =

∫ ∞
0

dE EQ0,α(E)

[
∂f(E − µ)

∂E
+
∂f(E + µ)

∂E

]
. (S19)

with

Q0,α(E) =
1

π

∫
A

dX1dX2

∑
β=L,R,ν=e,h

Im

[
∂Seνα,β
∂X1

∂Seνα,β
∗

∂X2

]
=

∫ τ

0

dt

(
dn(α)

dX1

dX1

dt
+
dn(α)

dX2

dX2

dt

)
(S20)

and

dn(α)

dX
=

1

2π

∑
β=L,R,ν=e,h

Im
∂Seνα,β
∂X

Seνα,β
∗ (S21)

Note that at T = 0 QL(µ, 0) = Q(µ), which, for µ→ 0 approaches the universal fraction of the solid angle discussed in the
manuscript.
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