Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs

Abstract

Entity alignment is the task of linking entities with
the same real-world identity from different knowl-
edge graphs (KGs), which has been recently dom-
inated by embedding-based methods. Such ap-
proaches work by learning KG representations so
that entity alignment can be performed by measur-
ing the similarities between two entity embeddings.
While promising, prior work in the field often fails
to properly capture complex relation information
that commonly exists in multi-relational KGs, leav-
ing much room for improvement. In this paper, we
propose a novel relation-aware dual-graph convo-
lutional network (RDGCN) to incorporate relation
information via attentive interactions between the
knowledge graph and its dual relation counterpart,
and further capture neighboring structures to learn
better entity representations. Experiments on three
real-world cross-lingual datasets show that our ap-
proach delivers better and more robust results over
the state-of-the-art alignment methods by learning
better KG representations.

1 Introduction

Knowledge graphs (KGs) transform unstructured knowledge
into simple and clear triples of (head, relation, tail) for rapid
response and reasoning of knowledge. KGs are the building
blocks for many applications like information retrieval [Dal-
ton ef al., 2014], recommendation systems [Catherine and
Cohen, 2016], question-answering [Cui er al., 2017], etc.
To support various applications, there is considerable work
on knowledge representation learning to construct distributed
representations for both entities and relations. Exemplary
works for embedding-based approaches are the so called
trans-family methods like TransE [Bordes et al, 2013],
TransH [Wang et al., 2014], TransR [Lin et al., 2015b] and
PTransE [Lin et al., 2015al, which interpret a relation as the
translation operating on the embeddings of its head entity and
tail entity.

However, KGs are usually incomplete, and different KGs
are often complementary to each other. This makes a com-
pelling case to design a technique that can integrate hetero-
geneous knowledge among different KGs. An effective way
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for doing this is Entity Alignment. There have been ex-
isting efforts devoted to embed different KGs towards en-
tity alignment. Most of them, like JE [Hao et al., 2016],
MTransE [Chen et al., 20171, JAPE [Sun et al., 2017], IP-
TransE [Zhu et al., 2017] and BootEA [Sun et al., 2018],
rely on trans-family models to learn entity representations ac-
cording to a set of prior alignments. The most recent work
[Wang ez al., 2018], takes a different approach by utilizing the
Graph Convolutional Networks (GCNs) [Kipf and Welling,
2017] to jointly represent multiple KG entities, showing a
new, promising direction for entity alignment.

Compared with conventional feature based methods [Wang
et al., 2017], embedding-based methods have the advantage
of requiring less human involvement in feature construction,
allowing entity alignment methods to be scaled to large KGs.
However, there are still several hurdles that prevent a wider
adoption of embedding-based approaches. First, as men-
tioned above, most existing methods use trans-family models
as the backbone to embed KGs, which are constrained by the
assumption head + relation = tail. This strong assumption
makes it inefficient for the model to capture more complex
relation information in multi-relational graphs.

As a motivation example, Figure 1 shows a real-world ex-
ample from the DBPI5K 7z _ g [Sun et al., 2017] (one of
the real-world KGs used in our experiments). Prior study [Li
et al., 2018b] shows that trans-family methods cannot cap-
ture the triangular structures depicted in the diagram. For
instance, for the structure of Figure 1(a), TransE requires the
forms of v{ +7, &~ vs, V3 +7, = v3 and v{ + 1, = v3 to hold
at the same time. However, to satisfy the former two equa-
tions, we would have vy + 2r, ~ vs, which is contradictory
to the third equation v; + r, =~ vs. Accordingly, the align-
ment performance will inevitably be compromised if the KG



representations are learned with the trans-family, since more
complex structures such as triangular ones frequently appear
in multi-relational graphs.

GCN-based model [Wang er al., 2018] represents a leap
forward for embedding-based entity alignment. However,
this approach is also unable to properly model relation infor-
mation. Since the vanilla GCN operates on the undirected and
unlabeled graphs, GCN-based model would ignore the useful
relation information of KGs. Although the relational graph
convolutional networks (RGCNs) [Schlichtkrull et al., 2017]
could be used to model multi-relational graphs, a RGCN sim-
ply employs one weight matrix for each relation and would
require an excessive set of parameters for real-world KGs that
often contain thousands of relations, making it extremely dif-
ficult to learn an effective model. Dual-Primal Graph Con-
volutional Networks (DPGCNN) [Monti et al., 2018] offer
a new solution for the problem. DPGCNNSs alternate con-
volution operations on the graph and its dual graph, whose
vertices correspond to the edges of the original graph, and it-
eratively apply an graph attention mechanism to enhance pri-
mal edge representations using its dual graph. Compared with
GCN and RGCN, DPGCNN can better explore complex edge
structures and produce better KG presentations.

Inspired by DPGCNN, in this paper, we propose a novel
relation-aware dual-graph convolutional network (RDGCN)
to tackle the challenge of proper capturing and integration for
relation information. While DPGCNN serves a good start-
ing point, applying it to learn KG representations is not triv-
ial. Doing so requires us to find a way to better approximate
relation representations and characterize the relationship be-
tween different KG relations. We address this by extend-
ing the DPGCNN to develop a weighted model, and explore
the head/tail representations initialized with entity names as
a proxy to capture relation information without excessive
model parameters that are often hard to train.

As a departure from GCNs and RGCNS, our RDGCN al-
lows multiple rounds of interactions between the primal entity
graph and its dual relation graph, enabling the model to ef-
fectively incorporate more complex relation information into
entity representations. To further integrate neighboring struc-
tural information, we also extend GCNs with highway gates.

We evaluate our RDGCN on three real-world datasets.
Experimental results show that RDGCN can effectively ad-
dress the challenges mentioned above and significantly out-
performs 6 recently proposed approaches on all datasets. The
key contribution of this work is a novel DPGCNN-based
model for learning robust KG representations. Our work is
the first to extend DPGCNNs for entity alignment, which
yields significantly better performance over the state-of-the-
art alternatives.

2 Related Work

Graph Convolutional Networks. Recently, there has been
an increasing interest in extending neural networks to deal
with graphs. There have been many encouraging works
which are often categorized as spectral approaches [Bruna
et al., 2013; Henaff et al., 2015; Defferrard et al., 2016;
Kipf and Welling, 2017] and spatial approaches [Atwood

and Towsley, 2016; Hamilton et al., 2017; Velickovi¢ et al.,
2018]. The Graph Convolutional Networks (GCNs) [Kipf
and Welling, 2017] have recently emerged as a powerful deep
learning-based approach for many natural language process-
ing tasks like semi-supervised node classification [Kipf and
Welling, 2017], semantic role labeling [Marcheggiani and
Titov, 2017] and neural machine translation [Bastings et al.,
2017]. Furthermore, as an extension of GCNs, the rela-
tional graph convolutional networks (RGCNSs) [Schlichtkrull
et al., 2017] have recently been proposed to model rela-
tional data and have been successfully exploited in link pre-
diction and entity classification. Recently, the graph atten-
tion networks (GATs) [Velickovié¢ et al., 2018] have been
proposed and achieve the state-of-the-art performance. The
DPGCNN [Monti et al., 2018] discussed in Section 1 gener-
alizes GAT model and achieves better performance on vertex
classification, link prediction, and graph-guided matrix com-
pletion tasks.

Inspired by the capability of DPGCNN on determin-
ing neighborhood-aware edge features, we propose the first
relation-aware multi-graph learning framework for entity
alignment.

Entity Alignment. Previous approaches of entity alignment
typically follow a labour-intensive and time-consuming pro-
cess to tune model features. For example, the work presented
in [Wang et al., 2017] requires one to collect network seman-
tic labels like category labels, attribute labels and unstruc-
tured text keywords of the entity entries to build the align-
ment model. Recently, embedding-based methods [Hao et al.,
2016; Chen et al., 2017; Sun et al., 2017; Zhu et al., 2017,
Sun et al., 2018; Wang et al., 2018] have been proposed to
address this issue. In addition, NTAM is a non-translational
approach that utilizes a probabilistic model for the alignment
task [Li ef al., 2018a]. KDCOoE is a semi-supervised learning
approach for co-training multilingual KG embeddings and the
embeddings of entity descriptions [Chen et al., 2018].

As a departure from prior work, our approach directly
models the relation information by constructing the dual re-
lation graph. As we will show later in the paper, doing so
improves the learned entity embeddings which in turn lead to
more accurate alignment.

3 Problem Formulation

Formally, a KG is represented as G = (E,R,T), where
FE, R, T are the sets of entities, relations and triples, respec-
tively. Let G; = (El,Rl,Tl) and Gy = (EQ,R27T2) be
two heterogeneou KGs to be aligned. That is, an entity in G,
may have its counterpart in G5 in a different language or in
different surface names. As a starting point, we can collect a
small number of equivalent entity pairs between G and G2
as the alignment seeds L = {(e;,,€:,)|ei;, € F1,ei, € Ea}.
We define the entity alignment task as automatically finding
more equivalent entities using the alignment seeds. Those
known aligned entity pairs can be used as training data.

4 Our Approach: RDGCN

In order to better incorporate relation information to the entity
representations, given the input KG (i.e., the primal graph),



Input Dual _Att Dual _Att Multiple rounds of
Layer Layer_1 ~ Layer_2 ~ interaction
r [ r_init r r
Gy RS- X X X,
r1 ]
| = A ~
(Sl T T
1 o _ini > ¢ Ad > e o e Add Y N
— X" R Xef XC‘ Xer\ Xe ...... /d(el,ez)
Y R \‘/ ”
G X’ X X
;2 x e Primal _Att Primal _Att
{ Layer_1 Layer_2
\ ~ ~
\G r (]:[IQID _»7 X r_init X r M X r
2 L] m}
Input Dual _Att Dual _Att
Layer Layer_1 Layer_2

Figure 2: Overall architecture of our RDGCN. G and G5 are the dual relation graphs of G§ and G5, respectively. In our RDGCN model, G¢

consists of G§ and G5, and G" consists of G| and G5.

we first construct its dual relation graph whose vertices de-
note the relations in the original primal graph, and then, we
utilize a graph attention mechanism to encourage interactions
between the dual relation graph and the primal graph. The
resulting vertex representations in the dual graph are then fed
to GCN [Kipf and Welling, 2017] layers with highway gates
to capture the neighboring structure information. The final
entity representations will be used to determine whether two
entities should be aligned. Figure 2 provides an overview ar-
chitecture of our model.

4.1 Constructing the Dual Relation Graph

Without loss of generality, we put G; and G together as the
primal graph G¢ = (V¢, £¢), where the vertex set V¢ = Fq U
E is the union of all vertices in G; and G2, and the edge set
¢ = Tj U Ty is the union of all undirected edges/triples in
(1 and G4. Note that we do not connect the alignment seeds
in G°, thus G and G5 are disconnected in G°.

Given the primal graph G¢, its dual relation graph G"
(Y7, E7) is constructed as follows: 1) for each type of relation
rin G°, there will be a vertex v in V", thus V" = R{UR5;2)
if two relations, r; and r;, share the same head entities or tail
entities in G¢, then we create an edge u;’j in G” connecting v,
and vj’“

Different from the original design of dual graph, here we
expect the dual relation graph can be more expressive about
the relationship between different v"'s in G¢. We thus weight
each edge u;; in " with a weight wj; according to how likely
the two relations v] and U; share similar heads or tails in G¢,
computed as:

wi; = H(ri,ri) +T(ri, 7)) €))
H,NH; T, NT;

H(riyrj) = 0 Pryr)) = =3 (2

(rvrj) HiUHj’ (rvrj) T,UT; )

where H; is the set of head entities for relation r; in G¢ and
T; is the set of tail entities for r; in G€.

4.2 Interactions between Dual and Primal Graphs

Our goal of introducing dual relation graph is to better incor-
porate relation information into the primal graph represen-
tations. To this end, we propose to apply a graph attention
mechanism (GAT) to obtain vertex representations for the
dual relation graph and the primal graph iteratively, where the
attention mechanism helps to prompt interactions between the
two graphs. Each dual-primal interaction contains two layers,
the dual attention layer and the primal attention layer. Note
that we can stack multiple interactions for mutual improve-
ment on both graphs.

Dual Attention Layer. Let X" € R™*2¢ denote the in-
put dual vertex representation matrix, where each row cor-
responds to a vertex in the dual relation graph G". Different
from the vanilla GAT [Veli¢kovi¢ et al., 2018], we compute
the dual attention scores using the primal vertex features X
(computed by Eq. 8) produced by the primal attention layer
from the previous interaction module:

X =0"( > aj;W'x}), 3)
JENT
exp(wl;a"[W"e;||W'e;
o ea(una We|Wre,) “

v > peny exp(wia”[We||[Wrey])’

where X; denotes the d’-dimensional output representation at
dual vertex v] (corresponding to relation r; € G°); xg denotes
the dual representation of vertex v}; N is the set of neighbor

indices of v!; af; is the dual attention score; W” € R% *2
is a linear transtormation applied to every vertex; a” is a
fully connected layer mapping the 2d’-dimensional input into
a scalar; 0" is the activation function, ReLU; || is the concate-
nation operation; ¢; is the relation representation for relation
r; in G¢ obtained from the previous primal attention layer.
Note that within our graph embedding based framework,
we are not able to provide relation representations directly,
due to limited training data. We thus approximate the relation
representation for r; by concatenating its averaged head and



tail entity representations in G as:
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where X;, and X; are the output representations of the k-th
head entity and [-th tail entity of relation r; from the previous
primal attention layer.

A special case is when the current dual attention layer is the
first layer of our model, we do not have X’ in Eq. 3 produced
by the previous dual attention layer, therefore, use an initial
dual vertex representation produced by Eq. 5 with the initial
primal vertex representations X““"**. Similarly, ¢; will be
obtained with the initial primal X°-"* as well.

B ®

Primal Attention Layer. In this layer, when applying GAT
on the primal graph, we can compute the primal attention
scores using the dual vertex representations in G”, which ac-
tually correspond to the relations in the primal graph G¢. In
this way, we are able to influence the primal vertex embed-
dings using the relation representations produced by the dual
attention layer.

Specifically, we use X¢ € R"*? to denote the input primal
vertex representation matrix. For an entity e, in primal graph
G¢, its representation f(Z can be computed by:

X =0°( > af,Wexp), (6)
tGNg
e iT
o exp(a®(Xg)) o

" Z/ceN; exp(a®(Xy;))’

where X_, denotes the dual representation for 4 (the relation
between entity e, and e;) obtained from G"; agt is the primal
attention score; N is the set of neighbor indices of entity e4

in G¢; W¢ € R% is a matrix of learnable weights; a® is a
fully connected layer mapping the d’-dimensional input into
a scalar and o is the primal layer activation function, ReL.U.

In our model, the initial representation matrix for the pri-
mal vertices, X°"**, can be initialized using entity names,
which provide important evidence for entity alignment. We
therefore preserve the evidence explicitly by mixing the ini-
tial representations with the output of primal attention layer:

A ~ 1 t
R = B, X+ xG ®)
where f(Z denotes the final output representation of the inter-

action module for entity e, in G*; B, is a weighting parameter
for the s-th primal attention layer.

4.3 Incorporating Structural Information
After multiple rounds of interaction between the dual relation
graph and the primal graph, we are able to collect relation-
aware entity representations from the primal graph. Next, we
apply two-layer GCNs [Kipf and Welling, 2017] with high-
way gates to the resulting primal graph to further incorporat-
ing evidence from their neighboring structures.

In each GCN layer [ with entity representations X () as
input, the output representations X (‘1) can be computed as:

XU = ReLU(D 2 AD 2 XOW®), )

where A = A+ 1 is the adjacency matrix of the primal graph
G°¢ with added self-connections and I is an identity matrix;
Djj = 3, Ay and WO e RIVxd™ g 4 Jayer-specific
trainable weight matrix.

In addition, to control the noise accumulated across layers,
we introduce layer-wise gates between GCN layers, which is
similar in spirit to the highway networks [Srivastava et al.,
20151: z l

T(XD) = o(XOWE 4+ by, (10)

x U+ T(X(l)) XD (1- T(X(l))) XOan

where X () is the input to layer [ + 1; o is a sigmoid func-
tion; - is element-wise multiplication; W;l ) and bgf) are the
weight matrix and bias vector for the transform gate 7'(X (") ),
respectively.

Alignment. With the final entity representations X collected
from the output of GCN layers, entity alignment can be per-
formed by simply measuring the similarity or distance be-
tween two entities. Specifically, the distance, d(ey, e3), be-
tween two entities, e; from (G and e; from G5 can be calcu-
lated as:

d(€17e2) = ||‘/i'€1 _i‘e2||L1' (12)

One can definitely use more complex decision functions.

4.4 Training

For training, we expect the distance between aligned entity
pairs to be as close as possible, and the distance between neg-
ative entity pairs to be as far as possible. We thus utilize a
margin-based scoring function as the training objective:

L= Z Z max{0, d(p,q) — d(p’,q') +~}, (13)

(p,q)€L (p’,q") €L’

where v > 0 is a margin hyper-parameter; L is our alignment
seeds and I is the set of negative instances.

Rather than random sampling, we look for challenging
negative samples to train our model. Given a positive aligned
pair (p, q), we choose the KC-nearest entities of p (or ¢) ac-
cording to Eq. 12 in the embedding space to replace ¢ (or p)
as the negative instances.

5 Experimental Setup

Datasets. We evaluate our approach on three large-scale
cross-lingual datasets from DBP15K [Sun et al, 2017].
These datasets are built upon Chinese, English, Japanese and
French versions of DBpedia. Each dataset contains data from
two KGs in different languages and provides 15K pre-aligned
entity pairs. Table 1 gives the statistics of the datasets. We use
the same training/testing split with previous works [Sun et al.,
20181, 30% for training and 70% for testing.

Comparison Models. We compare our approach against
6 more recent embedding-based alignment methods that
we have mentioned in Section 1: JE [Hao er al., 2016],
MTransE [Chen et al., 20171, JAPE [Sun et al., 20171, IP-
TransE [Zhu et al., 2017], BootEA [Sun et al., 2018] and
GCN [Wang et al., 2018], where the BootEA achieves the
best performance on DBP15K.
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Table 1: Summary of the DBP15K datasets.

Model Variants. To evaluate different components of our
model, we provide four implementation variants of RDGCN
for ablation studies, including (1) GCN-s: a two-layered
GCN with entity name initialization but no highway gates; (2)
RGCN-s: a two-layered RGCN [Schlichtkrull ef al., 2017]
with entity name initialization; (3) HGCN-s: a two-layered
GCN with entity name initialization and highway gates; (4)
RD: an implementation of two dual-primal interaction mod-
ules, but without the subsequent GCN layers.

Implementation Details. The configuration we used is:
B1 = 0.1, B = 0.3, and v = 1.0. The dimensions of hid-
den representations in dual and primal attention layers are
d = 300, d = 600, and d = 300. All dimensions of
hidden representations in GCN layers are 300. The learn-
ing rate is set to 0.001 and we sample K = 125 negative
pairs every 10 epochs. In order to utilize entity names in dif-
ferent KGs for better intilialization, we use Google Trans-
late to translate Chinese, Japanese, and French entity names
into English, and then use pre-trained English word vectors
glove.840B.300d ' to construct the input entity representa-
tions for the primal graph. It is worth noting that Google
Translate can not guarantee accurate translations for named
entities without any context. We manually check 100 En-
glish translations for Japanese/Chinese entity names, and find
around 20% of English translations as incorrect, posing fur-
ther challenges for our model.

Metrics. We use Hits@k, a widely used metric [Sun et al.,
2018; Wang et al., 2018] in our experiments. A Hits@k score
(higher is better) is computed by measuring the proportion of
correctly aligned entities ranked in the top k list.

6 Results and Discussion

6.1 Main Results

Table 2 shows the performance of all compared approaches
on the evaluation datasets. By using a bootstrapping pro-
cess to iteratively explore many unlabeled data, BootEA gives
the best Hits@ 10 score on DBP15K 7 pn and clearly out-
performs GCN and other translation-based models, such as
JE, MTransE, JAPE, and IPTransE. It is not surprising that
GCN outperforms most translation-based models, i.e., JE,
MTransE, JAPE and IPTransE. By performing graph con-
volution over an entity’s neighbors, GCN is able to capture
more structural characteristics of knowledge graphs, espe-
cially when using more GCN layers, while the translation
assumption in translation-based models focuses more on the
relationship among heads, tails and relations.

"http://nlp.stanford.edu/projects/glove/

ZH-EN JA-EN FR-EN

Models ) ; ) ) ) )
Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10
JE 21.27 4277 | 1892 3997 | 1538 38.84
MTransE | 30.83 6141 | 27.86 57.45 | 2441 5555
JAPE 41.18 7446 | 36.25 68.50 | 32.39 66.68
IPTransE | 40.59 7347 | 36.69 69.26 | 33.30 68.54
BootEA 62.94 84.75 | 6223 8539 | 6530 87.44
GCN 4125 7438 | 3991 7446 | 3729 74.49
GCN-s 50.82  79.15 | 53.09 8296 | 5449 84.73
RGCN-s | 46.57 7429 | 48.68 77.82 | 51.11 80.07
HGCN-s | 69.65 82.53 | 7554 87.87 | 88.09 95.27
RD 61.81 73.83 | 6854 80.22 | 84.64 91.98
RDGCN | 70.75 84.55 | 76.74 89.54 | 88.64 95.72

Table 2: The overall alignment performance for all models on the
DBP15K datasets. Numbers in bold indicate the best performance.

We observe that RDGCN gives the best performance
across all metrics and datasets, except for Hits@10 on
DBPI5K 75— gn where the performance of RDGCN is sec-
ond to BootEA with a marginally lower score (84.55 vs
84.75). While BootEA serves a strong baseline by show-
ing what can be achieved by exploiting many unlabeled data,
our RDGCN has the advantage of requiring less prior align-
ment data to learn better representations. We believe that a
bootstrapping process can further improve the performance
of RDGCN, and we leave this for future work. Later in Sec-
tion 6.3, we show that RDGCN maintains consistent per-
formance and significantly outperforms BootEA when the
training dataset size is reduced. The good performance of
RDGCN is largely attributed to its capability for learning
relation-aware embeddings. Keep in mind that our RDGCN
is initialized using machine translated entity names, but still
achieves the best performance in almost all settings, demon-
strating the effectiveness and robustness of the proposed
method for entity alignment.

6.2 Ablation studies

GCN-s vs. GCN: As shown in Table 2, GCN-s considerably
improves GCN in all datasets, resulting in a 17.2% increase
on Hits@1 on DBPI5K rr_gN. As mentioned in Section 5,
the three cross-lingual datasets require us to handle cross-
lingual data through rough machine translations, which is
likely to introduce lots of noise (~80% accuracy in our pilot
study). But our improvement over GCN shows that although
noisy in nature, those rough translations can still provide use-
ful evidence to capture, thus should not be ignored.

GCN-s vs. RGCN-s: RGCN is an extension of GCN by ex-
plicitly modeling the KG relations, but in our experiments, we
observe that GCN-s achieves better performance than RGCN-
s on all datasets. As discussed in Section 1, RGCN usually
requires much more training data to learn an effective model
due to its large number of parameters, and the available train-
ing data in our evaluation might be not sufficient for fully
unlocking the potential of RGCN.

HGCN-s vs. GCN-s: When comparing HGCN-s and GCN-
s, we can see that HGCN-s greatly boosts the performance
of GCN-s after employing the layer-wise highway gates, e.g.,
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Figure 3: (a), (b) and (c) show the performance of RDGCN and BootEA using different proportions of prior entity alignments on the DBP15K
datasets. The x-axes are the proportions of prior alignments, and the y-axies are Hits@1 scores. (d) shows the performance of RDGCN and
BootEA on triangular structures. The x-axis is the datasets and y-axis is the number of correctly predicted pairs.

over 30% improvement of Hits@1 on DBP15K rr_gn. This
is mainly due to their capability of preventing noisy vertices
from driving the KG representations.

HGCN-s vs. RDGCN : When comparing HGCN-s with our
RDGCN, we can see that the interaction modules performing
on the dual relational graph and primal graph are crucial to the
performance: removing the dual and primal attention layers
leads to a drop of 1.1% on Hits@1 and 2.02% on Hits@10 on
DBPI15K 7 _ gn. The interaction modules in our framework
can explore the relation characteristics of KGs by introduc-
ing the approximate relation information and fully integrate
the relation and entity information after multiple interactions
between the dual relation and the primal graphs. The results
show that effective modeling and use of relation information
is beneficial for entity alignment.

RDvs. RDGCN : Comparing RD with RDGCN, there is a sig-
nificant drop in performance when removing the GCN layers
from our model, e.g., the Hits@1 of RD and RDGCN differ
by 8.94% on DBPISK zp—pn. This is not surprising, be-
cause the dual-primal graph interactions are designed to in-
tegrate KG relation information, while the GCN layers can
effectively capture the neighboring structural information of
KGs. These two key components are, to some extent, com-
plementary to each other, and should be combined together to
learn better relation-aware representations.

6.3 Analysis

Triangular structures: Figure 3(d) shows the performance
of RDGCN and BootEA, the state-of-the-art alignment
model, on the testing instances with triangular structures. We
can see that the alignment accuracy of our RDGCN for enti-
ties with triangular structures is significantly higher than that
of BootEA in all three datasets, showing that RDGCN can
better deal with the complex relation information.

Impact of available prior alignments: We further com-
pare our RDGCN with BootEA by varying the proportion of
pre-aligned entities from 10% to 40% with a step of 10%.
As expected, the results of both models on all three datasets
gradually improve with an increased amount of prior align-
ment information. According to Figure 3(a-c), our RDGCN
consistently outperforms BootEA, and seems to be insensi-
tive to the proportion of prior alignments. When only using
10% of the pre-aligned entity pairs as training data, RDGCN
still achieves promising results. For example, RDGCN us-
ing 10% of prior alignments achieves 86.35% for Hits@1 on
DBPI5Kpr—pn. This result translates to a 17.79% higher
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Figure 4: An example in DBPI5K 75— N, where the blue dash
lines indicate the connected entities are aligned.

Hits@1 score over BootEA when BootEA uses 40% of prior
alignments. These results further confirm the robustness of
our model, especially with limited prior alignments.

Case Study: Figure 4 shows an example in
DBPI5K 71— pn and the target entity pair, (vzy and vEy),
that should not be aligned. The competitive translation-based
models, including BootEA, gives lower distance scores for
(vzp and vgN), suggesting that these two entities should
be aligned. This is because those models fail to address
the specific relation information associated with the three
aligned neighboring entities. For this example, both v; and
vy indicate the person Chiang_Ching-kuo, but vy has the
relation parents with vz, while vo has the relation children
with vgy. Utilizing such information, a better alignment
model should produce a larger distance score for the two
entities despite they have similar neighbors. By carefully
considering the relation information during the dual-primal
interactions, our RDGCN gives a larger distance score,
leading to the correct alignment result.

7 Conclusions

This paper presents a novel relation-aware dual-graph con-
volutional network for entity alignment over heterogeneous
KGs. Our approach is designed to explore complex relation
information that commonly exists in multi-relational KGs.
By modeling the attentive interactions between the primal
graph and dual relation graph, our model is able to incor-
porate relation information with neighboring structural infor-
mation through gated GCN layers, and learn better entity rep-
resentations for alignment. Compared to the state-of-the-art
methods, our model uses less training data but achieves the
best alignment performance across three real-world datasets.
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