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Abstract  

Inspired by Imitation Learning, this paper trained a LSTM network by a mock-up 

operation experience of a solar energy community distribution system. Unlike the 

conventional method that implements LSTM only to predict features for the control 

programme to calculate an operation action according to a strategy, the LSTM of the 

proposed model integrates the strategy into its structure and thus can outputs actions 

directly. To examine whether the proposed model outperforms the conventional model, 

this paper first describes an operation strategy, adopted by both models, that aims to 

decrease total operation cost. Since the strategy needs accurate predictions to work 

effectively, an expert who can perfectly predict the future is created by historical data. 

The behaviours of the expert that follows the strategy are used as the training data of the 

LSTM in the proposed model. During simulation, the proposed model has better 

performance and computation efficiency than the conventional LSTM model by 25% 

higher and 75 times faster. Many researches have proposed control models for different 

systems and implemented LSTM only to predict key uncertainty in those models. To these 

researches, this paper demonstrates a promising result that the performance of a control 

model can be improved by integrating the strategy of that model into a neural network 

with mock-up operation experience. 
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1 Introduction 

This paper presents a practical application of Long Short-Term Memory neural network 

(LSTM) [1] on a solar energy community distribution system. Unlike other models that 

predict features individually for supporting operators or control programmes to decide on 

operation actions, the proposed model in this paper was trained for directly determining 

the next operation action based on input features. 

LSTM is capable of predicting time sequence by learning long-term dependencies in a 

dataset. It has the power of extracting non-linear relationship between input and output, 

and the capability of identifying patterns in time sequence. Thus, it has been widely used 

in electricity systems because key uncertainties, such PV generation, wind speed, 

demands and electricity price, have a temporal dependency between each time step. Many 

researches [2, 3, 4, 5, 6, 7] applied LSTM purely to predict key features related to 

electricity industry, such as weather condition, electricity prices, and energy demands. 

These predictions can be used to support operator’s decision making, but not directly 

provide operation actions on the electricity equipment or systems. 

In the field of sewer system operation, Zhang (2017, 2018) [8, 9] proposed operation 

strategies for water managements, and then pointed out key uncertainty in these strategies. 
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LSTM was implemented only to predict the uncertainty, such as future inflow of each 

wastewater treatment plant or sewer. Similarly, LSTM predictions made in [8, 9] have no 

connection to their proposed strategies, but only provide better information to operators 

who use those strategies. 

In this paper, we built three models to compare the performance of conventional and our 

proposed method. Standard Model adopted the idea discussed above that forecast only 

serves as a reference in operating the system. Operators or control programmes accept the 

forecast and run the operation strategy to determine the current action. On the contrary, 

our Proposed Model integrates the operation strategy into its training set, enabling the 

model to directly control the system. Simulative results show that the Proposed Model 

outperforms the Standard Model. Moreover, even though the Proposed Model takes more 

resources to prepare the training set, no calculation need to be done when processing 

online. In the long run, the Proposed Model consumes less processing time than the 

Standard Model. Last, for comparison, the Vanilla Model follows a common strategy that 

the storage always starts at fixed times to be charged or to be discharged. 

Note that when we use the word, ‘operator,’ in this paper, it usually means the same as 

‘control programme’ since the three Models are controlled by computer programmes. 

1.1 Standard Model 

Applying the concept mentioned above, we build a Standard Model to provide a basis for 

comparison to the Proposed Model. This concept is a straightforward implementation of 

LSTM networks on operation of systems with uncertainty and has been adopted by many 

researches. 

Figure 1.1 depicts the Standard Model of using LSTM predictions to aid operators in 

operation of a solar energy distribution system. The energy distribution system is showed 
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in Figure 2.1 and detailed in Chapter 2. Each sub-model (green square) in Figure 1.1 has 

one LSTM network. In the beginning of every half hour, each sub-model accepts input 

from historical data to make prediction of five key features relevant to operation decision: 

PV generation, electricity demand, heat demand, importing price of the grid and exporting 

price of the grid. A computer programme that follows operating strategy (blue square) 

then accepts those predictions as input for calculating the operation action in current half 

hour. 

Figure 1.1 Concept of Standard Model 

 

Note that sub-models of the Standard Model can be more complicated, taking more 

features as input to increase its accuracy. However, since the Proposed Model in this 

paper only use the five input features, we set sub-model of the Standard Model only take 

its own feature as input for a fair comparison of the two models. Figure 1.2 shows the 

training method of sub-models. The LSTM sub-models approximate the relationship 

between two sets of time sequence. Operators or control programmes accept the output 

sequence as a guideline to decide their operation action.  
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Figure 1.2 Training of Standard Model 

 

1.2 Proposed Model 

To design our Proposed Model, we first formulated an operating strategy that determines 

the target level of heat storage every half hour, based on the five input features. Following 

our proposed strategy, the heat storage will be charged if its current energy level is less 

than the target level. Charging can be done not only by PV generation but also electricity 

imported from the grid if future importing price is expected to become higher. If the 

current energy level is more than the target level, the heat storage discharges. This 

proposed strategy is designed to decrease total operation cost, detailed in Section 2.2. To 

make the comparison meaningful, ‘Operation Strategy (blue square)’ in Figure 1.1 is the 

same as our proposed operating strategy of heat storage in Figure 1.3. 

To utilise the proposed strategy, uncertainties of the five input features must be eliminated. 

Instead of training five LSTM sub-models that predict these features, we trained only one 

LSTM model that takes these five features as inputs to directly output a target level for 

every half hour.  

We applied the principle behind Imitation Learning, of which a model learns from 

expert’s behaviours. For example, when learning self-driving cars, a model is showed 

with pairs of state and action for it to interpret the policy behind the decision of actions. 



Chapter 1 Introduction 

Chih-Hsiang Lee - March 2019   5 

Those demonstrated actions are recorded from an expert, such as a human driver. 

Imitation Learning is usually implemented when calculation of an action is impossible or 

too expensive, but the task is easy for a human to perform. In our case, although no person 

can perfectly predict future when operating heat storage, we can create a mock-up expert 

from historical data. This expert follows the proposed strategy in simulations of operating 

a system. The expert’s behaviours are then used as the training set for the Proposed Model. 

The training method of the Proposed Model is showed in Figure 1.4. In contrast to the 

training pairs for the Standard Model in Figure 1.2, the Proposed Model learns to interpret 

the relationship between a time sequence and one output value. The training pairs in 

Figure 1.4 are ‘handcrafted’ by following the proposed strategy. Consequently, the 

Proposed Model is connected to the proposed strategy itself, and its output is directly 

determining the next operation action. 

The working process of the Proposed Model is depicted in Figure 1.3. Compared with the 

Standard Model, the Proposed Model runs the strategy only once during preparation of 

training pairs, while the computer programme in the Standard Model must repeat 

calculation of the strategy each half hour every time when it receives new forecasts of its 

five predictive features. 
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Figure 1.3 Concept of Proposed Model 

 

Figure 1.4 Training of Proposed Model 

 

1.3 Vanilla Model 

A common strategy is to charge and discharge heat storage at fixed times. Examining the 

actions performed by the expert discussed in the Proposed Model, we found that most of 

the time the expert charges the storage at 13:30 and discharges the storage at 17:00. 
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Therefore, we set the Vanilla Model always charge and discharge at these two times every 

day. The storage is charged and discharged with a fix rate.  

Another key difference between the Vanilla Model and other two models is that during 

charging the Vanilla Model never imports electricity from the grid if PV-generation is not 

enough because the Vanilla Model have no ability to forecast electricity price. It would 

end up in excessive expenditure if allowing the Vanilla Model to import electricity. When 

there’s no PV-generation during charging, the Vanilla Model would stop charging the 

storage until PV-generation resumes.  

The remainder of this paper is organized in the following way: Chapter 2 details the 

components of the solar energy community distribution system and the objective of its 

operation. Chapter 3 introduces the proposed strategy for operation of the community 

system and describes how an expert is created and the operation behaviour of this expert. 

Chapter 4 explains the implementation of the three Models and the simulation process in 

python environment. Chapter 5 discusses and analyses the outcome of simulation. 

Chapter 6 summarises the results and provides a suggestion of future researches. 
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2 Solar Energy Community 

Distribution System 

2.1 Details of the System 

Showed in Figure 2.1, the design of this system is based on a real proposed project for a 

community located in North West of England. PV generation is the only domestic supply 

in the system. During each time interval, such as a half hour, PV generation is used to 

meets electricity demand first, and any insufficiency is addressed by importing electricity 

from the grid. After that, surplus of PV generation, if any, is used to run heat pumps for 

meeting heat demand. Electricity demand takes priority over heat demand because PV 

generation would suffer loss due to energy conversion in heat pumps. In Figure 2.1, COP 

stands for Coefficient of Performance, which defines the conversion factor between 

electricity energy and heat energy. 
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Figure 2.1 Solar Energy Community Distribution System 

 

If PV generation is insufficient to cover heat demand, the short of heat supply is 

compensated by importing electricity from the grid to run heat pumps or by discharging 

heat from the storage. When heat pumps run out of capacity, the only way to provide heat 

is discharging the storage. In this paper, we assume that heat pump capacity is always 

sufficient to cover demand peak. The heat pump capacity is set to be a little high than the 

maximum heat demand in our simulative environment, but not infinite. 

Finally, excess PV generation can be sold to the grid, or be used to charge heat storage if 

heat pumps still has capacity. In this study, we assume that domestic use of PV generation 

is always more economical than selling to the grid. 

Heat storage can be charged by heat pumps that consume PV generation, imported 

electricity or both. Due to the capacity of heat pumps, charging storage may be limited 

sometimes. 
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In each half hour there are two prices: System Sell Price (SSP) and System Buy Price 

(SBP). When the operator imports electricity from the grid, the operator needs to pay the 

SBP. Likewise, the grid pays the SSP to the operators who export electricity to the grid. 

These two prices are called ‘imbalance prices’ and originally designed to tackle the deficit 

of imbalance energy. In our study, we use a historical data of SSP and SBP around 

Lancaster area to simulate the price change faced by operators. 

2.2 Objective of Operation 

In our system, PV generation is always used to meets electricity demand first and then 

heat demand. After that if any PV generation remains, it can be used to charge the storage 

or be sold to the grid. Thus, we defined ‘PV Surplus’ as the amount of remaining PV 

generation we can manipulate: 

𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 = 𝑷𝑽 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 − 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒅𝒆𝒎𝒂𝒏𝒅 − (𝒉𝒆𝒂𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 ÷ 𝑪𝑶𝑷) ( 1 ) 

𝒊𝒇 𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 < 𝟎, 𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 = 𝟎  

When PV generation is unable to cover all heat demand, we defined a term ‘Shortage’ as 

the amount of remaining heat demand that we need to cope with by heat storage: 

𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 = 𝒉𝒆𝒂𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 − [(𝑷𝑽 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 − 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒅𝒆𝒎𝒂𝒏𝒅) × 𝑪𝑶𝑷] ( 2 ) 

𝒊𝒇 (𝑷𝑽 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 − 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒅𝒆𝒎𝒂𝒏𝒅) < 𝟎, 𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 = 𝒉𝒆𝒂𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 

𝒊𝒇 𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 < 𝟎, 𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 = 𝟎     

Every half hour the operator determines a target level for the heat storage. If current level 

is high than the target level, the heat storage is discharged until current level drops to the 

target level. If current level is lower than the target level, the heat storage is charged by 

PV surplus first. It can also be charged by imported electricity only if importing electricity 

with current SBP is beneficial, compared to importing electricity with future SBP when 

the demand actually occurs in the future. In other words, the operator must have the 
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capability to forecast future electricity prices to know when the best time to buy electricity 

is. Furthermore, the operator must be able to forecast future PV generation and demands 

to determine what is the actual amount of heat needed to be prepared in advanced. For 

example, if a sunny day is expected, the operator has no need to import electricity to 

charge the storage even though current SBP is low 

The goal of the operator is to reduce operation cost of the system. Operation cost is equal 

to the expenditure of importing electricity from the grid subtracted by the income of 

selling PV generation to the grid. In terms of cost, income is negative: 

𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒊𝒏 𝒄𝒐𝒔𝒕 = 𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 + (−𝒊𝒏𝒄𝒐𝒎𝒆 𝒐𝒇 𝒆𝒙𝒑𝒐𝒓𝒕𝒊𝒏𝒈) ( 3 ) 

With heat storage and a good predictor of future PV generation, demands and system 

prices, the operator can accomplish several tasks to decrease operation cost: 

A. If the operator has PV surplus in the current moment and expects a Shortage in a 

future moment and importing electricity with future SBP is expensive than not selling 

PV surplus with current SSP, the operator should charge the storage with current PV 

surplus: 

 (𝒊) 𝑺𝒆𝒍𝒍𝒊𝒏𝒈 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 𝒓𝒊𝒈𝒉𝒕 𝒏𝒐𝒘, 𝒂𝒏𝒅 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒊𝒏 𝒕𝒉𝒆 𝒇𝒖𝒕𝒖𝒓𝒆: 

𝒊𝒏𝒄𝒐𝒎𝒆 = −𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 = [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 

 

(𝒊𝒊) 𝑺𝒂𝒗𝒊𝒏𝒈 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 𝒓𝒊𝒈𝒉𝒕 𝒏𝒐𝒘 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒇𝒖𝒕𝒖𝒓𝒆:  

𝒊𝒏𝒄𝒐𝒎𝒆 = 𝟎  

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 = 𝟎 

(𝑨𝒔𝒔𝒖𝒎𝒊𝒏𝒈: 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝑪𝑶𝑷 × 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) = 𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆) 
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𝒊𝒇 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕(𝒊𝒊) − 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕(𝒊) < 𝟎:  

→ 𝟎 − (−𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 + [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷) < 𝟎 

→ 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 < [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 

→ 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 < 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 

→ 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) < 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷  ( 4 ) 

, where 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 − 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the difference between current and future time. And 

𝑙𝑜𝑠𝑠 is the heat loss in storage per unit time. In our study, the unit time is equal to 

a half hour, and transition loss is ignored for simplification. 

B. If the operator has no PV surplus in the current moment and expects a Shortage in a 

future moment and importing electricity with future SBP is expensive than importing 

electricity with current SBP, the operator should import electricity with current SBP 

to charge the storage.  

(𝒊) 𝑫𝒐 𝒏𝒐𝒕𝒉𝒊𝒏𝒈 𝒓𝒊𝒈𝒉𝒕 𝒏𝒐𝒘, 𝒂𝒏𝒅 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒊𝒏 𝒕𝒉𝒆 𝒇𝒖𝒕𝒖𝒓𝒆: 

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 = 𝟎  

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒇𝒖𝒕𝒖𝒓𝒆 = [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷  

 

(𝒊𝒊) 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒓𝒊𝒈𝒉𝒕 𝒏𝒐𝒘 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒇𝒖𝒕𝒖𝒓𝒆:  

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 = 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷  

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒇𝒖𝒕𝒖𝒓𝒆 = 𝟎  

(𝑨𝒔𝒔𝒖𝒎𝒊𝒏𝒈: 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝑪𝑶𝑷 × 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) = 𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆) 

𝒊𝒇 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕(𝒊𝒊) − 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕(𝒊) < 𝟎:  

→ 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷 − [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 < 𝟎  

→ 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷 < [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷  

→ 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷

< 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 

→ 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) < 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 ( 5 ) 
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C. If the operator expects several available electricity sources at 𝑡1, 𝑡2, 𝑡3, 𝑡4 , and a 

Shortage at 𝑡5, the operator must compare the prices, which are modified by loss and 

different time spans. The modified prices could be: 

 {
𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕), 𝒊𝒇 𝒕𝒉𝒆 𝒔𝒐𝒖𝒓𝒄𝒆 𝒊𝒔 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔                        

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕), 𝒊𝒇 𝒕𝒉𝒆 𝒔𝒐𝒖𝒓𝒄𝒆 𝒊𝒔 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚
  

After comparison, the operator exploits the sources in order of profitability. 

Consequently, depending on the amount of heat required by Shortage at 𝑡5, some of 

the sources may be exhausted, some never used, and some used only part of their 

available supply. It is important for the operator not to consume an electricity source 

more than the requirement; otherwise operation cost would increase. For example, if 

the operator takes the exact amount of electricity, remaining PV generation can be 

sold to the grid instead of suffering unnecessary loss in the heat storage and being 

used in somewhere not actually profitable. Similarly, if the operator imports the exact 

amount of electricity from the grid, no extra expenditure would be incurred. 
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3 Operation Strategy for the 

Community System 

With historical data, we can assume that there is a perfect predictor, “an expert,” who can 

forecast all we need in next 24 hours, which is divided equally into 𝑡0  to 𝑡47 . Our 

operation strategy is to analyse the relationship of PV surplus, Shortage, SSP and SBP at 

𝑡0  to 𝑡47 , to determine the profitability of each available electricity source and to 

distribute all available electricity sources to all Shortage at 𝑡0  to 𝑡47  accordingly. 

Available electricity sources include PV Surplus and importing electricity from the grid. 

At the start of 𝑡0, the expert holds the values of PV surplus, Shortage, SSP and SBP at 𝑡0 

to 𝑡47. First, it creates a profit table, in which each entry is called a ‘profit number’: 

𝒑𝒓𝒐𝒇𝒊𝒕 𝒏𝒖𝒎𝒃𝒆𝒓

=  {
(𝑺𝑺𝑷𝒑 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒏−𝒕𝒑)) ÷ 𝑺𝑩𝑷𝒏 , 𝒊𝒇 𝒖𝒔𝒊𝒏𝒈 𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 𝒂𝒕 𝒕𝒑 𝒕𝒐 𝒄𝒉𝒂𝒓𝒈𝒆 𝒉𝒆𝒂𝒕 𝒔𝒕𝒐𝒓𝒂𝒈𝒆       

(𝑺𝑩𝑷𝒑 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒏−𝒕𝒑)) ÷ 𝑺𝑩𝑷𝒏 , 𝒊𝒇 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒂𝒕 𝒕𝒑 𝒕𝒐 𝒄𝒉𝒂𝒓𝒈𝒆 𝒉𝒆𝒂𝒕 𝒔𝒕𝒐𝒓𝒂𝒈𝒆
 

, where 𝑡𝑛 > 𝑡𝑝 and 𝑡𝑛, 𝑡𝑝  ∈ 𝑡0 to 𝑡47. 𝑆𝑆𝑃𝑝 is the SSP at 𝑡𝑝, 𝑆𝐵𝑃𝑝 is the SBP at 𝑡𝑝 and 

𝑆𝐵𝑃𝑛 is the SBP at 𝑡𝑛. We only consider 𝑡𝑛 when there is a Shortage at 𝑡𝑛. 

We set 𝑝𝑓𝑝,𝑛
𝑃𝑉 be the profit number when using PV Surplus at 𝑡𝑝 to charge heat storage for 

future Shortage at 𝑡𝑛 . Similarly, 𝑝𝑓𝑝,𝑛
𝐺𝑑  is the profit number when importing electricity 

from the grid at 𝑡𝑝 to charge heat storage for future Shortage at 𝑡𝑛 . Refer to Equation (4) 

and (5), it is obvious that if 𝑝𝑓𝑝,𝑛 < 1, it’s profitable to use electricity source at 𝑡𝑝 . On 

the other hand, if 𝑝𝑓𝑝,𝑛 ≥ 1, it has no need to use electricity source at 𝑡𝑝 and this 𝑝𝑓𝑝,𝑛 

would be excluded from the profit table. 

( 6 ) 
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Next, the expert distributes all available electricity source to all Shortage, starting from 

the smallest 𝑝𝑓𝑝,𝑛. The expert calculates the exact amount of electricity needed at 𝑡𝑝 for 

the Shortage at 𝑡𝑛 : 

𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒓𝒆𝒒𝒖𝒊𝒓𝒎𝒆𝒏𝒕 𝒂𝒕 𝒕𝒑 = (𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 𝒂𝒕 𝒕𝒏 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒏−𝒕𝒑)) × 𝑪𝑶𝑷 ( 7 ) 

The expert then adjusts the electricity requirement at 𝑡𝑝 according to heat pump capacity 

at 𝑡𝑝 and heat storage capacity at 𝑡𝑝, 𝑡𝑝+1, 𝑡𝑝+2,……, and 𝑡𝑛 because heat pump capacity 

limits the amount of heat that can be charged, and heat storage capacity limits the amount 

of heat that can be stored in the heat storage. 

Finally, the expert decreases the electricity source at 𝑡𝑝 as much as possible according to 

the modified electricity requirement at 𝑡𝑝 . If the electricity source is PV Surplus, the 

expert records how much amount of PV Surplus remains. If the electricity source is from 

the grid, the expert can import as much as it need, because we assume that the connection 

to the grid is always available. The amount of electricity consumed at 𝑡𝑝 turns into heat, 

which reduces heat pump capacity at 𝑡𝑝. The expert also records the decrease of Shortage 

at 𝑡𝑛 and the decreases of heat storage capacity at 𝑡𝑝, 𝑡𝑝+1, 𝑡𝑝+2,……, and 𝑡𝑛. 

To increase the efficiency of the algorithm, when a heat pump capacity at 𝑡𝑝 is exhausted, 

all 𝑝𝑓𝑝,𝑛  with 𝑡𝑝 will be deleted from the profit table. Similarly, when a heat storage 

capacity at 𝑡𝑥 is used up, all 𝑝𝑓𝑝,𝑛 with 𝑡𝑝 ≤ 𝑡𝑥 ≤ 𝑡𝑛 will be deleted. In addition, after a 

Shortage at 𝑡𝑛 is fully fulfilled, all 𝑝𝑓𝑝,𝑛 with 𝑡𝑛 will be deleted. 

After the expert goes through all entries of the profit table, all Shortages that are not fully 

fulfilled will be coped with importing electricity at their current time. We obtain an 

optimal operation curve, such as showed in Figure 3.1 and Figure 3.2. A pseudo code is 

showed in Table 3.1.  
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In Figure 3.1 and Figure 3.2, the heat level of heat storage (purple dot) of 𝑡𝑛 is the heat 

level at the start of 𝑡𝑛, and the bars (orange and indigo) show how much amount of heat 

is charged into the storage at the end of 𝑡𝑛. For example, at the start of 𝑡0 and 𝑡1 in Figure 

3.1 there is no heat in the storage, and the operator charges the storage by 243.18 kWh 

during 𝑡1. Thus, at the start of 𝑡2 the heat level is equal to 243.18 kWh as showed in the 

figure.  

Note that PV generation in Figure 3.1 and Figure 3.2 has been subtracted by electricity 

demand first and then converted to heat energy for clearly demonstrating how PV 

generation is used to charge the storage. 

The operation curves in Figure 3.1 and Figure 3.2 demonstrate several behaviours that 

our Proposed Model must learn: 

A. Avoid storing excessive heat: 

Comparing the sum of heat demand from 𝑡12 and 𝑡17(approx. 771.36 kWh) and the 

total heat released from the heat storage from 𝑡12 and 𝑡17 (approx. 762.98 kWh) in 

Figure 3.1, it can be seen that heat prepared in the storage is slightly less than the heat 

demand because it can be covered by the PV generation at 𝑡17 (approx. 8.38 kWh). 

After that, heat demand from 𝑡18  and 𝑡29  is fully covered by PV generation. This 

behaviour demonstrates that our expert knows the optimal amount of heat that needs 

to be prepared before a certain time, depending on when PV generation begins and 

what amount of PV generation occurs in the future. 

Likewise, expecting a low demand during the evening in Figure 3.2, the expert fills 

the storage to a sufficient amount of heat (approx. 794.52 kWh), but not to its full 

capacity (1500 kWh). This shows the expert’s capability of operating the storage 

optimally by knowing PV generation and heat demand in advanced. 
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B. Charge the storage economically: 

Knowing how much amount of heat needs to be prepared is not enough. The expert 

must figure out how to charge the storage in a cost-effective way. In Figure 3.1, the 

expert imports electricity at 𝑡1, 𝑡2, 𝑡5 and 𝑡11 to meet the target level at 𝑡12 because 

SBPs at 𝑡1, 𝑡2, 𝑡5 and 𝑡11 are lower than other SBPs between 𝑡1 to 𝑡11. Note that even 

though SBP at 𝑡1 (0.03232 £/kWh) is lower than SBP at 𝑡11( 0.03472 £/kWh), the 

expert still chooses to import electricity at 𝑡11 due to the modification of SBP made 

by heat loss, as discussed in Equation (5). Similarly, in Figure 3.2, the expert 

consumes PV generation at 𝑡23, 𝑡24, 𝑡25, 𝑡28 and 𝑡32 because of low modified prices.  

From 𝑡18 to 𝑡32 in Figure 3.1, the expert has several different electricity sources from 

PV generation or from the grid for meeting the target level at 𝑡33. The expert exploits 

PV generation as much as possible from 𝑡29 to 𝑡24 and stop using PV generation at 

𝑡23 because the modified SSP starts to be higher than modified SBP at 𝑡29 to 𝑡32. Note 

that PV generation between 𝑡27 and 𝑡29 is not fully used by the heat pump because 

PV generation need to meet heat demand first. On the other hand, PV generation 

between 𝑡24 and 𝑡26 is not fully used due to the maximum capacity of heat pump. 
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Figure 3.1 Expert’s Operation Curve on a cold day 

 

 

Figure 3.2 Expert’s Operation Curve on a warm day 
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Table 3.1 Pseudo Code: Operation strategy for optimal operation curve 

 

  



Chapter 4 Python Implementation 

20  Chih-Hisang Lee - March 2019 

4 Python Implementation 

We use Python and Jupyter Notebook to create the Models and to conduct simulations. 

The implement of LSTM networks is constructed by Keras, a neural networks API of 

Python [10]. 

4.1 Simulation Environment 

The pseudo code of simulation environment is showed in Table 4.1.  

We first set up a four-year database of the five features (PV generation, electricity and 

heat demand, SSP and SBP): 

A. PV generation is based on a four-year real data. 

B. We assumed that electricity demand per dwelling per year is set to be 3000 kWh and 

there are 180 houses in the community. Electricity demand curve is based on a one-

year real data. 

C. Heat demand per dwelling is set to be 4500 kWh. Heat demand curve is based on a 

one-year estimated data. 

D. SBP and SSP are based on a one-year real data. The average of SBP is 0.04756 £/kW, 

and of SSP is 0.0366 £/kWh. SBP is always greater than or equal to SSP. 

After picking a day, the simulation environment loads the five features at 𝑡−48, 𝑡−47, …, 

𝑡0, 𝑡1, …, and 𝑡47, of which 𝑡0 is 12:00 AM of that day. The output of simulation is an 

operation curve of each Model between 𝑡0 and 𝑡47, and the total operation cost of each 

Model during 𝑡0 to 𝑡47. 
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4.2 Standard Model 

In Standard Model, we trained five networks to predict each feature (PV generation, heat 

demand, electricity demand, SSP and SBP). Each network receives a value sequence of 

𝑡𝑛−48 to 𝑡𝑛−1 to forecast the sequence of 𝑡𝑛 to 𝑡𝑛+47, as showed in Figure 1.2, in which 

𝑝 = 48 and 𝑚 = 47. The operator then put these predicted sequences of 𝑡𝑛 to 𝑡𝑛+47 into 

Algorithm 1 (Table 3.1) to determine the target level of heat storage at 𝑡𝑛. The pseudo 

code of Standard Model is showed in Table 4.2. 

The training sets of Standard Model are prepared by pairing the sequences of 𝑡𝑛−48 to 

𝑡𝑛−1 with the sequences of 𝑡𝑛 to 𝑡𝑛+47 for each feature in the four-year database. 

These five networks have the same figuration that the first layer is a LSTM layer with a 

hard-sigmoid function as its activation function. The second layer is a dropout layer with 

a dropout rate equal to 0.5, connected to the last layer which is a simple Dense layer with 

hard-sigmoid function. The cost function is MSE. Input of the first layer is scaled to a 

range of 0 to 1, and the output of the Dense layer is also between 0 to 1, which will be 

transformed back to the original range based on the training set. This is because 

normalization can make learning process faster. 

4.3 Proposed Model 

In Proposed Model, we trained only one network. The network receives five sequences 

of 𝑡𝑛−48 to 𝑡𝑛−1 to forecast one value: the target level for 𝑡𝑛, as showed in Figure 1.4, in 

which 𝑝 = 48. The operator has no need to run Algorithm 1 (Table 3.1) repeatedly. The 

pseudo code of Proposed Model is showed in Table 4.3. 

The training set of Proposed Model is prepared by putting five sequences of 𝑡𝑛−48 to 𝑡𝑛−1 

of the four-year database into Algorithm 1 (Table 3.1) to obtain the target level for 𝑡𝑛.  
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The figuration of the network in Proposed Model has similar structure of which the first 

layer is a LSTM layer with a hard-sigmoid function as its activation function. The second 

layer is a dropout layer with a dropout rate equal to 0.3, connected to the last layer which 

is a simple Dense layer with hard-sigmoid function. Similarly, the cost function is MSE, 

input of the first layer is scaled to a range of 0 to 1, and the output of the Dense layer is 

also between 0 to 1, which will be transformed back to the original range based on the 

training set. This is because normalization can make learning process faster. 
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Table 4.1 Pseudo Code: Simulation Environment 
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Table 4.2 Pseudo Code: Standard Model 

 

 

Table 4.3 Pseudo Code: Proposed Model 

 

  



Chapter 5 Results and Discussion 

26  Chih-Hisang Lee - March 2019 

5 Results and Discussion 

5.1 Training result of the networks in Standard Model 

Figure 5.1 demonstrates six comparisons of predictive values and true values. More 

examples can be found in Appendix A. Blue lines in the figures are the true values of one 

day and red lines are the values predicted by the five networks in Standard Model. 

Networks that predict PV generation, electricity and heat demands show the ability to 

match a rough pattern to the curve of true values. However, the networks are unable to fit 

those small and rapid changes on the curve delicately. 

Predictions made for SBP and SSP are unsatisfying. Predictive values always fluctuate 

around the average number. This means that the networks are not trained enough, 

resulting in a bad approximation that sticks around average number to bring a smaller 

MSE. 

One reason could be that the networks need more features to better define an 

approximation between input and output of the prices. Many factors influence the 

variations of SBP and SSP, such as real-time changes of generation and consumption, 

unexpected shutdowns of some units and grid imbalance caused by other occurrence. 

In our study, we did not improve the SBP and SSP predictors of the Standard Model 

because we aim to demonstrate the difference of performance between the Standard 

Model and the Proposed Model. Therefore, the Standard Model can only receive the same 

five features as used in the Proposed Model.  
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Figure 5.1 Comparisons of predictive and true values in the Standard Model 

(1) PV Generation 

The x-axis shows feature values (PV generation in this case), which is varied in the 

range of 0 and 1 since we’ve normalized the data. The y-axis is between 0 and 48, 

which denotes 𝑡0 and 𝑡48 respectively. However,  𝑡0 is not always match 12:00 AM 

because all input sequences have been randomized. 
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(2) Electricity Demand Prediction 

  

(3) Heat Demand Prediction 

 

(4) SBP Prediction 
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(5) SSP Prediction 

 

5.2 Operation Performance 

Showed in Figure 5.2, the Standard Model and the Proposed Model exhibit a similar 

behaviour of the expert. Both Models identified the two demand peaks in the morning 

and the evening. It is obvious that the Vanilla Model has no ability to predict future heat 

demand. Therefore, the Vanilla Model saved more PV generation than the evening 

demand and lost the income of exporting PV generation to the grid. The Vanilla Model 

can be improved by setting two sets of on-and-off time, one for summer and another for 

winter, since the averages of heat demand in summer and winter are different. 

We can conclude that accurate predictions of heat demand are crucial to the operation of 

heat storage. Figure 5.3 shows one example that the Standard Model incorrectly predicts 

two demand peaks. Consequently, it prepared more heat than the actual need. The excess 

use of heat storage in the morning leads to extra import of electricity. Another excess use 

in the evening consumes PV generation unnecessarily. 

Correct prediction of SBP and SSP is another key factor of a good performance. Even 

though a Model accurately identifies the heat demand, its performance still can be 

compromised by inaccurate prediction of price. In Figure 5.4, the Standard Model 

predicts heat demand in the morning with accuracy to a certain extent. However, it 
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expects a low SBP at 𝑡3; accordingly, the Standard Model starts to charge the heat storage 

too early, hence unnecessary heat loss in the heat storage occurred and, more importantly, 

the Standard Model imports electricity with a relative high SBP at 𝑡3, as showed in Figure 

5.4 in which the SBP (red dot) at 𝑡3  (approx. 0.048 £/kWh) is much higher than 𝑡10 

(approx. 0.036 £/kWh), of which time the expert starts to charge the storage in the 

morning. 

The same behaviour of the Standard Model can be seen in Figure 5.5 during the morning. 

Since outputs of the unreliable SBP predictor in the Standard Model are stuck around the 

average of SBPs, it’s hard for the Standard Model to detect the sudden drop of SBP at 𝑡10 

in Figure 5.5. 

In addition, incorrect prediction of PV generation can also weaken the performance of the 

Standard Model. In Figure 5.4, there are two PV generation peaks at 𝑡23, and 𝑡29. Unlike 

the Proposed Model and the expert, the Standard Model charges no heat into the storage 

during the peak at 𝑡29 because it does not expect this PV generation peak. It uses PV 

generation peak at 𝑡23 to charge the storage, and hence suffers from unnecessary heat loss 

in the heat storage.  

Note that in Figure 5.4 the true values of SSP during the midday are nearly the same. 

Thus, the reason for the expert to choose to consume PV generation at 𝑡29, instead of  𝑡23, 

is not because of a notable difference of SSP but considering on heat loss over the course 

of time. The predictive SSPs provided by SSP predictor in the Standard Model are almost 

the same as the average number and therefore we can conclude that in Figure 5.4 the 

Standard Model uses PV generation peak at 𝑡23 because it didn’t expect another peak at 

𝑡29, but not because it expects a higher SSP around 𝑡29. 
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The operation curve of the Proposed Model demonstrates roughly the same pattern as of 

the expert. Unlike the Standard Model, the network in the Proposed Model is trained to 

directly predict a target level. We cannot discuss the behaviour of the Proposed Model 

like we do with the Standard Model in above paragraphs because the network in the 

Proposed Model does not predict each feature separately.  

Figure 5.2 One-day simulation (Result 1) 

 

The blue, red, indigo and yellow lines are the operation curves of the expert, the Proposed 

Model, the Standard Model and the Vanilla Model, respectively. Green dash line is the 

PV generation that has been subtracted by electricity demand and converted into heat by 

COP. Pink dash line is the heat demand. Red and Blue dots are SBP and SSP.  
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Figure 5.3 One-day simulation (Result 2) 

 

Figure 5.4 One-day simulation (Result 3) 
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Figure 5.5 One-day simulation (Result 4) 

 

5.3 Annual Cost 

One way to examine the performance is to compare the operation costs of each Model in 

simulation. We run three one-year simulations for the all the Models and summed the 

daily operation cost according to Equation (3). The results are showed in Table 5.1. Note 

that the last Model in the table has no heat storage. It sells all PV Surplus to the grid, and 

whenever there is a Shortage, it imports electricity. 

Negative operation cost indicates that the system exported more electricity than imported 

from the grid in a year. Model without storage has the highest income of importing 

electricity in all three simulations, as showed in Column (A) in Table 5.1.  

Expenditure of importing in Equation (3) can be further separated depending on its 

purpose, as showed in Column (B) and (C). Since the Vanilla Model and the Model 

without storage cannot charging the heat storage by importing electricity, both shows zero 

in Column (C). 

Column (D) shows that the expert outperforms other four Models. Our Proposed Model 

has close performance to the Model without heat storage. The Standard Model and the 
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Vanilla Model fail to reduce overall operation cost, compared to the Model without heat 

storage.  

To compare the performance of these Models, we defined a number, 𝑒𝑜𝑝, that describes 

the effectiveness of operation. Operating the heat storage, a Model decreases the total 

revenue of exporting electricity and increases the total expenditure of importing 

electricity from the grid for charging the heat storage, as showed in Equation (8) and (9). 

Similarly, the operation of heat storage reduces the total expenditure of importing 

electricity for meeting the heat demand, as Equation (10). The Models aim to decrease 

𝐸𝑃𝑉 + 𝐸𝐺𝑟𝑖𝑑  and increase 𝑅 as much as possible because a higher 𝑒𝑜𝑝 indicates that a 

Model profits from its operation more effectively, as Equation (11). It is profitable to 

implement a Model only if the 𝑒𝑜𝑝 of that Model is larger than 1. 

𝑬𝑷𝑽 = 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 𝒇𝒐𝒓 𝒄𝒉𝒂𝒓𝒈𝒊𝒏𝒈 𝒕𝒉𝒆 𝒔𝒕𝒐𝒓𝒂𝒈𝒆 

        = (𝑹𝒆𝒗𝒆𝒏𝒖𝒆 𝒐𝒇 𝒂 𝑴𝒐𝒅𝒆𝒍) − (𝑹𝒆𝒗𝒆𝒏𝒖𝒆 𝒐𝒇 𝒕𝒉𝒆 𝑴𝒐𝒅𝒆𝒍 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒔𝒕𝒐𝒓𝒂𝒈𝒆)  

 ( 8 ) 

𝑬𝑮𝒓𝒊𝒅 = 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒇𝒐𝒓 𝒄𝒉𝒂𝒓𝒈𝒊𝒏𝒈 𝒕𝒉𝒆 𝒔𝒕𝒐𝒓𝒂𝒈𝒆 

 ( 9 ) 

𝑹 = 𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒊𝒏 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒇𝒐𝒓 𝒉𝒆𝒂𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 

    = (𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇  𝒕𝒉𝒆 𝑴𝒐𝒅𝒆𝒍 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒔𝒕𝒐𝒓𝒂𝒈𝒆) − (𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝒂 𝑴𝒐𝒅𝒆𝒍) ( 10 ) 

𝒆𝒐𝒑 =
𝑹

𝑬𝑷𝑽+𝑬𝑮𝒓𝒊𝒅
  ( 11 ) 

Table 5.2 shows each 𝑒𝑜𝑝 of each Model in the three simulations. As the same we observe 

from the comparison of total operation cost of each Model, the expert has the highest 𝑒𝑜𝑝 

around 1.55. Our Propose Model nearly meets the requirement with a 𝑒𝑜𝑝 around 0.98. 

The Standard Model and the Vanilla Model fails with 𝑒𝑜𝑝  around 0.75 and 0.45 

respectively.  
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We also calculated different 𝑒𝑜𝑝 in each week in the simulation result 1, as showed in  

Table 5.3, to examine how PV generation and heat demand affects 𝑒𝑜𝑝 of each Model. 

During the cold weeks, such as week 1, 2, 12 and 13, we have smaller amount of PV 

generation to meet the heat demand directly or to be charged into the heat storage in 

advanced. Since SBP are always larger or equal to SSP, using PV Surplus is usually more 

economical than importing electricity. Consequently, with less amount of economical PV 

generation, the operation costs of these weeks are positive. 

It should be note that the term, ‘cold’ or ‘warm,’ does not mean that the weather is colder 

or warmer in those weeks. ‘Cold’ means the system must import more electricity from 

the grid because the total PV generation is relative lower, and/or the total heat demand is 

relative higher. 

The 𝑒𝑜𝑝 of the Proposed Model, Standard Model and Vanilla Model is greater than 1 

during the cold weeks. In addition, 𝑒𝑜𝑝 of the expert during the cold weeks are greater 

than during the warm weeks. This is because most of the time during the cold weeks the 

Models has no need to predict PV generation correctly since PV generation in cold weeks 

is relative less and has less influence on operation. Consequently, the Models need only 

reliable predictions on demand and prices, and thus it is easier for the Models to make a 

better decision. Since the price predictors of the Standard Model are less effective, the 

𝑒𝑜𝑝 of the Standard Model is lower than of others in the cold weeks.  

The Vanilla Model sometimes has better 𝑒𝑜𝑝 during cold weeks because most of the time 

in a cold week the remaining PV Surplus is usually small, and the heat demand is usually 

large. Therefore, with a lower risk of suffering from unnecessary heat loss in the storage, 

it’s tolerable to always store all remaining PV Surplus for the heat demand in the evening. 
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Note that even though the 𝑒𝑜𝑝 of the Vanilla Model is greater, it does not guarantee that 

the Vanilla Model can outperform other Models because the Vanilla Model has no 

concern with price prediction and importing electricity. Table 5.4 shows the 𝑒𝑜𝑝 and the 

total reduction, 𝑅, of operation cost during cold weeks. In week 1, the 𝑒𝑜𝑝 of the Vanilla 

Model (1.54) is greater than the Proposed Model (1.32). However, 𝑅 of the Vanilla Model 

(£65) is less than the Proposed Model (£197). The same occurs in week 13.  

Table 5.1 Yearly Operation Cost 

Result 1: 

Model 

(D) 

Operation Cost (£) 

(D)=(A)+(B)+(C) 

(A) 

Sell to the 

Grid 

(B) 

Buy for Heat 

Demand 

(C)  

Buy for 

Charging  

Expert -48999 -53150 1494 2657 

Proposed Model -46429 -53377 3889 3059 

Standard Model -44744 -52577 3212 4621 

Vanilla Model -44433 -51245 6812 0 

Without Storage -46459 -54913 8454 0 
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Result 2: 

Model 

Operation Cost (£) 

(A)+(B)+(C) 

(A) 

Sell to the 

Grid 

(B) 

Buy for Heat 

Demand 

(C)  

Buy for 

Charging  

Expert -51713 -55934 1428 2793 

Proposed Model -49154 -56131 3763 3214 

Standard Model -47452 -55345 3144 4749 

Vanilla Model -47151 -54062 6911 0 

Without Storage -49272 -57608 8336 0 

Result 3: 

Model 

Operation Cost (£) 

(A)+(B)+(C) 

(A) 

Sell to the 

Grid 

(B) 

Buy for Heat 

Demand 

(C)  

Buy for 

Charging  

Expert -42620 -46884 1619 2645 

Proposed Model -40072 -47185 4103 3010 

Standard Model -38491 -46326 3325 4510 

Vanilla Model -38236 -45116 6880 0 

Without Storage -40223 -48689 8466 0 
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Table 5.2 Operation effectiveness, 𝒆𝒐𝒑 

Model Result 1  Result 2 Result 3 

Expert 1.57  1.55 1.54 

Proposed Model 0.99  0.97 0.97 

Standard Model 0.75  0.74 0.75 

Vanilla Model 0.45  0.40 0.44 

 

Table 5.3 Operation effectiveness, 𝒆𝒐𝒑, of each week in Result 1 

Week Expert 

Proposed  

Model 

Standard  

Model 

Vanilla  

Model 

Operation Cost 

1 1.74 1.32 1.16 1.54 positive 

2 1.6 1.16 0.99 1.47 positive 

3 1.43 0.89 0.75 0.77 negative 

4 1.43 0.71 0.58 0.31 negative 

5 1.42 0.68 0.47 0.12 negative 

6 1.63 0.62 0.41 0.07 negative 
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Week Expert 

Proposed  

Model 

Standard  

Model 

Vanilla  

Model 

Operation Cost 

7 1.46 0.36 0.26 0.05 negative 

8 1.56 0.46 0.39 0.06 negative 

9 1.43 0.65 0.49 0.13 negative 

10 1.46 0.81 0.62 0.29 negative 

11 1.45 0.85 0.75 0.49 negative 

12 1.59 1.19 1.01 1.01 positive 

13 1.72 1.27 1.06 1.50 positive 

 

Table 5.4 𝒆𝒐𝒑 and 𝑹 of operation cost during cold weeks in Result 1 

 Expert 

Proposed  

Model 

Standard  

Model 

Vanilla  

Model 

Week 1     

𝑒𝑜𝑝 1.74 1.32 1.16 1.54 

𝑅 462 197 106 65 
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 Expert 

Proposed  

Model 

Standard  

Model 

Vanilla  

Model 

Week 2     

𝑒𝑜𝑝 1.6 1.16 0.99 1.47 

𝑅 379 90 -7 103 

Week 12     

𝑒𝑜𝑝 1.59 1.19 1.01 1.01 

𝑅 363 113 7 2 

Week 13     

𝑒𝑜𝑝 1.72 1.27 1.06 1.50 

𝑅 440 169 46 63 

5.4 Training and Computation Efficiency 

Since the Standard Model and the Proposed Model follow the different concept as showed 

in Figure 1.1, Figure 1.2, Figure 1.3 and Figure 1.4, it is interesting to examine the training 

and computation efficiency of the two Models. 

5.4.1 Preparation of Training Dataset 

For the five predictors in Standard Model, time spent for preparing the training dataset is 

neglectable because it is only a rearrangement of values according to each time steps. On 
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the contrary, it took approx. 6 hours to prepare the dataset for the Proposed Model due to 

the computation caused by running Algorithm 1 for a four-year historical data. 

5.4.2 Training of Models 

It is meaningless to compare the training time of each LSTM networks because the total 

number of trainable weights/varaiables is different in different Model. In addition, the 

training time can also be influenced by the complexity of the dataset, which is different 

for each predictor. 

5.4.3 Computation Efficiency 

For a one-day simulation, it took approx. 0.8 second for the Proposed Model to make 

decision, while for the Standard Model it took approx. 1 minute. The difference between 

0.8 second and 1 minute is neglectable compared to one day (24 hours), though it 

demonstrates to what extend an improvement of computation efficiency can be achieved 

if we build models and train networks in a different way, as discussed in Figure 1.1, Figure 

1.2, Figure 1.3 and Figure 1.4. 
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6 Conclusion 

In this paper we proposed a LSTM model for the operation of heat storage in a solar 

energy community distribution system with PV generation as the only domestic 

generation and a connection to the main grid. Unlike conventional LSTM model that the 

networks are only used to predict features for supporting an operator or a control 

programme to make a decision, our proposed model integrates the operation strategy into 

the network, and thus provide an operation action directly.  

With historical data, we created an expert who can perfectly predict future. This expert 

follows the operation strategy we proposed in this paper, and then the operation 

behaviours of this expert are used to train a LSTM network in our proposed model. 

We set up three different Models: 

A. The Standard Model has five LSTM networks that receive past values of PV 

generation, electricity demand, heat demand, SSP and SBP to predict future values. 

These predictive values are then passed to a control programme that follows the 

operation strategy proposed in this paper to calculate the current target level of the 

heat storage. 

B. The Proposed Model has only one LSTM network that is trained by the operation 

behaviour of the mock-up expert. This network receives past values of PV 

generation, electricity demand, heat demand, SSP and SBP to provide the current 

target level of the heat storage. 

C. The Vanilla Model always starts to charge and to discharge the heat storage at fixed 

times every day. This model has no LSTM network. 
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We conducted one-year simulations for the expert, the three Models and a system without 

heat storage. To decrease the total cost of importing electricity to meet the heat demand, 

each model consumes PV generation that could have been sold to the grid or imports 

electricity to charge the heat storage when SBP is relative low. We defined a number, 𝑒𝑜𝑝, 

to describe the operation effectiveness of a Model: 

𝒆𝒐𝒑 =
𝑹

𝑬𝑷𝑽+𝑬𝑮𝒓𝒊𝒅
  

𝑹 = 𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒊𝒏 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒇𝒐𝒓 𝒉𝒆𝒂𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 

𝑬 =  𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 𝒐𝒓 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒇𝒐𝒓 𝒄𝒉𝒂𝒓𝒈𝒊𝒏𝒈 𝒉𝒆𝒂𝒕 𝒔𝒕𝒐𝒓𝒂𝒈𝒆 

The results of one-year simulations show that the expert has the highest 𝑒𝑜𝑝 around 1.55, 

and the Propose Model has 𝑒𝑜𝑝 around 0.98. The Standard Model and the Vanilla Model 

fails with 𝑒𝑜𝑝 around 0.75 and 0.45 respectively. The performance of our Proposed Model 

is nearly to be profitable if its 𝑒𝑜𝑝 can be further improved to be greater than 1. 

We found that during the weeks when the PV generation is low, and the heat demand is 

high, the 𝑒𝑜𝑝 of the Proposed Model, Standard Model and Vanilla Model is greater than 

1. This is because the accuracy of prediction on PV generation has less influence on the 

performance of a Model. Thus, it is easier for a Model to operate the heat storage during 

a ‘colder’ week. 

Since the Standard Model and the Proposed Model introduces different concepts of 

implementing LSTM networks, computation efficiency of each Model during the 

simulation is different. The Standard Model first runs its five LSTM networks to predict 

features related to operation, and then run the operation strategy to decide an operation 

action. On the other hand, the Proposed Model directly predicts an operation action. The 

computation time spent by the Standard Model is 75 times larger than the Proposed Model. 
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With the same input (five features at 𝑡𝑛−48 to 𝑡𝑛−1), our Proposed Model has a better 

operation efficiency and less computation time in simulation than the Standard Model 

that follows the conventional way of implement LSTM networks in decision making of 

system operation. 

In further studies, we intend to create other experts by new operation strategies or by real 

experience of human operator. By introducing new operation strategy, the number of 

input features may increase or decrease and further affect 𝑒𝑜𝑝 of the model. On the other 

hand, if we introduce human operation experience, the selection of input features would 

be the key decision for constructing the model. Alternatively, the model can learn directly 

from extracting a policy from the human operation experience [11] without conducting a 

supervised learning. 

We also aim to examine different scenario for this solar energy community distribution 

system, such as an increase or decrease in the number of houses or solar panels. This 

would affect 𝑒𝑜𝑝 of the models because it changes the amount of PV generation and heat 

demand in certain weeks, and thus makes a week ‘warmer’ or ‘colder,’ as we discussed 

in Chapter 5.3. Another scenario is that we can put the solar energy community 

distribution system into another electricity market which is different from the imbalance 

prices we used in this paper. We can also consider how carbon tax or subsidy for solar 

energy influences the operation strategy and the performance of our Proposed Model.   
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Appendix 1 Comparisons of predictive and true values 

in the Standard Model 

(1) PV generation Prediction 
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(2) Electricity Demand Prediction 
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(3) Heat Demand Prediction 
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(4) SBP Prediction 
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(5) SSP Prediction 
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Appendix 2 Python Code 
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