
 

MakerArcade: Using Gaming and 
Physical Computing for Playful 
Making, Learning, and Creativity 

Teddy Seyed 
University of Calgary 
Calgary, AB, T2N 1N4 
teddy.seyed@ucalgary.ca 

Peli de Halleux 
Microsoft Research 
Redmond, WA 
jhalleux@microsoft.com 

Michał Moskal 
Microsoft Research 
Redmond, WA 
michal.moskal@microsoft.com 

James Devine 
Lancaster University 
Lancaster, UK 
j.devine@lancaster.ac.uk 

Joe Finney 
Lancaster University 
Lancaster, UK 
j.finney@lancaster.ac.uk  

Steve Hodges 
Microsoft Research 
Cambridge, UK 
steve.hodges@microsoft.com 

Thomas Ball 
Microsoft Research 
Redmond, WA 
tball@microsoft.com 

 

ABSTRACT1 
The growing maker movement has created a number of hardware and construction toolkits that lower 
the barriers of entry into programming for youth and others, using a variety of approaches, such as 
                                                             

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the 
owner/author(s). 
CHI’19 Extended Abstracts, May 4-9, 2019, Glasgow, Scotland, UK. 
© 2019 Copyright is held by the author/owner(s). 
ACM ISBN 978-1-4503-5971-9/19/05. 
https://doi.org/10.1145/3290607.3312809 



  
 

 

KEYWORDS 
construction kits, physical computing, 
tangible user interfaces; game design; 
maker-activities; block-based 
programming, STEM; STEAM

gaming or robotics. For constructionist-like kits that use gaming, many are focused on designing and 
programming games that are single player, and few explore using physical and craft-like approaches 
that move beyond the screen and single player experiences. Moving beyond the screen to incorporate 
physical sensors into the creation of gaming experiences provides new opportunities for learning 
about concepts in a variety of areas in computer science and making. In this early work, we elucidate 
our design goals and prototype for a mini-arcade system that builds upon principles in constructionist 
gaming – making games to learn programming – as well as physical computing.    
 
1 INTRODUCTION AND RELATED WORK  

 Over the past several years, efforts to promote ‘making’ – cross disciplinary activities that involve 
DIY culture, electronics, science, engineering and craft – have expanded greatly [1]. Building upon 
these efforts, a number of construction toolkits have been created (e.g. LilyPad [2], Lego Mindstorms 
[17]) to lower barriers of entry into programming and introduce computing concepts across using a 
variety of contexts (and domains), such as robotics or e-textiles. Many of these toolkits and 
subsequent efforts have shown significant success in attracting, engaging and teaching youth in 
STEAM (Science, Technology, Arts, Engineering and Mathematics) activities [3]. 

One rapidly growing area for these efforts utilizes gaming. Due to the ever-growing popularity of 
gaming among children today (especially for entertainment), researchers and educators have begun 
using gaming to facilitate positive learning experiences [7], building upon core game design 
principles (scaffolding, interactivity and productive failure) [12]. A more recent approach within this 
context that has already shown promise is constructionist gaming, which involves students (and 
others) making or programming their own game for learning [9]. Some tools that embody this 
approach (e.g. Scratch, Kodu Game Lab [18]) enable those with limited game development or 
programming skills to create games. By enabling children and others to learn by both playing and 
making games, computational thinking and problem solving can be improved [10]. 

Although constructionist gaming approaches, tools and associated research is growing rapidly, 
there is still a large focus on designing around a singular screen (or gaming) experience [11]. 
Alternatively, commercial gaming has already begun moving beyond the screen into the physical 
world [5]. For example, the Nintendo Labo platform uses different approaches to combine elements 
of making and construction into gaming experiences [#ref]. More recently, construction kits have 
been used to link the design of games with the design of gaming interfaces, and this combination 
approach has shown promise in fostering collaborative learning, creative expression, and learning 
computational concepts [11]. This combination approach has revealed challenges with designing 
around constructionist gaming, especially with regards to construction kits. Specifically, there is not 
an equal emphasis on both computing and crafting, meaning designing on and off the screen 
experiences haven’t been made equally important for constructions kits for gaming, which differs 
from other approaches such as those for e-textiles, where screen-based activities are (typically) 
limited to programming and downloading code onto a wearable [11]. 

To begin investigating and addressing some of the challenges in designing and building a 



  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

constructionist kit for gaming, we created the MakerArcade system. MakerArcade draws upon 
concepts of physical computing using manipulatives, similar to [8], as it provides several benefits for 
novices (e.g. collaboration], visibility of work) [11]. It also draws upon programming concepts taught 
using simplified graphical, block-based user interfaces like MakeCode, as they simplify programming 
concepts, and block-shaped constraints help teach and enforce syntactically correct programming 
statements [16]. In this paper, we describe our preliminary system (Figure 1) that builds upon the 
Microsoft MakeCode Arcade (beta) software platform1. We believe this is an interesting step towards 
designing and building constructionist gaming experiences that incorporate both hardware and 
software aspects from the ground up 
 
2 DESIGN GOALS 

Informed by our own experiences in designing, building and gathering feedback for MakeCode 
Arcade and activities of our users from MakeCode Maker2, as well as prior work in relevant areas of 
constructionist toolkits, tangibles and physical interfaces [13], we describe our design principles for a 
constructionist gaming system designed to facilitate play, learning and creativity. 

 
Leverage the Gaming domain. Several construction kits have used their respective domains for 

design and inspiration, such as MakerWear [13] which utilized wearability and mobility for the 
design and experience of the platform. Similarly, we aim to draw upon and provide components that 
incorporate and are inspired by gaming, specifically retro gaming and the arcade culture. 
Furthermore, retro gaming has begun returning in popularity recently, with re-releases of consoles 
such as the Nintendo Classic Mini, providing a unique opportunity to blend playful making and 
learning.  

Modularity. Prior work in modular kits for wearables has shown benefit [13]. Similarly, providing 
a system that supports plug and play with sensors and electronics, enables a broad range of activities 
for both on and off experiences for constructionist gaming. For example, a user can design, program 
and physically construct a custom controller for a game (which they’ve also designed and 
programmed) using different sensors, like an accelerometer and proximity sensor.     

 Equality in Physical and Digital Making. A key lesson from [11] with regards to constructionist 
gaming and the evaluation of existing tools was that there needs to be an emphasize on equality 
between crafting and computing for both on the screen and off the screen activities in constructionist 
gaming. This notion should be incorporated both on the physical (activities with electronics) and 
digital side (activities with the software) when considering the design of a construction gaming kit. 

Low-Ceilings, High Walls. Building upon Resnick and Silverman’s design cues [15] a 
construction gaming system should support users in the creation of increasingly complex games that 
combine both the physical and digital aspects, as further experience is gained. 

 Tinkerability. In wearable toolkits, an emphasis was placed on rapid tinkering and prototyping 

                                                             
1 Microsoft MakeCode Arcade – http://arcade.makecode.com/beta 
2 Microsoft MakeCode Maker – http://maker.makecode.com/beta 

 
Figure 1. An example of a completed MakerArcade 
system in the form of a miniature Arcade Cabinet 
running a user-created Flappy-bird like game with a 
default set of buttons mapped. This game (and 
others) can be mapped to different sensors (like an 
accelerometer) that a user can program and map as 
an alternative controller that is plugged into the 
cabinet which contains a headphone jack and uses 
our custom headphone jack-based hardware 
protocol. 



  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[2,13]. Similarly, our system should enable rapid tinkering and experimentation, as we aim to enable 
users (especially children) to easily experiment and play with different components. Given that 
expression is an important aspect of the constructionist approach [9,11], focusing on a wide range of 
tinkering activities (e.g. adjusting effects) in the creation and play of a game is important.   

Fostering Collaboration. Another benefit seen from constructionist gaming activities, is the 
occurrences of collaboration and their associated artifacts (e.g. components customized with crafts), 
particularly in classroom settings [6]. This means that a system should both enable and capture 
(digitally and physically) these artifacts to foster collaboration.  

 
3 MAKERARCADE  

Our current prototype of the MakerArcade system is comprised of: (i) custom software 
experiences built upon the Microsoft MakeCode framework31, (ii) a mini arcade cabinet that houses 
electronics and (iii) custom modular blocks that can be programmed. MakerArcade is heavily 
inspired by the retro gaming and DIY culture (through the cabinet), as well as prior work in modular 
blocks and devices, such as [14]. Next, we briefly describe our current implementation 

 
3.1  Software 

The software components of MakerArcade use customized (beta) versions of Microsoft 
MakeCode Arcade (Figure 2) and Microsoft MakeCode Maker (Figure 3). Both are open-source and 
are built upon the Microsoft MakeCode web framework, which enables a web-based programming 
experience for novices. It’s editor uses block-based programming and code can be executed within 
the browser itself [4]. The MakeCode Arcade editor enables novices to learning programming by 
creating games in the browser using block-based programming (similar to [18]). Games are stylized 
in a retro 8-bit manner, with a small view dynamically rendering the game as it is being programmed. 
The MakeCode Maker editor allows novices to learn how to both program and prototype (via 
breadboard) with a variety of different sensors and electronics components. 

For our MakerArcade prototype, a user creates their game using MakeCode Arcade, which can 
then be loaded onto it (using USB) and played immediately. MakerArcade by default comes with 3 
buttons (mapped to Start / Reset / B key), however, several games require more than 1 button for 
interaction (e.g. a Pacman-like game requires multiple keys for directions). This is where our 
software customizations arise, combining digital and physical construction through the use of Arcade 
and Maker. Using customized packages in Arcade, and Maker, users are able to program custom plug 
and play input using sensors (or buttons) for their game. 

The mapping of custom input created by a user in Arcade is done automatically using our 
packages. This means that a user can not only create their game, but they can also create how they 
want their game to react with a chosen form of input. Given that sensors (and buttons) can be used 
dynamically, it allows a user to build their own controller experience that plugs into the MakerArcade  

 
                                                             
3 Microsoft MakeCode – http://www.microsoft.com/en-us/makecode 

 
 
 

Figure 2. Microsoft MakeCode Arcade (beta) that 
allows a user to create a game using block-based 
programming concepts. We provide packages that 
allow a user to program custom physical controllers 
that use buttons or sensors (e.g. sound) and map input 
to the game being programmed. For example, a user 
can map shaking input from an accelerometer (using a 
block) to the flapping of the bird. When the game is run 
on MakerArcade, the sensor is plugged in to play. 

 
 

 
 
 

Figure 3. Microsoft MakeCode Maker (beta) that 
allows a user to program and prototype electronics. We 
provide packages which show a user how to physically 
create an arcade (with a screen) and buttons mapped to 
a microcontroller. We also provide mappings on how 
to create additional plug and play components (for 
custom controllers, sensors or modules), that use a 
custom headphone jack-based hardware bus protocol. 
These mappings when programmed by a user, are auto-
detected when plugged into our MakerArcade system.  
 



  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cabinet, or even further customize their own MakerArcade, as instructions are provided on Maker 
that describe how to build an arcade using a screen, microcontroller and buttons on Maker (full list of 
supported hardware available on our website). In summary, we allow users to fully customize a 
gaming experience, not just with their programmed game, but also with their own plug and play 
controllers (built using their own choice of input) for our provided Mini-arcade cabinet, which can 
also be further customized.  

 
3.2  Hardware 

Our provided MakerArcade physical prototype consists of (1) a SAMD51-based microcontroller 
(Adafruit Trinket M4 Express), (2) a ST7735-based 1.8” TFT LCD, (3) 3 analog buttons and (4) an 
audio-jack port mapped to a pin on the microcontroller, all of which is housed in a laser-cut acrylic 
Arcade cabinet. The SAMD51-based microcontroller (and other supported microcontrollers) run 
custom bootloaders that enable it to both run games compiled on MakeCode Arcade, as well as the 
screen itself. The audio-jack port plays a critical role in the plug-and-play architecture for the 
constructionist components of gaming. We built upon JACDAC41, which is a bus-based hardware 
protocol that utilizes audio-jack cables.  

Generally, the supported parts serve as the base components for our designed MakerArcade 
system (and cabinet), but users are also able to design and build their own housing for these 
components, emphasizing more of the playful making and physical computing aspects. For example, 
a user could create a console-like design (e.g. Nintendo Classic) to house the base components. 

With MakerArcade, a user can plug and play their own custom designed inputs (with mappings 
provided and created in Maker) into our supplied cabinet. These inputs use the JACDAC protocol 
which requires headphone jack cables, and with a Headphone jack hub, multiple custom inputs 
become plug and play (Figure 4). Furthermore, microcontrollers that are supported on MakeCode 
Maker (e.g. Figure 5) can serve as input (and eventually output) for games created on MakeCode 
Arcade. This means that users can fully prototype and build their own MakerArcade controller 
experiences with a variety of popular microcontrollers.   

 
4  CONCLUSION AND FUTURE WORK 

We introduced our early work towards building a constructionist gaming system that emphasizes 
designing, remixing, and customizing physical and digital components in building games. As it is 
early work, there are numerous directions and opportunities we intend to explore, including: (1) 
providing alternative and more customizable designs (e.g. console-like, hand-held or a wearable form 
factor); (2) explore providing modules with outputs that can be used in the creation and experience 
with a user programmed game (e.g. sound, movement); (3) participatory design sessions with 
children of different age groups and makers and (4) running user studies with a similar group to see 
how they use MakerArcade and what games, controllers and experiences they design, ultimately 
creating guidelines for creating constructionist gaming systems and kits.  
                                                             
4 JACDAC – http://jacdac.org 

 
 

Figure 4. This custom designed accelerometer 
controller plugged into additional inputs using a 
headphone jack hub. This lets a user build their 
own controller and interactions for their game 
using MakerArcade. 

  

 

 
 

Figure 5. Buttons from an Adafruit Circuit 
Playground Express (CPX) used as a controller for 
the Flappy-bird game. The CPX is coded using 
blocks (and a custom plug-and-play headphone-
jack bus protocol) within MakeCode Maker. On 
MakeCode Arcade, a user simply programs 
additional buttons using our packages, which are 
auto-detected when plugged into the headphone 
jack hub.  
 

Headphone Jack hub 



  
 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
[1] Lisa Brahms. 2014. Making as a learning process: Identifying and supporting family learning in informal settings. 

University of Pittsburgh. 
[2] Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali Crockett. 2008. The LilyPad Arduino: Using Computational 

Textiles to Investigate Engagement, Aesthetics, and Diversity in Computer Science Education. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems (CHI ’08), 423–432. 
https://doi.org/10.1145/1357054.1357123 

[3] Leah Buechley and Benjamin Mako Hill. LilyPad in the Wild: How Hardwareʼs Long Tail is Supporting New 
Engineering and Design Communities. 9. 

[4] James Devine, Joe Finney, Peli de Halleux, Micha\l Moskal, Thomas Ball, and Steve Hodges. 2018. MakeCode and 
CODAL: Intuitive and Efficient Embedded Systems Programming for Education. In Proceedings of the 19th ACM 
SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES 
2018), 19–30. https://doi.org/10.1145/3211332.3211335 

[5] Michael Eisenberg, Nwanua Elumeze, Michael MacFerrin, and Leah Buechley. 2009. Children’s Programming, 
Reconsidered: Settings, Stuff, and Surfaces. In Proceedings of the 8th International Conference on Interaction Design and 
Children (IDC ’09), 1–8. https://doi.org/10.1145/1551788.1551790 

[6] Allan Fowler. 2017. Engaging young learners in making games: an exploratory study. In Proceedings of the 12th 
International Conference on the Foundations of Digital Games, 1–5. 

[7] James Paul Gee. 2007. Good video games+ good learning: Collected essays on video games, learning, and literacy. Peter 
Lang. 

[8] Audrey Girouard, Erin Treacy Solovey, Leanne M. Hirshfield, Stacey Ecott, Orit Shaer, and Robert J. K. Jacob. 2007. 
Smart Blocks: a tangible mathematical manipulative. 183–186. https://doi.org/10.1145/1226969.1227007 

[9] Yasmin B. Kafai. 2006. Playing and Making Games for Learning: Instructionist and Constructionist Perspectives for 
Game Studies. Games and Culture 1, 1: 36–40. https://doi.org/10.1177/1555412005281767 

[10] Yasmin B. Kafai and Cynthia Carter Ching. 2001. Affordances of Collaborative Software Design Planning for 
Elementary Students’ Science Talk. Journal of the Learning Sciences 10, 3: 323–363. 
https://doi.org/10.1207/S15327809JLS1003_4 

[11] Yasmin B. Kafai and Veena Vasudevan. 2015. Constructionist Gaming Beyond the Screen: Middle School Students’ 
Crafting and Computing of Touchpads, Board Games, and Controllers. In Proceedings of the Workshop in Primary and 
Secondary Computing Education (WiPSCE ’15), 49–54. https://doi.org/10.1145/2818314.2818334 

[12] Manu Kapur. 2008. Productive Failure. Cognition and Instruction 26, 3: 379–424. 
https://doi.org/10.1080/07370000802212669 

[13] Majeed Kazemitabaar, Jason McPeak, Alexander Jiao, Liang He, Thomas Outing, and Jon E. Froehlich. 2017. 
MakerWear: A Tangible Approach to Interactive Wearable Creation for Children. In Proceedings of the 2017 CHI 
Conference on Human Factors in Computing Systems (CHI ’17), 133–145. https://doi.org/10.1145/3025453.3025887 

[14] David Merrill, Jeevan Kalanithi, and Pattie Maes. 2007. Siftables: Towards Sensor Network User Interfaces. In 
Proceedings of the 1st International Conference on Tangible and Embedded Interaction (TEI ’07), 75–78. 
https://doi.org/10.1145/1226969.1226984 

[15] Mitchel Resnick and Brian Silverman. 2005. Some reflections on designing construction kits for kids. In Proceedings of 
the 2005 conference on Interaction design and children, 117–122. 

[16] David S. Touretzky. 2014. Teaching Kodu with Physical Manipulatives. ACM Inroads 5, 4: 44–51. 
https://doi.org/10.1145/2684721.2684732 

[17] Homes - Mindstorms LEGO.com. Retrieved January 5, 2019 from https://www.lego.com/en-us/mindstorms 
[18] Kodu | Home. Retrieved January 5, 2019 from https://www.kodugamelab.com/ 
 


