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Abstract

The aim of this thesis is to develop methodology for combining multiple 

endpoints within a single statistical analysis that compares the responses of patients 

treated with a novel treatment with those of control patients treated conventionally. 

The focus is on interval-censored bivariate survival data, and five real data sets from 

previous studies concerning multiple responses are used to illustrate the techniques 

developed.

The background to survival analysis is introduced by a general description of 

survival data, and an overview of existing methods and underlying models is 

included. A review is given of two of the most popular survival analysis methods, 

namely the logrank test and Cox’s proportional hazards model. The global score test 

methodology for combining multiple endpoints is described in detail, and application 

to real data demonstrates its benefits.

The correlation between two score statistics arising from bivariate interval- 

censored survival data is the core of this research. The global score test methodology 

is extended to the case of bivariate interval-censored survival data and a 

complementary log-log link is applied to derive the covariance and the correlation 

between the two score statistics. A number of common scenarios are considered in 

this investigation and the accuracy of the estimator is evaluated by means of extensive 

simulations.

An established method, namely the approach of Wei, Lin and Weissfeld, is 

examined and compared with the proposed method using both real and simulated 

data. It is concluded that our method is accurate, consistent and comparable to the 

competitor. This study marked the first successful development of the global score 

test methodology for bivariate survival data, employing a new approach to the



derivation of the covariance between two score statistics on the basis of an interval- 

censored model. Additionally, the relationship between the jackknife technique and 

the Wei, Lin and Weissfeld method has been clarified.
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Preface

Background

In clinical trials, the main purpose is often to compare efficacy between 

experimental and control treatments. These treatment comparisons often involve 

several responses or endpoints, and this situation complicates the analysis. For 

example, sets of responses concerned with survival times in a single clinical trial 

include: time to first cardiac event and time to death from any cause; time to loss of 

vision in the left eye and time to loss of vision in the right eye; and times from entry 

to a trial until the first, the second and the third asthma exacerbations.

One approach to simplifying the analysis would be to choose one of the 

survival times and to use that alone as a single primary endpoint. This is not always 

desirable, for example, in cases where the choice would be rather subjective or where 

the endpoints are of equal interest. A single parameter relating, to an overall 

assessment, is often required to give a solid justification of treatment advantage, and 

so separate analyses of more than one endpoint might likewise not be appropriate. 

Another alternative is to use a composite endpoint, such as the time until the first of 

the events.

The cumulative treatment advantage is usually measured by the score statistic 

for each endpoint. In survival analysis, the logrank test is one of the most popular 

methods for testing the equality of two treatment groups. It is routinely used in the 

analysis of clinical trials comparing the time-to-event distribution of a group of 

patients randomised to an experimental treatment with that of a control group. When 

prognostic factors are to be adjusted for, Cox’s proportional hazards regression, which 

is a direct generalisation of the logrank test, is commonly employed. These two 

methods are extensively referred to throughout this thesis. In the case of bivariate
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survival data, the score statistics can be summed directly, but the variance is now 

affected by the dependence structure between two endpoints.

To estimate the correlation coefficient, an approximate formula for the 

covariance between the two score statistics is derived in various settings of bivariate 

interval-censored survival data.

Motivation

In general, global test methodology can be defined as the use of a combined 

model to estimate a composite measure of treatment effect concerning multiple 

outcomes. A global null hypothesis, that the treatment has no effect on any of a 

number of patient responses, is tested. Global test methodology has been used 

successfully in major clinical trials involving binary data when multiple outcomes are 

concerned. To my knowledge thus far, it has been accepted only in stroke studies, for 

its ability to yield a single parameter of treatment advantage, which is easily 

interpreted, as well as for its cost-saving benefit in terms of the trial size.

In particular, use of a global test as a primary analysis for multiple binary 

outcomes, accompanied by secondary tests of individual outcomes, was implemented 

in the NINDS t-PA Stroke Trial (Tilley et al., 1996). Global testing was adopted also 

for the International Citicoline Trial in acUte Stroke (ICTUS) documented by Davalos 

(2007). Moreover, Bolland et al. (2009) concluded for larger samples that global tests 

gave accurate type I error rates and satisfactory power, even after adjustment for 

prognostic factors. Therefore, the global testing approach is attractive for research 

concerning situations in which two or more time-to-event responses are observed on 

each individual.



Previous work has successfully determined the correlation between two score 

statistics arising from binary data or from ordered categorical data (Whitehead, 

Branson and Todd, 2010), but the case of survival data has proved difficult. An 

existing method for combining two or more survival analyses is the method of Wei, 

Lin and Weissfeld (1989). Unlike the logrank test, their approach does not directly 

condition on risk sets and does not reproduce the familiar form of logrank variance. 

There would appear to be scope for increasing its power by taking advantage of 

conditioning on successive risk sets.

An earlier approach using the logrank test proved difficult (Whitehead et al., 

unpublished) and therefore a new strategy is now proposed. In this new approach, the 

survival data are summarised within categories and analysed as interval-censored 

survival data. Using such a formulation, it is possible to determine the correlation, 

which serves as an accurate approximation to the correlation of the logrank statistics. 

Correlations between score statistics arising from interval-censored forms of the Cox 

model are investigated. Once an estimate for the correlation between two score test 

statistics is available, it has many applications. For example, combined null 

hypotheses, testing whether a linear combination of effects is equal to zero, and global 

null hypotheses, testing whether all effects are equal to zero, can be addressed. Joint 

confidence regions for multiple hazard ratios can be determined. Multiple testing 

procedures and sequential testing approaches can be implemented.



Aims

The aim of this thesis is to develop a methodology for combining multiple 

endpoints within a single statistical analysis focussing upon bivariate interval- 

censored survival data. A complete procedure is described by which to derive an 

estimator for the covariance of two score statistics and hence the correlation. 

Estimates of overall treatment effect, adjusting for the correlation, are also derived. 

Applications to real data and simulation studies will be performed. With the 

knowledge of such a correlation, an investigation into some of its various uses will be 

carried out. Most importantly, a detailed comparison between the present method and 

that of Wei, Lin and Weissfeld (1989) will be made.

Outline

This thesis is divided into seven chapters. The first chapter introduces survival 

data and analysis, and provides an overview of the existing methods in general. The 

fundamental concepts of the logrank test, proportional hazards, and the derivation of 

the score statistics are given. A basic study design is constructed as a main reference 

for later use. In Chapter 2, the global test methodology central to this research study is 

described for binary data, with illustration using real data from previous clinical trials. 

Simulation is performed to investigate the accuracy of the method.

Chapter 3 focuses on the methods needed for analyzing interval-censored 

survival data, describing some model applications and providing a comparison of 

methods. These methods are illustrated using a real data set and the accuracy of each 

method is evaluated in a simulation study. In Chapter 4, the core component of this 

research is covered, namely the correlation between two score statistics. Bivariate 

survival data of various types and their associated modelling are described. Global

viii



testing methodology is then applied to the case of main interest, bivariate interval- 

censored survival data. Using the selected model, the covariance between two 

statistics is estimated and hence an approximate formula for the correlation is made 

available. The methodology developed is illustrated using three real data sets.

Chapter 5 then investigates the accuracy of the proposed method using 

extensive simulation of six different cases, which are selected on the basis of their 

practical importance. The design of the simulation study is described at great length, 

with key points and limitations carefully annotated. Meanwhile, Chapter 6 presents 

the established method of Wei, Lin and Weissfeld from a different perspective 

compared to that in the original paper. Specifically, influence diagnostics are 

described and illustrated with clarity. To form the basis of comparison, the theories 

and computation are examined in detail. The same data sets (real and simulated) are 

analyzed using this method and compared to the results from our proposed method 

(Chapters 4 and 5). Finally, conclusions are drawn and potential areas for further 

work are put forward in Chapter 7 of this thesis.
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Chapter 1. Background of Survival Analysis

This chapter begins with an introduction to survival data, in particular, covering some 

special features of survival data such as censoring, which complicate the analysis. A 

theoretical description of the survivor function, hazard function, and their relationship 

is given in subsequent sections. In order to appreciate the distinct censoring 

mechanisms involved, illustrations and examples are presented.

Section 1.2 describes univariate survival data with a review of some well 

known statistical methods. Some issues pertaining to interval-censored survival data 

and existing methods for their analysis are introduced in the following section. Section 

1.4 describes the score statistic, Z, and Fisher’s information, V, as derived from the 

likelihood function. In Section 1.5, the proportional hazards assumption is reviewed; 

its application in the context of interval-censored survival data is illustrated in 

subsequent chapters.

The logrank test, which is one of the most widely used methods for testing the 

equality of event times of two groups, is described in Section 1.6. Finally, the basic 

principles of sample size determination in clinical trials are described in Section 1.7 

for later reference.

1.1. Introduction to Survival Data

Survival data is a common term used for describing data which measure time to a 

certain event or endpoint. Originally, the term “survival” arose because in early 

developments, the event being referred to was death. However, in medical 

applications, an event may refer to an occurrence of a disease or condition, disease 

progression, tumour recurrence, and so on. In general, an event can be defined as a
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transition from one state to another that can be indexed in time, for example, a 

transition from a state of being healthy to a state of being infected.

Apart from clarifying the definition of event, the origin of time and its 

measurement scale also need to be specified. For example, surgery time is taken as the 

time origin to, where r = 0, if the investigator is interested in the study of survival after 

surgery. Meanwhile, in clinical trials, it is the time of randomization to treatment that 

is usually designated to. The actual study time varies due to different entry times (say 

time origin to), as illustrated in Figure 1.1 (inspired by Collett, 2003 p3).

Figure 1.1: An example of study time for five patients in a 10-year study period 

( ©  indicates died, ©  indicates survived).

<XS

A
B
C
D
E

6 9 104 5 7 83210
End of recruitment End of study

Study time (Years)

In a study involving survival outcomes, patients are observed until they reach a 

defined endpoint (for example, death). However, patients sometimes withdraw from a 

study, or the study is concluded before all patients reach the endpoint. In Figure 1.1, 

five patients (A to E) were recruited at various times over the first 2 years of a study 

which ended 10 years after the start of the study. Patients A, C and D died during the 

study, while patient B was still alive at the end of the study. Patient E was lost to 

follow-up and last known to be alive at 7 years after the start of the study. For each 

patient, the study begins at time to which is the patient’s time origin, and the time the



patient remains in the study is termed “patient time”. This type of non-parallel data 

with regard to the time origin is quite common in survival data. Figure 1.2 illustrates 

the survival times in ascending order, of the same five patients, based on patient time 

(inspired by Collett, 2003 p4).

Figure 1.2: An example of patient time, corresponding to the study times for the five

patients in Figure 1.1.

6 9 100 1 2 3 4 5 7 8

Patient time (Years)

The transformation of data from study time to patient time is shown in Figures 

1.1 and 1.2. For example, patient C who was recruited at about 6 months from the 

beginning of the study, failed after 7 years of the study time, therefore the actual 

patient time spent in the study is 6.5 years, as illustrated in Figure 1.2 above. It is to be 

clarified that in this thesis, patient time is used unless noted otherwise. The choice of 

time unit varies depending on the type of study and context. For example, in a radical 

type of cancer, the time may be weeks or months, whereas the length of treatment for 

a cardiovascular trial may be measured in years.

As shown in Figure 1.1, for patients B and E, the survival times, also known as 

failure times or event times, are censored: patients survived to a certain time beyond 

which their status is unknown. In the analysis of survival data, the absence of an event 

time is referred to as censoring and the patient for whom no event time is available is
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referred to as censored. For a patient i, the survival time, 7J, is defined as the 

minimum time observed, either the failure time or death time, Du or the censored 

time, Ci\ this definition is often represented by F, = min(£)„ C;). The most common 

type of censoring encountered in medical studies is right-censoring, followed 

respectively by interval-censoring and left-censoring of survival data. These censoring 

mechanisms are described in Section 1.1.4.

Theoretically, survival data are probabilistic in nature; the times at which 

events occur being assumed to be realizations of some random process. By definition, 

this means that, for a given individual, the time T  to the event is a random variable 

which has a probability distribution. Therefore, survival data can be described in terms 

of a cumulative distribution function (c.d.f.), probability density function (p.d.f.), 

survivor function or hazard function. The survivor function, S(t), and the hazard 

function, h{t), are paramount in survival data; their definitions and relationships are 

described in Section 1.1.2.

A good review of the development of survival analysis throughout the 20th 

century is provided by Oakes (2001), with emphasis on work since 1980. He regards 

the two landmark papers by Kaplan & Meier (1958), who formalized the product-limit 

estimator, and that by Cox (1972), who introduced the proportional hazards model, as 

primarily responsible for the present emphasis. The concepts of the latter are 

described and applied in several sections in this thesis.
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1.1.1. Special Features of Survival Data

In general, survival data have three special features that are difficult to handle and that 

render conventional statistical methods inadequate: (i) censoring, (ii) non-normality 

and (iii) time dependence of covariates, which will now be described in turn.

Consider a study of patients with stage 3 or stage 4 prostatic cancers, 

randomized to form experimental and control treatment groups. The number of days 

between randomization until death is recorded, as well as the cause of death. A simple 

logistic regression can be used to analyze the current status of the patients: whether 

they are dead or alive after some specified follow-up time, say five years. However, 

this method ignores vital information on the timing of death if it occurs. Due to the 

nature of survival studies which typically involve a long period of study time, it is 

common to encounter censored observations. Discarding censored data may be a 

tempting option for simplicity, but it may only work if the proportion censored is 

small. Censored observations contain information about survival and thus should be 

accounted for in analysis. For example, in a cancer study, an observation censored at 

15 years indicates better survival compared to that censored at 1 year.

In a survival study, a few individuals may experience the event much sooner or 

later than the majority of individuals under study, hence giving the survival 

distribution a skewed appearance and methods based on the normal distribution being 

unsuitable for use. Commonly used distributions are often either symmetric or right 

skewed, but survival distributions in many cases involve left skewed distribution of 

positive variables (Hougaard, 1999).

The most common goal of a clinical study is to determine a treatment effect. 

Additionally, when a study aims to estimate causal or predictive model parameters, in 

which the risk of an event depends on covariates, the analysis becomes more
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interesting. While some covariates such as race and gender remain constant 

throughout the study period, some covariates may change with time, for example 

marital status and employment. The latter are called time-dependent covariates.

All methods of survival analysis should allow for censoring and non­

normality. They may also need to accommodate time-dependent covariates. 

Information in the censored and uncensored observations should be combined to 

devise a procedure that can provide consistent estimates of the parameters of interest. 

This is often accomplished by the methods of maximum likelihood or partial 

likelihood, which can also be adjusted to incorporate the time-dependent covariates. 

Such methods are briefly described in Sections 1.4 and 1.5.

1.1.2. Survivor Function and Hazard Function

An analysis of survival data requires special techniques because the data are almost 

always incomplete. There exist many models for survival data, and each model is 

distinguished by its choice of the probability distribution for T, the non-negative 

random time variable, /(/)• The distribution of survival times can be summarized by a 

survivor function S(t), which is the probability that the event occurs after time t: S(t) = 

P(T > t), 0 < t < oo. Assuming T is a continuous variable, its cumulative distribution 

function (c.d.f) gives the probability that the variable T  will be less than or equal to 

any value of t: F(t) = P(T<t). The survivor function can thus be expressed in terms of 

c.d.f. of T\ S(t) = 1 -  F(t). The slope or derivative of the c.d.f. gives the p.d.f, which 

can be written as f(t) = dF(t)/dt = ~dS(t)/dt. Therefore, the c.d.f. and the survivor 

function respectively can be re-written as

F(t) = P(T ^ t )  = j'of(u)du,

6



and

S(0 = 1 -  P(T < t) = 1 -  t f (u)du.

The hazard function h(t) is defined as

*->0 gt = lim
P( t<T<t  + St) 

P(T > t)St
= lim

F(t + St ) -F( t )  
S(t)St

( 1 . 1 )

where St is the time interval within which the subject fails, conditional on having

dsurvived up to time t. Therefore, h(t )~ f ( t ) /  S(t) and h(t) =  log S(t) . This
dt

implies that f ( t )  = h( t )exm-j  h(u)du\ which is the product of the hazard function and

exponential of the minus accumulated hazards until time t, also known as the 

cumulative hazard. Therefore, the survivor function can be expressed as

The cumulative hazard function is also conventionally denoted by H(t)\ thus S(t) = 

exp(~H(t)). The survivor function has the following properties; (i) the probability of 

survival at time zero is 1: S(0) = 1, (ii) the probability of infinite survival is zero, (̂oo) 

= 0, and (iii) survivor function is non-increasing.

In survival analysis, discrete random variables often arise due to the rounding 

off of measurements, for example, time measured to the nearest week or month. 

Another situation arises where failure times are grouped into intervals in studies where 

patients are not monitored continuously, but rather are followed-up only at pre-defined 

time points. In this thesis, grouping of failure times into specified intervals is used.

(1.2)
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Consider T  as a discrete random variable with a probability function fitj) = P(T 

= tj)\ J = h  2, ..., n, where tj < t2 <...<tn. The survivor function is given by the 

summation of this probability function: S(t) = 1 -  Y  . /(* .). The hazard at time tj is
j  J

defined as the conditional probability that the event occurs at tj given that the event 

has not occurred before tf. hj = P(T = t j \ T  >tj) = f ( t j )  / S(tj). The survivor function

7 -1

and the hazard function, are given by S(t) = n  (1 - h j )  and f ( t j )  = hj n a - ^ )
j - . f z t j  Jk=l

respectively.

The probability density function, f(t), the survivor function, S(t), and the 

hazard function, h(t), are regarded as equivalent ways of describing the probability 

distribution of the survival time, T\ if any one of them is known, the other two can be 

recovered. The fundamental equations in this section are very useful in various 

representations of models in survival analysis.

1.1.3. Some Parametric Hazard Functions

The hazard function, h{t), as expressed in Section 1.1.2, is an unobserved function, yet 

it controls both the occurrence and the timing of the event. This hazard function or 

rate can only be estimated from the data, and it is often helpful to envisage hazard as a 

characteristic of an individual, not of a sample or population. It represents the 

instantaneous or immediate risk of the event (or death) at time t for an individual who 

has survived until time t. It is a fundamental dependent variable in survival analysis. It 

must be non negative, h(t) > 0, and its integral over [0, oo) must be infinite, but it is not 

otherwise constrained; the hazard function may be increasing or decreasing, non­

monotonic, or discontinuous.
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The simplest hazard function is that with a constant rate over time: h(t) = X or 

equivalently, log h{t) = //, where X = e ,̂ for all t > 0. The corresponding survivor 

function is S(t) = e h and the density,/(r) = Xe'Xt is indeed the well known exponential 

distribution with parameter X. This relationship illustrates the importance of the 

exponential distribution in survival analysis. However, in reality the hazard is not 

always constant and therefore the assumption of an exponential distribution has its 

limitations. Increasing hazard rates often arise when there is disease progression of a 

patient or natural ageing. Although less common, decreasing hazard rates are 

sometimes observed, for example in patients experiencing organ transplant whereby 

the hazard rates are high before and just after surgery (due to infections or other 

surgical complications), but gradually decrease as the patients recover.

An alternative model which accommodates increasing, and decreasing hazard 

rates is the Weibull distribution. The hazard function is then given by h(t) = o l f '1, and 

an exponential distribution is indeed a special case of Weibull distributions when the 

shape parameter a = 1. The Weibull model is widely applicable in industrial 

applications, most importantly in engineering reliability analysis.

The hazard function has many alternative names in other fields. For example, 

it is also known as the conditional failure rate in reliability analysis, the force of 

mortality in demography, the intensity function in stochastic processes, the age- 

specific failure rate in epidemiology, and the inverse of the Mill’s ratio in economics 

(Klein and Moeschberger, 1997). In this thesis, the term hazard function is used.

Many survival studies involve comparison between the hazard functions of 

two or more groups; hence a model for the relationship between them is needed. Some 

common relationships are namely proportional, non-proportional and accelerated 

failure time (AFT). Central to this research is the proportional hazards model (Cox,
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1972), which will be briefly introduced in Section 1.5 and further described in Section

3.1.1. Other regression models such as proportional odds, additive hazards, and AFT 

are described in survival texts such as Sun (2006).

1.1.4. Censoring Mechanisms

Censoring occurs for many different reasons and may take different forms, as 

described in Section 1.1. Observations may be censored, and thus survival data are 

typically described by parameters which include a censoring indicator S  with a zero

value when censored, otherwise unity or vice versa: 8  e{0,l} Figure 1.3 shows types

of censoring often encountered include left-censored, right-censored and interval- 

censored.

Figure 1.3: Four common types of censoring in survival data 

(X indicates an occurrence o f event).

(a) Uncensored (b) Right Censored

X X

Tt =D, 00 0 R 00

(c) Left Censored 

X

(d) Interval-censored

<r X

oo 0 R oo

10



Figure 1.3 (a) shows the uncensored or complete survival data. This scenario 

occurs when the exact event time of patient i is known, 7} = Dt, which is the actual 

survival time of the patient. However, as shown in Figure 1.3 (b), when the study 

ended before an event occurred, the actual event time is unknown, but it is known that 

the patient was still alive at that time: the survival time is given by the censoring time, 

R. The fact that the actual event has not occurred and may occur only to the right of 

the observed time, gives rise to the name right censored data. The third scenario 

involving left censoring is shown in Figure 1.3 (c). Left censored data arise when it is 

known that the event occurred prior to a certain time, L  (to the left), but the exact time 

is unknown. For example in a study of tumour recurrence, the examination is at three 

months after surgery where the exact event date is unknown, but is certainly earlier 

than the detection time.

Figure 1.3 (d) portrays interval censoring which occurs when the event of 

interest is known to have occurred within a defined interval (L, R). Interval censoring 

often arises in studies of non-fatal endpoints requiring regular follow-ups or 

inspections. Consider the case of tumour recurrence where no recurrence had been 

observed at a three months examination, but one was detected at a six months check­

up. It is known that the event time is greater than three months and less than or equal 

to six months: 3 < T < 6 . Another common scenario of interval-censored data is 

present when continuous survival times are grouped into defined intervals prior to 

analysis. From Figure 1.3, left and right censoring are indeed special cases of interval 

censoring. The left, right and interval censoring can be represented by (0, L], (R, oo] 

and (L, /?] respectively, where (0, L] indicates that 0 < T < L .
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A critical assumption made in survival analysis is that failure times are 

independent of censoring times, which means that the hazard rates for the patients 

who are still at risk and those who have been censored are the same. A common 

model, specifically that known as random censoring, asserts that each subject satisfies 

this assumption. A specific condition requires that censoring be non-informative (Cox, 

1984). This means that an individual who is censored at time t should be 

representative of all those subjects who, having the same values of explanatory 

variables, survive up to that time. For example, if a patient was lost to follow-up 

because of migration, this may be non-informative censoring. However, if a patient 

was indeed lost to follow-up because of his deteriorating condition; the censoring 

becomes informative with respect to the patient’s survival. Such informative 

censoring can lead to severe biases in survival analysis, and it is often difficult to 

determine the magnitude or direction of those biases. In situations where informative 

censoring is suspected, such as those involving long trial periods, sensitivity analysis 

is often conducted to assess the degree of bias (Allison, 2001).

To appreciate the importance of the censoring mechanisms, consider the 

following scenario. Suppose a trial shows similar results for two treatments, A and B 

in the treatment of basal cell carcinoma, with a primary endpoint of 5-year disease- 

free survival. By the end of five years, about 30 percent of both treatment groups had 

withdrawn. For treatment A, withdrawal is mainly due to treatment failure or side 

effects. Meanwhile, patients on treatment B withdraw because they are completely 

cured and prefer not to be followed-up further. In a standard analysis, disease-free 

survival rates would be overestimated for treatment A and underestimated for 

treatment B because they would both be based on the patients who remained in the 

study. A way to minimize the consequences of this problem is to perform a sensitivity
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analysis of the main conclusions due to various assumptions when data on censored 

patients are scarce.

When survival curves are derived for endpoints other than death, the latter may 

be considered as a censoring event. For instance, if the endpoint is progression of 

breast cancer, then we may treat death due to heart disease as a censored event since 

there is no established relationship between these two diseases. However, in the case 

of lung cancer and smoking, treating death from heart disease as censoring might bias 

the result since smoking increases the risk of both cancer morbidity and 

cardiovascular mortality (Dupont, 2009). Whatever the type may be, censoring 

complicates the likelihood function, and hence the estimation of parameters of interest 

in survival analysis. Further reading on censoring is available from survival texts such 

as Anderson & Keiding (2006).

1.2. Univariate Survival Data

Univariate survival data occur when observations concern the time to a single event, 

for example, time to death, and individuals are assumed to be independent. As 

mentioned in Section 1.1.2, analysis of survival data requires methods that are able to 

accommodate both skewed and censored observations. Suppose there are two distinct 

groups of individuals in a study. A natural method to explore univariate survival data 

is to compute survival curves, S(t), for each group and compare the proportions 

surviving over time. The non-parametric method of Kaplan Meier (Kaplan and Meier, 

1958) allows a visual comparison of the survival experiences of the two groups, and it 

is often supplemented by a test statistic summarizing the overall survival comparison.

The logrank test is a popular method for comparing the survival of groups,

which takes the whole follow-up period into account. It has an advantage that it does

not require any knowledge about the shape of the survival curves and is a powerful
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significance test if the assumption of proportional hazards is true. The proportional 

hazards assumption asserts that the ratio of hazard functions is the same at all time 

points. This means that for any t > 0, the relationship between the hazard functions of

patients on treatment E  and C is given by hE{t) = y/hc(t), where y/ is a constant known

as the hazard ratio.

For continuous predictor variables, a univariate Cox’s proportional hazards 

regression (Cox, 1972), which is a semi-parametric model is often the popular choice. 

The proportional hazards assumption and the logrank test are described in Sections 1.5 

and 1.6 respectively, while Cox’s proportional hazards regression model is described 

in Section 3.1.1.

1.3. Interval-censored Survival Data

Interval-censored survival data commonly occur in medical or health studies that 

entail periodic follow-up examinations. Another situation giving rise to interval- 

censored data occurs when continuous survival times for all subjects are grouped into 

specific intervals for analysis purposes, as described in Chapter 3. In practice, survival 

data are often observed to the nearest time unit: day, month or year, and hence the 

analyses are generally based on interval-censored data. Consequently, it is natural to 

consider the underlying survival variables as discrete in developing methods for their 

analysis.

As described in Section 1.1.4, the interval-censoring mechanism involves two 

related variables L  and R which define the interval. From this juncture onwards, the 

notation Te{L,R] indicates that L < T < R ..  This is consistent with the definition of 

interval-censored observations viewed as a union of several non-overlapping windows 

or intervals (Turnbull, 1976). In this thesis, an assumption of independent interval-

14



censoring is made. This simply means that the censoring mechanism is independent of 

the survival times. Mathematically, this condition can be represented as 

P(L <T < R \ L = l,R = r) = P(l <T <r), such that the joint distribution of L and R is free 

of the parameters concerning the survival function of T. This is also known as non- 

informative interval censoring.

Suppose that patients, whose tumours have been removed, are randomized to 

experimental and control treatments. To compare the treatment effect, the patients are 

assessed at regular intervals to detect whether a tumour recurrence has occurred. In 

reality, it is not uncommon for patients to visit either earlier or later than at the 

scheduled date. Instead of being given for fixed intervals, the data now refer to 

occurrences at times varying from those scheduled for screenings, so varying also the 

interval between screenings. A simple way to analyse such data is by ignoring the 

interval censoring. However, this may not be appropriate if the time interval between 

screenings is short relative to the average time to recurrence, due to the interval- 

detected recurrences being fewer.

Another issue is often that such interval-detected recurrences contain 

information about patients’ conditions: those experiencing symptoms visit earlier, 

while those feeling better visit later or miss altogether. Such a situation renders the 

standard survival analysis inappropriate since the length of intervals may vary widely 

between individuals and the assumption of independent censoring is thereby violated.

Unlike right-censored survival data analysis, which has been highly developed, 

its interval-censored counterpart has gained attention only quite recently. Comprising 

left and right-censoring, the analysis of interval-censored data generally cannot be 

achieved with the methods established for right-censored data. Earlier methods for 

grouped survival data have been established by Kalbfleisch & Prentice (1973) and
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Prentice & Gloeckler (1978). Meanwhile, Finkelstein (1986) proposed a method for 

fitting the proportional hazards model to interval-censored data. The use of a 

complementary log-log transformation in the analysis of interval-censored survival 

data has been described by Whitehead (1989). Further, Whitehead (1997) adapted the 

log-rank test for comparing two treatment groups for use in the analysis of interval- 

censored survival data. A survival text by Sun (2006) provides a comprehensive 

coverage of the topic of interval-censored survival data.

The properties of the many proposed methods, however, remain unknown and 

there is no approach as simple as the partial likelihood method for right-censored data 

(Anderson & Keiding, 2006). In our research, a methodology is developed and 

validated to improve the analysis of interval-censored survival data.

1.4. Score Statistic and Fisher’s Information

In an investigation of a treatment effect 0, an important sample statistic is the 

cumulative measure of the advantage of the experimental treatment, often denoted by 

Z. Its companion, denoted by V, indicates the amount of information about 0 contained 

in Z. Statistically termed as the efficient score statistic, and Fisher’s information, Z 

and V, respectively, they can be calculated at any stage of a clinical trial. As shown in 

this sub-section, both statistics can be derived from an appropriate likelihood function. 

It is to be noted that the term “treatment advantage” is used to denote a positive 

treatment effect when the parameterization is arranged so that 0  > 0 implies that the 

patients receiving the experimental treatment do better than those on the control.

Suppose we have a data set x = xu i = 1, n and a single unknown parameter 

0, for example a treatment effect. The likelihood of observing 0, given x, is the 

probability of observing x, given 0: L{0\ x) = P(0; x). The log likelihood, £(0;x) is
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defined as log {L(Q\ x)}. The first derivative of the log likelihood evaluated at 6  = 0 

gives the efficient score statistic, Z  = £ '(0), and its minus second derivative yields 

Fisher’s information, V = -£"(0). By Taylor’s expansion, for small 6 , 

£{0)« £(Q) + 0 £'(O)+V2&2£"(Q) which is approximately equal to C + 6 Z -  Vi^V, 

where C is a constant.

According to Scharfstein, Tsiatis and Robins (1997), for large sample sizes, Z 

is normally distributed with mean 0V  and variance V. This assumption that Z ~ N(9V, 

V) forms the basis for many statistical methods such as Pearson’s chi-squared test, the 

logrank test and the Wilcoxon test; as it leads to asymptotically efficient methods. Z 

and V are also known as the logrank statistics since they are used to construct the 

logrank test, as will be shown in Section 1.5.

By definition, the maximum likelihood estimate (MLE) 9 of 6  satisfies

£\0) = 0. Since the log likelihood can be approximated, £{&) ~ C + 0Z-V292V , its first

derivative £ \ 6 ) «  Z  — 6 V , and thus gives the MLE 0  « Z  / V  . In large samples, the 

MLE is unbiased and linear in Z: it is therefore efficient. This formulation is central to 

this research, thus its recall shall be anticipated throughout this thesis. The derivation 

of Z and V  for binary and survival data based upon the likelihood function is covered 

in Sections 1.4.1 and 1.4.2 respectively.
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1.4.1. Z and V for Binary Data

Consider a study to assess the effectiveness of a new treatment comprising n subjects, 

randomized to experimental or control treatment. For example, subjects are followed- 

up for a year after surgery and their binary status (either alive or dead) is recorded. At 

the end of the study, a total of /  subjects died (failed) while s subjects are still alive 

(succeeded). Subscripts E and C are used to indicate experimental and control 

treatment respectively; this convention remains throughout this thesis, unless noted 

otherwise. Table 1.1 summarizes the binary outcomes of this hypothetical study.

Table 1.1: A 2 x 2 contingency table of binary response data (failure, success) in a 

two-group clinical trial comparing experimental and control.

Response Experimental Control Total

Failure f  E f  c /

Success s  E s c

Total n E n c n

Suppose the probabilities of failure on E  and C are denoted by pe and pc 

respectively, and the likelihood can be derived by conditioning on the right hand 

margin of Table 1.1. The likelihood is thus the probability of observing the outcomes, 

as in Table 1.1, given the condition that the total number of failures F  observed is /, 

and given pe and pc■ Simply, the conditional likelihood is given by, L(pE, pc) = 

P(observed tablel F  = f). Based on conditional probability, L(pE, pc) = ^(observed 

table)/£P(table with F =f). This can be written as

J(n n y _ P(FE= f E’Fc =f c)  f E+ f c = f >  
l \PE'P c' P(F = f )
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Suppose j  is an index denoting the various possible values that the random variable / e 

can take. The likelihood is given by the product of the likelihood components of E and 

C,

L(PE’Pc) =
f

p / ‘ d - p £)S E
(n, '

P / 'Q - P c ) *
A\JCJ

m i n ( /  , n E )

S
; = m a x ( 0 , / - n c )

n E ~ J
nr

Pcf ~JQ -P c )
A - j )

nc

which can then be simplified to

U P E’Pc) =

( nF\  

\? ej

fn c \  

\ f c j
m i n ( / , « £ )

I
7 = m a x ( 0 , / - n c ) u

P e Q - P c ) .

f  ~~ j ) \_Pc Pe )  J

(1.3)

Further, a measure of treatment effect is defined as minus the log-odds ratio given by

0  = —log P e ( I - P c ) ]

Pc Q - P e )) (1.4)

such that E  is better than C if 6  > 0. The likelihood in equation (1.3) can now be 

expressed in terms of the log-odds ratio,

A

M  P e  » P c  )  m i n  ( f , n E )

S'
ftEj ft

, ~ 0 f E

\ J C A

; = m a x ( 0 , / - n c )

fn  }n E

J  >
Uc \  
f - J )

(1.5)
, - 0 J

19



Under the null hypothesis of zero treatment effect, pE — pc  and 6  = 0. The likelihood is 

given by

m

rnE\(n ,  ̂

Se fc ( 1.6)

where the random variable f E follows a hypergeometric distribution with parameters n, 

nE an d /. Upon taking the derivatives of equation (1.5) with respect to 6 , using the 

quotient rule, we get

L\9)  = J iEJ fc
f se -0/e

\JCJ
m i n ( /  , n E )

^  Vii'=max(0,/-nc ) \ J

(  n S \(  n ,^

nv

+ \ f EjK.fi
,~0fE

v m . n { f , n E )

E

- o j

( n \ ( nr ,-oj
\ J c j 7= m a x ( 0 , / - n c ) J  J

E
7 = m a x ( 0 , / - n c ) \J y f - j .

(1.7)

Evaluating the derivative of the likelihood in equation (1.7) under the null, we get

a

L\ 0)  =  -
.Si\JEJ

( nc \  

\ f c j

f

i fJ  E
V n

( 1.8)

y

where the expected number of failures on experimental treatment is given by fn E/n. By 

definition, the score statistic is given by the first derivative of the log likelihood 

evaluated at 6  = 0: Z = £ '(0).
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Using the chain rule, Z = L '(0)/L(0)and using equations (1.6) and (1.8), the score 

statistic

z = - f E+ — '
" (1.9)

which is the difference between the expected number of events under the null 

hypothesis, given the proportion of subjects on E, and the observed number of events 

on E. Simply stated, Z is given by the expected failures minus the observed failures on 

E. Its variance is given by V = - i  "(0), which is then given by the quotient rule as

L(0)L"(0) - { L \ 0)}:
2 . Upon differentiating the log likelihood for the second time, and

{ m y

evaluating the expression under the null, the Fisher’s information is expressed as

V =
nEncfs

"  ^  ^  (1.10) 

Both equations (1.9) and (1.10) are fundamental to this research and therefore will be 

recalled or re-expressed accordingly in subsequent chapters.

The derivation of the two logrank statistics Z and V have been shown above. 

These expressions are useful in the analysis of univariate data. In the case of bivariate 

data of two endpoints, the covariance between the two score statistics is needed. The 

derivation of such covariance for a binary data is given in Section 2.2.
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1.4.2. Z and V  for Survival Data

In this section, univariate survival data are considered. Suppose events are observed at 

times ta where a = 1, 2, . . . ,  m and the number of patients at risk of an event (at time ta) 

is ra. An event is counted as a failure, and the total number of failures at each time is 

denoted by oa\ the total number of successes is then given by ra ~ oa. The outcomes at 

each failure time ta can be tabulated as shown in Table 1.2; note that the form is 

identical to Table 1.1 earlier, but specific to survival at time ta.

Table 1.2: A 2x2 contingency table of univariate survival responses at time ta.

Response Experimental Control Total

Failed at t a °  aE ° a C o a
Survived beyond t a r  aE ~ °  aE r  aC ~ °  aC r a - o a

Total r  aE r  aC r a

Now let the discrete hazard function, hG(ta.) = P(TG e (ta*,ta*+l) \TG >ta*), a -  0, ...,

m+1, to = 0, where tm+l =00, and Tq is the survival time of a subject on treatment G,

where G = E, C. The log-odds ratio of failing during (V ’^*+i) > given survival past ta 

for E  relative to C is given by

' hE(ta) ( \ -h c (ta)) |
0 a = -  log hc {ta) { \ - h E{ta))\
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From equation (1.9), the score statistic is Za -  -  oqe + (oaraElra)> which can be 

expressed as

7  -  raE°aC  ~  raC°aE  
a ’

r “  (1.12) 

and from equation (1.10), Fisher’s information is now given by

y    raCraEOMa-°a) O '13)
0 ra\ r a - 1)

In the next section, we will see that equation (1.11) corresponds to the 

proportional hazards model, and equations (1.12) and (1.13) are summed over 

multiple time points. As mentioned earlier, the assumption that Za ~N {6 aVa, Va) for 

large Va and small 6 a, is very useful and is continually referred to within this thesis. 

Based on this fundamental assumption, the derivation of Z and V using several 

methods for survival data, are described also in Chapter 3. Further in Chapter 4, the 

derivation of the covariance between two score statistics is described.

1.5. Proportional Hazards

In Table 1.2, the numbers of failures and successes were counted at defined event 

times. In this section, the assumption of proportional hazards is described, while the 

logrank test which considers all time points with an event is described in Section 1.6.

Suppose there is a finer grid which includes all the observed failure times 

(regardless of an event occurring). Now we may have intervals with zero failure; oe -  

oc = o = 0 and these intervals do not contribute anything to Za and Va. The hazard

function is now, hG (ta) = P(TG e (ta, ta + St) I TG>tJ and as St —> 0, hG (ta) ~ SthG (ta).

From equation (1.11), 6  is now given by
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The proportional hazards assumption is expressed as,

0  = — log hE(t) j 
hc (t) I

• J (1.14)

for all r > 0 and implies that hE(t) = exp(-6 )hc(t) . The importance of this assumption is

that the logrank test is efficient for the detection of a proportional hazards alternative, 

which is illustrated in Section 1.6.

The proportional hazards assumption is also central to the widely known Cox’s 

model (1972). Cox’s paper launched an explosion of statistical and applied research 

on the effects of individual patient characteristics on the survival process, with 

obvious extension to prognosis (Armitage & Gehan, 1974). Cox’s method does not 

require any knowledge or assumption of the survival time distribution, and hence it is 

non-parametric with respect to time. Perhaps this flexibility is the primary reason for 

its popularity: the paper has been cited over 25,000 times as of June 2011. A detailed 

description of this model is covered in Section 3.1.1.



1.6. Logrank Test

The logrank test (Peto and Peto, 1972) is a non-parametric test to compare two 

samples of right-censored survival data. It is based on the assumptions that censoring 

is unrelated to prognosis, and that the survival probabilities are the same regardless of 

when a subject was recruited. Deviations from these assumptions matter most if they 

occur differentially in the groups being compared, for example, if censoring is more 

likely in one group than another. In summary, the logrank test statistic is constructed 

by computing the observed and expected number of events in one of the groups at 

each observed event time and then summing over all time points where there is an 

event, which is then divided by the square root of the cumulative variance.

Suppose two treatments are being compared, namely control and experimental. 

Since the intention of the experimental treatment is to reduce hazard, a positive 6  

indicates its superiority. Using equation (1.2), the survivor function for the

experimental group is given by, SE(t) = e x p J o (w)z/m| , and similarly for the control

group. Based on their relationships with treatment advantage and the assumption of 

proportional hazards,

- 0

S£(0 = expj-fV \(w )dw | = expjf'-hc(u)du\ = {5^(0}' .
1 1 L 1 JJ (U5)

Taking logs of equation (1.15), it follows that log{S£(r)} =<T*log{Sc(0} • 

Reversing the sign and taking logs again, gives an expression for the log hazard ratio, 

6  in terms of survivor functions,

0  = -lo g  {-log SE(t)} + log {-log 5C(0} • (1-16)
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For illustration of the logrank test, the example of survival data with m events 

(assuming one event at each time) from Section 1.4.2 is considered here. Suppose

there is a common treatment advantage given by the log hazard ratio in equation

(1.14), or equivalently equation (1.16), such that 0\ = ... 6 m -  0. Using equations (1.12) 

and (1.13), the overall score statistic Z and its null variance V are given by summing 

the Za and Va values over all time points, and respectively taking the forms,

7  =  V 7  _ ^ r a E 0 a C - r a C ° a E
/  j a /  j
0=1 r“ (1.17)

and

T/=YV = ' y r̂ raC°a(ra ~ ° g )
L a V* L i  2( _ n  ‘
a~ 1 a=1 'a \’a ' (1 18)

As noted in Section 1.4, the Z and V  are known also as the logrank statistics,

and the test based on them is called the logrank test or the score test. Similar 

assumption applies here: Z ~ N{9V, V) when 6  is small and V  is large. To test the null 

hypothesis that 6  = 0, the value of z N v  can be compared with the critical value of the 

standard normal distribution N(0, 1), or equivalently comparing Z2/V  with the critical 

value of the chi-squared distribution y£\. This is the popular logrank test which is 

commonly used to test the null hypothesis that there is no difference between the 

populations in the probability of an event over all time points.

The logrank test is most likely to detect a difference between groups when the

risk of an event is consistently greater for one group than another. It is efficient for

alternatives satisfying proportional hazards, but valid under the null with no further

assumption. However, it is unlikely to detect a difference when survival curves cross:

non-proportional hazards ratio. Since the logrank test is purely a test of significance, it

cannot provide an estimate of the size of the difference between the groups or a

26



confidence interval. For these, we need to make some assumptions about the data. 

Common survival methods often use the assumption of proportional hazards and then 

estimate the ratio, as described in Section 1.5.

In many clinical trials, there exist factors associated with each patient which 

are anticipated to influence the patient response. For example, in multi-centre trials in 

which two treatment regimes are to be compared in terms of their effects on the 

survival times of cancer patients. The survival data are recorded for each centre and 

logically stratified by centre, with each centre termed a stratum. Instead of taking the 

individual log rank test for each stratum separately, a more realistic summary of the 

treatment effect over all strata is often necessary. This is achieved by a stratified 

logrank test which combines information about the treatment effect in each stratum. 

From above, denote the logrank statistic for the sth stratum as Zs, and its variance as

Vs. The stratified logrank test is then based on the statistic (]^]=lZs)2/ which

has the chi-squared distribution i- Other variables often requiring stratification are 

gender, age group and a classification of diseases such as late stage or early stage for 

cancer studies.

In general, stratification allows a less restrictive assumption whereby the 

hazards need not be proportional between all strata (for example: centres or events), 

but more realistically the hazards are assumed to be proportional within each stratum. 

It is worth noting that the stratified logrank test is equivalent to the test of treatment 

effect in a stratified proportional hazards model when treatment is the only factor 

being fitted. This topic of stratification is further discussed in Chapter 4.
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1.7. Sample Size Calculation

In the design of a clinical trial, one fundamental aspect is its sample size: the number 

of patients required to detect a clinically relevant difference reliably. Apart from 

making the main purpose of the trial clear, it is also important to identify the principal 

measure of outcome, type of data analysis, type of results anticipated with standard 

treatment, and the magnitude of treatment advantage to detect and its degree of 

certainty (Pocock, 1983). Based on current knowledge as well as previous trials, the 

magnitude of treatment advantage, sometimes referred to as the ‘reference 

improvement’ and denoted as O r, can be set.

In any trial, there exist two possible errors: type I error and type II error. The 

former consists in falsely detecting a significant difference when the treatments are 

really equally effective, that is when 0 = 0. Its probability of occurrence is commonly 

denoted by a, representing the risk of a false-positive result. A type II error arises 

when the trial fails to detect, as significant, a difference when there really is such a 

treatment difference of 0 = O r. The probability of a type II error represents the risk of a 

false-negative result, and is commonly denoted by p. The ‘power’ to detect the desired 

treatment advantage is often denoted by 1 -p , which represents the degree of certainty 

that O r, if present would be detected.

The result of a significance test is expressed as a ‘p-value’ (p), and a value of 

p  < 0.05 would indicate that such an extreme observed difference or greater could be 

expected to have arisen by chance alone less than 5% of the time, when the null 

hypothesis is true; thus it is likely that the treatment difference really is present. 

Meanwhile, ‘detecting a difference’ is usually taken to mean ‘obtaining a statistically 

significant difference with p  < 0.05 ’ (Machin, 1997).
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In determining sample size and in the analysis of results, there exist two 

options for significance levels: one-sided and two-sided. The former seeks to quantify 

the evidence that the experimental treatment is better than control, with no interest in a 

difference in the other direction. The two-sided equivalent is considered a justifiable 

safeguard against prejudging the direction of treatment difference (Pocock, 1983). The 

p-value for a one-sided test is therefore half that for a two-sided test. For example, the 

type I error for the former might typically be set so that p  < 0.025 (one-sided), while 

for the latter p  < 0.05 (two-sided) would be required. In this thesis, both types of test 

are employed for illustration and convenience purposes.

The design of a clinical trial is dependent on the relationship between sample 

size, n, and information, V. It is logical that more subjects give more information 

about the unknown parameter, such that the relationship between n and V is directly 

proportional: V = bn where b is a constant. Meanwhile, for a two-sided type I error, 

the amount of information is given by a well-known expression (Whitehead, 1997),

where uy is the upper lOOj, percentage point of the standard normal distribution: 

O (uy) - I - y , and Or is the treatment advantage at the required power. The method of

sample size calculation for a clinical trial is based on a power calculation. By 

specifying the desired power to detect a certain amount of treatment effect at the 

targeted significance level, the required information, V, can be obtained. The 

relationship between V and n can be quantified by a constant value, b, which will then 

lead to the sample size needed for the trial: n = VIb. The value of b can be determined 

from the approximation of V in terms of model parameters and sample size n; usually 

the result V <x n is found. For survival data, generally V = e/4 for 1:1 treatment

(1.19)
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allocation, where e is the total number of events, but interval-censoring leads to the 

relationship V oc n as usual. Equation (1.19) is fundamental to a design study and is 

referred to throughout this thesis.

This chapter has introduced the basic concepts of survival analysis that are 

used later in this thesis, described some of the important models and highlighted the 

difficulties in dealing with interval-censored survival data. In describing the 

proportional hazards model, the basic likelihood function was introduced in deriving 

the logrank statistic, and its relationship to the logrank test has been described. The 

principles governing sample size calculation too, were explained as part of the crucial 

requirement in clinical trials.
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Chapter 2. Global Test Methodology

This chapter presents the fundamental theory and application of global test 

methodology which will be used to combine multiple survival endpoints in later 

chapters. The global test methodology is first demonstrated for binary data in this 

chapter. Section 2.1 begins with an introduction to the global test approach in the 

evaluation of treatment efficacy. The established method of combining multiple 

binary endpoints is described and illustrated in Section 2.2 using a real data set from 

previous clinical trials involving stroke patients.

A study design of a clinical trial is described with illustrations of multiple 

stroke scales deployed. Section 2.4 presents the results of simulations conducted. The 

purpose of this investigation is two-fold: it serves as a foundation on which the case of 

interval-censored survival data will be built, and also forms a basis for comparison 

with results to be presented in that case. Finally, a discussion on the applicability of 

the method in general is provided.

2.1. Introduction to Global Test (Binary Data)

In clinical trials, the primary objective is often to evaluate the relative efficacy of two 

or more treatments. This may involve multiple assessment tools employed on the 

same group of patients, with each tool measuring certain aspects o f each patient’s 

condition. For the same patient, the outcomes on each tool or measurement scale are 

usually correlated with those on the other scales. The conventional method of analysis 

to evaluate treatment efficacy is one that controls the risk of detecting a significant 

difference when the treatments are really equally effective, that is a type I error, while 

maximising the power to detect a significant difference when there really is a 

difference. To find such a method is a challenging task especially when combining
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outcomes that are correlated. O’Brien (1984) and Pocock, Geller and Tsiatis (1987) 

have combined multiple binary endpoints and reported that global tests may increase 

the power to detect differences between groups, but the appropriateness of their use 

should be carefully considered. Use of a global test as a primary analysis for binary 

outcomes, accompanied by secondary tests of individual outcomes was implemented 

in the NINDS t-PA Stroke Trial (Tilley et al., 1996). The success of this trial has 

increased awareness and acceptance of the approach within stroke research, as is 

evident by its adoption for the International Citicoline Trial in acUte Stroke (ICTUS) 

documented by Davalos (2007).

The existence of a variety of stroke scales poses a statistical opportunity in 

analysing the clinical trial, as each scale is correlated with the others and none 

captures all o f the information on a patient’s condition. Therefore, the multiple scales 

employed in a trial may be analysed in order to yield the most information. The 

method of combining the stroke scales works well for ordinary data analysis and can 

be adopted in meta-analysis and interim analyses of such trials. This methodology, 

also termed a ‘global test’ is useful when the outcome, such as clinical recovery from 

stroke, is difficult to measure and a combination of correlated outcomes (each 

measuring recovery from stroke) would be informative (Tilley et al., 1996). The 

global test statistic assumes a common treatment effect in terms of magnitude and 

direction on all outcomes. If the assumption is met, the power of the global test is 

equal to, or greater than, that of the individual outcomes.

In this chapter, the investigation is based on the data from four trials of 

citicoline by Davalos et al. (2002) that motivated the ICTUS trial. The outcome on 

each scale is categorized as a success for Barthel index (BI) > 95 (favourable 

outcome), modified Rankin scale (mRS) < 1 (no symptoms or no significant
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disability) and National Institutes of Health Stroke Scale (NIHSS) < 1 (common or 

minor impact) as measured after 12 weeks from randomization. Previously, Bolland et 

al. (2009) concluded for larger samples that global tests gave accurate type I error 

rates and satisfactory power, even after the adjustment for prognostic factors. This 

chapter now investigates the simpler setting without any covariates, and also the 

effect, on the power, of deviation from the assumption of a common log-odds ratio. 

First, the underlying theories and assumptions are to be described.

2.1.1. Global Z and V  Approach

The basic definitions of the score statistic Z and Fisher’s information V were given in 

Section 1.4. These statistics are now described within the context of the global test 

approach. Suppose that each patient is measured on m stroke scales and subscript u is 

used to indicate the quantities associated with the wth of the stroke scales, where u = 1, 

2, ..., m. The score statistics Z„ are distributed approximately as N(0uVu, Vu). Let Zf 

denote the sum of the score statistics and similarly V* the sum of its null variances. 

The global test statistic, which is the combination of all Zu values on each uth scale, Z+ 

= Z\ + Z2 + ... + Zm is deployed. However, due to the correlation among the scales, the 

variance of Zf is no longer equal to the sum of the information, that is var(Z+) ^  V

where V* = V\ + V2 + ......+ Vm. A correction factor of twice the sum of the covariances

between uth and vth scales (when u < v) needs to be considered as var(Z+) = V* +

m
2( ^ C uv) , where Cuv = cov(ZM, Zy), u, v = 1, 2,..., m.

H<V

The global test statistics are Z* = ZfLf/var(Zf) and V* = Vrf2/var(Z+) such that

the expected value of Z* is given by

E(Z*) = E(Z+Ff/var(Zf)) = E(Zf)Vrf/var(Zf) = 6 V* Ff/var(Zf) = 6 V*.
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Consequently, the variance of Z* is given by

var(Z*) = var(ZfVf/var(Zf)) = var(Z+)(Vrf/var(Zf))2 = \^ 2/var(Zf), 

which equals the global information, V*. Assuming the log-odds ratios 9U are all equal 

to 9, Z* is distributed approximately as N(9V*, V*). Under the null hypothesis of zero 

treatment effect on any scale, 6 l = 92 = ... = 9m = 0, thus Zu ~ N(0, Vu) and similarly, 

Z*~ N{0, V*).

A global score test can be based on comparing the quantity Z*2/V* with the 

critical value of the chi-squared distribution on 1 degree of freedom. Under the 

alternative hypothesis, when the log-odds ratios 9 \ = 9 2 = ... = 9 m = 9  ^  0, then the 

common log-odds ratio 9 represents the global log-odds ratio of success for 

experimental treatment relative to control. The global test is always valid under the 

null hypothesis (9U = 0) and is efficient for an alternative hypothesis in which the log- 

odds ratios 9U are all equal. Since an assumption of equality of the 9U is deployed in 

this study design, any deviation from it may degrade the power of the test. An 

illustration of this global test methodology using a real data set is given in the 

subsequent sections.

2.2. Combining Multiple Binary Outcomes

In Section 1.4.1, a 2 x 2 table for a single binary response has been described. This 

section extends the application of the derived quantities to binary outcomes evaluated 

on multiple stroke scales. The covariance between the score statistics which is 

required in combining analyses of bivariate binary data is also derived. The possible 

outcomes on an individual stroke scale such as BI, mRS or NIHSS, for both citicoline 

and placebo can be summarized in a 2 x 2 contingency table such as that in Table 1.1 

on Page 18. Based on the conditional likelihood, Z and V are respectively given by
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equations (1.9) and (1.10), except that Z is now expressed in terms of S ’s for 

successes, as is more natural for many forms of binary data,

z  jncSE- n ESc ) (2.1)

n
Suppose that outcomes on m stroke scales are available from each patient. The 

total number of patients is denoted by n** where m* = he* + nc*. A subscript u is added 

to all quantities associated with the uth of the stroke scales, where u = 1,2, ..., m. For 

combined outcomes on two scales: m = 2, a table can be constructed as shown in 

Table 2.1, where 0 and 1 respectively indicate success and failure according to the 

scales, while Qe 01) denotes, for example, the number of counts for subjects on E  with 

success according to uth and failure according to vth scales.

Table 2.1: Counts of subjects for combined binary outcomes on two scales.

Scale u Scale v E C Total

0 0 n  (00) 
U e Q c m

e > (0°)

0 1 Q s m Q c(m> e . <0,)
1 0 Q e(W) Q c (m Q m

1 1 G e(,1) 2 c (ll> £ . (U)
Total ft  E* ft c* fl **

It is to be noted that the number of double successes is given by <2*(°°\ while 

the number of successes on scale u is given by <2*(00) + Q*°X)- Based on the notation in 

Table 2.1, the binary score statistic Zu is given by

mm m» nFA<Xm +<Xm )z u = (QEm  + QEm ) -  - ^
ft**

and similarly



It is to be noted that the binary score statistic in equation (2.2) is simply given 

by the difference between the observed successes and the expected successes. 

Conditional on the margins of Table 2.1, the covariance between the two score 

statistics is given by

ÛV

= var

cov(Z„,Zv) =  c o v { ( Q £ <. .  . . .  l^ <00,+ e £(OI)) .( e E<“ 1+ e £(1(,,)}

■ (a r )+■cov (q ™ , ) + cov (e /» > . e E(10)) + cov (q e
(2.3)

To find the variance and covariances in equation (2.3), further notation is necessary. 

Let N g denote the vector of category counts (nGu ..., nGay  for G = E, C, * and q, r = 1, 

..., a. The conditional density of N e, given TV* is expressed as

\n*

f ( n E\N,)  = ^ 4 \ U E a J

n.** ^

\ n E* )

(2.4)

where n** = he* + nG*. It follows that E{riEq IN*)= tiE* n*q/n** and E{(nEq(riEq-1) IN*} = 

«£*(«£*-l)n*q(n*q-l) / {(n **(ft**-l)}, such that var (yiEq) — tiE*ttc*ti*q(ti**~ ti*q ) l{{n 

1)}, as for hypergeometric sampling in a 2 x 2 table. Using similar arguments, 

E(nEqnEr) = nE*(nE*-l)(n*gn*v)/{(n **(77**-l)} and CO v if lE q i  H-Er) ~ -tlE*tlC *fl*qft*r/

1)}. Putting these expressions back into equation (2.3), we get,

C.
Tt ** (fT** 1)

nE*nc* f  Q*m

- { a (00)(n- -  g .(00)) -  Q*m o r  -  a m Q*(m) -  a m o r }

(«** - 1) «**
re.<00)+e.<0,>)fQ.m + Q,m ]

 ̂ H** y  ̂ H** j

(2.5)

It is to be noted that Q*m  is the total count of "double ” successes according to both 

m* and Vth scales over both treatments, now denoted by Suv, while the total number of 

patients n** can be represented by the conventional n, for simplicity. Similarly, the
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total number of patients succeeding according to scale Z u is denoted by Su which is 

given by the expression <2*(00) + <2*(01) and likewise, Sv for the quantity according to 

scale Z v. Therefore, the covariance between two binary score statistics Zu and Zv is 

written as

Cm = cov(Z ,Zv) = - M e -  W "  -  S:ISJ. (2.6)
n (tt-1)

This equation follows from the conditional likelihood approach, resulting in a 

denominator of n2(n— 1), as derived by Whitehead et al. (2010), while that from the 

unconditional approach leads to a denominator of n3, as in Pocock et al. (1987).

The general expressions for m scales were given in Section 2.1.1. Specific for 

the case of m = 2, the global test statistic Z* = Zj + Z2, while V* = V\ + V2, and var(Zf) 

= V* + 2C12, where Cuv = cov(ZM, Zv), u, v = 1,2. Furthermore, for three scales, m = 3, 

hence Z*- = Zi + Z2 + Z3, V4- = Vi + F2 + V3 and var(Z") = V* + 2(C,2 + C23 + Ci3), 

where Cuv = cov(ZM, Zv), «, v = 1, 2, 3. The expressions for the Z’s, V s  and C’s can be 

used to give the global score statistics Z* and the information F* needed to conduct a 

global score test on any given m scales of stroke outcomes.

2.2.1. Analysis of Data from Trials of Citicoline

A previous study by Davalos et al. (2002) involved 1372 patients with 789 

randomized to citicoline and 583 to placebo. The primary analysis was a global test 

for multiple outcomes of patients treated with citicoline for 6 weeks, and the efficacy 

of treatment was measured on Barthel index, modified Rankin scale and NIH stroke 

scale at 12 weeks after randomization. Bolland et al. (2009) evaluated a sequential 

global test design and concluded that the global score test can be used, even with 

adjustment for multiple covariates. In their study, treatment comparisons on multiple
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scales were conducted using similar expressions as given earlier. The trial was 

designed to have a power of 0.80 to detect significance at the level 0.05 (two-sided) if 

all three scales have a true log-odds ratio equal to 9  = log (1.26) = 0.231 which then 

led to fixing the power of ICTUS for the same odds-ratio value. A summary of the 

results is presented in Table 2.2.

Table 2.2: Summary of successes on individual and multiple scales from a meta­

analysis study by Davalos et al. (2002).

Treatment
Total 
no. of 

patients

Success on scale (s): 

(Proportions of success on scale(s))

BI mRS NIHSS BI_ mRS_ BI_ 
mRS NIHSS NIHSS

BI_mRS_
NIHSS

Citicoline 789
283 325 325 

(0.359) (0.412) (0.412) 

186 223 217 

(0.319) (0.383) (0.372)

165 279 149 

(0.209) (0.354) (0.189) 

103 189 87 

(0.177) (0.324) (0.149)

122

(0.155)

72

(0.123)
Placebo 583

*BI_mRS denotes success on both the BI and mRS scales.

In Table 2.2, the numbers of successes on each individual and combined scales 

are tabulated from the original data sets used by Davalos et al. (2002) and Bolland et 

al. (2009). Columns 3 to 5 present counts (and proportions) of successes on each 

individual scale, columns 6 to 8 counts of patients who succeeded on both of the two 

scales mentioned and column 9 counts of patients who succeeded on all three scales. 

With pE and pc  denoting the probabilities of success on citicoline (experimental) and 

placebo (control) respectively, the advantage of citicoline relative to placebo can be

expressed as the log-odds ratio, 0 = \og{pE( l -  pc ) I Pc Q-~ PE)} . similar to equation

(1.4) earlier. For each individual scale, the corresponding log-odds ratio is calculated:

0\ = 0.178, 6 2  = 0.123 and 63 = 0.166. Note that these 6 U values are not equal, but are

close to each other. From equation (2.2), the values of Z\y Z2, and Z3 are obtained,
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leading to Z* = 20.335, and similarly for the V counterparts, resulting in V* = 

131.704. The calculated p-value is 0.038 indicating that the treatment difference is 

statistically significant at the 5% level (two-sided).

2.3. Sample Size for a Clinical Trial

The basic principles for sample size determination as described in Section 1.7 apply 

here. Say the probability of success on u h scale is pu, where u = I, the information 

needed can be estimated as follows. Put wu = pu( l -p u), V  = V\ ~ (nEnc / n)w\. Since 

V* = Vrf2/var(Z+) and var(Z?) = V* = V\, therefore T* = V\ ~ {npric / n)w\. For equal 

sample sizes, riE = nc = nil, then V* = lA{nw\) so that b = Va{w\). For m scales, V* = V\ 

+ V2 + ....+ Vm ~ (riEfic / n)(w\ + W2 + ...+ w,„). Each covariance, Cuv can be 

approximated by {nEnc / n)cuv where cuv = puv -  pup v and puv denotes the overall 

probability of simultaneous success on both wth and vth scales. The required V'* and b 

could be derived more generally first, before specialising to the binary case, and will 

be given later. From what was shown earlier, since F* = Vf2/var(Zf) and var(Z+) = V

m

+ 2( Z C«v)»then
u < v

and V -  bn where

1 f  JUL. [ ( ( ^*^)

V«=l / «<v J4'

Suppose all the binary responses on the m scales were independent, then cuv = 

0 for all u and v, and hence V* ~ {ngnc In) (wi + W2 + ....+ wm), such that the quantity 

of information provided by the global test would be represented by the sum of those
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f  m ^
provided by all m scales. This can be written as y* « (nEnc / n) ^ w u , where u = 1,

V « = 1 )

2, m scales. On the other hand, if all three responses were measuring exactly the 

same phenomenon, then the values of wu and cuv would lead to a single common value,

w, for whatever value of m, and hence V*~ (ngnc fn)w, for a test based on any of the m

scales. The advantage of using a global test should reside somewhere between these 

two extreme situations.

The expressions for V* and b are now given for two and three scales, as they 

will be required in the following investigations. For the case of two scales, m -  2, the 

information V* and b can be estimated as

V* ~ (ngnc /n)(w\ + W2)2{(wi + W2) + 2 (ci2 ) } ’1

and b = xA(w\ + W2)2{(wi + W2) + 2 (ci2)} 1 (2.9)

while for three scales, m = 3,

V* ~  (nEnc !ri)(w\ +  W2 +  w>3)2{(w i + w 2+ W3) + 2(cu+ C23 +  C13)}’1

2 1 and b =lA(w\ + w2 + W3) {(wi + w2 + W3) + 2 (ci2 + C23 + C13)}' . (2.10)

Certain assumptions are made in the sample size calculation presented here.

Firstly, the average of estimates (of the probabilities of success for patients on

citicoline and placebo) from Bolland et al. (2009) are used as the true probabilities of

success for patients on placebo, puc on wth scale where individual success probabilities

are taken to be p ]C = 0.347, p2c = 0.207 and p 3c = 0.195, and the double success

probabilities are taken as /?i2c = 0.200, p 23c = 0.147 and p u c  = 0.175. Under the null

hypothesis of zero treatment effect, the same values are deployed for citicoline. Say

the alternative hypothesis is based on the Or value in the same study, which is 0R =

0.231 with an assumption of equality 8 l = 6 2 = 03 = 0.231. Type I error is set as a/2 =

0.025 and the power of the test (l-ff)  is aimed at 0.90; an increase in power compared

to 0.80 in the earlier study by Bolland et al. (2009).
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For each individual scale, the average success probability is p u =  ( p uc  +  p ue ) I 2 ,  

where p u c  is the probability of success for patients on placebo according to uth scale, 

and that for citicoline, p uE, is derived from the log-odds ratio assuming 6 = 0.231. The 

derived values are p\ = 0.374, pi = 0.227, and /?3 = 0.215. For equal sample sizes for 

each treatment arm, n E =  n c  = n i l , V a  { n p u (  1- p u) } / 4. Since V* = {{Uoj2 + ufi)/0R} \  

where ua/2 = wo.25 = 1.960 and up = wo.10 = 1.282, and Or = 0.231, the sample size n  can 

then be calculated for each individual scale as displayed in Table 2.3.

Table 2.3: Summary of the success probabilities, calculated at 0 — 0.231 for individual 

scales, with their corresponding sample sizes.

Scale P u C P uE P u w u n

BI 0.347 0.401 0.374 0.234 3366

mRS 0.207 0.247 0.227 0.175 4490

NIHSS 0.195 0.234 0.215 0.169 4668

For two scales, computation of b involves covariance, cl(V as described in 

equation (2.9). In order to predict cuv, we need the average double success 

probabilities given by puv = (puvc+PuvE)/2. While puvC for placebo is given, its citicoline 

counterpart, puvE needs to be determined. One way is to assume the same value of the 

correlation coefficient for both placebo and citicoline. This correlation coefficient, p, 

describes the association between both scales that measure different variables, which 

can be computed as

P  = iPm -  P.P . ) 1 Jp .d -P JP vO - ~ A.)- (2-H )

Taking the individual success probabilities for placebo, puC as per Table 2.3, 

and the double success probabilities for placebo as p\2c — 0.200, p u c  = 0.147 and p\zc 

= 0.175, we get p n  = 0.665, p 23 = 0.664 and p n = 0.569 in this case. These values 

indicate that each scale adds information to the others. If the value of p is 1, then one
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scale provides exactly the same information as the other and the power would equal 

that of a single test. The closer p is to 1, the higher the correlation, which may lead to 

reduction in the advantage from combining scales. By preserving the correlation p, for 

example on BI and mRS scales, p n  -  0.665, the corresponding double success 

probability for citicoline, p\2E can be found by rearranging equation (2 . 1 1 ),

P \ 2 E  ~ p \ 2  {pjP l E ^  ~ P l E ^ P l E ^  ~ Pie)) (P\ePie)= 0.240,

and the average double success probability, p n  = 0.220. From Table 2.3, w, = 0.234, 

wi = 0.175, and thus cn  = 0.1351. Using equation (2.9), we get bn  = 0.0616. A similar 

procedure is followed for the other combined scales, giving C23 = 0.1142, cn  = 0.1136, 

£23 = 0.0517 and b 1 3 =  0.0644. These values of b are required to determine the sample 

sizes.

Table 2.4: Summary of the success probabilities {0 = 0.231), correlations and the 

corresponding values of cuv and buv for two-scale.

Scales P  uvC P  uvE P u v P  uv €  uv 0  uv

BI_mRS 0 . 2 0 0 0.240 0 . 2 2 0 0.665 0.1351 0.0616

mRS_NIHSS 0.147 0.179 0.163 0.664 0.1142 0.0517

BLNMSS 0.175 0 .2 1 2 0.194 0.569 0.1136 0.0644

As per equation (1.19) earlier, the global sample size, n, can then be calculated 

from the information required, V* ~ bn whereby V* = {(««/2 + up)!9R}2 when Z* is 

approximately distributed as A(^F*, V*), and Or  = log(1.26) = 0.231, leading to V * = 

196.96. The sample size for a fixed sample study on combining BI and mRS scales 

(denoted as BI_mRS in Table 2.4) is then nn  = V*/b]2 = 3198. Similar calculations are 

repeated for each two-scale combination. Finally, for m = 3, using b = 0.0641 from 

equation (2.10), the required sample size is 3074 in order to achieve a power of 0.90 

to detect significance at a level of 0.05 (two-sided), if all three scales have a true log-
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odds ratio equal to 0 -  0.231. The resulting values of sample sizes n for individual and 

combined scales (m = 2, 3) are displayed in Table 2.5.

Table 2.5: Summary of the success probabilities calculated at 0 — 0.231 for individual 

and combined scales, with their corresponding sample sizes, n.

Scale(s) P u C P  uE P u n
BI 0.347 0.401 0.374 3366
mRS 0.207 0.247 0.227 4490
NIHSS 0.195 0.234 0.215 4668
BI_mRS 0.200 0.240 0.220 3198
mRS_NIHSS 0.147 0.179 0.163 3810
BLNIHSS 0.175 0.212 0.194 3060

BI_mRS_NIHSS 0.147 0.179 0.163 3074

N.B. The values of puc ore extracted from Bolland et a l (2009).

As displayed in Table 2.5, the required sample size is reduced for the 

combined scales, indicating the usefulness of the global test approach in minimizing 

patient recruitment for a clinical trial. The fundamental relationship between V and n 

(hence O r )  is applicable throughout the designing of clinical trials in subsequent 

chapters which reference to this section.

2.4. Simulation and Results

To investigate the accuracy of the sample sizes derived earlier, a simulation study is 

conducted to verify the type I error rate and the power of the test to detect treatment 

effect at the 2.5% (one-sided) significance level. A power of 0.90 is targeted in this 

simulation. It is to be recalled from the previous section that Bolland et al. (2009) had 

set type I error rate at 5% (two-sided) and power of 0.80 in their study. The data sets 

are generated from a random uniform distribution, E/~(0, 1) from which the binary 

outcomes of a clinical trial are obtained. The proportion of successes is set by
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specifying U < pu accordingly in the SAS codes, where /?u is the average success 

probability for patients on uth scale. Under the null hypothesis of no treatment effect, 

the same success probabilities are used, p U£  = p u c ,  for example on the BI scale, p UE  = 

p u c  = 0.347. Under the alternative hypothesis, p UE > p u c  and the values shown in Table 

2.5 are used; the proportion of successes on E  needs to be included in the SAS codes 

accordingly since it is different than that on C.

Investigation begins with data for the individual fixed sample sizes for the 

targeted power to detect the desired significance level and simulated under both the 

null and alternative hypotheses. For each data set, simulations of 20,000 replicates are 

conducted to verify the type I error and the power of the test, with results shown in 

Table 2.6 below. Under the null hypothesis, Z is distributed approximately as N(0, V), 

while 0(ZHV) follows a uniform distribution. Hence, the p-value which is given by 

1 - 0(ZNV)  also follows U (0, 1). Under the null, the average p-value should be very 

close to 0.5 as the mean for U (0, 1) equals Vi. The proportion of p-values < 0.025 

gives an estimate of the type I error rate which represents the risk of a false-positive 

finding that is the probability of rejecting the null hypothesis when the treatments on 

both arms are indeed equal. Under the alternative hypothesis, the average p-value < 

0.025 illustrates the power of the test; that is the degree of certainty that the treatment 

difference, 6 , if present, would be detected.
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Table 2.6: Simulation results under the null and alternative hypotheses for individual 

scales, each with a different sample size, n.

0 Scale n p-value p-value <0.025 within 95% PI?
0 BI 3366 0.497 0.029 No
0 mRS 4490 0.500 0.025 Yes
0 NIHSS 4668 0.501 0.025 Yes
0.231 BI 3366 0.011 0.898 Yes
0.231 mRS 4490 0.012 0.892 No
0.231 NIHSS 4668 0.011 0.899 Yes

N.B. Texts in bold highlight out-of-limit situations.

As illustrated in Table 2.6, under the null hypothesis, type I error rates are 

found to be within the 95% probability interval of (0.022, 0.028), except for that of the 

BI scale which marginally exceeds the upper limit by 0.001. This implies that the type 

I error rate when using BI is not exactly 0.025, as it is indeed an asymptotic result, 

whereby in this case, the actual a is perhaps slightly elevated. It is also noted that the 

95% PI itself is approximate. Quite possibly, the proportion of p-value < 0.025 = 

0.029 (for BI) is simply a chance result. Under the alternative, where 6  = 0.231, the p- 

value for mRS lies slightly outside the 95% probability interval of (0.894, 0.906) 

based on the power target of 0.90. The results also show that large sample sizes are 

needed to achieve the desired power to detect significant treatment advantage if a 

single scale is being used.

For the combined scales, the individual and double success probabilities are 

now used to construct the appropriate 2 x 2  tables for each pair of scales. As usual, 

under the null hypothesis of no treatment difference, the same success probabilities 

are deployed on each treatment arm. The individual success probabilities are p\E — pic 

= 0.347, P 2E =  P 2C = 0.207, p i E -  P i c  = 0.195, while the double success probabilities
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for placebo and citicoline are as displayed in Table 2.4 earlier. With knowledge of 

these values, a 2 x 2 contingency table of outcomes for two scales u, v, can be 

constructed as shown in the example for placebo on combined BI_mRS scales in 

Table 2.7.

Table 2.7: A 2 x 2 contingency table of outcomes for patients on placebo for the

combined BI_mRS scales.

Placebo
mRS

Total
Failure Success

BI
Failure 0.646 0.007 0.653

Success 0.147 0.200 0.347

Total 0.793 0.207 1.000

Four categories are formed, SS = success on both scales, SF = success on uth 

scale, but failure on vth scale, FS = failure on uth scale, but success on vth scale, and FF 

= failure on both scales. From earlier, the double success probability for patients on 

placebo according to both BI and mRS scales, p u c  = 0.200, is represented by the 

probability for SS. Given that the total success probabilities for patients on placebo 

according to the BI scale, p \C = 0.347 (last column, 2nd row), the probability for 

success on BI but failure on mRS, represented by SF, can be computed by p \c ~ p u c  = 

0.347 -  0.200 = 0.147. Similarly, the probability for FS can be calculated from Table 

2.7. The desired treatment advantage of 0 = 0.231 is then introduced by imposing the 

success probabilities for patients on citicoline (p\E -  0.240, pie = 0.179, Pze-  0.212, 

as in Table 2.4) to the same data sets. The method used to calculate these by 

preserving the correlation coefficient, has earlier been explained in Section 2.3. The 

case under the alternative hypothesis is illustrated in Table 2.8.
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Table 2.8: A 2 x 2 contingency table for combined outcomes on BI_mRS scales for

patients on citicoline.

Citicoline
mRS

Total
Failure Success

BI
Failure 0.592 0.007 0.599

Success 0.161 0.240 0.401

Total 0.793 0.247 1.000

Similar contingency tables are constructed for each combination of two scales 

under both the null and alternative hypotheses, and then simulation is run accordingly. 

The same process is extended to the combined three-scale, with 8 categories of 

probabilities. These are SSS = triple successes, SSF, SFS, FSS = double successes, 

SFF, FSF, FFS = single successes, and FFF = triple failures. Say SSF denotes 

successes on both BI and mRS scales, but failure on NIHSS scale. The total of success 

probabilities for patients on placebo according to the BI scale, calculated as p i c  =  

0.347, represents the summation of probabilities for SSS, SSF, SFS, and SFF. With the 

known double success probabilities, p u c ,  P 2 3 C, and p u c ,  each category can be 

assigned with the correct probability, as shown in Table 2.9.
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Table 2.9: The probability for each combined outcome for patients on citicoline and 

placebo, under the alternative ( 6  = 0.231).

Combined outcomes Citicoline Placebo
SSS 0.179 0.147
SSF 0.061 0.053

SFS 0.033 0.028

SFF 0.128 0.119

FSS 0.000 0.000

FSF 0.007 0.007

FFS 0.022 0.020

FFF 0.570 0.626

Table 2.9 shows the probabilities of outcomes on combined scales for patients 

on citicoline and placebo under the alternative hypothesis: Hi: 6  = 0.231. Under the 

null, the probabilities of outcome for patients on citicoline are taken as those values 

for patients on placebo. Based on these probabilities, the outcomes on each scale can 

be simulated, and the required statistics and p-values can then be computed. The 

corresponding results for all the combined scales are displayed in Table 2.10.

Table 2.10: Simulation results for all two-scale and three-scale combinations under the

null and alternative hypotheses.

e u=e Combined scales n p-value p-value < 0.025

0 BI_mRS 3198 0.494 0.028

0 mRS_NMSS 3810 0.498 0.024

0 BI_NIHSS 3060 0.497 0.024

0 BI-mRS-NMSS 3074 0.497 0.024

0.231 BI_mRS 3198 0.011 0.894

0.231 mRS_NIHSS 3810 0.011 0.894

0.231 BI_NMSS 3060 0.011 0.898

0.231 BI-mRS-NIHSS 3074 0.011 0.900
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Table 2.10 shows that the type I error rates are well within the 95% probability 

interval of (0.022, 0.028) under the null and similarly for the power of the test. 

Comparing with the power for each individual scale earlier (Table 2.6), it is evident 

that the combined scales yield higher power than those using an individual scale. 

Equivalent power can be achieved on combined scales with smaller sample sizes than 

that achieved on individual scales. For example, to give a power of 0.898, the required 

sample size for combined BI_NIHSS is 3060 (Table 2.10), whereas a sample size of 

4668 on a single NIHSS is required (Table 2.6). Furthermore, the global test on 

combined three scales yields the highest power; 0.90 which is the set target for this 

study, attainable with a reasonably small sample size of 3074. It is to be noted that the 

slightly smaller sample size for BI_NIHSS (n = 3060), compared to the global sample 

size {n = 3074), could be a peculiarity of this particular data set.

Another simulation, fixing the same sample size (n = 3000) on each individual 

and combined scales also proves the advantage of the global test over any single test 

as shown in Table 2.11 below. Consistent with earlier results, the combined all-three- 

scale procedure again gives the highest power of test of all.

Table 2.11: Summary of simulation results showing the power for each individual and 

combined scales under the alternative, with sample size n = 3000.

0 U = 0 Scale(s) Power

0.231 BI 0.864

0.231 mRS 0.746

0.231 NIHSS 0.739

0.231 BI_mRS 0.878

0.231 mRS_NIHSS 0.818

0.231 BI_NMSS 0.891

0.231 BI_mRS_NIHS S 0.892
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To investigate the effect of any deviation from the assumption of log-odds 

ratio equality (8U values are all equal), simulation is extended for situations in which 6\ 

+ 02 + @3, with results summarized in Table 2.12. It is to be noted that this table 

contains the results for the cases of two-scale and three-scale and “N/A” indicates that 

the individual scale is not applicable.

Table 2.12: Summary of the p-values and powers from the simulations using unequal 

6 U values, with a fixed sample size, n = 3000.

Case
8 1

(BI)

8  2

(mRS)
8 3

(NIHSS)
p-value p-value < 0.025

1 0.231 0.116 N/A 0.040 0.703

2 N/A 0.116 0 0.298 0.115

3 0.231 N/A 0 0.090 0.477

4 0.231 0.116 0 0.100 0.441

5 0.231 0.462 N/A 0.001 0.996

6 N/A 0.462 0.116 0.004 0.967

7 0.231 N/A 0.116 0.036 0.720

8 0.231 0.462 0.116 0.000 1.000

For Cases 1 to 4, the log-odds ratios are set such that 62 = where 0\ =

0.231, and 63  = 0. As anticipated, the power of test (last column) deteriorates upon 

departure from the equality assumption for log-odds ratio 0U. Only Case 1 shows quite 

a high power of 70.3%, largely offset by the unaltered treatment advantage on the BI 

scale. In Case 2, the power of the test suffers the most due to the absence of any 

treatment effect on the NIHSS scale which cannot be salvaged by only half of the 

desired log-odds ratio on the mRS scale. The effect of no treatment advantage on the 

NIHSS scale ( 8 3  = 0) is clearly illustrated in Cases 3 and 4 as the powers are both 

below 50% for this study.
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To investigate further whether a reduction in treatment advantage on one scale 

could be recovered by an increase on another, Cases 5 to 6  follow with 0\ = 0.231, 02 

= 2x0 \,  and 02 = Vi x 6\. Case 6  demonstrates that half of the treatment effect on one 

scale can be compensated for by a double on the other to achieve the desired power. 

On all three scales, the power of the test further improves as shown in Case 8 . This 

serves as an additional confirmatory result to emphasize the importance of adherence 

to the equality assumption in the global test approach.

It is worth mentioning that Bolland et al. (2009) suggested, for the case where 

6 U values are not equal, the power can be approximated by taking 0  to be a weighted 

average: 6W = (9\W\ + 62w2+ 62w2)l(w\ + w2 + w2), where wu = pu( \ - p u), as defined in 

Section 2.3. Using equation (1.19), V* = {(Uoj2 + u^)/6r}2, up can be found from the 

standard normal distribution table and so it is l- f i  which gives the power. Using this 

approximation method for Cases 4 and 8  above, the powers are respectively 43.7% 

and 97.8%. Both values are very close to those displayed in Table 2.12, which are 

44.1% and 100%. Hence, the approximation method works well for the cases explored 

here.

2.5. Discussion

The method of combining binary assessments has achieved the intended type I error 

rate under the null hypothesis of zero treatment advantage, and yielded improved 

power under the alternative hypothesis of equal log-odds ratio, 9 = 0.231, compared to 

that for individual scales or even the two-scale combinations. The fundamental 

equations in Section 2.3 simplify the procedure for deriving sample size and power for 

a clinical trial. This illustrates the benefit of the global test approach for the 

correlations established between BI, mRS and NIHSS.
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The global test assumes a common treatment advantage, whereby a treatment 

has the same direction and size of effect on all outcomes. If the assumption is not 

valid, such that some outcomes for the experimental show benefits and others 

disadvantages, the power of the test is reduced. This is indeed a desirable feature in 

such clinical trials which demand consistent and persuasive evidence among the 

outcome measures. The basic requirement of this global test method is that the 

treatment advantage on each component scale can be summarized in terms of a score 

statistic Z, which is approximately normally distributed with the mean 6 V and 

variance V. Many types of responses satisfy this requirement, including survival data 

under proportional hazards. Thus, there is huge potential for the application of this 

global test approach. The simulations conducted have shown evidence for large 

samples that global tests based on the score method yielded satisfactory type I error 

rates and accurate power in this binary assessment.

To conclude, the overall result in this chapter justifies further investigation into 

survival data and combination of responses to explore the capability of this promising 

method. Using similar methodology, Whitehead et al. (2010) have developed a global 

score test for binary and ordinal endpoints, which centred on the derivation of the 

correlation between two score statistics. In Chapter 4, the global score test 

methodology is extended to bivariate interval-censored survival data.
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Chapter 3. Methods for Interval-censored Survival Data

Interval-censored survival data were earlier introduced in Section 1.3. Such data may 

arise from the grouping of continuous survival data or genuinely discrete data. The 

aim of this chapter is to identify within a few derived models, the model that yields 

the best approximations to the score statistic Z, and Fisher’s information V\ the 

selected model will be used in subsequent work.

Section 3.1 begins with an overview of the modelling of survival data. The 

very basic form of Cox’s proportional hazards model is described, followed by the 

application of the proportional hazards model in the context of interval-censored 

survival data. Two familiar models, namely log-odds ratio and complementary log-log 

transformation are explored; Z and V are derived from each model, and each leads to a 

different version depending on approximations made concerning information. 

Therefore, it is necessary to examine whether these variations are important before 

deciding on the model of choice. The resulting equations are then applied to a real 

interval-censored survival data set in Section 3.2.

A study design is formulated in Section 3.3 and simulation is performed to 

evaluate the accuracy of each method under the assumption of proportional hazards, 

and to investigate the effect of any deviation from it on the accuracy in Section 3.4. A 

discussion is given in the last section.
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3.1. Modelling of Survival Data

The modelling of survival data needs considerable attention to the underlying 

distribution as well as to the censoring mechanism. While the non-parametric 

methods, such as the logrank test (Section 1.6 ), can be useful in a simple comparison 

between two or more groups of survival times, they may not be suitable for more 

complex data. For example, often in a clinical trial to evaluate treatment advantage, 

other variables such as gender, smoking status and physiological measurements are 

recorded as well as the survival times. In such a situation where these explanatory 

variables must be included in the analysis, a statistical modelling approach renders 

solutions.

As survival analysis is mainly centred on the hazard of death (or event) at any 

time after a study has begun, the hazard function itself needs to be modelled. Although 

hazard models are distinct from linear models, many principles of the latter are 

applicable to the modelling of survival data. In general, such is performed to identify 

which of the explanatory variables affect the hazard function and consequently to 

estimate the hazard function. Such knowledge is useful in evaluating treatment 

efficacy since the survivor function can then be obtained from the hazard function: 

their unique relationship has been described in Section 1.1.2.

The famous Cox’s proportional hazards regression model is now described in 

greater detail than in Section 1.5. Cox's model is first explained in the situation where 

each survival time is distinct, before considering the case where two or more survival 

times might be tied at the same value. The latter case which involves tied failures or 

ties is relevant to interval-censored data. The log-odds ratio and complementary log- 

log transformation are then employed in the derivation of Z  and V. It is to be noted
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that the scope here is limited to fixed covariates, such as treatment group, which do 

not vary over time.

3.1.1. Cox’s Proportional Hazards Regression Model

Cox’s proportional hazards regression model (hereafter Cox’s PH) is very popular for 

many reasons, as already documented in many texts. Two key concepts of Cox’s PH 

model are the proportional hazards model and the estimation procedure using 

maximum partial likelihood, which are described in this section. The former is a direct 

generalization of the Weibull and Gompertz models while the latter is genuinely a 

novel approach in statistics. The Cox's PH assumes a parametric form for the effects 

of the explanatory variables, but it allows an unspecified form for the underlying 

survivor function, hence it is a semi-parametric model.

In the following example, the comparison of two survival curves is expressed 

in the form of a proportional hazards model. This approach is essentially the same as 

the log-rank test when there is only one covariate: a treatment indicator. In fact, if 

there are no ties in the survival times or when Cox’s discrete approach to ties is 

applied, the likelihood score test in Cox’s regression analysis is identical to the log- 

rank test. The advantage of Cox’s regression approach is its ability to adjust for the 

other variables by including them in the model, as will be shown later.

Consider a group of individuals randomized to treatments E and C, and their 

hazards of failure at time t which are given by hE(t) and hc(t) respectively. As

described in Section 1.5, the hazard for an individual on E  is taken to be proportional 

to the hazard for a patient on C, at time t. For any t > 0, this proportional hazards 

model can be expressed as
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hE(t) = i//hc(t), (3.1)

where y/ is a constant known as the relative hazard or hazard ratio. This is the true 

meaning of proportional hazards. The assumption of proportional hazards implies that 

the survivor functions for individuals on E  and C do not cross.

More generally, suppose there are n individuals randomized between E and C, 

i — 1, ..., n. The hazard for individual i at time t, denoted by h{t) , is simply expressed 

as the product of a baseline hazard function, h0(t) and the constant hazard ratio y/[. 

Since the hazard ratio cannot be negative, it can be written as y/.t = exp77, such that any 

value of the parameter r}t always gives a positive value of y / r  To consider the 

different treatments, enter an indicator variable X  with a value 1 if an individual is on 

E  and 0 otherwise. Denoting by xt for the value of X  for the i h individual and

Tji = /3xn the hazard function can be written as

Note that the baseline hazard function, hQ(t) is left unspecified apart from being a non­

negative function; it can be envisaged as the hazard of individuals with x(.= 0 .

Equation (3.2) implies two conditions: (i) the value of any covariate is measured at a 

fixed point in time, for example, at the beginning of the study, and (ii) the effect of 

each covariate is constant throughout the individual’s survival. The above model can 

be re-written by taking logarithms of both sides of equation (3.2) giving

where a(t) = log1\(t) . This baseline hazard can be specified to cater for any function: 

for example, a{t) = a defines the exponential model, while a{t) = at and a(t) = a\ogt
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describe the Gompertz and Weibull models respectively. Such a specification, 

however, may be redundant as the hazard for any individual is a fixed proportion of 

the hazard for any other individual. For example, in a clinical trial comparing 

treatment advantage of experimental over control, the hazard for a patient on E is 

proportional to that for another patient on C. In the Cox’s model, no form is specified 

for the baseline hazard.

In reality, the hazard of failure at a given time often depends on many 

variables which are termed explanatory variables. The above expression can be 

generalized to suit this situation accordingly. Suppose there are k explanatory 

variables with all values recorded at baseline when a patient enters the study: 

xl9x2 t..fxk . Let these values be denoted by the vector x  = so that the

hazard function of the individual i can be expressed as

hi(t) = h0(t)exp(Tfi). (3.4)

This is indeed the product of the baseline hazard function and the exponential of a 

linear function of a set of k fixed covariates x(. with coefficient fi where the constant, 

V ,= A x n +...+fikx lk. In medical contexts, this constant is also known as the risk 

score or prognostic index. Applying equation (3.2) to two individuals i and j, then 

their hazard ratio is simply

jyL exp{A (*« - x f l )  + -  + M x ik “ **)}•
(3.5)

since the baseline hazard for one individual cancels out with that of the other, hence

giving a constant hazard ratio over time. It is to be noticed that the linear combination

of the explanatory variables resembles a linear model, hence making this approach

semi-parametric. It is assumed that these explanatory variables act multiplicatively on
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the hazard, and conditionally on the covariates x. and X j ; the failure times of

individuals i and j  are independent. The key point is that the baseline hazard need not 

be specified in order to obtain meaningful interpretation of the coefficients being 

estimated. The P coefficients can be estimated using the method of maximum 

likelihood which will be covered next.

The basic expression for likelihood has been introduced in Section 1.4; partial 

likelihood is now described in the context of Cox’s estimation method (Cox, 1975). 

The partial or conditional likelihood approach enables the P coefficients of the PH 

model to be estimated without having to specify the baseline hazard, as earlier 

mentioned. To construct the partial likelihood function, it is assumed that the intervals 

between the successive failure times, where there are no failures occurring, do not 

contribute any information about the effect of the explanatory variables on the hazard 

of failure.

Suppose we have a data set comprising n patients, Pjt\, Pjt2, Pj,n who failed 

at each time tj and those censored between any two times tjand tj+] , j  = 1, 2 , . . . . ,  m.

The probability that the individual i fails at time tj is conditional on tj being included 

in the set of m failure times. Since the failure times are assumed to be independent, the 

partial likelihood is a product of the partial likelihoods, one at each time point, 

denoted by £ ,( /? ) , which is the probability of patients Pjti ,  Pj>2, Pj,n failing at time

tj given p  and how many failed, and who were at risk of failing at time tj. This

quantity can be written as

m

L(/3) = Y l LJ(/3).
M (3.6)

58



Suppose only one patient fails at each tj, denoted by i f h and let R(tj) denote the

risk set at time tj, which consists of all the patients who are at risk of failing at time tj.

The partial likelihood over all failure times, is written as

jr q\ _ TT W e x p O f r )
m  z

leRUj)

where the individuals who are at risk of failure at time tj, are indexed by /. Since the 

baseline hazards cancel out, the partial likelihood for m events can be generalized as

e*p( Vij)

j-i Z exP̂>' ,,
l eR( t j )  W - O ;

U P )  = n
It is to be noted that the baseline hazard is not required for model fitting, thanks to 

elimination by conditioning. The name “partial likelihood” implies that only part of 

the data is directly used in its construction; the probabilities for subjects experiencing 

an event are considered, while those for censored subjects are taken into account only 

when summing over the risk sets at event times that occur before the subjects being 

censored, as shown in equation (3.8).

In a conventional conditional likelihood, the probability of observing all of the 

data, conditional on a single set of ancillary data, is considered. Instead, for partial 

likelihood, only part of the data is used and the conditioning is progressive, 

considering each failure time separately and conditioning on the risk set associated 

with that particular time. This simply means that we only make use of the identity of 

the patient who failed amongst all those who were at risk at any failure time, whereas 

the actual failure times are not used. Nevertheless, the partial likelihood is treated in 

the same manner as an ordinary likelihood, and the general MLE theory still applies. 

This provides an asymptotic distribution for the maximizing value of /?, and provides 

also a hypothesis testing and confidence interval framework (Cox and Hinkley, 1974).
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So far, only unique failure times have been considered, but in reality several 

patients may fail at the same time. These tied failures occur in part because survival 

times are recorded coarsely, perhaps to the nearest day. On the other hand, interval 

censored survival data (Section 1.3) arise from a slightly different formulation, 

whereby a coarse but precise representation of the data in time intervals, is given. 

Interval censored survival data often involve tied failures or ties within the failure 

time intervals. In order to incorporate these ties, the failure set at time tj (comprising 

all Oj patients who failed at that time) and the set of all groups of oj patients who might 

have failed at time tj is included. Denoting these sets by D(tj) and R(tj) respectively, in 

Cox’s method for ties, the partial likelihood can now be re-written as

n expc»7«)m

u j } ) = Y l ^ f= ------— ,
>1 x n exp(77.) ( }

GeR( t j ) veG( t j )

where G{tj) is the group of Oj patients who might have failed at time tj. Suppose 

patients Pi and P2 failed at time tj, while patient P3 is also at risk of failing. The 

likelihood considering Cox’s method for handling ties is then given by

L ( «, = ______________exp(fr)exp(72)______________
CftV exp(7/1)exp(772) + exp(^)exp(7 3) + exp(^2)exp(^3)

Cox’s method as outlined above is accurate but can be computationally slow; hence 

approximation methods have emerged as offering more viable options. In general, ties 

are dealt with by considering the event times separately, such that o subjects fail at o 

separate times. Using equation (3.9), the product is now realized over the patients who 

failed, instead of over the failure times.
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How the risk sets are defined for these separate event times is what 

distinguishes one method from another. For example, in the case of the failure time tj 

above, Breslow’s method considers two separate event times whereby Pi, P2 and P3 

are at risk, Pi failed and then P2 failed for the same risk set. The likelihood can be 

expressed as

It is to be noticed that the denominator for the Breslow’s method for handling tied 

observations is slightly different from that for the Cox’s method. The former method 

is a default in SAS which will be used in analyses performed in Chapter 6.

A common goal in clinical trials is to compare two treatment groups by 

evaluating the treatment advantage, 6 . Relating to the likelihood in equation (1.5), 

the partial likelihood can be expressed as

where Oj is the total number of failures and rjG is the total number of patients on 

treatment G at risk of / h event, G = E, C, and q is an index denoting the various 

possible values of the random variable ojE. By differentiating the logarithm of 

equation (3.10) and using equation (1.5), it can be shown that the efficient score is

where oE is the total number of failed patients on E\ a positive value of Z indicates that 

treatment E  is better than C. Upon differentiating a second time, we get

H P ) exp(?71)exp(^2)
Breslow

{ ex p ^ ) + exp(*72) + e x p ^ )} 2

min( Oj,rJE)

<?=max(0 , Oj - r j C) \ ° j  4 )  V<? J
(3.10)

(3.11)



which is indeed identical to equation (1.18), the Fisher’s information as described in 

Section 1.6. The proportional hazards model, with Cox’s method for ties yields the 

logrank test as its associated score test.

As demonstrated above, the ordering or ranking of event time tj is used, but not 

its magnitude. Hence any monotonic transformation of the event times will neither

change the coefficient estimates ft nor alter the conclusion of the analysis. Since the 

baseline hazard is a nuisance parameter, it seems logical that there is not much 

information beyond the ranking information regardless of its underlying function. 

Indeed, it has been reported that for a wide range of hazard functions, Cox’s partial 

likelihood yields inferences that are asymptotically equivalent to those obtained from 

the full likelihood based on all the data (Efron, 1977).

Partial likelihood estimates still retain two standard properties of ML 

estimates: consistency and asymptotic normality. This means that in large samples, 

they are approximately unbiased and their sampling distribution is approximately 

normal. Their standard errors are, however, larger than those for estimates using the 

full likelihood; but the robustness gained from the simplification of employing the 

partial likelihood method of estimation may outweigh this shortcoming.

Although its formulation appears rather complicated, Cox’s PH regression 

model is available in many standard software packages. For example, SAS/STAT 

deploys it as PROC PHREG with a simple basic coding such as: “PROC PHREG 

DATA=DEATH; MODEL TIME*STATUS(0)=TREAT; RUN; ”. This coding will fit 

a model of data set (DEATH) with only one covariate of treatment (TREAT) and two 

variables (TIME, STATUS). The MODEL statement specifies the variables that 

define the survival time (TIME), the censoring variable (STATUS: (0, 1} where 0
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typically means censored), and the explanatory variables (TREAT). Further 

description and samples of typical output are given in Chapter 6.

The merits of the proportional hazards model and the estimation method have 

probably over-shadowed the other aspects of Cox’s regression model. Among other 

attractive features o f Cox’s regression model are: (i) facility to incorporate time- 

dependent covariates, (ii) admissibility of stratified analysis that is effective in 

controlling nuisance variables, (iii) adjustability when a subject is not at risk of an 

event, and (iv) readiness to accommodate both discrete and continuous measurement 

of event times (Allison, 2001).

All in all, Cox’s PH regression model has opened doors to many possibilities 

and thus numerous methods have built on it since its introduction. Examples of new 

extensions to the original Cox’s model include the analysis of residuals, time- 

dependent coefficients, multiple or correlated observations, multiple time scales, time- 

dependent strata, and estimation of underlying hazard functions (Therneau and 

Grambsch, 2000). One drawback of the popular Cox’s model is that the assumption of 

proportional hazards may be violated in the presence of heterogeneity which affects 

the hazard ratio (Hougaard, 2000). Wei et al. (1989) proposed the well-known Wei, 

Lin and Weissfeld (WLW) model which assumes that the marginal distributions of the 

multiple events time follow Cox’s models; this method is later described in Chapter 6.
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3.1.2. Modelling Interval-censored Survival Data

In Section 1.3, various types of interval-censored data have been described. From this 

section onwards, only the case of fixed intervals for all subjects is considered. For 

illustration purposes, interval-censored survival responses can be summarized as in 

Table 3.1. This research is developed partly on the basis of previous work by 

Whitehead and Thomas (1997), which concerns trial design for data of interval- 

censored nature.

Table 3.1: Statistics for a parallel group study with interval-censored survival

responses (Whitehead, 1997).

Treatment Experimental Control Overall

Number of events e  E e

Number of events in the interval

( 0 , t j ) °  I E °  1C O l

( t  1> t  2 ) ° 2 E ° 2 C o 2

( t  k-i> t k )

Number of patients being followed- 
up for time t

° k E <>kC Ok

11 r  I E r  1C r  I

12 r  2E r  2C

t  k r  kE r  kC ? k

In viewing Table 3.1, suppose patients who have been cured of ulcers are 

recruited into a clinical trial to compare two treatments for suppressing recurrence and 

that endoscopies are performed at defined times, t h  . . . . ,  t k. A positive result indicates 

ulcer recurrence and is considered as an event within that time interval. The exact
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times of events are not known since the events could have happened at any time 

during the interval between the last visit when the patient was determined to be 

negative for the outcome and the first visit with positive outcome.

In the trial, say e events are observed, for a total of r patients who are recruited 

over time t, randomized to experimental and control treatments giving ye and yq 

respectively. The patients are observed at fixed intervals between ti.\ and t\, i — 1 ,2 ,.., 

k, and the number of events occurred, oi in the intervals is recorded, as shown above. 

The number of patients on experimental and control treatments who are at risk during 

each interval, r,■£ and y,c respectively are recorded, and their summation gives the total 

number of patients at risk for that interval, n. Note that the number of successes, that 

is no recurrence, is given by r* -o t. If an event has occurred for the patient, the 

associated failure time is recorded, and there are no further examinations. Meanwhile, 

patients may withdraw from the study or not have had any occurrence until the end of 

the study, thus their data are censored.

Interval-censored survival data can also be considered as a series of familiar 2 

x 2 tables, one for each of the intervals (rM, ti) under study as shown in Table 3.2. It is 

to be noted that this table is similar to Table 1.2, but particular to a defined interval.

Table 3.2: A 2 x 2 contingency table for survival responses at a defined interval for

experimental and control groups.

Responses during interval t ,•) Experimental Control Total

Number of events (Failure) ° i E ° i C Oi
Number of patients survived (Success) r  iE ~  °  iE f i c  ~ o iC - o t

Total r iE ? i c f i
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The number of events that occurred during any interval , ti) is recorded as 

OiE and Oic for patients on experimental and control treatments respectively. Given that 

the total number of patients in the interval is r,-, the total number of successes is simply 

rj -  Oi, and similarly for those on experimental and control. The k distinct 2 x 2  tables 

are assumed to have a common value for treatment effect 6, measuring the advantage 

of experimental over control, regardless of the failure pattern. Hence, under the null 

where H o :0 = O, p-values are guaranteed to be valid.

The logrank test for interval-censored data is a special case of the Mantel- 

Haenszel test (Mantel, 1966) for combining 2 x 2  tables and the two are often used 

interchangeably. As already described in Section 1.6, the efficient score Z is the sum 

of Zj’s from 2 x 2  tables, Z = ^ Z . , and similarly, V = . However, the derivation
i i

of V is not quite straightforward due to the presence of nuisance parameters. Such 

parameters are not of immediate interest but need to be accounted for in analysis of 

the parameter of interest, 6. An example of the parameterization is introduced in 

Section 3.1.3 and illustrated further in Section 3.1.4.
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3.1.3. Methods Using Log -Odds ratio Transformation

A model using a logit link function expresses the log-odds of failure as a linear 

function of regression parameters. Suppose ptE and pic denote the probabilities of 

occurrence for experimental and control respectively, and that ptE can be estimated by

(° ie  I  ^  f° r the /th interval, i  = 1, 2, . . . ,  k .  Similar expressions can be derived for p,c 

accordingly. For independent Bernoulli random variables oie and otc with parameters 

PiE and pic respectively, the likelihood functions for experimental and control are 

given by

L (p iE) = PiE° 'H l - p iE)n
L(piC) = Pî a - p iCy c-°«. (313)

Therefore, the log likelihood functions for each component are derived as,

P ie ) = °m  log P ie + f e  “  °ii;)log (1 ~  P ie )

£(Pic) =  0iCl°g Pic  +  ( ri C - ° , c ) l°S , ( l -P ic )-  (3 14)

Based on the log-odds ratio approach, the advantage of experimental relative

to control can be expressed as 0 = -\og\Jip iE{ \ -  p iC)} / {piC{ \ -  p iE)]],  as given in

Section 1.4.1 earlier. In Table 3.2, there were two parameters concerning the 

probabilities of failures in the two groups (piE and p iC), conditional on surviving up to 

that time interval. Each of these probabilities can be re-expressed in terms of 6, but to 

complete the parameterisation, a second parameter is required. This second parameter 

could be one of the treatment-specific probabilities, or the sum of the logit 

probabilities or the baseline hazards which may be strata-specific; regardless of the 

form, it is called the nuisance parameter. In order to derive Z and V, parameterization
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of the nuisance parameter is necessary. For example, let the nuisance parameter fa for

(  „ \  f  \
all i, be expressed as fa = -  log PiE

l ~ P i E
log Pic

1 ~ P i C

For survival responses of the patients such as in Table 3.2, the efficient score 

for 0 based on log-odds ratio, Zor can be derived by the unconditional profile 

likelihood approach, giving

7 - S r r> E ° > C - riC°iE <3-15)^OR ~
/=i rt

for k intervals, and the Fisher’s information is,

v  Y ' i c W 'I - o , )  (3 J 6 >
OR Z j  3

W Ti

It is to be noted that equations (3.15) and (3.16) are similar to equations (1.17) and 

(1.18) earlier; they are displayed here as a reminder. Both equations (3.15) and (3.16) 

are used as the first method to derive Z and V respectively (Method 1). Conditioning 

of the procedure with regard to the totals of <?,• events and r,-Oi successes can be 

applied to eliminate the nuisance parameters; this is referred to as Method 2. Based on 

this conditional likelihood, the efficient score, Z is similar to equation (3.15) while the 

Fisher’s information, VoR(C) is given by (Whitehead, 1997):

v  _ S p riCriE°Ml ( 3 J 7 )
“ <C) h 1)

When events are few relative to the numbers surviving in each interval, riE/ri ~ 

nE/n = R/(R+l) where nE is the number of patients on experimental and n is the total

number of patients in the study. Similarly, n d n  ~ nc/n = l/(/?+l). Therefore, the

amount of information can be approximated by Re/(R+1) , where e is the total number 

of events observed. In the case of equal treatment allocation, R =1, V * e/4 as
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mentioned in Section 1.7 earlier. However, this approximation is unreliable if the 

number of events is large relative to the number of survivors.

In the case of the logrank test, only the relative ordering of survival time is 

used instead of the actual times, thus no assumption is required for the individual 

survival distribution. In general, when 6 is small for large sample sizes, Z is normally 

distributed with mean 6V  and variance V and the maximum likelihood of 6 can be 

approximated by 6  = Z I V .

The logit model above presumes that events can occur only at discrete points 

in time. For most applications, however, ties occur because event times are measured 

coarsely at defined intervals. Aside from the implausibility of the logit model for such 

data, the model suffers from a lack of invariance to the length of the time interval. For 

example, switching from person-months to person-years changes the model in a 

fundamental way, so that coefficients are not directly comparable across intervals of 

different length (Allison, 2001). An alternative model is complementary log-log link 

which is described next.

3.1.4. Methods Using Complementary Log-Log Transformation

A model using a complementary log-log (cloglog) link function expresses the log

negative log survival probability, -  log(- log as a linear function of regression

parameters. Like the logit function, the complementary log-log function takes a

quantity that varies between 0 and 1 and associates it with a quantity that varies

between minus and plus infinity. Unlike the logit function, however, the

complementary log-log function is asymmetrical. For example, after taking the logit

transformation, a change in probability from 0.25 to 0.50 is the same as one from 0.50

to 0.75 {0 = 1.10). On the complementary log-log scale, however, the difference

between probabilities of 0.25 and 0.50 {6 = 0.88) is larger than the difference between
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0.50 and 0.75 {6 -  0.69). This difference has an important practical implication in 

situations where the magnitudes being compared matter too, not just the difference 

between them.

From Section 1.6, treatment advantage can be expressed in terms of survival 

functions: 0 = -log{ -logS £(r)} + l°g{- l°g^c(0}• F°r interval-censored survival data 

(illustrated in Table 3.2), equation (1.16) can be written as

for all i, and therefore, the log hazard ratio is

- l o g !  s e (o + log - l o g !

■ScOm )M h J .

Alternatively, it can also be expressed in terms of ptE and p iE, the probability of 

occurrence within interval (r„ U.\), for subjects on E  and C respectively. The 

probability of occurrence for patients on the experimental during the interval (?/, f/.j), 

pEi is given by the number failed at u conditional on surviving at tiA\ p iE = [1- 

(5fi(f,-)/5£Ui.i)}] and similarly for the control group. Upon re-parameterization by these 

probabilities,

e = —log {—iog(i -  plc)}+ log {-iog(i -  pic)} (3-18)

^ = -  log {-log(l -  P,£)} -  log {- log(l -  p,c)}, (3-19)

for all i. From equations (3.18) and (3.19), the probability of occurrence for 

experimental can be given by piE = l - e x p [ - e x p { - | ( $  + 0)}] and similarly for

control, ptc = l- e x p [ -e x p { ~ j ($  -# ) } ] •  Under the null, 0 = 0 and the maximum

likelihood estimate, , of $  is given when ^ ( ^ 0) —0, hence giving
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exP (~ v )  = “ 'ogO “  ~ ) = %■2 r
(3.20)

From equation (3.14), the full log likelihood in terms of fa and 0, can now be 

expressed as,

i{fa,0) = oiE\og 

+oiC log

(3.21)

l-e x p (-e x p (- (^ —^))) - ( r ic- o lc)ex p ( - ( ^ y ^ ) ) .

Differentiating equation (3.21) with respect to 0 and fa respectively, we get 

l e -  G + H  and i . - G - H , where

exp ( - ( ^ - ^ ) )  exp(- e x p ( - (^ -^ ) ) )
G =  1... ^  ^ ..^...■?, +  -0|g)exp(-(

fa+0

1 -  e x p (-e x p (-(^ -^ ) ))
)),

and H - ° iC

exp( (^  2 ))exp( exp( (^  ^ *)))]

2 1 exp( exp( (^' )))
(Jkl3cl exp(- (^ ) ) .  

2 2

Under the null, 0 = 0, and taking iA fa) = 0, we get exp(-^-) = -lo g (l--^ -) = qr
n r;

Substituting this expression back in to ^ ,  the efficient score can be obtained from

w 0),

± q t , , (3.22)
ZcL = L j \ riE0i c - ric°iEb

Upon taking the second derivatives, the Fisher’s information can be given by 

y  = and without conditioning on the margins, we get
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VcL^ s l S n p K +\
i 4 o,

-q-ir. - o .M e  -Qic)n 
4o.2

+

, [ rl ( ° lE - ° IC) - ° , ( ri F . - r, c ) ]4 o,

(3.23)

The unconditional Z and V given by equations (3.22) and (3.23) respectively, form 

Method 3. Similarly under the null hypothesis, but conditional on the margins, and

t(¥ ==t t d = K ~L,  where K =  q‘ ^  °l\ iE and L  = ^  ^  0i\ iC,
4oj 4 ot

4KL  ^ q?{r ,-o ,)r iEr,c (3-24)
C U C )  Z s K  +  L  2 j  0jJ.

The conditional expressions for Z and V are given by equations (3.22) and (3.24) 

respectively, form Method 4. Under the null hypothesis that failures are independent 

of treatment (Ho: 6 = 0), then conditional on Oi = the random variable oiE follows 

the hypergeometric distribution. This leads to an alternative expression for V, with a 

slight difference in the denominator,

v  (3'25)
V CL ( H )  2 a  /  i \i 0 t(rt - 1)

Both equations (3.22) and (3.25) respectively are conditional expressions for Z and V, 

here called Method 5. All these five methods are summarized and compared in the 

next section.
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3.1.5. Summary of Methods

It is apparent that the statistics derived from the complementary log-log approach 

(cloglog link) are in the form of a multiplier to those derived from the log-odds ratio 

approach (logit link). On comparing equations (3.15) to (3.22) for Z, and equations 

(3.17) to (3.25) for V, it appears that Z Cl  = (qin/o^ZoR, while V Cl  = (qin/oi)2V0 R- 

Notice that from equation (3.22), when the <?; are small relative to r„ then qt ~ Oi/rt. 

Substituting this approximation into equation (3.22) gives the same expression as in 

equation (3.15). Similarly, equation (3.25) is reduced to the form as in equation (3.17). 

This situation occurs only when there are few events in each interval, implying that in 

the case of finer intervals, the method of cloglog is approximately the same as that of 

log-odds ratio. However, when the intervals are coarse, the former method is more 

appropriate.

The resulting expressions for Z and V, as derived by the various methods 

described are summarized in Table 3.3. Methods 1 and 2 use the familiar likelihood 

function to derive both statistics based on the log-odds ratio, with the latter method 

taking the conditional likelihood approach resulting in r2{r -1) in the denominator for 

V. Since these two link functions often provide similar fits, the choice may depend 

upon whether inference should be in terms of odds ratios or discrete hazards ratios 

(TenHave, 1996) and should be based primarily on ease of interpretation (McCullagh, 

1980). For survival data, an inference based on the hazards ratios is an obvious choice.
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As explained earlier, Methods 3 to 5 take advantage of a more appropriate 

complementary log-log approach, which should be better suited for the case of 

interval-censored survival data. The statistics Z and V can be calculated for any single 

interval using equations in Table 3.3, while for k intervals, Z  = Z\ + Zi + ...+ Zk, and 

similarly V = V\ + V2 + ...+ V*. The applications of both logit and cloglog link using 

these five methods are demonstrated in the next section.

74



Ta
bl

e 
3.

3:
 S

um
m

ar
y 

of 
the

 
va

rio
us

 
m

et
ho

ds
 

us
ed

 
to 

de
riv

e 
Z 

and
 

V: 
the

 
de

riv
ed

 
fo

rm
ul

ae
 

in
cl

ud
ed

.

LOr-«



3.2. Application to Bone Marrow Transplant Data

In this section, the methods listed in Table 3.3 are applied to data from a trial reported 

by Storb et al. (1986) concerning leukaemia patients. The patients were randomized 

between immunosuppression with cyclosporine (control) or with cyclosporine and 

methotrexate (experimental): abbreviated as CSP and CSP + MTX respectively. At 

the beginning of recruitment, 17 and 24 patients were randomized to experimental and 

control treatments respectively. The aim of the trial was to investigate whether the 

addition of methotrexate would reduce the incidence of acute graft-versus-host- 

disease (GVHD) upon the bone marrow transplantation. The survival times of patients 

on CSP and CSP + MTX in days are listed below, where an asterisk indicates a 

censored observation.

CSP: 1*, 9, 9, 10, 11*, 13, 14, 18*, 19, 20, 21, 21, 21, 23, 24, 25, 29,

30, 33, 34, 34, 62,218*, 251*.

CSP + MTX: 7*, 10, 12, 15*, 21, 21*, 24, 25, 26*, 34, 69*, 89*, 167*, 201*,

205*, 237*, 257*.

The survival times are then split into three intervals with cut-off points at 

weeks 2, 3 and 4. The summary of occurrence of the acute GVHD during the defined 

intervals following transplantation is displayed in Table 3.4. As an example, interval 

(2, 3] indicates the third week after transplantation.
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Table 3.4: Summary of outcomes for bone marrow transplant trial (Storb et al, 1986), 

used as illustration of interval-censored survival data.

Treatment Experimental Control Total

Failure (o ,•)
Interval (0,2]

2 5 7
Success (r ,•-<?,•) 15 19 34
No. at risk (r ,) when t = 0 17 24 41

Failure (o ,)

Interval (2, 3] 

1 5 6

Success (r, - o ,  ) 13 12 25

No. at risk (r ,•) when t = 2 14 17 31

Failure (o ,■)

Interval (3, 4]

2 3 5

Success (r ,• - o  ,•) 10 8 18

No. at risk (r ,•) when t -  3 12 11 23

During the first two weeks of observation for the experimental group, 2 had 

suffered acute GVHD (failure) while 1 died without suffering from acute GVHD, 

hence recorded as success along with 14 others who were still alive and free from 

acute GVHD. Notice that the number of patients on the experimental treatment 

remaining at risk during the third week was only 14, out of which one patient suffered 

from acute GVHD and another died without suffering acute GVHD. After a fourth 

week of follow-up, 1 of the remaining 12 patients (at risk) had died without suffering 

from acute GVHD, 2 had suffered from acute GVHD and 9 were still alive and free 

from the acute disease. Similar details can be read off from Table 3.4 for patients on 

the control treatment. Applying each of the five methods described above, Z, and Vj 

for each interval are calculated and the resultant sums of Z and V  are displayed in 

Table 3.5.
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Table 3.5: Summary of the cumulative score statistic, Z and information, V, using the 

five methods numbered 1 to 5 (Table 3.3).

Method Z V Z 2/V z N v p-value 0  = Z / V
1 3.22 3.58 2.895 1.701 0.089 0.899
2 3.22 3.70 2.801 1.674 0.094 0.870
3 3.58 4.44 2.882 1.698 0.090 0.806
4 3.58 4.42 2.896 1.702 0.089 0.810
5 3.58 4.56 2.802 1.674 0.094 0.784

As anticipated, the multiplier effect of qrlo being introduced by the

complementary log-log approach (Methods 3 to 5) yields higher values of Z compared 

to those based on the log-odds ratio (Methods 1 and 2). Comparing the values of V, 

the largest amount of information is given by Method 5, in which a hypergeometric 

distribution is assumed. Under the null hypothesis of no treatment effect, Z IV follows 

the chi-squared distribution on 1 degree of freedom. The 2 sided p-values are shown 

in Table 3.5, indicating positive outcomes for this exploratory trial where a 

significance level of 10% level (two-sided) was being sought. On comparing Methods 

2 and 5 which are both based on conditional likelihood, their p-values, and logrank 

test statistics are almost the same. Assuming d\ = 62  — @3 = 0, then the treatment 

advantage can be estimated by Q = Z / V .  It is observed that Method 5 gives the 

smallest estimate of treatment advantage compared to other methods. Nevertheless, 

this investigation gives a good indication as to the applicability of all five methods 

which are to be further compared on a bigger scale in Section 3.4.
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3.3. Power Specification of a Clinical Trial

With reference to Section 1.7 earlier, equation (1.19) can be applied in this study 

design. It is to be noted that in this chapter, r is used to denote sample size which is 

the same as the number at risk of an event at time 0. From equation (3.16) based on 

the logit link, Fisher’s information, V = rErco(r~o)/r3. In cases of equal sample size on 

each treatment arm, t e - v c -  r/2 and olr = p, where p  is the average probability of 

occurrence; therefore

y  _ °(r ~ 0) _ P<\~P)r (3.26)
Ar A

Using equation (3.24) based on the complementary log-log link, V = q2(r -  c^rgrdor, 

and with similar treatment allocation,

q 2( r - o ) r  {—log(l -  p )}2 (1 -  p)r (3.27)
Ao Ap

For the calculation of sample size, equation (1.19) can be used to find V, and then 

equation (3.27) to convert to r, the required sample size, given by

4V p /^{- \og (l-p )}2 p) . Both approaches can be used to calculate the required

sample size, but only the one based on the complementary log-log link is used in this 

design.

In this study, the determination of the sample size is based on commonly used 

error probabilities for clinical trials. The probability of type I error, a is chosen as 

0.025 (one-sided) and the probability of type II error, is targeted at 0.10, hence the 

power of the test (1 - fi) is 0.90. The probability of an event occurring under the 

control treatment, p c is fixed at 0.60, while its experimental counterpart, pE under the 

alternative is varied from 0.35 to 0.55 in 0.05 increments. Based on the
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complementary log-log approach, the reference improvement is given by 

0R — —l°g{—log(l — p£.)} + log{—log(l — pc)}. Taking the individual probabilities for control

and experimental groups, an average probability of occurrence is estimated by p  -  ( p c  

+ pe)I2 and the required sample size r is calculated as displayed in Table 3.6.

Table 3.6: Sample sizes, r, determined from the power calculation approach, for each

of the five methods.

Method P c P e P 0 R y* r
1 0.600 0.350 0.475 0.755 18.45 162
2 0.600 0.400 0.500 0.584 30.78 256

3 0.600 0.450 0.525 0.427 57.64 460

4 0.600 0.500 0.550 0.279 134.93 1036

5 0.600 0.550 0.575 0.138 555.18 4104

As anticipated, a bigger sample size r is needed to show significant results 

when the treatment advantage, Or  is smaller. The values in the above table are used in 

the simulation study described next.

3.4. Simulation and Results

To investigate the accuracy of the values derived in Table 3.5, a simulation study is

conducted to verify the type I error rate and the power of the test to detect treatment

advantage at the 2.5% (one-sided) significance level. The data sets of specified sample

sizes (Table 3.6) are generated from a binary distribution and randomized to control

and experimental groups based on equal treatment allocation. Under the null

hypothesis of no treatment effect, the same failure probabilities are applied for both

treatment groups, that is p c  = P e , while those values shown in Table 3.6 ( p E <  p c ) are

used for the case under the alternative hypothesis. A scenario of half the treatment

advantage is also simulated to evaluate the resulting effect on the power of the test.
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Investigation begins with data for the individual fixed sample sizes for the 

targeted power to detect the desired significance level and simulated under both the 

null and alternative hypotheses. For each data set, simulations of 20,000 replicates are 

conducted to verify the type I error and the power of the test, with results shown in 

Table 3.7 below. All methods are applied to the same data sets for their comparison 

purposes. Under the null, the average p-value (denoted by p_vo) should be very close 

to 0.5 as the mean for a distribution ~ U (0, 1) equals Vi, while the proportion of p- 

value < 0.025 (denoted by indo) is the type I error. Under the alternative hypothesis, 

the proportion of p-value < 0.025 (denoted by ind\) illustrates the power of the test: 

the degree of certainty that the treatment difference, 6, if present will be detected.

Table 3.7: Results for the average p-value and type I error using each of the five 

methods, simulated under the null for each sample size r.

r 0 Results Method 1 Method 2 Method 3 Method 4 Method 5

p_v o 0.499 0.499 0.499 0.499 0.499
162 0

indo 0.023 0.023 0.023 0.023 0.023

P -v 0 0.500 0.500 0.500 0.500 0.500
256 0

indo 0.026 0.026 0.026 0.026 0.026

P -v 0 0.500 0.500 0.500 0.500 0.500
460 0

indo 0.025 0.025 0.025 0.025 0.025

P -v 0 0.501 0.501 0.501 0.501 0.501
1036 0

indo 0.029 0.029 0.029 0.029 0.029

p _ v 0 0.501 0.501 0.501 0.501 0.501
4104 0

indo 0.026 0.026 0.026 0.026 0.026

N.B. Text in bold highlights an out of limit situation.

As illustrated in Table 3.7, under the null hypothesis, type I error rates are 

found to be within the 95% probability interval of (0.022, 0.028), except for those of 

sample size 1036 when they slightly exceed the upper limit (0.029 in bold). Note that



the normal approximation of 0.025 in reality is not perfectly exact. All five methods 

give exactly the same average for p-values as well as for type I error rates at three 

decimal points significance. However, further checking reveals that not all the values 

of Z and V were identical; coincidentally the proportion of p-values < 0.025 happened 

to be exactly the same to 3 decimal places.

Table 3.8: Results for the average p-value and power using each of the five methods, 

simulated under the alternative for each sample size r.

r e = e R Results Method 1 Method 2 Method 3 Method 4 Method 5

p_v i 0.012 0.012 0.012 0.012 0.012
162 0.755

ind! 0.896 0.896 0.896 0.896 0.896

p_v i 0.011 0.011 0.011 0.011 0.011
256 0.584

ind ] 0.901 0.901 0.901 0.901 0.901

p_v i 0.011 0.011 0.011 0.011 0.011
460 0.427

ind i 0.899 0.895 0.905 0. 899 0.895

P-v l 0.010 0.010 0.010 0.010 0.010
1036 0.279

ind i 0.902 0.902 0.902 0.902 0.902

p_v i 0.011 0.011 0.011 0.011 0.011
4104 0.138

ind j 0.900 0.900 0.900 0.900 0.900

N.B. Texts in bold highlight different values observed.

Under the alternative, where 6 = O r  (Table 3.8) for all sample sizes p-values < 

0.025 lie within the 95% probability interval of (0.894, 0.906) based on the power 

target of 0.90 specified for the complementary-log-log approach. Apparently, the 

probability intervals seem to be applicable also to the log-odds ratio counterpart 

(Methods 1 and 2). All approximation methods give the same values except for those 

highlighted in bold text, where Method 3 yields slightly higher power than Methods 1 

and 4, then followed by Methods 2 and 5. In the case of observing only half of the 

treatment advantage, the results are shown in Table 3.9.
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Table 3.9: Results for the average p-value and power using each of the five methods 

simulated under the alternative (half the treatment advantage), for each sample size, r .

r 0 = Vi0R Results Method 1 Method 2 Method 3 Method 4 Method 5

P -v 0.5 0.121 0.121 0.120 0.121 0.121
162 0.377

ind Q̂5 0.381 0.381 0.381 0.381 0.381

P-V 0.5 0.126 0.127 0.126 0.126 0.127
256 0.292

ind 0.5 0.368 0.368 0.368 0.368 0.368

P-V 0.5 0.110 0.111 0.110 0.110 0.111
460 0.214

ind 0 .5 0.421 0.419 0.423 0.421 0.419

P-V 0.5 0.123 0.124 0.123 0.123 0.124
1036 0.14

ind 0.5 0.361 0.361 0.361 0.361 0.361

P-V 0.5 0.084 0.084 0.084 0.084 0.084
4104 0.069

ind 0.5 0.494 0.494 0.494 0.494 0.494

N.B. Texts in bold highlight different values observed.

The results of all approximation methods achieve exactly the same power 

values, except for the case of the sample size 460 where values were slightly lower 

than those of Method 3. Halving the treatment advantage appears to reduce the power 

of the test to as low as 36% ( r  = 1036). While earlier results a t  0  =  0  and 6  = O r  failed 

to show any differences among the methods, however at 0  =  V i O r , it now appears that 

Method 1 always yields exactly the same result as for Method 4, and likewise for 

Methods 2 and 5. While Table 3.7 and Table 3.8 earlier show that all methods gave 

the same p-values, Table 3.9 reveals that the p-values actually do vary. Despite the 

fact of these methods being mathematically different, they tend to generate identical 

results for average p-value and type I error rate or the power of the test.
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3.5. Discussion

In conclusion, the simulation results have shown no appreciable difference between 

the approximation methods, despite small differences observed using real data sets 

earlier. All five methods have achieved the intended type I error rates under the null 

hypothesis, and yielded accurate powers under the alternative. The efficient score 

using the complementary log-log approach shows a multiplier of magnitude (qr/o) of 

that derived on the basis of the log-odds ratio. The Fisher’s information using the 

former approach has a multiplier of (qr/o)2 compared to that using the latter.

Essentially, interval-censoring can be regarded as a case of missing data. 

Independent or random censoring relates to the mechanism of missing completely at 

random (MCAR), while the most common assumption of non-informative censoring 

corresponds to missing at random (MAR). Meanwhile informative censoring is due to 

the non-ignorable mechanism of missingness. Coarsening at random (Heitjan and 

Rubin, 1991) is another topic that is closely related to interval censoring. 

Consequently, the imposed stratification allows different proportional hazards within 

intervals, thus making interval-censored data less rigid than the continuous data.

At present, methods of estimation for interval-censored data are readily 

available to handle cases where data are independent (Section 1.3). However, methods 

for correlated interval-censored data are not well developed. Statistical methods for 

the analysis of covariate effects on interval-censored discrete survival data are needed 

since these data frequently arise in clinical trials and other biomedical studies 

involving periodic monitoring of patients for multiple outcomes. This comparison of 

methods in the derivation of Z and V sets the foundation for further work in the 

estimation of the correlation between two score statistics for interval-censored 

survival data using the complementary log-log approach (Method 5).
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Chapter 4. The Correlation between Two Score Statistics

The main objectives of this chapter are to derive an estimator for the correlation 

between two score statistics arising from interval-censored survival data in the 

absence of covariates, and illustrate its applications to real data. The theories 

described in the earlier chapters which form the building blocks of this study, are now 

put together in this core chapter.

To begin with, a description of bivariate survival data relating to correlated 

outcomes is given in Section 4.1. A global test approach is applied to interval- 

censored survival data in Section 4.2. In Chapter 3, the efficient score and Fisher’s 

information were derived on the basis of the complementary log-log link and were 

then applied to binary data. An adaptation to interval-censored data is now provided in 

Section 4.3, with a procedure for the derivation of an estimator for the covariance 

between two score statistics, which consequently gives an estimator for the 

correlation. A description of common bivariate survival data then follows.

The estimation of an overall treatment effect is provided in Section 4.4. The 

proposed method is then applied in Section 4.5 to non-recurrent real data sets from 

various clinical trials. Recurrent events are next described based on some key model 

components, followed by an application of the proposed method to a recurrent real 

data set, in Section 4.6. An overall discussion is given in Section 4.7.
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4.1. Bivariate Survival Data

Clinical trials are often conducted to compare two or more treatment groups with 

regard to their efficacy. Efficacy, for the purpose of this comparison, is often 

measured by more than one patient response, thus leading to multivariate data. 

Existing univariate methods can be employed for assessing each variable 

characteristic, but often an overall objective measure to quantify the efficacy is still 

required. As described in Chapter 2, global tests are becoming the methods of choice 

in stroke studies, to detect differences between groups when multiple endpoints are 

concerned. Bivariate survival data involves two endpoints which cannot be assumed to 

be independent, and one of the main interests in the analysis of bivariate survival data 

is the measure of dependence or association of these two variables. The complexity of 

studies concerning such correlated times-to-event which may involve multiple 

endpoints on the same subject, requires methods to take into account the correlation 

between multiple endpoints. For such data, the correlation between two score statistics 

can be used to obtain an overall treatment efficacy, which is central to this study.

Outcomes are regarded as correlated if one occurrence is dependent on the 

others. An example of such correlated occurrences is provided by time to 

cytomegalovirus (CMV) shedding in blood and time to CMV shedding in urine 

observed in an AIDS clinical trial on HIV-infected individuals. Similarly, time to 

disease progression (a pathological condition characterized by identifiable symptoms) 

and time to death for a cancer patient are also correlated. Another situation is present 

when the event times of several individuals are somehow related; for example 

lifespans of twins, or married couples who are exposed to the same household 

conditions. Correlated outcomes also arise from similar organs of a person, such as 

blindness in left and right eyes or failure of both the left and right kidneys of a chronic
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diabetic patient, cartilage loss of left and right knees or failure of both the left and 

right hip joint replacements for an osteoarthritis patient. Another common type of 

correlated outcome is recurrence, for example, event times of the first and second 

asthma exacerbations, or of tumour recurrences of a bladder cancer patient.

In dealing with correlated survival outcomes in cross-over trials, fixed effects 

models can be applied by fitting Cox’s proportional hazards regression model 

stratified by subject. However, in parallel group trials where patients are randomized 

to experimental and control treatments, as considered in this study, these methods fail. 

To overcome this difficulty, recourse can be made to one of two methods, namely 

marginal and frailty modelling. Marginal modelling involves fitting data to Cox’s 

regression model without any assumption of correlation, and then adjusting the 

estimated variance of the coefficients. This type of model, which relates to our 

approach, is later described in Section 6.1.1. A frailty model is a random effects model 

for event time data where subject effects are modelled as random variables; a good 

description is given by Hougaard (2000).

4.2. Adaptation of the Global Test to Interval-censored Survival Data

In Chapter 2, global test methodology was demonstrated in the context of multiple 

binary endpoints involving stroke data. In this section, the methodology is applied to 

bivariate interval-censored survival data. An instance of univariate interval-censored 

survival data was illustrated in Section 3.1.2 earlier, with consideration of multiple 

intervals. Referring to the 2 x 2 tables given in that section (Table 3.1 and Table 3.2), 

similarly the measure of treatment advantage given by the log hazard ratio, 

6 = -\og{hE{t)lhc(t)} is assumed to be constant over all times t. This method of
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combining the 2 x 2  tables for univariate interval-censored survival data is now 

extended to the bivariate case, invoking the proportional hazards assumption.

This study considers three types of real bivariate survival data. The first type 

involves failure of similar physically related parts or paired organs: for example, 

right/left hip of an individual. The second concerns time to related events or 

indicators: for example, time to disease progression and time to death of a patient. The 

third involves recurrent events, where the same event can happen several times for an 

individual: for example, tumour recurrences. The first two types do not involve 

distinct ordering and hence are simpler than the third. These cases are termed paired, 

general and recurrent events respectively. Complete (uncensored) bivariate data are 

also examined for comparison purposes. Further descriptions of these data types and 

their classification are given in the subsequent sections, within the context of 

correlation between two score statistics.
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4.2.1. Bivariate Interval-censored Survival Data

Suppose now that there are two endpoints of interest, giving two failure times, say T\ 

and 72, with each patient’s two outcomes recorded for each of a series of prespecified 

time intervals. To describe this scenario fully, the following notation is necessary, 

where

r\i = no. of patients at risk of event 1 at the end of interval i, 

ou = no. of patients who had event 1 at the end of interval i, 

r2j = no. of patients at risk of event 2 at the end of interval /, and 

02j = no. of patients who had event 2 at the end of interval j.

The combined outcomes relating to any pair of intervals t,•) and (/}.], tj) can be

presented in Table 4.1. Note that this table is similar to Table 3.2, except that the 

counts of outcomes are now for combined variables. The abbreviations, FF and SF 

respectively refer to the number of patients who failed for both events and those 

succeeded for event 1 but failed for event 2. A similar convention applies for FS and 

SS. In reality, most survival data naturally involve censoring. Say the event times, T\ 

and 72 are subject to their own censoring with variables Ci and C2 accordingly. The 

consequences of such a censoring mechanism may result in patients missing T\, or T2 

or even both, and this can be summarized in Table 4.1, where M  denotes the censored 

or missing outcome.
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Table 4.1: A 2 x 2 contingency table of censored bivariate data for patients on control

for each time interval.

For control occurence in (t - b  U)

TotalFailure Success Missing

t 2 Failure FF SF MF ° 2 j C

occurence in Success FS SS MS r  2 j C - ° 2 jC

(tj.i, t j) Missing FM SM MM m  2/C

Total °  \ iC r  \ i C - °  1/C m  1 iC ?

The question mark at the bottom right comer of Table 4.1 is intentionally inserted to 

emphasize that the total number of patients at risk of event 1, event 2and of both, may 

no longer be the same when survival data are censored. Focussing only on the failures 

and successes in the paired (if) intervals, further notation follows:

0 (i2),(y) = no. of patients who had event 1 during interval i and also had

event 2 during interval j,

r0 2 )Uj) = no- Patents at risk of event 1 at the end of interval i and

also at risk of event 2 at the end of interval j,

°(i*) (y) = n0‘ Patients w^° had event 1 during interval i and also at

risk of event 2 (but did not have event 2) during interval j, and

° ( . 2 )  a j )  =  n o - Patients who had event 2 during interval j  and also at

risk of event 1 (but did not have event 1) during interval i.

From Table 4.1 (for control), the number of patients who had both events 

°(i2) me  is given by FF and the number at risk for both events, r{X2) iij)C is given by the

sum of FF, FS, SF and SS. Within the same risk set, o(l.Wj)C = FF + FS, and o(m2)(ij)C =

FF + SF. When the events are related, the marginal contribution of individual event 1 

during interval i, and event 2 during interval j, and the combined contribution of both
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events from the paired ij intervals are required to derive the correlation between two 

score statistics.

4.3. The Correlation between Two Score Statistics

Correlation is a measure of association estimated by the correlation coefficient, often 

itself abbreviated to ‘correlation’, and this terminology is used throughout this thesis. 

As with all types of data, techniques are required for analyses performed on correlated 

survival data. Such a technique is not as simple as those established over the past few 

decades for continuous and binary data. Our proposed method offers a straightforward 

account of such correlation. This section describes the theories and procedures 

involved in deriving various estimators of the parameters of interest; namely the 

covariance and the correlation between two score statistics, Z\ and Z2.

The proposed method is a marginal modelling, an approach where the effect of 

explanatory variables is estimated on the basis of the marginal distributions. In 

survival applications, the related events are usually assumed to be independent or to 

have some other imposed structure and existing models are often fitted to Cox’s 

model described in Section 3.1.1. The subsequent section demonstrates our direct 

approach to the estimation of the covariance and correlation between two score 

statistics.
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4.3.1. Derivation of Estimators for Covariance and Correlation

Assuming independent events for bivariate interval-censored survival data, the values 

of Z and V  can be obtained for each event by using Method 5 (Table 3.5). As 

described in Section 2.2, the covariance between two score statistics is denoted by 

cov(ZM, Zv), where u, v = 1, 2 now denote two survival endpoints. The covariance 

between the score statistic with respect to event 1 during interval i and the score 

statistic with respect to event 2 during interval j, is given by cov(Zi,-, Zij) = E{Zu Z2;) -  

E (Z u)E(Z2j). Upon substituting the expressions for Z as per equation (3.22), we get

where the covariances between the numbers of failures for event 1, and those for event 

2, on experimental and control, are each conditioned on the total numbers of events, 

ou and 02j respectively. Such conditioning on the margins for bivariate data is based 

on the familiar construction of a 2 x 2 table depicted in Table 4.1 earlier. For bivariate 

survival data, the covariance between the total numbers of failures for event 1, and 

event 2, respectively for the subjects on control is given by the covariance between 

individual failures summed over their risk sets:

(4.1)

•tic

=  C O V ( X  SUgCX UgC , 2 ,  S 2jhCX 2jhC 1 ° U  ’ ° 2 j  )

i=l
(4.2)
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where XligC -  ] if event 1 occurred in ith interval to gth patient on C,

0 otherwise,

SUgC = 1 if gth patient on C is at risk of event 1 in z'th interval,

0 otherwise,

and ruc = no. of patients on C who are at risk of event 1 in ith interval.

A similar convention is applicable for patients in the experimental group and 

also for event 2, as denoted by the subscripts E  and 2 respectively. The individual 

outcome is a random variable Xngc, which follows a Bernoulli distribution with 

parameter pwc, that is the probability of a patient in the control group for whom event

1 had occurred in the Ith interval. XUgC ~ Bem(puc) , and therefore, E(XUgc) = puc,

while E{XljhC) = p2jC accordingly. Note that cov(XUgC,X2JhC) =0 if g ^  h, for different

individuals. Otherwise, for the same patient for whom both event 1 and event 2 had 

occurred,

co v(XlisC,X 2jlC) = E(XUgCX 2ilC) - E ( X Utcm X 2ilC), (4.3)

where

(XUgCX 2JgC)= 1 if the gth patient on Chas experienced both event 1 and event 2,

0 otherwise.

Similar to the case where the gth patient on C only experienced either event 1 

or event 2, the random variable XugcXygc also follows a Bernoulli distribution with 

parameter pnaj)c, which is the probability that for the gth patient on C both event 1 and

event 2 had occurred. (XligCX2jgC) ~ Bem{pm)C), and thus the expected value is 

E(X X ) = p The covariance of the outcomes for both events for the same
^  l igC  2 j g C '  * 12C ’
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individual on control can be approximated by cov(Xugc,X2jgc) = pamc - p ucpljc and

similarly on experimental, c o = PI2W£ ~ pIi£p2/, . From equations (4.2) and 

(4.3), the covariance is given by

COV( ° \ i C ’ °2 jC  I °1 i ’ ° 2 j )  =  r\2Jij)c(P\2Aij)C ~ P \ i c P 2 j c ) ’ (4-4)

for sample sizes of rue, , rye, and, rnypc for control and similarly for experimental, as 

already defined. Under the null hypothesis, the probabilities of occurrences of both

events on C and E  are equal: Pmij)C -  PnmE ~ Pn,(U) > where pXUij) is the estimated 

average probability of occurrence of both events during ith and / h intervals. Similarly 

for the probabilities of occurrence of individual events, puc = pUE ~ pu, and

Pijc ~ Pije ~ Pij where pu and p 2J are the estimated average probabilities of occurrence

of event 1 during the iih interval and event 2 during / h interval respectively. 

Substituting these estimates into equations (4.4) and (4.1) consecutively, the 

covariance between the two score statistics is estimated by

CO V(Z,.,Z2y) = ~  { ( r U E r 2 j E r (l2 ) ,U j)C  +  r \ iC r 2 j C r ( \ 2 ) X i j ) E ^ P { \ 2 U i j )  ~  A< •),«/) A*2),((/) 1
° U ° 2 j  (45)

Further, the probability of occurrence of both events can be approximated by 

the proportion of the number of occurrences from the number at risk:

h n m =% m lrmuD' and similarly for individual events, P0.)i(U) = riUUj) and

pw m - o w m !r(mij). Plugging these estimates into equation (4.5), the covariance

estimator, denoted by Cn(ij) is written as



The covariance between two score statistics can be directly calculated from the 

observed events and the numbers at risk for individual i and j  intervals as well as the 

paired ij intervals. Equation (4.6) is of the utmost importance in this research. 

Conditioning on the successive risk sets, the covariance estimator between two score 

statistics, Cn  is obtained by the summation of the covariances from each pair of 

intervals, denoted by Cnaj) as in equation (4.6). In the case of interval-censored data, 

the covariance of each pair of intervals is summed to give the total covariance:

^ 1 2  = 'Yj'YjCmij) •

/ = i  j - \

It can be shown that for very large samples n —> 00, Vi —> var(Zi), V2 —► 

var(Z2), and the estimate C12 —*• cov(Zi, Z2). In this study, our prime interest is in the 

estimator for cov(Zi, Z2), which subsequently gives us the estimator for the correlation 

between the two score statistics. Fundamentally, the correlation between the two score 

statistics is given by the division of their covariance by the square root of the product 

of their variances. As in Section 1.4, the variance of Z can be approximated by 

Fisher’s information V; hence the correlation is expressed as

/? = cov(Zj,Z2) / (4-7)

Therefore, the correlation p  between these two score statistics, can be estimated by

p = cl2/Jvy2. (4.8)

In equation (4.6), the covariance formulation comprises two distinct parts. The

first concerns marginal variables of qu Oi and r,, while the second involves the

combined or paired intervals with subscripts 12. As the number of marginal failures,

Ob approaches very small values relative to the number at risk, ru the quantity q f= -log

(1 -Oi/ri) « Oi/ri. Consequently, the marginal failures cancel out, leaving only the

combined failures and the various risk sets. This implies that with heavy censoring,
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the contribution of the marginal failures diminishes and the estimator relies largely on 

the risk sets and the combined failures.

To illustrate the techniques developed, three real bivariate survival data sets 

are showcased in Sections 4.5.1, 4.5.2 and 4.6.2. First, a description of unordered 

(non-recurrent) events is presented in the context of randomized clinical trials.

4.3.2. Paired Organs

The human anatomy includes many paired parts or organs and such pairs are 

inevitably associated to some extent. The case of paired organs concerns two event 

times for the same individual, and thus only one censoring variable applies, if 

censoring is by death. Consider a study of times to failure of non-simultaneous joint 

replacement of the left and right hips of an osteoarthritis patient. Suppose T\ is the 

time to failure of the left hip, and T2 is the time to failure of the right hip. Figure 4.1 

shows the possible scenarios for the paired case on a total time scale, where Cl to C3 

represent possible censoring scenarios.

Figure 4.1: Various censorings for the paired case, an example for T\ and T2 of left

and right hips respectively.

C l
1

C2 C3
1

1 *1 1
1

!
1

1 *2 !

For scenario Cl, the patient is censored for both events and t\ = t2 = c 1, while 

for C2, where t\ < c2 < t2, the left hip failure occurred at t\ but the right hip was 

censored at t2 = c2. Meanwhile, in scenario C3, both events occurred when censoring 

time exceeds both Tx and T2: t\ < h < c3 as shown above. An example of a study
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involving the survival of paired organs is provided by a case of non-simultaneous 

bilateral hip fractures, which reportedly occur, on average, five years apart from each 

other (Gaumetou, Zilber and Hemigou, 2011). For a hip fracture, an artificial hip joint 

replacement is the common treatment, and the time from hip replacement to its failure 

in each case, is also of interest. An example of such a study is illustrated in Section

4.5.1. In general, five of the major paired organs often studied are the breasts, lungs, 

kidneys, testes and ovaries (Roychoudhuri, Putcha and Moller, 2006). The importance 

of paired organ analysis justifies its inclusion as a case to be examined in this thesis.

4.3.3. Generally Related Events or Indicators

In clinical trials, often there are different measurements or indicators used to assess 

the effect of treatment on patients. For example, a cancer patient may be assessed on 

time to disease progression, T\, or time to death itself, 7?. In this thesis, such a case is 

termed generally as having related events or indicators. Another common case 

involves time to a certain event (for example death) for subjects who are related, such 

as twins or married couples or co-workers, who have been exposed to a similar 

environment. Say T\ is the lifetime of person 1 and T2 is the lifetime of person 2. In a 

study of the lifetimes of married couples, a clear choice for the assignment of 7j and 

T2 is often determined by gender. However, in the case of twins, T\ may be artificially 

assigned to the elder sibling and T2 to the younger; the choice can also be based on 

other factors deemed more appropriate. The basis for selection has its importance in 

the comparison of analyses and thus should be explicitly described by researchers.

Such cases therefore involve independent censoring variables; say C\ and C2 

which give different numbers for the subjects at risk of individual failures, as well as 

for those at risk of both failures: rxc + ric + m e,  for control treatment. Similar
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expressions are applicable to the experimental group. An example of this general 

censoring for the first failure for interval-censored data is depicted in Figure 4.2 where 

X  and C indicate the occurrence of an event and a censoring respectively.

Figure 4.2: Example of possible outcomes for the first failure, as measured by T\ for

generally related indicators.

1
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0

thFor each subject at each i interval, there are four possible outcomes as 

indicated by the numbers on the left. As shown above, for outcome 1, the patient 

failed during interval 1, outcome 2: survived interval 1 and failed during interval 2, 

outcome 3: censored during interval 1, and outcome 4: survived interval 1 and was 

censored during interval 2. Note that only subjects with outcomes 1, 2, and 4 are 

considered to be at risk during interval 1 since subjects with outcome 3 have been 

censored before completing the 1st interval. The above diagram only shows outcomes 

for event 1 relating to T\, and for each of these outcomes, its corresponding outcome 

for event 2 relating to T2 can also take any of the four possibilities. Note that for the 1st 

interval, outcomes 2 and 4 are considered as successes. There are, in all, nine possible 

outcomes which contain both outcomes relating to 7j and T2 at any i interval of 7j, 

a n d /1 interval of T2, as displayed in Table 4.1 earlier.
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4.3.4. Progression-Free Survival

In recent years, progression-free survival (PFS) has been increasingly accepted as the 

surrogate endpoint for overall survival (OS) in oncology trials. OS is defined as the 

time from randomization until death from any cause, while PFS refers to the time 

from randomization until tumour progression (TTP) or death from any cause, 

whichever occurs first. TTP considers the time from initial therapy to first evidence of 

tumour progression (either objective radiographic documentation or clinical 

deterioration). For more precise definitions of PFS and TTP, the reader is referred to 

the guidelines for criteria such as RECIST (Therasse et al., 2000, and Eisenhauer et 

al., 2009) for solid tumours.

An example of a PFS study is available in Lim et al. (2011) where the primary 

objective was the assessment of the PFS rate after 12 weeks of treatment with 

Cetuximab plus irinotecan in pretreated metastatic colorectal cancer patients. 

Secondary objectives included further evaluation of PFS, time to treatment failure 

(TTF) and overall survival time. PFS was defined as the time from the first study 

medication to the first observation of radiologically confirmed disease progression, 

symptomatic deterioration leading to discontinuation of the study treatment (unless 

imaging confirmed absence of progressive disease), or death due to any cause.

Increasing interest in PFS analysis is evident from the number of papers 

published within the past decade. A search in the Web o f Science for “progression- 

free survival” in the title shows that between years 1990 and 2000 only 13 of 20 

articles published were in the subject area of Oncology. As of late March 2011, a 

similar search between years 2001-2011 reveals a dramatic ten-fold increase with 128 

of 188 articles published in Oncology. The prominence of PFS analysis justifies its 

consideration in this research study.
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4.4. Estimation of an Overall Treatment Effect

As mentioned in Chapter 2, a key question in a clinical trial involving multiple 

endpoints concerns the magnitude of the overall treatment advantage. Suppose the 

parameter of interest corresponding to treatment is the log hazard ratio denoted by 6. 

Under the null hypothesis that the two treatment groups have identical survival 

experience, the experimental has zero treatment effect and the proportional hazards 

assumption is true. There exists a common treatment advantage, 6X=00 = 6 and under 

Hq. 6 — 0\  hence p-values are always valid. However, under the alternative, H\\ 

0l =02 = 0 , but 0 * 0 .  The logrank test is efficient in detecting such a proportional 

hazards alternative. When the assumption of equal treatment effect is met, the 

complex multivariate problem of analyzing the multiple endpoints is simplified to the 

univariate problem of comparing the common effect across the treatments. Even if the 

equality assumption is not met, the power should be good if the spread of 6 is 

reasonably small.

The estimated common treatment advantage is given by 6 -  wx0x + w202

where w is some weighting with subscripts 1 and 2 for the 1st and 2nd events 

respectively, and wj + W2 = 1. Two ways can be employed to estimate a common 

treatment advantage; the simplest being to take the ratio of the global score statistic to

its variance: 6* = Z * IV * . As for its marginal counterparts, the variance of 6 * is 

simply given by 1/V*. From the expressions for Z* and V* in Section 2.1.1, Z* = 

Z+V+/var(Z+) and V* = V+2/var(Z+). The effect of var(Z+) which contains the 

covariance cancels out, leaving only the ratio of a sum of Zs to a sum of Vis, and hence 

0* = (Z x + Z 2) / (Vx+V2) . This estimate is equal to wl(Zl /Vj) + w2(Z2 / V2) for the

weights
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y+v2’vt+v: (4.9)

2 J

Notice that the weighting in equation (4.9) is a direct form of the proportion of the 

variances and is ideal for independent endpoints.

Alternatively, when endpoints are not independent, it is possible to derive an 

optimal weighting (Wei and Johnson, 1985), which yields the smallest variance out of

all weighted averages of 0, and 02. From the common formulation: 0  — wx0x + w202,

the variance is given by

w i2 , w i  , 2W|W2C|var(<9) = — + -J -  + 12

v, v2 vyt

where Vx = var(Z,), V2 = var(Z2)and C12 =cov(Zp Z2) as described in Section 4.3.1. Let

the variance of 0  be a function of w\:

« w.2 (1-w.)2 Iw ^l-w ^C y
f(w l) = v ar0 = - ^  + ------ 1— + 1 1 '■vv* 1  2

Upon simple differentiation with respect to wi, and setting its derivative to zero, the 

optimal weighting is given by

( w „ w 2)
y,-c,12 V2 - C I2

V , + V 2 - 2 C12 V, + V 2 — 2C,12 J

A

Using the weighting in equation (4.10), the variance of 0  is given by

(4.10)

VV2 - C l2
var(0)  =  — ------------------------------------------------------

V1V2(Vl +V2 - 2 C 12) (4.11)
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This variance is the ratio of unity minus the square covariance to the sum of 

variance-covariance. It is to be noticed that equation (4.9) is identical to equation 

(4.10) when the covariance is zero. For comparison purposes, both standard and

optimal estimates of the overall treatment advantage, 6 * and 0 respectively, are 

reported in the data analyses performed in the subsequent sections. It is to be recalled 

from equation (1.16) that 0 = -log{-logS'£(O} + log{-Tog1S'c(f)} and a positive value 

indicates superiority of treatment E over treatment C. In this thesis, 9 - - f i  where /? 

is the coefficient of the regression, given by the S AS PROC PHREG procedure, when 

E  is given a bigger coding integer than C. For example, treatment E is coded as 1, 

while C is coded as 0, as is commonly practiced. An example is shown later in 

Chapter 6.

4.5. Application to Real Data: Non-recurrent Events

The proposed method is illustrated by application to two data sets from previous 

clinical trials: hip revision and cancer. Prior to any processing, each raw data set is 

examined using the existing standard survival analysis tools which are described in the 

next section. Upon gaining more knowledge about the data set itself, the actual 

procedure of the proposed method is carried out. The bivariate survival endpoints are 

first categorized into multiple intervals; as if they were interval-censored data and the 

marginal estimates of the treatment effect can be obtained from the expression 6 ~ 

Z/V. The covariance is then obtained directly from the two survival endpoints, say T\ 

and T2, using equation (4.6) as derived in Section 4.3.1. The following analyses have 

been conducted using specially written SAS programs. The programs were written 

primarily to enable calculation of Z, V, C]2 and consequently the correlation estimate
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p  . For application to the real data, the significance test level is arbitrarily set at 2.5% 

(one-sided) for convenience.

The selection of specific cut-off points to define the time intervals is aspect 

important in ensuring minimal loss of information while achieving a reasonable 

covariance estimate, Cn. Coarse intervals may result in loss of information, and 

overestimation of the treatment effect, as <9 = Z IV  . Finer intervals may contain more 

information, but may lead to less reliable parameter estimation if the number of 

failures in each interval is too small. How do we strike the right balance? In this study, 

the interval setting is based on equal distribution of failures for each event type. To 

determine an appropriate number of intervals for analysing survival data using our 

method, an exploration is undertaken in the subsequent sections. In the meantime, for 

the purpose of illustration, a convenient choice of intervals is made for each data set. 

A step-by-step explanation is given for the first data set, while others are described 

more concisely. A complete set of SAS codes for the analysis of real data, using the 

proposed method, is given in Appendix A.

4.5.1. Paired Organs: Hip Replacement Revision

A hip replacement data set from Young Patient study, which is currently on-going at 

the Centre for Hip Surgery, Wrightington Hospital, is used to illustrate the method for 

paired organs. The data have been collected over 40 years from patients who have had 

revision of artificial hip joints, known as Charnley low-friction arthroplasty, LFA 

(Wroblewski and Siney, 1992). As with a natural hip, the artificial joint is subject to 

wear and tear; hence requires a revision. Revision is defined as exchange or removal 

of one or both components consisting of a plastic cup and a metal stem.
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In this analysis, only 342 bilateral patients who had revisions on both hips are 

considered. Since the data were not taken from a randomized trial, the factor of 

interest will be taken to be the positioning of the cup in relation to the acetabulum: a 

“socket” formed by the cavity in the pelvic bone. We consider treatment 1 for when it 

is located in the acetabulum (Medial) and treatment 2 for when the cup is located 

either on the rim of the acetabulum (Rim) or when a part of the cup is not supported 

by the bone (Uncovered). There should be no treatment difference in this setting as the 

two “treatments” are generally considered to be equivalent. A schematic diagram 

showing the basic components of Chamley’s LFA, namely the stem, ball and cup, is 

given in Figure 4.3.

Figure 4.3: A schematic diagram o f the basic components o f Chamley’s LFA.
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The hip data contain the following variables: ID = patient's identification, Hip 

= hip number (1 = 1st hip, 2 = 2nd hip), Opdate = time of the hip replacement surgery 

for Hip 1 or 2, Revdate = time of the hip revision, or last follow-up time if the hip 

revision does not occur, Status = event status (1 = revision, 0 = censored) and Cup 

positions (1 = Medial, 2= Rim/Uncovered) are taken as treatments. It is noted that the
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hips were not revised simultaneously and the ordering is by time of hip revision: the 

time to revision of the first hip is considered as T \ ,  while that of the other hip is T 2 .

Prior to further preparation, the raw data were first examined for survival 

functions, median survival times, hazard functions and censoring proportion by using 

the PROC LIFETEST procedure and fitting to Cox’s model, via the PROC PHREG 

procedure. The Kaplan-Meier plots of survival distributions for T \  and T 2 are given in 

Figure 4. 4, and Figure 4.5 respectively.

Figure 4.4: Survival distribution for time to left hip revision, T \  in years, stratified by

the cup position (cup_pos).
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Figure 4.5: Survival distribution for time to right hip revision, T 2 in years, stratified by

cup position (cup_pos).
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Both Figures 4.4 and 4.5 show that the survival distribution functions for T \  

and T 2 respectively, do not differ between the cup positions, as anticipated. It is to be 

noted that there seems to be a slight separation for T 2 during the interval 15 to 25 

years, and a few patients with cup position 1 had longer censoring times compared to 

those with cup position 2. Further examination is undertaken to quantify the actual 

effect of cup positioning on the survival of the bilateral hips replacement, taking cup 

positions 1 and 2 respectively as treatment groups C and E ,  hereafter.

Stratifying by the treatment group for individual event, the median survival 

times, mGm and estimated mean survival times, iuGm are obtained from the former 

procedure, G  =  E ,  C  and m =  1, 2. By definition, half of the patients have event times 

longer than the median. Assuming an exponential distribution, the hazard function of 

patients on C for event 1, X C \ = ( l o g  2)/mCi and similarly for those on E .  In this case, 

the median survival for patients on C  is 35 years, and hence the hazard function is 

0.00005/day. Alternatively, or when a median does not exist (due to heavy censoring),
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such as for the case of hip patients on E  in Figure 4.4, the estimate of the mean can be 

used to find the hazard function where Xex = 1//u e \-

In SAS, the mean is a summation of the product of the Kaplan-Meier estimate 

of the survivor function at the event time u and the time gap since the previous event. 

However, the mean is underestimated when the largest observed time is censored and 

the estimation is restricted to the largest event time. For event 1 of the hip data, the 

estimate of the mean survival on E is 24 years with a standard error of 0.6 and hence 

the hazard function is 0.00011/day. Meanwhile, for event 2, /ua = 29 (0.8) and fiEi -  

25 (0.5) years, and their corresponding hazard functions are 0.00009/day and 

0.00011/day respectively. These hazards are indeed very small, which is common for 

such a low risk event as that of hip replacement failure. A summary of the censoring 

proportions stratified by event type (hip) is presented in Table 4.2.
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Table 4.2: Summary for hip replacement revision data of 342 bilateral patients,

stratified by hip (left and right).

Stratum Observations Events Censored (Percent)
1 342 80 262 (77%)
2 342 64 278 (81%)

Total 684 144 540 (79%)

As shown in Table 4.2, a large proportion of the observations are censored 

(about 80%). A detailed description is now provided for the proposed method. First, 

an equal distribution of failures for each event is obtained by ranking each failure time 

and dividing equally into k intervals. For simplicity, k = 2 is chosen in this detailed 

illustration. This is achieved by using the PROC UNIVARIATE procedure specifying 

the percentile points (50 and 100 for k = 2) for each T\ and T2. For the hip data, 

coincidentally the cut-off points are at 15 and 35 years for both T\ and T2. Therefore, 

the two intervals of equal failures are fixed at (0, 15] and (15, 35] for each T\ and T2 

accordingly. Next, the failures and successes are counted for each pair of intervals, 

which can be presented by multiple 2 x 2  tables, similar to Table 4.1. The summary of 

failures and number at risk for individual events and paired intervals is given in Table 

4.3.
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Table 4.3: Count of failures and numbers at risk for both patients on E and C for each 

pair of intervals ij relating to both T\ and 7?, and those relating to individual i and j  

intervals, for the hip replacement revision data.

Double failure (No. at risk):

° ( \ 2 ) ,  (ij ) ( r  (12),( i j ) )

T i

(0, 15] (15, 35]

Treatment E C E C

t 2
(0, 15] 10(120)

2(12)
7(137)
2(22)

2(15)
5(5)

3(26)
7(9)(15, 35]

T  i (0, 15] (15, 35] t 2 (0, 15] (15, 35]

0  ME 20 16 ° 2 j E 13 12

°  1 iC 21 23 ° 2 j C 20 19

o u 41 39 ° 2 j 33 31

r  ME 122 16 r 2jE 120 12

r  1 iC 141 26 r 2jC 138 22

? M 263 42 r 2j 258 34

Q m 0.169 2.639 q  2j 0.137 2.428

The top part of Table 4.3 contains the components of combined events, with 

double failure and number at risk for that specific pair of intervals. For example, in the 

control group, 2 patients had event 1 failure within the first 15 years, and had event 2 

failure within the following 20 years. The other 20 patients in the control group, who 

were also at risk of failure for the same pair of intervals, did not fail. The lower part of 

the table lists the marginal failures and numbers at risk for the individual events. For 

the control group, during the 1st interval (0, 15], only 21 patients failed out of 141 

patients who were at risk of event 1 during this interval. At the rightmost column, 19 

of 22 patients at risk of event 2 during the 2nd interval (15, 35], had failed. The values 

of q- given by - log(l -ojri) for each event and interval are also computed accordingly.
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Putting the required values from Table 4.3 above into equation (4.6), the 

estimate of covariance between Zu  and Z2j  is directly computed for each pair of 

intervals, while Z and V  are calculated for each event. The results are summarized in 

Table 4.4.

Table 4.4: Calculated values for covariance, score statistic, and Fisher’s information 

for the hip replacement revision data, using k = 2 intervals.

c  12(ij)
T  i

Z v V y
(0, 15] (15, 35]

T 2
(0, 15] 3.624 -0.398 2.513 8.229

(15, 35] -0.369 2.977 -2.819 4.563
Z u -1.066 -3.248 Z i = 2 7 i i  -4.315
V u 10.211 5.436 V x = Y y u 15.647

Z  2 =  £ Z  2j  

-0.306
v2 = i v 2j

12.792
C  \2 = Y £  12(ij)

5.834

The covariances for each pair of ij intervals are listed in Table 4.4: for 

example, the covariance for incidence of event 1 within the first 15 months and that of 

event 2 within the next 20 months is -0.369. Summing up the covariances for each of 

the four pairs of intervals, gives us the estimated covariance, Cn  at the bottom right 

comer, 5.834. The score statistics, Z\  and Z2 as well as the Fisher’s information V\ and 

V2 are also determined from the sum for each interval as shown above. Using equation 

(4.8), the correlation can be estimated accordingly. For the hip revision data analyzed 

using two intervals, the estimated correlation, p  = 0.412. This example demonstrates 

the capability of the proposed method to provide an estimator for the correlation 

between two score statistics, arising from interval-censored survival data. The

estimates of treatment advantages, 6 * and 6 are also obtained via the methods 

described in Section 4.4, but only the p-values relating to the optimal 6 are reported
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in this thesis. The same procedure is repeated using five and ten intervals by 

specifying the percentile points accordingly. The results for analyses using Ti and Ti 

intervals of two, five and ten are summarized in Table 4.5.

Table 4.5: Results for the hip replacement revision data, using different number of

intervals (k = 2, 5 and 10).

Parameter (s.e.) @ 2 intervals @ 5 intervals @10 intervals

Zi -4.31 -3.12 -2.70

Z 2 -0.31 0.91 2.23
z * -3.28 -1.63 -0.35
Vi 15.65 18.77 18.94
v 2 12.79 14.75 15.52
y* 20.17 24.74 25.30

-0.2758 (0.2528) -0.1662(0.2308) -0.0969 (0.2298)

4 -0.0239 (0.2796) 0.0617 (0.2603) 0.2625 (0.2538)
O * -0.1625 (0.2227) -0.0659 (0.2010) 0.0618(0.1988)
e -0.1713 (0.2225) -0.0734 (0.2008) 0.0492(0.1987)

p-value 0.779 0.448 0.544

C n 5.834 5.948 6.235

P 0.412 0.357 0.364

All the estimates of treatment effect are small relative to their standard errors, 

indicating zero treatment effect. As anticipated, the result clearly shows a lack of 

overall treatment effect and the p-values are in agreement for all three different 

numbers of intervals used. The sums of the score statistics derived from this interval- 

censored data set of 10 intervals are closest to the logrank statistics and their 

corresponding Fisher’s information, as shown in parentheses; Zj = -2.70 (-0.31), Z2 = 

2.23 (3.25), V\ = 18.94 (19.08) and V2 = 15.52 (15.16). The logrank test statistics, 

given by z H v ,  from the standard analysis for the 1st and 2nd events, are 0.94 and 0.32 

respectively, while their corresponding values using our method for 10 intervals are
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0.38 and 0.40. The values for the standard analysis are obtained via PROC LIFETEST 

in SAS for illustration purposes. The information V and covariance are quite 

consistent for all of the three different intervals used, giving the correlation p  = 0.4. 

At this juncture, the choice of k = 10 intervals seems to be favourable since it gives the 

smallest standard error of estimates, the largest information and the closest values of Z 

and V when compared to the logrank. Nevertheless, the subsequent investigations 

continue with 2, 5 and 10 intervals until sufficient evidence is obtained to determine 

the best choice of k.

It is to be noted that the hip data are not 'parallel' in that the patients were 

recruited sequentially, over a period of 27 years (1963 - 1990) and moreover, primary 

bilateral prostheses may not be implanted on the same day. For example, a patient had 

the first hip replaced in 1978 and the second hip replaced in 1988, yielding a time-gap 

of 10 years. Such an effect of non-parallel data may reduce the correlation between 

two endpoints. However, such an extreme situation (time-gap equal to or greater than 

10 years) accounts only for less than 10% of the hip patients and hence the effect may 

be minimal.

Another feature of the data which may impact in terms of the treatment 

comparison is that the patients may undergo different procedures with regard to the 

cup position (treatment group). For the hip data, 78 of 342 patients (23%) had both 

treatment types, the majority of which were from those with wider time-gap between 

replacements. The presence of these patients with both treatment types implies that the 

data are not ideal for the implementation of the method. Nevertheless, for illustration 

purposes, the treatment type for the first hip was considered for both hips of the same
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patient. Alternatively and more appropriately, these 78 patients should either be 

omitted or a more elaborate analysis should be performed on them.

4.5.2. Related Indicators and PFS: Cancer Data

To illustrate the proposed method for the cases of related indicators and PFS, a data 

set from a cancer study in a pharmaceutical company is used. Unfortunately, no 

further detail is available for disclosure. The trial consists of 330 patients each with 

two endpoints recorded, T \  and T 2 , relating to disease progression and death 

respectively. Plots of survival distribution functions for these endpoints are given in 

Figure 4.6 and Figure 4.7.

Figure 4.6: Survival distribution function for time to disease progression, T \  in days, 

for the cancer data, stratified by treatment group (trt = 1 ,2 ) .
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Figure 4.7: Survival distribution function for time to death, T 2 in days, for the cancer

data, stratified by treatment group.

u
c
3

Ll_
1=
o

O
£
W

0.00  -

0 250 500 750 1000 1250 1500 1750 2000

T2 (Days)

STRATA: ---------- trt=1 o o o Censored trt=1 ----------  trt=2 o o o Censored 1rt= 2

Figure 4.6 shows a steep slope for T \ ,  and the median survival times for 

patients on C  and E  respectively are 169 and 170 days. These translate into similar 

hazard functions, Xc\ = Xe\ = 0.0041/day, which are rather common for an aggressive 

type of cancer. Meanwhile, Figure 4.7 depicts a gradual decline in the survival 

function for the second endpoint, the median survival times being rnci = 653 and mE2= 

751 days, and their corresponding hazard functions 0.0011/day and 0.0009/day 

respectively. Neither figure suggests that the survival distribution functions differ 

between the treatment groups, there being a few crossings at certain time points.

There exist two possible ways of analyzing data consisting of time to tumour 

progression (TTP) and time to death (overall survival, OS). One is to consider a death 

occurring before progression as censoring the progression time: a case of related 

indicators. Another adopts the approach of PFS whereby a death occurring before 

progression will be taken to be a progression event. This implies that PFS = minimum 

(TTP, OS) which requires some data preparation as illustrated in Table 4.6.
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Table 4.6: Example of data sets for related indicators and PFS. (* indicates censoring)

Patient ID Indicators 

TTP OS
PFS

PFS OS

1 110 200 110 200

2 630* 630 630 630

3 50* 145 145 145

4 210* 150* 210* 210*

With reference to Table 4.6, Patient 1 had a progression (TTP) at day 110, and 

subsequently died at day 200, both indicators and PFS analyses using the same event 

times as shown above. When Patient 2 died at day 630 before progression, an analysis 

for related indicators considers censoring for TTP at the same time. However, PFS 

analysis will consider an event for both PFS and OS at day 630. In the case of Patient 

3, censoring for TTP occurred at day 50, before death at day 145. The data remain the 

same for indicators analysis, but PFS considers an event for both PFS and OS at day 

145. For Patient 4, when both TTP and OS are censored, a PFS analysis takes the later 

censoring to be applicable for both PFS and OS, in this case at day 210. In both 

analyses of indicators and PFS, event 2 is taken as death (OS), while the former and 

the latter consider TTP and PFS respectively as event 1. The impact of such event 

dependence imposed by PFS analysis on the cancer data is reflected Table 4.7.

Table 4.7: Summary of the cancer data for the indicators and PFS analyses.

Stratum Observations
Events

Indicators

Censored Events

PFS

Censored

1 330 261 69 (21%) 312 18 (5%)

2 330 271 59 (18%) 271 59 (18%)

Total 660 532 128 (19%) 583 77 (12%)
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Table 4.7 shows that for event 1, the censoring percentage is reduced from 

21% to 5% as an event of death (OS) before progression is taken to be an event of 

progression or death (PFS), too, when considering a PFS analysis. Technically these 

two types of analysis are expected to yield different results as presented in Table 4.8.

Table 4.8: Results for the cancer data using 2, 5 and 10 intervals based on the analysis

of related indicators.

Parameter (s.e.) @ 2 intervals 
(Indicators)

@ 5 intervals 
(Indicators)

@10 intervals 
(Indicators)

Z i -0.30 -0.91 1.51
Z 2 8.11 11.80 10.96
z * 5.70 7.60 8.84

Vi 55.95 63.69 65.09

^2 47.66 62.42 66.21
y  * 75.52 88.02 93.13

0* -0.0053 (0.1337) -0.0143 (0.1253) 0.0232 (0.1239)

4 0.1702(0.1448) 0.1890(0.1266) 0.1655 (0.1229)

6  * 0.0755 (0.1151) 0.0863 (0.1066) 0.0949 (0.1036)

e 0.0713(0.1150) 0.0855 (0.1066) 0.0954 (0.1036)

p-value 0.268 0.211 0.179

C 12 19.267 27.294 26.905

P 0.373 0.433 0.410

From the analysis of the indicators data it is seen that all the estimates of 

treatment effect for progression, 0, are smaller than those for death, §2. The estimates

of treatment effect are small relative to their standard errors, with p-values indicating 

no significance for all choices of intervals. The estimates of covariance between the 

score statistics are very close (except for 2 intervals), and the correlation estimates are 

0.4 (moderate) for all interval settings. The values of Z and V for the cases of 5 and 10 

intervals are consistently larger than those for the 2 intervals case. The Z and V for 10 

intervals case are the closest to those obtained from the standard logrank test shown in
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parentheses: Zj = 1.51 (1.45), Z2 = 10.96 (9.02), Vi = 65.09 (64.16) and V2 = 66.21 

(67.56). This finding, that values from the proposed method matched closely those 

from the logrank test, is consistent with that for the hip data in Section 4.5.1.

Table 4.9: Results for the cancer data using 2, 5 and 10 intervals based on PFS.

Parameter (s.e.)
@ 2 intervals 

(PFS)
@ 5 intervals 

(PFS)
@ 10 intervals 

(PFS)
Z i 4.28 15.14 13.24

Z 2 8.11 11.80 10.96
z * 8.13 17.61 15.92

Vi 50.19 69.04 74.54

V 2 47.66 62.42 66.21
y* 64.19 85.95 92.62

0.0853 (0.1412) 0.2193 (0.1204) 0.1776 (0.1158)

4 0.1702 (0.1448) 0.1890(0.1266) 0.1655 (0.1229)

e  * 0.1267(0.1248) 0.2049(0.1079) 0.1719(0.1039)

3 0.1255 (0.1248) 0.2058 (0.1078) 0.1723 (0.1038)

p-value 0.157 0.028 0.049

C 12 25.650 34.802 36.574

P 0.524 0.530 0.521

For PFS, a small estimate of 6X is obtained when using 2 intervals with a p-

value larger than when using 5 and 10 intervals. Nevertheless, analyses using all the 

interval setttings yield p-values indicating no significant evidence (at the 2.5% level) 

to reject the null hypothesis. Moderate correlations of 0.5 are obtained in all three 

scenarios (k = 2, 5, 10). A bigger V\ compared to V2 across all settings of intervals 

suggests that there is more information relating to event 1, due to the imposed event 2, 

as described earlier. The value of V\ when using 10 intervals is closest to that given by 

the standard logrank analysis as shown in parentheses: Vi = 74.54 (76.71). However, 

Zi from the 2 intervals case, 4.28 is closest to the logrank statistic, 6.99.
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4.6. Recurrent Events

Recurrent events data arise in many diverse fields: numerous examples from 

medicine, manufacturing and the social sciences are given by Nelson (2003). The 

methodology for survival analysis of recurrent events has been applied in biostatistics 

(Genser & Wemecke, 2005), marketing (Bijwaard et al., 2006), sports (Gutierrez et 

al., 2011) and even in political science (Box-Steffensmeier & Zorn, 2002). 

Consequently, interest in recurrent events has grown over the recent decades. A quick 

scan on the Web of Science (search by recurrent in the title) shows more than 13,000 

articles from 2001 until March 2011, which is equivalent to the number of articles for 

the prior two decades. More interesting is the rapid growth in the subject area of 

Oncology, where in the past decade, over 2,000 articles have been published, double 

the number in the 90s. Oncology has also overtaken Surgery as the subject area with 

the most publications on recurrent events in the past decade. This could be driven by 

the overwhelming public health concerns regarding the widespread increase of cancer 

around the globe.

There are a few special features distinguishing recurrent events data from the 

rest. Firstly, the events are ordered within each individual: the second event can only 

occur after the first event. Censoring applies only to the last observed time for each 

individual and if the first observation is censored, then the second observation is 

completely missing. An individual is at risk for one event at any particular time, since 

these events occur in sequence. Naturally, event times for the same individual are 

correlated; hence the study of within-subject correlation is of interest. Methods depend 

on the choice of risk intervals, baseline hazards and techniques used to allow for the 

subject effect, as described in the next section.
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Among the methods for recurrent events are those by Cook & Lawless (1997) 

and Wei, Lin & Weissfeld (1989). Counting process models provide a powerful 

framework for the analysis of such event history data when subjects are under 

continuous observation (Anderson et al., 1993). Random effects models (Abulibdeh, 

Turnbull and Clark, 1990) and marginal models (Ng and Cook, 1999) are also 

convenient for adoption in such a setting. Numerous examples exist in other settings 

when the events of interest are detected only by periodic intensive examination: 

interval-censored recurrent events. For example, in urology, different types of 

recurrent superficial bladder cancer tumours may be detected via periodic 

examination, and in studies of osteoporosis, different types of skeletal changes may be 

of interest and detectable only by periodic radiographic examination. Prior to 

describing such data structure in detail, it is important to review the key components 

that make up the models for recurrent events.

4.6.1. Key Model Components

In a study, the choice of model is highly dependent upon the questions to be answered. 

Some of the common questions for recurrent data are as follows. How can the 

influence of a factor such as treatment be measured? What is the treatment effect for 

each event? What is the average effect over all events? How can all of the data be 

used to test for the effect of a factor? How to allow for subject effect? Systematic 

identification as to how the models differ might assist in understanding and hence, 

assist in achieving an appropriate model selection. Kelly & Lim (2000) developed key 

components for a Cox-based recurrent events model. The components concerning the 

risk intervals, baseline hazards and allowance for within-subject correlation are first 

described here and are referred to again in later sections.

119



Risk intervals define when a subject is at risk of the mth event for a given time 

T = tm. There are three types of risk intervals namely total time, gap time, and 

counting process. Total time is measured from a specified time, for example the time 

from the subject’s entry into the study or the time from randomization. Gap time 

concerns the time to an event since the prior event. The term ‘total time’ is applicable 

to any form of survival data, while gap time and counting process are specific to 

recurrent events. However, the counting process is not covered in this thesis. The 

reader can be referred to texts such as Themeau & Grambsch (2000). To describe the 

total time and gap time risk intervals, consider a hypothetical example of patients A, B 

and C, each with recorded recurrences or last follow-up times at the months as shown 

below. Figure 4.8 to Figure 4.10 are taken from Kelly & Lim (2000) for the purpose 

of illustration.

Figure 4.8: Example of three patients with recurrent events.
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Patient A has two recurrences at months 2 and 5, before being censored at 

month 13, while patient B has three recurrences at months 7, 11 and 17. However, 

patient C has no recurrence until being censored at month 14. The following figures
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depict the two different risk intervals for this scenario, where the numbers on the left 

hand side indicate the recurrences.

Figure 4.9: Total time risk intervals for the scenario depicted in Figure 4.8.
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A total time model considers each recurrence from the beginning of the study 

or randomization, therefore an mth event time is always greater than or equal to the 

( m - l ) th event time, as shown above. By definition, it involves cumulative time to 

event, which is completely different from gap time. It is to be noted that the total time 

approach is also applicable to non-recurrent events such as those for paired organs and 

related indicator data, since the ordering of events is not actually used. The recurrence 

time can also be measured as gap time, as is described next.
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Figure 4.10: Gap time risk intervals for the scenario depicted in Figure 4.8.
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Gap time is defined as the time since the previous event; for example, patient 

A has a gap time of 3 months for the 2nd recurrence. In terms of the total time 

convention used earlier, patient A has a total time of 5 months for the 2nd recurrence 

as measured from the time of randomization. For gap time, the time scale is no longer 

time-since-randomization because the clock restarts after each occurrence, as depicted 

in Figure 4.10. Therefore, for gap time, it is possible for T2 to be smaller than 7j, 

whereas T2>T\ for total time.

For interval-censored recurrent events, there are only six ways of combining 

outcomes of which the subjects are considered at risk of the 1st event during the z'th 

interval: FF, FS, FM, SS, SF, and SM (as shown in Table 4.1). When a subject is 

censored for the 1st recurrence, then the 2nd recurrence is no longer possible. 

Therefore, there are in that case, only four combined outcomes possible for T2: FF, 

FS, SS, and SF. This means a substantial loss of information about T2 especially if 

there is a large proportion of censored T1.

Depending on data preparation, both total time and gap time can be fitted by

the same algorithm; the choice of model should answer the question of interest. For

example, total time is the logical choice if the interest is in modelling the full time
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course of the recurrent events, such as evaluating whether treatment is effective for the 

m event since the start of treatment. Meanwhile, the gap time model is appropriate 

when the goal of the analysis is to determine whether treatment is effective for the mth 

event since the time of the prior event. An example is to be found in assessing whether 

treatment is effective in delaying the first infection (say, after a surgery) but not for 

subsequent recurrences.

Another key component of a recurrent events model is baseline hazards which 

relate to stratification of data. As briefly decribed in Section 1.6 earlier, stratification 

implies that patients in each stratum have a different baseline hazard function, but all 

other explanatory variables satisfy the proportional hazards assumption within each 

stratum. A common baseline hazard is assumed if no stratification is applied to the 

data modelling. In the case of recurrent events, when data are stratified by event type, 

for example when the 1st recurrence is in stratum 1 and the 2nd recurrence is in stratum 

2, the baseline hazards are event-specific. In other words, each stratum is fitted by a 

model separately, thus giving a marginal estimate of the parameter of interest. Further 

description and examples of such models are given in Section 6.1.1.

The last key component concerns the subject effect which is an intrinsic factor. 

Apart from the observed explanatory variables and factors that influence the outcomes 

for a subject with regard to treatment given, naturally there also exist random chances 

as well as unobserved characteristics of a subject. When there are repeated 

observations from a subject, such as recurrent events, the unobserved characteristics 

of the subject may be taken into account. Allowance for subject effect which 

represents such characteristics can be achieved by using a marginal model (as with the 

approach taken here), frailty model or copula. The first is described in Section 6.1.1 

while the other two are out of scope.
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4.6.2. Application to Bladder Cancer Data

To illustrate the analysis of a recurrent events case, a bladder cancer data set based on 

a study conducted by the Veterans Administration Cooperative Urological Research 

Group, is used. The full data set is listed in Wei, Lin, and Weissfeld (1989). The study 

comprises 86 patients with superficial bladder tumours, which were removed 

transurethrally when the patients entered the study; 48 were randomized into the 

placebo group (control), and 38 were randomized into the thiotepa group 

(experimental). The majority of patients experienced multiple recurrences of tumours 

during the study, and new tumours were removed at each visit.

The original data set contains the first four recurrences of the tumour for each 

patient, and each recurrence time was measured from the patient's entry time into the 

study. However, our analysis setting is limited to the first and second recurrences, 

with only one covariate, that is the treatment group. The bladder cancer data consist of 

the following variables: ID = patient ID; Trt = treatment group (1 = placebo and 2 = 

thiotepa); T\ = time to first recurrence; T2 = time to second recurrence (total time); T2G 

= time to second recurrence (gap time); censl is the censoring indicator for T\ (1 = 

event and 0 = censored) and similarly, cens2 for that of T2. The bladder data as used in 

this study are presented in Table 4.10.
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Table 4.10: Tumour recurrence data extracted from Wei, Lin & Weissfeld (1989), 

presented in total time (T\, T2) and gap time (Tig).

ID Tit T, censl T2 T2g cens2 ID Trt T, censl T2 T2g cens2
1 1 0 0 0 0 0 44 1 3 1 15 12 1
2 1 1 0 1 0 0 45 1 59 0 59 0 0
3 1 4 0 4 0 0 46 1 2 1 15 13 1
4 1 7 0 7 0 0 47 1 5 1 14 9 1
5 1 10 0 10 0 0 48 1 2 1 8 6 1
6 1 6 1 10 4 0 49 2 1 0 1 0 0
7 1 14 0 14 0 0 50 2 1 0 1 0 0
8 1 18 0 18 0 0 51 2 5 1 5 0 0
9 1 5 1 18 13 0 52 2 9 0 9 0 0

10 1 12 1 16 4 1 53 2 10 0 10 0 0
11 1 23 23 0 0 54 2 13 0 13 0 0
12 1 10 1 15 5 1 55 2 3 1 14 11 0
13 1 3 1 16 13 1 56 2 1 1 3 2 1
14 1 3 1 9 6 1 57 2 18 0 18 0 0
15 1 7 1 10 3 1 58 2 17 1 18 1 0
16 1 3 1 15 12 1 59 2 2 1 19 17 0
17 1 26 26 0 0 60 2 17 1 19 2 1
18 1 1 1 26 25 0 61 2 22 0 22 0 0
19 1 2 1 26 24 1 62 2 25 0 25 0 0
20 1 25 1 28 3 0 63 2 25 0 25 0 0
21 1 29 0 29 0 0 64 2 25 0 25 0 0
22 1 29 0 29 0 0 65 2 6 1 12 6 1
23 1 29 0 29 0 0 66 2 6 1 27 21 0
24 1 28 1 30 2 1 67 2 2 1 29 27 0
25 1 2 1 17 15 1 68 2 26 1 35 9 1

26 1 3 1 6 3 1 69 2 38 0 38 0 0

27 1 12 1 15 3 1 70 2 22 1 23 1 1

28 1 32 0 32 0 0 71 2 4 1 16 12 1

29 1 34 0 34 0 0 72 2 24 1 26 2 1

30 1 36 0 36 0 0 73 2 41 0 41 0 0

31 1 29 1 36 7 0 74 2 41 0 41 0 0

32 1 37 0 37 0 0 75 2 1 1 27 26 1

33 1 9 1 17 8 1 76 2 44 0 44 0 0

34 1 16 1 19 3 1 77 2 2 1 20 18 1

35 1 41 41 0 0 78 2 45 0 45 0 0

36 1 3 1 43 40 0 79 2 2 1 46 44 0

37 1 6 1 43 37 0 80 2 46 0 46 0 0

38 1 3 1 6 3 1 81 2 49 0 49 0 0

39 1 9 1 11 2 1 82 2 50 0 50 0 0

40 1 18 1 48 30 0 83 2 4 1 24 20 1

41 1 49 49 0 0 84 2 54 0 54 0 0

42 1 35 1 51 16 0 85 2 38 1 54 16 0

43 1 17 1 53 36 0 86 2 59 0 59 0 0
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It is to be noted that, for recurrent events, a patient with only one recurrence is 

censored for the 2nd recurrence relating to T 2 . For example, in Table 4.10, patient ID 6 

had the 1st recurrence six months after tumour removal and was followed up for the 

next four months, therefore censl =1, T \  = 6, T 2 =  10, T 2g =  4 and cens2 = 0. The plots 

of survival distribution function against survival time in months, for the bladder 

cancer data, are depicted in Figures 4.11 to 4.13.

Figure 4.11: Survival distribution for time to first recurrence, T \  in months, for the 

bladder cancer data, stratified by treatment group.
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Figure 4.12: Survival distribution for time to second recurrence, T2 (total time) in

months, for the bladder cancer data, stratified by treatment group.
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Figure 4.13: Survival distribution for time to second recurrence, T 2 G (gap time) in 

months, for the bladder cancer data, stratified by treatment group.
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Figures 4.11 and 4.12 for the survival distribution functions using total time, 

show similar trends indicating some treatment effect on the experimental group (trt = 

2). For the 1st recurrence, the median survival times are 16 and 26 months for patients 

on control and experimental respectively; hence the hazard function for patients on E  

is 0.0010/day, slightly lower than 0.0014/day for patients on C. For the 2nd recurrence,
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no median exists, and the means are nci = 23 (1.4) and /ie i— 30 (1.6) years; their 

corresponding hazard functions are 0.0014/day and 0.0011/day respectively. Figure 

4.13 does not indicate a consistent treatment advantage for the experimental group 

when the gap time to second recurrence is considered. Out of the 86 patients, 47 

patients had the first tumour recurrence, and 29 of them experienced the second 

recurrence, as summarized in Table 4.11.

Table 4.11: Summary of outcomes for the bladder cancer data.

Stratum Observations Events Censored (Percent)

1 86 47 39 (45%)

2 86 29 57 (66%)

Total 172 76 96 (56)%

Table 4.11 shows heavy censoring for the bladder cancer data for each event. 

The results for time intervals of two, five and ten are summarized for TT and GT in 

the subsequent tables.

Table 4.12: Results for bladder cancer data analyzed @ 2, 5 and 10 intervals (TT).

Parameter (s.e.) @ 2 intervals (TT) @ 5 intervals (TT) @10 intervals (TT)

Zi 5.96 5.40 4.47

z 2 4.33 4.26 3.95

z * 6.45 6.06 5.25

Vi 11.32 11.69 11.82

v 2 7.22 7.34 7.35
y * 11.63 11.93 11.96

0.5262 (0.2972) 0.4618 (0.2925) 0.3782 (0.2909)

4 0.5999 (0.3721) 0.5806 (0.3691) 0.5369 (0.3689)

6  * 0.5549 (0.2932) 0.5076 (0.2895) 0.4391 (0.2891)

0 0.5430 (0.2891) 0.4877 (0.2851) 0.4110(0.2844)

p-value 0.030 0.044 0.074

C 12 5.510 5.659 5.771

P 0.609 0.611 0.619
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The estimates of treatment effect seem to decrease with the number of 

intervals used, while the p-values consistently indicate non-significance at the 2.5% 

level. The estimator of covariance yields consistent values, regardless of how many 

intervals are used, and the correlation is accurate at 0.6 (highly correlated). It can be 

concluded that a patient with a long time to the 1st recurrence is likely to experience a 

long time to the 2nd recurrence from the start of study. This is anticipated as T2 

contains T\ in TT risk interval.

The analysis using 10 intervals yields the values of Z and V closest to those 

from the logrank test, as shown in parentheses; Z\ -  4.47 (4.09), Z2 = 3.95 (3.83), V\ = 

11.82 (10.99) and V2 = 7.35 (7.06). Unlike the earlier data sets, the bladder cancer data 

set concerns recurrences, whereby a censored 1st recurrence results in a 2nd recurrence 

being missed. The impact of such dependence is evident from the values of V2 which 

are smaller than V\ in all settings: the information contained in T2 being less due to the 

censoring imposed by T\. Meanwhile, the resulting outputs when applying GT risk 

interval to the bladder cancer data, are summarized in Table 4.13.
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Table 4.13: Results for bladder cancer data analyzed @ 2, 5 and 10 intervals (GT).

Parameter (s.e.) @ 2 intervals (GT) @ 5 intervals (GT) @ 10 intervals (GT)

Z i 5.96 5.40 4.47
Z 2 0.84 1.14 1.14
z * 7.26 5.84 5.92
Vi 11.32 11.69 11.82

V 2 7.26 7.11 7.11
y* 19.16 19.69 19.96

0.5262 (0.2972) 0.4618 (0.2925) 0.3782 (0.2909)
4 0.1265 (0.3886) 0.1930 (0.3758) 0.1608(0.3751)
6  * 0.3787 (0.2284) 0.3604 (0.2192) 0.2966 (0.2239)
G 0.3756 (0.2284) 0.3575 (0.2192) 0.2952 (0.2238)
p-value 0.050 0.051 0.093

C 12 -0.572 -0.919 -0.488

P -0.066 -0.101 -0.053

The estimates of treatment effect 62 for GT are appreciably smaller than those

for TT since there is no carry-over effect from 7); hence a similar trend for 6  . There 

is no evidence to suggest any advantage from the experimental treatment, as is evident 

from the p-values at all interval settings. It is to be noted that the values of Z2 and V2 

when using 10 intervals are close to those given by the standard logrank analysis as 

shown in parentheses: Z2 =1.14 (1.15) and V2 = 7.11 (6.39). This shows that the 

interval-censored approach works well for the marginal analysis.

The main difference between TT and GT in this case is that GT yields negative 

covariance between the two score statistics. Mathematically, this is owing to the 

situation whereby the summation of covariance for each pair of intervals is close to 

zero. Upon checking for each of the 100 pairs of intervals (k = 10), 17 have positive 

covariance, 19 negative, 31 zeroes while 33 do not contribute (zero failures within the 

pair of intervals). This small total value leads to zero correlation, which suggests that
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the cumulative treatment effects for the 1st recurrence and time to the next recurrence 

are not correlated. It can be inferred that a patient with a long time to the 1st recurrence 

of a tumour is not unlikely to experience a short time to the 2nd recurrence. In short, 

the time to the 1st recurrence does not predict the time to the next one. This finding is 

consistent with that reported by Yan et al. (2002) whereby time to bladder tumour 

recurrence becomes shorter as the number of recurrences increases. Therefore, it is 

logical that recurrent GT analysis tends to yield negative or close to zero correlation 

between the score statistics as shown above. It is also uncommon for recurrence 

events analysis to be limited to a certain m number of events: for example, m -  4 in 

Wei et al. (1989), since events tend to be fewer for surviving subjects.
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4.7. Discussion

The most important part of this thesis, consists in deriving the estimated correlation 

coefficient for the complementary log-log model, incorporating interval-censored data 

structure, has been covered. Straightforward computation to yield the covariance 

between two score statistics for each pair of intervals was demonstrated with real data 

sets. Although the scope is only for bivariate survival data, the method can be easily 

extended for other multivariate data.

The results show that the proposed method works well for the real data sets 

comprising paired organs, related indicators, progression-free survival and recurrent 

events. Regardless of the number of intervals, our proposed method provides 

consistent estimates of the correlation, but treatment effects seem to vary: using fewer 

intervals tending to overestimate the treatment effects. It is evident that the number of 

intervals selected has an impact on the standard error of the parameter estimate: finer 

intervals give smaller standard errors.

As anticipated, the coarsening of the data through reduction in the number of 

intervals used in the analysis, does impact on the resulting output. Thall & Lachin

(1988), too, have also commented that test result could depend on the selection of the 

number of intervals and the intervals themselves. Basing results from the real data 

sets, using only two intervals is ruled out since it gives the biggest standard error and 

seems to overestimate the overall treatment effect, as is to be expected from the use of 

such coarse intervals. The true measure of the accuracy and suitability of this method 

as a survival analysis tool is demonstrated in an extensive simulation study in the next 

chapter.
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Chapter 5. Simulation Study

In Chapter 4, the proposed method for combining bivariate survival endpoints was 

successfully applied to real data. For convenience, it is now called ZW (Zain & 

Whitehead) throughout this thesis. The estimator of covariance and the global score 

test approach derived in Section 4.3.1 worked well for the interval-censored survival 

data. This chapter now investigates the properties of the estimator and evaluates the 

accuracy of bivariate tests using simulation.

Design details for the simulation study are developed in Section 5.1, followed 

by descriptions of key performance measures and combined hypothesis tests. 

Investigation of the properties of the estimator and evaluation of its accuracy are 

reported in Section 5.2, on the basis of the simulations performed. Results for each of 

the six cases investigated in Sections 5.2.1 to 5.2.6, are first given in turn, and 

followed by a summary of correlation ratios and overall results. A discussion 

concludes this chapter.

5.1. Design of Simulation Study

A full account of the method used to generate simulated data sets, is now given. As 

earlier described in Section 1.7, the amount of information, V=  {(ua + up)/0R}2 for a 

one-sided test. The relationship between V and n can be quantified by a constant value 

b: V = bn, which will then lead to the sample size needed for the trial. Tang et al.

(1989) showed the advantage in setting the sample size based on multiple endpoints, 

which requires a smaller sample size when compared to a design using only one 

endpoint. Using the same principle, for a fixed sample size, the treatment advantage, 

0R, at which a given power is achieved based on multiple endpoints, is smaller 

compared to that using a single endpoint.
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In this simulation study, the target type I error rate is 2.5% level (one-sided) 

and the target power is 90%; (ua + up)2 = 10.51. Subscripts 1 and 2 respectively 

indicate that a marginal parameter relates to the individual event based on T\ and To, 

while an asterisk or a subscript 12 indicates a global parameter based on both events. 

Note that the subscript m is used also to denote event, m = 1, 2 and G to denote 

treatment group, G = C, E. The six cases of bivariate survival data, which have been 

described in the previous chapter, are considered: complete (or uncensored), paired 

organs, related indicators, progression-free survival (PFS), recurrent events total time 

(TT) and recurrent events gap time (GT).

To determine sensible values for the hazard function for simulation purposes, 

the three real data sets from the previous chapter: hip revision, cancer and bladder 

cancer, are considered. The case of cancer with the highest hazard of disease 

progression of 0.004 (Section 4.5.2), is chosen. For simplicity in generating a big data 

set to estimate the cut-off points and b, Ae(0) is chosen to be 0.004, while 2c(o) is fixed 

at 0.006 and <9(0) = 0.4. This simulation model could represent an aggressive cancer 

study with time unit in days, whereby the median survival times for patients on C and 

E respectively are 115 days (3.8 months) and 173 days (5.8 months). Alternatively, it 

could be a longer term condition with time unit in months and the median survival 

times for patients on C and E respectively, are 115 months (9.5 years) and 173 months 

(14.4 years).

With the exception of the complete case, all the other five cases (listed above) 

are subjected to their specific censoring rules and censoring variables for simulation. 

The censoring proportions are set based on the three real data sets used in Sections 

4.5.1, 4.5.2 and 4.6.2. However, for the paired data, an alternative censoring 

proportion of 50% is used since the analysis with 80% censoring ( as observed in the
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real data set), was found to be less reliable (inflated type I error). Let the censoring 

proportion be x, so that x = 0.50 for the paired case. The percentage values of the 

censoring proportion (7i, T2) for each simulated case are: paired (50, 50), indicators 

(20, 20), PFS (8*, 20) and recurrent TT/GT (40, 60*). The censoring proportion 

without an asterisk is entered directly as x  in the simulation program for each T\ and 

72. Meanwhile, those with asterisks are further subjected to specific censoring rules, 

as discussed in their respective sections. The resulting censoring proportions are then 

verified to match those from the real data sets. For example, in the case of PFS, 7) is 

amended according to the censoring rule illustrated in Table 4.6. For the recurrent 

events, the censoring rules applied to the simulated data are described in Section 4.6.2. 

In other words, each simulation model is designed to simulate each case the closest 

possible to its corresponding real data set. It is to be noted that a wide range of 

censoring proportion (20% to 60%) is examined, for thoroughness.

In Chapter 4, the settings of five and ten intervals gave comparable results, 

hence k = 5, 10 are selected for the simulation study. From the simulation results, the 

most suitable number of intervals will be selected for subsequent analysis and 

comparison in later chapters. It is to be recalled from Chapter 4 that the procedure for 

ZW involves splitting the data set into k intervals of equal failures for each event and 

calculating the quantities of interest for each set of intervals. The procedure for 

analysis of real data is presented in a flow chart for comparison with the simulation 

procedure in this section. It is to be noted that the complete simulation procedure is 

repeated for specific case, hypothesis, and values of d and Jc, as will be decribed next.
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Figure 5.1: Process flow charts for analysis of real data and simulation run

(A) Analysis of real data (B) Set-up for simulations
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The hexagonal box in Figure 5.1 (B) represents the initial preparation, Step 0, 

which has been described earlier. Steps 1 to 3 are necessary to determine the set-up 

values for the actual simulation run as shown in Steps 4 and 5. Inputting the 

hypothetical values of Xe(o) = 0.004 and Xqo) = 0.006, the survival times, T\ and T2 

(days) are generated from an exponential distribution, Tim ~ EXP(XGexp(sl)), where st 

is a subject effect for patient i, following a normal distribution N(0, <r2). The standard 

deviation o of the subject effect is set to be d(log Xc -  log Xe), where d is a constant 

multiplier chosen to impose varying degrees of correlation: setting d = 1 ,5  and 10, 

creates low, medium and high correlations, respectively.

The Cox’s PH requires non-informative censoring such that the censoring is 

independent of the survival times. Therefore, assuming equal hazards, Xc = Xe = X, an 

overall censoring variable, C. ~ EXP(2Ay) is applied to the whole data set (both 

patients on C and E), where y = x /  {2(1 -  x)} and x is the censoring proportion. It is

to be recalled that, in general, patient i is censored for an event when Q < T{ for that 

event. Further censoring rules, specific to the simulated case will then be applied to 

the data sets accordingly.

To find the interval cut-off points, a very big sample size, ranging from 10,000 

to 10 million, is generated and simulated as the bivariate interval-censored case of 

interest. A big sample size is necessary to ensure large V, which is the amount of 

information on 6 contained in Z and consequently give the constant b, as will be 

shown next. As described in Section 4.5.1, these cut-off points are obtained by 

specifying the percentile points. The values of the cut-off points converge 

satisfactorily when n = 1 million, hence only this value of n is shown in Step 1 of the 

simulation flow chart in Figure 5.1.
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Step 2 involves finding specific values for the parameters required for the two 

hypotheses, including 0R under the alternative, while Xc is fixed at 0.006. Based on the 

useful expression, V = bn, and also V — {(ua+ up)l Or }2, we can find the Or at which a 

given power is achieved by fixing the sample size n, provided we know the constant b. 

Using the output for the interval cut-off points from Step 1, the same data sets, of

10,000 to 10 million patients are then split into the specified k intervals. This 

procedure is considered to yield the “truth” about the information, V, when the value 

of b converges satisfactorily. The fixed sample size is chosen to be 1,000 to calculate 

the value of the constant b to mimic a real study. The output of this procedure, when 

using k = 5 intervals, for the complete data is given as an example in Table 5.1.

Table 5.1: Average values for V* and b computed at various sample sizes for the

complete data (d =10, k = 5,).

Parameter 10,000 100,000 1,000,000 10,000,000
y  *

b {@n = 1,000) 

Duration (minutes)

2151

0.21508

0.13

21540

0.21540

0.60

215260

0.21526

6.08

2153136
0.21531

58.27

As displayed above, the value of b seems to converge at 0.2153 for n = 1 

million with acceptable computing time (6 minutes). The corresponding values of b 

for d -  1, and 5 are 0.3460 and 0.2399 respectively. Once the estimate of b (for n 

=1,000) is obtained, the 0R and XE can be calculated accordingly, where XE = 2c(exp(- 

0)). It is to be noted that now 0R= V( 10.51/1000Z?) as defined earlier. Plugging in these 

values for the settings under the null and alternative, the interval cut-off points are 

determined from a sample size of 1 million as shown in Step 3 of the simulation flow 

chart. The cut-off points for T\ when d = 10 in this scenario are 4, 40, 343 and 4134 

days. These cut-off points translate to intervals such as (0, 4], which means that

patients with 0 < Tx < 4 are grouped in the first interval and those with Tj >4134 in the
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last interval. It is to be noticed that Steps 1 to 3 in Figure 5.1 only show n = 1 million, 

as it is shown to be the most practical choice of sample size, to give reliable estimates.

It is to be clarified that these process steps involving big data set, is needed 

only for simulation runs, whereas in the actual analysis of real data set, the process 

steps are simply as demonstrated in Chapter 4 and shown in the flow chart (Figure

5.1). In Step 4, a sample size of 1,000 patients is simulated under both hypotheses to 

yield the estimates of Z, V, Cn and p. Finally, Step 5 involves 10,000 times replication

of Step 4 under each hypothesis to obtain the estimates for 6 , p (est), p^mpie), type I 

error a, and power 1-/?. The best estimates are taken to be the average values from the 

replications: each of these quantities will be further described in the next section.

The whole process from Step 1 to Step 5 is repeated for each scenario as 

specific cut-off points are applied to specific values of d, k, 6r and Xe for each case. 

This translates into 72 different scenarios for the whole simulation study (6 cases, 2 

hypotheses, k = 5, 10 and d = 1, 5, 10). It is to be noted that a mandatory censoring of 

patients in the last interval is imposed to emulate the end of study in a real clinical 

trial. An example of the input values for all cases is depicted in Table 5.2.

Table 5.2: Example of simulation setting for each case at d = 10 and k = 5 intervals.

Case
% censored for 

T h T 2
b (d = 10,

@ 5 intervals) Or XE

Uncensored N/A 0.2153 0.221 0.00481

Paired 50, 50 0.1127 0.305 0.00442

Indicators 20, 20 0.1394 0.275 0.00456

PFS 8*, 20 0.1387 0.275 0.00456

Recurrent (TT) 40,60* 0.1043 0.317 0.00437

Recurrent (GT) 40,60* 0.1259 0.289 0.00449
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The complete or uncensored case has the biggest b, resulting in the smallest Or  

when n is fixed: as anticipated since no censoring is involved. With a heavy censoring 

for the paired case, it is to be noticed that b is almost half that for the complete case 

and hence Or  is bigger. This implies that for the same sample size, a bigger treatment 

effect is needed for highly censored data to give the test a power similar to that of the 

uncensored. As already noted, the values for b, Or and Xe when d = 10 and k = 5 vary 

for each case. Therefore, a similar set of values is also needed to simulate data for d = 

1, 5 and k = 10 accordingly.

Under the null, the hazards are indeed proportional with a ratio equal to 1 (zero 

treatment advantage); hence it is easy to verify the type I error rate. However, under 

the alternative, the assumption of proportional hazards may no longer hold, as the 

common 0  assumed may actually vary. Under H\ \ 0  =  O r when O r  corresponds to n = 

1000. When n is fixed, 0  is adjusted to account for the within-subject correlation, to 

give the desired power. Therefore, the 0  input to the program is actually the log hazard 

ratio within subject, say 0 W■ This is a notional quantity as each subject receives only 

one treatment. Initially, 0  was set with a view to fixing power ( l - f i u  = 0.90), but in 

fact the power is determined by 0 B , the log hazard ratio between subjects. This means

A

that, the simulation output 6  indeed gives the estimated treatment effect associated 

with the log hazard ratio between subjects on E and C.

Suppose pE and pc are the probabilities of failure of an event for patients on E 

and C respectively. It is to be recalled from Section 3.1.4, that the log hazard ratio is 

expressed in terms of survivor functions: 0 = -log{-logSe(0} +log{-logSc(?)}.

However, when there is a random subject effect, a problem arises. Substituting the 

survivor functions with these probabilities into the equation, we get
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0 l°g{ log(l P£)} + log{-log(l-pc)}. Conditional on the subject effect Sj, a 

random effect model is expressed as log {—log(l — /?)} =  a  + 8z + si and 

( l _ /?) = E[exp{-exp(a' + 6>z + .si.)}]. For simplicity, setting a = 0, and z = 1 if the

patient is on E, 0 otherwise, the treatment effect based on the log hazard ratio between 

subjects is given by

^fl=-log{-log(E[exp{-exp(0+ii)}])}+log{-log(E[exp{-exp(ii)}])}.

Comparing the expressions for 9 and dB above, it is evident that 0B < 9, and as 

the standard deviation of s( approaches zero: a —> 0, 9b —> 9. This means that the 

power is achieved only at low correlations. Therefore, it is anticipated that the

program output will give 9 which is the estimate of 9B, itself smaller than the input 9: 

low power at high correlation. A similar relationship between 9 and 0B for a 

proportional odds model of binary data has been reported by Bolland (2003), which 

also relates to methodology presented by Neuhaus et al. (1991).

In the simulation results (Section 5.2), the directly estimated power is hence 

compared with its corresponding theoretical power, computed at the estimated 9B,

which is 9 . In reality, the assumption of a common treatment effect under H\ may be 

violated. The best we can do is to identify the proportional hazards model that is 

closest to the actual case we have. We generate a big data set (for example in Table

5.1), and choose the sample size when the required parameter converges to a constant 

value, as decribed earlier.

141



5.1.1. Key Performance Measures

To quantify the accuracy of the proposed method, as well as to justify the choice of 

intervals {k = 5 or 10?), there are five specific key measures which can be employed. 

The two most prominent performance measures are the type I error rate and the power 

of the test respectively, under the null and alternative hypotheses. Additionally, the 

correlation ratio, the coverage probability and the bias of 9 can also be taken into 

account. However, the coverage probability and the bias can only be determined if 

indeed the actual 9 is known. As already explained in the Section 5.1, in the computer 

code generating the simulated data we are able to fix 9W {within subject), while from 

the resulting survival times we estimate 9B {between subjects). Therefore, only the 

three aspects of accuracy assessment (type I, power and correlation ratio) are 

investigated and reported in Section 5.2.

The first two measures have been described in Section 1.7, and therefore are 

discussed only briefly here. As described in the previous section, some power loss is 

anticipated with increased correlation. The power will instead be compared to a

theoretical power denoted by TP, which appropriately compares the estimated 6  to 

the input 9 adjusted based on the same log hazard ratio between subjects. As already 

explained in Section 2.3, the advantage of a global test lies in between the two 

extreme cases of completely independent endpoints and totally dependent endpoints 

(as if there was only a single endpoint).

As to the correlation ratio, an ideal situation arises when the estimated

correlation using the proposed method, denoted by p(est)? is exactly the same as the

“true” correlation. It is to be recalled that each simulation is replicated 10,000 times

{N = 10,000) under each hypothesis. The estimate of the covariance between two

score statistics, Cn, is calculated from each replicate simulation and similarly for the
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correlation estimate/3. The average value of p  from the 10,000 replicates, gives the 

best estimate, P(est)- Since the “true” correlation is unknown, it is assumed that the 

correlation observed from its own samples of N, denoted by /)(sample) gives the true 

correlation asymptotically. With N  replicate simulations of the same study, the sample 

covariance, cov(Zi,Z2) can be obtained from the expression

cov(Zp Z2) = (X Z jZ 2 — ( ( ^ Z 1̂ Z 2) / N) / (N  — 1)). The correlation derived from the

sample covariance is given by p {sample) = cov(Z,, Z2) /  ̂ /var(Zj)varZ2 . Therefore, the

correlation ratio of both estimates, yO(est)/p(sampie), will be compared in investigating the 

properties of the correlation estimator and in evaluating the accuracy of this method.

Although the coverage probability and the bias are not considered in the 

assessment of accuracy in this study, they are briefly described here and are later 

commented in Section 5.2.8. The coverage probability of a confidence interval is 

estimated by the proportion of replicates for which the interval contains the true value 

of interest (Dodge, 2003), in this case the treatment effect. Meanwhile, the bias of the

estimate of 6 is given by 9 -0  and unbiasedness is indeed a desired property of a good 

estimator. In order to evaluate the bias and the coverage probability, it is necessary to 

know the true value of <9, and as explained earlier, the simulation method used does 

not allow this, except for simulations under the null hypothesis where 0= 0. The three 

key performance measures (type I error, power and correlation ratio) are reported in 

the results for individual case (Sections 5.2.1 to 5.2.7) and later summarized in the 

overall results (Section 5.2.8).
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5.1.2. Combined Hypothesis Tests

In Section 2.1.1, global tests have been described in the context of binary data. Here, 

they are extended to interval-censored survival data with 6m representing log hazard 

ratio for m event. Based on the normality assumption of Z, already described in 

Sections 1.4 and 2.1.1, the following hypothesis tests can be employed. In this section, 

only the score test and Wald test are considered, whilst a good description on test 

statistics which includes the likelihood ratio test is available from Azzalini (1996). It 

is to be recalled from Section 4.4 that there are two ways to estimate the overall 

treatment effect. Consequently, two options of hypothesis tests are available and are 

described here.

For the standard estimate of overall treatment effect, 0 * , under the null, 0 = 0; 

hence Z*2/F* can be tested against the chi-squared distribution with one degree of 

freedom, %\. Equivalently, Z*Nv* can be compared with the critical value for a 

standard normal distribution, N(0, 1). This is an extension of the logrank test for 

univariate case as described in Section 1.6, now adapted for bivariate case. From

Section 4.4, the standard error of 0 * is given by iHv, and hence an approximate 95%

confidence interval for 6 * is expressed as (ZW * ± 1.96/Vv*).

Alternatively, and more appropriately, using the optimal weighting in equation 

(4.10), the standard error of the optimal estimate of the treatment advantage, s.e.(0) , 

is given by the square root of equation (4.11). Similar to its standard counterpart 

described earlier, O !s .e0 )  c a n  be tested against A(0, 1) or {62 / var(0) against / j 2. 

Therefore, the p-value is given by 1 - 0 {6 / s.e.{0)) and this expression is used to 

compute all the p-values for the remainder of this thesis, unless noted otherwise.
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5.2. Simulation and Results

With reference to Step 4 in Figure 5.1, the fixed number of patients, n = 1,000 are 

generated and randomized equally to control and experimental. In this investigation, 

only 6 corresponding to V* is used since the main interest is the overall treatment 

effect. The effect of increasing the standard deviation of the subject effect, a is also 

investigated by varying d. Each data set is generated based on the variables set for 

each value of d and k, on each hypothesis: an example was earlier displayed in Table

5.2.

The score statistics, Fisher’s information and covariance for each interval are 

computed to yield the global score statistics, variances and covariance estimator, Cn 

and hence the correlation estimator, p . It is to be recalled that this part of the 

procedure was illustrated in Section 4.5.1 earlier. All simulation runs are replicated

10,000 times under each hypothesis, the average values from which are taken to be the 

best estimates. The results for each of the six cases are summarized in tables and 

figures.

5.2.1. Complete or Uncensored Data

Complete data sets with no censoring are simulated as the first check point since the 

simple setting does not involve any censoring rules. In Section 2.1.1, the theory states 

that Z ~ N(6V, V) for large V and small 6: the variance of Z is approximately V. In this 

study involving 10,000 replicate simulations of a sample size of 1,000 each, the 

average values of V and variance of Z, obtained under each hypothesis, are 

summarized in Table 5.3.
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Table 5.3: Average values of V and var Z for the complete case under the null and

alternative hypotheses.

Complete d Vi Var Zj v 2 Var Tjj v* VarZ*
1 196.8 196.2 196.8 190.6 385.3 379.2

Ho 5 196.9 195.2 196.9 195.3 285.0 288.8

V 10 196.8 197.4 196.8 195.0 236.6 240.3
Jv — D

1 196.5 193.7 196.6 189.3 382.7 368.8

H! 5 196.5 192.2 196.6 193.7 284.2 284.0

10 196.6 195.3 196.7 194.7 236.4 238.7

1 223.2 225.3 223.2 217.9 436.8 434.4

Ho 5 223.2 224.7 223.1 222.0 326.0 337.3

k =  10
10 223.2 224.8 223.2 223.6 271.4 284.4

1 222.3 220.1 222.2 214.9 432.6 417.5

Hi 5 222.5 221.9 222.5 218.1 324.8 331.4

10 222.9 224.1 222.9 222.3 271.0 282.9

It is clearly apparent in the table above that the variance of Z is very close to 

information V in each setting under both hypotheses. For example, the first row shows 

that V\ (196.8) and var Z\ (196.2). It is worth noting that a similar observation is found 

in all the cases simulated, where var Z « V holds. Also, as expected, an increase in the 

number of intervals gives a bigger V, as more information about 0 is contained in Z. 

These values are listed in this section only for illustration purposes, as they are not of 

prime interest in this study.

A standard table of results summarizing the three key measures is presented 

for each case studied under the null (H0) and alternative (Hi), with varying degrees of 

correlation: d = 1 (low), 5 (medium), 10 (high) and number of intervals (k = 5, 10). In 

such a table as that below (Table 5.4), it is to be noted that the first two columns 

contain the values set for d and 6, while others relate to the estimates obtained. To
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assess the validity of the assumption of a common treatment advantage, 0X =02 = 6,

the estimates are tabulated alongside their corresponding type I errors and powers. 

The type I error rates, corresponding to the marginal tests based on Th T2 and the 

global test based on both, are a\, a2 and a\2 respectively. Similarly, their alternative

counterparts are denoted by l-/?i, \-f}2 and l-f}n . The theoretical power for 0 (Section

5.1) denoted by TP, serves as a baseline for comparison with the global power l-/?i2- 

Meanwhile, p(est) and P(sampie) respectively are the correlation estimated using the 

proposed method, and the correlation derived from the samples. It is to be noted that 

in the tables of results for the remainder of this thesis, texts in bold highlight particular 

values which are worthy of remark.

Table 5.4: Summary of results for the complete case under the null and alternative,

using 5 and 10 intervals.

H0@ 5 intervals
d e 4 4 6 a ] a 2 a  12 N/A P (e s t) P (sa m p le )

1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0.023 0.021 0.023 N/A 0.023 0.026
5 0 . 0 0 0 -0.001 -0.001 -0.001 0.024 0.025 0.026 N/A 0.382 0.412
10 0 . 0 0 0 -0.001 -0.001 -0.001 0.024 0.027 0.025 N/A 0.664 0.693

Hi @ 5 intervals
d e k 4 0 1-41 \ - P 2 1-4 12 TP P (e s t) P (sa m p le )

1 0.174 0.171 0.171 0.171 0.67 0.67 0.92 0.89 0.028 0.027
5 0.209 0.139 0.139 0.139 0.50 0.49 0.65 0.58 0.384 0.412
10 0.221 0.089 0.088 0.088 0.24 0.23 0.28 0.25 0.664 0.694

Ho @ 10 intervals
d 6 k 4 6 a ! a 2 a  12 N/A P (e s t) P ( sa m p le )

1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0.024 0.022 0.024 N/A 0.023 0.026
5 0 . 0 0 0 -0.001 -0.001 -0.001 0.024 0.026 0.028 N/A 0.370 0.415
10 0 . 0 0 0 -0.001 -0.001 -0.001 0.025 0.026 0.027 N/A 0.645 0.715

Hx@ 10 intervals
d 6 k 4 0 1-41 l-4 2 1-412 TP P (e s t) P ( sa m p le )

1 0.165 0.162 0.162 0.162 0.68 0.68 0.92 0.89 0.028 0.025

5 0.197 0.130 0.130 0.130 0.50 0.49 0.65 0.57 0.371 0.416

10 0.208 0.083 0.083 0.083 0.24 0.23 0.28 0.25 0.645 0.713
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In each setting for the complete data, the type I error is well within the 95% 

probability interval (0.022, 0.028), the global power exceeds its theoretical power and 

the estimated correlation /?(est) seems close to its sampled correlation P(SamPie)- However, 

a slightly inflated type I error is observed at 10 intervals {an = 0.028). The estimates 

of the marginal and global 6s are exactly of the same value in each setting under both

hypotheses: a valid assumption of 0l =02 = 6. The marginal powers 1- and 1- /?2,

based on individual T\ and r 2 respectively, are obviously smaller than the global 

power: similar findings which demonstrate the advantage of global test as seen in 

Chapter 2 earlier.

In Table 5.4 above, it is evident that upon increasing the correlation multiplier 

d, the required 6 gets larger, but as anticipated the power is gradually lost with 

increasing d. As explained in Section 5.1, the estimate, 0B is expected to be smaller 

than the value set 6 = 6w, as correlation increases. For example, when d = 10 (5

intervals), 6 is only 0.088 compared to the setting of 6 = 0.221, which seems to be 

about 60% underestimation. Consequently, the power of the test for the combined 

score, 1 - flu  is only “accurate” compared to the 95% probability interval (0.89, 0.91) 

at low correlation (d = 1) at both interval settings. Upon comparing the results for 5 

and 10 intervals, the former seems to give better results in terms of type I error and 

correlation ratio ( d  = 10), while the power is exactly the same as that for the latter.
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5.2.2. Paired Organs

To simulate the case of paired organs, T\ and T2 are generated in a similar way as to 

the complete case, except that a 50% censoring proportion is now applied to the data, 

as shown in Table 5.2 earlier. Only one censoring variable exists as T\ and T2 concern 

the same patient. The data are then subjected to the specific censoring rules, as already 

described in Section 4.3.2. The results are summarized in Table 5.5.

Table 5.5: Summary of results for the paired case under the null and alternative.

H 0 @ 5 intervals
d e 4 4 0 a ! a 2 «12 N/A P  (est) P  (sample)
1 0 . 0 0 0 0.000 0.000 0.000 0.025 0.023 0.026 N/A 0.035 0.027
5 0 . 0 0 0 0.001 0.000 0.000 0.028 0.025 0.028 N/A 0.421 0.437
10 0 . 0 0 0 0.001 0.002 0.001 0.027 0.025 0.026 N/A 0.674 0.685

H i @ 5 intervals
d e k 4 0 1-41 i -42 1-412 TP P  (est) P  (sample)
1 0.241 0.235 0.236 0.235 0.65 0.65 0.90 0.89 0.041 0.022
5 0.287 0.190 0.190 0.190 0.47 0.48 0.61 0.57 0.422 0.437
10 0.305 0.120 0.120 0.120 0.23 0.22 0.25 0.25 0.692 0.704

Ho @10 intervals
d e k 4 6 a j a 2 a 12 N/A P  (est) P  (sample)
1 0.000 0.000 0 .0 0 1 0.001 0.025 0.025 0.028 N/A 0.031 0.026
5 0.000 0.000 0 .0 0 1 0.001 0.028 0.024 0.025 N/A 0.412 0.428
10 0.000 0.001 0 . 0 0 2 0.002 0.026 0.025 0.026 N/A 0.679 0.706

H i @10 intervals
d e k 4 e 1-41 1 - 4 2 l"4l2 TP P (est) P  (sample)
1 0.228 0.222 0.224 0.223 0.65 0.66 0.91 0.89 0.037 0.023
5 0.271 0.180 0.181 0.180 0.48 0.48 0.62 0.58 0.413 0.429
10 0.288 0.115 0.116 0.115 0.22 0.23 0.26 0.25 0.679 0.707

For the paired data, slightly inflated type I error rates are observed, but they 

are still within the 95% PI (0.022, 0.028). The global power achieved is higher than 

the theoretical power and the correlation estimates p(est) and pimple) are consistent for 

each scenario above. The global test advantage is clearly evident whereby the global 

power is much larger than that of the marginals. This is anticipated since the



assumption of equal treatment effect is satisfactorily met, as shown in the above table. 

Additionally, it seems that the 10 intervals setting yields a slightly higher power, by 

1 %, but a similar type I error compared to the 5 intervals.

5.2.3. Related Indicators

As mentioned in Section 5.1, the generally related indicators are simulated with mild 

censoring (20%). Unlike the paired case earlier, each T\ and T2 can be censored 

independently as described in Section 4.3.3 and the censoring rules illustrated in 

Section 4.5.2 are applied. The results for both interval settings are given in Table 5.6.

Table 5.6: Results for the indicators case under the null and alternative.

Ho @ 5 intervals
d e k k 6 a i a 2 a 12 N/A P (est) P (sample)

1 0.000 0.000 -0.001 -0.001 0.022 0.023 0.023 N/A 0.023 0.032
5 0.000 -0.001 -0.001 -0.001 0.022 0.026 0.027 N/A 0.387 0.404
10 0.000 -0.001 -0.001 -0.001 0.025 0.025 0.026 N/A 0.670 0.688

Hr @ 5 intervals
d e k k 6 i-/?i 1 2 17? 12 TP P (est) P (sample)

1 0.194 0.189 0.189 0.189 0.66 0.66 0.91 0.89 0.028 0.034
5 0.245 0.161 0.161 0.161 0.50 0.49 0.65 0.57 0.389 0.406
10 0.275 0.107 0.107 0.107 0.24 0.23 0.26 0.24 0.671 0.685

Ho @10 intervals
d e k k 6 a i a 2 a 12 N/A P (est) P (sample)

1 0.000 0.000 -0.001 -0.001 0.021 0.023 0.022 N/A 0.023 0.033
5 0.000 -0.001 -0.001 -0.001 0.024 0.027 0.028 N/A 0.374 0.404
10 0.000 -0.001 -0.001 -0.001 0.025 0.025 0.027 N/A 0.649 0.686

Hr @ 10 intervals
d k k 0 1-/11 l"/?2 1-/? 12 TP P (est) P (sample)

0.180 0.179 0.179 0.67 0.66 0.92 0.89 0.028 0.032
0.151 0.151 0.151 0.49 0.50 0.66 0.57 0.375 0.402

10 0.101 0.101 0.101 0.23 0.23 0.28 0.25 0.649 0.686
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For the related indicators, the type I error rates are within the 95% PI (0.022, 

0.028) for all settings with 5 intervals showing a slight advantage over 10 intervals, 

with regard to the global an- As with the earlier cases, the global power exceeds its 

theoretical power in each scenario. The setting of 10 intervals yields higher power 

(1% to 2%) compared to that of 5 intervals. However, the coarser intervals perform 

better than the finer in terms of the correlation estimates under both hypotheses.

5.2.4. Progression-Free Survival

A progression-free survival analysis dictates more events on T\ (Section 4.3.4) 

compared to the earlier case of related indicators. Using the same initial data as 

generated in the latter case, adjustment is then made according to the censoring rules 

described in Section 4.5.2 earlier. The simulation study for PFS yields the following 

output as shown in Table 5.7.

151



Table 5.7: Summary of results for the PFS case under the null and alternative.

H @ 5 intervals
d e

4 4 0 a i a 2 a  12 N/A P (e s t) P ( sa m p le )

1 0.000 0.000 -0.001 0.000 0.025 0.023 0.024 N/A 0.589 0.601
5 0.000 0.000 0.000 0.000 0.026 0.025 0.026 N/A 0.755 0.779
10 0.000 -0.001 -0.001 -0.001 0.024 0.023 0.025 N/A 0.869 0.882

H , @ 5 intervals
d e 4 4 0 l-/?i 1-42 1 - 4 1 2 TP P ( e s t) P ( sa m p le )

1 0.223 0.214 0.225 0.218 0.83 0.81 0.90 0.89 0.592 0.601
5 0.252 0.156 0.167 0.159 0.55 0.52 0.59 0.53 0.755 0.779
10 0.275 0.102 0.108 0.103 0.24 0.23 0.25 0.23 0.869 0.882

Ho @10 intervals
d e 4 4 0 a i a  2 a  12 N/A P (e s t) P ( sa m p le )

1 0 . 0 0 0 0 . 0 0 0 -0.001 0 . 0 0 0 0.026 0.021 0.024 N/A 0.608 0.629
5 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0.026 0.025 0.026 N/A 0.734 0.774
10 0 . 0 0 0 -0.001 0 . 0 0 0 -0.001 0.024 0.026 0.025 N/A 0.848 0.876

H  i @10 intervals
d 6 4 4 0 1 - 4 1 1 ~ 4  2 1 “4  12 TP P ( e s t) P ( sa m p le )

1 0.212 0.201 0.214 0.206 0.84 0.81 0.90 0.88 0.610 0.628
5 0.238 0.146 0.157 0.149 0.55 0.53 0.59 0.53 0.757 0.798
10 0.259 0.096 0.102 0.097 0.25 0.24 0.26 0.23 0.861 0.891

As in the earlier cases, the type I error rate is within the 95% PI, and the global

power exceeds its theoretical power (TP) in each setting. The correlation estimates are 

consistent, although slightly higher values are observed under the alternative, at 10 

intervals (d = 5, 10), compared to those under the null. It is notable that the estimates 

of marginal and global treatment effects are no longer equal, unlike the earlier cases. 

The impact of the invalid assumption of 6 equality is reflected in the power of test: the 

marginal power is now closer to the global, compared to all the earlier cases. Upon 

comparing the performances of the 5 and 10 intervals, the former gives better results 

for the type I error and correlation estimate, while the latter is slightly more 

advantageous in terms of power.
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5.2.5. Recurrent Events (Total Time)

For the recurrent events total time model, time to the second recurrence, T2 contains 

time to the first recurrence, T\ and therefore the data generation differs from the other 

cases. Two time variables, say T\ and Tig, are generated as described in Section 5.1, 

and their sum makes up T2 . An alternative method is also explored, whereby the 

smaller value of the two time variables is taken as T\ and the larger as T2 '. their results 

are displayed under the label “2nd option”. The simulated data are then similarly 

subjected to the censoring rules relating to the features described in Section 4.6.1. For 

example, when T\ is censored at t\ = c\, T2 is also censored at the same time c\. As 

already acknowledged, the recurrent TT case is expected to be highly correlated since 

the magnitude of T2 includes T\ as well. The simulation results are displayed in Table 

5.8 and the results for the 2nd option are commented last.
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Table 5.8: Results for the recurrent events TT case under the null and alternative.

H 0 @ 5 intervals
d 6 4 4 0 a ! a 2 « 12 N/A P (est) P (sample)

1 0.000 0.000 0.001 0.000 0.026 0.025 0.027 N/A 0.539 0.557
5 0.000 0.001 0.001 0.001 0.028 0.025 0.028 N/A 0.730 0.751
10 0.000 0.001 0.001 0.001 0.026 0.025 0.026 N/A 0.848 0.855

H x @ 5 intervals
d 6

4 4 0 M i M 2 M 12 TP P (est) P (sample)

1 0.293 0.282 0.430 0.317 0.86 0.96 0.95 0.94 0.543 0.555
5 0.311 0.192 0.238 0.200 0.53 0.57 0.58 0.55 0.730 0.749
10 0.317 0.118 0.131 0.120 0.24 0.24 0.24 0.23 0.848 0.856

Ho @10 intervals
d 9 k 4 e a  i a  2 a 12 N/A P (est) P (sample)

1 0.000 -0.001 0.001 0.000 0.026 0.025 0.028 N/A 0.551 0.588
5 0.000 0.000 0.000 0.000 0.028 0.025 0.027 N/A 0.723 0.751
10 0.000 0.001 0.001 0.001 0.026 0.023 0.026 N/A 0.839 0.855

H x @10 intervals
d 9 k 4 6 M i M  2 M 12 TP P (est) P (sample)

1 0.278 0.261 0.404 0.299 0.86 0.95 0.95 0.94 0.553 0.576
5 0.293 0.181 0.226 0.189 0.53 0.57 0.58 0.55 0.723 0.750
10 0.299 0.113 0.127 0.115 0.24 0.24 0.25 0.24 0.839 0.855

2nd option @ H  j (5 intervals)
d k 4 0 M i M 2 M l 2 TP P (est) P (sample)

\A 0.247 0.360 0.280 0.85 0.93 0.96 0.95 0.414 0.418
0.177 0.223 0.187 0.54 0.57 0.60 0.57 0.655 0.669

10 0.113 0.128 0.115 0.24 0.23 0.25 0.23 0.803 0.812

The intended type I error rates are achieved, but they are close to the high limit

for both interval settings. The global power exceeds the theoretical power and the 

values of estimated correlation, p(est) are close to their corresponding pimple), in all 

settings. While the marginal powers for individual T\ and T2 were similar in the earlier 

cases, the recurrent case reveals a slight increase in power for the latter. In fact, for 

d = 1 (5 intervals), a marginal power l-/?2 of 0.96 exceeds the global power (0.95). It 

is to be noticed that the assumption of 9 equality is violated, with the marginal

estimate 92 much larger than the global estimate, 0 . This accounts for the lack of
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global power in this case. However, for the 2nd option the estimates of treatment effect 

are now closer to each other and consequently, the global power is always higher than 

the marginal power. This implies that the 2nd option yields recurrent TT data that is 

closer to the assumption of 6 equality and hence resulting in an advantage of the 

global test methodology. Overall, for the recurrent TT case, the use of 10 intervals 

seems to yield improved performance in terms of type I error and power, but slightly 

lower correlation ratio compared to those for 5 intervals.

5.2.6. Recurrent Events (Gap Time)

To generate data for the recurrent events gap time model, T\ and Tig are subjected to a 

common censoring variable, similar to the recurrent TT. However, in gap time 

convention, T2 = T2G, and when 7j is censored, T2 = 0 (gap time). In other words, 

when T\ is censored, T2 is completely missing. Since the magnitude of T\ is no longer 

contained within T2G for GT, the outcomes for each of the paired intervals are quite 

different from those when using TT. Thus, it is only logical that the correlation 

between the events is much lower in GT compared to that for TT, as already observed 

with the bladder cancer data in Section 4.6.2. The simulation results for recurrent GT 

are summarized in Table 5.9.
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Table 5.9: Results for the recurrent events GT case under the null and alternative.

# 0 @ 5 intervals
d 6 4 4 e a ] «2 a 12 N/A P (est) P (sample)
1 0.000 -0.001 0.000 0.000 0.025 0.025 0.026 N/A 0.040 0.030
5 0.000 0.001 0.000 0.000 0.026 0.022 0.022 N/A 0.305 0.235
10 0.000 0.001 0.000 0.001 0.026 0.027 0.020 N/A 0.512 0.352

H i @ 5 intervals
d e k k 0 1 - /4 1 - / 4 1"A 12 TP P (est) P (sample)
1 0.235 0.229 0.228 0.228 0.70 0.58 0.90 0.88 0.045 0.030
5 0.271 0.180 0.137 0.162 0.49 0.25 0.53 0.49 0.306 0.238
10 0.289 0.116 0.069 0.096 0.23 0.10 0.19 0.19 0.511 0.355

H 0 @10 intervals
d 6 k 4 0 a i (X 2 a 12 N/A P (est) P (sample)
1 0.000 -0.001 0.000 0.000 0.025 0.025 0.023 N/A 0.034 0.031
5 0.000 0.000 0.000 0.000 0.026 0.023 0.021 N/A 0.298 0.194
10 0.000 0.001 0.001 0.001 0.026 0.027 0.017 N/A 0.504 0.287

H } @ 10 intervals
d v*V k 4 0 1 - /4 1 - / 4 12 TP P (est) P (sample)
1 0.216 0.215 0.215 0.70 0.58 0.90 0.88 0.039 0.031

( 0.170 0.131 0.154 0.49 0.26 0.54 0.49 0.298 0.191
10 "1X272 0.110 0.066 0.092 0.23 0.10 0.18 0.19 0.504 0.291

At high correlations (d = 10), the global type I error rates are rather

conservative and the global power is just equal to, or slightly lower than its theoretical 

power. The marginal type I error rates are within the 95% PI, and unlike the other 

cases, the marginal power 1-/6 is appreciably higher than 1 -fii and even exceeded the 

global power at d = 10. Such trend is unsurprising for a recurrent events GT model. It 

is apparent that the estimated correlation, /?(est), is substantially larger than /?(SamPie) at 

higher correlations (<d = 5, 10). This overestimation suggests that the proposed method 

may not be suitable for the recurrent GT case when the correlation is high.
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5.2.7. Summary of Correlation Ratios

A simple linear regression method is adopted in assessing the accuracy of the 

correlation estimate. The comparison between p (est) and /?(sampie) is given in a scatter 

plot with a trend line passing through the origin (0, 0) and the gradient from the linear 

equation gives the correlation ratio of /?(est)/p(samPie): y = x  being the perfect estimation. 

The plot for each case under both hypotheses is given individually where (5) and (10) 

in front of the equation indicates the number of intervals.

As shown in Figure 5.2 (a), the linear fit equations for the complete case show 

gradients of 0.95 (5 intervals) and 0.90 (10 intervals): a 5% advantage for the coarser 

intervals. Similar trends are evident for all the other four cases shown in Figures 5.2

(b) to (e), with the advantage of 5 intervals ranging from 1% to 3% for correlation 

ratios of about 0.97 and 0.98. The first five charts show that the proposed method 

yields better correlation estimate using 5 intervals compared to 10 intervals. However, 

the recurrent GT shows some discrepancies in Figure 5.2 (f). There is a huge 

overestimation and the use of 10 intervals gives a higher correlation ratio (1.68) than 

does the 5 intervals option (1.40).
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Figure 5.2: The correlation ratio for each case at 5 and 10 intervals.
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5.2.8. Overall Results: Five vs Ten Intervals

The overall results intend to answer two main questions: the accuracy of the proposed 

method and the appropriate number of intervals for bivariate survival data. The 

following figures display the results for the three key measures, on the x-axis for 5 

intervals and on the y-axis for 10 intervals, under the null and alternative. To ensure 

clarity of choice, a visual presentation is constructed from the set of tables displayed 

in earlier sections. A diagonal line of y = x serves as a reference when both interval 

settings perform equally well; the points below or above it indicating a certain 

superiority, are described accordingly.

Figure 5.3 (a) displays the type I error rate for each case under the null, with 

points above the diagonal line indicating that the method using 5 intervals performs 

better than that using 10 intervals. It can be seen that only the paired and recurrent TT 

give better type I error rates at 10 intervals. The same data points are used to plot 

Figure 5.3 (b) but are now categorized by the degree of correlation: low for d = 1, 

medium for d = 5 and high for d = 10. No particular trend is observed for these two 

plots, and some outliers belong to the recurrent GT, consistent with the earlier 

findings in Section 5.2.6.

Figure 5.3 (c) shows that 10 intervals gives slightly higher power than 5 

intervals. As observed in the earlier sections, a power of 0.90 is achieved at low 

correlation (d = 1). When higher correlations are imposed, there is a noticeable 

clustering of points around 0.6 (d = 5) and 0.3 (d = 10), consistent with the calculated 

theoretical powers. Meanwhile, no appreciable change is observed with regards to the 

accuracy of the correlation estimate as the value of d is increased under the null and 

alternative, therefore an overall plot of both hypotheses is given in Figure 5.3 (d). It is 

clearly visible that a better estimation of correlation is achieved using 5 intervals
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compared to 10 intervals, with correlation ratios of 0.99 and 0.97 respectively. It is to 

be noted that the outliers above the lines are due to the recurrent GT, as already 

commented in the previous section. Excluding these points, the corresponding ratios 

for 5 and 10 intervals respectively are 0.98 and 0.95. On the basis of the overall results 

presented above, it can be concluded that the setting of 5 intervals yields higher 

accuracy than 10 intervals.

Figure 5.3: Type I error rates, power and correlation ratio using 5 and 10 intervals.
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Meanwhile, it is worth commenting that under the null Ho: 0 = 0, bias 0 was 

essentially zero, as 0B —> 0 = 0. Under the alternative, bias 0 was also zero at low 

correlation (d = 1) as 0B -> 0 = 0W. Consequently, the coverage probabilities were 

essentially 0.95 under Ho and when d = 1 under H\. This topic has been discussed in 

Section 5.1. A general comparison is now given based on the individual case 

presented earlier. Unlike the other cases, the recurrent TT data is structured such that
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T\ is directly contained within T2, hence embedding the treatment advantage from the 

1st recurrent into the 2nd, resulting in larger treatment advantage and power. Whereas 

in a combined test, these effects are diluted as governed by the weighting scheme used 

(Section 4.4), leading to a smaller power compared to that for the marginal test on T2. 

Also, notice that the values of 9 for the paired, recurrent TT and recurrent GT cases 

(in the previous sections) are appreciably larger than those for other cases, to 

compensate for the heavy censoring imposed.

For the cases of complete, paired and indicators, the assumption of a common 

treatment effect is valid and hence reflected in the superiority of the global power 

compared to those of the marginal. PFS shows a slight variation between the estimates 

of treatment effect, and the marginal power is close to the global. The recurrent TT 

shows wider spread of the estimates, resulting in marginal power of bigger than the 

global. The superiority of global power is recovered when the 2nd option of data 

generation is used. Meanwhile, for the recurrent GT, the estimates are equal when d = 

1, hence the global superiority is observed. However, as the correlation increases, the 

estimates of marginal treatment effects start to vary and at d =10, the marginal power 

based on the 1st event exceeds the global power.

The results in this section imply that the method of data generation described 

in earlier sections gave data sets with proportional hazards for most of the cases, 

except for the recurrent events, although the 2nd option was close. The relationship 

between adherence to this key assumption and the performance of the global test 

shown here is similar to that of the proportional odds assumption displayed in Table 

2.12 on Page 50. Overall, this evidence further strengthens the theoretical advantage 

of the relationship between the Fisher’s information and sample size, as well as the 

superiority of the global test methodology when the assumption is valid.
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5.3. Discussion

The proposed method has achieved the intended type I error rate under the null 

hypothesis of zero treatment effect, and yielded accurate power relative to its 

theoretical power under the alternative hypothesis. The fundamental equations in 

Section 5.1, referencing to Section 1.7, simplify the procedure for deriving sample 

size and power for a clinical trial. This illustrates the benefit of the global test 

approach for the correlated bivariate survival data analysis. Meanwhile, the overall 

correlation ratio is good with a slight underestimation of 1%.

The comparison of the powers of marginal tests to that of the combined test in 

the previous section reveals an interesting finding with regard to the recurrent TT 

case. The higher power of the marginal test on T2 indicates that combined analysis 

may not be beneficial for the case of recurrent TT. This may be one of the scenarios in 

which previous authors have cautioned about regarding the appropriateness of use of 

the global test approach (Section 2.1). Additionally, when the data were generated 

differently, so as to give better adherence to the assumption of proportional hazards, 

the global power won back. It is to be learned from this particular simulation that 

perhaps when the correlation between the endpoints is high (e.g. the 2nd contains the 

1st), combining their analyses into one may not be beneficial: one may as well use the 

simpler marginal analysis for each endpoint.

Since the assumption of a proportional hazards ratio is deployed in this study 

design, any deviation from it may degrade the power of the test. In reality, this 

assumption is not always true and perhaps using the global test is still the best choice 

in general. For example, in the case of recurrent TT (Section 5.2.5), we may lose a bit 

on the power of the global test over the marginal, but in most cases the former is 

clearly superior to the latter. The global test methodology is intended for use where
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the correlation is positive, and it may be inappropriate in the case of negative 

correlation as might arise in situations such as duration of stay in ICU and time to 

kidney failure. As explained in Section 5.1, the diminishing power at high correlation 

is anticipated owing to the data generation method which yields Or  associated with the 

log hazard ratio within subject, Ow. The remaining challenge is to devise a method that 

gives the appropriate Or  which is based on the log hazard ratio between subjects, Ob -

In all of the analyses, the continuous data sets (real and simulated) were 

transformed into interval-censored data to enable the application of the proposed 

method. A problem inherent in our approach is that taking the intervals leads to a 

slight loss of power, as shown in the simulation results. Furthermore, appropriate 

choice of the number of intervals, as well as of the size of the interval, is important. 

Based on the exploration undertaken, setting up five intervals seemed to perform 

better than setting up ten in terms of the key performance measures defined. It is 

worth noting that the intervals used for the 10,000 simulation runs were fixed and thus 

may not have accurately divided the events from each run equally across each 

interval; although the impact should be minimal since the intervals were obtained 

using a very large sample size of 1 million.

As described in earlier sections, many real clinical studies deal with interval- 

censored survival data. An example of a naturally interval-censored survival data set 

is seen in a clinical trial comparing treatment advantage by analysing X-ray gradation 

which measures the loss of cartilage in the knee of arthritis patients (Whitehead & 

Thomas, 1997). As observed in the simulation study, application of interval censoring 

to continuous survival data should be carried out with caution as the number of 

intervals may affect the results appreciably.
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To conclude, the encouraging results, evident for both real and simulated data, 

show that our method works for the bivariate interval-censored survival data: 

complete, paired, related indicators, progression-free survival and recurrent TT. 

However, its suitability as a correlation estimator for the recurrent gap time model is 

questionable and is further investigated in Chapter 6, upon comparing it with the 

existing method of Wei, Lin Weissfeld (1989).
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Chapter 6. Comparison with the Wei, Lin and Weissfeld Method

In this chapter, a well-known approach to the estimation of the correlation between 

two estimates of treatment advantage for multivariate survival data, namely the Wei, 

Lin and Weissfeld method (WLW), is compared with our present method (ZW), 

which was described and investigated respectively in Chapters 4 and 5.

To begin with, a number of existing methods for multivariate survival analysis 

are introduced to paint the background in Section 6.1. This introduction is followed in 

Section 6.1.1 by an overview of marginal models. A description of the influence of an 

individual observation on a parameter estimate, including the jackknife technique and 

the delta-beta approximation is given in the subsequent sections; these are related to 

WLW, as will be shown in later sections. The concepts of the WLW approach will be 

described at length in Section 6.2, and its use in estimating overall treatment effect in 

Section 6.3. The subsequent Section 6.4 focuses on a theoretical comparison of ZW 

and WLW.

Practical applications to real data sets are demonstrated in Section 6.5, 

followed by a short discussion to preview Section 6.6 which centres on a simulation 

study to evaluate and compare the accuracy of these contending methods. Simulation 

results for each of the seven scenarios are presented and the overall results are then 

summarized in Section 6.7. A discussion of the findings concludes this chapter.
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6.1. Background

As clarified in earlier chapters, the scope of this thesis covers bivariate survival data, 

which provide the simplest case of multivariate data; an extension to other 

multivariate cases is also feasible. By definition, multivariate survival data arise when

(i) each subject may experience several events or (ii) there exists some clustering of 

subjects, which induces dependence among event times within the same cluster. 

Extensions of methods of univariate survival analysis to the multivariate setting have 

proved to be rather difficult, resulting in many different approaches: three of these are 

known as marginal, frailty and copula.

In marginal models, the association structure is left unspecified. It is to be 

recalled that our proposed method (ZW) decribed in Chapter 4, was developed from a 

marginal model. In this chapter, other marginal methods are now reviewed: namely 

AG (Andersen and Gill, 1982), PWP (Prentice, Williams and Peterson, 1981), and 

LWA (Lee, Wei and Amato, 1992) as well as WLW (Wei, Lin and Weissfeld, 1989). 

The methods of AG, PWP and LWA will be covered briefly in the next section, while 

WLW is described in more detail throughout this chapter.

Another approach is a frailty model, whereby the distribution of a random 

effect is specified. Meanwhile, a copula model offers an alternative by combining 

marginal distributions via a copula function, which specifies the dependence structure. 

Both the frailty model and the copula model are not within the scope of this work, but 

good descriptions are made available by Hougaard (2000) and Sun (2006) 

respectively.
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Oyer the past two decades, WLW has become a popular method for dealing 

with recurrent events. To date, the paper by Wei et al. (1989) has been cited over 600 

times. It has attracted criticism from many quarters, and a complete summary and 

appraisal are given by Metcalfe & Thompson (2007). They also claimed that as of 

August 2003, application of WLW in the analysis of recurrent events was reported in 

31 articles, while the use of the PWP method was reported in 24 publications. Several 

other authors have also studied WLW and assessed its suitability in many aspects; 

application to recurring and terminating events (Li and Lagakos, 1997), adaptation to 

the competing risks (Wei and Glidden, 1997), analysis of composite endpoints of 

longitudinal and survival data (Seville, Herring and Koch, 2010), and systematic 

characterization of methods for recurrent events using risk intervals, baseline hazard, 

risk set and correlation adjustment (Kelly and Lim, 2000). To describe the WLW 

method, we shall start with an overview of the existing marginal models, following 

this by a review of the jackknife technique as well as of both the exact delta beta 

technique and its approximation DFBETA, which are important in deriving the robust 

variance estimation in WLW.

6.1.1. M arginal Models

Marginal models are methods where the effects of explanatory variables are estimated 

on the basis of the marginal distributions. In the case of bivariate survival data 

involving two endpoints, this simply means that the set of data, say T\ and T%, for each 

endpoint is fitted to a standard Cox’s proportional hazards (PH) regression model 

separately without assuming any correlation. The marginal hazard function for the mth 

type of event on the iih subject is given by hm (t\ x im) = h0m (t) exp(^' x im) for a set of p

fixed covariates x t with a vector of regression coefficients, /?, m = 1, 2. It is to be
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noticed that the baseline hazard is specific to the mth event, but can be considered as 

common across all m events by omitting the subscript m accordingly. The choice of 

stratification has been described in Sections 1.6 and 4.6.1.

As mentioned earlier, the ‘working model’ assumes that the observations are 

independent. A model-based variance estimate is obtained from the inverse of the 

information matrix. However, due to the correlation between event times, it may not 

be a consistent estimate of the asymptotic variance. Thus, the estimates of the 

regression coefficients are used with empirical adjustment of their estimated variance 

using a sandwich estimator (further described later). This is the means to account for 

within-subject correlation. In this section, the well-known marginal models due to 

Andersen & Gill (1982), Prentice, Williams & Peterson (1981), Lee, Wei & Amato 

(1992) and Wei, Lin & Weissfeld (1989) are reviewed. Only the general principles are 

considered here, while more technical details are provided in those references.

The intensity model, AG (Andersen and Gill, 1982) assumes that all events are 

independent and are of the same type, and hence provides estimates of the treatment 

effect on the rate of events as a whole. Meanwhile, the PWP model (Prentice et al., 

1981) considers an extension of the stratified PH model with the m events as strata: 

the hazard function is event-specific. AG and PWP methods originally used a model- 

based covariance estimate which is the default in the SAS PROC PHREG procedure, 

but the robust variance sandwich estimator has been applied to these models by other 

researchers (Finkelstein, Schoenfeld and Stamenovic, 1997), to adjust for correlation.

The LWA model (Lee et al., 1992) is unstratified and hence assumes a 

common baseline hazard. It allows a subject to be at risk of multiple events 

simultaneously and accounts for the within-subject correlation by using the sandwich 

estimator. The WLW model (Wei et al., 1989) is rather similar to LWA except that the
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former is stratified by event type, giving event-specific hazard functions. For each 

model, the specific partial likelihood can be constructed accordingly in order to derive 

the parameter estimates and their variances. A good comparison of the hazard 

functions and partial likelihoods for these methods is given by Kelly & Lim (2000).

In normal distribution models, residuals are often evaluated for the purposes of 

checking the model assumptions and evaluating the variance estimates. Residuals for 

survival data can be similarly evaluated, although the precision depends on the nature 

of the data: observed event time or censored observation. The variance estimates 

derived in this manner are different from those usually obtained from the second 

derivative of the log likelihood function, which are the usual model-based estimators.

The variance matrix of the regression coefficients is given by Y =1 RI 1, where I  is 

the matrix of second derivative of the log likelihood function and R  is the variance 

matrix of a score vector. This sandwich-like form renders the name sandwich 

estimator, also often known as the robust covariance matrix estimator or the empirical 

covariance matrix estimator. A more detailed account of the derivation of residuals 

and influence diagnostics specifically for Wei, Lin & Weissfeld is given in the 

subsequent sections.

The sandwich estimator has achieved increasing use with the growing 

popularity of generalized estimating equations (GEE) in linear models; a similar 

version in survival analysis is provided by Wei et al. (1989). Traceable to Huber 

(1967) and White (1982), the method yields asymptotically consistent estimates of the 

covariance matrix for parameter estimates when a parametric model assumption is 

invalid, or is not even specified. Standard statistical softwares incorporate the various 

types of variance estimates into analyses such as SAS PROC PHREG, which can give 

both the model-based and sandwich-based statistics: illustrated in Section 6.2.
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6.1.2. Jackknife Method

Jackknifing is a well-known computational technique for estimating the bias and 

standard error of an estimate; which is very similar to its famous successor, the 

bootstrap. The general idea was proposed by Quenouille (1949) for estimation of bias, 

and Tukey (1958) explored its potential for estimating standard errors: further 

development has been provided by others since then. As with any resampling 

technique, the jackknife does not make any specific distributional assumption. The 

procedure consists in taking repeated subsamples of the original sample of n 

independent observations by omitting a single observation at a time: useful in 

evaluating subject or case influence. Its relationship to WLW is quite interesting and 

shall be demonstrated in the subsequent sections.

Suppose we are interested in a parameter P on a basis of random sample x  -  

(xj, X2,...,xn) of an unknown population G. Taking this random sample of n 

observations would give an estimate p  which may be biased, and for which 

estimation of standard error is needed. The jackknife uses the sample by removing the 

first observation xj, leaving a “jackknife data set” of resampled values, say x (]). The 

statistical analysis is performed on the reduced sample size of n - 1, giving another

value of the parameter estimate, say . Then another resampling is done, this time

throwing out the second observation x2, and p {2) is obtained from the subsample x (2).

The process is repeated for each observation in the sample resulting in a set of values

/?(1),/?(2), . . . , T h u s ,  each subsample x (i) comprises n -  1 observations formed by

deleting a different observation from the sample of size n. A schematic illustrating the 

jackknife algorithm for estimating parameter is provided in Figure 6.1.
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Figure 6.1: Schematic of the jackknife algorithm for estimating parameter, inspired by 

the bootstrap algorithm (Efron & Tibshirani, 1993 p48).

Sample of size n

Jackknife resampling 
of size n - 1

Population G

Data x = ( x b  x 2, . . . , x n)

o m i t  X j o m i t  x no m i t  x 2

Parameter

P

P

P{wP{2)*''">P{n)

i= 1

The jackknife estimate and its standard error are then calculated from these 

reduced subsamples: n  subsamples each of size n  - 1. The former is the mean of the 

jackknife estimates P {i), given by

a . ) = E A o / ni=i

while the latter is defined as (Efron and Tibshirani, 1993)

(6 .1)

sejK = " “ ■Z(A o - p J
n  (=i

1/2

(6 .2)

Notice that the jackknife estimate of the standard error for P (, } , involves an inflation

factor of n - 1  compared to the standard deviation for f i ( i ) .
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To illustrate the need for this inflation factor, Efiron & Tibshirani (1993) 

consider a special case where P = n and f i  = x . Then it can be shown that

K ) =x(i)= ( n x - x i) I ( n - l )  (6-3)

and subsequently the average of the jackknife estimate of parameter ft is

R - I V -  - -  (6'4)A*) *(•)
n  i=i

Substituting equations (6.3) and (6.4) into equation (6.2), we get

f n -  A ''seJK -  j ~ x ) 2/ n \
(6.5)

which resembles the usual definition of a standard deviation for the population. This 

explains the need for the inflation factor of n  -1 in equation (6.2), to make the 

jackknife estimate of the standard error unbiased. The reason for the difference is that

A A

the jackknife sample means J3{i) are distributed n  -1 times closer to the mean /?(#) than 

the original values, A . Consequently, the jackknife estimate of variance for J3 is

„ n - \ ^  ~ 2 (6-6)
var(/?) = ----- £  (J)m -  # . ) )  .

n ,_i

Although the inflation factor is justified by considering a special case in which f t  = x  

, it appears to be workable in general. Note that ft is a  scalar parameter in the above 

expression for univariate data. For ease of referencing, the term jackknife influence 

represents the quantity fi{i) -  J3{m) hereafter in this thesis.

Suppose n subjects are randomized between treatments E  and C. Equations 

(6.1) and (6.6) can be used to obtain the jackknife estimates of treatment advantage
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and its variance respectively. In the case of bivariate survival data with two event 

times, is now a vector parameter of treatment effects, and the corresponding

estimate,/?' = (PX,P2) . Their variances, var(^) and var(/?2) can be obtained using 

equation (6.6). The jackknife influence can be generalized by p{i)m - P{.)m where m =

1, 2 for such bivariate case. To further simplify, put Jmi = f3{l)m -  P(.)m and equation

2
(6.6) is rewritten as varp m = {(n - 1) / n) ̂  Jmi .

i=1

As described in Section 4.1, to estimate an overall treatment advantage, p , we 

need to find the covariance between the two estimates of the marginal treatment 

advantages, cov{/3x,J32) . According to Efron (1982), the jackknife variance-covariance

matrix between two parameter estimates, fix and P2 is given by

COV(Pv P2) = — P(,)\)(P(i)2 ~ P{»)2)
n i=1

The covariance is given by the summation of the product of the jackknife estimates for 

the 1st and 2nd events, with an inflation factor similar to that for the variance above. 

This can be rewritten as

~ ~ n - l ^ ,  T _ (6-8)
CO V ( P X , P 2) = --------- ^ J UJ 2i-

n /=i

Consequently, the jackknife estimate of correlation can be expressed as

corrJf, (/?,,/?,)= , a • (6.9)Jn n 2
1 21

/=1 i= l
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In matrix notation, this can be further simplified by taking being a

column vector of the n jackknife estimates for mth event, m = 1, 2, and giving the

covariance as

( R  R \  n ~ l T ' r  ( 6 , 1 ° )CO v(j31,fi2) = — j ;j 2, 
n

and the correlation

corrjk0 v Pi ) = , T, T lT tT ,1/2-
j ;j 2 (6.11)

(j ;j j 2j 2)1

The correlation between the jackknife estimates of parameters P{ and p 2 is used for 

comparison with alternative methods in the next section.

Efron & Tibshirani (1993) cover a good deal on the jackknife technique 

although specifically in its relation with the bootstrap method. Meanwhile, an account 

of the use of the jackknife in the derivation of a robust estimate of variance for the 

Cox’s model is given by Themeau & Grambsch (2000). They claimed that such

natural approximation cov{pv P2) by ignoring the inflation factor (n - 1 /n), as

mentioned earlier may be preferable. A study by Lipsitz et al. (1990) concluded that 

this approximation is indeed preferred even for a small sample size. It resembles a 

sandwich estimator which is common from robust variance estimation in parametric 

models and in GEE-like methods such as that of Liang & Zeger (1986). A sandwich 

estimator appropriate to the Cox’s model has been derived by Lin and Wei (1989) and 

is algebraically equivalent to J[J2 but was not described within the jackknife context: 

a point explored in the subsequent sections of this chapter.
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6.1.3. Exact Delta Beta and its Approximation (DFBETA)

A logical way of evaluating the influence of any observation is by observing the 

difference in parameter estimates, one made when that particular observation is 

omitted, and the other made when the full data set is used. This procedure is related to 

the jackknife method with the exception that the effect of removing ith observation is

quantified by the difference between the parameter estimates p  and p {i). Instead of

A A

taking the difference between the average of the jackknife estimates, j3(%) and J3(i), the

parameter estimate f t , which is obtained from the complete sample size of n is used. 

In this thesis, the actual influence of the observation termed “delta-beta” is expressed 

as A.y# = fl{0 - P ; adopting the notation used for the plots in Section 4.3.1 of Collett 

(2003).

Both the jackknife influence (J3(n -  p {,}) and the delta-beta ( p (0 -  P ) require

computation of P(i) for their evaluation. The exact computation of Pin involves

refitting the model each time a subject is omitted, which is computationally expensive 

when the sample size is large. The effect of removing one observation from a survival 

data set is more complicated than for other types of data. Mathematically, the log 

likelihood function for the Cox’s model cannot be expressed as the sum of terms in 

which each term is the contribution by each observation. This implies that any 

exclusion of an observation cannot be simply modelled by omitting a single 

corresponding term. In fact, the exclusion of one observation affects the risk sets over 

which quantities of the form exp(/?'x) are summed (Collett, 2003). A practical option 

is given by Cain and Lange (1984) who derived the following approximation of delta- 

beta as weighted score residuals.
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Suppose each individual has a set of data comprising a vector (t, 3, x ) where t 

is the time from the start of the study until death or censoring, 3 is the censoring 

indicator, 0 for censored, 1 for death, and x  is a row vector of covariates. When there 

are no ties, the partial likelihood is given by the product of the partial likelihood 

corresponding to the risk set R{tj),

where D is the set of subjects who died at time U and U > tj. Its similar form to that of 

the earlier equation (3.8) is to be noticed.

Cain & Lange (1984) derived an approximation to f3{i) based on the first-order 

Taylor series. Suppose that observation j  is given weight vv, leading to a likelihood of

Now, we focus on subject i, and its parameter estimate, fi(i). For 

approximating fi(i), Cain & Lange choose the weighting wj = w if j  = i, wj = 1 

otherwise. Further denote the estimated vector of coefficients P  when this weighting 

is used, by # ( w) . If w = 1, then all observations are weighted equally and the standard 

estimation is obtained: #(1) =P- If w = 0, then the ith observation is simply excluded,

u p ) = r i A w = n j  exp ( ^ ) 7 x  exp<x/?)

the form

z wi tx v(x iP)

Then, the log likelihood is given by

W  = 'L y> M *jP )  - lo g  Yu (W /ex p (^ ))
(6.13)
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4*. .JJV
so that f l ( Q ) = f t { f r  The approximation to delta-beta based on the first-order Taylor

series expansion about w = 1 is thus approximately equal to the derivative of j|(w ) 

where

dB-d) (6.14)
A (w )= f l( i)  + ( w - l ) S f i W .

aw

Now substituting w  = 0 and re-arranging, we have

0 - f i m =dfi,(l)ldw,  »-15)

as stated by Cain & Lange. The derivative term in equation (6.15) is the 

approximation used in the infinitesimal jackknife (Miller, 1974; Efron, 1981). It is to 

be recalled that previously, the score statistic was denoted by Z  when evaluated under 

the null. In this section, U  is used instead, as the the score vector is now a function o f

both J 3 ( w )  and w .  To evaluate 3 $ (l)/5 w , their relationship is defined at

u (f l(w ),w j = 0 . The derivative of the score vector is thus given by

(dU /  c ji)(c p  /  dw) + (8U  /  Sh-)(5vi' /  dw) = 0, (6-16>

and therefore the delta-beta approximation is

d p i d w  = ( -8U/djST'dU/dw.  (6 J 7 )

It is to be noted that the term in parentheses is the observed information matrix and is 

denoted by I  in this chapter. From equation (6.13), the log likelihood can be re- 

expressed as

m = p ’L * /jx i - ' L wi logj 2 ]  wi expC-^y?) [•
j e . D  j e D  J (6.18)
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Following the relationship described in Section 1.4, and from equation (6.18), the 

derivative of the log likelihood with respect to fi  is the score vector U :

To distinguish explicitly between the contributions when subject i is in the risk 

set and that when subject i is excluded from the risk set, further notation is necessary. 

Suppose Di is the set of all subjects, other than subject i who have died, while <5, = 1 if 

subject i died and Sj = 1 if subject i is at risk when subject j  died, 0 otherwise. 

Equation (6.19) can be rewritten as

where R(tj,t) is the risk set at time tj, excluding subject i. Its derivative with respect to 

w can be obtained via the product rule and subsequently the quotient rule,

Z w ix i exp(*/>ff)
Z  Wzexv ix tP)

(6.19)

I z R ( t j )

^  x l exp(jc;/?) + wSjx i exp(jc(./?)

Z  exP(x,P)Z eXP (x iP> + w8j exp(jc./?)
(6.20)leR(tjj)

^  x t exp(xz/?) + wxt Qxp(xt fl)

JeD, z exp(xz/?) + wexp(*z/?)

dU „ v - s i{«?(*,•£)}(Ajx i - Bj)
- t -  = 3 * i - L  ------------- 7 1 ---------------6W jeDi j

Z  x l exp(*z/0) + wxt exp ix fi)

2  exp(xzyff) + WQxp{xtP)
l eR(t j )

wSt {exp(jc^)} (Aix i -  Bt)

A 2

(6.21)
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where

Aj ~ j X  exP(*//0 + wSj exp(*(./?) I , B. =J Y  xt expixfl)  + wSix i exp(x,.y#) L
[ W j j )  J [/e*(Ov> J

4  =  I  ex p ^ y ^ ) +  wexp(x.y^) L ^ . = 1  JC( exp (x /yff) +  WX; exp(jt(/?) i.
J [/e/?(r(V) J

It is to be noted that R(tij) is the risk set at time % excluding subject i. Putting w = 1 in

equation (6.21) for equal weighting, we get

dV_
dw

= S,
^  *, expfx,/?)

^  exp(x,/?)
IsR(t j )

- 2 > ,
j s D

exp(x^)
exp(*,/0)

leRitj)

x ; -
Z  x , eM x iP)

leR(tj)
£  e x p ( ^ )

l sR( t j )

(6.22)

The change in the score vector t7 with respect to changes in w, is given by the 

sum of two parts, as shown in equation (6.22). It is to be noted that the first part is 

included only when individual i died (St =1) ,  which is the difference between the 

covariates for i and the weighted average of covariates for all individuals who are at 

risk at time u. This part is indeed the Schoenfeld residual (Schoenfeld, 1984). 

Meanwhile, the second part is a summation of the effects that changes in w have upon 

all the risk sets that include individual i at time tj. Graphical representation of 

individual parts as well as the resulting approximation per equation (6.22) are 

illustrated and examined by Cain & Lange (1984). Combining equations (6.15), (6.17)

and (6.22) provides an expression for ft - f i (i), the delta-beta approximation.
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An alternative expression is given by Collett (2003, p H 9) in the form of score 

residuals,

which is indeed the same as the quantity Wifi) formulated by Wei et al. (1989) as part 

of equation A.2 in their Appendix. This means that all these three quantities appearing 

in Wei et al. (1989), Collett (2003) and Cain & Lange (1984) are indeed different 

ways of expressing the same approximation.

Consequently, putting equation (6.23) into equation (6.15), the approximation

A

to delta-beta can now be expressed as R I  where R  is the vector of score residuals as

given above, and I  is the inverse of the information matrix. The quantity R I  is an 

output known as the matrix of DFBETA residuals, readily given in statistical software 

packages such as SAS. As shown earlier, these DFBETA statistics are a 

transformation of the score residuals, and are utilized in computing the robust 

sandwich variance estimators of Lin and Wei (1989) and Wei, Lin, and Weissfeld 

(1989). Further description follows in later sections.

eXp(/?W) (6.23)
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6.1.4. Comparison of Influences: Jackknife, Delta-beta and DFBETA

The jackknife influence, exact delta-beta and DFBETA have been described in the 

previous sections. Considering bivariate data (m = 1, 2), a comparison between the

jackknife influence (J3m(i) -jfl„l(#)), the exact delta-beta -  f$m) and the DFBETA

(RJm), is shown below. The construction of these plots is quite similar to that given

in Cain & Lange (1984) and Section 4.3.1 of Collett (2003), except for the inclusion 

of the jackknife influence. In Figures 6.2 (a) to (c) below, the vertical axis is the 

quantity we can generally call influence which are evaluated using the jackknife 

influence, exact delta beta, and DFBETA.

In this section, the bladder cancer data (Section 4.6.2) is used for illustration. 

Due to the nature of the data set, whereby the times are recorded to the nearest month 

resulting in many ties, plotting against the rank order of event times as per Cain & 

Lange (1984) and Collett (2003) is not favoured. Alternatively, we shall examine the 

influence for treatment against the patient’s ID via these three methods. T\ and T2 are 

the times from start of study to the 1st and 2nd recurrence of tumour respectively based 

on 86 patients in the bladder cancer study described in Chapter 4 earlier. Influences 

based on T2g are also plotted for the gap time between the 1st and 2nd recurrences.
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Figure 6.2: Plot of the influence using the jackknife, exact and DFBETA methods for 

treatment against patient id for the bladder cancer data

(a) failed and censored for 7j

x Jackknife (censored) a Exact (censored) 
x Jackknife (failed) A Exact (failed)

O DFBETA (censored) 
•  DFBETA (failed)

0.080

0.060

c 0.040

0.020

0.000 W

asC -0 .020
8 a

-0.040

-0.060
Patient's ID

The points in red are influences for the patients who failed and blue indicates 

those who were censored. Notice a clear separation (above and below 0) between 

patient ID 1 to 48 on control from those on experimental. It is observed that DFBETA 

gives slightly lower values than the exact method, and the jackknife. There are two 

large influences of about 0.06 for treatment observed for patients 56 and 75 on 

experimental who both failed at month 1. This suggests that the exclusion of either 

patient changes the hazard of tumour recurrence relative to the baseline hazard, thus 

making the effect of treatment either slightly more or slightly less significant, but may 

or may not necessarily be of clinical importance. Meanwhile, patients 49 and 50 on 

experimental who were censored at month 1, and patients 24 and 31 on control who 

failed at month 5, show almost zero influence for treatment. Figures 6.2 (b) and (c) 

show similar plots for T2 and T̂ g-
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(b) failed and censored for T: (total time)
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It is evident from these plots that all three methods give very close values of 

the influence. The jackknife technique gives values closest to the exact method, while 

the approximate DFBETA approach tends to underestimate slightly for some patients. 

No incident of overestimation by DFBETA is observed in any of the plots above. This
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illustration supports (although it is not a comprehensive justification) the use of 

DFBETA as an economical approximation to the delta-beta. Two points to note are:

(i) clear separation between control and experimental except for Tic (gap time), and

(ii) the values for Ti failures (beyond id 48) are about twice of those for T\ failures as 

T2 includes 7j in total time convention. When using the gap time, there were forty 

observations (26 censored, 14 failed) with zero influence, most of which T2G were 

censored due to censored T\ at month 1, while no particular pattern is observed. Figure 

6.2 (c) reveals some interesting findings. For example, it did not matter much whether 

or not those subjects who were censored for T\ were included when computing the 

parameter estimates with respect to Tig- However, their inclusion would reduce the 

variance of such estimates for Tzg- N ow that the relationship between the jackknife 

and DFBETA is clearly established, the WLW method is described in the next section.

6.2. The Wei, Lin and Weissfeld (WLW) Method

Consider a study to compare the treatment effects of experimental and control using 

bivariate survival data comprising two correlated event times for each patient with 

fixed covariates. As mentioned earlier, a marginal model uses a standard Cox’s 

regression model to fit data at each event time separately (say T\ and T2), assuming no 

correlation within or between subjects. The parameters p x and p 2 represent the 

effects on the whole population and hence their estimates represent the effects of 

covariates (e.g. treatment) on the population average. The estimates of regression

coefficients Px and P2 are then used, but their estimated variance is empirically

adjusted using a sandwich estimator. This is analogous to the GEE approach of Liang 

and Zeger (1986), applied to Cox’s models by Lin and Wei (1989); Wei, Lin and 

Weissfeld (1989); Lin (1991); and Lee, Wei and Amato (1992).
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WLW offers a solution for analyzing bivariate survival by providing robust 

variance estimates that allow for multiple event times. To date, none of the mentioned 

methods, with the exception of WLW, give the estimation of the correlation 

coefficient and hence the covariance which is our key objective in this research. This 

justifies the comparison of our method with that of WLW. As already noted, WLW 

uses the standard Cox’s PH model, stratified by type of event, in computing the 

estimates. Suppose we have the mth type of event, m = 1, 2, let tmi be the event time of 

the zth subject, i = 1,2,..., n and tmi = min(tmi, cmi), where cmi is the censoring time. For 

each observed event time, let S ■ = 0 if tmi = cmi (censored), and 1 otherwise. Now

consider a p  x 1 vector of covariates x mi = (xlmi,...,x  for the ith subject at time

t > 0 with regard to the mth type of event. By analogy to equation (3.8), the partial 

likelihood specific to the mth event can be expressed as

i= 1

exp{£,'*»}
Z  exP{A»'x™/}

(6.24)

th

where Pm' = is the event specific regression parameter and

< tmi |  is the risk set just before event time tmi with regard to the m 

event. In situations of common P , the subscript m in equation (6.24) is to be omitted. 

As usual, the maximum partial likelihood estimator f im is defined as the solution to

the first derivative of the log likelihood: d£ / dp , = 0, and these P ,  s are generally 

correlated. These maximum likelihood estimates are therefore the values that 

maximize the likelihood function. Details of a complicated derivation using 

martingale and counting process theories are not reproduced here and can be found in
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Wei et al. (1989). Alternatively, we describe WLW in a simpler way, based on the 

fundamental influence diagnostic described in the previous section.

As introduced earlier, WLW uses Cox’s model directly to obtain the estimates 

for each event separately, and p 2, while the adjusted standard error is given by 

using the robust sandwich variance estimation method. Wei et al. (1989) showed that 

asymptotically, f i  ~  N(J8,Y), where J0 = (/?,,$>)' and the estimated covariance

matrix Y is composed of the submatrices Ynm = {Rmi m) \R mi m) , given by the product

of the matrix of DFBETAs with its own transpose (Section 6.1.3). Notice that upon re­

arranging the expression, the inverse matrices of information on both sides of the 

residual scores resemble the bread of a sandwich.

In computing the robust sandwich variance estimators of Wei, Lin, and 

Weissfeld (1989) and also described in Lin and Wei, (1989), it is more convenient to 

use the DFBETA statistics than the score residuals, since the latter would require 

further coding. As described in the previous section, DFBETA is an approximation to 

the exact delta-beta, which is also close to the jackknife. Hence, alternatively, 

DFBETA could be replaced by these two influences in WLW, which are explored 

later in this section. In this study, treatment is considered to be the only covariate; 

hence the parameter of interest /? is the treatment effect. It is to be recalled from 

Section 4.4, that the SAS PROC PHREG procedure is computed such that /? is 

negative, when experimental is better than control. Therefore, relating this quantity to 

the notation used for ZW, the treatment effect 9 = -p. To illustrate WLW, the 

following SAS codes and their corresponding outputs for the bladder cancer data are 

given in Figures 6.3 to 6.5.
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Figure 6.3: Part 1: SAS codes and output for analysis of the bladder cancer data using

WLW.

PROC PHREG data = sint_wlw outest = estl COVS (AGGREGATE) ; 
MODEL tstop*status(0) = trtl-trt2;
TREATMENT: TEST trt1,trt2/AVERAGE e;
OUTPUT out = outl dfbeta = dtl-dt2;
STRATA visit;
ID id;

RUN;

The PHREG Procedure

T es t in g  Global Null H ypo thes is :  BETA®0

Test Ch i-Square DF Pr > Ch i Sq

L ik e ! ih o o d  R a t io 3.5494 2 0.1695
Score  (Model-Based) 3.4887 2 0.1748
Score (Sandwich) 2.3520 2 0.3085
Wald (Model-Based) 3.4228 2 0.1806
Wald (Sandwich) 2.3163 2 0.3141

t r t  I 
t r t 2

A n a ly s is  o f  Maximum L ik e lih o o d  E s t im a te s

Param eter S tandard S tdE rr Hazard
DF E s tim a te E rro r R a t io  Chi -Square Pr > ChiSq Rat io

1 -0 .36266 0.29721 0.982 1.4889 0.2224 0.696
1 -0 .55178 0.37247 0.952 2.1946 0.1385 0.576

L i n e a r  C o e f f i c i e n t s f o r  T e s t TREATMENT

A v erag e
P a r a m e te r Row 1 Row 2 E f f e c t

t r t l 1 0 0 .7 9 7 8 3
t r t 2 0 1 0 .2 0 2 1 7
CONSTANT 0 0 0 .0 0 0 0 0

T e s t  TREATMENT R e s u l t s

Maid 
Ch i - S q u a r e DF

2

P r  > Ch i Sq 

0 .31412 .3 1 6 3

A v erag e  E f f e c t  f o r  T e s t  TREATMENT

E s t  im ate  

-0 .4 0 0 9

S ta n d a r d
E r r o r

0 .2 9 1 3

z - S c o r e  

-1 .3 7 6 1

P r  > i z i  

0 .1 6 8 8
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The first line in Figure 6.3 is a standard SAS statement for Cox’s PH 

regression model, with CO VS specifying a sandwich-based covariance instead of the 

usual default, a model-based covariance. Consequently, the first part of the output 

shows a typical PHREG output, with inclusion of the sandwich Wald and Score tests. 

It is to be noticed that these sandwich quantities give smaller chi-squares compared to 

their corresponding model-based quantities. For example, the sandwich-based score 

test gives chi-square value of 2.3520, which is smaller than 3.4887 of the model- 

based. Consequently, a global null hypothesis test for the former gives a larger p-value 

(0.3085) compared to the latter (0.1748). The model-based covariance matrix is 

simply the inverse of the observed information matrix, while the sandwich counterpart

is further described later. The parameter estimates for trt 1 and trt2 refer to /?, and p 2

respectively; their hazards ratios are given by exp( Px) and exp( p 2), for example, the

hazard ratio for trt 1 is exp(-0.3627) = 0.696. Notice that the analysis of MLE gives a 

Std Error Ratio, which is the ratio of the sandwich-based standard error estimate to the 

model-based standard error estimate.

The robust sandwich estimate is used in the Wald tests for testing the global 

null hypothesis, and null hypotheses of individual parameters. These tests are so

constructed that the former is given by p 2 / var($) + p 2 / var(/?2) ~ j 22 and the latter

p 2 / var(P) ~ Zi • The AGGREGATE option requests a summing up of the score 

residuals for each distinct ID pattern in the computation of the robust sandwich 

covariance estimate. Note that the ID statement on the second last line is necessary for 

this AGGREGATE option to work: taking into account the fact that the recurrent 

event times are from the same individual. The MODEL statement specifies the 

variables of survival times and censoring indicators.
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The TREATMENT: TEST statement is used to perform the global test of no 

treatment effect for each tumour recurrence, while the AVERAGE option is specified

to estimate the parameter for the common treatment effect ( p  -  -0.4009), and the E 

option displays the optimal weights for the common treatment effect. These weights 

are displayed as the average effect for trtl (0.79783) and trt2 (0.20217) above, and are 

described further in Section 6.3. The last three lines of the above codes are standard 

commands for SAS to stratify by visit, identify output of DFBETA by ID and RUN 

the codes. The resulting p-value for the bladder cancer data above is 0.1688 (two- 

sided), thus there is no significant evidence to reject the null hypothesis of zero 

common treatment effect. Next, the DFBETAs computed for each individual in the 

standard PROC PHREG as shown in Part 1 earlier, are now subjected to further 

processing using the codes displayed in Figure 6.4.

Figure 6.4: Part 2: SAS codes for summing DFBETA from the output of WLW

earlier.

PROC HEANS data = outl noprint;
BY id;
VAR dtl-dt2;
OUTPUT out = out2 sum = dtl-dt2; 

RUN;

To compute the correlation of our interest in this thesis, these DFBETAs 

termed as dtl and d tl in SAS, are then summed by ID via PROC MEANS procedure, 

as displayed in Figure 6.4 above. The sums of DFBETAs per individual are then 

called out for a standard matrix manipulation using PROC IML, to arrive at the 

variance-covariance matrix and ultimately the correlation. The codes used for this 

purpose are listed in Figure 6.5.
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Figure 6,5; Pan 3: SAS codes and output for WLW to compute the estimated 

covariance and correlation (Courtesy o f Thomas Hamhorg).

PROC IHL;
USE out.2;
READ all var{dt 1 at.2> into x; 
v  = x ' * x;
RESET noname;
vnarae = < " t r t l" ,  "trt.2 "} ;
corr = v[l,2]/SQRT(v[l,l]#v[2,2] ) ;
v[l,l] = l/v[l,l];
v [2,2] = l/v[2,2];
v [ l j r  2] = v[l,2] # v[l,l] # v[2, 2] ;
v[2,l] = v [ l , 2];
CALL SYMPUT(1vlwCorr*,LEFT(CHAR(corr,6,4))};
PRINT, "estimated covariance matrix (¥L¥)", ,

v[colname = vname rownaitte = vname format = 1 0 . 5 ] ;  
PRINT, "estimated correlation", corr[colname="corr"]; 
CREATE rcov from v[colname = vname roiname - vname] ; 
APPEND from v[rowname = vname];
CLOSE rcov;
QUIT;

RUN;

estimated covariance matrix (ULlO
trtl trt2

trt1 11.32076 5.81223
trt2 5.81223 7.20805

estimated correlation
corr

0.6434218
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It is to be noticed that the variable coded as x  above is the DFBETA, labelled 

as dtl and d tl  for the 1st and 2nd events respectively. The computation o f “v = x ' * x ” 

yields the matrix product

r dtn .. dt r dtn dt0]
( f■*11

~ \
Y  l-*12

Kdt2̂ ' * 2 n  J A ^ 2 n  y
YK.* 21 Y 22 J

(6.25)

where Y}} and Y22 are the variances of the estimated treatment advantages and fi2

respectively, and F12 = Y2] = covariance between the two estimates, as shown in

Figure 6.5. Taking an inverse square root of Fn (11.32) gives exactly the standard

error for trt 1 (0.2972) in Figure 6.3 and similarly for Y22 which concerns the 2nd 

event, trt2. The written SAS program gives exactly the same output as the PHREG 

codes, but includes the covariance and the correlation, which is estimated by

corT(M) = ̂ * ^  = - f e = .
4 YuY22 yYnY22 (6.26)

Part 3 coding shows how this parameter is computed in various steps described above. 

A complete set of SAS codes to run this program for analysis of real data is attached 

in Appendix B.

As mentioned earlier, the DFBETA was shown to slightly underestimate the 

influences given by the exact delta-beta and the jackknife. How would such 

differences affect the estimated correlation? To answer the question, an investigation 

is carried out using the bladder cancer data. As already described in Sections 6.1.2 and

6.1.3, computation of both the jackknife and exact delta-beta requires that each of the

86 observations be omitted one at a time and the (n - 1) estimates, jd{i) be found.
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Specific codes are needed to exclude each observation in turn and each of the 86 

estimates can be achieved by using SAS codes in Figure 6.3, but removing the “COVS 

(AGGREGATE)” option and the “ID id” accordingly. The only difference is that the

jackknife compares p (i) with the average of the (n - 1) estimates, 0 {m), whereas the

exact delta-beta compares j3{i) with the estimate from the complete data set p . Using

these different values for the influence, the estimates of the two treatment advantages 

and the covariance between them can be computed using similar codes in Figure 6.5, 

but replacing the quantity DFBETA by that of the exact delta-beta and jackknife 

influences accordingly. A complete set of SAS codes to perform this comparison is 

attached in Appendix C. The results for the bladder cancer data using these three 

influences are presented for total time and gap time in Table 6.1.

Table 6.1: Various estimated quantities for the bladder cancer data using the methods 

of jackknife, exact delta-beta and WLW for total time (TT).

(N.B. Multi-place decimals are intentional to show the minute difference)

Parameter
(s.e.)

Jackknife Exact Delta-Beta WLW (DFBETA)

4

4  2 ***.
/ j

corr (01̂ d'2)

0.3627418
(0.305781)
0.5520362
(0.388295)
0.1026257
0.6424595

0.3626606
(0.3075757)
0.5517842
(0.3905788)
0.1037313
0.6424607

0.3626606
(0.2972092)
0.5517842
(0.3724699)
0.0712277
0.6434218

From Table 6.1, the jackknife method gives slightly higher estimates of 

individual treatment advantage when compared to those for the exact and WLW. As 

anticipated, the estimates of variance using the exact and jackknife methods are very 

close to each other, but much higher than those of WLW which uses DFBETA; note
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similar observation for the covariance* The correlation mines for al! methods are 

comparable to each other and exact to one decimal point (0.6) for TT.

Table 6 2 Various estimated quantities for the Madder cancer data using the methods 

of jackknife. exact delta-beta and WLW for gap tune (GT).

Parameter
(s.e.) Jackknife 'Exact Delta-Beta WLW (DFBETA)

4

coit(^  )

;0.3o2741S
(0,3057 S1)

0.M403
(Q.402ob2t>)
0.0681932
-0.037425

O.BtriooOo
fO.JOfo
O.T381
(0.402oo~7)
0.0c7$5"
-0.037412

0.3626606
(0.2972092)
0,17381
(0.37669)
-0,0055538
-0.049606

Meanwhile, Table 6.2 shows that the estimates from all three methods have 

similar values, the jackknife giving the highest estimate of covariance. However, all 

the covariances and the correlations are essentially zero for the bladder cancer data 

using the GT model. This small evidence may support the justification for using the 

DFBETA in practical applications.

6.3. Estimation of an Overall Treatm ent Advantage: WLW

As described in Section 4.4 earlier, a key objective of a clinical trial is to compare the 

overall treatment advantage, say p  between experimental and control treatments. The

assumption of equal treatment advantage $  = /?, = p  is always valid under the null

hypothesis since the common value is zero. However, under the alternative where

Pi = p 2 = p  9 but p  * 0 , it is natural to estimate p  by a linear combination of f t , with

the relationship p  = wxp{ + w2P2. The choice of weighting which yields the smallest 

asymptotic variance among all of the linear estimators (Wei & Johnson, 1985) is
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adopted in WLW. Solving for the derivative of vajfjB) equals to zero, the optimal 

weighting for WLW is

(v 'i ' lt ; )\\TW ~
y~ ~ c, a - c ,

V )i + 3J2 -  ’ A + )?2 ~  2Cu- (6.27)

where yx = vai'(^), y2 = var(/?2), and cw = cov($ ,;#,). This equation is similar to the 

optimal weighting used for ZW in equation (4.10), except that the variances and 

covariances relate to Z, in the latter. As shown in the previous section, this optimal 

weighting is specified by including CO VS (AGGREGATE) within the options of 

PROC PHREG statement. Without specifying the option “AGGREGATE”, SAS 

would treat the recurrent event times from the same individual as if they were from 

different individuals. Therefore, the covariance in equation (6.27) is taken as zero, and 

consequently giving a different overall treatment advantage. In fact, when cw = 0, the 

overall treatment advantage is found to be exactly the same value as our estimate,

#* = Z * / V *, but of opposite sign ( 6 = - f t )  as already defined in Chapter 4. The 

effects of both types of weighting on the estimated overall treatment advantage are 

illustrated using real data in Section 6.5.

The option COVS (AGGREGATE) gives the robust sandwich estimate of the 

covariance matrix, and the score residuals used in computing the middle part of the 

sandwich estimate are aggregated over identical ID values. This is a means of 

empirical adjustment for correlation within the data sets without specifying any 

dependence structure within the model itself. As shown by the standard error ratio in 

the previous section, the robust sandwich gives a smaller estimate of standard error 

compared to the model-based. This robust variance estimate was proposed by Lin and 

Wei (1989) and Reid and Crepeau(1985), and adopted by WLW (Wei et al., 1989).
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As described earlier, the optimal weighting serves to correct for the 

dependence structure between the multiple events, hence giving the smallest variance. 

However, the optimal weighting which weights the marginal estimates by the inverse 

of the covariance matrix has been criticized for its peculiarity of yielding undesirable 

negative weighting (Pocock, 1997; Tang et al., 1993). This situation is evident in the 

case of the bladder cancer data for the third recurrence (Wei et al., 1989): the optimal 

weight for estimating the parameter of the common treatment effect is -0.07547 as 

cited in SAS 9.2 example. This negative weighting scenario arises when the 

covariance is larger than the variance as permissible in equation (6.25). Saville et al. 

(2010) claimed that use of equal weighting for WLW provided better performance 

than the weighting used by Wei et al. (1989); the former is hence recommended. 

Nevertheless, our method adopts the latter as it yields the smallest variance estimate 

and consistent with our comparator, WLW.

Although WLW was not intended exclusively for recurrent events, following 

its first appearance in illustrating recurrent failures, it has been a popular choice for 

such cases. There is a mixed opinion among authors as some recommend it while 

others criticize. For example, Lipschutz & Snapinn (1997), Kelly & Lim (2000), and 

Metcalfe & Thompson (2006) contended that WLW overestimates the treatment 

advantage, largely owing to the carry-over effect when using total time model. 

However, Metcalfe & Thompson (2007) later reviewed and evaluated the semi- 

parametric model method in the analysis of recurrent event data and concluded that 

the application of this method to recurrent event data is justified. None of the above 

mentioned authors employed WLW using the gap time. Wei et al. (1989) have used 

gap time in their illustration, but no substantial discussion followed. Here, we 

compare and contrast WLW with ZW for both total time and gap time risk intervals.
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6.4. Theoretical Comparison: ZW vs. WLW

From earlier sections, the coefficient of covariates is denoted by . Since this study 

considers treatment as the only covariate, the focus is on treatment advantage. It is 

recalled from Section 4.4 that 0  equals minus (3 and the former notation is now 

adopted throughout the remainder of this thesis. Restating, WLW provides estimates 

which asymptotically follow the normal distribution, 0 ~  N {0,Y) where Y  is the 

robust variance-covariance matrix.

As described in Chapter 4, our method is a direct approach which conditions 

on the successive risk sets and reproduces the familiar form of logrank variance. It 

capitalizes on the efficient score, Z which is essentially the cumulative treatment 

advantage. Meanwhile, its null variance is given by the Fisher’s information V. 

Asymptotically, Z follows a normal distribution, Z ~ N(6V, V). Both quantities Z and V 

are calculated as interval-censored logrank statistics and their null variances 

respectively, with unadjusted standard errors. The null hypothesis of no treatment 

difference is tested using Z\ + Z2 and its null variance V\ + V2 + 2Ci2 where C12 is the 

estimated covariance as derived in Chapter 4.

The WLW procedure used to estimate the variance is applied to the whole data 

set hence termed population-average method. On the other hand, ZW computes the 

variance for each set of 2 x 2 tables in turn, and sums up the covariance. In WLW, the

Wald test statistic is given by 0/s.e.{6) with an adjusted standard error. 

Unconditionally (on the risk sets), the score residuals R defined in equation (6.23) are 

independent, identically distributed random variables, obtained by evaluating the 

changes in the score vector V  with respect to changes in weighting of the z'th
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individual, as shown in Section 6.1.3, resulting in equation (6.22). In WLW, the 

covariance is evaluated and the parameters are estimated under the alternative 

hypothesis (Wald test), while those for the combined score test approach of ZW are 

accomplished under the null.

Consider a simple case where we have subjects randomized to experimental 

and control groups, with two correlated event types, m = 1, 2, and we want to find the 

treatment advantage 0. As shown in Chapter 4, the treatment advantage can be

A A

estimated by 0 = Z ! V , and therefore var( <9 )= 1/V since var(Z)«  V. The covariance 

between treatment advantage for the 1st event and that for the 2nd event can be 

expressed as

co v(01,02) = E
f z z  'I12 ( z i l (  Z2 1- E 1 E 2

VVV 12 J U J I y j

_ cov(Zj,Z2)

(6.28)VV12

The relationship between the two covariances in equation (6.28) enables the derivation 

of a corresponding relationship between the correlations:

c o r r « U ) =  , C° V̂ ’4 ) . = ^ M l  = corr (Z„Z2).
y  var(4) var(#2) j ViV 2 (6.29)

As shown in equation (6.29), the correlation between the treatment advantages 

of two dependent events is theoretically equivalent to the correlation between two 

score statistics of those events. A similar relationship was also reported by Whitehead 

et al. (2010), in deriving a global score test for binary and ordinal endpoints. Despite 

the key difference in approach to estimating the covariance, both WLW and ZW 

should yield approximately the same correlation estimate: which is illustrated in the 

next section using real data. This transformation is made possible by the very 

definition of the score statistic being the cumulative treatment advantage (Section
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1.4). Nevertheless, adopting WLW in an analysis of interval-censored data may yield 

a lower power of test than that for continuous data. In the following sections, both ZW 

and WLW are employed for estimating the treatment advantages and constructing 

tests when dealing with real and simulated data sets respectively.

On the basis of special characteristics of recurrent events described in Section 

4.6, we shall compare the choice of risk intervals and stratification for both WLW and 

ZW. The former is applicable to both total and gap time, while the latter has proved to 

work well when using total time model. Overestimation of the correlation pertaining 

to gap time is further investigated in Section 6.6.6. Both methods imply that the 

baseline hazards are event-specific, while ZW can further model the baseline hazard 

to be interval-specific too, owing to its interval-censored nature.

Although both methods are developed based on the proportional hazards 

assumption, they differ slightly in detail. While WLW allows for a proportional 

hazards ratio specific to the m^ event, ZW offers more flexibility in permitting a 

proportional hazards ratio within each interval, as illustrated in Section 3.1.4. Despite 

suitability in the analysis of censored multiple endpoints, WLW offers no insight into 

the interrelationships among event times. It provides inference as to the population- 

average covariate effects on event times, but does not address the question as to how 

prior events affect the risk of having future recurrences. Wei and Glidden (1997) 

suggested that the AG, PWP and frailty models may be appropriate in affording some 

answers to that question
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6.5. Applications to Real Data: ZW vs. WLW

To illustrate the use of WLW, we employ the real data sets which have been used for 

ZW in Chapter 4. As demonstrated earlier, the correlation between two score statistics 

closely approximates the correlation between the two treatment advantages given by 

ZW and WLW respectively. Thus, these two correlations are interchangeable for the 

remainder of this thesis. The estimated correlation and common treatment advantage 

are compared for three real data sets earlier described in Chapter 4: (i) bladder cancer 

tumour recurrence, (ii) paired hips replacement revision and (iii) cancer data.

Note that all analyses using ZW were based on 5 and 10 intervals of event 

times T\ and T2, as commented upon in Chapter 5; the first data set is presented with 

more parameters for illustration purposes, while those for the other two are 

summarized using the key parameters only. Similar to Chapter 5, the null hypothesis 

test is conducted to detect significance at 2.5% (one-sided), so that the two sets of 

results given by ZW and WLW can be compared accordingly.

6.5.1. Recurrent Events: Bladder Cancer Data

For bivariate survival data, WLW computation dictates that two observations be 

created for each patient: one row of data for each of the two events. For two events of 

tumour recurrence (refer Section 4.6.2), analyses are carried out using total time (TT) 

and gap time (GT). WLW is applied to the raw data set as well as to its interval- 

censored version (as was used for ZW), for investigation purposes. The standard

overall treatment advantage, 0 *, is also given in this section, for comparison with the 

optimal overall treatment advantage, 6 . The results are summarized in Table 6.3 and 

Table 6.4 for TT and GT respectively.
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Table 6.3: Results for the bladder cancer data using total time (TT) for WLW and ZW.

(ZW results correspond to Table 4.12 and WLW to Table 6.1 earlier).

Parameter
WLW TT

WLW TT WLW TT ZW TT ZW TT

(s.e.) (5 intervals) (10 intervals) (5 intervals) (10 intervals)

A 0.363 0.325 0.318 0.462 0.378
(0.297) (0.278) (0.286) (0.293) (0.291)

A 0.552 0.567 0.550 0.581 0.537
(0.373) (0.360) (0.370) (0.370) (0.369)

0 * 0.436 0.415 0.405 0.508 0.439
(0.296) (0.277) (0.287) (0.290) (0.289)

§ 0.401 0.371 0.359 0.488 0.411
(0.232) (0.272) (0.281) (0.285) (0.284)

p-value 0.169 0.173 0.202 0.087 0.148
cov(Z1,Z 2) 5.812 6.101 5.995 5.659 5.771
con(Zl, Z 2) 0.643 0.610 0.632 0.611 0.619
Z i 4.1 4.2 3.9 5.4 4.5

z 2 4.0 4.4 4.0 4.3 4.0
z * 5.0 5.4 4.9 6.1 5.3

Vi 11.3 13.0 12.3 11.7 11.8

V2 7.2 7.7 7.3 7.3 7.4
y* 11.4 13.0 12.2 11.9 12.0

As shown in Table 6.3, the p-values are in agreement which suggest no 

significant evidence to reject the null hypothesis. It is observed that the finer intervals

give smaller estimates of treatment advantage and the optimal 0 is smaller than the

/V A
standard 6  * . WLW seems to yield a consistent 0 (0.4) even when intervals are used, 

whereas ZW varies by about 0.1. The standard error values are similar for the two

methods, except that for the optimal 0  (TT), where ZW yields higher values of about 

0.29 compared to 0.23 when using WLW (without intervals). The covariances are 

close to one another and the estimated correlations are consistent at 0.6. Upon
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comparing all the estimates from ZW with those from WLW, the use of 10 intervals 

for the former seems to give the values closest to the latter. This reaffirms the finding 

in the simulation study of recurrent TT events earlier (Section 5.2.5). It is also worth 

noting that the values of Z and V for both methods seem to be in good agreement in all 

cases, hence they are not presented for the subsequent data sets.

Table 6.4: Results for the bladder cancer data using gap time (GT) for WLW and ZW 

(ZW results correspond to Table 4.13 and WLW to Table 6.2 earlier).

Parameter

(s.e.)
WLW GT

WLW GT

(5 intervals)

WLW GT 

(10 intervals)

ZW GT 

(5 intervals)

ZW GT 

(10 intervals)

4 0.363 0.325 0.318 0.462 0.378
(0.297) (0.278) (0.286) (0.293) (0.291)

4 0.174 0.281 0.264 0.193 0.161

0*
(0.377) (0.349) (0.360) (0.376) (0.375)

0.290 0.308 0.297 0.360 0.297

(0.228) (0.221) (0.228) (0.219) (0.224)

6 0.289 0.308 0.297 0.358 0.295

(0.233) (0.221) (0.228) (0.219) (0.224)
p-value 0.204 0.163 0.193 0.103 0.186
cov(Zl5 Z 2) -0.443 0.358 0.417 -0.919 -0.488
corr(Z1; Z 2) -0.050 0.035 0.043 -0.101 -0.053
Zi 4.1 4.2 3.9 5.4 4.5

z 2 1.2 2.3 2.0 1.1 1.1
z* 5.6 6.2 5.7 5.8 5.9

Vi 11.3 13.0 12.3 11.7 11.8

^2 7.1 8.2 7.7 7.1 7.1
y* 19.3 20.5 19.2 19.7 20.0
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Meanwhile, for the gap time (Table 6.4), the p-values consistently indicate no 

significant evidence to reject the null hypothesis. It is to be noted that 6 here has a 

different meaning compared to that of the total time (Section 4.6.1). The score statistic 

when using GT is considerably smaller than TT as it is indeed measuring a cumulative 

treatment effect using a different time scale. For example, when using WLW, Z2 = 1.2 

for GT compared to Z2 = 4.0 for TT (Table 6.3). Consequently, the estimated 

treatment effect for T2 for GT is also smaller compared to those for TT earlier. This is 

expected owing to the carry-over effect of T\ unto T2 when using the latter time.

Both methods give very small correlations, which suggest that there is no 

evidence to show that the time from randomization to first recurrence (0, Ti) correlates 

with the time between the first and second recurrence (T\, T2). Earlier, the analysis 

using total time has shown some evidence that the time from randomization to the first 

event (0, T\) is highly correlated with the time from randomization to the second 

recurrence (0, T\ + T2g): corr (Zj, Z2) = 0.6. This high correlation when using total 

time is largely attributable to the dominating T\. As explained above, these two 

models have different interpretation as their times are measured differently. The 

model of choice hence depends on the questions of interest, as already discussed in 

Section 4.6.1.
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6.5.2. Paired Organs: Hip Replacement Revision

A detailed description of this data set can be seen in Section 4.5.1: it is to be 

remembered that we consider the different types of cup positioning with respect to the 

acetabulum as different “treatments”. Thus, it is anticipated that the treatment 

advantage is zero as both “treatments” are supposed to be ethically equivalent. The 

results for both ZW and WLW are summarized in Table 6.5.

Table 6.5: Results for the hip replacement revision data using WLW and ZW

(ZW results correspond to Table 4.5).

Parameter (s.e) WLW ZW (5 interval) ZW (10 interval)

4 -0.016 -0.166 -0.143
(0.223) (0.231) (0.230)

4 0.214 0.062 0.144
(0.257) (0.260) (0.254)

e 0.072 -0.073 -0.022

(0.199) (0.201) (0.199)

p-value 0.360 0.643 0.544

co v(Z1?Z 2) 7.187 5.947 6.235

corr(Z1,Z 2) 0.412 0.357 0.364

Table 6.5 shows that the p-values are qualitatively in agreement: there is no 

treatment advantage, as anticipated. The setting of 10 intervals gives the estimates 

closest to those for WLW. This is consistent with an earlier finding in the simulation 

study for paired organs where 10 intervals gave better accuracy based on the key 

performance measures (Section 5.2.2). The methods give similar correlations near 0.4 

(that for ZW is slightly lower), indicating that the treatment advantages for the two 

hips are moderately correlated.
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6.5.3. Generally Related Indicators and PFS: Cancer Data

The cancer data used here can be referred to in Section 4.5.2. The correlated events of 

disease progression and death are analyzed in two ways: (i) taking each as a separate 

event with its own censoring variable, labelled as an indicator (Section 4.3.4) and (ii) 

considering a progression-free survival whereby either a progression or death is 

considered as an event, labelled as a PFS. Output from WLW for each case is now 

compared to that earlier obtained using ZW, in Table 6.6.

Table 6.6: Results for the cancer data using WLW and ZW (5 intervals)

(ZW results correspond to those in Table 4.8 and Table 4.9).

Parameter

(s.e.)

WLW

(Indicators)

ZW

(Indicators)

WLW

(PFS)

ZW

(PFS)

o, 0.022 -0.014 0.090 0.219

(0.122) (0.125) (0.112) (0.120)

4 0.133 0.189 0.133 0.189

(0.121) (0.127) (0.121) (0.127)

e 0.078 0.086 0.110 0.206

(0.086) (0.107) (0.082) (0.108)

p-value 0.363 0.422 0.182 0.056

co v (Z !,Z 2) 27.790 27.294 43.450 34.802

corr(Zb Z 2) 0.412 0.433 0.591 0.530

When considering the case of related indicators, all parameter estimates using 

both methods are in good agreement. The p-values conclude that there is no 

significant evidence to reject the H0, zero treatment advantage. The correlation 

estimates are accurately matched at 0.4 (ZW slightly higher). Meanwhile, the results 

from PFS analysis in the last two columns show that ZW gives higher estimates for 

the treatment effect when comparedwith WLW. Nevertheless, the p-values are leading 

towards the same conclusion not to reject Ho at the 2.5% (one-sided) level of
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significance. Both methods give higher correlation when evaluating either progression 

or death as an event than those in the indicators case, due to the imposed dependence 

on their censoring variables: for PFS, 0.59 (WLW) and 0.53 (ZW). It is worth noting 

that the covariance for WLW is higher than that for ZW whereas the variances of Zx 

(given by Vi) are about the same.

In summary, the above applications to real data seem to suggest that our 

method is comparable to WLW. Whether or not these two methods are equally 

accurate is answered in the subsequent sections.

6.6. Simulation and Results

Thus far, the analyses of ZW and WLW have been justified by theory and illustrated 

by practical application to real data sets. The accuracy of the former has been 

evaluated in Chapter 5. Now, the latter is also applied to the same simulated data sets 

as have earlier been analyzed using ZW. It is to be noted that WLW requires two sets 

of observations for each invididual, as explained in Section 6.5.1.The same key 

measures as in Section 5.2 are used: (i) type I error, conventionally labelled as a, (ii) 

power (1 - P), and (iii) ratio of p(est) to /̂ sample). It is recalled that each setting covers 

both the null and alternative, with sample size n = 1000, and is based on the overall 

results in Section 5.2.8, the results for ZW when using 5 intervals being compared 

with the simulation results for WLW in this chapter.

In Chapter 5, the simulation was formulated to give a theoretical power which 

varies with d under the alternative of 6 = 0R where 0R corresponds to n=  1,000 for ZW 

specifically. The reader is reminded that the setting of 0R was based on the log hazard 

ratio within subject, 6W, whereas the simulation design yields an output of 0B, which is 

the log hazard ratio between subjects. Therefore, each power is comparable to its
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corresponding theoretical power, TP. For a detailed description of the theoretical 

power the reader is referred to Section 5.1. To compare the performance of ZW with 

that of WLW, the same data sets are now used for WLW, without recalculation of 0R. 

Also, as in the earlier setting for ZW, the type I error rate is set at 0.025 (one­

sided).and the level of accuracy sought is 0.025 ± 0.003 (.N  = 10,000 replicates). The 

outputs for the cases of complete (uncensored), paired, indicators, PFS, recurrent TT 

and recurrent GT, are tabulated and discussed in turn.

6.6.1. Complete or Uncensored

With reference to Section 5.1, the multiplier constant d is varied in such a way that 

d g {1,5,10} corresponds to low, medium and high correlation respectively. The target

treatment effect, 6 is determined for each correlation as governed by d. For each 

varying correlation, 10,000 simulations in total were run under each hypothesis and 

the mean value of each key performance measure for the uncensored case is presented 

in Table 6.7. It is to be noted that the correlation ratios are later summarized in Figure 

6.6 (a).
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Table 6.7: Simulation results for the complete case under the null and alternative using 

WLW and ZW (ZW results correspond to Table 5.4).

WLW: Ho
d e 4 4 0 a \ a 2 a 12 N/A P (est) P (sample)

1 0.000 0.000 0.000 0.000 0.025 0.021 0.023 N/A 0.023 0.027
5 0.000 -0.001 -0.001 -0.001 0.025 0.026 0.026 N/A 0.410 0.419
10 0.000 -0.001 -0.001 -0.001 0.025 0.025 0.025 N/A 0.708 0.710

WLW: H  i
d e 4 4 e 1 ~P 2 1“/? 12 TP P (est) P (sample)

1 0.174 0.171 0.171 0.171 0.68 0.68 0.92 0.89 0.023 0.027
5 0.209 0.139 0.139 0.139 0.51 0.50 0.65 0.58 0.410 0.420
10 0.221 0.089 0.088 0.088 0.24 0.23 0.27 0.25 0.708 0.709

ZW: H 0 @ 5 intervals

d 6 4 4 0 a i a 2 <*12 N/A P (est) P (sample)

1 0.000 0.000 0.000 0.000 0.023 0.021 0.023 N/A 0.023 0.026
5 0.000 -0.001 -0.001 -0.001 0.024 0.025 0.026 N/A 0.382 0.412
10 0.000 -0.001 -0.001 -0.001 0.024 0.027 0.025 N/A 0.664 0.693

ZW: H i @ 5 intervals

d 4 4 e l-/?i l-/?2 12 TP P (est) P (sample)

3 ^ 7 1 0.171 0.171 0.171 0.67 0.67 0.92 0.89 0.028 0.027
0.139 0.139 0.139 0.50 0.49 0.65 0.58 0.384 0.412

10 (U21 0.089 0.088 0.088 0.24 0.23 0.28 0.25 0.664 0.694

As shown in the above table, under the null, the estimates of treatment 

advantage are essentially zero and the type I error rates are well within the 95% 

probability interval (0.022, 0.028). The power exceeds its theoretical value (TP) and 

the estimated correlation is very close to its sample value for each setting. It is to be 

noticed that the assumption of equal 6 is satisfactorily met, hence a clear advantage 

for the global test. These results show similarities to those for ZW and so do the 

reasons (Section 5.2.1).
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6.6.2. Paired Organs

The simulation results for the paired organs using WLW are summarized in Table 6.8, 

while the correlation ratios for comparison with ZW are presented in Figure 6.6 (b).

Table 6.8; Simulation results for the paired case under the null and alternative using 

WLW and ZW (ZW results correspond to Table 5.5).

WLW: Ho
d e 4 4 e a i a 2 a 12 N/A P  (est) P (sample)

1 0.000 0.000 0.000 0.000 0.024 0.023 0.027 N/A 0.027 0.018
5 0.000 0.000 0.000 0.000 0.028 0.024 0.026 N/A 0.431 0.434
10 0.000 0.001 0.001 0.001 0.027 0.026 0.025 N/A 0.688 0.681

WLW: H  i

d e 4 4 0 M i m 2 M l2 TP P (est) P (sample)

1 0.241 0.236 0.238 0.237 0.65 0.66 0.91 0.89 0.027 0.016
5 0.287 0.191 0.191 0.191 0.48 0.48 0.61 0.58 0.430 0.433
10 0.305 0.119 0.119 0.119 0.23 0.22 0.24 0.24 0.705 0.700

ZW: H 0 @ 5 intervals

d e 4 4 e a i a 2 0£ 12 N/A P (est) P (sample)

1 0.000 0.000 0.000 0.000 0.025 0.023 0.026 N/A 0.035 0.027
5 0.000 0.001 0.000 0.000 0.028 0.025 0.028 N/A 0.421 0.437
10 0.000 0.001 0.002 0.001 0.027 0.025 0.026 N/A 0.674 0.685

ZW: H i @ 5 intervals
d y O f V 4 4 6 M i m 2 to TP P (est) P (sample)

0.235 0.236 0.235 0.65 0.65 0.90 0.89 0.041 0.022
0.190 0.190 0.190 0.47 0.48 0.61 0.57 0.422 0.437

10 0.120 0.120 0.120 0.23 0.22 0.25 0.25 0.692 0.704

The results for the paired organs are very similar to those for the complete 

case, except that the power is slightly lower because, probably, of the censoring in the 

former, and that the type I error («i = 0.028 at cl = 5) is slightly inflated. Again, a 

similar trend to that for ZW is observed, including the slightly higher correlation (d = 

10) under the alternative compared to the null.
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6.6.3. Related Indicators

Resembling the analysis of cancer data comprising TTP and OS (Section 4.5.2), the 

simulation results for these related indicators are presented in Table 6.9 and Figure 6.6 

(c).

Table 6.9: Simulation results for the indicators under the null and alternative using 

WLW and ZW (ZW results correspond to Table 5.6).

WLW: H 0
d e 4 4 6 a l a  2 ® 12 N/A P (est) P (sample)

1 0.000 -0.001 -0.001 -0.001 0.020 0.023 0.023 N/A 0.023 0.034
5 0.000 -0.001 -0.001 -0.001 0.021 0.027 0.026 N/A 0.409 0.413
10 0.000 -0.001 -0.001 -0.001 0.025 0.024 0.025 N/A 0.695 0.696

WLW: H ,

d e 4 4 0 l-pl M 2 M  12 TP P (est) P (sample)

1 0.194 0.189 0.189 0.189 0.67 0.67 0.92 0.89 0.023 0.035
5 0.245 0.161 0.161 0.161 0.51 0.50 0.66 0.57 0.408 0.417
10 0.275 0.106 0.106 0.106 0.24 0.23 0.26 0.24 0.695 0.694

ZW: H q @ 5 intervals

d e 4 4 0 a ] a 2 a 12 N/A P (est) P (sample)

1 0.000 0.000 -0.001 -0.001 0.022 0.023 0.023 N/A 0.023 0.032
5 0.000 -0.001 -0.001 -0.001 0.022 0.026 0.027 N/A 0.387 0.404
10 0.000 -0.001 -0.001 -0.001 0.025 0.025 0.026 N/A 0.670 0.688

ZW: H x @ 5 intervals

d 4 4 0 M i M i M  12 TP P (est) P (sample)

3 ^ 9 1 0.189 0.189 0.189 0.66 0.66 0.91 0.89 0.028 0.034
0.161 0.161 0.161 0.50 0.49 0.65 0.57 0.389 0.406

10 0.107 0.107 0.107 0.24 0.23 0.26 0.24 0.671 0.685

For WLW, upon comparing with the paired case, slightly better type I errors

(more conservative) and higher powers, are found to have been achieved for the 

indicators. Notably, the power exceeds the theoretical power in all settings and the 

correlations are consistent. Similar trends are observed in the results for the two 

methods, but the type I error rates when using WLW, are slightly more conservative 

than those using ZW.
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6.6.4. Progression-Free Survival

As already described in Sections 4.3.4 and 4.5.2, PFS analysis considers either TTP or 

death (OS), whichever occurs first, as an event. This condition imposed a strong 

dependence between the two endpoints (PFS, OS); hence higher correlation compared 

to the indicators case. Consequently, their results differ, as shown in Table 6.10 and 

Figure 6.6 (d) for PFS.

Table 6.10: Simulation results for the PFS under the null and alternative using WLW 

and ZW (ZW results correspond to Table 5.7).

WLW: H 0
d e 4 4 6 a i a 2 a 12 N/A P (est) P (sample)

1 0.000 0.000 0.000 0.000 0.025 0.024 0.024 N/A 0.608 0.611
5 0.000 0.000 0.000 0.000 0.025 0.025 0.025 N/A 0.779 0.784
10 0.000 -0.001 -0.001 -0.001 0.025 0.024 0.025 N/A 0.879 0.881

WLW: H i

d e 4 4 e l- f i1 l-fi2 M  12 TP P (est) P (sample)

1 0.223 0.213 0.222 0.216 0.84 0.80 0.90 0.88 0.608 0.613
5 0.252 0.156 0.165 0.158 0.56 0.52 0.59 0.53 0.779 0.786
10 0.275 0.100 0.106 0.101 0.24 0.23 0.25 0.22 0.879 0.881

ZW: H 0 @ 5 intervals

d 0 4 4 0 a j a 2 a 12 N/A P (est) P (sample)

1 0.000 0.000 -0.001 0.000 0.025 0.023 0.024 N/A 0.589 0.601
5 0.000 0.000 0.000 0.000 0.026 0.025 0.026 N/A 0.755 0.779
10 0.000 -0.001 -0.001 -0.001 0.024 0.023 0.025 N/A 0.869 0.882

ZW: H i @5 intervals

d 4 4 0 M i M 2 M  12 TP P (est) P (sample)

J j l 2 j 0.214 0.225 0.218 0.83 0.81 0.90 0.89 0.592 0.601
0.156 0.167 0.159 0.55 0.52 0.59 0.53 0.755 0.779

10 0.102 0.108 0.103 0.24 0.23 0.25 0.23 0.869 0.882

Again, the findings for WLW are similar to the corresponding results for ZW. 

As anticipated, the marginal powers are now closer to the global power as the 

estimates of 6 tend to vary slightly. Nevertheless, it is to be noticed that the correlation 

values remain consistent.
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6.6.5. Recurrent Events TT

For the recurrent event using total time, highly dependent events are imposed as T\ is 

directly contained within T2 (Section 4.6.1). The simulation results for recurrent TT 

using WLW and ZW are given in Table 6.11 and in Figure 6.6 (e).

Table 6.11: Simulation results for recurrent events TT under the null and alternative 

using WLW and ZW (ZW results correspond to Table 5.8).

W L W : Ho
d e 4 4 9 a 1 a 2 « 1 2 N / A P (est) P (sample)

1 0 . 0 0 0 0.000 0.001 0.000 0.026 0.025 0.026 N / A 0.556 0.557
5 0 . 0 0 0 0.001 0.000 0.001 0.027 0.025 0 . 0 2 8 N / A 0.745 0.753
10 0 . 0 0 0 0.001 0.001 0.001 0.025 0.025 0.026 N / A 0.856 0.856

W L W : H 1

d 0 4 4 e 1-fii 1-0 2 T P P (est) P (sample)

1 0.293 0.283 0 . 4 3 7 0.318 0.87 0 . 9 6 0.95 0.94 0.552 0.552
5 0.311 0.192 0.240 0.200 0.54 0.57 0.58 0.55 0.744 0.750
10 0.317 0.117 0.131 0.118 0.23 0.23 0.24 0.22 0.851 0.853

Z W : H 0 @ 5 intervals

d 9 4 4 9 a ] a 2 a  12 N / A P (est) P (sample)

1 0.000 0 . 0 0 0 0.001 0.000 0.026 0.025 0.027 N / A 0.539 0.557
5 0.000 0 .0 0 1 0.001 0.001 0 . 0 2 8 0.025 0 . 0 2 8 N / A 0.730 0.751
10 0.000 0 .0 0 1 0.001 0.001 0.026 0.025 0.026 N / A 0.848 0.855

Z W : H x @ 5 intervals

4 4 9 l-/?i 1-02 I-/? 12 T P P (est) P (sample)

jd & 9 l 0.282 0 . 4 3 0 0.317 0.86 0 . 9 6 0.95 0.94 0.543 0.555
0.192 0.238 0.200 0.53 0.57 0.58 0.55 0.730 0.749

10 0.118 0.131 0.120 0.24 0.24 0.24 0.23 0.848 0.856

Again, we see findings similar to those for earlier cases, but with a type I error 

rate for d = 5 slightly inflated, but still within the 95% PI (0.022, 0.028). The global 

power exceeds the theoretical power at all correlation settings. These results, 

compared with those for ZW, are very similar indeed. For example, the marginal

estimate 02 is larger than the global 9  and the marginal power 1 - is higher than
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the global power (d —1); for its detailed description the reader can be referred to 

Section 5.2.5.

6.6.6. Recurrent Events GT

As explained in Section 4.6.1, the recurrent GT model is technically different from the 

TT model. The results for recurrent GT are summarized in Table 6.12 and Figure 6.6

(f).

Table 6.12: Simulation results for recurrent events GT under the null and alternative 

using WLW and ZW (ZW results correspond to Table 5.9J.

WLW: # 0

d e _j 4 4 9 a i « 2 «  12 N/A P (est) P (sample)

1 0.000 -0.001 0.000 0.000 0.026 0.025 0.027 N/A 0.017 0.014
5 0.000 0.001 0.000 0.000 0.026 0.023 0.025 N/A 0.223 0.221
10 0.000 0.001 0.000 0.001 0.026 0.027 0.026 N/A 0.352 0.345

WLW:

d e 4 4 0 l- f i l l-/?2 I -/?  12 TP P (est) P (sample)

1 0.235 0.231 0.227 0.229 0.71 0.57 0.90 0.88 0.017 0.017
5 0.271 0.182 0.137 0.163 0.49 0.25 0.56 0.49 0.222 0.224
10 0.289 0.117 0.069 0.096 0.23 0.10 0.22 0.19 0.350 0.348

ZW: H 0 @ 5 intervals

d 0 4 4 0 a ] a  2 a  12 N/A P (est) P (sample)

1 0.000 -0.001 0.000 0.000 0.025 0.025 0.026 N/A 0.040 0.030
5 0.000 0.001 0.000 0.000 0.026 0.022 0.022 N/A 0.305 0.235
10 0.000 0.001 0.000 0.001 0.026 0.027 0.020 N/A 0.512 0.352

ZW: H } @5 intervals

d 4 4 0 1-jffi l-/?2 1 “/? 12 TP P (est) P (sample)

1 0.229 0.228 0.228 0.70 0.58 0.90 0.88 0.045 0.030

( 0.180 0.137 0.162 0.49 0.25 0.53 0.49 0.306 0.238
10 ‘U!289 0.116 0.069 0.096 0.23 0.10 0.19 0.19 0.511 0.355

When compared with the results for ZW, the type I error rates for WLW are

less conservative and the global powers for WLW are higher than theoretical powers 

in all settings. Like ZW, WLW yields marginal power 1 - fh that exceeds the global
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power ( d  -  10); the marginal Q x is bigger than the global 6 . Overall, the latter method

obviously wins concerning the accuracy of the correlation estimates, whilst ZW gave 

an overestimation for recurrent GT.

6.6.7. Summary of Correlation Ratios

In Section 5.2.7, the correlation ratios obtained from ZW were plotted for each case, 

comparing the results when five and ten intervals were used ( k  = 5, 10). It was 

concluded that k  = 5 gave a better estimate than k  = 10. In this section, only the former 

is considered and the correlation ratios for ZW are now compared to those of WLW. 

The plots of the sample correlation /?(SamPie) versus the derived correlation /?(est) for the 

six cases are given in Figures 6.6 (a) to (1).

Again, a linear plot with y = x is an ideal situation indicating that the estimated 

correlation, p(est) for either method is exactly the same as the correlation p(sampie) 

observed from its own samples of 10,000 replications. In all cases, WLW performs 

consistently well with ratios of 0.99 to 1.00, while those for ZW vary from 0.95 to 

0.98 for most cases, except for the recurrent GT with 1.40. Figure 6.6 (a) shows that 

for the complete data, WLW gives a ratio of 0.99 compared to 0.95 for ZW. The 

former performs well at varying degrees of correlation, while the latter tends to 

perform slightly less well at higher correlations. In Figures 6.6 (b) to (f), the 

correlation ratios when using WLW are 1.00 for all the five cases. Meanwhile, when 

using ZW, the correlation ratios for the paired, related indicators, recurrent TT and 

recurrent GT are 0.98, 0.97, 0.98, 0.98 and 1.40 respectively.
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Figure 6.6: Plots of the sample correlation /Sample) versus the derived correlation t) 

for the six cases using WLW and ZW ( k  =  5).
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To investigate further the 40 % overestimation for recurrent GT when using 

ZW, a comparison between the components that make up the correlation is performed. 

The values of the variances Vi, V 2 and the covariance C12 when using ZW are 

compared to those for WLW. Apparently, both methods give consistent variances; 

hence the difference is solely attributable to the covariance, C12. Next, an exploration 

of the impact of the censoring proportion on the correlation ratio of recurrent TT and 

GT models is undertaken.

On the basis of the evident accuracy of WLW in estimating correlation, it is 

assumed to yield the “true” correlation, and hence the estimate using ZW is compared 

to that using WLW in this exercise without any replicates. Using the same codes 

earlier to generate recurrent TT and GT data, while setting d  = 10, k  = 5, and the 

censoring proportion is varied from 0.01 to 0.90. The correlation ratios given by 

p  zw) / yO(WLW) are plotted against the censoring proportion in Figure 6.7.

Figure 6.7: Correlation ratio against censoring proportion (percentage) for recurrent 

TT and recurrent GT ( d  = 10, under H q)
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Ideally, all the points should lie on the horizontal line at y  =  1, indicating 

accurate estimation of correlation: as observed for the case of recurrent TT. However, 

it is clear that for the recurrent GT, estimate of the correlation is only accurate when 

only 0.1% is censored. It is to be recalled that the earlier simulation was set at a 

censoring proportion of 40%, giving a correlation of 1.4 times higher as shown here. 

Upon increasing the censoring proportion, the correlation overestimation gets bigger, 

indicated by the upward gradient of the points. For example, the correlation is about 5 

times higher when the data set is 90% censored. Closer examination unveils that the 

covariances when using ZW are substantially larger than those given by WLW, while 

the variances remain consistent. In Section 4.3.1, it was explained that, with heavy 

censoring, the contribution of the marginal failures diminishes and the estimator relies 

largely on the risks sets and the combined failures. This finding renders the ZW 

formulation for covariance estimation unsuitable for recurrent GT.
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6.7. Overall Results: WLW vs ZW

In the previous sections, the results for each of the six cases investigated have been 

described in turn. This section now compares WLW to ZW in terms of their overall 

performance based on the key measures specified: type I error, power and correlation 

ratio. Under each hypothesis, 18 sets of data (six cases each with three varied 

correlations) are used to summarize the three key measures for each method. Figure

6.8 (a) and (b) respectively display the type I error rates for both methods, identified 

by cases and degrees of correlation. Figure 6.8 (c) shows how the power varies for all 

six cases with the degrees of correlation imposed, while the last chart summarizes all 

the correlation values for both methods, the gradient measuring the overall correlation 

ratio of P(est/P(sampie) for each method. Consistently with the previous chapter, a 

diagonal line of y  =  x  serves as a reference line for an ideal situation; points below or 

above it are described accordingly.

Figure 6.8: Type 1 error rates, powers and correlation ratios of ZW versus WLW.
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Figure 6.8 (a) shows that both methods give type I error rates within the 95% 

probability interval (0.022, 0.028). The points above the diagonal line (y = x) indicate 

the better performance of WLW in detecting any departure from the null hypothesis, 

and vice versa. It is evident that WLW seems to perform better than ZW by the 

predominance of points above the line leaving only seven points underneath. Figure

6.8 (b) shows no particular trend for type I error rates with regard to varied 

correlations.

The power of ZW is comparable to that of WLW as is evident in Figure 6.8 

(c). Both methods give powers equal to or more than 0.89 (1 - /? = 0.90 ± 0.01) at low 

correlation (d = 1), but when a higher correlation is imposed by increasing the subject 

effect, the power reduces accordingly for both methods. It is to be recalled that such 

behaviour is expected owing to the discrepancy in 6 setting as explained in Section 5.1 

earlier. The appearance of two points slightly below the diagonal line for power 

suggests that WLW is only slightly better than ZW: ZW suffers a slight power loss 

owing to its interval nature, as already noted.

In Section 4.3, the main theme of this thesis, correlation has been described in

great detail; an overall comparison of ZW with WLW in terms of the correlation ratio

is now given. In total, 72 data points (each being the mean of 10,000 samples) are

used in the plot below which includes all cases under the null and alternative

hypotheses for both methods. Figure 6.8 (d) portrays the estimated correlation against

the correlation from its own samples, indicated by /?(est) and p (sample) respectively. An

accurate estimation of the correlation by WLW is evident, with virtually all points

lying on the regression line (y = x), while ZW shows an overall underestimation of

about 1%. The two outliers for ZW belong to the recurrent GT case, in which severe

overestimation has been reported; excluding this case altogether gives an overall
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underestimation by 2%. Theoretical equality of the correlation between the two 

estimates of the treatment advantage and that between two score statistics given in 

equation (6.29) is hereby validated accordingly.

All in all, the two methods demonstrated similar trends in all the six cases 

explored, with the exception of an overestimation of the correlation for recurrent GT 

when using ZW.

6.8. Discussion

ZW provides a conceptually straightforward approach to the analysis of multivariate 

survival data. The benefits of our method are (i) ease of use: simple computation and 

(ii) good interpretability: straightforward derivation based on marginal analyses, 

unlike WLW, which is based on non-standard adjusted statistics. By design, ZW is 

capable of analyzing naturally interval-censored data whereas WLW was not 

specifically intended to cater for such data. Meanwhile the disadvantages when 

dealing with continuous data are that ZW requires categorization into intervals, and 

consequently might lose a little power. Despite their technical differences (Section 

6.4), extensive simulations show that our new method is accurate, consistent and 

comparable to WLW in the five main bivariate cases investigated.

As reported earlier, ZW works well with modelling of total time, but as far as 

recurrent events gap time is concerned, the correlation estimate is accurate only for a 

very small censoring proportion. As shown in Section 6.6.6, ZW overestimates 

increasingly with increasing censoring proportion. This could be due to inaccurate 

estimation of the probabilities of each combined outcome for the paired intervals for 

GT. As already noted in Chapter 4, the covariance formulation implies that, with 

heavy censoring, the contribution of the marginal failures diminishes and the estimator
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relies largely on the risks sets and the combined failures. That this proposed method is 

not applicable to recurrent gap time is an interesting finding, but not one explainable 

here.

With regard to WLW, it actually uses concepts similar to the jackknife 

(Section 6.1.4), although the original paper by Wei et al. (1989) makes no reference to 

any such similarity. The much emphasized issue of overestimation by WLW (Kelly & 

Lim, 2000), is rather an inevitable scenario when using total time convention for 

recurrent events since the effect for T\ is carried over into Ti. Kelly & Lim (2000) 

concluded that WLW is most appropriate for data arising from different types of event 

from the same individual rather than for recurrent events, while our simulations show 

that no one case affirms its superiority: it performs equally well in all six cases 

explored. Kelly & Lim (2000) also commented that the within subject correlation was 

not satisfactorily accounted for by employing the robust variance, but that the reason 

is unknown. Metcalfe & Thompson (2007) also argued on the same point, but 

commentary is rather unclear on how else to address it. As derived in Section 4.3, our 

proposed method embeds within-subject correlation directly in the computation of 

covariance which considers the pair of intervals for each subject exclusively.

WLW assumes continuous survival times while ZW is based on interval- 

censored survival times. Nevertheless, the former has been applied to interval- 

censored data using the real data sets in Section 6.5 which showed acceptable results. 

Extensions of WLW for multivariate interval-censored data have earlier been studied 

by Goggins & Finkelstein (2000), and Kim & Xue (2002). Hence its application here 

serves as further evidence of its flexibility in the analysis of bivariate survival data.
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As earlier noted, both ZW and WLW are marginal models which assume 

proportional hazards. In marginal models with total time risk intervals, the 

information in the early part of the total observation period will be used several times: 

once for each event. This induces a greater weight on the first recurrence considered 

(as observed in Figure 6.3, Section 6.2). The alternative frailty models which include a 

common random effect to adjust for within-subject correlation are available in the 

literature (Vaupel et al., 1979; Clayton & Cuzick, 1985; Klein, 1992). They estimate 

the covariate effect on the recurrence, conditionally on a specified dependence 

structure. Such models can be of interest for a full modelling of the recurrent event 

process, but are of far less interest in studies which focus on the average covariate 

effect.

In terms of usability, ZW requires simple calculations which can be achieved 

by a MS Excel spreadsheet or something like it, whereas WLW involves complex 

formulation which necessitates some programming or standard software packages. It 

is to be noted that only the SAS software package was considered in this study, for 

suitability and convenience purposes. Other software packages for analyzing 

correlated survival data are namely Stata, S-Plus and R, MLwiN, and WinBUGS. A 

good review of their different capabilities, including those of SAS, is provided by 

Kelly (2004).

Workable for practical applications to real data and comparable to the 

established WLW, our proven method ought to contribute a new alternative method 

for the analysis of correlated survival data.
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Chapter 7. Conclusions and Further Work

Our proposed method, ZW has proved useful for finding estimates of correlations and 

treatment effects. Its performance is comparable to that of WLW and it has a clearer 

interpretation. To my knowledge, this is the first successful development of the global 

score test methodology for bivariate survival data. The derivation of the covariance 

between two score statistics using an interval-censored model, viewed as a viable 

alternative to the logrank, is a new approach. The relationship between the old 

jackknife technique and WLW has also been clarified in this thesis. The new method, 

ZW should be a useful contribution of knowledge to survival analysis. However, it 

does not outperform the established method, WLW.

The whole procedure of ZW enables estimation of correlations, and thus has 

many practical uses. Among these are (i) combined null hypothesis testing to establish 

whether a linear combination of effects is equal to zero and (ii) global null hypothesis 

testing, establishing whether all effects are equal to zero, both of which have been 

demonstrated in this thesis. Nevertheless, various problems were encountered and 

should be investigated further, such as the unsuitability of ZW for handling recurrent 

events gap time.

Two key questions relating to the issues discussed in Section 5.1 are: “How to 

formulate the correct treatment advantage between-subject for simulation purposes?” 

and “How to achieve equality of the proportional hazards ratios?”. In situations where 

these ratios are unequal (as observed in the cases of PFS and recurrent events), a 

method to estimate the theoretical power, comparable with the method achieved by 

Bolland et al. (2009) for binary data, should be devised. It is also essential to account 

adequately for the within-subject correlation or between-subject correlation or both.
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Essentially, the application of the global score approach to interval-censored 

survival data is valid as long as the assumption of proportional hazards is adequately 

met. That having been said, the global score test approach can be adapted to combine 

normally distributed, Poisson-distributed or other types of endpoint which can also be 

mixed together. This promising method can be further developed to allow adjustment 

for combining composite endpoints, for example, two different types of endpoint 

arising from binary and survival data whereby the treatment effects are measured on 

log-odds ratio and log hazard ratio respectively.

In situations where the failures are unequally distributed across intervals, ZW 

may not be as efficient as established for the equal failure distribution. As noted 

earlier, the global test methodology may be most suitable when none of the endpoints 

captures all of the information on a patient’s condition, for example, a case involving 

the multiple stroke scales cited in Chapter 2. Similar features of outcome measures 

exist in mental health studies; hence it could be a potential application area of this 

methodology.

In this study, apart from the treatment advantages, only the correlation

between the two score statistics (as well as) was investigated. For further

understanding of correlated endpoints, perhaps it is worthwhile to consider the

correlation between 7j and T2 directly, as was attempted by Fleischer et al. (2009).

Connections between ZW and frailty modelling should also be investigated to yield

better insight into subject effects. Unfortunately, due to resource constraints, some

extended investigations were not feasible and hence have to be considered as further

work. These include adjustment for covariates and the construction of joint confidence

regions for multiple hazard ratios. Implementations of sequential and multiple testing

procedures are worth investigating as these are becoming increasingly popular in view

223



of minimizing the cost of trials. Additionally, comparison of multiple active 

treatments to a common control may be attempted.

I am pleased that the results from this thesis are encouraging, although some 

investigations could not be completed according to the original plan. Nevertheless, 

that does not diminish the knowledge and skills I have learned throughout this study. I 

now look forward to continuing teaching and collaborating on new research projects. I 

am already excited about the huge potential for growth of medical statistics, across 

Asia generally and within Malaysia specifically.
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APPENDIX

A. SAS Codes for ZW Specific for Analysis of Hip Revision Data

*Hips bilateral data using ZW for 2 intervals;

%macro hot( imin , imax, last);

data bilat;
set bil; 

array cutl{&imax}(15 35);
array cut2{&imax}(15 35);

tla = 1; t2a = 1;
do i = &imin to &imax;

tla = tla + (tl > cutl (i));
t2a = t2a + (t2 > cut2 (i));

end;
tl=tla; t2=t2a;
keep id trt tl t2 censl cens2;

run;

data add;
set bilat end=lastval; 
do j = &imin to &imax;

do k = &imin to &imax; 
if trt=2 then do;

array affe{&imax,&imax } ffe&imin-ffe&last; 
atffe= (tl=j)* (censl=l)*(t2=k)*(cens2=l); 
affe {j,k} = sum(atffe, affe {j,k}, 0); 
retain ffe&imin-ffe&last 0;

array afse {&imax,&imax } fse&imin-fse&last; 
atfse= (tl=j)*(censl=l)*(t2>k); 
afse {j,k} = sum(atfse, afse {j,k}, 0);
retain fse&imin-fse&last 0;

array afme{&imax,&imax } fme&imin-fme&last; 
atfme= (tl=j)*(censl=l)*(t2=k)*(cens2=0); 
afme {j,k} = sum(atfme, afme {j,k}, 0); 
retain fme&imin-fme&last 0;

array amfe{&imax,&imax } mfe&imin-mfe&last; 
atmfe= (tl=j)*(censl=0)*(t2=k)*(cens2=l); 
amfe {j,k} = sum(atmfe, amfe {j,k}, 0);
retain mfe&imin-mfe&last 0;

array asse {&imax,&imax } sse&imin-sse&last; 
atsse= (tl>j)*(t2>k);
asse {j,k} = sum(atsse, asse {j,k}, 0);
retain sse&imin-sse&last 0;

array asfe {&imax,&imax } sfe&imin-sfe&last ; 
atsfe= (tl>j)*(t2=k)*(cens2=l); 
asfe {j,k} = sum(atsfe, asfe {j,k}, 0); 
retain sfe&imin-sfe&last 0;

array asme {&imax,&imax } sme&imin-sme&last;
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atsme= (tl>j)*(t2=k)*(cens2=0);
asme {j,k} = sum(atsme, asme {j,k}, 0) ;
retain sme&imin-sme&last 0;

array amse {&imax,&imax } mse&imin-mse&last; 
atmse= (tl=j)* (t2>k)*(censl=0); 
amse {j,k} = sum(atmse, amse {j,k}, 0); 
retain mse&imin-mse&last 0;

array aole {&imax}ole&imin-ole&imax;
aole{j} = sum( affe {j,&imin},afse {j,&imin},afme {j,&imin}); 
retain ole&imin-ole&imax 0;

array ao2e {&imax}o2e&imin-o2e&imax;
ao2e{k} = sum( affe {&imin, k}, asfe {&imin,k},amfe {&imin,k}); 
retain o2e&imin-o2e&imax 0;

array asle {&imax}sle&imin-sle&imax;
asle{j} = sum( asfe {j,&imin},asse {j,&imin},asme {j,&imin}); 
retain sle&imin-sle&imax 0;

array as2e {&imax}s2e&imin-s2e&imax;
as2e{k} = sum( afse {&imin, k}, asse {&imin,k}, amse 

{&imin,k});
retain s2e&imin-s2e&imax 0;

end;
end;

end;
do j = &imin to &imax;

do k = &imin to &imax; 
if trt=l then do;

array affc{&imax,&imax } ffc&imin-ffc&last; 
atffc= (tl=j)* (censl=l)* (t2=k)* (cens2=l); 
affe {j , k} = sum(atffc, affe {j,k}, 0) ; 
retain ffc&imin-ffc&last 0;

array afse {&imax,&imax } fsc&imin-fsc&last; 
atfsc= (tl=j)*(censl=l)*(t2>k); 
afse {j,k} = sum(atfsc, afse {j,k}, 0); 
retain fsc&imin-fsc&last 0;

array afme{&imax,&imax } fmc&imin-fmc&last; 
atfmc= (tl=j)*(censl=l)*(t2=k)*(cens2=0); 
afme {j, k} = sum(atfmc, afme {j,k}, 0);
retain fmc&imin-fmc&last 0;

array amfc{&imax,&imax } mfc&imin-mfc&last; 
atmfc= (tl=j)* (censl=0)*(t2=k)*(cens2=l); 
amfe {j , k} = sum(atmfc, amfe {j,k}, 0) ;
retain mfc&imin-mfc&last 0;

array asse {&imax,&imax } ssc&imin-ssc&last; 
atssc= (tl>j)* (t2>k);
asse {j,k} = sum(atssc, asse {j,k}, 0);
retain ssc&imin-ssc&last 0;

array asfe {&imax,&imax } sfc&imin-sfc&last ;
atsfc= (tl>j)*(t2=k)*(cens2=l);
asfe {j,k} = sum(atsfc, asfe {j,k}, 0);
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retain sfc&imin-sfc&last 0;

array asme {&imax,&imax } sme&imin-sme&last; 
atsmc= (tl>j)*(t2=k)*(cens2=0); 
asme {j,k} = sum(atsmc, asme {j,k}, 0); 
retain sme&imin-sme&last 0;

array amse {&imax,&imax } mse&imin-mse&last; 
atmsc= (tl=j)*(t2>k)*(censl=0); 
amse {j,k} = sumfatmsc, amse {j,k}, 0); 
retain msc&imin-msc&last 0;

array aolc {&imax}ole&imin-ole&imax;
aolc{j} = sum( affe {j,&imin},afsc {j,&imin},afme {j,&imin}); 
retain ole&imin-ole&imax 0;

array ao2c {&imax}o2c&imin-o2c&imax;
ao2c{k} = sum( affe {&imin, k}, asfe {&imin,k}, amfe {&imin,k}); 
retain o2c&imin-o2c&imax 0;

array aslc {&imax}sle&imin-sle&imax;
aslc{j} = sum( asfe {j,&imin},asse {j,&imin}, asme {j,&imin}); 
retain sle&imin-sle&imax 0;

array as2c {&imax}s2c&imin-s2c&imax;
as2c{k} = sum( afse {&imin, k}, asse {&imin,k},amse {&imin,k}); 
retain s2c&imin-s2c&imax 0;

end;
end;

end;
IF lastval ~= 1 THEN DELETE; 

keep f: s: o: m:
r

run;

data summary;
set add;
do j = &imin to &imax;

do k = &imin to &imax; 
array aole {&imax } ole&imin-ole&imax; 
array aolc {&imax } ole&imin-ole&imax; 
array aol {&imax } olx&imin-olx&imax; 
array asle {&imax}sle&imin-sle&imax; 
array aslc {&imax}sle&imin-sle&imax; 
array arle {&imax}rle&imin-rle&imax; 
array arle {&imax}rle&imin-rle&imax; 
array arl {&imax}rlx&imin-rlx&imax; 
array aql {&imax}qlx&imin-qlx&imax; 
array aZl {&imax}Zlx&imin-Zlx&imax; 
array aVl {&imax}Vlx&imin-Vlx&imax; 
aol{j}= sum(aolc{j}, aole{j}); 
arle{j}= sum(aole{j}, asle{j}); 
arle{j}= sum(aolc{j}, aslc{j}); 
arl{j}= sum(arlc{j}, arle{j}); 
aql{j}= -log(1-(aol{j}/arl{j}));
aZl{j } = aql{j}*(arle{j}*aolc{j}-arlc{j}*aole{j})/aol{j}; 
aVl{j} = aql{j}**2*arle{j}*arlc{j}*(arl{j}-aol{j})/
(aol{j}* (arl{j} - l ) );
array ao2e {&imax } o2e&imin—o2e&imax; 
array ao2c {&imax } o2c&imin-o2c&imax;
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array ao2 {&imax } o2x&imin-o2x&imax; 
ao2{k}= sum(ao2c{k}, ao2e{k}); 
array as2e {&imax}s2e&imin-s2e&imax; 
array as2c {&imax}s2c&imin-s2c&imax; 
array ar2e {&imax}r2e&imin-r2e&imax; 
array ar2c {&imax}r2c&imin-r2c&imax; 
array ar2 {&imax}r2x&imin-r2x&imax; 
array aq2 {&imax}q2x&imin-q2x&imax; 
array aZ2 {&imax}Z2x&imin-Z2x&imax; 
array aV2 {&imax}V2x&imin-V2x&imax; 
ao2{k}= sum(ao2c{k}, ao2e{k}); 
ar2e{k}= sum(ao2e{k}, as2e{k}); 
ar2c{k}= sum(ao2c{k}, as2c{k}); 
ar2{k}= sum(ar2c{k}, ar2e{k}); 
aq2{k}= -log (1-(ao2{k}/ar2{k}) ) ;
aZ2{k} = aq2{k}*(ar2e{k}*ao2c{k}-ar2c{k}*ao2e{k})/ao2{k}; 
aV2{k} = aq2{k}**2*ar2e{k}*ar2c{k}*(ar2{k}-ao2{k})/
(ao2{k}*(ar2{k}-1));
array affe {&imax,Simax } ffe&imin-ffe&last;
array afse {&imax,&imax } fse&imin-fse&last;
array asse {&imax,&imax } sse&imin-sse&last;
array asfe {&imax,&imax } sfe&imin-sfe&last;
array arte {Simax,&imax } rte&imin-rte&last;
array affe {&imax,&imax } ffe&imin-ffe&last;
array afse {&imax,&imax } fsc&imin-fsc&last;
array asse {&imax,&imax } ssc&imin-ssc&last;
array asfe {&imax,&imax } sfe&imin-sfc&last;
array arte {&imax,&imax } rte&imin-rte&last;
array aff {&imax,&imax } ff&imin-ff&last;
array af s {Simax,&imax } fs&imin-fs&last;
array ass {&imax,&imax } ss&imin-ss&last;
array asf {&imax,&imax } sf&imin-sf&last;
array art {&imax,&imax } rt&imin-rt&last;
array af tl {&imax,&imax } flt&imin-flt&last;
array aft2 {&imax,&imax } f2t&imin-f2t&last;
array aC {&imax,&imax } C&imin-C&last;
aff{j,k} = sum(affe{j,k},affc{j,k});
asf{j,k} = sum(asfe{j,k},asfc{j,k});
af s {j ,k} = sum(afse{j,k},afse{j,k});
ass{j,k} = sum(asse{j,k},asse{j,k});
arte{j,k} = sum(affe{j,k},afse{j,k},asse{j,k}
arte{j,k} = sum(affc{j,k} ,afsc{j,k},assc{j,k}
art{j,k} = sum(arte{j,k},arte{j,k});
aftl{j,k} = sum(aff{j,k},afs{j,k});
aft2{jfk} = sum(aff{j,k},asf{j,k});
aC{j,k}=(aql{j}*aq2{k}*((arle{j}*ar2e{k}*artc{j , k}+ (arlc{j}*ar2c{k}*a 
rte{j,k}))*((aff {j,k }*art{j,k}- (aftl {j,k}*aft2 {j,k }))))

/ (aol{j}*ao2{k}*(art{j,k}* * 2 ) )) ;
Zl= sum(of Zlx&imin-Zlx&imax) ;
Vl= sum(of Vlx&imin-Vlx&imax);
Z2= sum(of Z2x&imin-Z2x&imax);
V2= sum(of V2x&imin-V2x&imax);
Cov=sum(of C&imin-C&last);
Cor=Cov/sqrt(Vl*V2);
Zs= sum(Zl, Z2)*sum(VI,V2)/sum(sum(VI,V2), 2*Cov);
Vs= sum(VI,V2)* *2/sum(sum(VI,V2) ,  2*Cov); 
thetal=Zl/Vl; 
theta2=Z2/V2;
thetas=Zs/Vs;^standard theta;
thetaz=((Vl-Cov)/(sum(VI, V2,-2*Cov)))*thetal + ((V2-Cov)/
(sum(VI, V2,-2*Cov)))*theta2;^optimal theta;
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vthetaz= (Vl*V2-Cov**2)/(Vl*V2*(sum(VI, V2,-2*Cov)));* variance of
the optimal theta;
pl=(1-probnorm(Zl/sqrt(VI)));
p2=(1-probnorm(Z2/sqrt(V2)));
p3=(1-probnorm(Zs/sqrt(Vs)));
pz=(1-probnorm(thetaz/sqrt(vthetaz)));
end;

end;
keep

theta: p: Vs Zs Z1 VI Z2 V2 Cov Cor vthetaz;
run;

proc print data = summary ; *ZW method;
title "ZW bilat at &imax intervals";
var Z1 Z2 Zs VI V2 Vs Cov Cor p: theta: vthetaz;

run;

proc means data = summary ; *ZW method;
title "ZW bilat at &imax intervals";
var Zl Z2 Zs VI V2 Vs Cov Cor p: theta: vthetaz;

run;

%mend;
%hct( imin=l , imax=2, last=4);

229



B. SAS Codes for WLW Specific for Analysis of Bladder Cancer Data

*Bladder Cancer (TT) Data Using WLW; 
options nolabel;

proc sort data = blad_tt;
by id; 

run;
data blad_tt;

set blad tt; 
trtl = trt*(visit = 1); 
trt2 = trt* (visit = 2 ) ; 

run;
ods output parameterestimates=estw; 
ods output testaverage=eta;

PROC PHREG data = blad tt outest = estl covs (aggregate);
MODEL tstop*status(0) = trtl-trt2;
TREATMENT: test trtl,trt2/average e;*gives estimate of global 

treatment effect ;
OUTPUT out = outl dfbeta = dtl-dt2/ order = data;
STRATA visit;
ID id;

RUN;
PROC MEANS data = outl noprint;
BY id;
VAR dtl-dt2;
OUTPUT out = out2 sum = dtl-dt2;

RUN;
PROC IML;
USE out2;
READ all var{dtl dt2} into x; 
v = x' * x;
RESET noname;
vname = {"trtl", "trt2"};
corr = v[l,2]/SQRT(v[l,1]#v[2,2]);
v[l,l] = 1/v [1,1];
v [2 , 2 ] = 1 /v [2 , 2 ] ;
v [1,2] = v [1,2] # v[l,l] # v [2,2]; 
v [2 ,1] = v [ 1, 2 ] ;
CALL SYMPUT('wlwCorr',LEFT(CHAR(corr,6,4)));
PRINT, "estimated covariance matrix (WLW)", ,

v[colname = vname rowname = vname format = 1 0 . 5 ] ;  
PRINT, "estimated correlation", corr[colname="corr"];
CREATE rcov from vfcolname = vname rowname = vname];
APPEND from v[rowname = vname];
CLOSE rcov;

QUIT;
RUN;
data rcovl;*split for merging later; 

set rcov;
if VNAME=1trt2' then delete; 
if VNAME=1trtl' then VNAME = ’ est ' ;
rename trtl=vlw trt2=covz;

run;
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data rcov2;
set rcov;
if VNAME='trtl' then delete; 
if VNAME='trt2' then VNAME = ' est 1 ; 
rename trtl=covz trt2=v2w;

run;
proc sort data=estw (keep= parameter estimate stderr probchisq ); 

by parameter-
run;
data estwl;

set estw;
if parameter=1trt2' then delete;
if parameter='trtl' then parameter = ' est ' ;
rename estimate=wl probchisq=pl stderr=sl parameter=VNAME;

run;
data estw2;

set estw;
if parameter='trtl' then delete;
if parameter=1trt2' then parameter = ' est ' ;
rename estimate-w2 probchisq=p2 stderr=s2 parameter=VNAME;;

run;
data etal;

set eta;
if Label='TREATMENT' then Label = ' est ' ; 
drop zscore;
rename estimate=w3 probz=p3 stderr=s3 Label=VNAME;;

run;
data est;

merge estwl estw2 etal rcovl rcov2;
by vname ;
yl=l/vlw;
y2=l/v2w;
zlw=-wl/yl;
z2w=-w2/y2;
covw=covz*yl*y2;
corw=covw/sqrt(yl*y2);
vpw = sum(vlw, v2w);
zpw = sum(zlw, z2w);
vsw = (vpw)**2/ sum(vpw, 2*covz);
zsw = (zpw*vpw)/ sum(vpw, 2*covz);
thetalw = -wl;
theta2w = -w2;
thetasw = zsw/vsw;
eta3 = -w3;
pi = pi;
p2=p2;
plw = (1-probnorm(-wl/sl)); 
p2w = (l-probnorm(-w2/s2)); 
psw = (1-probnorm(eta3/s3));

run;
proc means data=est;

title "Bladder WLW TT ";
var w: vlw v2w vsw zlw z2w zsw c: p: theta: eta3 ;

run;
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C. SAS Codes for Comparison between The Jackknife, Exact Delta-Beta and

DFBETA Influences

^Compare Jackknife, Exact Delta-Beta & DFBETA for Bladder Data (TT);

options ps = 50 Is = 78;
libname blad 'F:\Recovered\Data\Blad';

%macro id(id);
data blad_ttl2;

set blad.blad_12; 
if id ne &i;

run;

ods output parameterestimates=estw;

proc phreg data = blad ttl2 outest = estl2 ; 
model tstop*status (0) = trtl-trt2;
Trtl= Trt * (Visit=l);
Trt2= Trt * (Visit=2); 
strata visit; 

run;

proc sort data=estw (keep= parameter estimate stderr probchisq ); 
by parameter;

run;

data estwl;
set estw;
if parameter='trt2* then delete;
if parameter='trtl' then parameter = &i ;
rename estimate=wl probchisq=pl stderr=sl parameter=VNAME;

run;

data estw2;
set estw;
if parameter=’trtl' then delete;
if parameter='trt2' then parameter = &i ;
rename estimate=w2 probchisq=p2 stderr=s2 parameter=VNAME;

run;

data cov;
merge estwl estw2; 

by vname; 
run;

data covall;
set covall cov;

run;

data result;
set result estl2;/*Show all 86 of JK's n-1 individual 

estimates*/ 
run;

%mend;
%macro iter (n) ;
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%do i = 0 %to &n;
%id(&i) ;
%end;

%mend;
%iter(n=86) ;
options nolabel;

proc printto; 
run;
proc means data=result;

output out=ave mean=trtl-trt2;/*gives JK's overall estimate*/
run;
data calc;

merge covall ave;
if trtl= then trtl=-0.3 6 2 7 4 1 8 ;*JK's average of 86 (n-1 

estimates);
if trt2='.' then trt2=-0.5 5 2 0 3 6 2 ;  
exl=-0.3 6 2 6 6 0 6 - w l;*exact delta beta; 
ex2=-0.5 5 1 7 8 4 2 - w 2;
vexl=(wl--0.3 6 2 6 6 0 6 ) * * 2 ;*exact var; 
vex2= (w2— 0 . 5 5 1 7 8 4 2 )  **2;  
covex=sqrt(vexl)*sqrt(vex2); 
j kl=trtl-wl; 
j k2=trt2-w2;
vjkl=(wl-trtl)**2;*JK's var;
vj k2=(w2-trt2)**2;
covj k=sqrt(vj kl)*sqrt(vj k2);
keep wl w2 trtl trt2 exl ex2 jkl jk2 vjkl vjk2 covjk vexl vex2

covex;
run;
proc means data=calc sum; 
run;
data blad.calcl; 

set calc;
run;
data blad.dtcomp;

merge blad.dt_all blad.calcl ; 
keep id dtl dt2 jkl jk2 exl ex2 ;

run;
proc iml;

use blad.dtcomp;
read all var{dtl dt2} into x;
v = x' * x;
reset noname;
vname = {"trtl", "trt2"};
corr = v [ 1 , 2 ] /SQRT(v[1 , 1 ]#v[ 2 , 2 ] );
v [ l , l ]  = l / v [ l , l ] ;
v  [2,  2] = 1 / v  [2,  2] ;
v [ 1 , 2 ]  = v [ 1 , 2 ]  # v [ l , l ]  # v [ 2 , 2 ] ;  
v [ 2 , 1 ]  = v [ 1 , 2 ]  ;
CALL SYMPUT('wlwCorr',LEFT(CHAR(corr,6 , 4 ) ) ) ;
PRINT, "estimated covariance matrix DFBETA WLW", ,
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v[colname = vname rowname = vname format = 1 0 . 5 ]  
corr[colname="corr"];
CREATE rcov from v[colname = vname rowname = vname];
APPEND from v [rowname = vname];
CLOSE rcov;

QUIT;
RUN;
proc iml;

use blad.dtcomp;
read all var{exl ex2} into x;
v = x' * x;
reset noname;
vname = {"trtl", "trt2"};
corr = v [1,2]/SQRT(v[l,1]#v[2,2]);
v[l,1] = 1/v [1,1];
v [2 , 2 ] = 1 /v [2 , 2 ] ;
v [ 1 , 2 ] = v [1 , 2 ] # v[l,l] # v [ 2,2 ] ;  
v [2,1] = v [ 1, 2 ] ;
CALL SYMPUT('wlwCorr',LEFT(CHAR(corr,6 , 4 ) ));
PRINT, "estimated covariance matrix: EXACT", ,

v[colname = vname rowname = vname format = 1 0 . 5 ]  
corr[colname="corr"];
CALL SYMPUT('wlwCorr',LEFT(CHAR(corr,6 , 4 ) ));
PRINT, "estimated correlation: EXACT", corr[colname="corr"]; 
CREATE rcov from v[colname = vname rowname = vname];
APPEND from v[rowname = vname];
CLOSE rcov;

QUIT;
RUN;
proc iml;

use blad.dtcomp;
read all var{jkl jk2] into x;
v = x' * x;
reset noname;
vname = {"trtl", "trt2"};
corr = v [1,2]/SQRT(v[1,1]#v[2,2]);
v[l,1] = 1/v [1,1];
v [2 , 2 ] = 1 /v [2 , 2 ] ;
v [1, 2] = v [1,2] # v[l,l] # v [2,2]; 
v [2 , 1] = v [ 1, 2 ] ;
CALL SYMPUT('wlwCorr',LEFT(CHAR(corr,6 , 4 ) ) ) ;
PRINT, "estimated covariance matrix: JACKKNIFE", , 

vfcolname = vname rowname = vname format = 1 0 . 5 ]  
corr[colname="corr"] ;
CREATE rcov from vfcolname = vname rowname = vname];
APPEND from v[rowname = vname];
CLOSE rcov;

QUIT;
RUN;
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