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Abstract

This thesis investigates the stylized facts of realized measures o f volatility in 10 

different market sectors. Traditionally, studies in the area have addressed the issues by 

either using a single measure on a number o f stocks or indices, or a number of 

measures on a given stock or an index. This usually provides results that cannot be 

generalized; hence does not allow for discussing these measures comparatively, nor 

fully quantifies the gains from using high frequency data in general.

Using 100 stocks from 10 sectors over the period 2000 - 2010, we investigate topics 

within the high frequency context of various realized volatility measures.

In Chapter 1, we investigate whether the stylized facts o f different realized measures 

vary across sectors. To this end, our work could be seen as an extension o f Andersen 

et al (2001), Luu and Martens (2003), Andersen et al (2010), Fleming and Paye 

(2011), and Giot et al (2010). Our findings here are o f interest as it provides guidance 

as whether certain realized measures are best suited to address specific queries relative 

to others.

In Chapter 2, we revisit the volatility-volume (number o f trades) relation. The 

literature takes it as a task to establish as which is a better measure o f the market 

activity. Despite numerous studies, this remains an open question, a query that we will 

address as a part o f our investigation. We revisit this relation within the context of 

what is known as the mixture o f distributions hypothesis. We aim to investigate 

whether this relation is stable across different sectors and whether it is measure 

dependent. We also aim to show that the information content between the two activity 

measures is distinct. We find that on average, the number of trades is a better proxy



for market activity. We also show that a trade that accompanies a price change is more 

important than one which takes place at the same price.

In Chapter 3, we address the issue of recovering returns normality using parametric 

and non-parametric measures of volatility. Returns are not normal, as evident from the 

vast number o f empirical studies that investigate their stylized facts. The finding that 

returns normality could be achieved through standardization is based on the 

assumption that any semi-martingale process could be written as a time-changed 

Brownian motion. The aim in this chapter is to highlight the important factors that 

may affect recovering returns normality. We look at factors such as the frequency at 

which the realized measures are estimated, the level o f stock activity, the effect of 

jum ps and micro structure noise. We find that the most dominant factors are the 

sampling frequency and microstructure noise.

Overall, this thesis seeks to investigate the outlined topics to check whether the 

extensively reported findings still hold by using a very refined data.
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Introduction

The discussion and subject matter of this thesis is motivated by the recent 

development o f realized volatility measures. Volatility is fundamental to asset pricing, 

risk management, and portfolio allocations. It plays a crucial role in financial 

investment. Modelling volatility has drawn great interest from both scholars and 

practitioners in recent decades. With the availability of high frequency data and high 

performance computers, the estimation o f volatility is now ex-post. The so-called 

realized volatility measures, which are based on continuous time jum p diffusion 

frameworks, have been analyzed and modelled extensively. It has been generally 

accepted in the literature that realized volatility measures provide better in-sample 

fitness and out-of-sample forecasting than traditional volatility measures, such as 

GARCH, absolute returns and squared returns. The superior performance o f various 

realized volatility measures has been discussed and reported using a wide range o f 

financial, or even non-financial, data.

Although realized volatility measures have been studied extensively, a gap currently 

existing in the literature is that relatively few studies look at the comparative 

performance o f different realized volatility measures. Using four extensively studied 

realized volatility measures which are calculated from 100 stocks traded in the US 

equity market spanning an over 10-year time period, this thesis aims to fill the gap. 

Our data are collected from a bias/error corrected database and show a more accurate 

estimation o f the measures than the commonly used TAQ database, especially for 

realized range. The 100 stocks are further segmented into 10 market sectors to check 

the extent to which the validity of models tested varies across sectors. To the best of
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our knowledge, this work is one o f the earliest empirical investigations on modelling 

realized volatility measures at the market sector level.

The thesis is organized as follows:

Chapter 1: On the Stylized Facts of Realized Measures of Volatility in Different 

Market Sectors. This chapter investigates the stylized facts o f four popular realized 

volatility measures: realized variance, realized range, realized power variation and 

realized bipower variation. Volatility measures are compared and valued using various 

commonly adopted econometric techniques. We address several stylized facts under 

the continuous time jump-diffusion model framework: a) optimal sampling frequency; 

b) impact o f the presence o f jumps; c) pair-wise correlations; d) volatility regimes 

under Markov-Switching dynamic model; e) leverage and feedback effects; f) long 

memory; g) volatility-volume relation; and h) the distributional properties of volatility 

and volatility standardized return. This chapter compares the performance o f different 

realized volatility measures and attempts to draw a conclusion whether any measure 

produces most consistently best results and hence can be concluded as the most 

accurate estimator o f the true latent volatility. This chapter also aims to draw 

comparisons between different market sectors.

Chapter 2: On the Significance of Trading Volume and Number of Trades in 

High Frequency Data. This chapter addresses the volatility-volume (number of 

trades) relation from the conclusions reached in Chapter 1. We attempt to determine 

which market activity measures best explain volatility. To address the issue, a series 

o f econometric techniques have been adopted. These include looking at: a) the long 

memory properties o f the market activity measures; b) correlation structure linking 

volatility and activity measuring variables; c) common structural breaks in volatility 

measures and activity variables; d). regression analysis; e) Granger causality; f) The
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performance o f GARCH augmented with market activity measures; and g) Estimating 

the moments o f information flow using GMM. By decomposing number of trades 

according to prices change, we find that the stronger explanatory power o f number of 

trades on volatility reported in the literature should be attributed to the number of 

trades that is happened when prices change. The number o f trades happened when 

prices remain the same does not necessarily carry more market latent information flow 

than trading volume. The findings o f this chapter also suggest that the MDH is better 

supported by using more accurate volatility measures.

Chapter 3: Factors Affecting Recovering Returns Normality Using Parametric 

and Non-Parametric Volatility Measures. This chapter discusses the issue of 

recovering returns normality using both parametric and non-parametric volatility 

measures. We investigate the impact o f stock type and activity level on the capacity o f 

various volatility measures to achieve return normality. The second task is to look at 

the impact o f a) sampling frequency; b) jumps; and c) market microstructure noise on 

the distributional properties of standardized returns. We provide the comparison 

between different volatility measures (parametric and nonparametric) and between 

different sampling frequencies. We recognize the impact of microstructure noise on 

recovering returns normality and suggest a moving average filtration approach that 

applies to all realized volatility measures and that is capable o f providing 

improvements over the jumps robust measure such as the bipower variation.
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Chapter 1 

On the Stylized Facts of Realized Measures of 
Volatility in Different Market Sectors

Abstract

We investigate the stylized facts o f  four extensively studied realized volatility measures, namely, 

realized variance, realized range, realized power variation and realized bipower variation, within the 

context o f  the continuous-tim e jum p diffusion model. Different realized volatility measures are 

compared and evaluated using various econometric techniques which are commonly adopted in the 

literature. We look at optimal sampling frequency, impact o f  jum ps, distributional properties o f  returns 

and volatility, long memory, volatility regimes, the volatility-volum e relation and the recovering returns 

normality. W e use a data set o f  100 stocks, representing 10 sectors over the period 2000-2010. To the 

best o f  our knowledge, this is the largest data set ever investigated in empirical research in this area.

Our findings show the properties o f  the realized measures vary widely across sectors. The results 

obtained add to our understanding about how different sectors operate, especially during the financial 

crisis.
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1.1 Introduction

Volatility modelling and estimation are widely addressed in the literature, especially 

in relation to its importance in pricing risk and the desire to understand how financial 

markets operate. Modelling volatility accurately is vitally important for option pricing, 

risk management and portfolio selection. Early studies use absolute returns, squared 

returns, stochastic volatility, and (G) ARCH family models, and so on, as volatility 

measures and model them using various datasets. Although estimated differently, a 

set o f statistical facts have emerged from the empirical studies o f volatility measures, 

which are common to a variety o f financial assets and markets. These common 

properties o f volatility are known as stylized facts and have been extensively 

discussed. Several studies investigate the stylized facts o f volatility measures 

particularly. To cite a few: Karpoff (1987) discusses the volatility-volume relation and 

finds a positive relation to hold in both equity and future markets; Granger and Ding 

(1995) investigate the properties of absolute returns and find (i) volatility has a long 

memory and decays slowly, (ii) the moments o f absolute returns are exponentially 

distributed; Malmsten and Terasvirta (2004) investigate three popular volatility 

models (GARCH, EGARCH and Autoregressive Stochastic Volatility ) and show how 

these volatility measures are more or less capable o f reproducing the observed stylized 

facts o f financial assets. Their main findings document the presence o f high kurtosis 

and slow decaying autocorrelation functions in all volatility measures.

These above studies were based on either daily data or monthly data. In the past few 

decades, the growth o f financial markets, advances in computer power and the 

availability o f high frequency financial data have given scholars and practitioners new
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motivation to model and forecast volatilities. The availability o f high frequency data 

also allows market information to be gauged at intraday levels, allowing more precise 

measurements o f volatility. Before the availability o f high frequency data, the 

sampling frequency spanned from daily, weekly, monthly to even quarterly and 

annually. Nowadays, prices can be collected at ultra-high frequency level, often 

termed, tick-by-tick level. This development in the dataset has pushed the volatility 

modelling on to new ground. There are many drawbacks in using low frequency data 

to construct volatility measure. One of which, is that “the standard latent volatility 

models fa il  to describe in an adequate manner is the low, but slowly decreasing, 

autocorrelations in the squared returns that are associated with high excess kurtosis 

o f  returns ” (Me A leer et al, 2008 ).

Measures based on high frequency data are usually classified as non-parametric. The 

current empirical literature focuses on four high frequency measure, namely realized 

volatility (rvt ), realized bi-power variation (bvt ), realized power variation {pv t ) and

realized range (rrt ). See Andersen and Bollerslev (1998), Christensen and Podolskij

(2007), Martens and van Dijk (2007), and Barndorff-Nielsen and Shephard (2003, 

2004, and 2006). Realized measures o f volatility assume continuity of the underlying 

volatility process which contradicts some of the empirical findings documented in the 

recent literature. Empirical findings have also showed that the continuity assumptions 

are more likely to be met in active stocks than in least active stocks. See for example, 

Ai't-Sahalia and Jacod (2009a, b, 2010).

The advantages o f using high frequency data to estimate volatility measures are 

soundly based. For instance, high frequency volatility measures, or ‘realized’ 

volatility measures, do not require explicitly modeling the intraday data. Most o f the
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realized volatility measures are treated as observed rather than latent, and hence are 

easier to estimate relative to parametric volatility models such as stochastic volatility. 

Moreover, those model-free estimators produce significant improvements in both in- 

sample fitness and out-of-sample forecasting. They are unbiased and highly efficient 

estimators o f the integrated volatility under certain conditions.

The superiority o f realized volatility measures over other low frequency volatility 

measures have been discussed and confirmed empirically. A number o f studies have 

addressed the stylized facts o f volatility measures in general (Ghysels et al (2006) & 

Fuertes et al (2009)), and of the high frequency measures in specific (ABDL 

(2001&2003); Christensen and Podolskij (2007), Martens and van Dijk (2007), and 

Bamdorff-Nielsen and Shephard (2004 and 2006). When compared with low 

frequency volatility measures, high frequency volatility measures show a better 

performance. In addition, a number of stylized facts have emerged for the high 

frequency measures. Giot and Laurent (2004) summarize the stylized fact of realized 

volatility as follows: realized volatility is highly skewed and kurtosed, yet the 

logarithmic realized volatility is Gaussian. Both realized volatility and logarithmic 

realized volatility appear to be fractionally integrated and they both show long-range 

dependence, as well as slowly decreasing autocorrelation functions. There are both 

leveraged and feedback effects presented in the realized volatility. Furthermore, Corsi 

et al (2012) add that the presence of jumps in realized volatility is relatively infrequent 

and unpredictable but has a strong impact on future volatility. Realized volatility 

measures are also found to possess the stylized facts o f low frequency volatility 

measures and, to an even greater extent, such as the positive relation between 

volatility and volume, and the power to recover normality. (Chan and Fong (2006), 

ABFN (2010)).



Previous studies have either considered a single measure on a number o f stocks and 

indices or a number o f measures on a single stock and index. However, very few 

studies discuss the stylized facts o f different realized volatility measures 

comparatively. This chapter aims to fill that gap. In the first chapter, we address the 

stylized facts o f four realized volatility measures across 10 different market sectors. 

The idea is to check the extent to which such stylized facts vary across sectors. We 

generalize previous studies by considering all four realized measures using a 

diversified data set which looks at 100 stocks representing 10 sectors.

Our main contributions can be summarised as follows:

1. Our data set provides more robust results when compared to earlier studies. 

For example, most studies have used data from the TAQ database. Unlike 

TAQ, tick data adjusts for stock splits and dividend payments, ignoring which 

can result in greater variation in the results obtained, especially for some 

measure such as the realized range.

2. We provide a systematic ranking for 100 stocks in 10 sectors according to 

returns, realized volatility measures, daily and intraday jumps and recovering 

return normality. Trading volume and realized measures provide different 

rankings for stocks in the sectors under consideration. This suggests that the 

nature o f information content o f trading volume and realized measures are 

distinct. For example, and according to the volatility ranking provided by 

realized variance, we find that “materials” ranks top whereas “consumer 

staples” ranks last.
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3. All realized volatility measures are shown to provide similar ranking for the 

least active sectors and to show diversified ranking for the more actively 

traded sectors.

4. The 5 minute is the optimal sampling frequency for all realized measures 

except in some cases realized power variation. Measures diverge at the 1 

second frequency and tend to converge at the 5 minute frequency. The result 

is independent o f both stock activity level and volatility.

5. The stylized facts of realized measures tend to vary across sectors. For 

example, the positive relation between trading volume and realized measures 

o f volatility is best represented in the “materials” sector and to a lesser extent 

the in “consumer discretionary” sector. Power and bi-power measures of 

volatility are found the most capable in recovering normality with their 

performance varying across sectors.

6. Realized measures are highly correlated across sectors, nevertheless they 

display different regimes.

7. Jumps are directly related to both level o f stock activity and the sampling 

frequency. Active stocks show fewer jumps and the higher the sampling 

frequency the higher the number o f jumps detected. Volatility and Jumps are 

not correlated.

This chapter is presented in 12 sections: Section 1 gives a brief introduction of the 

chapter. Section 2 provides a literature review. In section 3, we provide the theoretical 

framework o f the realized volatility measures. Section 4 describes and discusses the 

data. Section 5 discusses the descriptive statistics of realized measures o f volatility 

measures and of jumps. In Section 6, Leverage and feedback effect is discussed. 

Sections 7 and 8 respectively provide the correlations between realized volatility
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measures and volatility regimes. The long-memory property o f realized volatility 

measures is shown in Section 9. The regression results o f volatility- volume relation is 

given in Section 10. Section 11 summarizes the results o f the normality recovery 

power by different volatility measures and the distributional properties o f realized 

volatility measures. Section 12 provides rankings for sectors by the results o f 

different tests. The final section, Section 13, presents our conclusions.

1.2 Literature Review

Measurement and estimation o f volatility has undergone many changes in the last 

three decades. This is mainly attributable to the development o f the theoretical 

framework, advances in data and computer technology and the growth o f financial 

markets.

The literature defines and estimates volatility in diverse ways. Early studies consider 

both parametric and non-parametric estimates. Some very early papers consider 

mainly non-parametric ways, such as price change or absolute price change (see Ying 

(1966), Clark (1973) for instance). Some later papers also use squared returns 

(Andersen (1996)) and absolute returns (Andersen (1996)). Another stream in the 

literature estimates volatility parametrically and semi-parametrically. For instance, 

stochastic volatility (SV) is developed by Taylor (1986), and by Hull and White 

(1987). Another important parametric volatility measure is the (G) ARCH families 

firstly introduced by Engle (1982) and Bollerslev (1986).



However, the stylized facts and properties o f volatility are very much data dependent. 

Earlier non parametric measures were noisy and non-reflective when compared to the 

standard adopted measures such as stochastic volatility and GARCH (1,1) which were 

both unbiased and easy to estimate in case o f the GARCH. Noisy measures fail to 

capture information contained in the data and hence are less effective in out-of-sample 

forecasting exercises. The emergence o f high frequency data in the past two decades 

has made the volatility now “observable”, so that it can be modeled directly. Volatility 

non-parametrically calculated based on high frequency data is now known as realized 

volatility, for which there are various measurements. Below we aim to give a review 

of the literature highlighting the stylized facts o f high frequency measures.

Realized variance, or realized volatility first appears in the family of realized volatility 

measures. Realized variance, the sum of intra-day squared returns, is also the most 

widely used and discussed volatility measure within the high frequency literature. 

Under weak regularity conditions, realized variance can be constructed for the 

integrated variance which is asymptomatically unbiased and converges to the true 

volatility as the sampling frequency tends to infinity (Andersen et al (2001), 

Bamdorff-Nielson et al (2002)).

Andersen, Bollerslev, Diebold and Labys (ABDL, 2001) analyze the distribution and 

correlation o f realized volatility using a foreign exchange dataset of 10-year DM/USD 

and Yen/USD returns at 5-minute frequency. Unconditional distributions (univariate 

and multivariate) and conditional distributions are examined. The distributions of FX 

realized variance, standard deviations and covariance all exhibit right skewness and 

leptokurtosis. The normal distribution is rejected. Only the correlations appear to be 

close to normal. However, the distributions of log standard deviations and correlations
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are approximately normal. The correlation between the two FX series increases with 

the realized variance as well. The authors also look at temporal aggregation effects. 

When the realized volatility measure is temporally aggregated at different return 

frequencies, realized variance shows strong volatility clustering effects. The 

persistence in realized variance is evident at the monthly level. Finally, the paper finds 

that realized variance is stationary, but fractionally integrated and slowly mean- 

reverting. In a later paper by ABDE (2001), which examines the distributions of 

returns of 30 stocks, the conclusions about distribution properties and correlations are 

in line with the previous authors’ findings which use foreign exchange rate data. 

Furthermore, the paper by ABDE confirms that an asymmetric relation exists between 

stock returns and realized volatility. When returns are negative, the volatility 

innovations appear to be higher than the innovations associated with positive returns. 

There also exists a volatility-in-correlation effect o f data, which shows the strong 

positive correlations between stock volatilities and between contemporaneous stock 

correlations.

ABDL (1999) studies the unconditional and conditional distributions and the 

correlations of realized volatility over 1,000 days. They conclude that realized 

volatility changes from day to day and displays substantial persistence. The 

correlation is always positive and highly correlated with the realized variance. In an 

attempt to reduce the microstructure effects in the high frequency data, the authors 

optimize realized volatility and correlation by looking at the sample frequency and 

then use volatility signature plots to decide the sampling time frequency. For a liquid 

asset sample and a less liquid asset sample, 20-minute and 15-minute frequency are 

chosen respectively according to the volatility signature plots. The forecasting of 

realized volatility and realized correlation is also discussed in the paper.
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ABD (2003) conduct additional empirical research on realized volatility forecasting 

using spot foreign exchange data of USD, DM and JPY, from 1986 to 1999. The 

authors first review the quadratic variation theory and realized volatility theory under 

the assumption o f frictionless market. The statistical properties o f realized volatilities 

are then summarized. The long memory in realized volatility suggests a long memory 

Gaussian vector autoregression (VAR) for forecasting. Furthermore, the authors 

compare the VAR-RV forecasts and the forecasts o f other traditional volatility 

models, such as VAR-ABS (absolute returns), VAR-RV, GARCH, Risk Metrics, daily 

FI-EGARCH and intraday FI-EGARCH, both at one-day and ten-day time length. In 

the one-day horizon, the results o f one-day-ahead out-of-sample forecasting show that 

VAR-RV forecasts considerably outperform other volatility measures forecasts. The 

R-squared o f the regressions of VAR-RV are always the highest. VAR-RV still 

outperforms most o f the other volatilities except for intraday FI-EGARCH in the out- 

o f - sample forecasting. However, even FI-EGARCH shows higher R-squared than 

realized volatility, the null hypothesis of the forecasting model is rejected for FI- 

EGARCH, but not for VAR-RV. The forecasting results of ten-day horizon are 

similar: VAR-RV forecasts are the best in most of the cases. Furthermore, VAR-RV 

also produces very promising density forecasts and associated quintile predictions 

(Value at Risk, or VaR).

Independently from the studies by ABDL and ABDE, another important theoretical 

work o f realized variance is that of Barndorff-Nielsen and Shephard (BN-S, 2002), 

which looks at the properties of realized volatility under the content o f stochastic 

volatility model. It analyzes the asymptotic distribution o f the so called realized 

volatility error, which is defined as the difference between realized volatility and 

integrated volatility. Unlike previous researches, this framework provides model-
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based estimation o f integrated volatility using realized volatility. In addition, it allows 

the estimation o f SV parameters.

Since realized variance is constructed from high frequency data, the presence of 

microstructure noise is inevitable. A number o f studies are focused on the impact of 

microstructure noise on realized variance. Hansen and Lunde (2006) propose a 

Newey-W est type correction of realized variance that cleans the noise and yields an 

unbiased RV estimator. Bandi and Russell (2006 &2008) look at the relationship 

between realized variance, microstructure noise and optimal sampling. Both papers 

use US equity data and separate the unobservable microstructure noise from the 

realized variance. Another important finding o f the Bandi and Russell’s papers is that, 

in re-examining the optimal sampling frequency first proposed by ABDL (1999), they 

conclude that 5-minute is an empirically satisfactory frequency.

Even though realized variance is considered to be a more efficient volatility measure 

comparing with other volatility measures, such as GARCH and squared returns, it has 

still certain drawbacks, one of which is the presence o f jumps in the volatility series. 

Therefore, BN-S propose two new realized volatility measures, namely realized power 

variation and realized bipower variation, both of which are robust to jumps.

Realized power variation (PV), which is calculated as sums of absolute powers of 

increments, is first introduced by BN-S (2003). The paper derives the theorems of 

realized power variation and also provides empirical applications from Monte Carlo 

stimulations. The limiting distribution theory presented in the paper further explains 

the variability of the difference between the realized power variation and the actual 

power variation. When the logarithm transformation o f realized power variation is 

applied, the QQ-plots show improvement of the normality.
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BN-S (2004) extend the volatility measure o f realized power variation and derive the 

theoretical properties o f a new estimation, realized bipower variation (BV). BV is 

calculated from products o f powers o f absolute returns. Both PV and BV are robust to 

rare jumps, especially in the case of BV, as the time frequency tends to infinite, RV 

converges to quadratic variation and BV converges to the integrated variance. 

Therefore, the quadratic variation of the jump component is the difference between 

RV and BV. Hence, quadratic variation may be divided into the continuous 

component o f log-prices and the component of jumps. The paper also reviews the 

probability limit o f RV and PV. In the simulation and empirical parts, the theory is 

tested and the results confirm that RV and BV may be combined to estimate the jumps 

as the probability limit o f BV is unaffected even in the presence o f jumps in stochastic 

volatility model.

Another paper also by BN-S (2006) uses BV to test jumps in the high frequency 

financial time series. Recalling BN-S (2004), RV can in theory decompose the 

components o f quadratic variation into jumps part and continuous part of log-prices. 

In that case, BV can be consistently estimated. The paper also derives the asymptotic 

distribution theory for nonparametric tests o f jumps under very weak conditions. The 

test is applied both to simulated data and to real foreign exchange data over 10 years. 

Given the null hypothesis of no jumps, the simulation experiment suggests the 

rejection is heavily influenced by the variance o f jumps, rather than the frequency or 

size o f the jumps. It also shows that an adjusted ratio jum p statistic can be used to test 

jumps where the intraday time period is reasonably small and the sample period is 

small (for instance one day). The test outcome of FX data fails to accept the null that 

there is no jum p in the data. The rejection o f no jum p is attributed to the breaking 

macroeconomic news in some studies.
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Christensen and Podolskij (2007) derive the theoretical properties o f another realized 

volatility measure using high and low price range, which they call realized range- 

based variance (later known as realized range).The main contributions o f this paper 

include: the theoretical framework o f realized range (RR) estimation is built. It is 

proved to be consistent with the integrated variance and to be less noisy than realized 

variance. Several probabilistic laws for sampling intra-day high-low price ranges are 

derived. The downward bias, reported in a number o f daily range papers, is also 

adjusted and removed by introducing a new scaling factor. In the empirical part, the 

authors conduct both Monte a Carlo experiment and an empirical test for 4-year data 

for General Motors. Monte Carlo examines the normal and log-normal distribution of 

realized range. Both distributional results are consistent with the CLM while the log­

normal outperforms. In respect o f comparisons between realized range and realized 

variance, the mean and variance of RR are lower than for RV. RR is less skewed, 

more persistent and shows lower kurtosis. Moreover, the test results confirm that RV 

has lower sampling errors than RV. For their general conclusion, the authors claim RR 

to be a less volatile and more efficient volatility estimator than RV.

Martens and Dijk (2007) further investigate the properties o f RR. The paper tests the 

realized range and uses both Monte Carlo simulation and empirical data from S&P500 

index-futures and individual stocks from the S&P100 index. Before the simulation and 

empirical tests, the authors conduct a bias correcting procedure for realized range and 

realized variance: realized range is more affected by the market microstructure as it is 

constructed from high-low prices. Two methods are discussed. The first is based on 

the derivation o f expressions for the expected difference between the observed and 

unobserved high-low prices. The second method replaces the scaling factor 4log2 by 

the expected value o f the squared range o f a Brownian motion which is the number of
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observations during the /th intra-day interval. However, both methods are less 

adequate to deal with the upward bias of the realized range due to bid-ask bound, the 

authors alternatively correct the bias by scaling the realized range with the ratio o f the 

average level o f the daily price range and of the price range over the q previous 

trading days, given q as long as possible under certain conditions. The main findings 

o f the comparisons between realized range and realized variance include: the Monte 

Carlo simulation is consistent with the theory that the realized range also converges to 

the integrated variance and is more efficient (5-times according to the empirical result) 

than realized variance; and that the realized range has a lower mean-squared error. At 

the same time frequency, both realized range and realized variance are upward biased 

when bid-ask bound exists. However, whereas realized range is downwards biased 

where there is infrequent trading, realized variance is unaffected. Empirical results 

using S&P500 data reach similar conclusions to the Monte Carlo simulations. They 

show that realized range significantly improves the Two Time Scale estimator, which 

is also viewed as a volatility measure. When S&P100 data are used, the results are 

more ambiguous but still confirm realized range a more efficient than realized 

variance at the 5 and 30 minute frequency. For their general conclusion, the authors 

claim the realized range to be a better volatility measure than the realized variance.

In addition to literature mentioned above, there are many other empirical studies in the 

area o f high frequency finance, especially realized volatility measures. As the ABD 

(2003) paper compares realized variance with other parametric volatility measures, 

other papers comprise the comparative studies, in particular between different realized 

volatility measures.



Ghysels et al (2006) use Mixed Data Sampling (MIDAS) regressions for comparisons 

between different measures of volatility and volatility forecasting. MIDAS, defied as a 

reduced-form forecasting device o f realized volatility, is valid for both in-sample fit 

and out-of-sample forecasting. It also allows parsimoniously parameterized regression 

o f data at different time frequencies. Several volatility measures are used in the paper: 

squared returns, absolute returns, realized volatility, realized range and realized power 

variation. The authors first examine the forecasting power o f the MIDAS of different 

volatility measures using both daily and 5-minute frequency data o f 10-year Dow 

Jones Composite Portfolio and Dow Jones Index. The forecasting horizon ranges 

between lday and 1-4 weeks. For both in-sample and out-sample cases, realized 

power variation is the best predictor of future realized volatility. The second best 

would be the realized range while the squared return performs most poorly. MIDAS 

regression is also examined by high frequency data (at 5 minute). The data is 

seasonally adjusted before the test. The results are very similar to those using daily 

data. The realized power variation remains to be the best performed volatility 

measure. The authors find that the use of high frequency data in the MIDAS does not 

directly improve the forecasting performance. It has very similar outcomes to daily 

frequency prediction. In the conclusion, the paper highlights some possible 

explanations for the remarkable forecasting power o f realized power variation.

Fuertes, Izzeldin and Kalotychou (2009) compare the forecasting gains in GARCFI (1, 

1) when augmented by realized measures of volatility. Using 14 NYSE equity stocks 

for the period 1997-2003, they show that among different realized volatility 

estimators, realized range works best, according to the normality recovery by realized 

volatilities standardized returns. One-day-ahead forecasting is undertaken in the 

framework o f GARCH and augmented GARCH models and judged by different loss
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functions. The realized power variation outperforms other estimators as it improves 

the forecasting power of GARCH by most after augmented in the GARCH model. 

When realized variance, realized range, realized power variation and realized bipower 

variation are combined in the forecasting model, forecast errors appear to be the 

smallest for almost half the sample data. This paper also takes trading volume into 

consideration and finds that, when trading volume is relatively low or the market is 

over-performing in day t-1, the volatility forecasts using data from day t-1 to day t will 

more accurate outcomes.

Brownlees and Gallo (2010) conduct a comparison o f volatility measures by 

forecasting Value-at-Risk (VaR). They use 4 blue chip companies in the US market to 

construct the realized volatility measures, namely realized volatility, realized bipower 

volatility, two-scaled realized volatility, and realized kernel and daily range, which is 

the only daily volatility measure. Both in-sample modeling and out-of-sample 

forecasting confirm that realized volatility measures (as well as daily range) are more 

efficient than absolute or squared returns. The results o f in-sample modeling show that 

realized kernel outperforms other measures and provides the most accurate estimation 

o f the variance o f returns. The two-scaled realized volatility performs second best. 

Realized volatility provides better estimation than realized bipower volatility. In the 

cast o f out-of-sample VaR forecasting, realized kernel again outperforms the rest. 

However, daily range also performs very close to realized kernel. The authors attribute 

the outstanding performance of realized kernel both in-sample and out-of sample to 

the fact that it is the most robust to market micro structure noise. Another interesting 

finding in this paper is that the means o f RV and BV are substantially constant across 

sampling frequencies in excess of 30 seconds.



20

Fleming and Paye (2011) investigate the mixture o f distribution hypothesis (MDH) by 

comparing the standardizing power o f realized variance, realized bipower variation 

and realized kernel on daily returns. They use trade and quote US equity data o f the 

most 20 heavily traded stocks in NYSE. The normality o f returns standardized by 

realized variance is all rejected. The returns standardized by realized kernel are 

platykurtotic. However, the returns standardized by realized bipower variation show a 

great improvement in normality. As realized bipower variation is the only volatility 

estimator that is robust to jumps, Fleming and Paye (2011) conclude that the presence 

o f jumps in the realized volatility violates the continuous price paths assumption and 

thus leads to the failure o f standardization by realized variance. As long as the jump 

component is removed (for instance using BV), normality o f standardized returns can 

be attained.

The realized volatility measures are found to be more efficient than the parametric 

counterpart. Nevertheless, empirical results based on realized volatility measures still 

appear to be diverged from what theoretical models suggest. Consequently, there has 

been a growing literature in modeling the jum p component contained in RV. 

According to probability theory, quadratic variation can be divided into a continuous 

component (integrated variance), and a discrete, or jum p component. Empirically, the 

detection o f jumps relies on the RV, which is a proxy o f quadratic variation and BV, a 

proxy o f integrated variance. Huang and Tauchen (2005) propose a daily jump 

detection method which identifies the presence o f jumps by testing the significance 

difference between RV and BV. Following Huang and Tauchen (2005) method, a 

series o f studies attempt to ascertain the empirical performance o f realized volatility 

measures which exclude jumps.



21

ABD (2007a) model and forecast RV taking jumps into consideration. The empirical 

work is based on the theoretical results o f BN-S (2004, 2006). 5-minute returns for 

DM/USD foreign exchange market from December 1986 to June 1999, S&P 500 

market index and 30-year US Treasury yields from January 1990 through December 

2002, are used. The models implemented are known as HAR-RV-CJ forecasting 

models, which are based on earlier HAR-RV and HAR-RV-J models. The authors test 

the models both linearly and nonlinearly and find that the HAR-RV-CJ models 

eliminate most o f the strong autocorrelation in the realized volatility series. Even 

jumps are more predictable, only the continuous sample paths have the forecasting 

power when both components are included in the model. Separating the jump 

components from the continuous sample paths significantly improves the out-of- 

sample forecasting. In the final part of the paper, the authors suggest some possible 

extensions, addressing the issue of integrated volatility forecasting in the presence of 

jumps.

Another recent paper concerning the effects of jumps in financial data is that of 

Andersen, Bollerslev, Frederiksen and Nileson (2010) (ABFN). It works on the 

distributional prosperities of daily returns and realized volatility in the presence of 

jum p components, using individual stocks from the DJIA Index. The authors suggest a 

new sequential jump detection method which could identify multiple jumps over the 

same day. Together with the single jump detection method, leverage effects and 

feedback effects, daily return distributions (both unconditional and standardized) are 

tested. The test results confirm some earlier stylized facts that equity returns are 

rightly skewed and have tails. The normality hypothesis o f GARCH standardized 

returns is also rejected by all 30 stocks, while the normality of RV standardized 

returns shows significant improvement compared to GARCH standardized. The
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authors also find that jum p adjustments, both single and sequential, do not necessarily 

enhance the normality o f stock returns. Nevertheless, when returns are standardized 

by realized volatilities that are not only adjusted by jumps, but also by event-time, or 

financial time sampling, the normality is dramatically restored. The authors claim that 

this result confirms that “inter-daily stock prices may usefully be thought o f  as 

discretely sampled observations from  an underlying continuous-time jump-diffusion  

model, but it is essential to also accommodate leverage and/or volatility feedback  

effects” .

The discussion o f the related literature in this section is inevitably partial. We consider 

empirical studies most closely to ours and o f significant interests in empirical 

research. There are numerous studies which cover every research area in the high 

frequency finance and realized volatility measures. In the next section, we discuss the 

theoretical framework o f the realized measures o f volatility that will be used in our 

empirical research.

1.3 Theoretical Framework

The construction o f realized volatility measures is based on jump-diffusion process. 

Jump diffusion models model the asset price as a mixture o f a continuous diffusion 

path and an occasional discontinuous jump path. The incorporation o f jumps dates 

back to Merton (1976). Recent empirical evidence by Andersen et al. (2011), Tauchen
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and Zhou (2011), and Dobrev and Szerszen (2010) all gave support to a jump- 

diffusion specification.

Assume price process Pt , which is semi-martingale, follows a geometric Brownian 

Motion,

where \it denotes a continuous and locally bounded process, o  is the constant 

volatility parameter, Bt denotes a standard Brownian Motion, dqt is the counting 

process with jum p intensity Xt and ct the size o f the corresponding jumps. Suppose 

that, in a given trading day, t, a set of j  = M+l intraday prices are available at equally 

spaced intervals o f A = 1 /M . Denoteyth intra-daily log-price for day t by p t p  where

j  = 0 ,l,...,M an d  t .Then the M  continuously compounded intra-day return

for day t can be expressed as

1.3.1 Realized Variance (rv t)

Realized variance is defined as the sums o f squared intraday returns. (ABDL, 2001, 

BN-S, 2002). Mathematically, rv, for day t is expressed as

d p t = fitd t  +  at dBt +  ct dqt [ 1 .1 ]

[1.2]

[1.3]
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The daily returns rt which are calculated from the sum o f M  intraday returns rtj  are 

defined by

It directly follows from the quadratic variation theory that rvt converges uniformly in 

probability to Quadratic Variation (QV) when the sampling frequency increases. In a 

frictionless world without jumps, realized variance should converge for the Integrated 

Variance (IV).

According to ABDL (2001), rvt is unbiased, consistent, highly efficient, yet jump- 

contained. It is also the most intensively studied realized volatility measure in the 

literature.

1.3.2 Realized Power Variation (pv t)

Realized Power Variation was introduced by Barndorff-Nielsen and Shephard (2003, 

2004) and is written as

[1.4]

fip =  E W  = 22
pr(o.5(p + i ) )  
12 m s )

p >  0 ,p  ~  IV(0,1)

When t  -» oo,
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( f * a p (s)d s , 0 <  p <  2
P V t ( p ) l \  QVt, p = 2 [1-6]

I  00, p >  2

Deciding the value o f p  is important. WhenO < p  < 2 ,  realized power variation is 

robust to jumps and converges to the integrated variance. In the case o f p = 2, the 

realized power variation becomes r v , ; and when p  =  1 , it is termed as absolute

variation. In line with the literature, we use a value o f p  =1.5 which yields the lowest 

RMSE, according to Liu and Maheu (2005).

1.3.3 Realized Bipower Variation (bv t)

Bamdorff-Nielsen and Shephard (2004, 2006) define the Realized Bipower Variation 

as

bvt = ̂ 2Y.f,2hi\hi-i\ [1-7]

bv, is independent o f assumptions concerning the distribution o f the jumps or the 

relationship between the jump process and the stochastic volatility component. BN-S 

states that bvt could be used to estimate both continuous and discontinuous 

components o f quadratic variation (QV), which is given as,

QVt =  +  H t-l<s<t,ci(7(s)= l f s  [!•$ ]
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When the time frequency becomes infinitely dense, the rv, then converges to the

quadratic variation and the realized bipower variation converges to the integrated 

variance.

r v t -> qv t [1.9]

b v t / tt_1 fft2(s)d s -> ivi [1.10]

Therefore, the jum p component may be separately calculated as

Jt = r v t - b v t [1.11]

1.3.4 Realized Range (rr t)

Christensen and Podolskij (2007) derive the Realized Range ( rrt ) from earlier works 

o f Parkinson (1980) which focuses on the high and low prices o f stocks.

r r t =  ^ [ 2 " = i1 0 0 x (lo g (p w ) - 1° g ( P f ) ) 2] - t =  1,2,g - T

Where ( p j j )  are high prices and (p ltj ) are low prices in the yth interval respectively, 

and 4 lo g 2 is a scaling factor that is used to correct biases o f market microstructure 

effects such as bid-ask bounce due to second moment o f the range of a standard 

Brownian Motion, Bt , that E (s f)  =  4 lo g 2 ,w h ere  s B = su p ostiSS1(Rt -  Bs).

In a world that is absent of jumps and microstructure noise, realized range converges 

to the integrated variance. Previous studies (Christensen and Podolskij (2007), 

Martens and van Dijk (2007)) suggest that in a frictionless world, realized range is 5
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times more efficient than the realized variance and converges to the integrated 

variance. Martens and van Dijk (2007) conduct Monte-Carlo simulations and 

conclude that realized range is better than realized variance only under the same 

sample frequency. However, in the presence o f microstructure frictions, infrequent 

trading leads to a downward bias in realized range alone, but both realized range and 

realized variance show upward bias.

1.4 Data

We consider transaction data o f 100 US traded stocks from 10 sectors. The time 

period for the data is from 02/01/2000 to 31/12/2010, a total o f 2767 trading days. 

Our selection criteria are made on the basis o f market capitalisation and wide 

coverage sector representation whereby the following sectors are considered: 

Consumer Discretionary (CD), Consumer Staples (CS), Energy (ENG), Financials 

(FIN), Health Care (HC), Industrials (IND), Information Technology (IT), Materials 

(MAR), Telecommunications (TEL) and Utilities (UTL) according to the category 

from S&P 500. Different sectors present different degrees o f volatility and liquidity. 

For instance, the IT sector is a heavily traded sector which includes very active 

companies such as CSCO, INTC, MSFT and ORCL. Materials, Telecommunications 

and Utilities sectors are much less actively traded.

Our 100 stocks consist mostly of DJIA stocks and o f S&P 100 and S&P 500 stocks, 

with a few exceptions. We exclude KFT from CS sector and add BT, VOD and TEF
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in TEL sector for data consistency and full time coverage. In general, for each sector, 

we combine some of the largest market capitalization companies and median to large 

size companies within the sector. Each sector is ranked according the sector average 

trading volume. In our sample, IT is the most actively traded sector whereas UTL is 

the least.

[Table 1.1 of full list companies here]

All data are from Tick Data, which is sourced from the NYSE’s TAQ (Trade and 

Quote) database. TAQ records intraday transaction data for all securities listed on the 

NYSE, AMEX and NASDAQ. A paper by Brownlees and Gallo (2006) discusses high 

frequency data handling concerns. The authors state that the TAQ data does not 

guarantee the accuracy as the NYSE itself does not. The database contains delayed 

and incorrect recordings, hence produces errors and bias.

The Tick Data are adjusted, cleaned and managed from the TAQ database using the 

following process: Ticker Mapping adjusts historical data for corporate actions such 

as M&A and symbol changes etc. Condition Code Filtering is a process whereby trade 

and quote data are filtered for various condition codes such as out o f sequence trade 

and quote, cancelled trades and other conditions which require prior removal o f data 

points. Price Filtering filters flag trades that are bad ticks and suggest corrected 

values; Data Validation uses third party data to ensure the accuracy o f previous 3 

processes. The final adjustment is to generate stock splits and cash dividends data and 

to allow the application o f splits and dividend adjusted high frequency data, which is 

especially important for calculating realized range.
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To show the advantage of using TICK instead o f TAQ, Table 1.2 presents a 

comparison o f summary statistics of realized volatility measures of INTC calculated 

from TAQ and TICK database within the same time period.

[Table 1.2 here]

The summary statistics of volatility measures calculated from tick data appear to be 

more stable and to present less variation. The mean, maximum and minimum values 

are all lower than counterpart calculated from TAQ data, especially for realized range. 

The skewness, kurtosis, and JB statistic further suggest higher normality o f returns of 

Tick data. This could be further evidence of a more bias-free dataset o f Tick.

Finally, the time period we chose ranges from 2000 to 2010, which covers 11 years. 

The length also allows us to investigate the impact of the 2001 internet bubble crisis 

and the 2008-2009 financial crisis. From September to October 2008, volatility and 

trading activities appear to be very high. This is the period when US financial 

institutes were hit most severely by the crisis. Allowing the presence o f crisis periods 

also enables us to test whether the crisis may override some of the stylized facts o f the 

volatility measures.

1.4.1 Optimal Sampling Frequency

In this section, the aim is to identify the optimal sampling frequency across different 

volatility measures, by conducting the volatility signature plots (VSP) first proposed 

by ABDL (1999).



Finding an optimal aggregation level o f the tick by tick data is vital to empirical 

research. Tick by tick data are less readily directly modelled, as they contain a high 

level of market microstructure noise. Market micro structure noise leads to the 

autocorrelation o f intraday returns. The autocorrelation increases with frequency is 

higher and causes further bias to rv ,.

Hansen and Lund (2004) cite four reasons why rv, might be biased due to the

microstructure noise. First of all, lack of liquidity may cause the observed price to be 

different from the true price. Second, bid and ask spread, as well as the discrete nature 

o f price data, could have rounding errors. Third, econometric methods which are used 

to construct artificial price data may lead to pricing errors. This is especially relevant 

to the construction o f prices when no actual trading happen at a given price point. The 

final reason o f pricing error is due to the quality of the data used. For instance, mis- 

recorded prices induce market microstructure noise inevitably. Not only do these four 

reasons explain the difference between volatility measures calculated form TICK and 

TAQ databases, but also show the inadequacy of using tick by tick data to construct 

the daily nonparametric volatility measures.

In summary, an optimal sampling frequency is needed to balance both the bias 

associated with high sampling frequency and the lost information due to the low 

sampling frequency.

The VSP is calculated as the “average realized variance against sampling frequency”. 

(ABDL, 1999).



Where m is the sampling frequency and n is the number o f periods (days).

The 1999 paper recommends sampling until the point at which microstructure noise 

starts to be absorbed by the realized variance.

Several studies, (see Hansen and Lunde (2004), Bandi and Russell (2008), as well as 

Shephard (2010),) all follow the above method to determine the optimal sampling 

frequency using various data sources. Conclusions differ from one paper to another. 

For instance, using FX data, the pioneering paper by ABDL (1999) finds that the 

optimal frequency for rv, should be 20 minute. Bandi and Russell (2008) find 5- 

minute to be a satisfactory frequency for IBM quote data. Although focusing on 

micro structure noise, Hansen and Lunde (2004), Fleming and Paye (2007), argue that, 

even at 5-minute frequency, there is an upward bias for rv, . Both studies use US

equity trade data. Andersen et al (2010) revisits the VSP by calculating both rv, and

bv, at an expanded sampling interval span and database. According to the 2010 paper,

VSPs should exhibit a decreasing tendency and will be flatter and become relatively 

constant after certain aggregation frequency as the overwhelming microstructure 

frictions at tick by tick level are gradually balanced by the effect o f the aggregation 

process. Their finding that 5 min could be used as the optimal sampling frequency is 

based on results from 30 DJIA stocks.

In addition to the various data sources mentioned above, different “benchmark” 

volatility measures, which are assumed to be the least autocorrelated and therefore 

least biased, are also used. Andersen et al (1999) and Hansen and Lunde (2004) use 

rv, aggregated at 30-minute, Fleming and Paye (2007) uses Newey-W est rv, and

ABFN (2010) use bv, aggregated at 30-minute.
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However, most studies merely consider the optimal sampling frequency of rv, (or 

modified rv ,) and leave other nonparametric volatility measures not investigated. 

Since the objective o f this chapter is a comparison study o f nonparametric volatility 

measures, the optimal sampling frequency o f bvt , pvt and rr, is also o f interest. We

will follow closely the method used by AFBN (2010) to construct the VSPs o f all four 

volatility measures. We illustrate this issue by looking at two specific stocks in our 

sample1.

Figure 1.1 shows the volatility signature plots for realized variance, realized range 

and realized power and bipower variations. The benchmark shown as the horizontal 

line is the realized bipower variation aggregated at 30-min frequency o f FTR from 

TEL sector and o f GS from FIN sector. We select these two stocks based on the 

number o f daily jumps detected. FTR contains the highest number o f jumps while GS 

contains the lowest.

[Figure 1.1 here]

In like fashion to ABFN (2010), we report the VSP from the frequency of 1 second to 

1800 seconds (30 min equivalent). The VSPs show a number of interesting findings. 

First o f all, all realized measures o f volatility exhibit a gradual decreasing trend, with 

the exception o f rrt , which shows a weakly increasing trend. This result could be

explained by the fact that rr{ is the only realized volatility measure calculated based

on price high and low. When the sampling frequency is ultra-high, there might be little 

the price change within the sampling frequency and therefore the difference of highest 

and lowest prices is less obvious as compared with rrt calculated at lower sampling

1 The VSPs from other stocks in our sample reach the same conclusion. We report these two stocks due 
to the space limit and the representation they bare regarding to the number o f  jum ps contained.
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frequency. pv, is the only measure which exhibits a constantly decreasing tendency 

even after 5 minutes. However, pv, does not apply the same measurement units as 

other realized measures o f volatility. This explains why it does not reach a stable level 

after 5 minutes. The plots of rv, , bv, and pv, show maximum values at 1 second, rv,

and bv, become satisfactorily stable after 5 minutes. The figure also illustrates a 

narrowing then a relatively constant difference between rv, and bv, . This difference 

also shows a direct relation between the sampling frequency and the level o f jumps 

presented in rv, . This finding is in line with ABFN (2010) which attributes the gap to

the influence o f the jump components. The larger gap between the two measures when 

the aggregate frequency is high is more likely to be attributed to the significant market 

noise (ABFN, 2010).

In general, the VSPs confirm that 5 minute frequency is an optimum level for rv, and 

bv, as these two measures start to stabilize after the 5 minute sampling aggregation 

level. It is suboptimal for pv , , because pv, seems to follow a decreasing trend with 

the aggregation frequency. For the stock with highest number of jumps, the 

continuous decreasing pattern is more obvious, rr ,, although has weakly upward 

trend, converges to stable value after 5 minutes. Thus 5 minute should be a reasonable 

sampling for rr, .

To conclude, 5-minute sampling frequency will be used to construct our realized 

measures of volatility. Not only it is considered as the best trade-off between 

information accuracy and microstructure noise, but also it gives the comparison 

benchmark o f different realized volatility measures.



34

Hence, all our data is aggregated at 5-minute interval every trading day from 9:30 to 

16:00, 6.5 hours and 78 intraday periods within one trading day in total. 9:30 -  16:00 

is the trading hours in NYSE and NASDAQ and is also the most frequently used in 

the literature. As the main task o f this chapter is to disucss the stylized facts of 

different volatility measures and to compare them with those reported in the previous 

studies, we also follow this trading hour and do not consider the transactions before 

and after the market trading hours.

1.4.2 Constructing Daily Returns

In the previous section, we demonstrated that 5-minute is a generally accepted optimal 

sampling frequency for both intraday return and realized measures of volatility. Table 

1.3 reports the mean summary statistics o f daily returns across sectors. Among all the 

sectors, the CS sector yields the highest average return (0.5%) and the MAR sector 

yields the lowest (-0.88%). At the individual stock level, all returns are approximately 

zero. Returns are not normally distributed, exhibiting excess kurtosis, which suggests 

fat tails. The JB statistics suggest that the return series o f UTL is most distorted from 

the normal distribution. Returns of IND have the lowest JB statistics, which is still as 

high as 2738. All the properties on daily returns are in line with the stylized facts of 

stock returns.

[Table 1.3 here] 

[Figure 1.2 here]
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1.5 Descriptive Statistics of Realized Volatility Measures 
and Jumps

1.5.1 Realized Volatility Measures

Table 1.4a & 1.4b report the summary statistics o f the daily realized measures of 

volatility, by sector. The outcome is in line with many stylized facts of the volatility 

measures driven by latent information flow from previous studies such as ABDL 

(1999, 2001), ABDE (2001) ABD (2003,2007), but not with the studies on rr, 

(Martens and van Dijk, 2007).

[Table 1.4a and 1.4b here]

Although previous studies conclude that rr, is more efficient than rv ,, our sample 

reaches slightly different conclusions. The overall average rr, has a lower mean but a 

similar standard deviation to rv ,. On the other hand, the skewness and kurtosis of rrt 

are higher, rr, has the highest kurtosis, 162.5, among all realized volatility measures. 

This also makes rr, appear the highest JB statistics. Furthermore, we compare these 

two measures at sector average level and individual stock level. IT, the most actively 

traded sector in our sample, has a higher rr, than rv, ( r v , : 5.722, r r , : 6.046). The

standard deviation, skewness and kurtosis statistics o f rr, are also higher. The 

standard deviation, skewness and kurtosis statistics o f rr, o f the least actively traded
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sector UTL are lower than rv, ( rv , : 3.419, r r ,: 2.836). Besides, least actively traded 

stocks tend to have lower mean of r r ,. OKE, the least actively traded stock, has rv, of 

3.136 and rr, o f 2.279 for instance. This result is in line with Martens and van Dijk 

(2007) who claim that infrequent trading leads to a downward bias to rr, only. On the 

other hand, the most actively traded stocks, C, CSCO, INTC and MSFT all exhibit 

higher means of rr, that rv ,2. There are several possible reasons for the contrasting

finding in rr, and rv, between earlier papers and this chapter: Our sample contains 

two crises, the 2001 internet bubble crisis and 2008 financial crisis. During these two 

periods, there are more likely to have extreme prices. Since rr, is constructed from

intraday highest and lowest prices, it is more affected by the extreme prices and hence 

shows higher mean values and standard deviation. During a relatively calm period 

when both trading volume and volatility are low (2003 - 2006), rr, usually has a lower

mean than rv, . Second, rr, and rv, converge to QV according to the quadratic 

variation theory and contain jumps. The level o f jumps and microstructure noise 

contained in both measures will also inflate the values of the measures, rr, is more

affected by microstructure noise than rv, (therefore it contains a scale to adjust the 

microstructure noise) and this is especially true for the stocks that are more actively 

traded. Most o f stocks in our sample are from S&P 100 stocks and are sufficiently 

actively traded. Hence, in our sample, we find that rv, a more efficient volatility

measures than r r ,.

2 C:rvt:8.720, rrt: 9.555; CSCO: rvt :5.706, rr£: 6.792; INTC: rvt:5.359, rrt :5.874; MSFT: rvt :1.878, 
rrt :2.236.
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The mean of pv, is higher than that o f both rv, and bv, . However, pvt does not

apply the same measurement units as other realized measures o f volatility. Realized 

power variation has the lowest skewness and kurtosis even though it has a higher 

mean value than the other three measures. bvt has the second lowest mean and lowest

standard deviation on average, suggesting the most consistent volatility estimator 

among all.

All four realized measures of volatility are severely right skewed as well as 

leptokurtic. Realized variance, realized power variation and realized bipower 

variation all show extremely strong serial correlations, with the realized power 

variation the strongest, as indicated the Ljung-Box statistics and Autocorrelation 

Function with up to 36 lags. We also compute the LB statistics of R 2 , the squared 

daily return. The result shows R 2 to be serial correlated but the correlation is generally 

weaker than for the other realized measures. ABDL (2003) claim that the lower LB 

statistics o f squared returns in relation to the LB of realized volatility suggests squared 

return is a very noisy volatility measure as the strong persistence in the latent volatility 

dynamics is erased by the noises in the volatility measures. The low serial correlation 

in the rr, o f some stocks can be attributed to the volatility construction method which 

is more exposed to the noise as due to the intraday highest and lowest prices.

All the volatility measures show similar pattern to each other (Figure 1.3). There are 

two peaks: the first is for 2001-2002, (the dotcom bubble), and the second is for 2008- 

2009 (the recent financial crisis). Comparing the volatility plots with the return plots 

in F igure 1.2, we find that high volatility is associated with large positive/negative 

returns; and that the high volatility days cluster. This is another well observed fact in 

the literature.



[Figure 1.3 here]

1.5.2 Jumps

In this section, we discuss the non-continuous component o f realized variance; this is 

jumps. The presence o f jumps draws a great deal o f interests in the literature and is 

well observed with various financial dataset. Dated back to 1976, Merton states that 

“since empirical studies o f  price series tend to show fa r  too many outliers fo r  a 

simple, constant-variance lognormal distribution, there is a ‘prima fa c ie ’ case fo r  the 

existence o f  ju m p ”. However, only until the availability o f high frequency data, the 

visual confirmation and stylized properties of jumps are better examined. The jumps 

are usually small and represent the uncertainty o f the underlying financial market. As 

jumps may account for a significant proportion o f sum of square intraday return, 

including them lead to the bias o f realized variance. The occurrence of (large) jumps 

is mainly attributed to the unexpected macroeconomic news, abnormal trades, 

recording errors as well as the shocks in the asset liquidity. Eraker et al (2003) state 

that jumps should command relatively larger risk premia than the continuous variance 

because the contribution o f jumps to period o f market is greater. The risk arising from 

jumps also cannot typically be hedged away. Therefore, identifying jumps has 

practical implications for risk management and derivatives hedging. ABD (2007a) 

show that the continuous path and jump path o f the prices are distinct to each other 

and hence should be modelled separately. In the same paper, they also show that 

excluding jumps from realized variance enhance both the in-sample estimation and the 

forecasting power of realized variance.
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The possibility o f separating jumps from rvt provides new grounds for analyzing the

properties of realized variance with/without jumps and the properties o f jumps alone. 

Theoretically, the jum p component should be strictly non-positive, as E quation [1.8] 

suggested. Nevertheless, ABD (2007a) note, “nothing prevents the estimates o f  the 

squared jum ps ... from  becoming negative in a given fin ite  sample”. In order to 

comply with the theory, different empirical studies apply different jum p construction 

methods. The jumps constructed according different methods will naturally have 

different values from one to another. Here we follow the method by Bollerslev et al 

(2009) which accommodates the presence o f both small and negative jumps.

J t =\n(rvt) - \n (b v t) [1-14]

cvt - r v l - J l [1-15]

According to Bollerslev et al (2009), this avoids “the arbitrary choice o f  any pre­

specified significance level affecting the selection o f  ‘significant’ ju m p s’”. Wang and 

Huang (2012) also adopt this method to construct the jumps series to investigate the 

volatility-volume relationship.

In addition, we consider two nonparametric jump tests to detect the non-negative and 

significant jumps. There are (1) the MaxZ test o f Huang and Tauchen (2005) for daily 

jumps and (2) the Lee and Mykland Test (2008) for intraday jumps. The M axZ  test 

builds on the asymptotic distribution theory o f BN-S (2004, 2006) and the empirical 

evidence from Huang and Tauchen (2005). The test assesses the significance o f the 

daily jump component according to the logarithmic test statistic given by
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ma xZ, = i /M —  3 [1.16]
[(M4 + 2 ^ - 2-5)max(l ,7’gAv7)]

The intraday test o f Lee and Mykland (2008) tests whether a given intraday return rt . 

comes from a diffusion or a jump process. The statistic for the LEM test is given by

J,,=  ̂ [1-17]
a ,.,

where a tJ is an estimate o f the local standard deviation and is usually replaced by

~ ' ^ Ce an<̂  ^y^ tand  (2008) show that the sample maximum o f the

absolute value o f the J  test follows a Gumbel distribution. The original Lee and 

Mykland (2008) test statistic does not allow for the periodicity that is usually 

encountered in high frequency data. For such purpose we adopt a modified version of 

the test (see Boudt et al, 2008) which replaces <r,y by f ! J DstJ , 

WSD
rWSD

( — y '  ,wsDff2
M ^ J=l 1

f t . - — ----------- - --------- where WSD stands for Weighted Standard Deviation

filter, w i t h ^ ^  _  L Q o 1 ; ;  X /i'l l JT,j'’"H)2Y , . t j  . The threshold 6.635 equals
,J V x

r 2the 99% quartile of the ^  distribution with 1 degree o f freedom. The Weighted 

Standard Deviation in (17) has a 69% efficiency under the normality of the J, . ’s. See

Boudt et al (2008) for further details.

We consider the top 5% of large jumps at the 5% significance level. We also compute 

significant jumps at top 0.1%, 1% and 10%, for which the conclusion remains the 

same.

rn -  1 VI,- I I,- |4/3' / = 1 '/■ r ( 7 / 6 ) /  r ( l  /  2 ) and T f)  is the gamma function.~ m  I I ' . / - 4  ’ ’
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Summary statistics o f daily jump series is reported in Table 1.5. Average continuous 

variances of each sector for the overall sample all have slightly lower values than 

average rv ,. The same finding applies to the skewness and kurtosis. The maximum

average rv, shows great similarity to the average maximum cvt , indicating that 

extremely volatile days are not necessarily associated with large jumps ( 

max(rv, —cvt)<  max J , ). A similar finding is also reported by Ane and Metais (2010). 

The distributional properties o f jumps are also very different from both rv, and cv,. 

Moreover, as Figure 1.3 shows, changes in the level o f rv, are not being matched by 

the changes in the level of jumps. The clustering feature observed in the rv, (and bvt 

as well as cv,) does not appear in jumps.

[Table 1.5 here]

Table 1.5 summarizes average daily and intraday jump intensity and the daily jump 

contribution to volatility at the 5% level. The detected intraday jumps are much less 

than daily jumps, not only in terms of numbers but also in terms o f magnitude. This 

result holds across all sectors. For the overall sample, there are 124 intraday jumps 

detected on average while the number of daily jumps detected is 698. The average 

proportion of detected jumps is 0.06% for intraday level and 26.84% for daily level. 

This is in line with the findings of Eraker et al (2003) that intraday jumps are rarer 

than the daily jumps. The TEL sector records the highest number of detected jumps 

[intraday (153) - daily (823)] whereas the IT sector records the lowest [intraday (72) - 

daily (634)]. Active sectors/stocks feature fewer jumps. The ranking o f intraday and 

daily jumps coincides for TEL, ENG and IT sectors. Furthermore, although average 

trading volumes vary significantly from one sector to another, the number and
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proportion o f jumps detected do not appear to be largely differentiated. Eraker et al 

(2003) also find that intraday and daily jumps are distinct in nature which our rank 

results appear to confirm.

Along with the intensity o f jum p occurrences, the proportion o f total realized variance 

that can be explained by the daily jumps is reported in Table 1.6. We also calculated 

the summary statistics for J t 5% / rvt . The largest 5% of daily jumps on average

contribute approximately 25% of rvt . This proportion is fairly constant across 10

sectors. The standard deviation ranges between 0.09 and 0.11 only. Significant jumps, 

on the other hand, are important components o f realized variance, as they may 

contribute as much as 87.1% to the total realized variance.

[Table 1.6 here]

1.6 Leverage Effect

Large negative returns have a greater tendency to be accompanied by higher future 

volatility than positive returns o f the same magnitude. This well-documented 

phenomenon is known as the leverage effect, or asymmetric cross-correlations. 

Subsequently the increase in volatility results in negative returns and causes what is 

known as the feedback effect.

Bollerslev et al (2006) find the leverage effect to be significantly negative and the 

feedback effect to be usually negligible for a horizon over several days. Bollerslev et 

al (2009) segregate the continuous and jump components o f realized variance and



43

conclude that leverage effects works primarily via the continuous part o f the variation 

process. Our extended data confirm this result. We illustrate our finding using the 

simple, yet straight forward method of ABFN (2010).

We plot the cross-correlations between returns, realized variance and its two 

components at the daily level. The correlations in lags are the graphical expression of 

the leverage effect whereas the correlations in the leads represent the feedback effect. 

Figures 1.4a-c show median values for all the 10 sectors. In the case o f rvt and cvt ,

the plots exhibit a clear tendency for the correlations between rvt (cvt ) and returns to

be negative for negative i with a distinctive peak around zero for positive i. In the 

jump case, the cross-correlation plots show no clear negative or positive tendency and 

fluctuate around zero. Figure 1.4d shows the sector median plots at the intra-day level 

for the cross-correlations between intra-day returns and absolute intra-day returns. 

Again, the median plots show a very similar pattern to those of ABFN (2010) where it 

is shown that the leverage effect may exist at high frequencies but with little or no 

impact for the feedback effect.

To summarize, our findings suggest that the leverage and feedback effects only exist 

within the realized variance (as well as the continuous variance) but not within the 

jumps component. The plots from other realized volatility measure also support this 

conclusion4. The results add more on the findings of both Bollerslev et al (2009) and 

ABFN (2010) who report that the leverage and feedback effects exist only in the 

volatility not in jumps. The degree o f the effects may vary from one stock to another 

yet hold relatively constant across different realized volatility measures.

4 The plots o f  rest three measures are not provided in the main figures as the plots o f  different realized 
volatility measures estimated within the same stock are visually indistinguishable between the plots o f 
realized variance.
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[Figure 1.4a-d here]

1.7 Correlations

Several studies report high positively correlations between realized volatility 

measures. Fuertes et al (2009) examine correlations between volatilities using 14 US 

stocks and find that correlations between realized volatility measures often exceed 

90%. In this section, we look at the correlation between realized volatility measures 

themselves, and the correlation between volatility and volume. Further, we decompose 

realized variance and investigate the correlation between rvt and its continuous and 

non-continuous components.

1.7.1 Correlation Matrix of Realized Volatility Measures and 
Trading Volume

Overall and sector average level correlations between realized volatility measures and 

trading volume are reported in Table 1.7a. In line with the literature, all the realized 

volatility measures are highly positively correlated with each other. This finding holds 

for all the sectors. With few exceptions, the correlation coefficients between volatility 

exceed 90%. The correlations between rv, , pvt and bvt are higher than the

correlations between rrt and other three measures. This is not surprising as rr( is the 

only realized volatility measure that is not calculated from intraday returns. The 

construction of rr( determines that the properties are most likely to be diversified from
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the rest three. So far we do not find any pattern between trading activeness and 

realized volatility measures properties from the level correlation. Whether they are 

highly actively traded or less actively traded, the level correlations remain high, 

suggesting a great similarity among the four realized volatility measures.

[Table 1.7a here]

In the same table, the correlations between different volatility measures with trading 

volume are reported. Trading volume is positively correlated with all the realized 

volatility measures, with the correlation coefficients ranging from 20% to 60%. The 

correlations between rrt and volume and between p v t and volume are higher than the

other two volatility measures. rvt consistently has the lowest correlations with volume 

in 9 o f the 10 sectors.

1.7.2 Correlation Matrix of Continuous Variance, Jumps and 
Trading Volume

We also look at the correlations between rvt , its two components and trading volume. 

In part, our findings differ from those o f Giot et al (2010), who found negative 

correlations between jump components and trading volume, and between jump 

components and realized variance & continuous variance. The cross-sectional average 

correlations between jump components and volume are negative and are not 

significant at the 5% level for 9 of the 10 sectors (with the exception o f HC).

The correlations between jumps and realized variance/continuous variance, which are 

reported in Table 1.7b, are non-negative in the most cases. With only one exception
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(IT), values are positive. IT shows negative correlations between jumps and realized 

variance/continuous variance. In sector MAR, although the correlation between jumps 

and realized variance is positive, the jumps and continuous variance are negatively 

correlated.

The sector average p  values suggest that the correlation between jumps, r v jc v t , and

volume are not significant. Therefore we further consider the correlations at individual 

stock level. Only 24 of 100 stocks 5 present negative correlations between jumps and 

realized variance/continuous variance. The IT sector has the highest number o f stocks 

with negative correlations (6/10), while all stocks in HC and IND sectors have 

positive correlations between jumps and realized variance/continuous variance. For 

the remaining sectors, the negative correlation holds for 2 or 3 stocks (out o f 10) in 

each sector. We also find this negative correlation to be more apparent in actively 

traded stocks. Again, the p  values of individual stocks fail to accept the null that the 

correlation is significant at the 5% level.

Wang and Huang (2012), who use the same method as our paper to construct the 

jumps series, report this negative relationship between jumps and trading volume 

using Hu-Shen 300 index data. This negative relationship might be attributed to the 

“public information” contained in jumps, while the continuous variance (as well as the 

realized variance) is more likely to be driven by the “private information”. When large 

part o f trading is induced by private information, the relationship o f these two series is 

inevitably negative. On the other hand, the difference between our results and those of 

Giot et al might be attributed to the identification o f jumps. Giot et al (2010) identifies 

only significant jumps at the 0.01% level. In other words, they only consider very

5 AA, AKS. AMZN, APPL, CEG, COST. CSCO, COST. CVX. DELL, DUK, FTR, MAR, MS FT, NUE, ORCL, 
OXY, Q, SUN, T, TEA, UL, WFC, and XOM.
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large jumps in their dataset whereas we admit the presence o f small positive jumps 

and even negative jumps.

Overall, we could only find negative correlations between jumps and volume but 

weak positive correlations between jumps and realized variance/continuous variance.

[Table 1.7b here]

1.8 Volatility Regimes

Section 1.7 findings along with the results from Figure 1.4 demonstrate high 

correlation linking the various volatility measures. The results hint at a single regime 

governing the dynamics o f the four realized measures. To investigate such a 

possibility, we adopt the Markov Switching (MS) model by Hamilton (1994). This 

aim is to investigate whether observed high correlations would lead to similar 

(different) regimes.

Markov switching models allow each observation to be assigned a probability of 

belonging to one o f several Markov states. Here we apply Markov Switching 

Autoregression (MS-AR) modelling on the sector average and overall average rvt , rrt

, pv , and bvt by specifying two-regime states, high and low.

7=1



where Vt denotes the four volatility measures. The unobserved random variable, st . is 

denotes the regime to which observations belong; then

K s t) = [
Ho i f  s t ~  0 (LOW )

LMi i f  s t =  1 (HIGH)

st follows a Markov chain, defined by the transition probability between the N states:

P a j = * k  =j]> i , j  = 0 , . . .N - \ .  [1.18.3]

Thus the probability o f moving from state j  in one period to state i in the next period 

depends on the previous state only. Since the system has to be in one o f the N states, 

then

l U v = l  tl-is.4]
i-0

For our case o f i , j  = 0,1 and N=2, the Markov chain transition probability matrix Pt 

is

P  =
 ̂Po\o Po\l ^  

P \|0 Pi |1
[1.18.5]

For instance, if p m is very small, the model is more likely to stay longer in the state 1 

and vice versa.

In our sample, we first consider MS (2)-AR (1) model. MS (2)-AR (1) denotes two 

regimes (M=2) and 1 lag (pM ). Then, to account for the long memory property o f the 

realized volatility measures, we also consider the MS-AR models with longer lags and 

find that the model fails to converge when the number o f lags o f exceeds 2. The MS-
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AR requires a state vector o f dimension N  = S (Up) to obtain the Markov 

representation for the likelihood evaluation for S regimes and p autoregressive model. 

When the autoregression orders are high, MS-AR becomes effectively infeasible 

(Doornik and Hendry, 2009). Therefore, we also consider the Markov Switching 

Dynamic (MS-DR) model, which has the same number o f states and number of 

regimes (N=S). Both specifications reach the same conclusion, with slightly difference 

in the period o f the high/low regimes.

Figure 1.5a plots the results o f MS-AR model for overall sample average different 

realized volatility measures. The grey shaded area is regime 1, (the high volatility 

regime). It is clear that all four measures share something in common in high regimes. 

The high volatility regime detected by all four volatility measures is mainly 

concentrate on two periods: the internet bubble (2000-2001), and 2008, start of 

financial crisis. The high regime is similarly identified by rv ,, bvt and rrt In the case 

o f p v t , there are more days that are identified under the high volatility regime.

[Figure 1.5a here]

We then apply the MS-DR model on the sector average volatility measures. Although 

the overall average volatility measures show similar volatility regimes identification, 

the picture changes at the sector level. UTL is the only sector which is identified with 

low volatility regime, except a very short period o f time in 2008 when testing pv t . 

The 2008 financial crisis raises the market volatility overall, with the period from 

September to December of 2008 similarly identified as the high-regime across sectors 

and volatility measures. From September 2008 to December 2010, rvt and rrt are all 

in the high volatility regime. Periods which are in the high regime are shorter when we
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apply the model to pvt and bvt . High regime is only detected from September, 2008

to the end o f the year or early the following year. The remaining 3 sectors which 

detect a high volatility regime in 2008/2009 period are ENG, IND and MAR. These 

are also the sectors which activities are less affected by the IT sector.

Unsurprisingly, the IT sector is more severely affected by the 2001 crisis, registering a 

high volatility regime by all volatility measures. Another sector which is greatly 

influenced by the 2001 crisis is TEL sector. The high volatility regime is first detected 

in the year 2001 to 2002, a year later than the peak o f the dotcom bubble. TEL sector 

is heavily related to the IT sector and the factors which drive the volatility o f IT sector 

up will also affect TEL sector, but in a lagging way. Another interesting finding is 

found in sector CD and CS. The period, identified as a high volatility regime by rvt ,

pvt and bvt , is identified as a low volatility regime when applying the Markov

switching model to rrt .

[Figure 1.5b-fhere]

To summarize, the results from the Markov Regime Switching models show that 

different volatility measures tent to have similar, yet not identical high/low volatility 

regimes. The regimes identified in rvt and bvt are most similar to each other whereas 

the regimes detected in pvt are less like the others. The periods in high/low volatility 

regimes also differentiate from one sector to another.
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The long-memory property in volatility is a well-documented stylized fact and 

features in many financial and macroeconomic series, see for example Robinson 

(1995), Ding, Granger and Engle (1993), Baillie et al (1996), ABDE (2001) and Bandi 

et al (2006)). The long-memory property feature applies to low and high frequency 

measures of volatility with a fractional differencing parameter ud ” estimate in the 

range o f (0.2 to 0.3) for low frequency measures and (0.3 to 0.4) for high frequency 

ones. The higher value in the high frequency measures is mainly attributed their less 

noisy feature.

Our interest is to check whether the estimate o f the various realized measures 

varies across different. There are several commonly used long memory tests in the 

literature such as Lo’s modified rescaled arrange (Lo, 1991), the KPSS statistic 

(Kwiatkowski et al, 1992), the rescaled variance (Giraitis et al, 2003), the GPH 

statistic (Geweke and Porter-Hudak, 1983), and the ET statistic in Robinson (1995) and 

Robinson and Henry (1999). Here we adopt the method of Robinson and Henry 

(1999). The bandwidth parameter m is 0.5. which is the most commonly used in the 

literature6.

Table 1.8 reports average Robinson’s “d ” o f different volatility measures and trading 

volumes at both the sector and overall levels.

[Table 1.8 here]

6 We also consider m ~ 0.3 and m = 0.-1, respectively, the conclusion remains. We also conduct the GPH and 
AF1MA (0, </, 0) long memory tests to estimate the long memory parameter d. Diffferent tests lead to the same 
conclusion.
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Main findings are as follows. The Robinson’s “d ” estimates o f various realized 

volatility measures tend not to differentiate much across sectors: they range from 0.3 

to 0.4. There is variation between the different volatility measures. For example, pvt

shows the highest estimates and rvt is the lowest. bv( is higher than rvt which might

indicate that bvt is robust to jumps. This result also applies to pv t , which is also

robust to jumps and shows a higher “d ” estimate than bvt .

We also find that realized measures o f volatility o f more actively traded sectors have 

greater persistence than those o f less actively traded sectors. Thus, the most actively 

traded sector, IT, has the highest “d ” estimates and the least active sector UTL shows 

the lowest persistence.

Figure 1.6a shows the Autocorrelation Functions (ACFs) of the average realized 

volatility measures. All the volatility measures o f most stocks exhibit a strong 

hyperbolic decay pattern up to 50 lags. The decay pattern of realized measures of 

volatility is very close to each other. For every single stock, the ACFs o f rvt and bvt

are most similar to each other. This confirms the results from the Robinson’s tld ” as 

well. We also find that realized volatility measures o f actively traded stocks 

sometimes show persistent yet periodic autovariance function. A similar feature was 

observed by Baillie and Bollerslev (1993) who use FX data and attribute this result to 

high trading activity. We also plot the ACFs o f each realized volatility measures at 

sector level. Plot 1.6b shows the result for rvt . The ACFs o f rvt vary from one sector

to another in general. The ACF from UTL sector dies out more rapidly than any other 

sectors. UTL is the least actively traded sector. FIN sector, one of the most actively 

traded sector, exhibit periodic pattern.
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[Figure 16a-e here]

The long memory presented in the realized volatility measures is strongly supported in 

our data. The lower “cf ’ o f rvt than that o f pvt and bvt supports the earlier findings 

that incorporating jumps in the realized volatility measures decreases the long-range 

dependence o f the volatility. More persistent the realized volatility measure is, higher 

the predictive power of the realized volatility measure is likely to have. The highest 

“d” in pVj suggests that pv , may carry the strongest forecasting power than other

three measures. Our research mainly focuses on the in-sample estimations, 

nevertheless, there are other studies which provide both direct and indirect supports 

for the superiority o f more persistent volatility measures in forecasting. Ghysels et al 

(2006) propose a mixing frequencies model, which is known as MIDAS, and find that 

(logarithmic) pvt produces the best out-of-sample forecasts among a series of

volatility measures including rvt . The indirect support is given by ABD (2007) and 

Corsi et al (2012) using heterogeneous autoregressive (HAR) model. Both papers find 

that excluding jumps enhances long-range dependence o f rvt and hence enhances the

forecasting power o f the measures. Moreover, MIDAS and HAR models are both 

developed to capture the long memory in volatility measures.

1.10 Volatility-Volume Relation

Clark (1973) provides theoretical foundations for the volatility-volume relation in the 

framework of what is now known as the Mixture o f Distribution Hypothesis model. 

Following Clark’s paper, an impressive body of literature has investigate the relation
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(see Epps and Epps (1976), Karpoff (1987), Harris (1987), Ane and Geman (2000), 

Martens and Luu (2003) and Chan and Fong (2000, 2006)). Advances in volatility 

estimation have led to improved measures o f volatility and have further emphasized 

the relation between volatility and volume. Depending on the volatility measures 

adopted, trading volume is capable of explaining between 5 - 50% of the variation in 

the volatility. More recently, and given the empirical evidence documenting the 

presence o f jumps, Giot e/ al (2010) revisited the volume (number o f trades) -

volatility relation. They divided realized variance ( rvt ) into its continuous and jump

components and showed that the relation holds only for the continuous part o f rvt .

To test which is the best volatility proxy, we closely follow the regression framework 

o f Jones et al (1994), Ane and Geman (2000) and Chan and Fong (2006) and then 

regress different realized volatility measures on trading volumes

rvit = a t + ccimM t +  ̂ J=x P ^ n - j  + / M ,  + £n [1.19.1]

rru = a t +  a imM t + p ijrri(_] + / M ,  + s» [1 •19-2]

pvn = a, + a imM , + Y?j=lPupv*'-j +r,vol„ +£„ [1.19.3]

bv„ = a,. + a imM t + ̂  p tp v u_j + / M ,  +A, I1 •19-4l

where M , is a Monday dummy and 12 lags o f realized volatility measures are used to 

account for serial correlation .

4. The volume o f  some stocks are trend stationary, in this case, we de-trend the series according to the 
ADF test.
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Table 1.9 shows the results o f volume regressions at sector average and overall 

average levels. Among four realized volatility measures, pvt produces the highest R 2 

value o f 67.8% in the volume regression on average. The lowest value for all realized 

volatility measures is reported by realized variance, which yields average R 2 of 

52.8% in the volume regression. However, regardless o f the realized volatility 

measure used, our results are similar to those reported by previous studies which 

consider only rvt (or its components) (Chan and Fong (2006), Martens and Luu

(2003) and Giot et al (2010)) yet with higher R 2. The percentage o f stocks for which 

trading volume is statistically significant at 5% ranges from 96% to 98%.

[Table 1.9 here]

At sector level, ENG and MAR report the highest R 2 across realized volatility

measures. The lowest R 2 across realized volatility measures is reported by TEL 

sector: the sector contains most jumps is most poorly explained by realized volatility

measures and produces lowest R 2 on average.

To conclude, the well-established volatility-volume relation holds when all four 

realized volatility measures are tested. We reach the same findings as previous studies

and have higher R 2 on average. The results show that pvt is the most closely

explained volatility measure in the volatility-volume relation, at both the sector and 

overall levels. The second most closely explained is realized bipower variation, 

followed by realized range and realized variance. We investigate this relation in 

greater detail in the next chapter which focuses on the MDH validity using high 

frequency data.
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1.11 Distributions of Returns, Realized Volatility Measures 
and Standardized Returns

1.11.1 Distribution of Returns

The statistics from Section 1.4.1 show that returns are not normally distributed. 

Figure 1.6 fits the Gaussian distribution to sector average returns. The parameters of 

the distributions are estimated using the maximum likelihood (ML) method. The red 

dotted line is the unconditional log-density for the ML fit o f the normal distribution 

while the black solid line is the unconditional log-density for the return series. The 

plots show that the return distributions are more peaked around zero and have fatter 

and more fluctuated tails than the standard normal. In contrast with standard normal 

distribution which has a fast decay rate, the return series’ decaying rate is much 

slower.

BN-S (2002) show that the normal distribution using a log-log density representation 

has faster decay rates than log-linear. Densities with fast decay rates have so called 

‘sub-log-linear’ tails and with slow decay rates have ‘sup-log-linear’ tails. The density 

plots in Figure 1.7 show clearly that returns have ‘sup-log-linear’ tails.

3 out o f 10 sectors appear to have longer left tails than right tails, namely ENG, FIN 

and MAR, suggesting more extreme values in negative returns. FIN has the longest 

left tail and it is also the sector which is most influenced by the financial crisis and 

yields largest degree o f loss in the equity market. CD, IT and UTL have longer right 

tails, an indication that extreme positive returns are more than negative ones. The 

distributions o f the returns of rest of sectors are more symmetric.

[Figure 1.7 here]
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1.11.2 Distributions of Realized Volatility Measures

Another well-established stylized fact is that realized volatility measures are best 

approximated by Inverse Gaussian and Lognormal distributions.

Most o f studies focus on the distributional properties o f rvt alone. The distribution of

rvt is lognormal or close to lognormal is assessed by using foreign exchange data

(ABDL, 2001), US individual stock data (ABDE, 2001) as well as UK index data 

(Areal and Taylor, 2002). BN-S (2002) use the same data as ABDL (2001) and find 

that rvt could also be approximated by the Inverse Gaussian distribution and the fits

o f IG and Lognormal are equally well. The same conclusion is found by Forsberg and 

Bollerslev (2002) from examining of 10 year ECU basket currencies/ US dollar and 

by Stentoft (2008) from examining US equity data.

In this section, we re-examine the distributional properties of realized volatility 

measures and try to find out the best fit o f realized volatility measures distributions by 

fitting three different distributions: normal, lognormal and inverse Gaussian. Besides 

the sector average volatility measures, we also look at the volatility measures of most 

and least actively traded stocks in each sector. We use the Kolmogorv-Simirnov (KS) 

test which compares the empirical distribution function with the theoretical 

distribution function non-parametrically.

From Table 1.10a, all volatility measures across different sectors confirm with neither 

IG nor Lognormal distributions. However, the KS statistics confirm that all four 

realized volatility measures are closely approximated by IG and Lognormal
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distributions as the KS test statistics are closer to 0.0258 — the critical value that the 

null cannot be rejected at 5%. Together with the test statistics, Figure 1.8 shows that 

IG and Lognormal distributions o f different realized volatility measures may be 

regarded as empirically indistinguishable — a finding firstly proposed by BN-S 

(2002). The realized volatility measures are slightly better fitted by lognormal 

distribution than by the IG distribution across volatility measures, as the KS statistics 

for lognormal distribution is lower. Lognormal distribution fits bvt best and IG fits

pvt best. rrt is the worst fitted volatility by both IG and lognormal distributions as it 

yields highest KS statistics.

[Table 1.10a here]

[Figure 1.8 here]

Table 1.10b reports the KS statistics of volatility measures from the most and least 

actively traded stocks in every sector. The null hypothesis is not fully rejected for 

different realized volatility measures for three stocks. IG fits rvt , pvt and bvt of

MAR at the 5% level and fits rrt of MAR and rvt & bvt of MSFT at the 1% level. 

Lognormal fits rvt and bvt o f MAR, and rvt and pvt o f S at the 1% level. The 

volatility measures are better fitted by the lognormal distribution than the IG 

distribution at individual stock level. For the 20 stocks that are investigated, both 

distributions fit bvt well. However, when we further divide the individual stocks into 

the most and least actively traded groups, we find that the IG fits pvt best and the 

Lognormal fits bvt best among the most active stocks, whereas the IG fits bvt best 

and the Lognormal fits pvt best among the least active stocks.

[Table 1.10b here]
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To sum up, the distribution o f realized volatility measures across sectors can be 

equally described by the Inverse Gaussian and Lognormal distributions. The KS test 

accepts both as valid representation o f the data. However, the fit o f the lognormal 

distribution ranks better than IG. This holds at both sector average and individual 

stock levels. At the sector average, we also find that IG fits pvt best whereas the 

lognormal fits bvt best.

1.11.3Distributions of Standardized Returns

The distributional properties o f returns and realized volatility measures confirm the 

stylized facts that returns are not Gaussian and realized volatility measures are closely 

fitted by both Inverse Gaussian and Lognormal. Then we consider the distributional 

properties of returns standardized by realized volatility measures. A fundamental 

theorem of asset pricing implies that, in the absence of arbitrage effects, prices are 

semi-martingales under a given physical measure. Monroe (1978) asserts that any 

semi-martingale can be written as a time changed Brownian motion. Clark (1973) 

shows that subordinated returns are normal with trading volume acting as a 

subordinator. The Clark and Monroe assertions require continuity in the underlying 

Brownian motion process. In chapter 3 we will discuss whether continuity is a 

necessary assumption for recovering returns normality.

ABDL (2001), ABDE (2001), BN-S (2002), Areal and Taylor (2002), Fleming and 

Paye (2007, 2011), ABFN (2010) have addressed the issue o f recovering returns 

normality using different volatility measures allowing for the effects of noise and 

jumps. The general finding from these studies indicates that return normality is
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achievable once we account for such as (potential) noise, leverage and jumps. As 

mentioned, in this chapter, our task is to investigate whether the various volatility 

measures behaves in a systematic way across sectors. We consider both raw and 

demeaned returns

sr= rt I^ V t [1.20]

where srt is the standardized returns and Vt denotes different realized volatility 

measures.

Tables 1.11 and 1.12 respectively show the number o f stocks that the hypothesis of 

normality o f daily returns and demeaned returns standardized by realized volatility 

measures are rejected at the 1%, 5% and 10% level in overall sample in each sector.

[Table 1.11 and 1.12 here]

The results from JB statistics, skewness and kurtosis suggest that all four measures are 

able to recover the normality to some extent when they are used as the standardization 

factor. We also observe that subtracting the sample mean from the return series in the 

numerator (or the demean process) does not enhance the normality o f the 

standardization process by much. This is contracted with the results reported by 

ABFN (2010) who find that the distribution of demeaned returns standardized by 

realized volatility is closer to normal. The JB statistics o f standardized demeaned 

returns are approximately the same as that o f standardized raw returns.

Among all volatility measures, the standardization o f pvt performs best as 79/100, 

66/100 and 51/100 of r t/^ /p v t cannot reject the Gaussian distribution at the 1%, 5%
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and 10% level, respectively. The second best is bvt , bringing 55/100 rt / ^ b v t back to 

normality at the 10% level, and then followed by rrt and rvt . This conclusion holds 

for both raw and demeaned return series, with demeaned series providing slightly 

fewer rejections at different significance levels. We also observe that rvt is less

successful in working in the more actively traded sectors while bvt is more successful

in the less actively traded sectors. In our sample, when volatility measures are used to 

standardize returns, the two best performed sectors are the ENG and UTL, o f which 

24/40 standardized returns do not reject the normality null at the 10% level. Two least 

successfully performed sectors are the MAR and IT, o f which 10/40 and 11/40 

standardized returns do not reject the normality at the 10% level. Among all sectors, 

UTL is the least actively traded sector and IT is the most actively traded sectors. UTL 

is also one o f the sectors which have a large number of jumps detected and IT detects 

lowest number o f jumps, both at daily and intraday level.

Given the fact pvt is the most successful standardization factor overall, it is not 

always the most efficient one for every sector. The performance of the realized 

measures o f volatility varies from one to another. rvt works best in CS sector, rrt and 

bvt works best in ENG sector while pv, is most successful in HC sector. Besides

ENG, a sector where all realized volatility measures work relatively well, and MAR, a 

sector that all realized volatility measures fail to standardized most o f the return series, 

the standardization results using different volatility measures are rather mixed for the 

rest o f 9 sectors.

The literature provides several justifications o f why realized volatility measures 

standardized returns are still not normally distributed. Fleming and Paye (2011)
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propose microstructure noise which could distort the variance o f the standardized 

returns and artificially inflate the kurtosis o f the standardized returns. ABFN (2010) 

suggests that leverage effect and presence o f jumps are important for the distributional 

properties o f standardized returns. A more detailed discussion addressing recovering 

normality of returns is provided in the later chapter.

1.12 Sector Rankings

Table 1.13 ranks sectors by mean values o f the volatility measures, market activity 

measure, intraday and daily jumps, persistence and the volatility-volume regression 

adjusted R-squared, and by the rejections o f normality of standardized returns. The 

table shows that rankings o f the various measurements considered tend to vary across 

sectors. This table aims to establish links among the various strands o f the stylized 

facts addressed in this chapter.

First, only 4/10 sectors show that volatility measures rank the same across sectors. 

The existing literature provides no explanation as why this should be the case. Ideally 

we should have different rankings for every sector but given that four sectors agree on 

a similar ranking is o f interest especially all four are quite distinct in the nature of 

activities and services they provide. It would be interesting to see whether the ranking 

shifts if the variables were to be observed at different time windows.

Second, high volatility and trading volume episodes are not aligned as we would 

expect. For example, the most actively traded sector IT ranks low by volatility and the
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most volatile sector MAR ranks low by trading volume. The volatility-volume relation 

as shown by the regressions also highlights this issue.

Third, the number o f identified (significant) intraday and daily jumps does not match 

except for TEL and IT. The sectors which contain most (least) daily jumps also 

contain most (least) intraday jumps. The most actively traded sector has the smallest 

number o f intraday and daily jumps. Moreover, our ranking results suggest that the 

number o f jumps is not associated with the level o f volatility measures: the most 

jumps-contained sector is neither the most actively traded nor the most volatile.

Returns normality could be achieved in various sectors and using all realized 

measures. The results obtained are independent o f the level o f jumps detected both at 

the daily and the intraday levels. The level o f stock activity seems to be a dominant 

factor in the ability o f the realized measures to recover normality. The IT sector has 

the lowest intraday and daily jumps but the highest percentage o f normality rejections. 

The least actively traded sectors (CS and UTL) shows the lowest rejections of returns 

normality. One possible explanation is provided by Ait-Sahalia et al (2009) who find a 

positive relationship between microstructure noise and trading volume, hence high 

activity entitles high microstructure noise. In line with their findings, low activity 

entitles less microstructure noise and hence less discontinuities. A similar argument is 

provided by Hansen and Lunde (2005). Given that CS and UTL sectors are less 

actively traded they are expected to have more consistent realized volatility 

estimators, hence more capable of recovering returns normality.

Persistence and activity tend to move jointly as advocated by the mixture of 

distribution hypothesis. The ranking for persistence varies with the realized volatility 

measure tested. UTL and IT are the least (most) persistent sectors. UTL is the least
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active and least persistent whereas IT is the most active and persistent. The mixture of 

distribution assumes a common process driving volatility and market activity as 

characteristics shared by both activity and volatility measures. The ranking for 

persistence varies with the realized volatility measure tested. This can be attributed to 

two factors. The first is the presence o f microstructure noise. For example, the realized 

range, by construction is known of its sensitivity to micro structure noise. Second, the 

sensitivity o f certain measures to jumps.

The sectors that contain the most jumps show lowest R 2 (CD and TEL). The presence 

o f jumps in the volatility measures weakens the well-documented volatility-volume 

relation. This finding is supported by Giot el al (2010) who finds a negative jumps- 

volatility relation. The volatility-volume regression results are more significant in the 

most actively traded sectors and are sensitive to the volatility measure in use. For 

example, rrt is mostly explained by volume in the MAR sector whereas rvt , pvt and

bvt are all mostly explained in the ENG sector.

The above findings which pertain to the realized measures o f volatility might not all 

be novel, but provide a better picture about the interaction o f activity and volatility 

measures across different market sectors. The different performance o f sectors, as well 

as the stocks within these sectors provides a useful insight about the dynamics o f the 

market and may help explain why a common warning system which treats all as being 

the same is bound to fail.

[Table 1.13 here]
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1.13 Conclusion

We look at trade data of 100 stocks from 10 sectors traded in the US stock market for 

the period 2000-2010. We investigate the degree o f variation across sectors in the 

stylized facts o f realized volatility measures with respect to the optimal sampling 

frequency, correlations, jumps, leverage effect, volatility regimes, persistence, and 

volatility-volume relation. We also look at the distributional properties o f returns, 

standardized returns and realized measures of volatility. Our findings can be 

summarised as follows.

We find that the 5-minute is the optimal sampling frequency for realized measures of 

volatility. This result does not hold for the power variation, particularly for stocks 

number o f jump activity where the point o f convergence overshoots the 5 minute 

point.

Rankings o f realized volatility measures tend to vary across sectors. Deviations are 

more visible in active sectors. This result holds for all volatility measures with the 

exception o f realized variance and bi-power variation. The rankings o f these two 

measures are the same.

Power variation shows systematically best performance across sectors and 

outperforms other realized measures. It has the lowest standard deviation, well defined 

distributional properties, has the highest degree o f persistence, most capable of 

recovering normality, and robust to jumps. It is the most accurate volatility estimator 

to the true volatility among the four volatility measures.
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Realized volatility measures are highly and positively correlated with each other (over 

85%). The jump component from realized variance is negatively correlated with 

volume and positively correlated with realized variance.

Realized measures regimes characteristics vary by regime type (high-low) and by 

sector. Realized power variation is detected with the longest period in the high regime 

while realized range has the shortest high regime. Regime patterns for realized 

variance and realized bipower mimic each other. Although most o f the sectors are 

detected with both high-low volatility regimes, UTL, the least traded sector, is only 

identified with low regime for 3 out of 4 realized volatility measures.

The volatility-volume relation holds in all sectors as borne out by the various realized 

volatility measures. The relations holds best for realized power variation, followed by 

realized bi-power variation, realized range and realized variance. The presence of 

jumps tends to negatively impact the relation as sectors which contain more jumps 

tend show less association between realized measures and trading volume.

The distribution o f the realized volatility measures can be equally described by both 

the Inverse Gaussian and Lognormal distributions. The realized power variation is 

best approximated by the Inverse Gaussian and the realized bi-power variation by the 

lognormal.

Returns standardized by the realized measures are normal. Realized power variation 

outperforms the other three measures in recovering returns normality. The result holds 

for both raw and demeaned return series. Returns normality in actively traded sectors 

is more difficult to achieve. We also find no relation between the degree o f jump 

activity and recovering returns normality.
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Table 1.2; TAQ and TICK comparative statistics (Intel Corporation (INTC))

68

TICK TAQ

RVt RR, PVt BVt RVt RR, PVt BVt

Mean 5.359 5.874 9.858 5.186 5.893 19.173 10.294 5.544

Median 2.937 3.178 6.854 2.832 3.120 5.224 7.077 2.935

Maximum 89.431 104.425 82.261 74.089 155.640 17950.650 110.006 152.531

Minimum 0.167 0.237 0.772 0.153 0.194 0.275 0.881 0.167

Std. Dev. 6.557 7.127 8.393 6.427 8.731 342.054 9.179 8.021

Skewness 3.688 3.974 2.338 3.593 7.779 52.098 3.067 7.494

Kurtosis 26.166 32.838 11.067 23.555 110.711 2731.434 21.089 109.136

JB 6.815E+04 1.099E+05 1.002E+04 5.466E+04 1.365E+06 8.600E+08 4.206E+04 1.325E+06

ADF -4.777 -4.022 -3.713 -4.891 -6.198 -52.527 -3.663 -5.236

P value (0.000) (0.001) (0.004) (0.000) (0.000) (0.000) (0.005) (0.000)

Note: This table reports the summary statistics o f realized measures of volatility, namely realized variance, realized range, 
realized power variation, realized bipower variation, and calculated using tick to tick data from TICK and TAQ database, 
respectively. JB is the Jarque-Bera test statistics for normality. ADF denotes the augmented Dickey-Fuller statistics for the null 
of a unit root with 5% and 1% critical values o f 2.862 and -3.433 respectively.
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Table 1.4a: Summary statistics of realized volatility measures (level)
CD c s ENG FIN HC IND IT MAR TEL UTL

Realized Variance ( r v , )

Mean 5.455 2.453 5.836 6.339 4.245 3.696 5.722 6.703 5.637 3.419
Median 3.334 1.486 3.493 2.537 2.624 2.336 3.124 4.389 3.024 1.752
S.D. 7.100 2.913 9.250 17.207 4.660 5.111 6.787 9.499 9.721 13.239
Skewness 7.440 5.183 8.681 11.436 4.918 8.352 3.648 8.620 8.961 31.670
Kurtosis 111.077 50.947 118.145 198.683 56.216 139.260 24.865 123.691 140.262 1267.273
ACF(36) 0.339 0.357 0.248 0.303 0.396 0.329 0.442 0.343 0.306 0.043
Q(36) 21271 26899 18632 16238 29603 25340 31406 27868 22637 1437
p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Realized Range ( r r f )

Mean 4.866 2.069 5.061 6.115 3.761 3.197 6.046 5.687 4.748 2.836
Median 2.991 1.226 2.997 2.291 2.374 1.980 3.138 3.436 2.641 1.356
S.D. 6.253 3.217 8.925 17.777 4.533 5.051 7.449 9.419 8.123 12.086
Skewness 7.284 14.125 10.782 11.364 8.794 10.347 4.048 9.902 8.322 25.128
Kurtosis 112.688 343.540 197.363 194.919 174.717 198.423 31.502 165.886 118.315 746.710
ACF(36) 0.390 0.225 0.245 0.321 0.338 0.321 0.454 0.357 0.312 0.044
Q(36) 26766 11556 18134 17868 23956 22808 32480 28867 23597 1232

p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Realized Power Variation ( p v t )

Mean 9.155 5.117 9.553 9.571 7.615 7.027 9.918 10.922 8.627 5.980
Median 6.928 3.798 7.231 5.814 5.723 5.428 6.772 8.405 6.217 4.299
S.D. 7.378 3.934 8.677 13.844 5.561 5.973 8.155 9.452 8.113 7.135
Skewness 3.470 3.472 5.516 6.320 3.129 4.564 2.425 5.499 3.940 10.348
Kurtosis 26.878 25.109 55.262 67.386 23.817 41.258 11.892 51.830 28.578 200.242
ACF(36) 0.507 0.468 0.385 0.485 0.503 0.443 0.542 0.454 0.495 0.230
Q(36) 40842 39755 33186 33234 41391 37477 43212 39195 43618 16063

p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Realized Bipower Variation ( b v t )

Mean 4.994 2.230 5.407 5.977 3.877 3.445 5.457 6.231 5.071 3.143
Median 3.037 1.364 3.255 2.327 2.413 2.185 2.934 3.985 2.738 1.593
S.D. 6.148 2.655 8.713 16.063 4.303 4.877 6.616 9.403 9.304 13.728
Skewness 5.652 5.377 8.488 10.813 5.324 8.157 3.762 9.043 11.684 37.873
Ku rtosis 68.374 54.831 111.520 176.455 65.569 125.802 26.269 134.358 244.450 1704.928
ACF(36) 0.394 0.348 0.249 0.319 0.384 0.318 0.432 0.335 0.270 0.037
Q(36) 28495 28333 19709 17661 28819 24876 30717 27660 18939 1075

p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: Summary statistics of daily volatility measures for the 100 stocks over the period 01/01/2000 to 31/12/2010 are reported at 
sector average level. S.D. denotes standard deviation. ACF (36) is the autocorrelation at 36th lags and Q (36) is the Q statistics at 
36th lag. The realized volatility measures are pooled across stocks and then summarized.



Table 1.4b: Summary statistics of volatility measures (logarithmic)
CD c s ENG FIN HC IND IT MAR TEL UTL

Realized Variance ( \ w { r v () )
Mean 1.290 0.546 1.353 1.021 1.101 0.928 1.310 1.577 1.207 0.646
Median 1.204 0.396 1.251 0.931 0.965 0.848 1.139 1.479 1.107 0.561
S.D. 0.845 0.766 0.805 1.107 0.777 0.791 0.883 0.698 0.919 0.881
Skewness 0.537 0.751 0.767 0.782 0.612 0.676 0.544 1.042 0.698 0.907
Kurtosis 2.856 3.329 3.943 3.743 2.912 3.643 2.611 4.948 3.446 4.810
ACF(36) 0.677 0.596 0.560 0.720 0.625 0.601 0.688 0.504 0.700 0.544
Q(36) 56370 48439 45424 61836 49572 48552 57787 37553 60102 44375
p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Realized Range ( In{ r r ())

Mean 1.189 0.365 1.200 1.021 1.101 0.928 1.310 1.577 1.207 0.646
Median 1.096 0.204 1.098 0.931 0.965 0.848 1.139 1.479 1.107 0.561
S.D. 0.827 0.752 0.791 1.107 0.777 0.791 0.883 0.698 0.919 0.881
Skewness 0.572 0.894 0.926 0.782 0.612 0.676 0.544 1.042 0.698 0.907
Kurtosis 2.935 3.947 4.544 3.743 2.912 3.643 2.611 4.948 3.446 4.810
ACF(36) 0.696 0.594 0.569 0.720 0.625 0.601 0.688 0.504 0.700 0.544
Q(36) 58889 48608 47209 61836 49572 48552 57787 37553 60102 44375
p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Realized Power Variation (ln(/>V,))

Mean 1.997 1.446 2.050 1.833 1.847 1.746 2.049 2.213 1.897 1.527
Median 1.936 1.335 1.978 1.760 1.745 1.692 1.913 2.129 1.827 1.458
S.D. 0.628 0.569 0.589 0.830 0.572 0.594 0.670 0.533 0.669 0.649
Skewness 0.529 0.755 0.779 0.749 0.627 0.688 0.527 1.088 0.653 0.832
Kurtosis 2.841 3.386 4.114 3.610 3.024 3.722 2.596 5.081 3.271 4.344
ACF(36) 0.694 0.612 0.550 0.727 0.642 0.605 0.691 0.534 0.714 0.551
Q(36) 59540 51571 45475 63190 52608 49710 58666 41736 62835 46296

p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Realized Bipower Variation ( ln^V ,) )

Mean 1.203 0.456 1.274 0.953 1.015 0.854 1.251 1.490 1.096 0.555
Median 1.111 0.310 1.180 0.845 0.881 0.782 1.076 1.383 1.007 0.465
S.D. 0.848 0.759 0.802 1.111 0.770 0.790 0.893 0.702 0.919 0.878
Skewness 0.529 0.758 0.804 0.796 0.623 0.708 0.542 1.131 0.713 0.948
Kurtosis 2.787 3.401 4.099 3.745 3.002 3.772 2.641 5.276 3.517 4.930
ACF(36) 0.687 0.589 0.551 0.722 0.622 0.589 0.686 0.496 0.692 0.532
Q(36) 57837 48462 44893 62630 49507 47553 57738 37522 59534 43733

p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: Summary statistics of logarithmic daily volatility measures for the 100 stocks over the period 01/01/2000 to 31/12/2010 
are reported at sector average level. S.D. denotes standard deviation. ACF (36) is the autocorrelation at 36th lags and Q (36) is 
the Q statistics at 36th lag. The realized volatility measures are pooled across stocks and then summarized.
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Table 1.5: Summary statistics of realized variance and its components
CD CS ENG FIN HC IND IT MAR TEL UTL

Realized Variance ( r v , )

Mean 5.455 2.453 5.836 6.339 4.245 3.696 5.722 6.703 5.637 3.419

S.D. 7.100 2.913 9.25 17.207 4.66 5.111 6.787 9.499 9.721 13.239

Maximum 149.54 51.346 187.92 394.56 89.124 125.26 89.731 208.39 212.44 571.53

Skewness 7.44 5.183 8.681 11.436 4.918 8.352 3.648 8.62 8.961 31.67

Kurtosis 111.08 50.947 118.15 198.68 56.216 139.26 24.865 123.69 140.26 1267.3

Continuous Variation ( c v t )

Mean 5.367 2.363 5.757 6.272 4.159 3.622 5.663 6.616 5.525 3.328

S.D. 7.086 2.904 9.249 17.208 4.652 5.112 6.794 9.506 9.721 13.237

Maximum 147.86 51.279 187.88 394.43 89.091 125.17 89.736 208.41 212.62 571.64

Skewness 7.38 5.206 8.686 11.431 4.944 8.359 3.645 8.621 8.974 31.697

Kurtosis 109.25 51.368 118.14 198.53 56.673 139.26 24.822 123.62 140.7 1269.4

Jum ps ( J ,  )

Mean 0.088 0.09 0.079 0.067 0.086 0.074 0.059 0.087 0.112 0.091

S.D. 0.124 0.094 0.091 0.094 0.096 0.083 0.077 0.089 0.107 0.1

Maximum 2.932 1.153 1.162 1.357 1.284 1.358 1.458 0.92 1.256 1.176

Skewness 8.528 3.002 2.556 4.936 2.941 3.074 4.315 1.833 2.526 2.197

Kurtosis 142.54 23.587 22.071 52.162 24.723 34.606 57.823 13.653 18.526 17.171

Note: This table reports the mean, standard deviation, skewness, kurtosis and maximum at sector average realized 
variance and its continuous and non-continuous components from 03/01/2000 to 31/12/2010. The realized variance 
and its components are pooled across stocks and then summarized.
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Table 1.9: volatility-volume relation results
CD cs ENG FIN HC IND IT MAR TEL UTL OVERALL

Realized Variance ( rv() .

Yu 0.652 0.884 0.862 0.754 0.366 0.546 0.148 0.502 0.987 6.524 1.222
Jey 0.248 0.298 0.313 0.276 0.066 0.106 0.031 0.107 0.395 3.755 0.559

% R 2 45.209 47.722 63.934 58.489 48.804 56.552 58.540 61.338 41.284 45.708 52.758

% Significant 90 100 100 100 100 100 100 100 90 80 96

Realized Range ( r r t )

Yu 0.492 0.742 0.754 0.684 0.336 0.500 0.147 0.440 0.784 5.305 1.018

sey 0.150 0.241 0.279 0.241 0.060 0.106 0.032 0.094 0.260 3.109 0.457

% R 2 53.103 48.450 64.393 62.929 51.572 53.684 60.287 66.735 47.463 37.977 54.659

% Significant 90 100 100 100 100 100 100 100 90 80 96

Realized Power Variation (p v t )

Yu 0.488 0.845 0.737 0.540 0.368 0.585 0.161 0.485 0.953 2.691 0.785

ser 0.102 0.218 0.177 0.153 0.052 0.079 0.027 0.075 0.253 1.283 0.242

% R 2 65.675 64.767 73.242 71.911 64.822 70.210 70.751 72.310 59.947 64.193 67.783

% Significant 100 100 100 100 100 100 100 100 90 90 98

Realized Bipower Variation ( bvt )

Y„ 0.416 0.699 0.792 0.679 0.344 0.529 0.140 0.473 0.865 6.831 1.177

ser 0.082 0.222 0.284 0.256 0.058 0.106 0.031 0.100 0.353 4.064 0.556

% R 2 53.658 52.003 64.847 59.713 51.452 57.629 58.568 62.895 47.391 51.795 55.995

% Significant 100 100 100 100 100 100 100 100 90 90 98

Note: Volume is rescaled by dividing by 1,000,000. p^  measures the persistence of volatility shock at lag/'. M t is the Monday dummy. 

y .( is equally-weighted cross sectional mean coefficients for trading volume and S6 is average Newey-West standard error. The R is

the mean value o f 100 stocks. The last row reports the percentage of coefficients which are statistically significantly from zero at 5% 

level.
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Table 1.10b: Distributional test of volatility (most and least active stocks)
IG Lognorma Normal IG Lognormal Normal IG Lognormal Normal IG Lognormal Normal

KS Test Consumer Discretionary Consumer Staples

HD MAR WMT BFB

rv, 0.038 0.047 0.251 0.014** 0.030* 0.256 0.060 0.068 0.252 0.079 0.053 0.369

rr, 0.053 0.060 0.273 0.027* 0.044 0.289 0.078 0.081 0.264 0.081 0.069 0.356

Pv, 0.046 0.049 0.178 0.023** 0.034 0.185 0.066 0.067 0.181 0.059 0.044 0.203

bv, 0.038 0.047 0.257 0.019** 0.030* 0.264 0.056 0.066 0.252 0.058 0.041 0.322

Energy Financials

XOM TE C TRV

rv, 0.069 0.046 0.318 0.065 0.043 0.325 0.053 0.042 0.398 0.065 0.047 0.345

rr, 0.087 0.055 0.341 0.085 0.053 0.327 0.053 0.053 0.391 0.109 0.074 0.338

PV, 0.064 0.046 0.222 0.061 0.044 0.226 0.050 0.050 0.316 0.064 0.049 0.246

bv, 0.070 0.048 0.325 0.066 0.042 0.317 0.049 0.040 0.399 0.071 0.053 0.348

Health Care Industrials

PFE HUM GE GD

rv, 0.045 0.041 0.245 0.050 0.049 0.248 0.040 0.044 0.326 0.065 0.054 0.270

rr, 0.062 0.055 0.259 0.058 0.066 0.260 0.049 0.050 0.325 0.068 0.052 0.316

PV, 0.046 0.041 0.165 0.062 0.064 0.186 0.040 0.0470 0.237 0.064 0.054 0.191

bv, 0.041 0.038 0.242 0.048 0.062 0.251 0.042 0.046 0.327 0.069 0.056 0.286

Information Technology Materials

MSFT XRX AA AKS

rv, 0.030* 0.048 0.241 0.039 0.049 0.309 0.078 0.061 0.314 0.053 0.041 0.284

rr, 0.052 0.063 0.237 0.056 0.062 0.322 0.099 0.069 0.327 0.065 0.049 0.297

PV, 0.042 0.049 0.173 0.045 0.045 0.217 0.077 0.061 0.226 0.052 0.042 0.195

bv, 0.031* 0.050 0.245 0.036 0.043 0.320 0.081 0.058 0.321 0.054 0.044 0.296

Telecommunications Services Utilities

S BT DUK OKE

rv, 0.035 0.030* 0.320 0.048 0.061 0.233 0.055 0.041 0.336 0.068 0.049 0.373

rr, 0.045 0.059 0.332 0.054 0.053 0.264 0.096 0.058 0.354 0.124 0.075 0.437

PV, 0.036 0.029* 0.229 0.055 0.058 0.175 0.050 0.041 0.234 0.064 0.049 0.241

bv, 0.035 0.032 0.319 0.046 0.058 0.240 0.056 0.038 0.336 0.070 0.047 0.325

Note: KS denotes Kolmogorov-Smirnov test on the distributions of Inverse Gaussian, lognormal and normal, with the critical value of 
0.0258 at 5% level. * denotes p>0.05 and * denotes p>0.01. The First and third columns from left are the most actively traded stocks in 
every sector and the second and fourth columns are the least actively traded stocks in every sector.
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Table 1.11: Daily distributions of returns (overall)
Raw Returns 

Significance

Demeaned Returns 

Significance

1% 5% 10% 1% 5% 10%

rt/y[rvt 39 60 71 40 60 72

rt/Jrrt 35 48 57 35 49 59

rt/y/pvl 21 34 49 19 31 46

rt/yfbvt 25 42 54 25 42 55

Note: The table reports the number of stocks (out of 100) for which the null hypothesis of normality of 
return is rejected based on the Jarque-Bera test when daily returns are standardized by volatility 
measures. r t refers the daily return or demeaned returns, while r v t , r r t , p v t , b v t denote the realized 
variance, realized range, realized power variation and realized bipower variation respectively.



Table 1.12a: Daily distribution of raw returns (sectors)
Daily Raw Return of 100 stocks

Significance Significance Significance Significance

Series

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

CD CS ENG FIN

r t / j r v t 6 7 7 2 2 4 1 5 7 5 8 9

r t / y f r r t 7 8 8 4 4 6 1 1 3 1 3 5

r t / y f p v t 2 3 5 2 4 9 0 2 2 5 5 5

r t/y[bvt 5 6 8 2 3 3 0 1 4 4 5 7

Series HC IND IT MAR

r t / j r v t 4 6 8 3 6 6 7 8 9 5 8 9

r t / ^ r r ' t 2 4 4 4 5 5 4 5 7 5 8 8

r t/yfpvt 1 1 3 2 3 4 1 2 4 2 4 5

r t/yfbvt 2 3 3 2 4 5 4 9 9 3 6 8

Series TEL UTL

r t / y f r v l 4 7 9 2 3 3

r t / J r r l 4 5 5 3 5 6

r t / y f p v t ">J 6 7 3 4 5

r t/yfbvt 2 3 5 1 2 2

Note: The table reports the number of stocks in each sector (out of 10 in each sector) for which the null 
hypothesis of normality of return is rejected based on the Jarque-Bera test when daily returns are 

standardized by volatility measures, r  refers the daily return, while rv t ,r r i , p v i ,b v i denote the realized 

variance, realized range, realized power variation and realized bipower variation respectively.
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Table 1.12b: Daily distributions of demeaned returns (sectors)

Daily Demeaned Return of 100 stocks

Significance Significance Significance Significance

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Series CD CS ENG FIN

r t / J r v t 6 7 7 2 2 5 2 5 7 5 8 9

r t / J r r t 7 8 8 4 5 6 1 1 4 1 2 5

r t / j p v t 1 4 6 2 4 8 0 2 2 5 5 5

r t / y f b v t 5 6 7 3 3 3 0 1 5 3 5 8

Series HC IND IT MAR

r t / j r v t 4 6 8 3 6 6 7 8 9 5 8 9

r t / y [ r r t 2 4 5 4 5 5 4 5 7 5 8 8

1 1 3 2 2 3 1 2 3 2 3 5

r t / y f b v t 2 3 3 2 4 5 4 9 9 3 6 8

Series TEL UTL

r t / j r v t 4 7 9 2 3 oJ

r t / y / r r rt 4 5 5 3 6 6

r t / J p v t 2 4 6 3 4 5

r t / J b v t 2 3 5 1 2 2

Note: The table reports the number of stocks in each sector (out of 10 in each sector) for which the null 
hypothesis of normality o f demeaned return is rejected based on the Jarque-Bera test when daily returns are 

standardized by volatility measures. r t refers the demeaned daily return, while r v t , YYt , p v t , b v t denote the 

realized variance, realized range, realized power variation and realized bipower variation respectively.
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Table 1.13: Table of rankings

Sector CD CS ENG FIN HC IND IT MAR TEL UTL

Realized Volatility Measures
rv, 6 10 3 2 7 8 4 1 5 9

rr, 5 10 4 1 7 8 2 3 6 9

P v , 5 10 4 3 7 8 2 1 6 9

b v , 6 10 3 2 7 8 4 1 5 9

Market Activity Measure
v o l t 5 9 7 2 3 4 1 8 6 1

Jumps

J . j 5 2 8 9 6 7 10 3 1 4

J , 2 4 8 5 9 3 10 7 1 6

Standardized Returns

rJ p v , 6 1 3 8 4 4 8 8 6 2

9 3 1 2 3 5 5 9 5 5

rJ p P V , 4 6 2 9 1 4 2 6 10 6

8 3 1 7 3 6 9 8 3 2

Robison’s Long Memory

“rf ’ ( rv ,) 8 5 6 7 4 2 1 3 9 10

“of” ( r r t ) 3 9 7 6 5 4 2 1 8 10

V  ’ ( p v , ) 2 6 9 8 7 4 1 3 5 10

uc t ' ( b v , ) 2 5 7 8 6 3 1 4 9 10

Volatility-Volume Relation

R 2 ( r v , ) 9 7 1 4 6 5 3 2 10 8

R 2 ( r r , ) 7 8 2 3 6 5 4 1 9 10

R 2 ( p v , ) 6 8 1 3 7 4 5 2 10 9

R 2 ( b v , ) 6 7 1 3 9 5 4 2 10 8

Note: This table reports the rankings of sectors according to realized volatility measures, trading volume, 
intraday and daily jump tests, number of rejections of normality on standardized returns, long memory test 
and the OLS results. 1 denotes the highest value (lowest rejection) and 10 denotes the lowest (highest 
rejection). r v t , r r t , p v t , b v t , v o l t , J t , J tj  denote realized variance, realized range, realized power variation, 
realized bipower variation, trading volume, daily jumps and intraday jumps, respectively.
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Figures

Figure 1.1a: Volatility signature plot of GS (the stock with the smallest number of jumps)
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Figure 1.1b: Volatility signature plot of FTR (the stock with the largest number of jumps)
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Figure 1.5a: Markov regime switching model on realized volatility measures (overall sample)
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Figure 1.5b: Markov regime switching model on realized volatility measures (Sector CD and CS)
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Figure 1.5c: Markov regime switching model on realized volatility measures (Sector ENG and FIN)
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Figure 1.5d: Markov regime switching model on realized volatility measures (Sector HC and IND)
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Figure 1.5e: Markov regime switching model on realized volatility measures (Sector IT and MAR)
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Figure 1.5f: Markov regime switching model on realized volatility measures (Sector TEL and 

UTL)
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Chapter 2 

On the Significance of Trading Volume and 
Number of Trades in High Frequency Data

Abstract

The value relevance o f  trading volume and the number o f  trades has been widely investigated but with 

no definitive conclusion emerging as to which is a better measure o f  market activity. We generalize 

from previous studies in a number o f  ways. First we consider various realized volatility measures and 

investigate w hether the relation varies with the volatility measure used. W e apply a variety o f  

econometric techniques which include looking at: 1) long memory properties o f  activity measures as 

compared to measures o f  volatility; 2) correlation structure; 3) whether structural breaks are common 

between volatility and activity measures; 4) the explanatory power o f  activity measures on volatility; 5) 

G ranger causality; 6) GARCH augmented with market activity measures; and 7) estimation o f  the 

m oments o f  information flow, matching them with empirical moments o f  trading volume and the 

num ber o f  trades.

O ur findings show the number o f  trades to be a better measure o f  market activity than trading volume. 

The result holds across sectors.

Giving established the superiority o f  the number o f  trades, we segment the num ber o f  trades into three 

different categories: trades that takes place at the same price; at a higher price and at lower price; where 

higher and lower is relative to the price in the previous period. The aim is to find which trades measures 

carry most significant information, in the sense that it is more capable o f  explaining volatility. Our 

results suggest that trades which happen at either lower or higher prices tend to have greater 

explanatory power than those taking place at an unchanged price. Again our results hold across the 

different sectors being investigated.
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2.1 Introduction

The relation between volatility and variables measuring market activity has been 

studied extensively. Early treatment of the topic dates from Osborne (1959), who 

models the stock price change as a diffusion process to the market volatility. Various 

studies have used different volatility measures and market activity measures, with 

different types various frequencies o f data. All o f these together have settled in a well- 

documented contemporaneous positive relationship between the two measures. Giot et 

al (2010) summarize the volatility-volume relation under three categories. 

Competitive model and strategic model are both built on adverse selection and 

asymmetric information. The third model, Mixture Distribution o f Hypothesis (MDH) 

model, assumes that volatility and trading volume are positively correlated, given that 

both are driven by the same underlying latent market information flow (Clark, 1973). 

In this chapter, we examine the volatility-volume relation within the framework of 

MDH.

The pioneering work under MDH by Clark (1973) shows that a mixture of normal 

distributions can be used to model the distribution o f volatility. He finds that squared 

daily price changes are positively related to volume, and that stock returns generally 

follow the normal distribution when volume is used as a subordinator. Tauchen and 

Pitts (1983) adopt the standard MDH model and argue that volatility and volume are 

both normality distributed and subordinated to the same latent market information 

arrival process. A later modification by Andersen (1996) allows the model to 

distinguish uninformed and informed volume. Only the informed volume, which is 

due to asymmetric information, incorporates the same information arrival flow with 

market volatility. Liesenfeld (2001) introduces a new latent information flow which 

primarily affects volatility, rather than trading volume.
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In addition to the above five papers which focus more on the adequacy o f the model 

framework according to data fitness, many other studies test the volatility -  volume 

relation empirically. Epps and Epps (1976) find a positive relation between the sample 

variance o f the change in price and volume during a fixed time interval. Westerfield 

(1977) gives further confirmation to Clark’s subordination process and checks the 

validity o f the model by investigating a large number o f sample stocks. Harris (1987) 

extends MDH and finds the same results as Clark (1973), using data o f different 

transaction levels within a day. Garcia et al (1986) model volume and volatility under 

the VAR framework. Gallant, Rossi and Tauchen (1992) suggest positive correlation 

between conditional volatility and volume using 60 years of S&P 500 composite index 

at daily frequency. Parametric methods investigating the volatility-volume relation 

also confirm the relation. For example, Lamoureux and Lastrapes (1990) show that 

daily trading volume has a good explanatory power on the stock volatility. When the 

GARCH (1 ,1 ) variance equation is augmented with contemporaneous volume, ARCH 

effects tend to be negligible.

Many studies focus, not only upon the relation between volume and volatility but also 

upon the explanatory power o f the number o f trades, which is another widely used 

market activity measure. Harris (1987) suggests the number o f trades may be a good 

estimator in the information arriving process, which therefore could be used in the 

mixture model. Jones, Kaul and Lipson (1994) conclude that stock volume adds no 

additional information in explaining volatility, beyond the number o f trades. Chan and 

Fong (2000) and Ane and Geman (2000) reach similar conclusions.

Apart from the different market activity measures used in the literature, volatility, a 

variable that is latent as the market information arrival flow, had also attracted 

attention. The volatility measures that are used in the papers mentioned above are
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primarily (absolute) price changes, squared returns, and regression residuals (to 

overcome the persistence). These measures are calculated from low frequency data 

(daily, week, or monthly) and often appear to be noisy and inconsistent.

The availability of high frequency data enables the construction o f more accurate 

volatility measures. ABDL (2001) compute realized variance using sums o f squared 

intraday returns. It is now well documented that realized variance, as well as other 

realized measures o f volatility, is less noisy than the traditional low frequency 

counterparts, thus providing better model estimates both in-sample and out-of- sample 

than the traditional low frequency volatility measures.

With the use of high frequency data and realized measures o f volatility, the volatility- 

volume relation has been re-examined. The positive relation is further strengthened by 

the fact that realized measures of volatility become less noisy and more closely 

convergent upon the true latent volatility when the data is sampled infinitely. Marten 

and Luu (2003) test the MDH using high frequency data and realized variance. Their 

findings show that realized measures o f volatility challenge almost every conclusion 

based on daily squared returns under MDH framework. The use o f accurate volatility 

measures gives support to MDH. Similar and improved findings are reported by Chan 

and Fong (2006) who use high frequency data o f 30 US stocks to test the OLS 

regression first proposed by Jones et al (1994). Giot el al (2010) further test the 

volatility-volume relation by decomposing realized variance into a continuous part 

and a jum p part based on Barndorff-Nielsen and Shephard (2004, 2006) bi-power 

variation and the Huang and Tauchen (2005) method. Their findings suggest that the 

volatility-volume relation holds only for the continuous part in the realized variance. 

Both Chan and Fong (2006) and Giot el al (2010) find the number of trades rather 

than volume to be the stronger driving force in the volatility-volume relation.
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Even so, notwithstanding all the empirical studies, there remain gaps to be filled. For 

instance, although the extant literature examines the most widely used high frequency 

volatility estimator, realized variance, many other high frequency measures have been 

neglected. In addition to the trading volume, the number o f trades and average trades 

size, this is calculated as volume divided by number o f trades, is both extensively 

analyzed. However, we haven’t found any research which further decomposes the 

number of trades. Trades that are happened when there is a price change are likely to 

contain different market information to those trades that happened when prices do not 

change. Since most empirical studies claim that the number o f trades is the dominant 

factor in the volatility-volume relation, it is interesting to ask if there is any dominant 

factor in the number o f trades itself.

In this context, the objective of this chapter is to address the volatility-volume relation 

using different realized measures o f volatility and different market activity measures. 

Various models are adopted to address this issue, both graphically and 

econometrically. We aim to investigate if any single market activity measure emerges 

as the primary driving factor to any realized volatility measures.

In short, this chapter contributes to the literature in a number of distinct ways. First, 

previously indicated, our sample covers a period of 11 year and consists o f 100 stocks 

from 10 sectors traded in the US equity market since January, 3rd, 2000. To the best of 

our knowledge, our sample is the most extensive data set used to investigate the 

volatility-volume relation. Moreover, we obtain our data from the TICK database 

rather than the commonly used TAQ database. The TICK database adjusts the 

dividend payments and stock splits and so provides greater accuracy. Second, we use 

four different realized measures. Previous literature either uses low frequency 

volatility measures or uses realized variance. Here we use realized variance, realized
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range, realized power variation and bipower variation. Third, we decompose the 

extensively studied the number of trades into three components, the up trades, the 

down trades and the same trades, and attempt to determine whether the well- 

documented stronger relation between number o f trades and volatility (as against 

between volume and volatility) still holds when the number o f trades is further 

decomposed. Fourth, we not only investigate the volatility-volume relation on a 100- 

stock collective aspect, but also look at it from a sector specific aspect. Our database 

includes both very actively traded stocks from the IT and Financial Services sectors 

and less actively traded stocks from the Utility sector. With stocks from varying 

degrees o f trading activity, we achieve a better insight into the relationship. In 

particular, we observe that some sectors with lower trading volumes have a relatively 

higher number o f trades.

The rest o f chapter unfolds as follows. Section 2 is provides literature review. Section 

3 presents the theoretical framework. Section 4 sets out the. Section 5 presents a data 

description. Section 5 gives the empirical results. Section 6, the final section, 

summarizes our conclusions.

2.2 Literature Review

The volatility-volume relationship has been investigated extensively over decades. 

Karpoff (1987) summarizes the importance o f volume and volatility relation in four 

parts. First, the relation affords insight into the financial market structure. Second, the 

relation of volume and volatility may help researchers to draw inferences in regard to 

their joint determination. Third, the volatility-volume relation could be applied to the



110

empirical distribution analysis. For instance, the mixture o f distribution hypothesis 

(MDH) is generally supported by tests upon volume and price changes. Finally, the 

volatility-volume relation may permit inference to be made about further implications 

for derivatives market analysis.

Unlike volume, or other observable market activity measures, volatility is usually 

treated as latent. There are various measurements for volatility. To cite a few: price 

changes or absolute price changes (Ying (1966) Clark (1973); squared returns 

(Andersen, 1996); absolute returns (Andersen, 1996); GARCH (Engle, 1982); and 

realized volatility (Andersen et al, 2001). All o f these volatility measures have all 

been used to test the volatility-volume relation empirically. Even with various 

definitions of volatility, the conclusions reached under the MDH are generally 

compatible, although some tests do present contradictory findings. In the following 

section, we review the most frequently cited empirical studies which discuss the 

relation o f volatility and volume (or number o f trades) within the MDH framework. 

We start from early studies that primarily use low frequency data and then discuss 

papers that consider realized measures o f volatility. A detailed literature review 

relating different realized volatility measures is provided in Chapter 1.

The Ying (1966) test on the absolute price change and volume is one of the earliest 

studies of the volatility-volume relation. Standard & Poor’s 500 composite stocks 

closing price index and volume of stock sales on the NYSE are used from January 

1957 to December 1962, at daily frequency. The sample is divided into 5 classes 

according to the mean and standard deviation. Ying’s findings all suggest a positive 

correlation between volume and volatility.
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Clark (1973) also finds a positive relation between stock volatility and volume for 

daily data from the US cotton futures market, from 1945 to 1958. He shows that price 

change (as a measure o f volatility) is not normally distributed. However, it could 

exhibit a generally normal distribution through the subordination process. This paper 

introduces the MDH, which would be viewed as a core model to explain the volume 

and volatility relationship. According to MDH, stock return is directed by a stochastic 

information arrival process which affects stock prices and returns in turn. Clark 

assumes volume is exogenous. Under this assumption, he concludes that volume has a 

good explanatory power on the stock volatility.

Epps and Epps (1976) also test the distribution of price variability. They build up a 

model o f the price-formation process in which the sample stock volatility, defined as 

conditional variance o f the price changes in the paper, is a function o f volume. There 

exists a positive relation between them. Transaction data o f 20 stocks from the NYSE, 

during January 1971, are used. The OLS results for single stocks suffer varying 

degrees o f biases. Moreover, not all of the coefficients on volume are significant. To 

address these problems, Epps and Epps compute the maximum likelihood of the 

coefficients on volume under the assumption that the error term is normal. After this 

adjustment, the overall significance level of the estimation is considerably improved.

Tauchen and Pitts (1983) conducts another important study on the relation o f volume 

and volatility. It extends earlier work in two ways. First, their study is derived from 

the joint probability o f volume and volatility over any interval within the trading. 

Second, the authors determine how the joint distribution changes as the number of 

trades increases. Using 90-day US T-bills from January 1976 to June 1979, the 

authors build up a more general model o f the volatility and volume, known as the



bivariate MDH later, which could explain both the previous studies and the data in 

their paper. The Tauchen and Pitts model is mainly relevant to intra-day trading. In 

their preliminary test, the authors find when they add a trend about the number o f 

trades in the market (as the number o f trades cannot be provided directly by then), the 

volatility and volume regression will raise the coefficients on volume. This finding is 

consistent with their prediction that the mean volume should increase and the 

volatility should decrease as the size o f the market increases. The paper reaches three 

conclusions. First, the mixture distribution o f volatility and volume incorporates all 

the relevant information flow on volume and volatility. The correlation o f trading 

volume and volatility increases with the variance o f the rate o f information flow. Like 

previous studies, their data shows a positive relationship between volume and 

volatility. Furthermore, their paper argues that the test results o f volatility-volume 

relation could be misleading where volume is not fixed during the sample period.

Harris (1987) further extends the findings of Clark (1973) and Epps and Epps (1976) 

about MDH in two aspects: the number of trades should be proportional to the number 

o f information processes, and the number of trades should be correlated to the 

volatility and volume. If there is autocorrelation in the number o f trades, it should be 

stronger than this of volume. Other predictions are concerned with the transaction 

intervals volatility and volume. Under the assumption that transactions occur at a 

uniform rate in the event time, Harris predicts that 1) as transaction intervals become 

longer, volatility and volume should become more closely normally distributed; 2) 

transactions interval volatility should not be correlated with transaction interval 

volume; 3) Transaction interval volatility and volume should have no autocorrelation 

problem. 50 stocks from NYSE are selected to test the predictions. For each stock, 

Harris computes the volatility and volume over daily intervals and fixed intervals of 1,
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50 and 100 transactions. His test results confirm most o f the predictions. In particular, 

Harris concludes that the squared daily price changes and volume are positively 

correlated and that actual daily price changes and volume are weakly positively 

correlated with a bivariate normal mixture o f distributions model. Another is that the 

test results suggest that the number o f trades can produce a good estimate o f market 

information flow

Gallant, Rossi and Tauchen (1992) undertake a comprehensive test using data o f daily 

closing prices o f S&P composite stock index and the daily volume o f stocks from the 

NYSE from 1928 to 1985. In consideration o f the long sample period and possible 

bias arising from calendar effects and long-term trends, the authors make various 

adjustments on the raw data. The adjustments include using day-of-week dummies, 

dummy variables for non-trading days, for special months (e.g., January effects) and 

for special years (war time), and also time trend variables. Following adjustment, both 

volume and volatility show more stable properties. The strategy on conditional density 

estimation is primarily nonparametric where the semi-nonparametric (SNP) estimation 

is the main technique. More specifically, the contemporaneous conditional price- 

volume relationship, the conditional moment structure of stock price change, dynamic 

price-volume relationship, and risk premium and conditional price volatility are 

examined sequentially. There are four findings: first, there is a positive relation 

between volume and conditional volatility; second, large price movements are usually 

associated with large trading volume; third, the leverage effect is alleviated when 

volatility is conditioned on lagged volume; and finally, the positive relation of risk and 

return exists after conditioning on lagged volume.
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A similar piece o f research concerning volatility-volume relation but using parametric 

method is that o f Lamoureux and Lastrapes (1990). They use daily data o f 20 actively 

traded stocks from 1981 to 1985 to test GARCH model and investigate ARCH effects. 

When GARCH (1, 1) is tested, all 20 stocks show that ARCH effects exist, supporting 

the hypothesis that ARCH reflects an uneven but persistent information flow to the 

market. When GARCH (1 ,1 ) variance equation augmented with volume is tested, the 

coefficient on volume is significantly positive for each single stock. This suggests a 

positive correlation between volume and volatility. Alternatively, the lagged squared 

residuals contribute very little explanatory power when volume is added to the model. 

The ARCH effects tend to disappear. From their test results, the authors conclude that 

daily trading volume has significant explanatory power on stock volatility, and the 

positive coefficient further confirms a positive correlation.

Other empirical works which build on Lamoureux and Lastrapes (1990) include 

Najand and Yung (1991) Chen et al (2001), Hussain (2011) and Louhichi (2011). All 

these works use GARCH family models. Different market activity measures 

(contemporaneous and lagged) from different markets and different countries have 

been examined, including trading volume, number of trades, size o f trades, and bid- 

ask spread. O f course, there are variations between the different studies. For instance, 

one o f the most important findings of Lamoureux and Lastrapes (1990) paper is that, 

when contemporaneous volume is augmented in the GARCH model, the augmented 

variable becomes positively significant and the GARCH effect is greatly reduced. 

Only Louhichi (2011) reaches the same conclusion using stocks from Euronext Paris 

and CAC40 Index. Hussain (2011) augments both contemporaneous and lagged 

market activity measures with EGARCH model using high frequency DAX 30 data. 

He finds that statistically significant augmented variables will not reduce the
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persistency of GARCH models. The paper further finds that the relationship between 

volatility and unexpected volume is positive and that the relationship between 

volatility and expected volume is negative. With and research based on low frequency 

data, Chen et al (2001) reach the same conclusion o f Hussein (2011).

Studies that investigate the role of the number o f trades in the volatility-volume 

relationship have received increasing attentions. Jones, Kaul and Lipson (1994) use 

daily data of 853 stocks to investigate the explanatory power o f the number o f trades. 

They find that it is the number of trades, not volume, that determine volatility. The 

data are calculated from the average of closing bid and ask quotes and are collected 

from NASDAQ-NMS between 1986 -1991. Jones, Kaul and Lipson divide stocks into 

5 portfolios based on market capitalization. At first, the paper reports the correlation 

between volume, number of trades and average trading size, which is defined as “the 

total number o f share divided by number o f trades”. The correlation between number 

o f trades and average trading size is much lower than both correlation between 

volume and number o f trades, and between volume and the average trading size. This 

implies that volume and number o f trades contain different information. The volatility 

is calculated according to Schwert (1990), but more dummies are used. On the next 

step, The OLS, which regresses volatility on average trading size and the number of 

trades, both separately and together, is applied to each portfolio. There are two main 

findings: 1) volume has very little explanatory power when volatility is both 

conditioned on the number o f trades and trading size. It contains no information 

beyond the number o f trades. 2) both the number o f trades and the size o f transactions 

are endogenously determined. Each o f these findings remains the same when the 

sample is divided into two sub-periods, or use different measure o f volatility and 

volume, or alternative regression specifications.
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Another frequently cited work giving support to the number o f trades is that o f Ane 

and Geman (2000). Their focus is upon the normality of the stock returns and they 

extend the work o f Clark (1973. The paper shows that the normal distribution of 

returns can be obtained through a stochastic time change. Traditionally, empirical 

studies have used trading volume, but Ane, and Geman (2000) use both volume and 

number o f trades for the stochastic time changes. The paper uses high frequency data 

o f two stocks, at frequencies o f one, five, ten and fifteen minutes respectively. The 

density estimation mainly uses Kernel methods, which are nonparametric. The 

distributions o f stock returns, volume and number o f trades are constructed. When 

returns are conditional on the number o f trades, they tend to be normal. Therefore, it is 

concluded that the number o f trades is a better mixing variable to recover the 

normality of the stock returns than traditionally used volumes.

The models used in the paper are given as

12

at =  a +  $ h v o lt +  yAntt +  ^  pj |<7W | +  77? [2.1.3]
7=1

where A vo lt and An t t are the first difference o f trading volume and number o f trades.

Luu and Martens (2003) tests the MDH using both realized volatility and squared 

returns. The data used in this paper are constructed from 10-year S&P 500 index- 

futures transaction prices. After conducting a series o f tests (for instance the GARCH 

extended with volume, bivariate VAR model for volume and volatility and long

12

dt =  a +  ( lk vo lt +  2 ^  Pj \$ t - i  \ +  Vt 
7=i

12

[2.1.2]



memory test in volume and volatility), they find their results vary significantly when 

different volatility measures are used. When lagged realized volatility is added to the 

variance equation of GARCH, the lagged volume over open interest is no longer 

significant. This is because all useful information is already captured when realized 

volatility is included in the equation and therefore the lagged volume becomes 

unnecessary. The authors further conclude that the insignificance o f lagged volume 

does not necessarily reject the MDH. Although lagged volume is not significant in the 

variance equation, the lagged volume over open interest is. This is consistent with the 

Andersen (1996) which suggests that volume should be split into two parts: namely 

liquidity trading and speculative trading. Another finding is that, when VAR o f daily 

squared returns and volatility are performed, the uni-directional causality is only 

found from volatility to volume, but not in reverse. This result fails to support the 

MDH. When daily squared return is replaced by realized volatility, however, the bi­

directional causality is observed, giving the support to MDH. The paper also tests the 

long memory o f squared returns, realized volatility as well as volume and in all cases 

the statistics confirm that the null of long memory cannot be rejected. The authors 

conclude that realized volatility is a more accurate volatility measure to support the 

MDH comparing to the daily squared returns, which is believed to be noisier and less 

efficient.

Chang and Fong (2006) study the volatility-volume relation using high frequency 

data. This work may be viewed as an extension o f the papers by Jones, Kaul and 

Lipson (1994) and Ane and Geman (2000), but it also investigates the number of 

trades-volatility relation and order imbalance (absolute and with signs)-volatility 

relation. The authors compare the results of regressions o f absolute residuals on trade 

frequency measures with the results o f regressions o f realized volatility on trade



frequency measures. The latter performs much better than the daily absolute residual, 

as it is much less noisy. The regression results also suggest number o f trades is the 

most capable measure in explaining realized volatility. When realized volatility is 

regressed on the number of trades, the adjusted R-squared is 42%. The finding is 

consistent across time period, firm size (defined by market capitalization) and 

aggregation frequency. Although they are all statistically significant, the trade size and 

order imbalance add little explanatory power.

Izzeldin (2007) performs a comparative study between trading volume and number of 

trades to see either is a good proxy for market activity. Like Ane and Geman (2000), 

this paper also uses the high frequency data of Inter and Cisco in 1997, but at different 

time frequency o f 10, 30, and 60 minutes and daily. The Generalized Method of 

Moments (GMM) J test is first applied to test the moment restrictions implied by the 

MDH. The test results show that both volume and number of trades could be used as 

the mixing variable in the MDH, but number o f trades provides stronger support. The 

other tests, including augmented GARCH and subordination process to achieve 

returns normality. The results are all in favour of the number o f trades.

Giot, Laurent and Petitjean (2010) look at the relation among trading activity, realized 

volatility and jumps, inspired by the work of Chang and Fong (2006). In order to 

better study the positive relation between volume and volatility, the authors not only 

decompose the realized volatility into continuous part and jump part, but also compare 

the explanatory power o f different trade frequency measures, namely trading volume, 

number o f trades and absolute order imbalance. They use high frequency equity data 

from 100 largest stocks traded in NYSE from 1995 to 1999, which includes 1199 

trading days. After conducting a series o f regressions such as OLS, GMM, Robust
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Regression, Median Regression and TOBIT with and without GARCH effect, the 

authors find that the positive volatility-volume relation holds for the continuous 

component of volatility only. Trade variables are positively related to the continuous 

part, while the relation between jump components and volatility appears to be 

negative. They also find that number of trades is the dominant factor in the relation of 

volume and volatility, while trading volume and order imbalance fail to increase 

explanatory powers in the relation. The conclusion holds for both continuous volatility 

and discontinuous jumps.

2.3 MDH Framework

The Mixture o f Distribution Hypothesis states that both daily price changes and 

trading volume are governed by the same latent information process, therefore, prices 

changes and trading volume are positively correlated. Both price volatility and volume 

should be a mixture o f the conditional distribution, given the condition is the market 

information flow. Returns conditional on the mixing variables are normally 

distributed.

MDH is firstly proposed by Clark (1973) who considers a univariate framework.

returns = rt \it ~ N  (//,.c r) [2.2.1]

volume = log at ~  N(juai, c r j) [2.2.2]

cov(rn a, |/,)  = 0 [2.2.3]
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where rt is returns over a specific time interval t, which is set empirically at the daily 

level. at is trading volume and z, is the latent market information flow. Finally, crr 

crai /uV' are all positive. Clark models volume as lognormal which allows the presence 

o f excess kurtosis in the unconditional distribution o f return series.

The bivariate MDH model is first introduced by Tauchen and Pitts (1983). Tauchen 

and Pitts’s model assumes volume is endogenous. Hence, returns and volume follow a 

bivariate normal distribution conditional on the daily information flow,

The bivariate MDH model allows volatility to be dependent on the time series 

behaviour o f the mixing variable z, which also drives the trading volume.

The models by Clark (1973) and Tauchen and Pitts (1983) both assume that the latent 

market information flow is serially independent. An assumption that is sometimes 

unrealistic, given the observed serial dependence of both volume and returns is 

assumed to be driven by the latent information. Andersen (1996) further modifies the 

MDH model by allowing the split of volume into liquid trading and informed trading 

and further allowing the liquid trading unrelated to the information flow. It also 

assumes that z, is serially dependent. In the presence o f serial correlation of

information flow, both volume and volatility should be positively related to the 

previous volume and volatility, respectively. The Andersen (1996) model is given by

[2.3.1]

at \h-N{/uain alit) [2.3.2]

co\{rt ,a t | z,) = 0, cov(r,2 ,a t) * 0 [2.3.3]
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[2.4.1]

[2.4.2]

cov(/;,v, |z,) = 0 [2.4.3]

m0 reflects the liquidity trading part while the informed trading is proportional to the

information flow. mQ itself is independent o f the information flow. The remaining

part o f trading volume that is due to new information is represented by mxit . Andersen

argues that, if a large number of information arrivals leads to becoming

sufficiently large, the Poisson process in [2.4.2] might be approximated by the normal 

distribution as

where c is an unknown scaling factor when detrended volume is used. Another 

difference between Andersen and Tauchen and Pitts’s bivariate models is that 

Andersen (1996) allows for a non-zero mean o f the returns series.

Liesenfeld (2001) extends the modified MDH model of Andersen (1996) by assuming 

information flow could be written as a lognormal stochastic volatility model,

This normal AR (1) process of /, looses the assumption made by Clark (1973) and 

Tauchen (1983) which the mixing variable is not serially correlated and allows 

lognormal distribution at the same time.

[2.4.4]

ln(/, ) = A, = y+SAt_x + vst, s t ~  i.ld .N (0 ,1) [2.5]
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The Liesenfeld bivariate MDH model is given as

r,| X , ~ N { p r ^ ) [2 .6 .1]

[2.6.2]

\ \  x^-NCr+sx^v2) [2.6.3]

The stochastic volatility specification allows the latent information flow affect 

volatility primarily, in turn puts more weight on the price volatility. However, the 

stochastic volatility specification also makes the model estimation more complicated 

as stochastical volatility is not known in closed form as previous univariate and 

bivariate MDH models are.

2.4 Data and Variable Description

We construct our dataset using 100 stocks originally traded in the US equity market 

from January, 2000 to December, 2010: 2767 trading days in total. All stocks are 

obtained from the high frequency TICK database which adjusts stock splits and 

dividend payments. As discussed in Chapter 1, our data are aggregated at the 5-minute 

level and all realized measures o f volatility are calculated from the 5-minute 

aggregated returns. We further segment into 10 sectors according to the sector 

segmentation criterion o f the S&P 500. The method of construction o f realized 

measures of volatility was discussed in detail in a previous chapter.
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Since TICK allows stock splits, trading volumes ( volt ) are also adjusted indirectly. 

Furthermore, in addition to the most frequently discussed trading volume and number 

o f trades, we decompose the number of trades into ‘up trades’ ‘down trades’ (

dt,) and ‘same trades’ (s t^ .u t ,  is recorded when a transaction is made at a higher

price than its previous trade. dtt is recorded when a transaction occurs at a price

below the previous trade. stt is a transaction in which a security is traded at exactly

the same price as its previous one. The sum of ut, , dtt and st, is ntt . To our

knowledge, this is the first empirical study which uses up/down/same trades to 

investigate the volatility-volume (trades) relation.

The descriptive statistics of volume and trades measures is reported in Table 2.1. As 

trading volume is, per se, a bigger measure than trades, we rescale the volume by 

1/1,000,000 and trades measures by 1/10,000 for easier comparison.

All market activity measures are all rightly skewed, highly persistent and have fat 

tails. The trade measures are more serially correlated than volt , according to the Q 

statistics. stt is the most persistent measure of all. ut, and dtt exhibit similar 

properties to each other. We find that nt, is mainly composed of st, (over 70% across

sectors). This implies that most trades happen at level prices. The trade measures are 

not stationary in many stocks. This could be explained by the relatively long sample 

period time and the rapid development of the US equity market. vol, exhibits higher

stationarity than trade measures. There is a general upward trend o f all the market 

activity measures (Figure 2.1). The IT sector is the most actively traded sector with 

average trading volume of 30.6 million and average number of trades o f 5.7 million. 

The ULT sector is the least actively traded sector with 2.1 million average trading
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volume and 0.7 million number o f trades. Ranking patterns are different for the 

number o f trades: ENG sector ranks 7th according to trading volume but is the 4th most 

active sector if ranked by number o f trades. For consistency with Chapter 1, we will 

still use trading volume as the benchmark for sector activity in the chapter.

[Table 2.1 here]

[Figure 2.1 here]

Robinson’s d  long memory test results are provided in Table 2.2, together with the 

overall average autocorrelation functions in F igure 2.2. The statistics confirm that all 

the market volatility measures exhibit long memory, st, is the most persistent and

vol, the least. The d  statistics of ut, and dtt are similar across sectors and generally

less persistent than NT and st, . MAR has the most persistent vol, ,  nt, and st, while

ENG reports the most persistent ut, and dt, . IT has the lowest d  statistics of vol, and

it is also the most activity traded sector.

[Table 2.2 here]

[Figure 2.2 here]

Table 2.3 reports the cross-sectional mean correlations between market activity 

measures and realized measures of volatility. Our results are very similar to those 

reported by Chan and Fong (2006) and Giot et al (2010). Overall, we find that: trading 

volume is sigfinicantly and positively correlated with trade measures (over 70%); 

trade measures are highly correlated with each other (over 90%); all market activity 

measures are highly correlated with realized measures o f volatility; realized measures 

o f volatility are more highly correlated with vol, than with nt, ( corr(rv,,vol,)  =
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39.4%, corr(rv,,nt,)  = 31.2% ); realized measures of volatility are more highly

correlated with ut, and dt, then with vol, ( corr(rvt,utt )  — 41.4%, corr(rv,,d t,)  -

41.3%); the correlation between realized measures o f volatility and st, is the weakest

(corr(rv,,st, )=26.3%). This finding contradicts with those o f Chan and Fong (2006)

and Giot et al (2000) which both find higher correlations between volatility and 

number o f trades than between volatility and volume.

We then look at the sector average correlations, where we find that: realized measures 

o f volatility correlate more highly with vol, than with nt, in 8 out 10 sectors. 

Realized measures o f volatility are more highly correlated with ut, and dt, than with 

vol, in 7 out o f 10 sectors. The exceptions are CD, HC and TEL. The remaining of 

conclusions are the same as for the overall averages.

To conclude, the positive correlations between realized measures o f volatility and 

market activity measures suggest that volatility and market activity measures are 

driven by common latent factors. It may the number o f traded that is happen when 

prices change be the main driving force behind the volatility-volume relation.

[Table 2.3 here]

2.5 Methodology
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In the previous section, we summarize the main theoretical models which focus on the 

estimation of model parameters and latent variable(s). However, our main interest is to 

compare the theoretical implications of the MDH model with the empirical dynamics.

In this section, we outline a series of econometric models to test the validity o f the 

volatility-volume relation under MDH. We first identify whether common structural 

breaks exists between realized volatility measures and market activity measures. Then, 

we regress different realized measures o f volatility on market activity measures. The 

model was first proposed by Jones et al (1994) and later modified by Chan and Fong 

(2006) who confirm the validity of the model using high frequency data. GARCH 

augmented with lagged market activity measures is discussed next. This model was 

first discussed by Lamoureux and Lastrapes (1990) who augmented contemporaneous 

volume with GARCH. In our model, we follow Najand et al (1991) and treat market 

activity measures at a one period lag. Bivariate VAR is then reported as different 

researches reach the different conclusions so that the bi-directional Granger causality 

(which supports MDH) is not universally found. The fifth model is the estimation of 

information flow using Generalized Method of Moment (GMM). We adopt and 

develop the model from such previous works as Richard and Smith (1994), Andersen 

(1996) and Izzeldin and Murphy (2010). We estimate the theoretical information 

moments and compare them with the observed empirical moments. The last model is 

the standardization procedure to recover returns normality by using market activity 

measures as the standardization factors.

2.5.1 Single Structural Break
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Although the Augmented Dickey-Fuller (1979) test is the most commonly used to 

detect the unit root, one o f its disadvantages is that it assumes no structural break. This 

assumption is unlikely to hold when the sample time period is long. Hence, Zivot and 

Andrews (1992) propose a single structural break test which assumes the presence o f 

the break is as an exogenous phenomenon.

The original Zivot and Andrews (ZA afterwards) test has three types o f models. In this 

chapter, we consider the first model, which permits a one-time change in the level 

(mean) o f the series.

k

Ay, =c + oy/_] + yD U t + ̂  dj t^yt_] + s, [2.7]
j = i

Where D Ul is an indicator dummy variable for a mean shift happening at each 

possible break-date (TB).

The ZA test has been applied widely in macroeconomics data sets to identify the break 

date. Here we apply the test to rvt , volt and ntt to investigate the following issues: 1)

whether the volatility measure and trade activity measures have the same break date 

for the same stock; 2) whether there is any particular date emerging across sectors and 

across volatility and market measures.

2.5.2 OLS Regression

The second method uses Ordinary Least Squares (OLS) regressions to investigate the 

explanatory powers of market volatility measures on realized measures o f volatility. 

This method can be viewed as a direct test of the MDH as volume (number o f trades) 

is proportional to the information flow, as dealers conduct trading activities in the



given trading time and in response to new market information. The model was first 

introduced by Jones et al (1994) in regressing daily number o f trades and trading 

volumes on absolute return residuals, a proxy of volatility first proposed by Schwert 

(1990). Similar works followed: Ane and German (2000), Chan and Fong (2000, 

2006) and most recently, by Giot et al (2010). Applying different data sources and 

different measures of volatility and market activity, the papers all reach a similar 

conclusion: there is a positive relation between volatility measures and market activity 

measures. Market activity measures explain proportions of volatility, ranging from 5% 

to 45%, depending on the measures used. In Chan and Fong (2006), the authors 

compare absolute return residuals with realized variance and find that the volatility- 

volume relation is much stronger when realized variance is used. It is generally 

accepted that the number of trades explains more volatility than trading volume. Here 

we follow closely the approach by Chan and Fong (2006) by regressing realized 

variance, realized range, realized power variation and realized bipower variation on 

trading volume, number o f trades and trade decompositions. Across all the literature, 

the number o f trades is shown to reflect more o f the daily information arrivals as it 

explains the greatest amount of the volatility.

The models are specified as



129

<p,volu
P,nt„ [2.8.2]

<f>,volit
P i n t i, [2.8.3]

[2.8.4]
b v it =  <Z, + OCtmM ,  + Y j 'j=l P t j b v u - j + \  y , U tH f + S „

r v it , rr it , p v it and b v it are realized variance, realized range, realized power 

variation and realized bi-power variation of stock / on day t. Mt is a Monday dummy, 

v o lit, n t it, u t i t , d t i t , s t it are respectively trading volume, number of trades, number 

o f up trades, number o f down trades, and number of same trades o f stock i on day t\ 

and pij is a measure o f volatility shock persistence at lagy. The Monday dummy is set 

to account for the well-documented Monday effects in equity markets and the 12 lags 

is to account for the persistence in the volatility measures.

As some of the market activity measures are trend stationary as indicated by the 

Augmented Dickey-Fuller test statistics, we form a stationary series o f those market 

activity measures following a nonlinear trend model as used by Chen et al (2001) and 

Chiang (2010):

Ai — ct +  P it  +  /?2^2 T  £, [2.9]
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where A t denotes the raw market activity measures and the residual s t is the de­

trended market activity measures. A paper by Chan and Fong (2006) considers the 

situation o f both unfiltered and detrended series without reporting the stationarity of 

the market activity measures. The results from both series reach the same conclusion.

2.5.3 GARCH and Augmented GARCH

Lamoureux and Lastrapes (1990) test the GARCH and augmented GARCH models to 

investigate the explanatory power of trading volume. They find that when volume, 

which is used as a measure of the daily information flow to the market, is used at the 

weakly exogenous mixing variable and augmented in the GARCH model, the ARCH 

effects tend to disappear and the persistence in the volatility will alleviate. In turn, 

these findings suggest trading volume is a good proxy for rate of information arrivals 

in the market. Similar models are adopted by, for instance, Bessembinder and Seguin 

(1993) which discuss both expected and unexpected trading. Marten and Luu (2003) 

extend trading volume and realized variance with the GARCH. There are also studies 

using the number o f trades, rather than volume, which is shown to be a better measure 

to explain MDH under the Augmented GARCH models.

Here we will follow Lamoureux and Lastrapes (1990) but extend the augmented 

GARCH models, using various market activity measures to see which explains the 

volatility best.



131

rt =ju + s t 

ff,|® M ~tf(0,Ar,)

h, = co + ae]_x + /?/?,_, + y  <

[2.10]

vol,t - \

nt,i-1
r-iuti 

dt,_,

rf,-i

where rt is daily returns calculated from intra-day returns, s, is the residual which

follows a conditional Gaussian distribution with zero mean and variance ht .

stands for a one day lag information set. All the market activity measures are lagged 

one term, following the conclusion o f Najand et al (1991) that contemporaneous 

market activity measures may cause a simultaneity problem leading to inconsistent 

estimation o f the coefficients. Therefore, we assume one-period lagged volume to be 

exogenous. The one-period lagged volume is also used in Chan et al (2001) and Luu et 

al (2003).

2.5.4 Bivariate VAR models

It is well documented in the literature that a dynamic structure exists between market 

activity measures and realized measures of volatility. Lagged volatility measures may 

affect current market activity measures and lagged market activity measures may 

affect current volatility. This dynamic could be investigated by implementing a VAR 

(p) for realized measures of volatility V, and market activity measures, A, . A

commonly used model to investigate the causal relationship between the variables is 

the Granger Causality test. Previous studies find either or both directions o f the
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causality for different data. For example, Fung and Patterson (1999) and Chiang et al 

(2010) find volatility Granger causes volume; Darrat et al (2003) find significant 

Granger causality from volume to volatility; and bi-directional causality is reported by 

Brooks (1998) and Marten and Luu (2003).

To date, no conclusive results have been reached. Hence it is interesting to test the 

dynamic structure between different realized measures o f volatility and market 

activity measures, to see whether bidirectional Granger causality, which supports the 

MDH, can be found. The bivariate VAR is given as:

^ = £ v ^ + £ / M - , - + s . ,  [2.1U ]
7=1 y = l

A  =  i , a V V M  + £ / M - ,  + £ 2 ,  [2-1 1.2]
j = 1 7=1

We test either H 0 :a u = a u ... = a lp = 0 against the alternative hypothesis that market

activity measures Granger cause realized measures of volatility; or 

H 0 : /?2i = P22 = —= P2P = 0  against the alternative that realized measures of volatility

Granger cause market activity measures. The optimal lag length p  is determined 

according to the Schwarz Information Criterion (SIC) and varies across the different 

volatility measures.

2.5.5 Generalized Method of Moments (GMM)
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The fifth method estimates the moments of information flow using the Generalized 

Methods of Moments. The estimated moments are then matched against the moments 

o f trading volume and the number of trades. The GMM produces as a by-product the 

J-test of over-identifying restrictions which evaluates the goodness o f fit o f the 

moment restrictions underlying the MDH. The GMM procedure has been featured in 

earlier works such as Richardson and Smith (1994), Andersen (1996), Ane and Geman 

(2000), and Murphy and Izzeldin (2010).

The use of the GMM serves three main purposes in highlighting the information 

content o f volume, number of trades and the constituents of trades. First, to estimate 

the moments o f information conditional on market activity measures. Second, to 

compare whether the estimated moments are matched with the empirical moments and 

to see which activity measure best approximates its theoretical counterpart. Third, to 

observe system convergence and to test the overidentifying restrictions. Although we 

would not expect all market activity measures to result in system convergence, the 

degree o f convergence using different activity measures has its own interest which we 

do not pursue here.

We focus on specifically the bivariate model. There are several advantages in using 

GMM to test the MDH. For instance, it imposes no distributional restrictions on 

information flow. Allowing for the joint test o f restrictions also can also be evaluated 

using the Hansen J-test.

According to the MDH, when returns rt and the observed market activity measures a t 

are conditional on the information flow it , they are independently and normally 

distributed as:
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Hrt k \  ( ar t k  0
,Hat k J  \  0 ° a t k.

[2.13]

The model implies a set o f moment restrictions which could be applied to the data and 

tested using the GMM J-test o f over-identifying restrictions. Given the first four 

moments o f returns and market activity measures, the general moment restrictions for 

both skewness and kurtosis for the sample moment vector sT 09) can be written as

eq la  = (a, -  pia> ) 2 -  a ' 2 -  pi2rri2 

eq3a = (a, -  )3 -  3piaa 2m2 -  p i f a

eqAa = (a, -  pî  ) 4 -  3a*  (1 +  m2) -  6 pi'2 a '2 (”h +  w 2 ) ~  Ha,™ 4 

eq\r\a  =  (rt -  //' )(a, -  pia) ~  pi'n pi2m2 

e q lr la  = (rt -  pir )2 (a, -  pia )~  Ha, mi ~  1*1 Ha, mz 

eq\r2a = (r, -  / / ’ ){a, -  pî  ) 2 -o -'2pirm2 -  pi2pirm3 

eq3r\a = {rl -p irif ( a l -p iai)-3 p inpiaa 2(m2+m 2) - p iapi2m2 

e q lr la  =  (rt -  / / ’ )2 (a, -  pia_ f  ~  0 +  m'2)  -  ( a 2 +  cr'2pi'2 )(m3 +  m2)~  pi'fpi'fa

eq\r3a = (rt -  pir< )(a, -  pî  )3 - 3pia<pi'na'2 piripi ' fa

The first four equations denote the first four moments of return; the next four 

equations denote the first four moments of market activity measures and the last six 

equations denote the cross moments of return and market activity measures. The first 

four moments o f considered here is written as

r eq\r = rt -  pir 

e q lr  = (r( -  pir< ) 2 -  a 2 -  pi'2m2 

eq3r - (rt -  pir )3 -  3pir a 2m2 -  pi, m3 

eqAr = (rt -  pi' )4 -  3cr.4 (1 +  m2) -  6 pi,cr2 (m3 + m2) -  pi* >n4 

eq\a  =  at — pi

[2.14]

ml = (irm[

m l  =  Or m i +  2

ml = 3{J.rO?ml + IArm 3
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m l = +  6 a 2m l3 + 6 a 2 ix2m \m l2 +  3<74(m 2 4- ( m j) 2)

m? = fj.am[ 

m l  =  a 2m{ +  ii2m \  

m 3 = 3iiao 2m \  +  \ i \m \

m j =  i i \m \  +  6 a 2m l3 +  6 a 2 ii2m \m l2 +  3<j4(m l2 +  ( m i) 2)

We also assume a non-stochastic mean for THE information flow process it which 

m1 = 1 to overcome the identification problem. Therefore, we have

rt ~ r( -mx,a ( = aI -mx, a 2 = cr2 •mx,m 2 =m 2 / m~ ,m 3 =m 3/ mx , m4 =m 4 / mx

Following the normalization, we consider the combined restrictions (non-zero mean 

case) which have 14 moment conditions in total as follow:

Non-Zero & SKEWNESS+ = (eq lr, eq2r, eq3r, eq4r, eqla, eq2a, eq3a, eq4a, eq lrla , 

eq2rla, eqlr2a, eq3rla, eq2r2a, eqlr3a}

With 7 estimated parameters:

which leaves us with 7 over-identifying restrictions.

The market activity measures whose moment restrictions fit the data best are taken as 

the best proxy of market activity.

2.5.6 Recovering Returns Normality
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Clark (1973) argues that returns viewed in “volume” time are normal. Ane and Geman

(2000) argue that returns standardized by number are normal. Izzeldin and Murphy 

(2010) follow the standardization procedure o f Ane and Geman (2000) yet find that 

the number o f trades standardized returns are not normally distributed. Here we shall 

replicate Ane and German (2000)’s procedure by standardizing returns on different 

market activity measures. Since the results of Ane et al (2000) cannot be replicated in 

any other paper, the task per se would not be expected to recover normality via 

standardization but rather would be to show which market activity measure(s) recover 

the return normality most.

Mathematically, this standardization is expressed as

where at is the market activity measures.

2.6 Empirical Results

2.6.1 Single Structural Break

Among 100 stocks, only two have the same structural break date for rv, , vol, and nt, . 

Although in different sectors, both GPS and COST share the same breaking date of 

24/07/2007. The commonality of break dates between vol, and nt, is greater than that

for rv, and vo l,/n t , . 18/100 stocks are detected with the same break date for vol, and

[2.15]
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n t,, whereas 7/100 stocks are detected with the same date for rv, and volt and the 

number o f stocks which have same date between rvt and ntt is only 3. In general, 

therefore, our results suggest that market activity measures do not tend to share break 

dates with rv ,; and that market activity measures (nt, and volt ) do tend to share break 

dates.

Break dates detected in rv ,, together with ntt and volt , show quite distinct pictures 

from each other. Figure 2.3a-e plot the break dates for rv ,, vol, and ntt o f every 

single stock and the detailed dates are provided in Table 2.4. The break dates are most 

discrete in rv, and most condensed in ntt . Another interesting finding from the ZA

test is that each sector appears to have a common or closely proximate break date for 

stocks within the sector, at least for market activity measures. This conclusion holds 

especially in the case o f nt,. For instance, 03/01/2007 is detected as the break date of 

NT for 4/10 in the ENG sector. Within the same sector, 05/07/2007 and 02/01/2008 

are detected for two stocks. Stocks from the same sectors tend to share close, if not the 

same date. One example could be the break date of rv, from IT sectors. 7/10 stocks

have break dates near 2002, when the internet bubble was prevailing.

To summarize, the single most significant structural break date does not necessarily 

share among rv ,, vo/, and ntt . Nevertheless, for the same market activity measure,

stocks within one certain sector are detected some common break dates. Even though 

the 2008 financial crisis has huge effect, when we estimate volatility measures, there 

are very few stocks that are detected with a break date during the peak period o f the 

crisis. The most volatile days are not always associated with the most significant 

structural break point.
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These results have important implications empirically. Since the break date is different 

from one measure to another, as well as from one stock to another, the detected date is 

vital for accurate evaluation of any economic/econometrics model which are intended 

to account for structural changes.

[Table 2.4 here]

[Figure 2.3a-e here]

2.6.2 OLS Regressions

The results o f volume regressions were discussed in Chapter 1 and reported again in 

Table 2.5a. To summarize, pvt is the most explained realized measures o f volatility

in the volume regression, with R 2 at 67.8%. At sector level, ENG and MAR report

jy  ^ Q
the highest R across realized measures of volatility .

The results o f regressing realized measures o f volatility on the number o f trades are 

reported in Table 2.5b. Similar to volt , nt, explains a high proportion o f realized

measures o f volatility. The average R 2 , unlike many existing literature, are not 

significantly higher than the average R 2 from the trading volume regression, pv , , 

again, is the most explained among all realized measures of volatility. The coefficient 

for nt, is significant for all the stocks, with the exception of one stock when nt, is

8 O ne o f  w orries regarding the m odel sp ec ifica tion  lies in the estim ated  residuals. In our case , 
m ost o f  the residual series from  the regression s are not i.i.d . In the Jones et al (1 9 9 4 )  paper w h ich  the 
m odel w as firstly  proposed , the authors stated that estim ation  m ethod  (O L S ) prov id es co n sisten t yet not 
n ecessarily  e ffic ien t estim ators o f  the param eters. M ean w h ile , the N e w e y -W e st  standard errors (not 
reported in the chapter) a lso  confirm  that the m ore than 95%  o f  param eters are s ign ifican t. S in ce  the 
m ain concern  in this section  is to evaluate the perform ance o f  d ifferent v o la tility  m easures on an 
estab lish ed  econom etrica l m odel, w e do not alter the sp ec ifica tio n  o f  the m od e l. Furtherm ore, the w orks 
o f  Chan and F ong (2 0 0 6 )  and G iot et al (2 0 1 0 )  do not report the perform ance o f  the residuals and treat 
them  as i.i.d .s. H ere w e fo llo w  the sam e procedure to m ake our results m ore com parab le to the 
literature.
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regressed on realized range. In addition, 4 out o f 10 sectors have higher R 2 when 

regressing realized measures of volatility on vol, than on ntt , namely CD, CS, IT and

UTL. The rest sectors though have higher R 2 in ntt regressions, the gain in R 2 is 

marginal.

[Table 2.5a & 2.5b here]

Although nt, does not necessarily have higher explanatory power than vol, , we find 

that decomposing nt, can enhance the goodness of fit. Table 2.5c and 2.5d report the 

results for up trades and down trades regressions, respectively. Comparing the results 

between up/down trades and number of trades as well as volume, the R 2 o f ut,!dt, 

regressions is approximately 2% higher over average, suggesting additional 

explanatory power on realized measures of volatility than vol, and nt, . The 

percentage o f significant coefficients is between 98% and 100%. At sector level, all 

sectors show a higher R 2from ut,ldt, regressions than that from vol, regressions.

[Table 2.5c & 2.5d here]

Table 2.5e shows the results for the same trades as the explanatory variable. In 

general, st, has a lower explanatory power than the other 4 market activity measures.

Even at sector level, the R 2from the st, regression are consistently lower than that

from the rest three trade measures and only 3 out o f 10 sectors have higher R 2 from 

st, regressions than from vol, regressions, namely, FIN, MAR and TEL.

[Table 2.5e here]
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Combining the results from Table 2.5a-e, we find that the well-documented positive 

volatility-volume relation holds for all the realized measures o f volatility and market 

activity measures. Market activity measures explain over 50% of variation in various 

realized measures of volatility on average. Nevertheless, in contrast to existing 

literature, our analysis shows the explanatory powers of these two measures are very 

similar, with ntt slightly higher in terms of the number of significant coefficients.

When we decompose ntt into up, down and same trades, the regression results imply

that it is the utt and dtt that provide additional information, thereby giving ntt the

appearance of providing more information than vol,.  This result is intuitive, because,

when prices change, the corresponding market activity measures shall carry more 

market information than the market measure when the prices remain the same. On the 

other hand, we find that, among different realized measures o f volatility, the R 2 of 

rvt regressions are generally the lowest and the pv{ regressions generally provide the

highest R 2 across sectors and across market actively measures. The lower R 2 of rvt 

regressions might be explained by the existence of jumps components in the rvt . Giot 

et al (2010) show that the positive volatility-volume relation does not hold for jump 

part. Thus, jump-contained rv, may prove to be more difficult to be explained by the

market activity measures than other realized measures o f volatility. Izzeldin and Shi 

(2012) find the same conclusion as Giot et al (2010) using a different jump 

construction method9.

2.6.3 GARCH and Augmented GARCH

9 We also run the regression using the pre-filtering market activity measures (no-detrending), 
the conclusions remain the same. However, the regressions o f  detrended market activity measures

produce higher adj. R .
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The results o f GARCH and Augmented GARCH models for the overall sample are 

provided in Table 2.6a. First of all, the ARCH coefficient a  and GARCH coefficient 

f3 are significant for all 100 stocks in the sample for the GARCH (1, 1). The sum of 

(a  + /3) across all the sample stocks is positive and close to 1. This ensures the 

stationarity of the model and indicates a high level of persistence which is known as 

the “volatility clustering” in GARCH models. However, the GARCH effect remains 

significant when lagged market activity measures are augmented with GARCH (1, 1). 

The persistence of volatility remains strong and only decreases marginally when 

comparing (a  + ft) from augmented GARCH models with that from GARCH (1, 1). 

Augmenting market activity measures does not reduce the persistence o f GARCH 

volatility. In our case, the significance o f the augmented variables is rejected at the 5% 

level for many stocks. The number of market activity measures that significance is not 

rejected at the 5% level is 36/100 for volt_x, 60/100 for nt,_x, 68/100 for utt_x, 67/100

for rfy.jand 57/100 fo rs /^ ,. The maximized log-likelihood (LOGL) value and Jarque- 

Bera statistics of standardized errors of trades-augmented GARCH equations are also 

smaller than those of volt_x augmented GARCH, indicating a better goodness of fit of

trade measures overvo/t_j. However, LOGL and JB statistics of GARCH (1, 1) 

suggest when GARCH augmented with market activity measures, the market activity 

measures do not necessarily improve the overall performance of the augmented 

models.

At the sector level, the conclusion that market activity measures are not necessarily 

significant variables is further strengthened. The reports are presented in Table 2.6b. 

For instance, in the sector o f Consumer Staples (CS), the augmented vol,_x are not 

significantly greater than zero for all 10 stocks within the sector. In sector ENG and
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sector MAR, the number o f augmented volt_x that is significantly greater than zero is 

one and two stocks respectively (both out o f 10). FIN sector has the lowest rejection, 

40%, when volt_x is augmented in the GARCH.

The results o f trade measures augmented GARCH equations suggest a degree of 

improvement. When ntt_x is used as the augmented variable, the number o f rejections 

decreases for 8 out of 10 sectors. Taking CS sector as an example, the probability o f 

significant augmented ntt_x increases to 80% while that of augmented volt_x is 0%.

The results of augmented utt_x, dt,_x and stt_x provide the same conclusion as nt(_x.

Our finding contradicts that of L-L (1990) but is consistent with that of Chan et al

(2001) and Marten et al (2003): the former paper uses contemporaneous volume while 

the latter two papers use lagged volume. L-L find a significant reduction of 

persistence (according to the sum of («  + /?) and all the augmented volt_x in the model

appear to be significant). On the other hand, Chan et al (2001) suggest that, although 

augmented volume contributes some explanation to the GARCH model, it does not 

reduce the persistence of the original model. Marten et al (2003) also finds that 

augmenting volume does not reduce the value of (a  + P) as the augmented volume is 

not a significant variable in a paper where high frequency data is used to construct the 

return and GARCH series.

Further, our result is mostly in line with that o f Martens and Luu (2003). The 

relatively low significance level for volume than for trade measures, especially up and 

down trades might be explained by the findings o f Andersen (1996), that 

informational asymmetries and liquidity need motivated trading volume where there is 

a greater incidence of new information.
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To summarize briefly, augmenting lagged market activity measures does not 

necessarily enhance the goodness of fit of the GARCH model. The persistence of 

GARCH (1, 1) is not reduced by augmenting extra market information proxies. 

Augmented trading volume is insignificant for over 60% of the sample stocks while, 

for the most parts, augmented traded measures are significant. Once again, utt_x and 

dtt_x are the best performing market activity measures at overall and sector-average 

levels.

[Table 2.6a & 2.6b here]

2.6.4 Bivariate VAR Model

The linear Granger causality is first tested, using the most and least actively traded 

stocks respectively in our sample, namely C and OKE. In order to investigate 

causality at the overall sample average level, we use the average value of our 100- 

stock sample to conduct the same test.

The results are ambiguous. For OKE, the bi-directional Granger causality between 

trading volume and realized measures o f volatility are all rejected at the 5% level. 

With only one exception, we find only unidirectional Granger causality from trading 

volume to realized measures o f volatility, not reversely. This finding is not in line with 

many studies, which detect either a unidirectional Granger causality from volatility to 

volume, or bidirectional causality (see Garcia et al (1986), Brooks (1998), Fung and 

Patterson (1999), Martens et al (2003), Chiang et al (2010)). However, this finding is 

in line with a paper by Darrat et al (2003) which also finds significant causality from 

volume to volatility.
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On the other hand, the test statistics of the Granger causality test, between the number 

o f (up/down/same trades) and volatility measures, generally confirm the existence of 

bi-directional Granger causality10.

In the case o f OKE, we find only unidirectional Granger causality from volume to 

volatility measures but bi-directional Granger causality between the number o f trades 

measures and volatility measures.

[Table 2.7a here]

The bi-directional Granger causality between volume and volatility measures is 

conclusively rejected when we test C. Again, the test statistics point to a unidirectional 

Granger causality from volume to realized measures of volatility. The results of 

causality between number of (up/down/same) trades and volatility measures are more 

ambiguous than the results from OKE. The null hypothesis, that the trade measures do 

not Granger cause volatility measures are all not rejected at the 5% level. However, 

for instance, realized range, realized power variation and realized bi-power variation 

do not Granger cause the number of trades at the 5% level. The similar conclusions 

could be found in r v t -> u t t , rrt -» u t t, p v t -> u t t, b v t -> u t t, r v t -> d t t, p v t -> d t t 

and p v t -> s t t .

[Table 2.7b here]

Due to ambiguity existing in the individual stocks, we test Granger causality using the 

average value o f aggregated daily data of 100 stocks. For all the test results, the null 

hypothesis, that marker measures (volatility measures) do not Granger cause volatility

10 The Granger causality from realized power variation to number o f  trades, from realized power 
variation to number o f same trades, and from realized bi-power variation to number o f  trades, are all 
rejected at the 5% level.
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measures (market measures), are rejected. The results point to a clear bi-directional 

Granger causality between market activity measures and volatility measures, and so, 

support MDH.

[Table 2.7c here]

2.6.5 GMM

Table 2.8 reports the GMM results o f the number o f estimated moments o f the 

information flow i that the significance cannot be rejected and the number of over­

identifying test that the significance cannot be rejected, both at the 5% level.

We first use J-test to evaluate the validity of MDH under GMM. Given the number of 

restrictions in Section 4, f o r ^  > 14.067, we reject the null that the MDH restrictions

imposed on information moments is valid. For some stocks, the estimated moments 

show significant negative signs, where positive signs are expected as volatility and 

market activity measures are positively correlated. Similar negative results for second 

and third moments are also reported by Richardson and Smith (1994). Most negative 

estimates occur in the fourth moment. The higher are the moments, the more difficult 

it is to obtain accurate estimates for GMM. Negative signs do not necessarily imply 

the rejection of the model. Therefore, we still use J-test statistics as one o f the 

benchmarks for model validity.

The bivariate moments with utt produce the highest number o f stocks for which the 

J-test is not rejected at the 5% level (35/100), followed by dt, (32/100), st, (32/100),
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nt, (28/100) and vol, (19/100). These results give more support for ut, and dt, as

dominant factors in MDH. An interesting finding from the J-test result at sector level, 

is that IT and TEL, the sectors with the largest and smallest number o f jum ps, are the 

sectors having the highest number of J-test rejections. This result implies that the 

presence o f jumps has little impact in recovering the estimated moments o f 

information flows.

We further consider the estimated moments to assess the validity o f the MDH. In the 

1994 paper by Richardson and Smith, several stylized facts of the bivariate model are 

documented. Our results from different market volatility measures support all the 

stylized facts: the unobservable information flow shows: 1) small variations relative to 

the mean (m2); 2) positive skewness (m3); and 3) large kurtosis (m4). Furthermore, in 

line with the literature, the second and third moments are better recovered using 

bivariate model (over 95% for the second moment and over 85% for the third). The 

fourth moment is not recovered for more than one third of the sample stocks, many of 

which are estimated with extremely large and implausible values. For the second and 

third moments, bivariate results using ut, and dt, appear the best, st, performs best in

recovering the fourth moments, vol, and nt, produce very similar results with nt,

slightly better in the second and third moments.

Finally, the empirical moments o f the re-centred market activity measures are 

computed and compared with the estimated moments. For the second and third 

moments, the difference between empirical and estimated moments is smaller than the 

difference for the fourth moments. Moreover, the second moments o f the empirical 

and o f the bivariate methods are closer for those stocks that the J test is not rejected at
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the 5% level in many cases. Among all the market activity measures, the second 

moment, both empirical and estimated, o f vol,, is the closet.

[Table 2.8 here]

2.6.6 Recovering Returns Normality

Similar to papers that followed Ane and Geman (2000), our results contrast with the 

2000 paper. We standardize daily return series by re-centered market activity 

measures. Also different from the results reported in a previous chapter, where 

realized measures o f volatility are used as the standardization factor, the normality o f 

market activity measures standardized returns is rejected at the 5% level for all the 

stocks according to the Jarque-Bera statistics for normality. The normality of return 

series standardized by volume has been improved greatly across the sample. On the 

other hand, when return series are standardized by trade measures, the normality is 

further distorted in most cases. Table 2.9 shows results for the sector average returns 

and standardized returns. The JB statistics further confirm the results from the 

individual stocks that all five market activity measures are not able to recover the 

normality o f daily returns under the direct standardization procedure. The normality of 

volume standardized returns is a further improvement in comparison with that o f raw 

returns and of returns standardized by trade measures.

The results suggest volume is a better market information proxy than trade measures 

according to the standardization procedure. The conclusion o f Ane and Geman (2000)
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that returns standardized by re-centered number o f trades could be normal is not found 

in our data.

[Table 2.9 here]

2.7 Conclusion

We apply a series o f tests and models to test the validity o f MDH using high 

frequency data. The volatility-volume relation is re-examined, using various realized 

measures o f volatility and different market activity measures. Four realized measures 

o f volatility, namely realized variance, realized range, and realized power and bipower 

variations, and five market activity measure, namely trading volume, number of trades 

and its constituents (up/down/same trades), are tested for 100 stocks over an 11-year 

sample period . We address following issues: 1) correlations between realized 

measures of volatility and market activity measures; 2) common break-dates; 3) OLS 

regressions proposed by Jones et al (1994) and Chan and Fong (2006); 4) GARCH 

augmented with realized volatility measures; 5) Granger Causality; 6) bivariate 

estimation of MDH model using GMM; 7) recovering Return Normality.

The conclusions reached are as follow:

In most sectors, volume correlates more with volatility than the number o f trades. 

Trading volume is highly correlated with trade measures. On the other hand, the
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correlation between the number o f up/down trades and various realized measures of 

volatility dominates that of volume.

Realized variance, trading volume and number of trades usually do not have common 

break-dates. Break-dates are more common between realized variance and trading 

volume relative to the number of trades. Within the same sector, stocks tend to have 

close or same break- dates, at lease for market activity measures.

The numbers o f up trades and down trades explain more volatility than volume or the 

number o f trades. The number of same trades explains volatility most poorly. This 

conclusion holds for every stock in the whole sample.

Augmenting lagged market activity measures does not necessarily improve the model 

fitness o f GARCH (1, 1). The significant reduction in model persistence is no longer 

found. Lagged volume is not a significant variable in more than 60% of stocks. The 

number o f up trades and the number o f down trades also outperform the rest market 

activity measures in terms o f the percentage o f significant variables and Log 

Likelihood statistics.

Bi-directional Granger causality is found when the overall average realized measures 

o f volatility and market activity measures are tested. At individual stock level, the test 

results point to unidirectional Granger causality from market activity measures to 

realized measures o f volatility, yet not in reverse for any o f the realized measures of 

volatility to market activity measures.

The bivariate MDH model is generally supported. In the case o f a non-zero mean, the 

second and third moments of the information are much easier to recover than the 

fourth moments. Again, the best results are given, when the numbers o f up/down
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trades are used in the bivariate model. When comparing the empirical moments o f the 

re-centred market activity measures with the estimated ones.

The normality o f returns standardized by market activity measures is rejected in every 

case. However, returns that are standardized by trading volume are closer to the 

normal distribution.

The test results do not always lead to the same conclusion yet patterns emerge. 

Overall, the MDH is favourably supported by realized volatility measures across 

sectors and remains strong in the presence of crises. The volatility-volume relation is 

held no matter the level of the market activity measures yet the relation tends to 

appear stronger in those highly actively traded sectors. Realized power variation 

provides the strongest support of the MDH among the realized volatility measures 

while the number o f up trades and the number of down trades are the main driving 

factors that make the number o f trades a more informative market activity measure 

than trading volume. The number o f trades is only more informative than trading 

volume when number o f trades happens as a result o f a price moving.
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Tables
Table 2.1a: Summary statistics of market activity measures

CD c s ENG FIN HC IND IT MAR TEL UTL
Trading Volume (v o l t)

M ean 6.674 4.325 6.249 24.828 9.462 7.387 30.564 5.347 6.585 2.062
S.D . 2.678 1.806 3.296 38.161 3.984 5.375 8.471 4.005 4.711 1.018
S kew n ess 1.180 1.877 1.617 2.641 1.519 3.663 1.108 1.615 1.684 1.636
K u rtosis 4.893 8.953 8.348 11.024 6.788 28.916 6.087 5.965 7.358 7.672
Jarq u e-B era 1056 5710 4503 10640 2719 83623 1665 2216 3498 3751
A D F -3.082 -3.902 -3.056 -2.493 -4.213 -3.105 -7.209 -2.210 -1.929 -5.387
p va lu e 0.028 0.002 0.030 0.117 0.001 0.026 0.000 0.203 0.319 0.000
A C F (36) 0.553 0.475 0.638 0.72 0.463 0.561 0.058 0.787 0.698 0.494
Q (36) 36939 32675 50899 60010 29896 43285 5822 68584 54502 34364

Number of Trades (n t t )
M ean 1.873 1.319 2.021 4.527 2.195 1.766 5.702 1.750 1.283 0.670
S.D . 1.943 1.441 2.458 7.244 2.168 2.206 3.805 2.178 1.509 0.733
S k ew n ess 1.417 1.635 1.664 2.438 1.358 2.040 1.703 1.378 1.279 1.489
K u rtosis 4.704 5.941 6.585 10.284 4.627 8.375 7.390 4.091 3.935 5.395
J arq u e-B era 1261 2230 2758 8858 1156 5250 3560 1013 856 1683
A D F -1.673 -2.029 -1.851 -1.957 -1.841 -1.988 -2.672 -1.807 -1.404 -1.862
p va lu e 0.445 0.274 0.356 0.306 0.361 0.292 0.079 0.378 0.582 0.351
A C F (36) 0.861 0.84 0.853 0.8 0.839 0.81 0.725 0.87 0.865 0.826
Q (36) 79775 77974 80187 69604 77269 73930 63733 81559 80452 75796

Number of Up Trades (u t t)
M ean 0.243 0.201 0.323 0.532 0.297 0.266 0.666 0.284 0.146 0.114
S.D . 0.203 0.205 0.391 0.773 0.224 0.278 0.364 0.322 0.145 0.118
S kew n ess 1.965 3.027 2.718 3.196 2.126 2.317 2.216 1.661 1.631 2.315
K urtosis 9.680 19.115 16.449 20.768 12.098 12.055 13.025 6.861 6.525 12.616
J arq u e-B era 6925 34165 24261 41108 11627 11930 13850 2991 2659 13133
A D F -2.105 -2.516 -2.369 -2.638 -2.515 -2.354 -4.294 -2.409 -1.690 -2.414
p valu e 0.243 0.112 0.151 0.085 0.112 0.155 0.001 0.139 0.436 0.138

A C F (36) 0.768 0.717 0.762 0.689 0.722 0.755 0.547 0.795 0.808 0.735
Q (36) 66052 63437 69263 55953 62136 66327 43993 71944 73460 64367

Number of Down Trades (d t t)
M ean 0.243 0.201 0.322 0.531 0.296 0.264 0.666 0.282 0.146 0.114

S.D . 0.203 0.206 0.392 0.774 0.225 0.279 0.365 0.323 0.145 0.118

Skew n ess 1.955 3.007 2.702 3.186 2.118 2.303 2.212 1.655 1.628 2.313

K urtosis 9.552 18.772 16.101 20.629 11.911 11.844 12.957 6.751 6.468 12.485

Jarq u e-B era 6713 32849 23154 40511 11225 11464 13686 2884 2609 12840

A D F -2.108 -2.517 -2.370 -2.636 -2.508 -2.344 -4.288 -2.408 -1.696 -2.410

p va lu e 0.242 0.112 0.151 0.086 0.114 0.158 0.001 0.140 0.433 0.139

A C F (36) 0.768 0.717 0.763 0.69 0.723 0.756 0.548 0.796 0.809 0.735

Q (36) 66280 63630 69391 56033 62318 66569 44041 72085 73589 64413

Number of Same Trades (s t t)
M ean 1.387 0.917 1.376 3.465 1.602 1.235 4.370 1.183 0.991 0.442

S.D . 1.548 1.050 1.708 5.755 1.738 1.666 3.226 1.564 1.225 0.507

Skew n ess 1.341 1.361 1.384 2.388 1.260 2.065 1.387 1.424 1.243 1.301

K urtosis 4.203 4.230 4.534 9.604 3.949 8.442 5.767 4.104 3.708 3.998

Jarq u e-B era 996 1029 1155 7659 836 5380 1770 1076 770 895

A D F -1.626 -1.800 -1.704 -1.848 -1.731 -1.984 -2.431 -1.650 -1.333 -1.750

p va lu e 0.469 0.381 0.429 0.358 0.415 0.294 0.133 0.457 0.616 0.406

A C F (36) 0.876 0.870 0.881 0.819 0.858 0.818 0.769 0.889 0.871 0.857
Q (36) 82205 81725 83757 72305 79956 75243 69011 84214 81234 79732

N ote: Sum m ary  sta tistics o f  daily  m arket activ ity  m easures for the 100 stocks over the period 01/01/2000 to 31/12 /2010  are reported  at sector average  

level. S .D . d en otes standard  deviation . A D F  is the augm ented  D ick ey-F uller statistics for the null o f  a u nit root w ith  5%  and 1%  critica l va lu es o f  2 .862  

and -3 .433 resp ectively . A C F  (36) is the autocorrelation  at 36th  lags and Q (36) is the Q  sta tistics at 36th  lag. V olum e is rescaled  by d iv id in g  by 1,000,000  

and trade m easures arc rescaled  by d ivid ing by 10,000.
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Table 2.1b: Summary statistics of logarithmic market activity measures
C D c s ENG FIN HC IND IT MAR T E L U TL

T rad ing  V olum e (v o l t)
M ean 1.824 1.392 1.709 2.455 2.170 1.836 3.383 1.443 -0.370 0.617
M axim um 3.166 2.892 3.610 5.729 3.636 4.437 4.416 3.605 2.484 2.229
S.D. 0.383 0.369 0.494 1.105 0.388 0.532 0.275 0.666 1.448 0.458
Skew n ess 0.087 0.412 0.131 1.050 0.231 0.823 -0.363 0.389 0.199 0.124
K urtosis 2.916 3.560 2.530 2.763 3.115 3.757 5.463 2.319 1.653 2.915
Jarq u e-B era 4.316 114.311 33.369 515.115 26.097 378.249 760.169 123.024 227.609 7.956
A D F -3.353 -3.807 -2.637 -1.167 -4.307 -2.815 -6.898 -1.838 -1.142 -3.492
p va lu e 0.013 0.003 0.086 0.691 0.000 0.056 0.000 0.362 0.701 0.008
A C F (36) 0.562 0.484 0.693 0.886 0.485 0.664 0.059 0.825 0.957 0.552
Q(36) 36469 31630 56151 83436 31607 51415 4966 73249 94560 38792

N um ber o f  T rades (n t t)
M ean 0.105 -0.291 -0.193 0.289 0.288 -0.143 1.550 -0.550 -2.362 -1.043
M axim um 2.631 2.377 3.052 4.057 2.792 2.903 3.546 2.225 0.300 1.646
S.D . 1.023 1.068 1.449 1.575 1.024 1.194 0.609 1.305 0.924 1.186
S kew n ess 0.366 0.351 0.097 0.561 0.152 0.397 0.229 0.355 0.419 0.085
K urtosis 1.728 1.780 1.594 1.842 1.815 1.845 2.426 1.514 1.870 1.885
Jarq u e-B era 248.336 228.382 232.343 299.655 172.571 226.588 62.168 312.776 228.266 146.783
A D F -1.046 -1.237 -1.377 -0.962 -1.328 -1.196 -2.371 -0.602 -0.923 -1.556
p va lu e 0.739 0.660 0.595 0.769 0.619 0.678 0.150 0.868 0.781 0.505
A C F (36) 0.938 0.937 0.955 0.954 0.926 0.942 0.802 0.957 0.924 0.934
Q(36) 90415 91197 94523 93994 89613 91790 71414 94296 89273 91378

N u m b e r  of U p  T r a d e s  (u tt)
M ean -1.690 -1.967 -1.817 -1.421 -1.459 -1.770 -0.530 -1.965 -2.362 -2.653
M axim um 0.829 0.967 1.572 2.249 1.005 1.150 1.463 1.010 0.300 0.193

S.D . 0.718 0.825 1.242 1.219 0.705 0.936 0.492 1.258 0.924 1.028

Skew n ess 0.506 0.416 -0.002 0.553 0.001 0.281 0.137 0.062 0.419 -0.103

K u rtosis 2.207 2.480 1.930 2.118 2.613 2.192 2.911 1.800 1.870 2.383

Jarq u e-B era 190.651 111.000 132.008 230.728 17.252 111.847 9.610 167.779 228.266 48.877

A D F -1.691 -1.780 -1.702 -1.500 -1.933 -1.569 -3.145 -1.422 -0.923 -1.977

p va lu e 0.436 0.3907 0.4302 0.5336 0.3171 0.4984 0.0235 0.5728 0.7813 0.2972

A C F (36) 0.874 0.892 0.936 0.923 0.854 0.909 0.68 0.943 0.924 0.907

Q(36) 79797 84461 91720 89453 78809 86871 55584 92545 89273 87780

N um ber o f  D ow n T rades ( d t t)
M ean -1.697 -1.978 -1.834 -1.434 -1.465 -1.785 -0.531 -1.983 -2.372 -2.671

M axim um 0.824 0.957 1.560 2.248 0.996 1.141 1.460 0.998 0.290 0.181

S.D. 0.722 0.832 1.250 1.229 0.709 0.944 0.493 1.269 0.930 1.038

Skew n ess 0.509 0.423 0.015 0.553 0.010 0.302 0.137 0.075 0.425 -0.079

K urtosis 2.196 2.453 1.911 2.102 2.592 2.172 2.909 1.782 1.862 2.334

Jarq u e-B era 194.141 117.101 136.711 233.912 19.253 121.189 9.621 173.528 232.399 54.038

A D F -1.688 -1.764 -1.683 -1.484 -2.106 -1.544 -3.145 -1.393 -0.918 -1.951

p va lu e 0.437 0.3986 0.44 0.5421 0.2423 0.511 0.0235 0.5875 0.7831 0.3088

A C F (36) 0.875 0.893 0.936 0.924 0.855 0.91 0.681 0.944 0.924 0.908

Q (36) 79954 84654 91772 89591 78944 87029 55639 92646 89374 87891

N um ber o f  Sam e T rades (s t t)
M ean -0.347 -0.798 -0.727 -0.223 -0.201 -0.685 1.202 -0.914 -1.009 -1.009

M axim um 2.232 1.736 2.449 3.660 2.387 2.639 3.260 2.224 1.882 1.882

S.D . 1.193 1.225 1.586 1.771 1.216 1.364 0.763 1.572 1.502 1.502

Skew n ess 0.282 0.308 0.140 0.531 0.144 0.394 -0.103 0.250 0.308 0.308

K urtosis 1.630 1.626 1.491 1.749 1.646 1.729 2.077 1.620 1.444 1.444

Jarq u e-B era 253.307 261.273 271.514 310.248 220.959 257.720 103.094 248.259 322.959 322.959

A D F -0.874 -1.030 -1.180 -0.799 -1.111 -1.008 -1.996 -0.979 -0.502 -0.502

p va lu e 0.797 0.7444 0.6851 0.8189 0.7139 0.7525 0.2888 0.7627 0.8884 0.8884

A C F (36) 0.951 0.949 0.962 0.961 0.944 0.952 0.866 0.961 0.964 0.964

Q (36) 92706 93050 95493 95166 92296 93337 80808 95249 95362 95362

N o te :  S um m ary  statistics o f  daily  logarithm ic m arket activ ity  m easures for the 100 stocks over  the period 01 /01 /2000  to 31 /12 /2010  are reported  a t sector  
average level. S .D . den otes standard  deviation. A D F  is the augm ented  D ick ey-F u ller  statistics for the null o f  a unit root w ith  5%  and 1% critical va lu es o f  
2.862 and -3 .433 respectively . A C F  (36) is the au tocorrelation  at 36th  lags and Q (36) is the Q  sta tistics at 36th  lag. V olum e is rescaled  by d iv id in g by 
1,000,000 and trade m easures are rescaled  by d iv id ing by 10,000.
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Table 2.4: Common structural break dates for volatility and market activity measures
Zivot & Andrews Single Structure Break Test 

rv t__________volt__________ «£t__________________________rvt voh ntt
AMZN 20011130 20070423 20070423 AVP 20080728 20080102 20071019

no BBY 20021227 20070618 20070618 BFB 20070723 20090421 20070227
C/3S DIS 20080902 20080102 20080102 no COST 20070724 20070724 20070724
3
f t GPS 20070724 20070724 20070724

3
V3C EL 20071018 20080103 20080102

a
55* HD 20071017 20060628 20070620

3
f t KMB 20071019 20070709 20070709

n-i
f t IPG 20080409 20071031 20071031

C/D
S’ KO 20080101 20070212 20070709

S'3 MAR 20080104 20080528 20080523 f t PEP 20070711 20070710 20070717

•5 MCD 20030507 20060908 20070720 PG 20080102 20070419 20070709

NWSA 20080627 20081002 20080902 UL 20080104 20080903 20080613

BHI 20080619 20060421 20070103 ALL 20080905 20070717 20070717

CHK 20080619 20080416 20080208 AXP 20071031 20071031 20071009

CVX 20090903 20090511 20070705 BAC 20080906 20090112 20080602

DVN 20080102 20090511 20080102
3

BK 20080107 20080102 20080102
n3 HAL 20080702 20050722 20070103 5*3 C 20080627 20090219 20071009
■nCTQ OXY 20071011 20090427 20070103 n

S’ GS 20070724 20070718 20070710

SUN 20090319 20090511 20070103
5T

JPM 20071031 20080102 20080102

TEA 20080902 20040211 20070718 MS 20080707 20071031 20071031

WMB 20030327 20030813 20080102 TRV 20070720 20080619 20080102

XOM 20070720 20090511 20070705 WFC 20071231 20080603 20080603

ABT 20070710 20080102 20080102 BA 20080612 20070720 20070720

AMGN 20021008 20011120 20090427 CAT 20080902 20080902 20080102

BSX 20080707 20090512 20080619 CMI 20070725 20090511 20070420

X GILD 20010924 20040202 20070709 M GD 20070724 20030717 20070521

HUM 20080115 20080102 20080102 ClC GE 20080902 20080904 20080102

n JNJ 20080904 20070216 20070216 2.
El

HON 20080625 20010924 20070417

MDT 20080829 20060323 20070717 LUV 20080102 20061019 20080102

MRK 20080117 20080104 20070718 MMM 20071009 20030930 20070710

PFE 20080625 20080417 20080102 UPS 20080618 20090424 20070709

UNH 20080619 20080311 20080102 UTX 20080102 20080102 20070709

AAPL 20070720 20090123 20090123 AA 20080902 20080925 20070705

CSCO 20021031 20030324 20071031 AKS 20080701 20080902 20080624
3
o’ DELL 20020726 20011119 20071016 DD 20080102 20080102 20070706

i69 EMC 20020512 20061109 20070524 DOW 20080915 20080902 20080618

o'3 HPQ 20030318 20080104 20080102
Xa FCX 20070720 20070226 20070221

H« IBM 20071011 20070103 20070222 S.
EL* IP 20080902 20080304 20080102

r>sr3 INTC 20021107 20020607 20080102 NEM 20071031 20090323 20070706
©_
ST(TO MS FT 20071011 20071015 20071015 NUE 20090320 20090424 20070719

ORCL 20021209 20040305 20080102 WY 20070720 20061214 20070119

XRX 20021024 20090506 20080506 X 20071231 20080902 20080701

AMT 20030128 20090508 20070718 AEP 20030127 20030528 20080102

BT 20071224 20090428 20061127 CEG 20080812 20080424 20070523

H2_ CTL 20070725 20081002 20080929 DUK 20030214 20070103 20070522
STno FTR 20021216 20090512 20071231 ETR 20070719 20070518 20070129

3
3 Q 20030325 20021121 20070607

c EXC 20070521 20030529 20070524
es s 20080108 20080116 20070103 ft' OKE 20080908 20030109 20070203
o ’69 T 20030403 20060921 20070601 PCG 20010924 20070606 20070605
o '3VI TEF 20080104 20010924 20071011 PEG 20021018 20020708 20071231

VOD 20021114 20080915 20080903 PGN 20070604 20070522 20070523

VZ 20071211 20080104 20080102 SO 20021114 20070523 20070522
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Table 2.5a: OLS regressions of volume on realized volatility measures (sector and overall 
average) ___________________________________________________________________

CD c s ENG FIN HC IND IT MAR TEL LTL OVERALL

Realized Variance ( YV{ )

A/ 0.652 0.884 0.862 0.754 0.366 0.546 0.148 0.502 0.987 6.524 1.222

% R 2 45.209 47.722 63.934 58.489 48.804 56.552 58.540 61.338 41.284 45.708 52.758

% Significant 90 100 100 100 100 100 100 100 90 80 96

Realized Range ( YYt )

A/ 0.492 0.742 0.754 0.684 0.336 0.500 0.147 0.440 0.784 5.305 1.018

% R 2 53.103 48.450 64.393 62.929 51.572 53.684 60.287 66.735 47.463 37.977 54.659

% Significant 90 100 100 100 100 100 100 100 90 80 96

Realized Power Variation ( pV t )

fa 0.488 0.845 0.737 0.540 0.368 0.585 0.161 0.485 0.953 2.691 0.785

% R 2 65.675 64.767 73.242 71.911 64.822 70.210 70.751 72.310 59.947 64.193 67.783

% Significant 100 100 100 100 100 100 100 100 90 90 98

Realized Bipowcr Variation ( bv( )

ft, 0.416 0.699 0.792 0.679 0.344 0.529 0.140 0.473 0.865 6.831 1.177

% R 2 53.658 52.003 64.847 59.713 51.452 57.629 58.568 62.895 47.391 51.795 55.995

% Significant 100 100 100 100 100 100 100 100 90 90 98

Note: Volume is rescaled by dividing by 1,000,000. measures the persistence of volatility shock at lag/'. M t is the

Monday dummy. (ffjt is equally-weighted cross sectional mean coefficients for volume. The R is the mean value of

100 stocks. The last row reports the percentage of (j)jt coefficients which are statistically significantly from zero at 

5% level.
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Table 2.5b: OLS regressions of number of trades on realized volatility measures (sector and
overall average)_____________________________________________________________________

CD CS ENG FIN HC IND IT MAR TEL UTL OVERALL

Realized Variance ( YVt )

Pi, 1.915 3.336 1.888 2.144 1.069 1.916 0.359 2.267 3.348 11.081 2.932

% R 2 44.814 46.410 63.657 60.495 49.642 57.389 57.328 63.129 42.025 44.460 52.935

% Significant 100 100 100 100 100 100 100 100 100 100 100

Realized Range ( ¥T( )

A 1.665 2.753 1.784 1.910 1.043 1.866 0.368 2.024 3.056 10.400 2.687

% R 2 52.930 48.066 64.681 64.550 52.762 55.233 59.109 68.639 48.610 36.871 55.145

% Significant 100 100 100 100 100 100 100 100 100 99 99

Realized Power Variation ( p v ( )

A 1.693 3.113 1.869 1.536 1.074 1.952 0.406 2.124 3.601 5.161 2.253

% R 2 65.357 64.306 73.162 73.389 65.238 70.642 69.603 73.754 60.649 62.963 67.906

% Significant 100 100 100 100 100 100 100 100 100 100 100

Realized Power Variation ( bvt )

A 1.493 2.575 1.745 1.948 0.983 1.767 0.343 2.117 2.980 11.572 2.752

% R 2 53.680 51.040 64.668 61.694 52.238 58.160 57.418 64.617 48.108 49.922 56.154

% Significant 100 100 100 100 100 100 100 100 100 100 100

Note: Number o f trades is rescaled by dividing by 10,000. measures the persistence o f volatility shock at lag/'.

M .t is the Monday dummy. /3jf is equally-weighted cross sectional mean coefficients for number of trades. The R  2

is the mean value of 100 stocks. The last row reports the percentage of f3u coefficients which are statistically 

significantly from zero at 5% level.
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Table 2.5c: OLS regressions of number of up trades on realized volatility measures (sector and
overall average)________________________________________________________________________

CD cs ENG FIN HC IND IT MAR TEL UTL OVERALL

Realized Variance ( YVt )

Yn 23.635 16.598 9.979 15.703 10.304 12.914 5.554 15.725 30.323 57.447 19.818

% R 2 46.283 48.116 64.286 62.626 52.889 59.579 59.637 64.283 43.613 46.890 54.820

% Significant 100 100 100 100 100 100 100 100 100 90 99

Realized Range ( YY{ )

Yu 21.463 15.035 9.767 14.146 10.331 12.863 6.051 14.547 27.129 52.268 18.360

% R 2 54.986 50.445 65.510 66.486 57.213 58.251 61.646 70.052 50.656 39.331 57.458

% Significant 100 100 100 100 100 100 100 100 100 80 98

Realized Power Variation ( p v t )

Yit 20.409 16.601 9.676 11.478 10.253 13.000 5.880 14.428 28.353 26.955 15.703

% R 2 66.500 65.507 73.615 75.084 67.340 72.240 71.436 74.827 61.746 64.926 69.322

% Significant 100 100 100 100 100 100 100 100 100 100 100

Realized Power Variation ( bvt )

fi, 19.369 13.423 9.189 14.502 9.380 12.268 5.432 14.737 26.486 60.692 18.548

% R 2 55.381 52.950 65.225 63.928 55.453 60.441 59.752 65.794 49.633 52.351 58.091

% Significant 100 100 100 100 100 100 100 100 100 90 99

Note: Number o f up trades is rescaled by dividing by 10,000. /CL measures the persistence of volatility shock at lagy. 

M,  is the Monday dummy. yjt is equally-weighted cross sectional mean coefficients for number of up trades. The 

R 2 is the mean value o f 100 stocks. The last row reports the percentage o f f u coefficients which are statistically 

significantly from zero at 5% level.
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Table 2.5d: OLS regressions of number of down trades on realized volatility measures (sector and overall 
average)_________________________________________________________________________________

CD cs ENG FIN HC IND IT MAR TEL UTL OVERAL

Realized Variance ( YVt )

0. 24.060 16.213 9.976 15.632 10.298 12.877 5.548 15.664 30.227 56.856 19.735

% R 2 46.900 47.984 64.258 62.552 52.874 59.482 59.643 64.253 43.620 46.811 54.838

% Significant 100 100 100 100 100 100 100 100 100 80 98

Realized Range ( YY{ )

22.006 14.754 9.738 14.107 10.317 12.837 6.050 14.478 27.071 52.062 18.342

% R 2 55.985 50.275 65.455 66.441 57.165 58.185 61.660 70.014 50.665 39.307 57.515

% Significant 100 100 100 100 100 100 100 100 100 90 99

Realized Power Variation ( p v t )

20.409 16.601 9.672 11.424 10.248 12.960 5.874 14.376 28.279 26.732 15.674

% R 2 66.500 65.507 73.604 75.031 67.331 72.176 71.443 74.805 61.758 64.877 69.344

% Significant 100 100 100 100 100 100 100 100 100 100 100

Realized Power Variation ( bvt )

19.754 13.156 9.188 14.440 9.376 12.214 5.426 14.679 26.499 60.054 18.479

s e e 4.931 3.046 2.524 4.870 2.212 2.873 1.155 3.510 8.459 29.037 6.262

% R 2 56.193 52.828 65.199 63.863 55.440 60.335 59.760 65.766 49.649 52.271 58.130

% Significant 100 100 100 100 100 100 100 100 100 100 100

Note: Number of down trades is rescaled by dividing by 10,000. p measures the persistence of volatility 

shock at lagy. M t is the Monday dummy. 6U is equally-weighted cross sectional mean coefficients for 

number of down trades. The R 2 is the mean value of 100 stocks. The last row reports the percentage of 
6 jt coefficients which are statistically significantly from zero at 5% level.
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Table 2.5e: OLS regressions of no. of same trades on realized volatility measures (sector and
overall average)______________________________________________________________________

CD c s ENG FIN HC IND IT MAR TEL UTL OVERALL

Realized Variance ( KVt )

*i, 2.120 5.005 2.077 2.513 1.232 2.292 0.367 2.462 4.072 26.186 4.833

% R 2 43.931 44.673 62.177 58.778 48.130 55.377 56.665 61.711 41.378 43.331 51.615

% Significant 100 100 100 100 100 100 100 100 100 80 98

Realized Range ( TYt )

1.814 3.822 1.935 2.245 1.178 2.156 0.365 2.138 3.736 22.511 4.190

% R 2 51.804 45.734 63.000 63.044 50.952 52.894 58.433 67.170 47.730 35.583 53.634

% Significant 100 100 100 100 100 100 100 100 100 80 98

Realized Power Variation ( pV f )

1.876 4.260 2.079 1.848 1.234 2.331 0.424 2.330 4.431 10.091 3.090

% R 2 64.604 62.821 71.881 72.167 64.080 69.070 69.041 72.498 60.139 61.977 66.828

% Significant 100 100 100 100 100 100 100 100 100 80 98

Realized Power Variation ( bvt )

h, 1.631 3.644 1.924 2.259 1.140 2.074 0.345 2.288 3.618 28.640 4.757

% R 2 52.725 49.178 63.220 60.077 50.726 56.170 56.762 63.248 47.504 48.861 54.847

% Significant 100 100 100 100 100 100 100 100 100 80 98

Note: Number o f same trades is rescaled by dividing by 10,000. p t - measures the persistence of volatility shock at lag 

j . M ,  is the Monday dummy. Tj{ is equally-weighted cross sectional mean coefficients for number of same trades. 

The R 2 is the mean value of 100 stocks. The last row reports the percentage of Tjt coefficients which are statistically 

significantly from zero at 5% level.
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Table 2.6b: GARCH and Augmented GARCH results (by Sector)

G A R C H (1 ,1 ) Augmented 
with v o l t

Augmented 
with n t t

Augmented 
with u t t

Augmented 
with d t t

Augmented 
with s t t

Consumer Discretionary
CO 0.0517 0.0546 0.0522 0.0541 0.0425 0.0509
a 0.0613 0.0682 0.0748 0.0847 0.0932 0.0602
P 0.9346 0.8891 0.8958 0.9005 0.8454 0.9335
7 - -0.0226 0.0259 -0.1671 -0.0732 0.0055
L O G L -5659.2815 -5682.5424 -5661.4010 -5700.8682 -5697.7368 -5654.2061
% significance 50 70 60 60 80

Consumer Staples
63 0.0594 0.0592 0.0566 0.0589 0.0588 0.0592
a 0.0653 0.0652 0.0773 0.0651 0.0649 0.0648
P 0.9231 0.9225 0.8691 0.9176 0.9178 0.9193
7 - 0.0010 -0.0155 0.1092 0.1094 0.0237
L O G L -4476.1458 -4473.4490 -4508.0289 -4470.4460 -4470.3890 -4470.7534
% significance 0 80 70 70 70

Energy
CO 0.0209 0.0214 0.0213 0.0158 0.0226 0.0130
a 0.0688 0.0696 0.0688 0.0763 0.0704 0.1026

P 0.9228 0.9216 0.9173 0.8601 0.8999 0.7593
7 - -0.0014 0.0254 2.0677 0.3812 0.3931
L O G L -5635.8358 -5632.3467 -5630.5658 -5635.6407 -5626.4629 -5676.9409
%  significance 10 60 80 80 60

Financials
CO 0.0199 0.0162 0.0195 0.0133 0.0199 0.0203
a 0.0883 0.0973 0.0900 0.0982 0.0894 0.0889

P 0.9093 0.8613 0.9042 0.8509 0.9038 0.9062

7 - 0.0206 0.0132 0.4989 0.0807 0.0151
L O G L -5416.4291 -5445.8499 -5410.7547 -5432.8209 -5409.6799 -5410.9254
%  significance 60 40 60 60 40
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Table 2.6b: GARCH and Augmented GARCH results (by Sector) (continued)
GARCH Augmented 

with volt
Augmented 

with ntt
Augmented 

with utt
Augmented 

with d tt
Augmented 

with s t t
Health Care

O) 0.0140 0.0140 0.0134 0.0130 0.0130 0.0134
a 0.0587 0.0671 0.0578 0.0583 0.0583 0.0577
P 0.9306 0.8861 0.9284 0.9267 0.9267 0.9290
7 - -0.0129 0.0013 0.0248 0.0255 0.0002
L O G L -5254.6396 -5321.1110 -5248.8244 -5248.5231 -5248.4882 -5249.0200
% significance 50 30 40 30 50

Industrials
u> 0.0399 0.0393 0.0393 0.0355 0.0342 0.0315
a 0.0837 0.0686 0.0673 0.0939 0.0822 0.0964

P 0.9244 0.9212 0.9197 0.8354 0.8599 0.8016
7 - 0.0022 0.0227 0.5811 0.4017 0.2696
L O G L -5172.1900 -5167.6292 -5166.5138 -5187.5230 -5180.2644 -5193.7272
% significance 50 60 60 60 70

Information Technology
53 0.0683 0.0673 0.0711 0.0628 0.0693 0.0658
a 0.0643 0.0631 0.1324 0.0976 0.0970 0.0942

P 0.9326 0.9329 0.8232 0.8407 0.8692 0.8728

7 - 0.0002 0.0136 0.4943 0.6765 0.0469
L O G L -5671.6072 -5667.3012 -5714.6977 -5706.9399 -5690.8365 -5689.7323
%  significance 40 60 60 60 30

Materials
53 -0.0371 -0.0373 -0.0370 -0.0366 -0.0367 -0.0372
a 0.0542 0.0537 0.0538 0.0510 0.0510 0.0538

P 0.9380 0.9374 0.9339 0.9368 0.9367 0.9350

7 - 0.0018 0.0241 0.1590 0.1606 0.0227
L O G L -6025.1570 -6022.2661 -6019.8252 -6018.9239 -6018.8325 -6020.3489
%  significance 20 80 80 80 70
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Table 2.6b: GARCH and Augmented GARCH results (by Sector) (continued)

GARCH
Augmented Augmented Augmented Augmented Augmented
with v o l t with n t f with u t t with d t t with s t t

Telecommunication Services
Oi 0.0308 0.0187 0.0237 0.0306 0.0294 0.0238
a 0.0649 0.0735 0.0933 0.0875 0.1051 0.0786

P 0.9333 0.8957 0.8387 0.8096 0.8022 0.8874
Y - -0.0049 0.3600 1.5901 5.1552 0.3915
L O G L -5255.9304 -5349.3049 -5333.9312 -5284.4665 -5316.8194 -5318.0448
%  significance 40 50 80 80 50

Utilities
53 0.0309 0.0675 0.0264 0.0283 0.0302 0.0302
a 0.1096 0.1628 0.1209 0.1205 0.1107 0.1275

P 0.8814 0.8574 0.8190 0.8319 0.8627 0.8080

Y - -0.0425 0.1058 0.6667 0.3796 0.1570
L O G L -4781.7575 -4838.8453 -4785.4882 -4778.6137 -4770.0019 -4791.8464
% significance 100 40 70 90 90 50

Note: The Augmented GARCH model is given as
r t = n +  e t

h t = o) + a  £ t_ t  + /?h£_ i + y M T t-x  
Where MTt_ i  denotes the market activity measures, namely, volume, no. of trades, no. of up trades, no. of down 
trades, and no. of same trades.
All the coefficients and stats are reported as the sector average (10 at each sector). LOGL denotes the log 
likelihood.Finally, % significance is the percentage of significance when market activity measures are augmented in 
to GARCH (1 ,1 ) model.
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Chapter 3 

Factors Affecting the Recovery to Returns 
Normality Using Parametric and Non- 

Parametric Volatility Measures

A bstract

This chapter investigates the issue of achieving returns normality using high frequency non-parametric 

measures (realized variance, range, and power and bipower variations) and classical parametric 

measures (stochastic volatility and GARCH). Our task is twofold. The first is to check the relevance of 

stock type and the level of activity on the power of the volatility measure to achieve normality. The 

second task is to investigate the impact of: a) sampling frequency; b) jumps; and c) microstructure 

noise.

Our findings can be summarized as follows: 1) the nature of the stock is relevant to recovering 

normality -  It is more difficult to achieve return normality in actively traded stocks; 2) the sampling 

frequency affects the recovery of returns normality. For example, the rejections rate of standardized 

returns is higher at the 1-second sampling frequency as opposed to the 5-minute sampling frequency; 3) 

excluding jumps from realized variance has little effect in distorting the normality of standardized 

returns at least at 5-minute sampling frequency. The effect of jumps is more visible at higher 

frequencies; 4) applying filter to counter microstructure noise enhances the process of recovering 

returns normality; 5) the performance of non-parametric volatility measures far exceeds that of the 

classical measures.
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3.1 Introduction

The assumption that asset returns are normally distributed is fundamental in many 

asset pricing models, such as the Black and Scholes (1973) financial derivatives 

pricing model, the VaR evaluation in the portfolio management, and so on. It also has 

important implications for financial hedging and risk management. However, asset 

returns are rarely observed to be normally distributed. This well-established fact is 

extensively reported in a large number of empirical studies. In the distant past we 

have the papers o f Mandelbrot (1963, 67), Fama (1965), and Pratez (1972). 

Mandelbrot (1963) attributed the non-normality of stock returns to the fact that the 

variance of returns, which is the sum of elementary logarithmic prices changes, is 

infinite, which in turn implies that the Central Limit Theorem is violated. Another 

explanation of the non-normality of returns is provided by the seminal paper of Clark 

(1973) which attempts to explain the non-normality without sacrificing the assumption 

o f finite variance. He argues that the transactions are not evenly spreader across the 

trading hours and therefore the distribution of returns can be viewed as a mixture 

distribution through the subordination process. This mixture distributions hypothesis 

has attracted the most attention and paved the way for a number of studies that follow. 

The univariate mixture distribution model is first proposed by Clark (1973), and then 

is modified as a bivariate model by Tauchen and Pitts (1983), Andersen (1996) and 

Liesenfeld (2001). According to Mixture of Distributions Hypothesis, although the 

returns are not Gaussian, returns subordinated with trading volume could be Gaussian 

as both financial prices and trading volume are driven by the same latent information 

flow arrivals. Furthermore, Monroe (1978) asserts that any semi-martingale can be 

written as a time changed Brownian motion. The Monroe result in essence indicates
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that, as long as we are willing to change the time o f the process, there will exist a 

filtration that to which the return process can be adapted and be brought back to 

normal distribution.

Based on MDH, Ane and Geman (2000) revisit the Clark (1973) paper by replacing 

the trading volume by number of the trades as the subordinator. Under the non­

arbitrage assumptions and the conclusion reached by Monroe, Ane and Geman (2000) 

find that returns adapted to the time of number of trades are normally distributed. 

Nevertheless, recent empirical studies question the results o f Clark (1973) or Ane and 

Geman (2000) with respect to recovering return normality. The failure to recovering 

return normality by volume/number of trades could be attributed to the irregular 

arrival of information flows. Prices evolve at different rates during a given time period 

(day, hour, 5 minutes, and so on) because the arrival of information is assumed to be 

random.

With the availability o f high frequency data and the development of continuous-time 

models, the non-normality issue has been addressed to better effect by studies which 

primarily use high frequency data. Many find that unconditional distributions of raw 

daily returns have fat tails yet the distributions appear close to Gaussian when the 

returns are standardized by the corresponding realized volatility measures (See for 

instance ABDL (2001) ABDE(2001) Areal (2001), BN-S(2004), ABFN(2010) 

Fleming and Paye(2007, 2011). ABFN (2010) claims that “the (true) realized 

volatility standardized returns should be indistinguishable from  a Gaussian i f  the true 

price process belongs to a certain class o f  pure diffusive processes and market 

microstructure frictions are negligible”. Nonetheless, there are situations that easily 

invalidate the above statement and hence make the realized volatility measures unable 

to restore returns normality. The failure to recover normality by realized volatility
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measures may be attributed to market microstructure noise, the presence of jumps or 

also known as the discontinuity in the price path, the leverage effect, the correlation 

between price and volatility innovations which might induce the asymmetry in the 

standardized return distribution, and the sampling frequency at which the realized 

volatility is calculated.

Given the many reasons different that might explain the non-normality o f standardized 

returns, empirical studies reach a variety of conclusions. For instance, Fleming and 

Paye (2011) argue that the presence of jumps affect the normality o f standardized 

returns, whereas ABFN (2010) suggest that jumps plays little part in the 

standardization process.

In this chapter, we discuss the distributional properties of daily returns under the 

framework o f continuous-time price models. We specifically follow ABFN (2010) 

and Fleming and Paye (2011) and extend the number of realized volatility measures 

used. In order to compare the power of different realized volatility measures to 

recover normality, we apply a series of tests and transform the daily return series to 

account for jumps and the effects of microstructure noise: We construct the volatility 

series at the optimal sampling frequency according to the volatility signature plots 

which help show the microstructure noise and the price jumps. We separate the 

continuous variance path and jumps path in the realized variance, relying on the 

realized bipower variation proposed by BN-S (2004) to detect the significant daily 

jumps based on BN-S (2006) and Huang and Tauchen (2005). We use the 

exponentially weighted moving average as a filtering process for daily returns and 

realized volatility measures to smooth the market microstructure noise.

The main findings o f this chapter are summarized as follows:
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1. Volatility measures estimated using non-parametric methods are superior to 

those using parametric methods in capturing the dynamics o f the return 

process and hence produce more normal returns. Realized power variation 

performs the best in the realized volatility measures.

2. Jumps should be included in the price process yet it has little effect on the 

normality of returns. Microstructure noise is by far the dominant factor.

3. The level o f trading actively has an impact upon the distributional properties o f 

daily returns. We find that the sectors that are most difficult to standardize are 

those sectors which contain high trading volume stocks.

4. Appling an exponentially weighted moving average filter can, in some 

instances, enhance the power of (certain) realized volatility measures to restore 

normality. This moving average filter can be applied to all the realized 

volatility measures discussed in this chapter. It is also easy to model. The 

exponentially weighted moving average filter is more successful with the 

highly actively traded stocks/sectors.

In section 2, we review the literature. In section 3, we outline the theoretical 

framework for Gaussianity of the standardized returns distributions. Section 4 

provides a brief discussion of the data and some preliminary descriptive statistics. The 

outcomes of distributional tests are summarized in Section 5. Section 6, finally, 

presents our conclusions.

3.2 Literature Review

Some early attempts in using realized volatility measures to standardize returns can be 

traced to ABDL (2000) and ABDE (2001). Using foreign exchange data and equity
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stock data respectively, both papers find that returns standardized by realized volatility 

(calculated as the squared root of realized variance) are (near) Gaussian. In contrast, 

return standardized by GARCH, ARCH and SV are far from normal distribution 

although Gaussianity o f the parametric volatility standardized returns are better than 

the raw returns.

Areal and Taylor (2001) reach similar conclusion in using 8-year FTSE-100 futures 

prices data. The paper assigns both equal weights and optimal weights to realized 

volatility and finds that returns standardized by optimal weighted realized volatility 

are closer to the normal distribution. However, the normality of standardized returns 

remains rejected at the 5% level.

ABD (2007b) test the returns distribution using both simulated and 17-year 2-minute 

S&P 500 futures data. The simulation procedure considers following assumptions of 

high frequency stochastic volatility: no-leverage pure diffusion, no-leverage jump 

diffusion, leverage pure diffusion and leverage jump diffusion. Moreover, the effect of 

microstructure noise is also considered in the simulation. Then real empirical data is 

tested. Contrasting with conclusions of ABDL (2000), that prices follow a pure 

diffusion process, the results from both simulated and real data show that the price 

follows the jump-diffusive representation. It is also revealed that microstructure noise 

may play a critical part in determining the distributional properties of intraday 

aggregated returns. Accounting for both the leverage effect and daily and intraday 

jumps in the volatility is crucial in determining the return distributions.

Fleming and Paye (2007) investigate the impact of microstructure noise on the 

distributions of returns standardized by realized volatility. Using 10-year data o f 20 

stocks traded in the Major Market Index, the authors conclude that microstructure 

noise leads to an upward bias of realized volatility, hence making rv, standardized
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returns artificially normal distributed. However, as long as the bias is corrected, rvt 

standardized returns are substantially departure for normal distribution and appear to 

be platykurtotic. Another important finding is that the choice o f sampling frequency 

has an important effect upon the standardization result. The volatility signature plots 

show that the standard deviation of rvt decreases with sampling frequency and the 

kurtosis exhibits an increasing trend when the sampling frequency is higher.

After the ABD (2007b) paper, which discusses the impact of jumps in the rvt on the

distributional properties of standardized returns, there were similar publications. 

ABFN (2010) use 30 DJIA stocks to revisit the impact of jumps, the leverage effect 

and market microstructure noise. Individual stocks have higher volatility, contain 

more jumps and are more greatly influenced by the microstructure noise than index 

futures data. This has enabled researchers to obtain new evidence on the validity of 

previous studies. To examine the role of jumps, ABFN (2010) use two different daily 

jump detection methods: The first is the widely used single daily jumps detection 

method first proposed by Huang and Tauchen (2005). This heavily relies on another 

realized volatility measure: realized bipower variation (BN-S, 2004, 2006). The 

second jump detection method allows for the presence of multiple jumps within one 

trading day. ABFN (2000) also suggest 5-minute as an optimal sampling frequency. 

The findings support the ABD (2007) paper and point to the conclusion that prices 

may be described by a jump-diffusion process, but after allowing for leverage and/or 

feedback effects. The presence of jumps in the prices has little impact on the 

distributional properties of standardized returns.

Khalifa et al (2011) follow the methodology proposed by ABFN (2010), but further 

consider absolute returns, realized bipower variation and integrated volatility via 

Fourier transformation (IVFT) for high frequency US gold, silver and copper futures
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data between 1999 and 2008. Their findings include: the normality of metal futures 

returns is more difficult to achieve. None o f the three series recover the normality of 

returns at the 1% level, no matter which volatility measures are used. Realized 

bipower variation performs the best among all the measures. The presence of 

microstructure noise might be the explanation. However, when jumps and the leverage 

effect are accounted for in the manner suggested by AFBN (2010), the normality of 

demeaned financial-time returns of three metal markets cannot be rejected at the 1% 

level.

Another work which also looks at the impact o f jumps on distributional properties of 

standardized returns is that of Fleming and Paye (2011). Using 20 stocks in MMI, the 

authors construct realized variance and realized bipower variation and compare the 

properties o f returns standardized by these two measures. Their findings favour bvt 

standardized returns, which appear to be closer to normal distribution. According to 

BN-S (2004, 2006), realized bipower variation is jump robust. When jumps are 

excluded, the Gaussianity o f standardized returns is greatly improved. This paper uses 

3-minute aggregated bipower variation as their volatility signature plots suggest. On 

the other hand, the better performance of realized bipower variation in the 

standardization procedure, shows realized volatility as a noisy estimator of the 

quadratic variation.

Chevallier and Sevi (2011) use EXC C 02 emission 2008 futures data to discuss the 

distributional properties of returns and standardized returns. As distinct from the 

extensive studied financial data, the environmental economic data show an optimal 

sampling frequency of 15-minute. Realized volatility is calculated and then used to 

standardize daily returns. The paper compares returns standardized by rvt and by 

GARCH (1, 1). The latter provides a closer fit to the normal distribution.
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Apart from realized variance and realized bipower variation, the distributional 

properties of returns standardized by other realized volatility measures have also been 

studied. Martens and van Dijk (2007) look at the unconditional distributions of daily 

returns standardized by realized range using S&P 500 index futures data from 1999- 

2004. The results show that the normality o f returns standardized by the (squared root 

o f the rescaled) realized range cannot be rejected at the 5% level. However, returns 

standardized by realized volatility, which are constructed from the same data set, lead 

to a rejection of the null that rv, standardized returns are normally distributed.

Fuertes et al (2009) investigate standardized returns distributions by considering four 

realized volatility measures: realized variance, realized range and realized power and 

bipower variation and one parametric volatility, GARCH (1, 1). They use 14 actively 

traded US equity data from 1997 to 2003. Realized range is the most successful 

volatility measure and brings 13 out of 14 returns back to normal at the 5% level. 

Realized power variation is the second best, followed by realized power variation and 

realized variance.

From the above literature, it is evident that the power o f realized volatility measures 

to achieve the Gaussianity of daily returns is generally stronger than the traditional 

GARCH/SV measures. However, conclusions differ as different datasets are 

considered. Findings have not converged to any conclusion as to which realized 

volatility measure(s) under what condition(s) are most successful in recovering returns 

normality under the standardization procedure. In the following sections, we shall 

discuss this issue by considering different volatility measures (parametric and 

nonparametric) and different market conditions.
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3.3 Theoretical Framework

In line with the literature, we consider a jump-diffusion process which views asset 

prices as containing a continuous sample path and a non-continuous part (jump part). 

Recall [1.1], assume price process Pt , which is semi-martingale, follows a geometric 

Brownian Motion,

dpif) = ju(t)dt + cr{t)dW(t ) + k{t)dq{t) 0 < t < T

where p (t)  denotes a continuous and locally bounded process, cr(/) is the constant 

volatility parameters, W {t) denotes a standard Brownian Motion. Both /*(/)and <j(t) 

are jointly independent o f the Brownian motion. q(t) is the counting process and k(t) 

the size of the corresponding jumps. When dq(t) = 1 a jump is present at time t and 

dq(t) = 0 otherwise.

In reality, the empirical tests are conducted in discrete time. Implied by the jump 

diffusion process from [1.1], the one-period continuously compounded discrete time 

asset returns is calculated as

r,=p,-p,-x, t= 1,2... [3.1]

The ‘one-period’ equals one day. The distribution o f daily return rt depends on the 

continuous-time model. Here we consider three general model conditions which show 

how standardized returns should be standard normally distributed under each.

3.3.1 Pure Diffusion Case
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This is the simplest continuous-time model assume there is no jumps, no leverage and 

feedback effects in the prices. q(t) = 0 , a (t)  and W(u) re independent o f each other 

for all t > 0 and u > 0 .Therefore,

r , l t f_ y { u ) d u ) - 'n ~ N m ) ,  1= 1 ,2 ,3 ...  [3.2]

where J  <r2(u)du is the integrated variance (IV).

The distributional properties under [3.1] are conditioned on ex post sample path 

realization o f cr{t)over the corresponding discrete time return interval, ( t - \ , t \ .  The 

integrated variance is latent, yet various estimators of IV has been discussed and 

studied extensively, starting with the realized variance by ABDL (2001).

3.3.2 Jumps

The presence o f jumps in the asset data has been extensively reported. Allowing for 

jumps when modelling asset prices returns has been explicitly argued. See for 

example, Eraker et al (2003) and ABD (2003, 2007a, b). [3.2] is no longer valid when 

an additional component is added to the ex post price. If the size o f jumps is assumed 

known, and then the corresponding jump-adjusted returns can be written as

f , = P . - P » - Y .  1 = 1 ,2 ,3 .... [3.3]

As jumps are assumed to be independent of the Brownian Motion W (t) , when they 

are excluded from the return series, the adjusted returns link only with the diffusion 

component and hence should again be normally distributed after standardization:

o \u ) d u T m ~ N (0 ,\) , t= 1 ,2 ,3 ...  [3.4]
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It is important to separate the continuous sample path and jumps by adopting a jump 

detection method. Here we use the non-parametric jump detection method by 

Bollerslev et al (2009) and allow for the presence of jumps of different magnitudes. 

The detailed discussion of the jump-detection method is provided in Chapter 1, 

Section 1.5.2.

3.3.3 Market Microstructure Noise

Another force that drives the returns from normal distribution is the presence of 

market microstructure noise. With high frequency data analysis, noise is more 

prevalent in the tick-by-tick data. Microstructure noise has been attributed to such as 

the bid-ask bounce, latency, and information asymmetry. Eliminating microstructure 

noise is essential to remove bias in the estimation. A large number of studies have 

addressed this problem, some of which focus on removing or filtering microstructure 

noise. See for example, Hansen and Lunde (2005), Bandi and Russell (2006, 2008). 

Specifically, Hansen and Lunde (2005) assume that the observed price ( p , ) is the sum

of true price ( p *) and noise ( cot ),

Assume that market microstructure noise is independent. As for the case o f jumps, 

noise-adjusted returns standardized by the IV should also result in Gaussianity.

[3.5]

From which noise-adjusted returns is denoted as

r* = p, -p,-i>  * = 1 , 2 , 3  ... [3.6]

[3.7]



However, the independent noise assumption may not always hold in reality especially 

when sampling data at the highest frequency. If we assume the condition of Section 

3.1, such that prices follow the Brownian semi-martingale pure diffusion process 

without leverage effects, the sampling frequency m converges to infinity, Hansen and 

Lunde (2006) claim that

RVt - r V t — E-̂ >col [3.8]

and that the standardized returns follow a distribution of

r . H R V y ' - N i  0 . - / L - )  [3.9]
IVt +a)t

This distribution has mixing weights jointly determined by the integrated variance and 

the noise term and so should be leptokurtotic.

3.4 Data and Descriptive Statistics

The dataset used here is the same as the previous two chapters. We consider four 

realized volatility measures: realized variance, realized range and realized power and 

bipower variations. Our main concentration, in line with the previous two chapters, is 

the 5-minute sampling frequency. It has been argued that sampling frequency

influences the outcome of standardization (Fleming and Paye, 2007). However, the

extent to which the sampling frequency may distort the distribution of standardized 

returns has not yet been examined using a large data set. To fill this gap, we further 

construct the realized volatility measures and returns using a sampling frequency of 1 

second, which is the highest possible frequency for this dataset. The summary
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statistics of 1 second aggregated returns and realized volatility measures are given in 

Table 3.1.

[Table 3.1 here]

We first look at the properties of 1-second returns. The difference, not surprisingly, 

between 1-second and 5-minute aggregated returns is not that deviated from each 

other. The mean values of returns are similar between the two sampling frequencies. 

The standard deviation of 1-second returns is lower, as is the kurtosis. 5-minute 

returns have lower skewness in general. The Jarque-Bera statistics of 1-second returns 

is also lower than that of 5-minute returns.

In comparing Table 3.2 with Table 1.4, three o f four realized volatility measures 

constructed at 1-second sampling frequency show much higher values for the mean 

and standard deviation. This is because market microstructure noise is overwhelmed at 

such a high sampling frequency. The exception of rrt arises from the fact that rrt is 

constructed with a bias-correction factor in the equation. The price change between 

the highest and lowest prices is at a minimum for the 1-second frequency. rrt is also

downward biased when the trading is infrequent. Our results are consistent with those 

reported by Fleming and Paya (2011) who also find an upward bias for realized 

volatility measures (rv, in their case) when sampling at 1 second using trade data. On 

average, the means of realized volatility measures are at least twice as large at 1- 

second sampling frequency as at 5-minute sampling frequency. This difference is even 

larger in actively traded sectors. The sector average rv( in IT sector is 5.722, it

increases to 37.810 when the sampling frequency increases to 1 second. Similar 

results are reported for FIN and HC sectors. The dramatic difference between realized 

volatility measures sampled at different frequencies shows the impact of market 

microstructure noise to be most severe at the highest sampling frequency.
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We construct the continuous variance and jumps series from rvt and bvt , according to 

[1.14] and [1.15]. Table 3.3 reports the summary statistics o f cvt , jumps and rvt . 

When sampling at 1-second frequency, the size of jumps increases accordingly. Jumps 

also become strictly positive. However, large jumps are still not necessarily associated 

with high volatility days -  a finding we have reported in Chapter 1 under 5-minute 

sampling frequency.

In summary, at 1-second sampling frequency, returns, realized volatility measures, as 

well as jumps, are different from the 5-minute sampled counterparts. 5-minute is the 

most commonly used as various studies have shown that 5-minute sampling frequency 

most efficiently balances the intraday information content and the micro structure 

noise. In Chapter 1, we drew the volatility signature plots of two stocks and showed 

that 5-minute is an optimal sampling frequency for rv ,, bvt and rrt . As stated earlier,

it is still interesting to compare the standardization results of 1-second data with those 

o f 5-minute data. This comparison allows us to investigate the extent of the influence 

o f jumps and microstructure noise arising from sampling frequencies. In the following 

empirical results section, we start reporting the standardization results from returns 

standardized by realized volatility measures from various sampling frequencies.

[Table 3.3 here] 

[Figure 3.1 and 3.2 here]
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3.5 Empirical Results

In this section, we report the results of the distributional properties o f standardized 

returns. We first investigate the aggregational Gaussianity of intraday returns using 10 

stocks. Then we compare the returns standardized by realized volatility measures at 1- 

second and 5-minute sampling frequencies, respectively. 5-minute sampled realized 

volatility measures work more successfully than 1-second sampled ones for all the 

sectors. Next, we compare the standardization power between realized volatility 

measures and two parametric volatility measures, namely, GARCH and stochastic 

volatility. This comparison is based on 5-minute sampled data only. We find that the 

non-parametrically estimated realized volatility measures have stronger power to 

achieve the returns normality. Fourth, we investigate the impact of jumps. The 

presence of jumps in the realized volatility has little impact of recovery the return 

normality, at least at 5-minute sampling frequency. At 1-second sampling frequency, 

excluding jumps from realized volatility shows an improvement o f recovering 

normality. Fifth, we use a moving average filter to microstructure noise in the realized 

volatility measures. The MA filtration removes the microstructure noise contained in 

the realized volatility measures and enhances the performance of realized volatility 

measures when used to standardize the returns. In the last part of this section, we 

select the 30 most actively traded stocks (T30 stocks) in the whole sample and 

summarize the standardization results o f these stocks. The results from the T30 stocks 

suggest that the level of stock activity matters in recovering the normality.
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3.5.1 Aggregational Gaussianity of Returns

Aggregational Gaussianity is a well-established stylized fact o f asset returns. It 

implies that the distribution of returns converges more closely to a standard normal as 

the time scale that used to calculate the returns increases. This statistical property 

describes returns distribution behaviour and has important applications in modelling 

tail risk behaviour, see for example Eberlein and Keller (1995), Bamdorff-Nielsen 

(2001), Conti (2001), and Roger et al (2011).

In this section, we aim to establish whether stocks from different market sectors 

converge to Gaussianity at similar rates. We are also interested to see whether the 

capability of the realized measures to restore normality is associated with the degree 

returns conforms to aggregational Gaussianity.

We select 10 representative stocks (one from each sector), where normality could be 

restored for 5/10 at both the 1-second and 5-minute frequency and not for the 

remaining. For each of the stocks we observe returns at 5, 30, 60 and 300 seconds. For 

the same stocks we calculate realized volatility at the 1-second and 5-minute 

frequencies to standardize the daily returns.

Table 3.4 shows the results of aggregational Gaussianity (left panel) and the 

standardized returns (right panel). The left panel displays the percentage change in the 

JB test statistic relative to the previous sampling frequency whereas the right panel 

reports the standardized test statistics.

The results from the left panel shows return distributions gradually converge to 

normality as the sampling frequency decreases. We observe a significant decrease o f 

the JB statistics as we move from 1-second to 5-minute, with two exceptions of PG 

(CS sector) and AA (MAR sector). When the time scale increases, the assumptions 

underlying the CLM starts to hold as the time scale is more uniformly.
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The standardized returns (right panel) all show lower JB test statistics at 5-minute 

frequency than their counterparts at 1-second frequency. This conclusion holds for 

both stock groups irrespective of whether normality is achieved. The largest difference 

in the JB test statistics between the 1-second and 5-minute frequencies statistics are 

shown in “Sprint Nextel” happens to be for the most jumps-contained sector.

Despite normality converging rate is relatively constant, the average converging rate 

for the stocks where returns normality could be recovered higher. This finding holds 

for all the intraday sampling frequencies that have been considered. This result is 

interesting as it may identify a general criterion as whether returns normality could be 

restored. It also shows that assumptions of the central limit theorem tend to be 

affected to a certain extent by the nature of the stock under consideration.

[Table 3.4 here]

3.5.2 Standardized Returns: Different Sampling Frequencies

Table 3.5 shows the results of returns standardized by realized volatility measures 

which are aggregated both at the 5-minute and 1-second sampling frequencies, 

respectively. In the table, we report the percentage of the stocks that return normality 

is rejected at the 5% level according to Jarque-Bera normality test. The results are 

presented both at sector level and overall level. 11

[Table 3.5 here]

11 For brevity, we only report the percentage o f rejections based on the JB test statistics at 5% level. The detailed 
statistics o f JB test together with skewness and kurtosis o f each single stock is provided in the appendix. We also 
test the normality using the Kolmogrov-Smirnov (KS) density test. The KS test provides the identical conclusion as 
JB test.
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The result of standardized returns aggregated at 5min has been reported and discussed 

in Chapter 1. To summarize briefly: pvt outperforms the three other realized volatility

measures in most of the sectors and overall. bvt works second best. rvt is the worst 

performed realized volatility measure. The two most successfully recovered sectors 

are ENG and UTL whereas the two least successful sectors are MAR and IT. Among 

these four sectors, UTL is the sector by which a large number o f daily and intraday 

jumps are detected and IT is detected with least daily and intraday jumps.

The result o f returns standardized by 1-second aggregated realized volatility measures 

is in the lower panel. Comparing the 1-second result with the 5-minute result, the 

percentage o f rejections has increased at overall level for all the realized volatility 

measures. The increase is more dramatic for pv t , bvt and rrt , of which the rejections 

increase from 34%, 42% and 48% to 77%, 86% and 94%, respectively. Compared 

with other realized volatility measures, the percentage o f rejections based on rvt 

standardized returns increases to a lesser extent, from 60% to 66%.

One explanation for the smaller increase of normality rejections on rvt standardized

returns is provided by Fleming and Paye (2011). They suggest that upward bias in 

realized variance due to the microstructure noise, which is more prominent in 1- 

second aggregated rvt , can reduce the standard deviation and increase the kurtosis of

standardized returns and hence lead to a false appearance of normality. This at least 

partially explains why the returns normality of some stocks is rejected when sampled 

at 5-minute, is not rejected at when sampled at 1-second frequency.

Figures 3.3a, b and 3.4a, b show respectively the density plots and QQ plots of 

sector-average raw returns sampled at 5-minute and 1-second frequencies. The
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distributions are not normal and have long tails. The density plots and QQ plots of 

returns standardized by realized volatility measures sampled at 1-second and 5-minute 

frequencies are given respectively in Figure 3.5 to 3.12. Here we also use sector 

average returns and realized volatility measures. This is for both simplicity and the 

representation of the sectors.

Although providing less formal evidence than the statistics, the density and QQ plots 

are nevertheless informative. It is evident that the realized volatility measures 

standardized returns are much closer to the standard normal distribution than raw 

returns both at 1-second and 5-minute levels, especially for the tails o f the QQ plots. 

The tails have been greatly shrunk than raw returns and show only small deviations 

from the 45-degree lines. In comparing the density and QQ plots o f 1-second and 5- 

minute standardized returns, the plots show that returns standardized by 5-minute 

sampled returns are closer to the Gaussian distribution than their 1-second 

counterparts. This finding is most evident for rrt standardized returns. At the 5-minute

sampling frequency, the density and QQ plots o f rrt standardized returns are better

fitted than the rv, standardized. For the 1-second sampling frequency, both plot types

clearly deviate from the standard normal.

[Figure 3.3a, b to 3.12a, b here]

Here we use the sector-average realized volatility measures to standardize sector- 

average daily returns. The figures are expected to be different from the results of 

individual stocks. This is because taking average value might remove the idiosyncratic 

risks presented in the individual stocks. However, the sector-average standardized 

returns also help us observe some trends which are less obvious at individual stock
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level. The plots confirm that some sectors are more difficult to standardize than 

others.

By comparing the power to recover returns normality of different realized measures at 

different sampling frequencies, we find that the effect o f microstructure noise, which 

arises from change to the sampling frequency, plays a more important role when the 

sampling frequency is ultra-high. In the next section, we further address the effect of 

the presence of jumps, by comparing the recovery of normality for realized volatility 

measures which do, and do not contain jumps.

3.5.3 Standardized Returns: with and without Jumps

Table 3.6 reports the percentage o f normality rejections for returns standardized by 

realized variance, realized bipower variation, realized power variation and continuous 

variance. Except for rvt , the remaining three measures are all jump robust.

Continuous variance, whose construction is based on the theoretical framework of 

Huang and Tauchen (2005), is by definition, the continuous path o f the quadratic 

variation and converge to the integrated variance.

[Table 3.6 here]

In general, jump robust realized volatility measures recover returns normality more 

successfully than rvt . Extracting jumps from rvt does not always aid the recovery of 

normality. The percentage of normality rejection of returns standardized by cv, is 

higher than for returns standardized by pvt and bv( , although cvt is expected to be a 

more accurate estimator of the integrated variance. The percentage of normality
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rejection for rt l ^cv t is 46%, and for rt I yjbv, and r j  Jp v , is 42% and 34%, 

respectively.

ABFN (2010) report similar findings from their investigation o f 30 DJIA stocks. They 

argue that a large jum p tends to increase the (absolute) value o f returns and realized 

volatility o f standardized returns. Therefore, the impact o f jumps is muted. As 

discussed in the previous section, the sector that contains the least number o f 

significant jumps (IT) is also the sector that records the highest rejection percentage. 

This failure not only applies to returns standardized by rv{ , but also to returns

standardized by pv , , bvt and cvt .

To further investigate the effects of jumps to recovering normality, we also compute 

the cv, from 1-second aggregated data and find that the rejection percentage of cv, 

standardized returns is even higher (77%) than that for rvt standardized returns 

(66%). However, the rejection of rt / ^Jbvt is 86%. At the 1-second aggregation level, 

cv, is a more efficient realized volatility measures than bvt .

Here we plot the density plots and QQ plots of sector-average returns standardized by 

cv,. First, we find that the plots of cv, standardized returns mimic bvt standardized

returns. At the 5-minute level, the plots o f rt / <Jcv  ̂ and rt / ^Jbvt are much closer than

their 1 -second level counterparts. This finding is also confirmed by the skewness and 

kurtosis as well as the JB statistics both at individual stock level and sector average 

level. For some stocks, cv, is the least successful volatility measure in restoring the

return normality. The plots from 1 -second data tell a different story. Plots of rt /

show closer fitness of Gaussianity than those of rt / ^Jbvt .
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[Figure 3.13a, 13b and F igure 3.14a, 14b here]

To summarize, the standardization results for both sampling frequencies suggest that 

the effect of jumps in recovering normality is more of a problem at the 1 second 

aggregation level. At the 5 minute level, the presence o f jumps is less o f a concern. 

Instead o f jumps, microstructure noise within realized volatility measures from the 

ultra-high sampling frequency is the predominant factor in biasing returns normality.

3.5.4 Standardized Returns: Moving Average Filtration

The results from previous sections suggest that microstructure noise is the important 

factor in distorting the normality o f standardized returns. Extensive attempts have 

been made to eliminate the microstructure noises in realized volatility measures. Early 

attempts can be traced to Zhou (1996) who uses a simple moving average filter. Later 

attempts include those of Maheu and McCuddy (2002), Ait-Sahalia et al (2005), 

Russell and Bandi (2006, 2008), Oomen (2005), Owens et al (2006), Zhang et al 

(2005), Zhang (2006), Hansen, Large and Lunde (2006) and Barndorff-Nielsen et al 

(2008). These papers either construct realized volatility measure that is robust to 

microstructure noise (realized kernel for instance), or separate the noise from rvt , or 

smooth the noise contained in the rvt . The above-mentioned attempts primarily focus 

on realized variance only and leave the three other realized volatility measures 

unexamined. To smooth the microstate noise, we apply a moving average filter to 

daily realized volatility measures. The use of moving average filter for realized 

variance has been considered in ABDE (2001), Maheu and McCuddy (2002) and 

Hansen, Large and Lunde (2006), to smooth intraday returns before constructing
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realized variance. Hansen, Large and Lunde (2006) show that MA-based realized 

volatility estimator is consistent and asymptotically Gaussian distributed about the 

integrated variance under restrictive assumptions. Empirically, improved performance 

o f realized variance has been confirmed using both individual stocks and foreign 

exchange data. Inspiring from yet contrasting with the MA method used in other 

papers, we propose the Exponentially Weighted Moving Average (EWMA) filter, 

which can be applied not only to the realized variance, but also to the reaming three 

realized volatility measures. Market microstructure is more predominant at the 

intraday level than at the daily level, as long as MA filter is effective at the intraday 

level, it is expected to be effective at daily level as the microstructure noise tends to 

mitigate at the daily level. The EWMA filter is shown to be easy to apply and is 

especially widely used in volatility forecasting. It generally yields the lowest MSE 

among other forecasting models. (For a detailed survey of EWMA, see Poon and 

Granger, 2003).

An n-period EWMA of a time series y t is defined as

iut(n) = ^ 0 ) r y,_i ,  co, = ]_{ ■ [3.10]
'=° L m *

As n converges to infinity, A" —> 0 , con —> 0 and the EWMA converges to

= [3.11]
;=0

Therefore, the EWMA may be defined independently of the window length n. The 

EWMA in [3.11] may be computed using the recursion

M W  = (1 - X ) y ^ A ^ _ x{X) [3-12]

where y  is the realized volatility measure and A is known as the decay parameter or

smoothing parameter and takes the value between 0 and 1.
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It is clear that the closer the decay parameter to 1, the more weight is put on the 

previous period’s estimate relative to the current period’s value (day in this case). We 

consider three values: 0.25, 0.5 and 0.75. The result for X = 0.5 is reported as this 

weighting provides the best outcome in the filtration12.

We plot the EWMA filtered realized volatility measure in Figure 3.15. The figure 

shows that the filtered volatility measures are less noisy than the original series.

Table 3.7 reports the percentage of normality rejections o f returns standardized by 

MA filtered realized volatility measures. In some cases, using filtered realized 

volatility series brings the standardized returns closer to normal. In general, the

percentage of rejection decreases to 38% for rm  / ^rv MA and to 40% for rm  / <Jbvm  

(the percentage of rejection for rt / yjrv^ is 60% and for rt / <Jbv~ is 42% respectively). 

EWMA works exceptionally well on rvt . Before applying MA filtration on rvt , the 

highest rejection of rt / yjrv l is 80% from FIN, IT and MAR sectors. When 

standardized by MA filtered rvt , the percentage of rejection decreases to 20%, 60% 

and 30% respectively. The rejection of CD and TEL is 70% under raw series and 

decreases to 40% and 20% respectively after filtration. These results indicate a 

considerable improvement. However, the percentage of rejection for returns 

standardized by MA filtered pvt and rrt further increase. The MA filter is less able to 

enhance the returns normality o f the stocks that normality is recovered by raw realized 

volatility measures.

[Table 3.7 here]

[Figure 3.15 here]

12 Another noise filtration method is proposed by Owens e t a l (2006) who filter the noise within RV using the 
Kalman filter and Kalman smoother. We investigate these filters as well and find that they are less effective than 
EWMA in terms of recovery returns normality.
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3.5.5 Standardized Returns: Parametric and Nonparametric 
Volatility Measures

In this section, we standardize returns by the volatility o f parametric and non­

parametric measures. The extent of normality that can be achieved in the standardized 

returns acts as an indicator of the performance of volatility measures (parametric and 

non-parametric) in accounting for the factors causing returns non-normality.

The normality o f returns standardized by two parametric volatility measures, GARCH 

(1, 1) ( garch,)  and stochastic volatility (.sv,), is rejected at the 5% level for all stocks. 

Normality is greatly improved as compared with raw returns. There is a contraction in 

the tails o f garch, / sv, standardized returns relative to the raw returns, yet they remain 

significantly leptokurtic. The distributions o f sv,/garch, standardized returns all show 

excess kurtosis. When used as the standardized factor, garch, and sv, display a 

similar performance and tend to depart from normality by similar magnitudes. The 

density and QQ plots of garch,!sv, standardized returns from Figure 3.16 and 3.17 

are less satisfactorily fitted when compared with non-parametric volatility 

standardized returns.

Same conclusion is reached in ABD (2000b) and ABFN (2010). Both papers consider 

the case of garch, only. The difference between parametric and non-parametric

volatility measures lies mainly in the estimation approach, as ABD (2000) state. The 

parametric measures are estimated conditional on the discrete path o f returns up to day 

t, whereas non-parametric volatility measures are estimated conditional on the 

continuous path of stochastic volatility up to and including day t. The degree of 

information contained in the two volatility measures is shown to be quite distinct.
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These results indicate that the non-parametric volatility measures are more capable in 

capturing the dynamics o f the market and hence in recovering returns normality. If we 

were to measure volatility accuracy based on recovering normality, we might 

conclude that garcht and sv, were not that accurate in comparison with the non- 

parametric measures.

[Figure 3.16a, b and 3.17a, b here]

3.5.6 Standardized Returns: 30 Most Actively Traded Stocks

Another focus of this chapter is whether the recovering power o f realized volatility 

measures is associated with the level of stock activity. We investigate the 30 most 

actively traded stocks within the sample. We are particularly interested in this 

subsample because most of these stocks are the most extensively studied in the 

literature. They may also draw more implication for the practitioners.

The standardization results according to the percentage o f rejection are reported in 

Table 3.8. To compare the different performance of the top 30 stocks and the overall 

sample, we also report the results of 100 stocks in the lower panel.

The 30 most actively traded stocks contain fewer significant jumps on average than 

the overall sample. However, the percentage of normality rejections is obviously 

higher. This result further suggests that the number of jumps contained in the realized 

volatility measures and returns has little impact in recovering returns normality 

through standardization processes. On the other hand, liquid stocks have less 

microstructure noise than stocks with larger trading volumes. From their examination 

of the relation between microstructure noise and various liquidity measures using all 

NYSE traded common stocks over 10-years, Ait-Sahalia and Yu (2009) conclude that
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“Trading volume, which aggregates the information in trade size and number o f  

trades, is positively correlated with noise”. Hence, T30 stocks are expected to have 

more noise on average.

Here we also consider the effect of MA filtration on the T30 stocks. The percentage of 

rejections is significantly changed: 80% to 13% from rt I *Jrv, torm  / ^ rv MA , 67% to

17% from r, / *Jbvt to rMA / <JbvMA , and 47% to 40% from rt / Jrr^  to rMA / j r r ~ . The 

only exception is for pv ,, where rejections increase from 43% to 57%.

In our sample, more than half of the T30 stocks come from FIN, HC and IT sectors 

(18/30). We reported in the previous section the considerable reduction o f normality 

rejections of ma-rvt standardized returns in these sectors. The overall results from 

T30 stocks further strengthen the augment: except for p v , , applying MA on the other

three realized volatility measures successfully filters the microstructure noise 

contained in the realized volatility measures and hence enhance the power of the 

realized volatility measures o f standardizing returns. The higher the level of noise that 

is contained in the stock prices, the more powerful is the MA filter.

Moreover, one explanation for the failure of ma- pv, is that pv, itself is already a

consistent and efficient estimator of the integrated variance. Smoothing realized 

power variation erases valuable dynamics/information that weakens its power to 

capture the dynamics o f the returns process and hence renders it incapable of 

capturing the factors causing non-normality.

[Table 3.8 here]
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3.6 Conclusion

Different realized measures of volatility, namely realized variance, realized range, 

realized power and bipower variations, sampled at the two frequencies (1-second and 

5-minute, respectively) have been compared based on their power to recover the 

normality of 100 stocks from 10 sectors. The most noteworthy findings are 

summarized as follows:

Realized power variation is the most efficient unfiltered13 realized volatility measure 

in terms of recovering returns normality.

Adjusting for jumps has little (if any) impact upon the restoration of normality to 

standardized returns at the 5-minute sampling frequency. However, removing jumps 

from realized variance enhances the power of restoring normality to standardized 

returns at the 1-second sampling frequency. Jumps are a more likely reason for 

distortion to the distributions of standardized returns at the higher sampling frequency. 

The non-parametric measures are superior in recovering returns normality when 

compared to the parametric GARCH and stochastic volatility. Both GARCH and 

stochastic volatility fail to recover normality in all o f the cases considered.

The presence of market microstructure noise in realized volatility measures is the 

main factor distorting the Gaussianity of standardized returns.

The stocks that are highly traded are found to contain fewer jumps yet are more 

difficult to achieve returns normality under the raw realized volatility measures. 

Exponentially Weighted Moving Average filtered realized volatility measures bring 

normality in cases where the unfiltered series fail. This moving average filter works 

better on more actively traded stocks which are constructed at the 5-minute sampling 

frequency. This does not apply to the 1-second sampled realized volatility measures.

13 “Unfiltered” refers to the volatility series that are not filtered by the EWMA.
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T able  3.2: S um m ary  statistics of realized volatility  m easures (1-second frequency)_________________

CD_______ CS_______ENG FIN HC IND IT MAR TEL UTL

Realized Variance ( r v t )

Mean 19.132 6.325 15.838 23.250 13.097 9.411 37.810 13.764 9.411 8.849

Maximum 1735.920 183.691 926.965 834.948 248.949 318.203 921.619 469.200 318.203 3056.518

Minimum 1.963 0.624 1.258 0.716 1.582 0.977 3.087 1.981 0.977 0.528

S.D. 40.932 9.953 38.510 53.897 16.344 12.864 77.337 20.954 12.864 70.348

Skewness 27.568 6.881 13.693 8.264 3.913 8.915 5.397 10.420 8.915 36.346

Kurtosis 1123.083 85.521 247.210 95.714 30.373 155.993 41.199 171.735 155.993 1452.115

Realized Range ( /7J)

Mean 3.121 0.874 2.126 9.626 1.952 1.595 10.349 2.359 1.595 1.340

Maximum 732.703 252.317 357.327 885.489 171.930 192.823 631.591 414.894 192.823 1300.007

Minimum 0.120 0.056 0.024 0.022 0.089 0.026 0.455 0.024 0.026 0.008

S.D. 15.118 5.847 10.148 36.445 4.605 5.475 25.135 11.108 5.475 26.051

Skewness 41.279 33.711 20.196 11.869 20.962 19.989 9.137 24.423 19.989 45.864

Kurtosis 1966.744 1328.622 594.086 211.605 694.267 605.469 160.524 800.140 605.469 2247.235

Realized Power Variation ( p V { )

Mean 56.955 23.224 43.250 69.248 44.221 35.201 111.501 43.806 35.201 22.582

Maximum 612.664 330.327 1002.797 1335.332 530.175 646.562 1319.961 920.776 646.562 576.207

Minimum 9.645 4.227 8.068 4.148 7.776 5.219 18.348 8.184 5.219 3.238

S.D. 49.717 22.281 51.527 107.554 34.317 32.319 143.307 48.501 32.319 31.164

Skewness 2.833 4.087 7.950 5.101 3.188 5.160 3.793 6.152 5.160 8.976

Kurtosis 16.416 32.499 100.894 42.011 23.409 61.001 20.669 67.271 61.001 121.064

Realized Bipower Variation ( b v { )

Mean 15.307 5.103 12.825 19.237 10.721 7.734 32.261 10.689 7.734 7.007

Maximum 521.104 151.837 875.707 697.669 219.567 282.746 832.096 411.028 282.746 2427.890

Minimum 1.460 0.508 1.036 0.571 1.277 0.740 2.436 1.533 0.740 0.402

S.D. 22.725 8.327 34.300 44.767 13.607 11.028 66.106 17.687 11.028 57.129

Skewness 6.973 7.119 14.421 8.369 4.142 9.543 5.366 11.026 9.543 35.463

Kurtosis 107.949 89.329 271.916 99.409 34.720 176.539 41.567 187.378 176.539 1378.429
Note: Summary statistics o f daily volatility measures for the 100 stocks over the period 01/01/2000 to 
31/12/2010 are reported at sector average level. S.D. denotes standard deviation.
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T able  3.3: Summary statistics of realized variance and its components (1-second frequency)____________

CD_______ CS ENG FIN HC IND IT MAR TEL UTL

Realized Variance ( TV{ )

Mean 19.132 6.325 15.838 23.250 13.097 9.411 37.810 13.764 9.411 8.849

Maximum 1735.920 183.691 926.965 834.948 248.949 318.203 921.619 469.200 318.203 3056.518

S.D. 40.932 9.953 38.510 53.897 16.344 12.864 77.337 20.954 12.864 70.348

Skewness 27.568 6.881 13.693 8.264 3.913 8.915 5.397 10.420 8.915 36.346

Kurtosis 1123.083 85.521 247.210 95.714 30.373 155.993 41.199 171.735 155.993 1452.115

Continuous Variance ( CV{ )

Mean 18.902 6.092 15.593 23.023 12.889 9.197 37.612 13.491 24.138 8.581

Maximum 1734.716 183.501 926.908 834.755 248.824 318.085 921.517 469.068 1091.594 3056.288

S.D. 40.927 9.963 38.522 53.913 16.349 12.876 77.355 20.964 38.577 70.352

Skewness 27.534 6.874 13.690 8.259 3.913 8.901 5.395 10.418 10.684 36.343

Kurtosis 1121.161 85.355 247.098 95.631 30.370 155.611 41.170 171.624 230.886 1451.924

Jumps ( J t )

Mean 0.230 0.233 0.245 0.227 0.208 0.215 0.198 0.273 0.243 0.268

Maximum 1.860 1.459 1.035 1.049 0.704 1.073 0.890 1.618 1.251 1.556

S.D. 0.091 0.071 0.076 0.079 0.053 0.053 0.066 0.098 0.077 0.081

Skewness 7.309 5.699 2.279 1.851 1.879 2.710 0.543 2.558 2.344 3.223

Kurtosis 107.876 67.344 17.344 15.752 14.293 37.404 8.747 24.581 29.030 35.616

Note: This table reports the mean, standard deviation, skewness, kurtosis and maximum at sector average 
realized variance and its continuous and non-contiguous components from 03/01/2000 to 31/12/2010.



3
QTQ
HQ

z
o 3

$ £ £
3
< $ 5

-1
r t

cro
65

r t r t r t r t r t r t r t r t r t r t r t r t r t
3 3 s r 3 - 3 * 3 * 3 " 3 3 * © • 3 " 3 * 3 *

H CTO 3 3 3 3 3 UO 3 3 3 3 3
«©

3". r t 3 3 3 3 3 r t 3 3 3 3 3

© *
S cro cro CTO CTQ cro cro cro CTQ cro cro

3
r t
i r t r t r t r t r t r t r t r t r t r t

3

s
3

CO
r t
n

3

s
r t
3 “
3
3

3 * 3 * 3 *
c -

5 '
c -

3 * r t
3 *
3
3

3 * 3 *
c -

5 *
Cm

3 *
c ^

3 *

3 r t
3 3 CO c o 3 CO 3 CO CC 3

C CM
r t arcj QfO

3 * o r t r t

5 *
3 . o

r t 5 ' 5 '

5 . 3 « c - c -
r t

c r
3 3

3

r t

3
3
CL

r t

5 5
COC/3 3

p

u *
o

ON

-<
£ .
c
r t
CM
©

o
■ rt
r t
3 *
3
3

cro &

3
2 .
5 *

Z
r t >

>
O

O
r t
3
r t
n
£ L

>

2

>

3
QTQ
r t X

H
3 "
r t

s
©
3

W
H

P I
3

r t
n

(JO
a
p i

a
2 . 9

3
3
7 T
©
- r t

z
> <
o

P I
X
X
©
3

(
P

G
)

n
©
r t

r t
n

R o
o
65
3
C -

- r t
- i

£

r t

3 *

£ r

X

r t

n

> ©
3

M
s
e *
r t
■n

a
z

3

3
r t

a r t

a
r t

* 3

5 n
©

* 3

r
r 3

r t
5 * c

2 -

S 2
©

o
3

3
U> r t o © So
o

3
3

Cm
3 * 3

r t ©
3 rt*

C/5 CL r t
r t 3 £ }
r t
o

r t
a

S
r t O © p O p p O O p p

3
n ' O © b O O b b b b b CM

O . CO o o o o o o o o o o r t

n a . r t
r t

N©
0 s

n ©
oN

n O
0 s

n O
0 s

n o
0 s -

nO
0 s

N©
©S

N©
0 s

N©
0 s

'v©
0 s

r t

r t r t 3
CM

• 3
r t CM

r t
r t

c
- t

3 4 4 4L. 0 0 v b 0 0 0 0 v b 4 0 0 v b 4
3 CM* © v L A VO C \ p 4 p o o O (71
CM L * U ) (71 1— * 4 b b L - C v b r tr t CM r t* 0 0 o 4 l» 4L. 4 0 0 4 C v Lh) r t

*< 3
3

CM
o

NO
0 s 0 s

nO
0 s

N®
0 s

n ©
0 s - £ 0 s

N©
0 s

N©
0 s

N©
0 s

N©
0 s

H  " 3 - r t
3 “
r t r t " 3 "

& r t NO o o b v b vO v b VO v b v b v b b b

o 3 3 *
O S 0 0 OO ON OO ~ 4 0 0

P C v 0 0 P NO o
<7v b NO b o <71 * 4 0© U ) b i- ^ 1 4 CM

—* r t VO - U NO a \ U> O ON c C v O r t
o
r t

CM
r t

3
Cl

^©
0 s

\©
0 s

N®
0 s-

N©
0 s

N©
0 s 0 s -

N©
0 s

N©
0 s

N©
0 s

5 T
r t
c

3
< <

3 3 r t ,
N 31 C l r t o s — <71 <71 « 4 4L. 4 o o <71 C v C s

o
r t

3 S o v C v 4 ^ ON <71 VO GN 4L. U ) J 4 0 0
&
rt 3 rt k > NO 4 ON 4L. I n b o b b <71 4 CM

a . 3 VO <71 o o 0 0 ON <71 4 4^. vO vO 4 rt
r t
r t <71

CM
r t

N©
0 s

n O N©
oN 0 s-

N©
© ^

N©
0 s -

N©
0 s

n O
0 s -

r t
3 S LO . r t “

3 s 3 ’ c _ , i

© c
3 " 0 0 v b 0 0 0 0 ' b v b VO o o NO vO o OJ

s
rt
-rt

!?
Q.

0 0 4
On © v

K)
*00

4 ^
^ 4

0 0
o

C7l
JL.

O vO
t 4

4L.
b

<4
b

O
o

o
o
CM

rt r t
3

VO 0 0 -4 U) ON U ) 4L. VO 4 U ) o rt
3
rt >0 5? N®

0 s -
n ©
0 s cx 0 s-

N©
0 s

N©
0 s

'V©
0 s

N©
0 s N© r t

s r e
r t C L

3
3

3
r t # 1 " 3 C-l ■ 3 ■ 3 3 /» 3 c - 3 3 3 3 c - 3

n r t* r t
r t
3

< CO < CO < CO < CC *< CO < CO < CO < CO < CO «C c d
JRT CM

£ .
W £ L 5 L 3 - E .

m *
H c 3

—
c "

—
E "

—
3 c S ' e c " 5 "

CM
r t
r t

3 "
r t
&

CM
3

3

rt r t r t r t r t rt rt rt r t r t

o
r*

3

3
3

1 2 .

3 ' P

4*.
0 0
t 4 ©

U J
u >
f s j p NO 3 u >

0 0 p
h o
4 1 p 4 p p 3 p p p 3 p

QTQ o o b <71 b <71
4 ^
VO

o O b CN b b o b 4 b 4L. CM

3 *
<W

= ?
r t

o
o 4

4
o
o b o

o
o
o s

- 4
O
o < 4

o

1 4
* 4

4
N©

U )
4

t 4
O

4
4 l (71 4L.

4
4 r t

■rtJO o "4
rt s
rt
*3
e

r t
3
2 . p <71 p <7i p

P
p — p ■ 4 O O p P O 4L. O p p O U >

o
3 S ’ o o b o o 0 0 b b M b . o ©N o b ©N 4 o
© CM o

< 4 o - 4 o 0 0 o N J <71 O v 00 o NO NO 00 C v 4 0 0 CM

r t*
t/ i

3
3

oN.*-'
<7l
4 o © v

ON o < 4
N 4 4 ^ o

<71 o o 0 0 4 L N 5 v© ©N u > 00 <71 ©N r t
r t

5 ?
a.

H
Si2
?T

>
TCIK)-JrtK)
Si

o ’
S3
SSL
©
s

o

08

In

to
o'O



2 2
3 *0
3 2.
S’ 5'

era n
I *

» ?r

© « 
sr —j
£ 3"3! rt
«? sr 
3 Srt rt

3 »SP’a
0̂-3 

S ' 3  v> 3
era' — 2 ’ «3 rt
3-Srt o
§ a<s> °-tKiS. «

•“  a .
3 Z 
e  ®
3 gr

S54 <9

s .  *rt ar
' ~i =■

i *1 rt"

tj = 
3  3-

?  «<
c-1
3  *

_  3

=■ s 
* irt 3 
3 _  3 t

I?'?
3* O.

ft
2. c

3 J .» rt ~ rt
rt g'

.  3- 
- i  e r­
as 3  3 w=

era 2rt c- - - O
. 3 3
" =  ?

N2 «- • CL gj

• I I
« ?

S.?5̂ 65

I I
I -a. n -« 3
r t  C L .

rt ^  Q. n
— cr
3 •3"2 3 

^  <*> 
n  as■» -i
3  v>2. S
»  3  
-  • C .
o  a: 
3  -1 C. 

n ’rt

o '

VO
O
v=>o '

O
o '

4^
O

O
\ °o '

o '

O '
o
o '

o '

O
'SCO'

O
O
o '

O
o
o '

' J
"4
'Oo '

VO
O
o '

O
o

o
o '

VO
o
o '

o '

o
o '

o
o'

o
ox°o'

O
o
o'

O''Oo'

00 oo UJ O ' ~o
o
o '

o
o '

O
Po '

O
Po '

O
x°O '

U) to
o
o '

o
o '

O
o '

O
o '

o
'Oo '

<-rt to eyi
o O o o O
o ' 'Oo ' Po ' '5o ' o '

00 OJ 0 1 eyi oo
©
'Oo '

O
'Po '

©
o '

o
po '

O
o '

O '
O
■rt -P*. U> O '

o pa O O O O
-Po ' 2 . 'Po ' o ' Po ' 'Po '

Oi

q"
o

o*
3
O 0 1 p 4^ O '

O ■rt o o O o
£ z o^ o^ 'Po '

O '

o
- j

3
3

o i to VO OO
o o o o o
'Oo ' 'Oo ' Po ' Po ' 'Po '

O '

cn rt rt 
O 
3
a

OO 43 O ' oo
o o O O o
'Po ' 'Oo ' Po ' Po ' NOo '

oo iyi O ' OJ —4
o O O O O
o ' ■Po ' PO' 'Oo ' 'Oo '

-U <yi 4=* to U)
O o O O O
'Po ' po ' Po ' o ' 'Oo '

O' ■£>• OJ 4^ O'
O'
o '

oo
Po '

4^
Po '

to
'Oo '

o
o '

is

pa

o3
O-rt
z
o

tO

O

Table 
3.5: Percentage 

of rejection 
of norm

ality 
on 

standardized 
returns sam

pled 
at different frequencies__________________________________

CD
 

CS 
ENG 

FIN 
HC 

1ND 
IT 

MAR 
TEL 

UTL 
O

verall



88
c r

«T »
Oa

ON

ere 5"

as

as

Os

a.

A>

58

as O n -oo O o
oN O ' 'Oox

U> U J too O

O '

o
ox

to LTl
O O O
sOox ox --Pox

LT\ O l oo
ON°0s

O
ox

O
ox

Os O J CN
O O O
ox ox ox

-P* 4̂ ON
O

o'
O oN°ox

NO NO ooo o o
ox ox 0s

L /l ON 00
O
o x

o
s5>o '-

o
''Sox

L /i to • o
O O o
'Pc x ■vO

CJN ox

to O J
O o O

Ox ox
vO
O '-

-P* O nas
0s

to O
ox

nN

OB
©■*»
©

Table 
3.6: Percentage 

of rejection 
of norm

ality 
on 

standardized 
returns sam

pled 
at different frequencies (including 

and 
excluding 

jum
ps)____________

CD 
CS 

ENG 
FIN 

HC 
IND 

IT 
MAR 

TEL 
UTL 

O
verall



3 S ' *n <£•M rt £ Q.
= e Hrt = =f

n «- s  
£ !? w
Ul c -g o rt 5
3 1 a  o eo * ̂ ft ^~ 3 ETas &s ft •■+ "B ST. ft o< £ ” ft ^ ft
; j s
n 2 S' m 3 era
a- q , rt
a  3. ®
W  W

©■toft ft ft
f  e f

2 3 <-
«> 2 3 
rt “ ■ c  £• N 5= “ rt _ a- o. 3- 
8S ^  ^«> <5T "ort ^  O
a w ?0 rt 3 < on
01 2  5 'S > °**s<« Si 3
m‘ s  23 rt ^s. -t 3a «  «rs a- — 3 ts “
a  5 ■_ O.
2 ">2 88 
r- 3

H65
2?r
U>
0©
*S
rt>"irart
a
S'
frort

* ? s

» 3* 3-t 3 «
S’ 3. o 
5- S’ 3
3 S. "
a rt"3 v 'V
.  PI ft3 ^ 23. ^  «S’ 2  3
2 >• 33* JO

2 S s.

i  3 S’3 n2. M O

rt „ 
■3 -t 3-

~ 3 E.
*5r 3- 3-• rt l;
H 0.-3 
3 -  8S 2 . 
<a —  3 -  ■3 ^  rt rt n 2. 
“1 rt Vi

rt C oa  -s —>
s  g  g

ora -  t  
2. 3 3 
5 * s r as

ST ~65 .4 *<Vi -i ^ 
Cm <"*
® «j 3

"* c err ?  5
Sn’CJ 3
« ^ S’ 

era" -  s
3  O " £ .aS rt
« • a3  3 .  «  
3  g  G .

ZL o  crrt s? 3 < rt as
r t  «■ 2
.—  3 "  Q -

rt e_H Q. 3

« % 
3 3 
3. S’ S3’ £ 
o- 3 
3 S’3 3
*2ft

-0 OO ON 4a.
o O O O
x-5oN x?OX x?0 s x°ox

la NO LA 4a.
o o O O
0 s x=ox OX xPOX

oo - J 4^
o
x °cx

O
X®ox

O
X?Ox

O
x °ox

-o O to
O O o
x®ox x °ox X?©X

4a. -J to
O O O o
x?ox x°

0 s
x°ox X?ox

OO O LJ LO
o O O O
X?0 s-

xO
ox xOox Pox

LA LA to ON
o
N°ox

O
xOox

O
xpox

O
x°ox

-o Os 4^ U)
o
X?ox

O
X®ox

O
X®ox

O
x °ox

00 NO U) to
o
x°
©X

o
xPox

O
x?ox

o
xOox

o
o

o
O

NO
o• o

NO
o
-v©

X?ox x°ox ON

ON O 4=» LO
•o LA O OO
X°
QX

xOOX X?OX xP
©X

to
to

Table 
3.7: Percentage 

of rejection 
of norm

ality 
on 

standardized 
returns (MA 

filtered 
realized 

volatility 
m

easures)_________

 
% 

of Rejection 
of N

orm
ality 

( 5-m
inute)___________________________

CD 
CS 

ENG 
FIN 

HC 
IND 

IT 
MAR 

TEL 
UTL 

O
verall



N
ote: T

his 
figure 

presents 
the 

overall sam
ple 

average 
daily 

returns 
w

hich 
arc 

sam
pled 

at 
1 

second 
frequency. The 

returns 
is 

reported 
by 

p
ercen

tage.



N
ote: 

The 
figures 

reports 
the 

overall sam
ple 

average 
realized 

volatility 
m

easures, jum
ps 

and 
continuous 

variance 
at 

1 
second 

sam
pling 

freq
u

en
cy.

o
oo

co
oo
to

tO
oooo

to
oooo

toto
o

oo

oto
oo

toOlooo to
o

o
o o

to
o

o
to to

o

to
ooCn

to
o

to
oto

oo oo

to
oto

o
oo

ooooto
oo

to

to
o
ooo

t—

too
o

ooooooto
oo
o

to
ooto

to
oo

ooo

o

to
4̂

Figure 3.2: Plots of overall average 
realized 

volatility 
m

easures, continuous variance 
and 

jum
ps (1-second 

sam
pling 

frequency)



215

Figure 3.3a: D ensity plots of sector-averages daily re tu rn s  sam pled a t 5-m inute
frequency
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Figure 3.3b: QQ plots of sector-averages daily returns sampled at 5-minute frequency
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F igure 3.4a: Density plots of sector-averages daily re tu rn s  sam pled a t 1-second
frequency
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Figure 3.4b: QQ plots of sector-averages daily returns sampled at 1-second frequency
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Figure 3.5a: Density plots of sector-averages daily re tu rn s  standard ized  by realized
variance  sam pled at 5-m inute frequency
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Figure 3.5b: QQ plots of sector-averages daily returns standardized by realized variance 
sampled at 5-minute frequency
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Figure 3.6a: Density plots of sector-averages daily re tu rn s  standard ized  by realized
bipow er varia tion  sam pled a t 5-m inute frequency
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Figure 3.6b: QQ plots of sector-averages daily returns standardized by realized bipower 
variation sampled at 5-minute frequency
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Figure 3.7a: Density plots of sector-averages daily re tu rn s  standard ized  by realized
pow er varia tion  sam pled at 5-m inute frequency
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Figure 3.8a: Density plots of sector-averages daily re tu rn s  standard ized  by realized
range sam pled at 5-m inute frequency
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Figure 3.8b: QQ plots of sector-averages daily returns standardized by realized range 
sampled at 5-minute frequency
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Figure 3.9a: Density plots of sector-averages daily re tu rn s  standard ized  by realized
variance  sam pled a t 1-second frequency
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Figure 3.9a: Q Q  plots o f sector-averages daily re tu rn s  standard ized  by realized variance
sam pled a t 1-second frequency
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F igure 3.10a: Density plots o f sector-averages daily re tu rn s  s tan d ard ized  by realized
bipow er varia tion  sam pled at 1-second frequency
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Figure 3.10b: Q Q  plots o f sector-averages daily re tu rn s  standard ized  by realized
bipow er varia tion  sam pled a t 1-second frequency
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Figure 3.11a: Density plots of sector-averages daily returns standardized by realized
power variation sampled at 1-second frequency
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Figure 3.11b: QQ plots of sector-averages daily returns standardized by realized power 
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Figure 3.12a: Density plots of sector-averages daily returns standardized by realized
range sampled at 1-second frequency
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Figure 3.12a: QQ plots of sector-averages daily returns standardized by realized range 
sampled at 1-second frequency
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Figure 3.13a: Density plots of sector-averages daily re tu rn s  standard ized  by realized
continuous variance sam pled a t 5-m inute frequency
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Figure 3.13b: Q Q  plots of sector-averages daily re tu rn s  standard ized  by realized
continuous variance sam pled at 5-m inute frequency
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Figure 3.14a: Density plots of sector-averages daily re tu rn s  standard ized  by realized
continuous variance sam pled at 1-second frequency
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F igure 3.14b: Q Q  plots o f sector-averages daily re tu rn s  standard ized  by realized
continuous variance sam pled a t 1-second frequency





228

F igure 3.16a: Density plots of sector-averages daily re tu rn s  stan d ard ized  by G A R C H
sam pled a t 5-m inute frequency
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F igure 3.17a: Density plots of sector-averages daily re tu rn s s tandard ized  by G A R C H  sam pled
a t 5-m inute frequency
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Figure 3.17b: QQ plots of sector-averages daily returns standardized by GARCH sampled at 5- 
minute frequency
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B.3: R

eturns 
standardized 

by 
realized 

volatility 
m
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at 1-second 
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Table 
B.5: R

eturns 
standardized 

by 
realized 

volatility 
m

easures 
at 

1-second 
sam

pling 
frequency 

(Sector 
H

C
)



K
urtosis 

10.040 
3.190 

26.622 
3.363 

3.281 
3.498 

| 
9.330 

2.772 
3.023 

3.003 
2.852 

3.435

JB 
5796.558 

4.675 
64703.750 

15.495 
10.255 

28.614 
| 4644.655 

7.099 
0.697 

0.442 
5.043 

27.247

p 
value 

(0.000) 
(0.097) 

(0.000) 
(0.000) 

(0.006) 
(0.000) 

j 
(0.000) 

(0.029) 
(0.706) 

(0.802) 
(0.080) 

(0.000)
Note: This 

table 
reports 

the 
skew

ness, kurtosis 
and 

Jarque-Bera 
test statistics 

of norm
ality. rvt, rrtlpvt,bvt,cvt denote 

realized 
variance, realized 

range, 
realized 

power 
variation, realized 

bipow
er 

variation, and 
realized 

continuous 
variance, respectively. The 

sam
pling 

frequency 
is 

1 
second.
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B.6: R

eturns 
standardized 

by 
realized 

volatility 
m

easures 
at 

1-second 
sam
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frequency 

(Sector 
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B.7: R

eturns 
standardized 

by 
realized 

volatility 
m
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at 

1-second 
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(Sector 
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Table 
B.8: R

eturns 
standardized 

by 
realized 

volatility 
m

easures 
at 

1-second 
sam

pling 
frequency 

(Sector 
M

A
R

)



K
urtosis 

8.869 
3.370 

8.083 
3.654 

3.427 
3.329 

| 
6.640 

3.283 
4.887 

3.451 
3.389 

3.276

JB 
3982.464 

15.950 
3016.337 

49.479 
21.189 

12.530 
j 

1637.755 
11.376 

417.499 
33.918 

20.335 
11.136

p 
value 

(0.000) 
(0.000) 

(0.000) 
(0.000) 

(0.000) 
j 

(O.OOO) 
(0.003) 

(O.OOO) 
(0.000) 

(0.000) 
(0.004) 

Note: This 
table 

reports 
the 

skew
ness, kurtosis 

and 
Jarque-B

era 
test statistics 

of norm
ality. rvt, rrt,pvt,bvt,cvt denote 

realized 
variance, realized 

range, 
realized 

power 
variation, realized 

bipow
er 

variation, and 
realized 

continuous variance, respectively. The 
sam

pling 
frequency 

is 
1 

second.
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JB 
3830.545 

0.592 
120.710 

13.834 
216.136 

| 
2410.782 

3.318 
0.593 

6.684 
1.865

p 
value 

(0.000) 
(0.744) 

(0.000) 
(0.001) 

(0.000) 
j 

(0.000) 
(0.190) 

(0.744) 
(0.035) 

(0.394)
Note: This 

table 
reports 

the 
skew

ness, kurtosis 
and 

Jarque-B
era 

test statistics 
of norm

ality. rvtM
A, rrtM

A, pvt MA, bvt MA, 
denote 

EW
M

A 
filtered 

realized 
variance, realized 

range, realized 
power 

variation, and 
realized 

bipow
er 

variation, respectively. The 
sam

pling 
frequency 

is 
5 

m
inute.
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Table 
C

.l: R
eturns 

standardized 
by 

EW
M

A 
filtered 

realized 
volatility 

m
easures 

at 5-sec 
sam

pling 
frequency 

(Sector 
C

D
)

r<MA 
rt,M

A 
riM

A 
rt,M

A 
rt,M

A 
VtM

A 
Yt,M

A 
rt,M

A



JB 
3494.419 

23.327 
27.702 

51.436 
23.045 

| 
2586.294 

0.223 
1.882 

10.948 
1.219

p 
value 

(0.000) 
(0.000) 

(0.000) 
(0.000) 

(0.000) 
| 

(0.000) 
(0.895) 

(0.390) 
(0.004) 

(0.544)
N

ote: This 
table 

reports 
the 

skew
ness, kurtosis 

and 
Jarque-Bera 

test statistics 
of norm

ality. rvtM
A, rrtM

A,pvtM
AlbvtM

A, 
denote 

EW
M

A 
filtered 

realized 
variance, realized 

range, realized 
power 

variation, and 
realized 

bipow
er variation, respectively. The 

sam
pling 

frequency 
is 

5 
m

inute.
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JB 
766845 

18.417 
33.689 

551.395 
21.902 

| 
4460.612 

0.497 
6.376 

3.465 
0.718

p 
value 

(0.000) 
(0.000) 

(0.000) 
(0.000) 

(0.000) 
j 

(0.000) 
(0.780) 

(0.041) 
(0.177) 

(0.698)
Note: This 

table 
reports 

the 
skew

ness, kurtosis 
and 

Jarque-Bera 
test statistics 

of norm
ality. rvtM

A, rrtM
A,pvtM

A,bvtM
A, 

denote 
EW

M
A 

filtered 
realized 

variance, realized 
range, realized 

power 
variation, and 

realized 
bipow

er variation, respectively. The 
sam

pling 
frequency 

is 5 
m

inute.
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JB 
8446.766 

10.870 
91.326 

61.716 
18.320 

| 
30278 

6.133 
11.169 

48.231 
6.610

p 
value 

(0.000) 
(0.004) 

(0.000) 
(0.000) 

(0.000) 
| 

(0.000) 
(0.047) 

(0.004) 
(0.000) 

(0.037)

N
ote: This 

table 
reports 

the 
skew

ness, kurtosis 
and 

Jarque-B
era 

test statistics 
of norm

ality. rvtM
A, rrt MA,pvt MA, bvt MA, 

denote 
EW

M
A 

filtered 
realized 

variance, realized 
range, realized 

power 
variation, and 

realized 
bipow

er variation, respectively. The 
sam

pling 
frequency 

is 5 
m

inute.
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Table 
C

.4: R
eturns 

standardized 
by 

EW
M

A 
filtered 

realized 
volatility 

m
easures 

at 5-sec 
sam

pling 
frequency 

(Sector 
F

IN
)



JB 
367.267 

6.360 
3.374 

2.492 
1.572 

| 
12871 

4.706 
16.434 

27.816 
5.794

p 
value 

(0.000) 
(0.042) 

(0.185) 
(0.288) 

(0.456) 
| 

(0.000) 
(0.095) 

(0.000) 
(0.000) 

(0.055)
Note: This 

table 
reports 

the 
skew

ness, kurtosis 
and 

Jarque-Bera 
test statistics 

of norm
ality. rvtM

A, rrtM
A,pvtM

A,bvtMAl 
denote 

EW
M

A 
filtered 

realized 
variance, realized 

range, realized 
power 

variation, and 
realized 

bipower 
variation, respectively. The 

sam
pling 

frequency 
is 5 

m
inute.
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Concluding Remarks

This thesis compares the degree of validity of stylized properties of four extensively 

studied realized measures of volatility using a series of econometric models. In this 

context, the main research topics examined include: a) Optimal sampling frequency; 

b) Impact of jumps; c) Correlation relationship; d) Leverage and volatility feedback 

effect; e) Volatility regimes; f) Volatility-volume relation; g) The distributional 

properties of realized volatility measures and returns; and h) Recovering return 

normality.

The thesis uses a unique data set that corrects the bias and errors presented in the 

widely used TAQ. We choose 100 stocks traded in the US equity market and segment 

them into 10 market sectors. An 11-year sample period which covers two crises is 

considered. Using this extensive data, we aim to find out which realized volatility 

measure(s) is the best proxy of the true integrated variance. Furthermore, the analysis 

based on sector segmentation also has implications for practitioners on the aspects of 

risk management and other financial investments.

Chapter 1 provides a general discussion of the above topics. Overall, we confirm 

many of the findings of the existing literature: 5-minute is the optimal sampling 

frequency for at least realized variance and realized bipower variation. Realized 

volatility measures exhibit similar properties. They are highly leptokurtic and are best 

described by Lognormal and Inverse Gaussian distributions. Both distributions 

provide almost indistinguishable empirical fits. Returns standardized by realized 

volatility measures are (nearly) Gaussian. Realized volatility measures are highly 

positively correlated with each other. On the other hand, the regime characteristics
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vary by both regime type (high-low) and by sector according to the Markov Regime 

Switching model. The presence of jumps in the realized variance has little impact on 

the properties of realized variance. Jumps have distinctively different properties to 

realized measures of volatility. Jumps are small, short-memory, and do not have the 

leverage and feedback effects that are found in realized volatility measures. At sector 

level, the proportion of detected significant jumps does not vary much across sectors. 

However, the sectors which are highly actively traded contain fewer jumps and are 

more likely to have lower jump contribution to total volatility. The less actively traded 

sectors are detected with more jumps and reports higher jump contribution to total 

volatility.

The stylized facts being addressed tend to vary widely across sectors. For example, 

the most actively traded sector, IT, shows the highest persistence in realized volatility 

measures according to the Robinson’s “d” long memory test, suggesting a potential 

better performance in forecasting than the least actively traded sector UTL, which 

reports the lowest persistence. The volatility-volume relation also holds stronger in 

those actively traded sectors such as IT and FIN, and has the highest model rejection 

in the least traded sector, UTL.

Among the four realized volatility measures, realized power variation shows the best 

performance across sectors and outperforms the other realized volatility measures. It 

has the lowest standard deviation, well-defined distributional properties, and the 

highest degree of persistence. It is the most capable of recovering normality and also 

robust to jumps. Our findings here are in line with Ghysels et al (2006) where the 

superiority of the power variation has also been highlighted. Realized bipower 

variation, another jump-robust volatility measure, also shows consistent performance 

among all tests. Realized range, the only volatility measure in this thesis that is
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constructed from intraday highest and lowest prices, shows the greatest diversity of all 

four realized volatility measures. Finally, the most extensively discussed realized 

variance provides the least satisfactory results: For instance, it provides lowest 

estimation results in the volatility-volume relation and shows the highest rejection of 

normality test when used as a standardization factor.

The following two chapters extend the analysis of Chapter 1. Chapter 2, which 

discusses the volatility- volume relation under the framework of Mixture of 

Distributions Hypothesis (MDH), contributes to the literature as follows: First, we 

identify strong evidence that volatility-volume relation holds under the various 

realized volatility measures. The test results are generally stronger than in many recent 

empirical studies which also look at this relationship using realized volatility. Second, 

the results indicate that the number of trades is a superior market information proxy to 

trading volume. In particular, the number of trades that takes place either at higher or 

lower prices is the most capable of explaining the realized volatility measures.

In Chapter 3, we analyze the distributional properties of volatility standardized daily 

returns. The motivation of this chapter is drawn from the well-documented stylized 

fact in the literature that realized volatility measures standardized returns are (nearly) 

Gaussian. A great many researchers also record the violation of the Gaussianity of 

standardized returns. Possible explanations are mainly founded upon the existence of 

jumps and/or market microstructure noise. To identify which are more significant 

reasons driving the standardized returns from standard normal, we construct the 

realized volatility measures from two sampling frequencies and find that the presence 

of jumps could be a reason to reject the normality, but only at ultra-high sampling 

frequency. At the optimal sampling frequency (5 minute), jumps have little impact on 

recovering the return normality. Instead, market microstructure noise is likely to be a



main reason. To smooth the microstructure noise, we propose a moving average filter 

on realized volatility measures, the micro structure noise in the realized variance as 

well as realized bipower variation was effectively filtered. Filtered realized volatility 

measures have stronger power to achieve the stock normality in some cases. However, 

the moving average filter falls to enhance the power of realized power variation on 

recovering returns normality. Moving average filtration does not apply for the ultra- 

high sampled realized volatility measures. Our results also provide evidence that more 

actively traded stocks (by volume) contain more market microstructure noise and 

fewer jumps. Filtration on realized volatility measures works better on stocks which 

contain a higher degree of market microstructure noise.
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