Essays on Realized Measures of Volatility

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

by

Peiran Shi

Department of Economics

Lancaster University

October 2013



ProQuest Number: 11003762

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 11003762

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



RGER, FoHR. HRER, KRER, BRER, HAER.
— (W& PNHEER)

This thesis is dedicated to

My parents.



Abstract

This thesis investigates the stylized facts of realized measures of volatility in 10
different market sectors. Traditionally, studies in the area have addressed the issues by
either using a single measure on a number of stocks or indices, or a number of
measures on a given stock or an index. This usually provides results that cannot be
generalized; hence does not allow for discussing these measures comparatively, nor
fully quantifies the gains from using high frequency data in general.

Using 100 stocks from 10 sectors over the period 2000 - 2010, we investigate topics
within the high frequency context of various realized volatility measures.

In Chapter 1, we investigate whether the stylized facts of different realized measures
vary across sectors. To this end, our work could be seen as an extension of Andersen
et al (2001), Luu and Martens (2003), Andersen er al (2010), Fleming and Paye
(2011), and Giot et al (2010). Our findings here are of interest as it provides guidance
as whether certain realized measures are best suited to address specific queries relative
to others.

In Chapter 2, we revisit the volatility-volume (number of trades) relation. The
literature takes it as a task to establish as which is a better measure of the market
activity. Despite numerous studies, this remains an open question, a query that we will
address as a part of our investigation. We revisit this relation within the context of
what is known as the mixture of distributions hypothesis. We aim to investigate
whether this relation is stable across different sectors and whether it is measure
dependent. We also aim to show that the information content between the two activity

measures is distinct. We find that on average, the number of trades is a better proxy



for market activity. We also show that a trade that accompanies a price change is more
important than one which takes place at the same price.

In Chapter 3, we address the issue of recovering returns normality using parametric
and non-parametric measures of volatility. Returns are not normal, as evident from the
vast number of empirical studies that investigate their stylized facts. The finding that
returns normality could be achieved through standardization is based on the
assumption that any semi-martingale process could be written as a time-changed
Brownian motion. The aim in this chapter is to highlight the important factors that
may affect recovering returns normality. We look at factors such as the frequency at
which the realized measures are estimated, the level of stock activity, the effect of
jumps and microstructure noise. We find that the most dominant factors are the
sampling frequency and microstructure noise.

Overall, this thesis seeks to investigate the outlined topics to check whether the

extensively reported findings still hold by using a very refined data.
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Introduction

The discussion and subject matter of this thesis is motivated by the recent
development of realized volatility measures. Volatility is fundamental to asset pricing,
risk management, and portfolio allocations. It plays a crucial role in financial
investment. Modelling volatility has drawn great interest from both scholars and
practitioners in recent decades. With the availability of high frequency data and high
performance computers, the estimation of volatility is now ex-post. The so-called
realized volatility measures, which are based on continuous time jump diffusion
frameworks, have been analyzed and modelled extensively. It has been generally
accepted in the literature that realized volatility measures provide better in-sample
fitness and out-of-sample forecasting than traditional volatility measures, such as
GARCH, absolute returns and squared returns. The superior performance of various
realized volatility measures has been discussed and reported using a wide range of
financial, or even non-financial, data.

Although realized volatility measures have been studied extensively, a gap currently
existing in the literature is that relatively few studies look at the comparative
performance of different realized volatility measures. Using four extensively studied
realized volatility measures which are calculated from 100 stocks traded in the US
equity market spanning an over 10-year time period, this thesis aims to fill the gap.
Our data are collected from a bias/error corrected database and show a more accurate
estimation of the measures than the commonly used TAQ database, especially for
realized range. The 100 stocks are further segmented into 10 market sectors to check

the extent to which the validity of models tested varies across sectors. To the best of




our knowledge, this work is one of the earliest empirical investigations on modelling
realized volatility measures at the market sector level.

The thesis is organized as follows:

Chapter 1: On the Stylized Facts of Realized Measures of Volatility in Different
Market Sectors. This chapter investigates the stylized facts of four popular realized
volatility measures: realized variance, realized range, realized power variation and
realized bipower variation. Volatility measures are compared and valued using various
commonly adopted econometric techniques. We address several stylized facts under
the continuous time jump-diffusion model framework: a) optimal sampling frequency;
b) impact of the presence of jumps; c) pair-wise correlations; d) volatility regimes
under Markov-Switching dynamic model; e) leverage and feedback effects; f) long
memory; g) volatility-volume relation; and h) the distributional properties of volatility
and volatility standardized return. This chapter compares the performance of different
realized volatility measures and attempts to draw a conclusion whether any measure
produces most consistently best results and hence can be concluded as the most
accurate estimator of the true latent volatility. This chapter also aims to draw
comparisons between different market sectors.

Chapter 2: On the Significance of Trading Volume and Number of Trades in
High Frequency Data. This chapter addresses the volatility-volume (number of
trades) relation from the conclusions reached in Chapter 1. We attempt to determine
which market activity measures best explain volatility. To address the issue, a series
of econometric techniques have been adopted. These include looking at: a) the long
memory properties of the market activity measures; b) correlation structure linking
volatility and activity measuring variables; ¢) common structural breaks in volatility

measures and activity variables; d). regression analysis; e) Granger causality; f) The
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performance of GARCH augmented with market activity measures; and g) Estimating
the moments of information flow using GMM. By decomposing number of trades
according to prices change, we find that the stronger explanatory power of number of
trades on volatility reported in the literature should be attributed to the number of
trades that is happened when prices change. The number of trades happened when
prices remain the same does not necessarily carry more market latent information flow
than trading volume. The findings of this chapter also suggest that the MDH is better
supported by using more accurate volatility measures.

Chapter 3: Factors Affecting Recovering Returns Normality Using Parametric
and Non-Parametric Volatility Measures. This chapter discusses the issue of
recovering returns normality using both parametric and non-parametric volatility
measures. We investigate the impact of stock type and activity level on the capacity of
various volatility measures to achieve return normality. The second task is to look at
the impact of a) sampling frequency; b) jumps; and ¢) market microstructure noise on
the distributional properties of standardized returns. We provide the comparison
between different volatility measures (parametric and nonparametric) and between
different sampling frequencies. We recognize the impact of microstructure noise on
recovering returns normality and suggest a moving average filtration approach that
applies to all realized volatility measures and that is capable of providing

improvements over the jumps robust measure such as the bipower variation.




Chapter 1

On the Stylized Facts of Realized Measures of
Volatility in Different Market Sectors

Abstract

We investigate the stylized facts of four extensively studied realized volatility measures, namely,
realized variance, realized range, realized power variation and realized bipower variation, within the
context of the continuous-time jump diffusion model. Different realized volatility measures are
compared and evaluated using various econometric techniques which are commonly adopted in the
literature, We look at optimal sampling frequency, impact of jumps, distributional properties of returns
and volatility, long memory, volatility regimes, the volatility-volume relation and the recovering returns
normality. We use a data set of 100 stocks, representing 10 sectors over the period 2000-2010. To the
best of our knowledge, this is the largest data set ever investigated in empirical research in this area.

Our findings show the properties of the realized measures vary widely across sectors. The results
obtained add to our understanding about how different sectors operate, especially during the financial

crisis.




1.1 Introduction

Volatility modelling and estimation are widely addressed in the literature, especially
in relation to its importance in pricing risk and the desire to understand how financial
markets operate. Modelling volatility accurately is vitally important for option pricing,
risk management and portfolio selection. Early studies use absolute returns, squared
returns, stochastic volatility, and (G) ARCH family models, and so on, as volatility
measures and model them using various datasets. Although estimated differently, a
set of statistical facts have emerged from the empirical studies of volatility measures,
which are common to a variety of financial assets and markets. These common
properties of volatility are known as stylized facts and have been extensively
discussed. Several studies investigate the stylized facts of volatility measures
particularly. To cite a few: Karpoff (1987) discusses the volatility-volume relation and
finds a positive relation to hold in both equity and future markets; Granger and Ding
(1995) investigate the properties of absolute returns and find (i) volatility has a long
memory and decays slowly, (ii) the moments of absolute returns are exponentially
distributed; Malmsten and Terdsvirta (2004) investigate three popular volatility
models (GARCH, EGARCH and Autoregressive Stochastic Volatility ) and show how
these volatility measures are more or less capable of reproducing the observed stylized
facts of financial assets. Their main findings document the presence of high kurtosis

and slow decaying autocorrelation functions in all volatility measures.

These above studies were based on either daily data or monthly data. In the past few
decades, the growth of financial markets, advances in computer power and the

availability of high frequency financial data have given scholars and practitioners new




motivation to model and forecast volatilities. The availability of high frequency data
also allows market information to be gauged at intraday levels, allowing more precise
measurements of volatility. Before the availability of high frequency data, the
sampling frequency spanned from daily, weekly, monthly to even quarterly and
annually. Nowadays, prices can be collected at ultra-high frequency level, often
termed, tick-by-tick level. This development in the dataset has pushed the volatility
modelling on to new ground. There are many drawbacks in using low frequency data
to construct volatility measure. One of which, is that “the standard latent volatility
models fail to describe in an adequate manner is the low, but slowly decreasing,
autocorrelations in the squared returns that are associated with high excess kurtosis

of returns” (McAleer et al, 2008 ).

Measures based on high frequency data are usually classified as non-parametric. The
current empirical literature focuses on four high frequency measure, namely realized

volatility (#v,), realized bi-power variation (bv,), realized power variation ( pv,) and
realized range (77,). See Andersen and Bollerslev (1998), Christensen and Podolskij

(2007), Martens and van Dijk (2007), and Barndorff-Nielsen and Shephard (2003,
2004, and 2006). Realized measures of volatility assume continuity of the underlying
volatility process which contradicts some of the empirical findings documented in the
recent literature. Empirical findings have also showed that the continuity assumptions
are more likely to be met in active stocks than in least active stocks. See for example,

Afit-Sahalia and Jacod (2009a, b, 2010).

The advantages of using high frequency data to estimate volatility measures are
soundly based. For instance, high frequency volatility measures, or ‘realized’

volatility measures, do not require explicitly modeling the intraday data. Most of the



realized volatility measures are treated as observed rather than latent, and hence are
easier to estimate relative to parametric volatility models such as stochastic volatility.
Moreover, those model-free estimators produce significant improvements in both in-
sample fitness and out-of-sample forecasting. They are unbiased and highly efficient

estimators of the integrated volatility under certain conditions.

The superiority of realized volatility measures over other low frequency volatility
measures have been discussed and confirmed empirically. A number of studies have
addressed the stylized facts of volatility measures in general (Ghysels et al (2006) &
Fuertes ef al (2009)), and of the high frequency measures in specific (ABDL
(2001&2003); Christensen and Podolskij (2007), Martens and van Dijk (2007), and
Barndorff-Nielsen and Shephard (2004 and 2006). When compared with low
frequency volatility measures, high frequency volatility measures show a better
performance. In addition, a number of stylized facts have emerged for the high
frequency measures. Giot and Laurent (2004) summarize the stylized fact of realized
volatility as follows: realized volatility is highly skewed and kurtosed, yet the
logarithmic realized volatility is Gaussian. Both realized volatility and logarithmic
realized volatility appear to be fractionally integrated and they both show long-range
dependence, as well as slowly decreasing autocorrelation functions. There are both
leveraged and feedback effects presented in the realized volatility. Furthermore, Corsi
et al (2012) add that the presence of jumps in realized volatility is relatively infrequent
and unpredictable but has a strong impact on future volatility. Realized volatility
measures are also found to possess the stylized facts of low frequency volatility
measures and, to an even greater extent, such as the positive relation between
volatility and volume, and the power to recover normality. (Chan and Fong (2006),

ABFN (2010)).



Previous studies have either considered a single measure on a number of stocks and
indices or a number of measures on a single stock and index. However, very few
studies discuss the stylized facts of different realized volatility measures
comparatively. This chapter aims to fill that gap. In the first chapter, we address the
stylized facts of four realized volatility measures across 10 different market sectors.
The idea is to check the extent to which such stylized facts vary across sectors. We
generalize previous studies by considering all four realized measures using a

diversified data set which looks at 100 stocks representing 10 sectors.

Our main contributions can be summarised as follows:

1. Our data set provides more robust results when compared to earlier studies.
For example, most studies have used data from the TAQ database. Unlike
TAQ, tick data adjusts for stock splits and dividend payments, ignoring which
can result in greater variation in the results obtained, especially for some
measure such as the realized range.

2. We provide a systematic ranking for 100 stocks in 10 sectors according to
returns, realized volatility measures, daily and intraday jumps and recovering
return normality. Trading volume and realized measures provide different
rankings for stocks in the sectors under consideration. This suggests that the
nature of information content of trading volume and realized measures are
distinct. For example, and according to the volatility ranking provided by
realized variance, we find that “materials” ranks top whereas “consumer

staples” ranks last.




3. All realized volatility measures are shown to provide similar ranking for the
least active sectors and to show diversified ranking for the more actively
traded sectors.

4. The 5 minute is the optimal sampling frequency for all realized measures
except in some cases realized power variation. Measures diverge at the 1
second frequency and tend to converge at the 5 minute frequency. The result
is independent of both stock activity level and volatility.

5. The stylized facts of realized measures tend to vary across sectors. For
example, the positive relation between trading volume and realized measures
of volatility is best represented in the “materials” sector and to a lesser extent
the in “consumer discretionary” sector. Power and bi-power measures of
volatility are found the most capable in recovering normality with their
performance varying across sectors.

6. Realized measures are highly correlated across sectors, nevertheless they
display different regimes.

7. Jumps are directly related to both level of stock activity and the sampling
frequency. Active stocks show fewer jumps and the higher the sampling
frequency the higher the number of jumps detected. Volatility and Jumps are

not correlated.

This chapter is presented in 12 sections: Section | gives a brief introduction of the
chapter. Section 2 provides a literature review. In section 3, we provide the theoretical
framework of the realized volatility measures. Section 4 describes and discusses the
data. Section 5 discusses the descriptive statistics of realized measures of volatility
measures and of jumps. In Section 6, Leverage and feedback effect is discussed.

Sections 7 and 8 respectively provide the correlations between realized volatility
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measures and volatility regimes. The long-memory property of realized volatility
measures is shown in Section 9. The regression results of volatility- volume relation is
given in Section 10. Section 11 summarizes the results of the normality recovery
power by different volatility measures and the distributional properties of realized
volatility measures. Section 12 provides rankings for sectors by the results of

different tests. The final section, Section 13, presents our conclusions.

1.2 Literature Review

Measurement and estimation of volatility has undergone many changes in the last
three decades. This is mainly attributable to the development of the theoretical
framework, advances in data and computer technology and the growth of financial

markets.

The literature defines and estimates volatility in diverse ways. Early studies consider
both parametric and non-parametric estimates. Some very early papers consider
mainly non-parametric ways, such as price change or absolute price change (see Ying
(1966), Clark (1973) for instance). Some later papers also use squared returns
(Andersen (1996)) and absolute returns (Andersen (1996)). Another stream in the
literature estimates volatility parametrically and semi-parametrically. For instance,
stochastic volatility (SV) is developed by Taylor (1986), and by Hull and White
(1987). Another important parametric volatility measure is the (G) ARCH families

firstly introduced by Engle (1982) and Bollerslev (1986).




[1

However, the stylized facts and properties of volatility are very much data dependent.
Earlier non parametric measures were noisy and non-reflective when compared to the
standard adopted measures such as stochastic volatility and GARCH (1,1) which were
both unbiased and easy to estimate in case of the GARCH. Noisy measures fail to
capture information contained in the data and hence are less effective in out-of-sample
forecasting exercises. The emergence of high frequency data in the past two decades
has made the volatility now “observable™, so that it can be modeled directly. Volatility
non-parametrically calculated based on high frequency data is now known as realized
volatility, for which there are various measurements. Below we aim to give a review

of the literature highlighting the stylized facts of high frequency measures.

Realized variance, or realized volatility first appears in the family of realized volatility
measures. Realized variance, the sum of intra-day squared returns, is also the most
widely used and discussed volatility measure within the high frequency literature.
Under weak regularity conditions, realized variance can be constructed for the
integrated variance which is asymptomatically unbiased and converges to the true
volatility as the sampling frequency tends to infinity (Andersen er al (2001),

Barndorff-Nielson ef al (2002)).

Andersen, Bollerslev, Diebold and Labys (ABDL, 2001) analyze the distribution and
correlation of realized volatility using a foreign exchange dataset of 10-year DM/USD
and Yen/USD returns at 5-minute frequency. Unconditional distributions (univariate
and multivariate) and conditional distributions are examined. The distributions of FX
realized variance, standard deviations and covariance all exhibit right skewness and
leptokurtosis. The normal distribution is rejected. Only the correlations appear to be

close to normal. However, the distributions of log standard deviations and correlations
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are approximately normal. The correlation between the two FX series increases with
the realized variance as well. The authors also look at temporal aggregation effects.
When the realized volatility measure is temporally aggregated at different return
frequencies, realized variance shows strong volatility clustering effects. The
persistence in realized variance is evident at the monthly level. Finally, the paper finds
that realized variance is stationary, but fractionally integrated and slowly mean-
reverting. In a later paper by ABDE (2001), which examines the distributions of
returns of 30 stocks, the conclusions about distribution properties and correlations are
in line with the previous authors’ findings which use foreign exchange rate data.
Furthermore, the paper by ABDE confirms that an asymmetric relation exists between
stock returns and realized volatility. When returns are negative, the volatility
innovations appear to be higher than the innovations associated with positive returns.
There also exists a volatility-in-correlation effect of data, which shows the strong
positive correlations between stock volatilities and between contemporaneous stock

correlations.

ABDL (1999) studies the unconditional and conditional distributions and the
correlations of realized volatility over 1,000 days. They conclude that realized
volatility changes from day to day and displays substantial persistence. The
correlation is always positive and highly correlated with the realized variance. In an
attempt to reduce the microstructure effects in the high frequency data, the authors
optimize realized volatility and correlation by looking at the sample frequency and
then use volatility signature plots to decide the sampling time frequency. For a liquid
asset sample and a less liquid asset sample, 20-minute and 15-minute frequency are
chosen respectively according to the volatility signature plots. The forecasting of

realized volatility and realized correlation is also discussed in the paper.
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ABD (2003) conduct additional empirical research on realized volatility forecasting
using spot foreign exchange data of USD, DM and JPY, from 1986 to 1999. The
authors first review the quadratic variation theory and realized volatility theory under
the assumption of frictionless market. The statistical properties of realized volatilities
are then summarized. The long memory in realized volatility suggests a long memory
Gaussian vector autoregression (VAR) for forecasting. Furthermore, the authors
compare the VAR-RV forecasts and the forecasts of other traditional volatility
models, such as VAR-ABS (absolute returns), VAR-RV, GARCH, Risk Metrics, daily
FI-EGARCH and intraday FI-EGARCH, both at one-day and ten-day time length. In
the one-day horizon, the results of one-day-ahead out-of-sample forecasting show that
VAR-RYV forecasts considerably outperform other volatility measures forecasts. The
R-squared of the regressions of VAR-RV are always the highest. VAR-RV still
outperforms most of the other volatilities except for intraday FI-EGARCH in the out-
of - sample forecasting. However, even FI-EGARCH shows higher R-squared than
realized volatility, the null hypothesis of the forecasting model is rejected for FI-
EGARCH, but not for VAR-RV. The forecasting results of ten-day horizon are
similar: VAR-RYV forecasts are the best in most of the cases. Furthermore, VAR-RV
also produces very promising density forecasts and associated quintile predictions

(Value at Risk, or VaR).

Independently from the studies by ABDL and ABDE, another important theoretical
work of realized variance is that of Barndorff-Nielsen and Shephard (BN-S, 2002),
which looks at the properties of realized volatility under the content of stochastic
volatility model. It analyzes the asymptotic distribution of the so called realized
volatility error, which is defined as the difference between realized volatility and

integrated volatility. Unlike previous researches, this framework provides model-
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based estimation of integrated volatility using realized volatility. In addition, it allows

the estimation of SV parameters.

Since realized variance is constructed from high frequency data, the presence of
microstructure noise is inevitable. A number of studies are focused on the impact of
microstructure noise on realized variance. Hansen and Lunde (2006) propose a
Newey-West type correction of realized variance that cleans the noise and yields an
unbiased RV estimator. Bandi and Russell (2006 &2008) look at the relationship
between realized variance, microstructure noise and optimal sampling. Both papers
use US equity data and separate the unobservable microstructure noise from the
realized variance. Another important finding of the Bandi and Russell’s papers is that,
in re-examining the optimal sampling frequency first proposed by ABDL (1999), they

conclude that S-minute is an empirically satisfactory frequency.

Even though realized variance is considered to be a more efficient volatility measure
comparing with other volatility measures, such as GARCH and squared returns, it has
still certain drawbacks, one of which is the presence of jumps in the volatility series.
Therefore, BN-S propose two new realized volatility measures, namely realized power

variation and realized bipower variation, both of which are robust to jumps.

Realized power variation (PV), which is calculated as sums of absolute powers of
increments, is first introduced by BN-S (2003). The paper derives the theorems of
realized power variation and also provides empirical applications from Monte Carlo
stimulations. The limiting distribution theory presented in the paper further explains
the variability of the difference between the realized power variation and the actual
power variation. When the logarithm transformation of realized power variation is

applied, the QQ-plots show improvement of the normality.
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BN-S (2004) extend the volatility measure of realized power variation and derive the
theoretical properties of a new estimation, realized bipower variation (BV). BV is
calculated from products of powers of absolute returns. Both PV and BV are robust to
rare jumps, especially in the case of BV, as the time frequency tends to infinite, RV
converges to quadratic variation and BV converges to the integrated variance.
Therefore, the quadratic variation of the jump component is the difference between
RV and BV. Hence, quadratic variation may be divided into the continuous
component of log-prices and the component of jumps. The paper also reviews the
probability limit of RV and PV. In the simulation and empirical parts, the theory is
tested and the results confirm that RV and BV may be combined to estimate the jumps
as the probability limit of BV is unaffected even in the presence of jumps in stochastic

volatility model.

Another paper also by BN-S (2006) uses BV to test jumps in the high frequency
financial time series. Recalling BN-S (2004), RV can in theory decompose the
components of quadratic variation into jumps part and continuous part of log-prices.
In that case, BV can be consistently estimated. The paper also derives the asymptotic
distribution theory for nonparametric tests of jumps under very weak conditions. The
test is applied both to simulated data and to real foreign exchange data over 10 years.
Given the null hypothesis of no jumps, the simulation experiment suggests the
rejection is heavily influenced by the variance of jumps, rather than the frequency or
size of the jumps. It also shows that an adjusted ratio jump statistic can be used to test
jumps where the intraday time period is reasonably small and the sample period is
small (for instance one day). The test outcome of FX data fails to accept the null that
there is no jump in the data. The rejection of no jump is attributed to the breaking

macroeconomic news in some studies.
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Christensen and Podolskij (2007) derive the theoretical properties of another realized
volatility measure using high and low price range, which they call realized range-
based variance (later known as realized range).The main contributions of this paper
include: the theoretical framework of realized range (RR) estimation is built. It is
proved to be consistent with the integrated variance and to be less noisy than realized
variance. Several probabilistic laws for sampling intra-day high-low price ranges are
derived. The downward bias, reported in a number of daily range papers, is also
adjusted and removed by introducing a new scaling factor. In the empirical part, the
authors conduct both Monte a Carlo experiment and an empirical test for 4-year data
for General Motors. Monte Carlo examines the normal and log-normal distribution of
realized range. Both distributional results are consistent with the CLM while the log-
normal outperforms. In respect of comparisons between realized range and realized
variance, the mean and variance of RR are lower than for RV. RR is less skewed,
more persistent and shows lower kurtosis. Moreover, the test results confirm that RV
has lower sampling errors than RV. For their general conclusion, the authors claim RR

to be a less volatile and more efficient volatility estimator than RV.

Martens and Dijk (2007) further investigate the properties of RR. The paper tests the
realized range and uses both Monte Carlo simulation and empirical data from S&P500
index-futures and individual stocks from the S&P100 index. Before the simulation and
empirical tests, the authors conduct a bias correcting procedure for realized range and
realized variance: realized range is more affected by the market microstructure as it is
constructed from high-low prices. Two methods are discussed. The first is based on
the derivation of expressions for the expected difference between the observed and
unobserved high-low prices. The second method replaces the scaling factor 4log2 by

the expected value of the squared range of a Brownian motion which is the number of
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observations during the ith intra-day interval. However, both methods are less
adequate to deal with the upward bias of the realized range due to bid-ask bound, the
authors alternatively correct the bias by scaling the realized range with the ratio of the
average level of the daily price range and of the price range over the g previous
trading days, given g as long as possible under certain conditions. The main findings
of the comparisons between realized range and realized variance include: the Monte
Carlo simulation is consistent with the theory that the realized range also converges to
the integrated variance and is more efficient (5-times according to the empirical result)
than realized variance; and that the realized range has a lower mean-squared error. At
the same time frequency, both realized range and realized variance are upward biased
when bid-ask bound exists. However, whereas realized range is downwards biased
where there is infrequent trading, realized variance is unaffected. Empirical results
using S&P500 data reach similar conclusions to the Monte Carlo simulations. They
show that realized range significantly improves the Two Time Scale estimator, which
is also viewed as a volatility measure. When S&P100 data are used, the results are
more ambiguous but still confirm realized range a more efficient than realized
variance at the 5 and 30 minute frequency. For their general conclusion, the authors

claim the realized range to be a better volatility measure than the realized variance.

In addition to literature mentioned above, there are many other empirical studies in the
area of high frequency finance, especially realized volatility measures. As the ABD
(2003) paper compares realized variance with other parametric volatility measures,

other papers comprise the comparative studies, in particular between different realized

volatility measures.
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Ghysels et al (2006) use Mixed Data Sampling (MIDAS) regressions for comparisons
between different measures of volatility and volatility forecasting. MIDAS, defied as a
reduced-form forecasting device of realized volatility, is valid for both in-sample fit
and out-of-sample forecasting. It also allows parsimoniously parameterized regression
of data at different time frequencies. Several volatility measures are used in the paper:
squared returns, absolute returns, realized volatility, realized range and realized power
variation. The authors first examine the forecasting power of the MIDAS of different
volatility measures using both daily and 5-minute frequency data of 10-year Dow
Jones Composite Portfolio and Dow Jones Index. The forecasting horizon ranges
between lday and 1-4 weeks. For both in-sample and out-sample cases, realized
power variation is the best predictor of future realized volatility. The second best
would be the realized range while the squared return performs most poorly. MIDAS
regression is also examined by high frequency data (at 5 minute). The data is
seasonally adjusted before the test. The results are very similar to those using daily
data. The realized power variation remains to be the best performed volatility
measure. The authors find that the use of high frequency data in the MIDAS does not
directly improve the forecasting performance. It has very similar outcomes to daily
frequency prediction. In the conclusion, the paper highlights some possible

explanations for the remarkable forecasting power of realized power variation.

Fuertes, Izzeldin and Kalotychou (2009) compare the forecasting gains in GARCH (1,
1) when augmented by realized measures of volatility. Using 14 NYSE equity stocks
for the period 1997-2003, they show that among different realized volatility
estimators, realized range works best, according to the normality recovery by realized
volatilities standardized returns. One-day-ahead forecasting is undertaken in the

framework of GARCH and augmented GARCH models and judged by different loss
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functions. The realized power variation outperforms other estimators as it improves
the forecasting power of GARCH by most after augmented in the GARCH model.
When realized variance, realized range, realized power variation and realized bipower
variation are combined in the forecasting model, forecast errors appear to be the
smallest for almost half the sample data. This paper also takes trading volume into
consideration and finds that, when trading volume is relatively low or the market is
over-performing in day -1, the volatility forecasts using data from day ¢-7 to day ¢ will

more accurate outcomes.

Brownlees and Gallo (2010) conduct a comparison of volatility measures by
forecasting Value-at-Risk (VaR). They use 4 blue chip companies in the US market to
construct the realized volatility measures, namely realized volatility, realized bipower
volatility, two-scaled realized volatility, and realized kernel and daily range, which is
the only daily volatility measure. Both in-sample modeling and out-of-sample
forecasting confirm that realized volatility measures (as well as daily range) are more
efficient than absolute or squared returns. The results of in-sample modeling show that
realized kernel outperforms other measures and provides the most accurate estimation
of the variance of returns. The two-scaled realized volatility performs second best.
Realized volatility provides better estimation than realized bipower volatility. In the
cast of out-of-sample VaR forecasting, realized kernel again outperforms the rest.
However, daily range also performs very close to realized kernel. The authors attribute
the outstanding performance of realized kernel both in-sample and out-of sample to
the fact that it is the most robust to market microstructure noise. Another interesting
finding in this paper is that the means of RV and BV are substantially constant across

sampling frequencies in excess of 30 seconds.
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Fleming and Paye (2011) investigate the mixture of distribution hypothesis (MDH) by
comparing the standardizing power of realized variance, realized bipower variation
and realized kernel on daily returns. They use trade and quote US equity data of the
most 20 heavily traded stocks in NYSE. The normality of returns standardized by
realized variance is all rejected. The returns standardized by realized kernel are
platykurtotic. However, the returns standardized by realized bipower variation show a
great improvement in normality. As realized bipower variation is the only volatility
estimator that is robust to jumps, Fleming and Paye (2011) conclude that the presence
of jumps in the realized volatility violates the continuous price paths assumption and
thus leads to the failure of standardization by realized variance. As long as the jump
component is removed (for instance using BV), normality of standardized returns can

be attained.

The realized volatility measures are found to be more efficient than the parametric
counterpart. Nevertheless, empirical results based on realized volatility measures still
appear to be diverged from what theoretical models suggest. Consequently, there has
been a growing literature in modeling the jump component contained in RV.
According to probability theory, quadratic variation can be divided into a continuous
component (integrated variance), and a discrete, or jump component. Empirically, the
detection of jumps relies on the RV, which is a proxy of quadratic variation and BV, a
proxy of integrated variance. Huang and Tauchen (2005) propose a daily jump
detection method which identifies the presence of jumps by testing the significance
difference between RV and BV. Following Huang and Tauchen (2005) method, a
series of studies attempt to ascertain the empirical performance of realized volatility

measures which exclude jumps.
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ABD (2007a) model and forecast RV taking jumps into consideration. The empirical
work is based on the theoretical results of BN-S (2004, 2006). 5-minute returns for
DM/USD foreign exchange market from December 1986 to June 1999, S&P 500
market index and 30-year US Treasury yields from January 1990 through December
2002, are used. The models implemented are known as HAR-RV-CJ forecasting
models, which are based on earlier HAR-RV and HAR-RV-J models. The authors test
the models both linearly and nonlinearly and find that the HAR-RV-CJ models
eliminate most of the strong autocorrelation in the realized volatility series. Even
Jjumps are more predictable, only the continuous sample paths have the forecasting
power when both components are included in the model. Separating the jump
components from the continuous sample paths significantly improves the out-of-
sample forecasting. In the final part of the paper, the authors suggest some possible
extensions, addressing the issue of integrated volatility forecasting in the presence of

jumps.

Another recent paper concerning the effects of jumps in financial data is that of
Andersen, Bollerslev, Frederiksen and Nileson (2010) (ABFN). It works on the
distributional prosperities of daily returns and realized volatility in the presence of
jump components, using individual stocks from the DJIA Index. The authors suggest a
new sequential jump detection method which could identify multiple jumps over the
same day. Together with the single jump detection method, leverage effects and
feedback effects, daily return distributions (both unconditional and standardized) are
tested. The test results confirm some earlier stylized facts that equity returns are
rightly skewed and have tails. The normality hypothesis of GARCH standardized
returns is also rejected by all 30 stocks, while the normality of RV standardized

returns shows significant improvement compared to GARCH standardized. The
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authors also find that jump adjustments, both single and sequential, do not necessarily
enhance the normality of stock returns. Nevertheless, when returns are standardized
by realized volatilities that are not only adjusted by jumps, but also by event-time, or
financial time sampling, the normality is dramatically restored. The authors claim that
this result confirms that “inter-daily stock prices may usefully be thought of as
discretely sampled observations from an underlying continuous-time jump-diffusion

model, but it is essential to also accommodate leverage and/or volatility feedback

effects”.

The discussion of the related literature in this section is inevitably partial. We consider
empirical studies most closely to ours and of significant interests in empirical
research. There are numerous studies which cover every research area in the high
frequency finance and realized volatility measures. In the next section, we discuss the
theoretical framework of the realized measures of volatility that will be used in our

empirical research.

1.3 Theoretical Framework

The construction of realized volatility measures is based on jump-diffusion process.
Jump diffusion models model the asset price as a mixture of a continuous diffusion
path and an occasional discontinuous jump path. The incorporation of jumps dates

back to Merton (1976). Recent empirical evidence by Andersen et a/ (2011), Tauchen
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and Zhou (2011), and Dobrev and Szerszen (2010) all gave support to a jump-

diffusion specification.

Assume price process P, which is semi-martingale, follows a geometric Brownian

Motion,
dp, = p.dt + 0,dB; + c,dq; [1.1]

where u. denotes a continuous and locally bounded process, o is the constant
volatility parameter, B, denotes a standard Brownian Motion, dg; is the counting
process with jump intensity A, and c, the size of the corresponding jumps. Suppose
that, in a given trading day, ¢, a set of j = M+1 intraday prices are available at equally

spaced intervals of A=1/M . Denote jth intra-daily log-price for day ¢ by p, ;, where
j=0,1,..,Mand ¢t =1,....,T .Then the M continuously compounded intra-day return

for day ¢ can be expressed as

h =D, =Puas  J=leoM,t=1.T [1.2]

1.3.1 Realized Variance (1v;)

Realized variance is defined as the sums of squared intraday returns. (ABDL, 2001,

BN-S, 2002). Mathematically, #v, for day ¢ is expressed as

TV = 6t2,N = 2721 rtzlj t = 1,2, T [13]
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The daily returns r, which are calculated from the sum of M intraday returns ry, jare

defined by

M
R=2nM=12,3. [1.4]

1

It directly follows from the quadratic variation theory that »v, converges uniformly in

probability to Quadratic Variation (QV) when the sampling frequency increases. In a
frictionless world without jumps, realized variance should converge for the Integrated

Variance (IV).

According to ABDL (2001), »v, is unbiased, consistent, highly efficient, yet jump-

contained. It is also the most intensively studied realized volatility measure in the

literature.

1.3.2 Realized Power Variation (pv,)

Realized Power Variation was introduced by Barndorff-Nielsen and Shephard (2003,

2004) and is written as

1% P 1
o) =yt F RN [y w=1.and £ = 12,7 [1.5]

pI'(0.5(p + 1))

— ElylP = it~ N(0,1
tp = Elu|P =22 T(05) 0> 0,u~N(0,1)

Whent — oo,
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fota”(s)ds, 0<p<?2
pr:@®2{ v, p=2 [1.6]
0, p>2

Deciding the value of p is important. When0 < p < 2, realized power variation is
robust to jumps and converges to the integrated variance. In the case of p = 2, the

realized power variation becomes rv,; and when p =1, it is termed as absolute

variation. In line with the literature, we use a value of p =1.5 which yields the lowest

RMSE, according to Liu and Maheu (2005).

1.3.3 Realized Bipower Variation (bv,)

Barndorff-Nielsen and Shephard (2004, 2006) define the Realized Bipower Variation

as

bv, = p;? Zﬁzlrt,ﬂ |7e.j1] [1.7]

= E(ul) = ﬁ.u ~N(0,1)

bv, is independent of assumptions concerning the distribution of the jumps or the

relationship between the jump process and the stochastic volatility component. BN-S

states that bv, could be used to estimate both continuous and discontinuous

components of quadratic variation (QV), which is given as,

que = ftti—l O'Z(S)ds + Zt—1<sst,dq(s)=1 Cs? [1.8]
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When the time frequency becomes infinitely dense, the rv, then converges to the

quadratic variation and the realized bipower variation converges to the integrated

variance.
TV = qU, [1.9]
bv, > ftt_l o(s)ds —~ iy; [1.10]
Therefore, the jump component may be separately calculated as

]t———T‘vt—bvt [1.11]

1.3.4 Realized Range (r1;)

Christensen and Podolskij (2007) derive the Realized Range (r7,) from earlier works

of Parkinson (1980) which focuses on the high and low prices of stocks.
rr, = Z;}E[zyzlloo x (log (b)) —log (0} 2]t = 1,23 .. T [1.12]

Where (p£1L j) are high prices and (p,f‘ ;) are low prices in the jth interval respectively,
and 4log? is a scaling factor that is used to correct biases of market microstructure
effects such as bid-ask bounce due to second moment of the range of a standard

Brownian Motion, By, that E(s3) = 4log2,where sz = sup<t,s<1(B: — Bs).

In a world that is absent of jumps and microstructure noise, realized range converges
to the integrated variance. Previous studies (Christensen and Podolskij (2007),

Martens and van Dijk (2007)) suggest that in a frictionless world, realized range is 5
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times more efficient than the realized variance and converges to the integrated
variance. Martens and van Dijk (2007) conduct Monte-Carlo simulations and
conclude that realized range is better than realized variance only under the same
sample frequency. However, in the presence of microstructure frictions, infrequent
trading leads to a downward bias in realized range alone, but both realized range and

realized variance show upward bias.

1.4 Data

We consider transaction data of 100 US traded stocks from 10 sectors. The time
period for the data is from 02/01/2000 to 31/12/2010, a total of 2767 trading days.
Our selection criteria are made on the basis of market capitalisation and wide
coverage sector representation whereby the following sectors are considered:
Consumer Discretionary (CD), Consumer Staples (CS), Energy (ENG), Financials
(FIN), Health Care (HC), Industrials (IND), Information Technology (IT), Materials
(MAR), Telecommunications (TEL) and Utilities (UTL) according to the category
from S&P 500. Different sectors present different degrees of volatility and liquidity.
For instance, the IT sector is a heavily traded sector which includes very active
companies such as CSCO, INTC, MSFT and ORCL. Materials, Telecommunications

and Utilities sectors are much less actively traded.

Our 100 stocks consist mostly of DJIA stocks and of S&P 100 and S&P 500 stocks,

with a few exceptions. We exclude KFT from CS sector and add BT, VOD and TEF
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in TEL sector for data consistency and full time coverage. In general, for each sector,
we combine some of the largest market capitalization companies and median to large
size companies within the sector. Each sector is ranked according the sector average
trading volume. In our sample, IT is the most actively traded sector whereas UTL is

the least.
[Table 1.1 of full list companies here]

All data are from Tick Data, which is sourced from the NYSE’s TAQ (Trade and
Quote) database. TAQ records intraday transaction data for all securities listed on the
NYSE, AMEX and NASDAQ. A paper by Brownlees and Gallo (2006) discusses high
frequency data handling concerns. The authors state that the TAQ data does not
guarantee the accuracy as the NYSE itself does not. The database contains delayed

and incorrect recordings, hence produces errors and bias.

The Tick Data are adjusted, cleaned and managed from the TAQ database using the
following process: Ticker Mapping adjusts historical data for corporate actions such
as M&A and symbol changes etc. Condition Code Filtering is a process whereby trade
and quote data are filtered for various condition codes such as out of sequence trade
and quote, cancelled trades and other conditions which require prior removal of data
points. Price Filtering filters flag trades that are bad ticks and suggest corrected
values; Data Validation uses third party data to ensure the accuracy of previous 3
processes. The final adjustment is to generate stock splits and cash dividends data and

to allow the application of splits and dividend adjusted high frequency data, which is

especially important for calculating realized range.
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To show the advantage of using TICK instead of TAQ, Table 1.2 presents a
comparison of summary statistics of realized volatility measures of INTC calculated

from TAQ and TICK database within the same time period.
[Table 1.2 here]

The summary statistics of volatility measures calculated from tick data appear to be
more stable and to present less variation. The mean, maximum and minimum values
are all lower than counterpart calculated from TAQ data, especially for realized range.
The skewness, kurtosis, and JB statistic further suggest higher normality of returns of

Tick data. This could be further evidence of a more bias-free dataset of Tick.

Finally, the time period we chose ranges from 2000 to 2010, which covers 11 years.
The length also allows us to investigate the impact of the 2001 internet bubble crisis
and the 2008-2009 financial crisis. From September to October 2008, volatility and
trading activities appear to be very high. This is the period when US financial
institutes were hit most severely by the crisis. Allowing the presence of crisis periods
also enables us to test whether the crisis may override some of the stylized facts of the

volatility measures.

1.4.1 Optimal Sampling Frequency

In this section, the aim is to identify the optimal sampling frequency across different
volatility measures, by conducting the volatility signature plots (VSP) first proposed

by ABDL (1999).
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Finding an optimal aggregation level of the tick by tick data is vital to empirical
research. Tick by tick data are less readily directly modelled, as they contain a high
level of market microstructure noise. Market microstructure noise leads to the
autocorrelation of intraday returns. The autocorrelation increases with frequency is

higher and causes further bias to rv,.

Hansen and Lund (2004) cite four reasons why v, might be biased due to the

microstructure noise. First of all, lack of liquidity may cause the observed price to be
different from the true price. Second, bid and ask spread, as well as the discrete nature
of price data, could have rounding errors. Third, econometric methods which are used
to construct artificial price data may lead to pricing errors. This is especially relevant
to the construction of prices when no actual trading happen at a given price point. The
final reason of pricing error is due to the quality of the data used. For instance, mis-
recorded prices induce market microstructure noise inevitably. Not only do these four
reasons explain the difference between volatility measures calculated form TICK and
TAQ databases, but also show the inadequacy of using tick by tick data to construct

the daily nonparametric volatility measures.

In summary, an optimal sampling frequency is needed to balance both the bias

associated with high sampling frequency and the lost information due to the low

sampling frequency.

The VSP is calculated as the “average realized variance against sampling frequency”.

(ABDL, 1999).

_('")_ -1 n (m)
RV =n3 . RY, [1.13]




Where m is the sampling frequency and # is the number of periods (days).

The 1999 paper recommends sampling until the point at which microstructure noise

starts to be absorbed by the realized variance.

Several studies, (see Hansen and Lunde (2004), Bandi and Russell (2008), as well as
Shephard (2010),) all follow the above method to determine the optimal sampling
frequency using various data sources. Conclusions differ from one paper to another.
For instance, using FX data, the pioneering paper by ABDL (1999) finds that the
optimal frequency for rv, should be 20 minute. Bandi and Russell (2008) find 5-
minute to be a satisfactory frequency for IBM quote data. Although focusing on
microstructure noise, Hansen and Lunde (2004), Fleming and Paye (2007), argue that,
even at 5-minute frequency, there is an upward bias for »v,. Both studies use US
equity trade data. Andersen et al (2010) revisits the VSP by calculating both »v, and
bv, at an expanded sampling interval span and database. According to the 2010 paper,
VSPs should exhibit a decreasing tendency and will be flatter and become relatively
constant after certain aggregation frequency as the overwhelming microstructure
frictions at tick by tick level are gradually balanced by the effect of the aggregation

process. Their finding that 5 min could be used as the optimal sampling frequency is

based on results from 30 DJIA stocks.

In addition to the various data sources mentioned above, different “benchmark”
volatility measures, which are assumed to be the least autocorrelated and therefore
least biased, are also used. Andersen ef al (1999) and Hansen and Lunde (2004) use

rv, aggregated at 30-minute, Fleming and Paye (2007) uses Newey-West rv, and

ABFN (2010) use bv, aggregated at 30-minute.
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However, most studies merely consider the optimal sampling frequency of rv, (or
modified rv,) and leave other nonparametric volatility measures not investigated.

Since the objective of this chapter is a comparison study of nonparametric volatility
measures, the optimal sampling frequency of bv,, pv, and rr, is also of interest. We
will follow closely the method used by AFBN (2010) to construct the VSPs of all four
volatility measures. We illustrate this issue by looking at two specific stocks in our

sample’.

Figure 1.1 shows the volatility signature plots for realized variance, realized range
and realized power and bipower variations. The benchmark shown as the horizontal
line is the realized bipower variation aggregated at 30-min frequency of FTR from
TEL sector and of GS from FIN sector. We select these two stocks based on the
number of daily jumps detected. FTR contains the highest number of jumps while GS

contains the lowest.
[Figure 1.1 here]

In like fashion to ABFN (2010), we report the VSP from the frequency of 1 second to
1800 seconds (30 min equivalent). The VSPs show a number of interesting findings.
First of all, all realized measures of volatility exhibit a gradual decreasing trend, with

the exception of rr,, which shows a weakly increasing trend. This result could be
explained by the fact that 77, is the only realized volatility measure calculated based

on price high and low. When the sampling frequency is ultra-high, there might be little

the price change within the sampling frequency and therefore the difference of highest

and lowest prices is less obvious as compared with rr, calculated at lower sampling

' The VSPs from other stocks in our sample reach the same conclusion. We report these two stocks due
to the space limit and the representation they bare regarding to the number of jumps contained.
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frequency. pv, is the only measure which exhibits a constantly decreasing tendency
even after 5 minutes. However, pv, does not apply the same measurement units as
other realized measures of volatility. This explains why it does not reach a stable level
after 5 minutes. The plots of rv,, by, and pv, show maximum values at 1 second. v,
and bv, become satisfactorily stable after 5 minutes. The figure also illustrates a
narrowing then a relatively constant difference between v, and bv,. This difference

also shows a direct relation between the sampling frequency and the level of jumps

presented in rv,. This finding is in line with ABFN (2010) which attributes the gap to

the influence of the jump components. The larger gap between the two measures when
the aggregate frequency is high is more likely to be attributed to the significant market

noise (ABFN, 2010).

In general, the VSPs confirm that 5 minute frequency is an optimum level for 7v, and
bv, as these two measures start to stabilize after the 5 minute sampling aggregation
level. It is suboptimal for pv,, because pv, seems to follow a decreasing trend with

the aggregation frequency. For the stock with highest number of jumps, the
continuous decreasing pattern is more obvious. rr,, although has weakly upward
trend, converges to stable value after 5 minutes. Thus 5 minute should be a reasonable

sampling for r7,.

To conclude, 5-minute sampling frequency will be used to construct our realized
measures of volatility. Not only it is considered as the best trade-off between
information accuracy and microstructure noise, but also it gives the comparison

benchmark of different realized volatility measures.
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Hence, all our data is aggregated at 5-minute interval every trading day from 9:30 to
16:00, 6.5 hours and 78 intraday periods within one trading day in total. 9:30 — 16:00
is the trading hours in NYSE and NASDAQ and is also the most frequently used in
the literature. As the main task of this chapter is to disucss the stylized facts of
different volatility measures and to compare them with those reported in the previous
studies, we also follow this trading hour and do not consider the transactions before

and after the market trading hours.

1.4.2 Constructing Daily Returns

In the previous section, we demonstrated that S-minute is a generally accepted optimal
sampling frequency for both intraday return and realized measures of volatility. Table
1.3 reports the mean summary statistics of daily returns across sectors. Among all the
sectors, the CS sector yields the highest average return (0.5%) and the MAR sector
yields the lowest (-0.88%). At the individual stock level, all returns are approximately
zero. Returns are not normally distributed, exhibiting excess kurtosis, which suggests
fat tails. The JB statistics suggest that the return series of UTL is most distorted from
the normal distribution. Returns of IND have the lowest JB statistics, which is still as
high as 2738. All the properties on daily returns are in line with the stylized facts of

stock returns.

[Table 1.3 here]

[Figure 1.2 here]



1.5 Descriptive Statistics of Realized Volatility Measures
and Jumps

1.5.1 Realized Volatility Measures

Table 1.4a & 1.4b report the summary statistics of the daily realized measures of
volatility, by sector. The outcome is in line with many stylized facts of the volatility

measures driven by latent information flow from previous studies such as ABDL

(1999, 2001), ABDE (2001) ABD (2003,2007), but not with the studies on 7

(Martens and van Dijk, 2007).

[Table 1.4a and 1.4b here]

Although previous studies conclude that r7, is more efficient than rv,, our sample
reaches slightly different conclusions. The overall average r7, has a lower mean but a
similar standard deviation to »v,. On the other hand, the skewness and kurtosis of 77,
are higher. rr. has the highest kurtosis, 162.5, among all realized volatility measures.
This also makes rr, appear the highest JB statistics. Furthermore, we compare these

two measures at sector average level and individual stock level. IT, the most actively

traded sector in our sample, has a higher rr, than rv, (rv,: 5.722, rr,: 6.046). The
standard deviation, skewness and kurtosis statistics of rr, are also higher. The

standard deviation, skewness and kurtosis statistics of 77, of the least actively traded
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sector UTL are lower than rv, (rv,: 3.419, rr.: 2.836). Besides, least actively traded
stocks tend to have lower mean of rr,. OKE, the least actively traded stock, has v, of
3.136 and rr, of 2.279 for instance. This result is in line with Martens and van Dijk
(2007) who claim that infrequent trading leads to a downward bias to 7, only. On the
other hand, the most actively traded stocks, C, CSCO, INTC and MSFT all exhibit
higher means of rr that 7v,%. There are several possible reasons for the contrasting
finding in rr, and rv, between earlier papers and this chapter: Our sample contains
two crises, the 2001 internet bubble crisis and 2008 financial crisis. During these two
periods, there are more likely to have extreme prices. Since rr, is constructed from
intraday highest and lowest prices, it is more affected by the extreme prices and hence
shows higher mean values and standard deviation. During a relatively calm period
when both trading volume and volatility are low (2003 - 2006), r, usually has a lower
mean than rv,. Second. r7, and rv, converge to QV according to the quadratic
variation theory and contain jumps. The level of jumps and microstructure noise
contained in both measures will also inflate the values of the measures. rr, is more
affected by microstructure noise than rv, (therefore it contains a scale to adjust the
microstructure noise) and this is especially true for the stocks that are more actively
traded. Most of stocks in our sample are from S&P 100 stocks and are sufficiently
actively traded. Hence, in our sample, we find that rv, a more efficient volatility

measures than rr,.

2 Cirv;:8.720, 11y 9.555; CSCO: 1v,:5.706, 17,2 6.792; INTC: rv,:5.359, rr:5.874; MSFT: rv,:1.878,
r7,:2.236.



The mean of pv, is higher than that of both »v, and bv,. However, pv, does not

apply the same measurement units as other realized measures of volatility. Realized
power variation has the lowest skewness and kurtosis even though it has a higher

mean value than the other three measures. bv, has the second lowest mean and lowest

standard deviation on average, suggesting the most consistent volatility estimator

among all.

All four realized measures of volatility are severely right skewed as well as
leptokurtic.  Realized variance, realized power variation and realized bipower
variation all show extremely strong serial correlations, with the realized power
variation the strongest, as indicated the Ljung-Box statistics and Autocorrelation
Function with up to 36 lags. We also compute the LB statistics of R?, the squared
daily return. The result shows R? to be serial correlated but the correlation is generally
weaker than for the other realized measures. ABDL (2003) claim that the lower LB
statistics of squared returns in relation to the LB of realized volatility suggests squared
return is a very noisy volatility measure as the strong persistence in the latent volatility
dynamics is erased by the noises in the volatility measures. The low serial correlation

in the rr, of some stocks can be attributed to the volatility construction method which

is more exposed to the noise as due to the intraday highest and lowest prices.

All the volatility measures show similar pattern to each other (Figure 1.3). There are
two peaks: the first is for 2001-2002, (the dotcom bubble), and the second is for 2008-
2009 (the recent financial crisis). Comparing the volatility plots with the return plots
in Figure 1.2, we find that high volatility is associated with large positive/negative

returns; and that the high volatility days cluster. This is another well observed fact in

the literature.



[Figure 1.3 here]

1.5.2 Jumps

In this section, we discuss the non-continuous component of realized variance; this is
jumps. The presence of jumps draws a great deal of interests in the literature and is
well observed with various financial dataset. Dated back to 1976, Merton states that
“since empirical studies of price series tend to show far too many outliers for a
simple, constant-variance lognormal distribution, there is a ‘prima facie’ case for the
existence of jump”. However, only until the availability of high frequency data, the
visual confirmation and stylized properties of jumps are better examined. The jumps
are usually small and represent the uncertainty of the underlying financial market. As
jumps may account for a significant proportion of sum of square intraday return,
including them lead to the bias of realized variance. The occurrence of (large) jumps
is mainly attributed to the unexpected macroeconomic news, abnormal trades,
recording errors as well as the shocks in the asset liquidity. Eraker ef al (2003) state
that jumps should command relatively larger risk premia than the continuous variance
because the contribution of jumps to period of market is greater. The risk arising from
jumps also cannot typically be hedged away. Therefore, identifying jumps has
practical implications for risk management and derivatives hedging. ABD (2007a)
show that the continuous path and jump path of the prices are distinct to each other
and hence should be modelled separately. In the same paper, they also show that
excluding jumps from realized variance enhance both the in-sample estimation and the

forecasting power of realized variance.
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The possibility of separating jumps from rv, provides new grounds for analyzing the

properties of realized variance with/without jumps and the properties of jumps alone.
Theoretically, the jump component should be strictly non-positive, as Equation [1.8]
suggested. Nevertheless, ABD (2007a) note, “nothing prevents the estimates of the
squared jumps ... from becoming negative in a given finite sample”. In order to
comply with the theory, different empirical studies apply different jump construction
methods. The jumps constructed according different methods will naturally have
different values from one to another. Here we follow the method by Bollerslev et al

(2009) which accommodates the presence of both small and negative jumps.

J, =In(rv,)—In(bv,) [1.14]

cv, =rv,—J, [1.15]

According to Bollerslev et al (2009), this avoids “the arbitrary choice of any pre-

bid]

specified significance level affecting the selection of ‘significant’ jumps”™. Wang and
Huang (2012) also adopt this method to construct the jumps series to investigate the
volatility-volume relationship.

In addition, we consider two nonparametric jump tests to detect the non-negative and
significant jumps. There are (1) the MaxZ test of Huang and Tauchen (2005) for daily
jumps and (2) the Lee and Mykland Test (2008) for intraday jumps. The MaxZ test
builds on the asymptotic distribution theory of BN-S (2004, 2006) and the empirical

evidence from Huang and Tauchen (2005). The test assesses the significance of the

daily jump component according to the logarithmic test statistic given by
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Inrv, —Inbv
max Z, =M ‘ ‘ —>N@O,1) 3 1.16
’ (™" +2447 = 5) max(1, TQ,bv;*)]" ©D 16

The intraday test of Lee and Mykland (2008) tests whether a given intraday return r, ;

comes from a diffusion or a jump process. The statistic for the LEM test is given by
J =t [1.17]
where &, ; is an estimate of the local standard deviation and is usually replaced by

o ’ 1
S = Ebv, . Lee and Mykland (2008) show that the sample maximum of the

1,J

absolute value of the J test follows a Gumbel distribution. The original Lee and
Mykland (2008) test statistic does not allow for the periodicity that is usually

encountered in high frequency data. For such purpose we adopt a modified version of

the test (see Boudt er al, 2008) which replaces &, , by f’, K

1

- WSD
P = - where WSD stands for Weighted Standard Deviation

ST 1 2 \172
(MZFIWSD,J)

filter, with s _ [\ os1x > @,y [ 1" F o) . The threshold 6.635 equals
1,7 Z;’;i a)[(F/:,'j /j/*:?jlmrtH )Z]

2
the 99% quartile of the 4 distribution with 1 degree of freedom. The Weighted
Standard Deviation in (17) has a 69% efficiency under the normality of the J, ,’s. See
Boudt et al (2008) for further details.

We consider the top 5% of large jumps at the 5% significance level. We also compute

significant jumps at top 0.1%, 1% and 10%, for which the conclusion remains the

same.

N I"r -IIW l’? _’r/!, r=LT '/‘j/.z =¥ [(7/6)/T(1/2)and T'(-) is the gamma function.

3 1, A
70, =X/{‘/ﬁ/3;|’;,/
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Summary statistics of daily jump series is reported in Table 1.5. Average continuous
variances of each sector for the overall sample all have slightly lower values than

average rv,. The same finding applies to the skewness and kurtosis. The maximum
average rv, shows great similarity to the average maximum cv,, indicating that
extremely volatile days are not necessarily associated with large jumps (
max(rv, —cv,) <maxJ, ). A similar finding is also reported by Ané and Metais (2010).
The distributional properties of jumps are also very different from both rv, and cv,.
Moreover, as Figure 1.3 shows, changes in the level of rv, are not being matched by
the changes in the level of jumps. The clustering feature observed in the rv, (and v,

as well as ¢v,) does not appear in jumps.

[Table 1.5 here]

Table 1.5 summarizes average daily and intraday jump intensity and the daily jump
contribution to volatility at the 5% level. The detected intraday jumps are much less
than daily jumps, not only in terms of numbers but also in terms of magnitude. This
result holds across all sectors. For the overall sample, there are 124 intraday jumps
detected on average while the number of daily jumps detected is 698. The average
proportion of detected jumps is 0.06% for intraday level and 26.84% for daily level.
This is in line with the findings of Eraker et a/ (2003) that intraday jumps are rarer
than the daily jumps. The TEL sector records the highest number of detected jumps
[intraday (153) - daily (823)] whereas the IT sector records the lowest [intraday (72) -
daily (634)]. Active sectors/stocks feature fewer jumps. The ranking of intraday and
daily jumps coincides for TEL, ENG and IT sectors. Furthermore, although average

trading volumes vary significantly from one sector to another, the number and



42

proportion of jumps detected do not appear to be largely differentiated. Eraker et al
(2003) also find that intraday and daily jumps are distinct in nature which our rank

results appear to confirm.

Along with the intensity of jump occurrences, the proportion of total realized variance
that can be explained by the daily jumps is reported in Table 1.6. We also calculated

the summary statistics for J,, /7v, . The largest 5% of daily jumps on average

contribute approximately 25% of rv,. This proportion is fairly constant across 10

sectors. The standard deviation ranges between 0.09 and 0.11 only. Significant jumps,
on the other hand, are important components of realized variance, as they may

contribute as much as 87.1% to the total realized variance.

[Table 1.6 here]

1.6 Leverage Effect

Large negative returns have a greater tendency to be accompanied by higher future
volatility than positive returns of the same magnitude. This well-documented
phenomenon is known as the leverage effect, or asymmetric cross-correlations.
Subsequently the increase in volatility results in negative returns and causes what is
known as the feedback effect.

Bollerslev er al (2006) find the leverage effect to be significantly negative and the
feedback effect to be usually negligible for a horizon over several days. Bollerslev et

al (2009) segregate the continuous and jump components of realized variance and



conclude that leverage effects works primarily via the continuous part of the variation
process. Our extended data confirm this result. We illustrate our finding using the
simple, yet straight forward method of ABFN (2010).

We plot the cross-correlations between returns, realized variance and its two
components at the daily level. The correlations in lags are the graphical expression of
the leverage effect whereas the correlations in the leads represent the feedback effect.

Figures 1.4a-c show median values for all the 10 sectors. In the case of rv, and cv,,
the plots exhibit a clear tendency for the correlations between rv, (¢v,) and returns to

be negative for negative / with a distinctive peak around zero for positive i. In the
jump case, the cross-correlation plots show no clear negative or positive tendency and
fluctuate around zero. Figure 1.4d shows the sector median plots at the intra-day level
for the cross-correlations between intra-day returns and absolute intra-day returns.
Again, the median plots show a very similar pattern to those of ABFN (2010) where it
is shown that the leverage effect may exist at high frequencies but with little or no
impact for the feedback effect.

To summarize, our findings suggest that the leverage and feedback effects only exist
within the realized variance (as well as the continuous variance) but not within the
jumps component. The plots from other realized volatility measure also support this
conclusion®. The results add more on the findings of both Bollerslev et al (2009) and
ABFN (2010) who report that the leverage and feedback effects exist only in the
volatility not in jumps. The degree of the effects may vary from one stock to another

yet hold relatively constant across different realized volatility measures.

* The plots of rest three measures are not provided in the main figures as the plots of different realized
volatility measures estimated within the same stock are visually indistinguishable between the plots of
realized variance.
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[Figure 1.4a-d here]

1.7 Correlations

Several studies report high positively correlations between realized volatility
measures. Fuertes ef al (2009) examine correlations between volatilities using 14 US
stocks and find that correlations between realized volatility measures often exceed
90%. In this section, we look at the correlation between realized volatility measures
themselves, and the correlation between volatility and volume. Further, we decompose

realized variance and investigate the correlation between rv, and its continuous and

non-continuous components.

1.7.1 Correlation Matrix of Realized Volatility Measures and
Trading Volume

Overall and sector average level correlations between realized volatility measures and
trading volume are reported in Table 1.7a. In line with the literature, all the realized
volatility measures are highly positively correlated with each other. This finding holds
for all the sectors. With few exceptions, the correlation coefficients between volatility

exceed 90%. The correlations between rv, , pv, and bv, are higher than the
correlations between rr, and other three measures. This is not surprising as 77, is the

only realized volatility measure that is not calculated from intraday returns. The

construction of r# determines that the properties are most likely to be diversified from
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the rest three. So far we do not find any pattern between trading activeness and
realized volatility measures properties from the level correlation. Whether they are
highly actively traded or less actively traded, the level correlations remain high,

suggesting a great similarity among the four realized volatility measures.

[Table 1.7a here]

In the same table, the correlations between different volatility measures with trading
volume are reported. Trading volume is positively correlated with all the realized
volatility measures, with the correlation coefficients ranging from 20% to 60%. The

correlations between 77, and volume and between pv, and volume are higher than the
other two volatility measures. rv, consistently has the lowest correlations with volume

in 9 of the 10 sectors.

1.7.2 Correlation Matrix of Continuous Variance, Jumps and
Trading Volume

We also look at the correlations between rv,, its two components and trading volume.

In part, our findings differ from those of Giot et al (2010), who found negative
correlations between jump components and trading volume, and between jump
components and realized variance & continuous variance. The cross-sectional average
correlations between jump components and volume are negative and are not

significant at the 5% level for 9 of the 10 sectors (with the exception of HC).

The correlations between jumps and realized variance/continuous variance, which are

reported in Table 1.7b, are non-negative in the most cases. With only one exception
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(IT), values are positive. IT shows negative correlations between jumps and realized
variance/continuous variance. In sector MAR, although the correlation between jumps
and realized variance is positive, the jumps and continuous variance are negatively

correlated.

The sector average p values suggest that the correlation between jumps, rv,/cv,, and

volume are not significant. Therefore we further consider the correlations at individual
stock level. Only 24 of 100 stocks ° present negative correlations between jumps and
realized variance/continuous variance. The IT sector has the highest number of stocks
with negative correlations (6/10), while all stocks in HC and IND sectors have
positive correlations between jumps and realized variance/continuous variance. For
the remaining sectors, the negative correlation holds for 2 or 3 stocks (out of 10) in
each sector. We also find this negative correlation to be more apparent in actively
traded stocks. Again, the p values of individual stocks fail to accept the null that the

correlation is significant at the 5% level.

Wang and Huang (2012), who use the same method as our paper to construct the
jumps series, report this negative relationship between jumps and trading volume
using Hu-Shen 300 index data. This negative relationship might be attributed to the
“public information” contained in jumps, while the continuous variance (as well as the
realized variance) is more likely to be driven by the “private information”. When large
part of trading is induced by private information, the relationship of these two series is
inevitably negative. On the other hand, the difference between our results and those of
Giot et al might be attributed to the identification of jumps. Giot et a/ (2010) identifies

only significant jumps at the 0.01% level. In other words, they only consider very

> AA, AKS, AMZN, APPL, CEG, COST. CSCO, COST, CVX. DELL, DUK, FTR, MAR, MSFT, NUE, ORCL,
OXY, Q, SUN, T, TEA, UL, WFC, and XOM.
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large jumps in their dataset whereas we admit the presence of small positive jumps

and even negative jumps.

Overall, we could only find negative correlations between jumps and volume but

weak positive correlations between jumps and realized variance/continuous variance.

[Table 1.7b here]

1.8 Volatility Regimes

Section 1.7 findings along with the results from Figure 1.4 demonstrate high
correlation linking the various volatility measures. The results hint at a single regime
governing the dynamics of the four realized measures. To investigate such a
possibility, we adopt the Markov Switching (MS) model by Hamilton (1994). This
aim is to investigate whether observed high correlations would lead to similar

(different) regimes.

Markov switching models allow each observation to be assigned a probability of
belonging to one of several Markov states. Here we apply Markov Switching

Autoregression (MS-AR) modelling on the sector average and overall average rv,, rr,

, pv, and bv, by specifying two-regime states, high and low.

P
V,—pu(s) =D pV,_, +u(s,_ ;) + &, ~ N[0,07°] [1.18.1]
J=1
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where 7, denotes the four volatility measures. The unobserved random variable, s, . is

denotes the regime to which observations belong; then

if s, = 0 (LOW)

_ {Ho y .
Hise) = {u—l, if 5. =1 (HIGH) [1.18.2]

s, follows a Markov chain, defined by the transition probability between the N states:
pi|j=P[S1+1=ilS1=j]’ i,j:(),...N—l. []}SSJ

Thus the probability of moving from state j in one period to state 7 in the next period
depends on the previous state only. Since the system has to be in one of the N states,

then

N-1

> .py, =1 [1.18.4]

i=0

For our case of i, j =0,1and N=2, the Markov chain transition probability matrix P,
is

p
P =[p°'° ""J [1.18.5]
Py Py

For instance, if p,, is very small, the model is more likely to stay longer in the state 1

and vice versa.

In our sample, we first consider MS (2)-AR (1) model. MS (2)-AR (1) denotes two
regimes (M=2) and | lag (p=1). Then, to account for the long memory property of the
realized volatility measures. we also consider the MS-AR models with longer lags and

~

find that the model fails to converge when the number of lags of exceeds 2. The MS-
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AR requires a state vector of dimension N=S"""/ to obtain the Markov
representation for the likelihood evaluation for S regimes and p autoregressive model.
When the autoregression orders are high, MS-AR becomes effectively infeasible
(Doornik and Hendry, 2009). Therefore, we also consider the Markov Switching
Dynamic (MS-DR) model. which has the same number of states and number of
regimes (N=5). Both specifications reach the same conclusion, with slightly difference

in the period of the high/low regimes.

Figure 1.5a plots the results of MS-AR model for overall sample average different
realized volatility measures. The grey shaded area is regime 1, (the high volatility
regime). It is clear that all four measures share something in common in high regimes.
The high volatility regime detected by all four volatility measures is mainly
concentrate on two periods: the internet bubble (2000-2001), and 2008, start of

financial crisis. The high regime is similarly identified by »v,, bv, and rr, In the case

of pv,, there are more days that are identified under the high volatility regime.

[Figure 1.5a here]

We then apply the MS-DR model on the sector average volatility measures. Although
the overall average volatility measures show similar volatility regimes identification,

the picture changes at the sector level. UTL is the only sector which is identified with
low volatility regime, except a very short period of time in 2008 when testing pv,.
The 2008 financial crisis raises the market volatility overall, with the period from
September to December of 2008 similarly identified as the high-regime across sectors

and volatility measures. From September 2008 to December 2010, »v, and rr, are all

in the high volatility regime. Periods which are in the high regime are shorter when we
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apply the model to pv, and bv,. High regime is only detected from September, 2008

to the end of the year or early the following year. The remaining 3 sectors which
detect a high volatility regime in 2008/2009 period are ENG, IND and MAR. These

are also the sectors which activities are less affected by the IT sector.

Unsurprisingly, the IT sector is more severely affected by the 2001 crisis, registering a
high volatility regime by all volatility measures. Another sector which is greatly
influenced by the 2001 crisis is TEL sector. The high volatility regime is first detected
in the year 2001 to 2002, a year later than the peak of the dotcom bubble. TEL sector
is heavily related to the IT sector and the factors which drive the volatility of IT sector
up will also affect TEL sector, but in a lagging way. Another interesting finding is

found in sector CD and CS. The period, identified as a high volatility regime by rv,,
pv, and bv,, is identified as a low volatility regime when applying the Markov

switching model to r7,.

[Figure 1.5b-f here]

To summarize, the results from the Markov Regime Switching models show that
different volatility measures tent to have similar, yet not identical high/low volatility

regimes. The regimes identified in »v, and bv, are most similar to each other whereas
the regimes detected in pv, are less like the others. The periods in high/low volatility

regimes also differentiate from one sector to another.
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1.9 Long Memory

The long-memory property in volatility is a well-documented stylized fact and
features in many financial and macroeconomic series, see for example Robinson
(1995), Ding, Granger and Engle (1993), Baillie et al (1996), ABDE (2001) and Bandi
et al (2006)). The long-memory property feature applies to low and high frequency
measures of volatility with a fractional differencing parameter “d” estimate in the
range of (0.2 to 0.3) for low frequency measures and (0.3 to 0.4) for high frequency
ones. The higher value in the high frequency measures is mainly attributed their less

noisy feature.

Our interest is to check whether the “d” estimate of the various realized measures
varies across different. There are several commonly used long memory tests in the
literature such as Lo’s modified rescaled arrange (Lo, 1991), the KPSS statistic
(Kwiatkowski et al, 1992), the rescaled variance (Giraitis et al, 2003), the GPH
statistic (Geweke and Porter-Hudak, 1983), and the H statistic in Robinson (1995) and
Robinson and Henry (1999). Here we adopt the method of Robinson and Henry
(1999). The bandwidth parameter m is 0.5. which is the most commonly used in the

. 6
literature”.

Table 1.8 reports average Robinson’s “d” of different volatility measures and trading

volumes at both the sector and overall levels.

[Table 1.8 here]

AFIMA (0, d, 0) long memory tests to estimate the long memory parameter . Diffferent tests lead to the same
conclusion.
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Main findings are as follows. The Robinson’s “d” estimates of various realized
volatility measures tend not to differentiate much across sectors: they range from 0.3

to 0.4. There is variation between the different volatility measures. For example, pv,
shows the highest estimates and rv, is the lowest. bv, is higher than rv, which might
indicate that bv, is robust to jumps. This result also applies to pv,, which is also

robust to jumps and shows a higher “d” estimate than bv, .

We also find that realized measures of volatility of more actively traded sectors have
greater persistence than those of less actively traded sectors. Thus, the most actively
traded sector, IT, has the highest “d” estimates and the least active sector UTL shows

the lowest persistence.

Figure 1.6a shows the Autocorrelation Functions (ACFs) of the average realized
volatility measures. All the volatility measures of most stocks exhibit a strong
hyperbolic decay pattern up to 50 lags. The decay pattern of realized measures of

volatility is very close to each other. For every single stock, the ACFs of rv, and bv,

are most similar to each other. This confirms the results from the Robinson’s “d” as
well. We also find that realized volatility measures of actively traded stocks
sometimes show persistent yet periodic autovariance function. A similar feature was
observed by Baillie and Bollerslev (1993) who use FX data and attribute this result to
high trading activity. We also plot the ACFs of each realized volatility measures at
sector level. Plot 1.6b shows the result for »v,. The ACFs of rv, vary from one sector
to another in general. The ACF from UTL sector dies out more rapidly than any other
sectors. UTL is the least actively traded sector. FIN sector, one of the most actively

traded sector, exhibit periodic pattern.




53

[Figure 16a-¢ here]

The long memory presented in the realized volatility measures is strongly supported in
our data. The lower “d” of rv, than that of pv, and bv, supports the earlier findings
that incorporating jumps in the realized volatility measures decreases the long-range
dependence of the volatility. More persistent the realized volatility measure is, higher
the predictive power of the realized volatility measure is likely to have. The highest
“d” in pv, suggests that pv, may carry the strongest forecasting power than other
three measures. Our research mainly focuses on the in-sample estimations,
nevertheless, there are other studies which provide both direct and indirect supports
for the superiority of more persistent volatility measures in forecasting. Ghysels et a/
(2006) propose a mixing frequencies model, which is known as MIDAS, and find that

(logarithmic) pv, produces the best out-of-sample forecasts among a series of
volatility measures including rv,. The indirect support is given by ABD (2007) and
Corsi et al (2012) using heterogeneous autoregressive (HAR) model. Both papers find
that excluding jumps enhances long-range dependence of rv, and hence enhances the

forecasting power of the measures. Moreover, MIDAS and HAR models are both

developed to capture the long memory in volatility measures.

1.10 Volatility-Volume Relation

Clark (1973) provides theoretical foundations for the volatility-volume relation in the
framework of what is now known as the Mixture of Distribution Hypothesis model.

Following Clark’s paper, an impressive body of literature has investigate the relation
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(see Epps and Epps (1976), Karpoff (1987), Harris (1987), Ané and Geman (2000),
Martens and Luu (2003) and Chan and Fong (2000, 2006)). Advances in volatility
estimation have led to improved measures of volatility and have further emphasized
the relation between volatility and volume. Depending on the volatility measures
adopted, trading volume is capable of explaining between 5 - 50% of the variation in
the volatility. More recently, and given the empirical evidence documenting the
presence of jumps, Giot et al (2010) revisited the volume (number of trades) -

volatility relation. They divided realized variance (#v,) into its continuous and jump

components and showed that the relation holds only for the continuous part of rv,.

To test which is the best volatility proxy, we closely follow the regression framework
of Jones et al (1994), Ané and Geman (2000) and Chan and Fong (2006) and then

regress different realized volatility measures on trading volumes

m, =a+a, M + 2112:1 Py, tyvol, +&, [1.19.1]
12

rn, =o +aimMr + zj=1 pijr’;?—j +7iVOlfl +&, [1192]

pv, = +a,M, +leil PiiPVir_; +yvol, +¢&, [1.19.3]

4y vol, +¢, [1.19.4]

J

12
v, =a, +o,, M, + Zj=1 bV,

where M, is a Monday dummy and 12 lags of realized volatility measures are used to

account for serial correlation’.

4. The volume of some stocks are trend stationary, in this case, we de-trend the series according to the
ADF test.
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Table 1.9 shows the results of volume regressions at sector average and overall
average levels. Among four realized volatility measures, pv, produces the highest R’
value of 67.8% in the volume regression on average. The lowest value for all realized

volatility measures is reported by realized variance, which yields average R* of
52.8% in the volume regression. However, regardless of the realized volatility
measure used, our results are similar to those reported by previous studies which

consider only rv, (or its components) (Chan and Fong (2006), Martens and Luu

(2003) and Giot et al (2010)) yet with higher R”. The percentage of stocks for which

trading volume is statistically significant at 5% ranges from 96% to 98%.

[Table 1.9 here]

At sector level, ENG and MAR report the highest R? across realized volatility
measures. The lowest R* across realized volatility measures is reported by TEL

sector: the sector contains most jumps is most poorly explained by realized volatility

D2
measures and produces lowest R° on average.

To conclude, the well-established volatility-volume relation holds when all four

realized volatility measures are tested. We reach the same findings as previous studies
and have higher R? on average. The results show that pv, is the most closely

explained volatility measure in the volatility-volume relation, at both the sector and
overall levels. The second most closely explained is realized bipower variation,
followed by realized range and realized variance. We investigate this relation in
greater detail in the next chapter which focuses on the MDH validity using high

frequency data.
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1.11 Distributions of Returns, Realized Volatility Measures
and Standardized Returns

1.11.1 Distribution of Returns

The statistics from Section 1.4.1 show that returns are not normally distributed.
Figure 1.6 fits the Gaussian distribution to sector average returns. The parameters of
the distributions are estimated using the maximum likelihood (ML) method. The red
dotted line is the unconditional log-density for the ML fit of the normal distribution
while the black solid line is the unconditional log-density for the return series. The
plots show that the return distributions are more peaked around zero and have fatter
and more fluctuated tails than the standard normal. In contrast with standard normal
distribution which has a fast decay rate, the return series’ decaying rate is much

slower.

BN-S (2002) show that the normal distribution using a log-log density representation
has faster decay rates than log-linear. Densities with fast decay rates have so called
‘sub-log-linear’ tails and with slow decay rates have ‘sup-log-linear’ tails. The density

plots in Figure 1.7 show clearly that returns have ‘sup-log-linear’ tails.

3 out of 10 sectors appear to have longer left tails than right tails, namely ENG, FIN
and MAR, suggesting more extreme values in negative returns. FIN has the longest
left tail and it is also the sector which is most influenced by the financial crisis and
yields largest degree of loss in the equity market. CD, IT and UTL have longer right
tails, an indication that extreme positive returns are more than negative ones. The

distributions of the returns of rest of sectors are more symmetric.

[Figure 1.7 here]
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1.11.2 Distributions of Realized Volatility Measures

Another well-established stylized fact is that realized volatility measures are best

approximated by Inverse Gaussian and Lognormal distributions.

Most of studies focus on the distributional properties of rv, alone. The distribution of

rv, is lognormal or close to lognormal is assessed by using foreign exchange data

(ABDL, 2001), US individual stock data (ABDE, 2001) as well as UK index data
(Areal and Taylor, 2002). BN-S (2002) use the same data as ABDL (2001) and find

that v, could also be approximated by the Inverse Gaussian distribution and the fits

of IG and Lognormal are equally well. The same conclusion is found by Forsberg and
Bollerslev (2002) from examining of 10 year ECU basket currencies/ US dollar and

by Stentoft (2008) from examining US equity data.

In this section, we re-examine the distributional properties of realized volatility
measures and try to find out the best fit of realized volatility measures distributions by
fitting three different distributions: normal, lognormal and inverse Gaussian. Besides
the sector average volatility measures, we also look at the volatility measures of most
and least actively traded stocks in each sector. We use the Kolmogorv-Simirnov (KS)
test which compares the empirical distribution function with the theoretical

distribution function non-parametrically.

From Table 1.10a, all volatility measures across different sectors confirm with neither
IG nor Lognormal distributions. However, the KS statistics confirm that all four

realized volatility measures are closely approximated by IG and Lognormal
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distributions as the KS test statistics are closer to 0.0258 -- the critical value that the
null cannot be rejected at 5%. Together with the test statistics, Figure 1.8 shows that
IG and Lognormal distributions of different realized volatility measures may be
regarded as empirically indistinguishable -- a finding firstly proposed by BN-S
(2002). The realized volatility measures are slightly better fitted by lognormal
distribution than by the IG distribution across volatility measures, as the KS statistics
for lognormal distribution is lower. Lognormal distribution fits v, best and IG fits

pv, best. rr, is the worst fitted volatility by both IG and lognormal distributions as it

yields highest KS statistics.

[Table 1.10a here]
[Figure 1.8 here]

Table 1.10b reports the KS statistics of volatility measures from the most and least
actively traded stocks in every sector. The null hypothesis is not fully rejected for

different realized volatility measures for three stocks. IG fits rv,, pv, and bv, of
MAR at the 5% level and fits 77, of MAR and rv,& bv, of MSFT at the 1% level.
Lognormal fits rv, and bv, of MAR, and rv, and pv, of S at the 1% level. The

volatility measures are better fitted by the lognormal distribution than the IG
distribution at individual stock level. For the 20 stocks that are investigated, both

distributions fit v, well. However, when we further divide the individual stocks into
the most and least actively traded groups, we find that the IG fits pv, best and the
Lognormal fits bv, best among the most active stocks, whereas the 1G fits bv, best

and the Lognormal fits pv, best among the least active stocks.

[Table 1.10b here]
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To sum up, the distribution of realized volatility measures across sectors can be
equally described by the Inverse Gaussian and Lognormal distributions. The KS test
accepts both as valid representation of the data. However, the fit of the lognormal
distribution ranks better than IG. This holds at both sector average and individual

stock levels. At the sector average, we also find that IG fits pv, best whereas the

lognormal fits bv, best.

1.11.3Distributions of Standardized Returns

The distributional properties of returns and realized volatility measures confirm the
stylized facts that returns are not Gaussian and realized volatility measures are closely
fitted by both Inverse Gaussian and Lognormal. Then we consider the distributional
properties of returns standardized by realized volatility measures. A fundamental
theorem of asset pricing implies that, in the absence of arbitrage effects, prices are
semi-martingales under a given physical measure. Monroe (1978) asserts that any
semi-martingale can be written as a time changed Brownian motion. Clark (1973)
shows that subordinated returns are normal with trading volume acting as a
subordinator. The Clark and Monroe assertions require continuity in the underlying
Brownian motion process. In chapter 3 we will discuss whether continuity is a

necessary assumption for recovering returns normality.

ABDL (2001), ABDE (2001), BN-S (2002), Areal and Taylor (2002), Fleming and
Paye (2007, 2011), ABFN (2010) have addressed the issue of recovering returns
normality using different volatility measures allowing for the effects of noise and

jumps. The general finding from these studies indicates that return normality is
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achievable once we account for such as (potential) noise, leverage and jumps. As
mentioned, in this chapter, our task is to investigate whether the various volatility
measures behaves in a systematic way across sectors. We consider both raw and

demeaned returns
sr=r/\V, [1.20]

where s7, is the standardized returns and V, denotes different realized volatility

measures.

Tables 1.11 and 1.12 respectively show the number of stocks that the hypothesis of
normality of daily returns and demeaned returns standardized by realized volatility

measures are rejected at the 1%, 5% and 10% level in overall sample in each sector.
[Table 1.11 and 1.12 here]

The results from JB statistics, skewness and kurtosis suggest that all four measures are
able to recover the normality to some extent when they are used as the standardization
factor. We also observe that subtracting the sample mean from the return series in the
numerator (or the demean process) does not enhance the normality of the
standardization process by much. This is contracted with the results reported by
ABFN (2010) who find that the distribution of demeaned returns standardized by
realized volatility is closer to normal. The JB statistics of standardized demeaned

returns are approximately the same as that of standardized raw returns.

Among all volatility measures, the standardization of pv, performs best as 79/100,

66/100 and 51/100 of r.//pv; cannot reject the Gaussian distribution at the 1%, 5%
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and 10% level, respectively. The second best is bv,, bringing 55/100 r, /,/bv, back to
normality at the 10% level, and then followed by r# and rv,. This conclusion holds

for both raw and demeaned return series, with demeaned series providing slightly
fewer rejections at different significance levels. We also observe that rv, is less
successful in working in the more actively traded sectors while bv, is more successful
in the less actively traded sectors. In our sample, when volatility measures are used to
standardize returns, the two best performed sectors are the ENG and UTL, of which
24/40 standardized returns do not reject the normality null at the 10% level. Two least
successfully performed sectors are the MAR and IT, of which 10/40 and 11/40
standardized returns do not reject the normality at the 10% level. Among all sectors,
UTL is the least actively traded sector and IT is the most actively traded sectors. UTL
is also one of the sectors which have a large number of jumps detected and IT detects

lowest number of jumps, both at daily and intraday level.

Given the fact pv, is the most successful standardization factor overall, it is not

always the most efficient one for every sector. The performance of the realized

measures of volatility varies from one to another. v, works best in CS sector, 77, and

bv, works best in ENG sector while pv, is most successful in HC sector. Besides
ENG, a sector where all realized volatility measures work relatively well, and MAR, a
sector that all realized volatility measures fail to standardized most of the return series,
the standardization results using different volatility measures are rather mixed for the

rest of 9 sectors.

The literature provides several justifications of why realized volatility measures

standardized returns are still not normally distributed. Fleming and Paye (2011)
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propose microstructure noise which could distort the variance of the standardized
returns and artificially inflate the kurtosis of the standardized returns. ABFN (2010)
suggests that leverage effect and presence of jumps are important for the distributional
properties of standardized returns. A more detailed discussion addressing recovering

normality of returns is provided in the later chapter.

1.12 Sector Rankings

Table 1.13 ranks sectors by mean values of the volatility measures, market activity
measure, intraday and daily jumps, persistence and the volatility-volume regression
adjusted R-squared, and by the rejections of normality of standardized returns. The
table shows that rankings of the various measurements considered tend to vary across
sectors. This table aims to establish links among the various strands of the stylized

facts addressed in this chapter.

First, only 4/10 sectors show that volatility measures rank the same across sectors.
The existing literature provides no explanation as why this should be the case. Ideally
we should have different rankings for every sector but given that four sectors agree on
a similar ranking is of interest especially all four are quite distinct in the nature of
activities and services they provide. It would be interesting to see whether the ranking

shifts if the variables were to be observed at different time windows.

Second, high volatility and trading volume episodes are not aligned as we would

expect. For example, the most actively traded sector IT ranks low by volatility and the
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most volatile sector MAR ranks low by trading volume. The volatility-volume relation

as shown by the regressions also highlights this issue.

Third, the number of identified (significant) intraday and daily jumps does not match
except for TEL and IT. The sectors which contain most (least) daily jumps also
contain most (least) intraday jumps. The most actively traded sector has the smallest
number of intraday and daily jumps. Moreover, our ranking results suggest that the
number of jumps is not associated with the level of volatility measures: the most

jumps-contained sector is neither the most actively traded nor the most volatile.

Returns normality could be achieved in various sectors and using all realized
measures. The results obtained are independent of the level of jumps detected both at
the daily and the intraday levels. The level of stock activity seems to be a dominant
factor in the ability of the realized measures to recover normality. The IT sector has
the lowest intraday and daily jumps but the highest percentage of normality rejections.
The least actively traded sectors (CS and UTL) shows the lowest rejections of returns
normality. One possible explanation is provided by Ait-Sahalia ef a/ (2009) who find a
positive relationship between microstructure noise and trading volume, hence high
activity entitles high microstructure noise. In line with their findings, low activity
entitles less microstructure noise and hence less discontinuities. A similar argument is
provided by Hansen and Lunde (2005). Given that CS and UTL sectors are less
actively traded they are expected to have more consistent realized volatility

estimators, hence more capable of recovering returns normality.

Persistence and activity tend to move jointly as advocated by the mixture of
distribution hypothesis. The ranking for persistence varies with the realized volatility

measure tested. UTL and IT are the least (most) persistent sectors. UTL is the least
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active and least persistent whereas IT is the most active and persistent. The mixture of
distribution assumes a common process driving volatility and market activity as
characteristics shared by both activity and volatility measures. The ranking for
persistence varies with the realized volatility measure tested. This can be attributed to
two factors. The first is the presence of microstructure noise. For example, the realized
range, by construction is known of its sensitivity to microstructure noise. Second, the

sensitivity of certain measures to jumps.

The sectors that contain the most jumps show lowest R* (CD and TEL). The presence
of jumps in the volatility measures weakens the well-documented volatility-volume
relation. This finding is supported by Giot e/ al (2010) who finds a negative jumps-
volatility relation. The volatility-volume regression results are more significant in the
most actively traded sectors and are sensitive to the volatility measure in use. For

example, rr,‘ is mostly explained by volume in the MAR sector whereas rv,, pv, and

bv, are all mostly explained in the ENG sector.

The above findings which pertain to the realized measures of volatility might not all
be novel, but provide a better picture about the interaction of activity and volatility
measures across different market sectors. The different performance of sectors, as well
as the stocks within these sectors provides a useful insight about the dynamics of the
market and may help explain why a common warning system which treats all as being

the same is bound to fail.

[Table 1.13 here]
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1.13 Conclusion

We look at trade data of 100 stocks from 10 sectors traded in the US stock market for
the period 2000-2010. We investigate the degree of variation across sectors in the
stylized facts of realized volatility measures with respect to the optimal sampling
frequency, correlations, jumps, leverage effect, volatility regimes, persistence, and
volatility-volume relation. We also look at the distributional properties of returns,
standardized returns and realized measures of volatility. Our findings can be

summarised as follows.

We find that the 5-minute is the optimal sampling frequency for realized measures of
volatility. This result does not hold for the power variation, particularly for stocks
number of jump activity where the point of convergence overshoots the 5 minute

point.

Rankings of realized volatility measures tend to vary across sectors. Deviations are
more visible in active sectors. This result holds for all volatility measures with the
exception of realized variance and bi-power variation. The rankings of these two

measures are the same.

Power variation shows systematically best performance across sectors and
outperforms other realized measures. It has the lowest standard deviation, well defined
distributional properties, has the highest degree of persistence, most capable of
recovering normality, and robust to jumps. It is the most accurate volatility estimator

to the true volatility among the four volatility measures.
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Realized volatility measures are highly and positively correlated with each other (over
85%). The jump component from realized variance is negatively correlated with

volume and positively correlated with realized variance.

Realized measures regimes characteristics vary by regime type (high-low) and by
sector. Realized power variation is detected with the longest period in the high regime
while realized range has the shortest high regime. Regime patterns for realized
variance and realized bipower mimic each other. Although most of the sectors are
detected with both high-low volatility regimes, UTL, the least traded sector, is only

identified with low regime for 3 out of 4 realized volatility measures.

The volatility-volume relation holds in all sectors as borne out by the various realized
volatility measures. The relations holds best for realized power variation, followed by
realized bi-power variation, realized range and realized variance. The presence of
jumps tends to negatively impact the relation as sectors which contain more jumps

tend show less association between realized measures and trading volume.

The distribution of the realized volatility measures can be equally described by both
the Inverse Gaussian and Lognormal distributions. The realized power variation is
best approximated by the Inverse Gaussian and the realized bi-power variation by the

lognormal.

Returns standardized by the realized measures are normal. Realized power variation
outperforms the other three measures in recovering returns normality. The result holds
for both raw and demeaned return series. Returns normality in actively traded sectors
is more difficult to achieve. We also find no relation between the degree of jump

activity and recovering returns normality.
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Table 1.2: TAQ and TICK comparative statistics (Intel Corporation (INTC))

68

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis
JB

ADF

P value

TICK TAQ
RV, RR PV, BV, RV, RR, PV, B,
5.359 5.874 9.858 5.186 5.893 19.173 10.294 5.544
2.937 3.178 6.854 2.832 | 3.120 5.224 7.077 2.935
89.431  104.425 82261  74.089 } 155.640  17950.650 110.006  152.531
0.167 0.237 0.772 0.153 ’ 0.194 0.275 0.881 0.167
6.557 7.127 8.393 6.427 | 8731  342.054  9.179 8.021
3.688 3.974 2338 3.593 I 7.779 52.098 3.067 7.494
26.166  32.838  11.067  23.555 ‘ 110711 2731434  21.089  109.136
6.815E+04 1.099E+05 1.002E+04  5.466E+04 I 1.365E+06  8.600E+08  4.206E+04 1.325E+06
4777 4022 3713 -4.891 ‘ 6198  -52.527  -3.663 -5.236
(0.000)  (0.001)  (0.004)  (0.000) l (0.000)  (0.000)  (0.005)  (0.000)

Note: This table reports the summary statistics of realized measures of volatility, namely realized variance, realized range,
realized power variation, realized bipower variation, and calculated using tick to tick data from TICK and TAQ database,
respectively. JB is the Jarque-Bera test statistics for normality. ADF denotes the augmented Dickey-Fuller statistics for the null
of a unit root with 5% and 1% critical values of 2.862 and -3.433 respectively.



Table 1.3: Summary statistics of sector average daily returns (in %)

Daily Return (R;)

CD cs ENG FIN HC IND IT MAR TEL UTL
Mean 0.032 0.050 -0.037 -0.029 -0.001 -0.001 0.015 -0.088 -0.027 0.011
S.D. 2.297 1.449 2.301 2.488 1.932 1.842 2.328 2.510 2.158 1.722
Skewness 0.166 0.132 -0.697 -0.192 0.030 -0.053 0.175 -0.186 -0.030 -0.785
Kurtosis 12.506 8.964 20.780 16.455 7.999 7.633 8.485 8.019 13.283 27.297
JB 19844315 4351420  74013.418 25542559 3911435  2737.765 4519398  3121.055 17551.998 162754.940
ADF -29.600 -21.213 -17.786 -14.728 -25.421 22,511 -21.834 -18.936 -18.661 -29.177
p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: Summary statistics of daily returns for the 100 stocks over the period 01/01/2000 to 31/12/2010 are reported at sector average level. S.D. denotes standard deviation. ADF denotes
the augmented Dickey-Fuller statistics for the null of 2 unit root with 5% and 1% critical values of 2.862 and -3.433 respectively. The daily retunrs are pooled across stocks and then
summarized.



Table 1.4a: Summary statistics of realized volatility measures (level)
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Mean
Median
S.D.
Skewness
Kurtosis
ACF(36)
Q(36)

p value

- Mean
Median
S.D.
Skewness
Kurtosis
ACF(36)
Q(36)

p value

Mean
Median
S.D.
Skewness
Kurtosis
ACF(36)
Q(36)

p value

Mean
Median
S.D.
Skewness
Kurtosis
ACF(36)
Q(36)

p value

CD CS ENG FIN HC IND IT MAR TEL UTL
Realized Variance (7V,)
5.455 2.453 5.836 6.339 4.245 3.696 5.722 6.703 5.637 3.419
3.334 1.486 3.493 2.537 2.624 2.336 3.124 4.389 3.024 1.752
7.100 2913 9.250 17.207 4.660 5.111 6.787 9.499 9.721 13.239
7.440 5.183 8.681 11.436 4918 8.352 3.648 8.620 8.961 31.670
111.077  50.947  118.145 198.683  56.216  139.260 24.865 123.691 140.262 1267.273
0.339 0.357 0.248 0.303 0.396 0.329 0.442 0.343 0.306 0.043
21271 26899 18632 16238 29603 25340 31406 27868 22637 1437
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000) (0.000) (0.000)  (0.000) (0.000)
Realized Range (77;)
4.866 2.069 5.061 6.115 3.761 3.197 6.046 5.687 4.748 2.836
2.991 1.226 2.997 2.291 2374 1.980 3.138 3.436 2.641 1.356
6.253 3.217 8.925 17.777 4.533 5.051 7.449 9.419 8.123 12.086
7.284 14.125 10.782 11.364 8.794 10.347 4.048 9.902 8.322 25.128
112.688 343.540 197363 194919 174717 198.423 31502 165.886 118315  746.710
0.390 0.225 0.245 0.321 0.338 0.321 0.454 0.357 0312 0.044
26766 11556 18134 17868 23956 22808 32480 28867 23597 1232
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000) (0.000) (0.000)  (0.000) (0.000)
Realized Power Variation ( pV,)
9.155 5.117 9.553 9.571 7.615 7.027 9.918 10.922 8.627 5.980
6.928 3.798 7.231 5.814 5.723 5.428 6.772 8.405 6.217 4299
7.378 3.934 8.677 13.844 5.561 5.973 8.155 9.452 8.113 7.135
3.470 3.472 5.516 6.320 3.129 4.564 2.425 5.499 3.940 10.348
26.878 25.109 55.262 67.386 23.817 41.258 11.892  51.830 28.578 200.242
0.507 0.468 0.385 0.485 0.503 0.443 0.542 0.454 0.495 0.230
40842 39755 33186 33234 41391 37477 43212 39195 43618 16063
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000) (0.000) (0.000) (0.000) (0.000)
Realized Bipower Variation (bv, )
4.994 2.230 5.407 5.977 3.877 3.445 5.457 6.231 5.071 3.143
3.037 1.364 3.255 2.327 2.413 2.185 2.934 3.985 2.738 1.593
6.148 2.655 8.713 16.063 4.303 4.877 6.616 9.403 9.304 13.728
5.652 5377 8.488 10.813 5.324 8.157 3.762 9.043 11.684 37.873
68.374 54.831 111.520 176455  65.569  125.802 26.269 134.358 244450 1704.928
0.394 0.348 0.249 0.319 0.384 0318 0.432 0.335 0.270 0.037
28495 28333 19709 17661 28819 24876 30717 27660 18939 1075
(0.000)  (0.000)  (0.000)  (0.000) (0.000)  (0.000) (0.000) (0.000)  (0.000) (0.000)

Note: Summary statistics of daily volatility measures for the 100 stocks over the period 01/01/2000 to 31/12/2010 are reported at
sector average level. S.D. denotes standard deviation. ACF (36) is the autocorrelation at 36th lags and Q (36) is the Q statistics at

36th lag. The realized volatility measures are pooled across stocks and then summarized.



Table 1.4b: Summary statistics of volatility measures (logarithmic)
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CD CS ENG FIN HC IND IT MAR TEL UTL
Realized Variance (In(rv,))
Mean 1.290 0.546 1.353 1.021 1.101 0.928 1.310 1.577 1.207 0.646
Median 1.204 0.396 1.251 0.931 0.965 0.848 1.139 1.479 1.107 0.561
S.D. 0.845 0.766 0.805 1.107 0.777 0.791 0.883 0.698 0.919 0.881
Skewness 0.537 0.751 0.767 0.782 0.612 0.676 0.544 1.042 0.698 0.907
Kurtosis 2.856 3.329 3.943 3.743 2912 3.643 2.611 4.948 3.446 4.810
ACF(36) 0.677 0.596 0.560 0.720 0.625 0.601 0.688 0.504 0.700 0.544
Q(36) 56370 48439 45424 61836 49572 48552 57787 37553 60102 44375
p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Realized Range (In(r7))
Mean 1.189 0.365 1.200 1.021 1.101 0.928 1.310 1.577 1.207 0.646
Median 1.096 0.204 1.098 0.931 0.965 0.848 1.139 1.479 1.107 0.561
S.D. 0.827 0.752 0.791 1.107 0.777 0.791 0.883 0.698 0.919 0.881
Skewness 0.572 0.894 0.926 0.782 0.612 0.676 0.544 1.042 0.698 0.907
Kurtosis 2.935 3.947 4.544 3.743 2.912 3.643 2.611 4.948 3.446 4.810
ACF(36) 0.696 0.594 0.569 0.720 0.625 0.601 0.688 0.504 0.700 0.544
Q(36) 58889 48608 47209 61836 49572 48552 57787 37553 60102 44375
p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Realized Power Variation (In(pv,))
Mean 1.997 1.446 2.050 1.833 1.847 1.746 2.049 2.213 1.897 1.527
Median 1.936 1.335 1.978 1.760 1.745 1.692 1.913 2.129 1.827 1.458
S.D. 0.628 0.569 0.589 0.830 0.572 0.594 0.670 0.533 0.669 0.649
Skewness 0.529 0.755 0.779 0.749 0.627 0.688 0.527 1.088 0.653 0.832
Kurtosis 2.841 3.386 4.114 3.610 3.024 3.722 2.596 5.081 3.271 4.344
ACF(36) 0.694 0.612 0.550 0.727 0.642 0.605 0.691 0.534 0.714 0.551
Q(36) 59540 51571 45475 63190 52608 49710 58666 41736 62835 46296
p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Realized Bipower Variation (ln(bv,) )

Mean 1203 045 1274 0953 1015 0854 1251 1490  1.096  0.555
Median 1.111 0.310 1.180 0.845 0.881 0.782 1.076 1.383 1.007 0.465
S.D. 0.848 0.759 0.802 1.111 0.770 0.790 0.893 0.702 0.919 0.878
Skewness 0.529 0.758 0.804 0.796 0.623 0.708 0.542 1.131 0.713 0.948
Kurtosis 2.787 3.401 4.099 3.745 3.002 3.772 2.641 5.276 3.517 4.930
ACF(36) 0.687 0.589 0.551 0.722 0.622 0.589 0.686 0.496 0.692 0.532
Q(36) 57837 48462 44893 62630 49507 47553 57738 37522 59534 43733
p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: Summary statistics of logarithmic daily volatility measures for the 100 stocks over the period 01/01/2000 to 31/12/2010
are reported at sector average level. S.D. denotes standard deviation. ACF (36) is the autocorrelation at 36th lags and Q (36) is
the Q statistics at 36th lag. The realized volatility measures are pooled across stocks and then summarized.



Table 1.5: Summary statistics of realized variance and its components

CD CS ENG FIN HC IND IT MAR TEL UTL

Realized Variance (7v,)

Mean 5455 2453 5836 6.339 4245 3.696 5722 6.703 5.637 3.419
S.D. 7.100 2913 925 17.207 4.66 5111 6.787 9.499  9.721 13.239
Maximum 149.54 51.346 187.92 394.56 89.124 125.26 89.731 208.39 212.44 571.53
Skewness 744 5183 8681 11.436 4918 8352 3.648 8.62 8.961 31.67
Kurtosis 111.08 50.947 118.15 198.68 56.216 139.26 24.865 123.69 14026 12673

Continuous Variation (¢v,)

Mean 5367 2363 5757 6272 4159 3.622 5663 6.616 5525 3.328
S.D. 7.086 2904 9249 17208 4.652 5112 6.794 9.506 9.721 13.237
Maximum 147.86 51.279 187.88 394.43 89.091 125.17 89.736 208.41 212.62 571.64
Skewness 7.38 5206 8.686 11.431 4944 8359 3.645 8.621 8974 31.697

Kurtosis 109.25 51.368 118.14 198.53 56.673 139.26 24.822 123.62 140.7 12694

Jumps (J, )
Mean 0.088 0.09 0.079 0.067 0.086 0.074 0.059 0.087 0.112 0.091
S.D. 0.124  0.094 0.091 0.094 0.096 0.083 0.077 0.089 0.107 0.1

Maximum 2932 1.153 1162 1357 1.284 1358 1458 0.92 1.256  1.176
Skewness  8.528 3.002 2.556 4936 2941 3.074 4315 1.833 2526 2.197

Kurtosis 142.54 23.587 22.071 52.162 24.723 34.606 57.823 13.653 18.526 17.171

Note: This table reports the mean, standard deviation, skewness, kurtosis and maximum at sector average realized
variance and its continuous and non-continuous components from 03/01/2000 to 31/12/2010. The realized variance
and its components are pooled across stocks and then summarized.



Table 1.6: Jump detection methods and jump contribution to the return/variability
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CD CS ENG FIN HC IND IT MAR TEL UTL Overall
L & M Jump Test (5%)
Number of detected jumps 136 143 112 99 134 114 73 142 153 140 124
Number of days with at least 1 significant jump 127 132 105 95 125 107 69 131 146 129 117
Proportion of detected jumps 0.07% 0.07% 0.06% 0.05% 0.07% 0.06% 0.03% 0.07% 0.08% 0.07% 0.06%
Proportion of days with at least 1 significant jump 4.91% 5.30% 4.06% 3.53% 4.03% 4.06% 2.53% 5.05% 5.42% 5.25% 4.46%
MaxZ Jump Test (5%)
Number of detected jumps 730 710 665 636 706 713 634 668 823 694 698
Proportion of detected jumps 2798%  27.56%  25.64% 23.67% 27.14% 2691% 2439% 25.57% 31.65% 27.96%  26.85%
Average Jump Contribution 0.263 0.262 0.259 0.248 0.265 0.259 0.241 0.257 0.264 0.266 0.258
Maximum Jump Contribution 0.871 0.815 0.807 0.86 0.864 0.819 0.666 0.831 0.872 0.852 0.826
Std. Dev. of the Jump Contribution 0.11 0.106 0.102 0.104 0.112 0.104 0.088 0.101 0.106 0.109 0.104
Skewness of the Jump Contribution 1.933 1.685 1.719 2.075 1.761 1.698 1.528 1.742 1.836 1.745 1.772
Kurtosis of the Jump Contribution 8.359 6.849 7.339 9.153 7.109 6.971 5.866 7.338 8.205 7.204 7.439
Intraday Jumps Ranking 5 2 8 9 6 7 10 3 1 4
Daily Jumps Ranking 2 4 8 5 9 3 10 7 1 6

Note: The table reports sector average, overall average and top 30 average numbers of jumps detected at daily and intraday levels. The intraday jump detection is based on L&M jump test and the
daily jump detection is based on the MaxZ Jump test. ‘Intraday Jumps Ranking denotes the descending rankings of number of jumps detected by intraday jump test across sectors while ‘Daily Jumps

Raking’ denotes the descending rankings of number of jumps by daily jump test cross sectors. All the jumps are reported at 5% significance level.



Table 1.7a: Correlation metrics I

vol, v, FF, pv, bv, | vol, v, rr, pv, bv, | vol, ry, rr, pv, bv, | vol, v, vy, pv, bv,

CDh CS ENG FIN

vol, 1.000 | 1.000 1.000 | 1.000

p value - | - | - |-

v, 0.360  1.000 | 0385  1.000 | 0.456  1.000 | 0.548  1.000

p value  (0.000) - | (0.000) - | (0.000) - | (0.000) -

e 0.404  0.938  1.000 | 0.416 0.861  1.000 | 0.485 0.967  1.000 | 0556 0967 1.000

p value  (0.000) (0.000) - | (0.000) (0.000) - | (0.000) (0.000) - | (0.000) (0.000) -

P, 0.403  0.930 0920  1.000 | 0398 0943 03839  1.000 | 0491 0969 0935  1.000 | 0.612 0963 0936  1.000

pvalue (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) - ] (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) -

by, 0.379  0.896  0.907 0951 1.000 | 0.402 0958 0.860 0.956 1.000 | 0.466 0.983 0964 0964 1.000 | 0.551 0988  0.959  0.961 1.000

p value _(0.000) (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) (0.000) -
HC D IT MAR

vol, 1.000 | 1.000 1.000 [ 1.000

p value - | - | - [ -

TV, 0.345  1.000 | 0.486  1.000 | 0.341  1.000 | 0.427  1.000

p value  (0.000) - | (0.000) - | (0.000) - | (0.000) -

Ty 0371  0.927  1.000 | 0475 0919  1.000 | 0345 0937 1.000 | 0472 0963 1.000

p value  (0.000) (0.000) - | (0.000) (0.000) - | (0.000) (0.000) - | (0.000) (0.000) -

pV: 0.355  0.954  0.906  1.000 | 0518 0959 0882  1.000 | 0356 0974 0924  1.000 | 0.474 0.965 00940  1.000

pvalue  (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) -

bv, 0352 0.971  0.927 0.953 1.000 | 0.491 0.974 0.908 0953 1.000 | 0338 0982 00933 0967 1.000| 0434 0982 0961 0960 1.000

pvalue (0.000) (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) (0.000) -
TEL UTL OVERALL

vol, 1.000 [ 1.000 1.000 _

p value - _ - _ - _

rv, 0.379  1.000 | 0215  1.000 | 0.394  1.000 _

pvalue  (0.000) - | (0.001) - | (0.000) - |

T 0.376  0.821  1.000 | 0.263 0.945 1.000 | 0416 0924  1.000 |

p value (0.000) (0.000) - | 0.000) (0.000) - | (0.000) (0.000) - |

P, 0.420 0.940 0.788  1.000 | 0229 0948 0922 1.000 | 0426 0955 0.899  1.000 |

pvalue (0.000) (0.000) (0.000) - | (0.002) (0.000) (0.000) - | (0.000) (0.000) (0.000) - |

bv, 0.400 0941  0.838  0.956 1.000 | 0.226 0.956  0.937 0.956 1.000 | 0.404  0.963  0.920  0.958  1.000 |

pvalue  (0.000) (0.000) (0.000) (0.000) - | (0.001) (0.000) (0.000) (0.000) - | (0.000) (0.000) (0.000) (0.000) - |

Note: vol, = Trading Volume, rv, = Realized Variance, rr; = Realized Range, pv, = Realized Power Variation, bv, = Realized Bipower Variation.
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Table 1.7b: Correlation metrics II

vol, rv, J, cv, | vol, v, J, cv, | vol, v, J, cv, | vol, v, J, v,

CD CS ENG FIN

val, 1.000 1.000 1.000 | 1.000

pvalue | - | - | - | -

v, | 0360  1.000 | 0.385  1.000 | 0.456  1.000 | 0.548  1.000

p value | (0.000) - | 0.000) - | 0.000) - | 0.000) -

Ie | -0.024  0.092  1.000 | -0.020 0.090  1.000 | -0.085 0.024  1.000 | -0.038 0.019  1.000

pvalue | (-0.312) (0.151) - | 0.109) (0.037) - | (0.136)  (0.404) - | (0.162) (0.249) -

cv, | 0361  1.000  0.071 1.000 | 0.388 0999  0.043 1.000 | 0.458  1.000  0.005 1.000 | 0.549  1.000  0.009 1.000

p value | (0.000) (0.000) (0.357) - | (0.000) (0.000) (0.137) - | (0.000) (0.000) (0.141) - ] (0.000) (0.000) (0.432) -
HC IND IT MAR

vol, 1.000 1.000 1.000 | 1.000

pualue | - |- |- |-

v, | 0345  1.000 | 0.486  1.000 | 0341 1.000 | 0.427  1.000

p value | (0.000) - | (0.000) - | (0.000) - | (0.000) -

It I 0015  0.100  1.000 | -0.040 0.041  1.000 | -0.025 -0.010 1.000 | -0.114  0.009  1.000

p value | (0.275)  (0.064) . | (0.391) (0.119) - | (0.421) (0.346) - | (0.187) (0.156) -

cv, | 0345 0999  0.066 1.000 | 0.488 0999  0.011 1.000 | 0.341  1.000 -0.029 1.000 | 0.428  1.000  -0.008 1.000

p value | (0.000) (0.000) (0.076) - | (0.000) (0.000) (0.441) - | (0.000) (0.000) 0.217 -] (0.000) (0.000) (0.175) -
TEL UTL OVERALL

vol, 1.000 1.000 1.000 |

p value | (0.000) | (0.000) | (0.000) _

v, | 0379  1.000 | 0.215  1.000 | 0394  1.000 |

p value | (0.000) - | (0.001) - | (0.000) . _

Je | -0.038  0.040  1.000 | -0.036 0.055  1.000 | -0.040 0.046  1.000 |

p value | (0.204) (0.272) - | (0.226) (0.217) - | (0.242) (0.201) - |

cv, | 0380  1.000 0.013 1.000 | 0217 0.999  0.028 1.000 | 0395 1.000  0.021 1.000 |

p value | (0.000) (0.000) (0.359) - | (0.001) (0.000) 0.177 - ] (0.000) (0.000) (0.251) - |

Note: vol,= Trading Volume, rv,= Realized Variance, J; = Jumps, cv, = Continuous Variance.
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Table 1.8: Long memory test

CD Cs ENG FIN HC IND IT MAR TEL UTL Overall
vol, 0.342 0.347 0.419 0.443 0.358 0.379 0.334 0.445 0.419 0.389 0.388
", 0.398 0.404 0.402 0.402 0.407 0.421 0.439 0.420 0.396 0.350 0.404
v, 0.399 0.405 0.402 0.402 0.407 0.429 0.439 0.420 0.396 0.350 0.405
g 0.422 0.388 0.408 0.411 0.415 0.420 0.442 0.431 0.406 0314 0.406
pv, 0.449 0.441 0.433 0.438 0.440 0.445 0.455 0.446 0.444 0.404 0.440
by, 0.428 0.418 0.404 0.403 0.411 0.421 0.437 0.420 0.401 0.372 0.411

Note: The table reports the mean Robinson’s d statistics across sectors and overall. All the values are significant at 5% level.
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Table 1.9: volatility-volume relation results

77

Vi

se,

% R’
% Significant

Vi

ser

% R’
% Significant

Vi

se,

% R*
% Significant

Vu
3:—6—7
% R*

% Significant

CD CS ENG FIN HC IND IT MAR TEL UTL OVERALL
Realized Variance (7V,)

0.652 0.884 0.862 0.754 0366 0.546 0.148 0.502 0987 6.524 1.222
0.248 0298 0313 0276 0.066 0.106 0.031 0.107 0395 3.755 0.559
45209 47.722 63.934 58.489 48.804 56.552 58.540 61.338 41.284 45.708 52.758
90 100 100 100 100 100 100 100 90 80 96

Realized Range (77,)
0492 0.742 0754 0.684 0336 0500 0.147 0440 0.784 5.305 1.018
0.150 0241 0279 0241 0060 0.106 0.032 0.094 0260 3.109 0.457
53.103 48.450 64.393 62.929 51.572 53.684 60.287 66.735 47.463 37.977 54.659
90 100 100 100 100 100 100 100 90 80 96
Realized Power Variation ( pV,)
0.488 0845 0.737 0.540 0368 0.585 0.161 0485 0953 2.691 0.785
0.102 0.218 0.177 0.153 0.052 0.079 0.027 0.075 0.253 1.283 0.242
65.675 64.767 73.242 71911 64.822 70210 70.751 72310 59.947 64.193 67.783
100 100 100 100 100 100 100 100 90 90 98
Realized Bipower Variation (bV,)
0416 0.699 0792 0.679 0344 0.529 0.140 0473 0.865 6.831 1.177
0.082 0222 0284 0256 0.058 0.106 0.031 0.100 0353 4.064 0.556
53.658 52.003 64.847 59.713 51.452 57.629 58.568 62.895 47.391 51.795 55.995
100 100 100 100 100 100 100 100 90 90 98

Note: Volume is rescaled by dividing by 1,000,000. ,Dl.j measures the persistence of volatility shock at lag j. M, is the Monday dummy.

— 52.
7, is equally-weighted cross sectional mean coefficients for trading volume and se, is average Newey-West standard error. The R’is

the mean value of 100 stocks. The last row reports the percentage of 7, coefficients which are statistically significantly from zero at 5%

level.



Tablel.10a: Distributional test of volatility (sector average)

IG  Lognormal Normal IG  Lognormal Normal IG  Lognormal Normal IG  Lognormal Normal IG  Lognormal Normal

D CS ENG FIN HC

rv,  0.068 0.072 0.252  0.087 0.081 0.239  0.066 0.055 0.292  0.071 0.048 0.362  0.075 0.074 0.220

rr, 0.070 0.076 0.251 0.101 0.089 0.295  0.080 0.056 0.311 0.087 0.059 0.371 0.089 0.080 0.245

pv, 0074 0.075 0.175 0.087 0.081 0.181 0.062 0.051 0.209  0.056 0.049 0.276  0.080 0.077 0.175

\3\._ 0.069 0.073 0.239  0.088 0.081 0.241 0.069 0.053 0.294  0.069 0.050 0.361 0.078 0.072 0.223
IND IT MAR TEL UTL

rv,  0.054 0.042 0.264  0.083 0.088 0.227  0.094 0.065 0279  0.056 0.049 0.300  0.083 0.050 0.406

rr, 0.067 0.044 0.291 0.094 0.099 0.230  0.122 0.087 0.308  0.093 0.058 0.303  0.120 0.055 0.415

pv, 0.050 0.046 0.189  0.086 0.086 0.173  0.087 0.072 0.213  0.056 0.055 0.203  0.060 0.049 0.255

bv, 0.059 0.045 0.268  0.079 0.084 0.231  0.103 0.068 0.291  0.085 0.045 0.079  0.095 0.051 0.417

Note: KS denotes Kolmogorov-Smirnov test on the distributions of Inverse Gaussian, lognormal and normal, with the critical value of 0.0258 at 5% level. * denotes p>0.05
and * denotes p>0.01.



Table 1.10b: Distributional test of volatility (most and least active stocks)
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KS Test

v,
v
pv
bv

v
rr
by,
by

rr,

by,
bv

IG Lognormal  Normal 1G Lognormal Normal | IG  Lognormal Normal IG  Lognormal Normal
Consumer Discretionary Consumer Staples
HD MAR WMT BFB
0.038 0.047 0.251 0.014** 0.030* 0.256 l 0.060 0.068 0.252  0.079 0.053 0.369
0.053 0.060 0.273 0.027* 0.044 0.289 I 0.078 0.081 0.264  0.081 0.069 0.356
0.046 0.049 0.178  0.023** 0.034 0.185 l 0.066 0.067 0.181  0.059 0.044 0.203
0.038 0.047 0.257  0.019%* 0.030* 0.264 | 0.056 0.066 0.252  0.058 0.041 0.322
Energy Financials
XOoM TE C TRV
0.069 0.046 0.318 0.065 0.043 0.325 ' 0.053 0.042 0.398  0.065 0.047 0.345
0.087 0.055 0.341 0.085 0.053 0.327 I 0.053 0.053 0.391  0.109 0.074 0.338
0.064 0.046 0.222 0.061 0.044 0.226 I 0.050 0.050 0.316  0.064 0.049 0.246
0.070 0.048 0.325 0.066 0.042 0.317 | 0.049 0.040 0.399  0.071 0.053 0.348
Health Care Industrials
PFE HUM GE GD
0.045 0.041 0.245 0.050 0.049 0.248 I 0.040 0.044 0.326 - 0.065 0.054 0.270
0.062 0.055 0.259 0.058 0.066 0.260 ‘ 0.049 0.050 0.325  0.068 0.052 0.316
0.046 0.041 0.165 0.062 0.064 0.186 l 0.040 0.0470 0.237  0.064 0.054 0.191
0.041 0.038 0.242 0.048 0.062 0.251 | 0.042 0.046 0.327  0.069 0.056 0.286
Information Technology Materials
MSFT XRX AA AKS
0.030* 0.048 0.241 0.039 0.049 0.309 ’ 0.078 0.061 0.314  0.053 0.041 0.284
0.052 0.063 0.237 0.056 0.062 0.322 ’ 0.099 0.069 0.327  0.065 0.049 0.297
0.042 0.049 0.173 0.045 0.045 0.217 l 0.077 0.061 0.226  0.052 0.042 0.195
0.031* 0.050 0.245 0.036 0.043 0.320 | 0.081 0.058 0.321  0.054 0.044 0.296
Telecommunications Services Utilities
S BT DUK OKE
0.035 0.030* 0.320 0.048 0.061 0.233 ’ 0.055 0.041 0.336  0.068 0.049 0.373
0.045 0.059 0.332 0.054 0.053 0.264 ‘ 0.096 0.058 0.354  0.124 0.075 0.437
0.036 0.029* 0.229 0.055 0.058 0.175 ' 0.050 0.041 0.234  0.064 0.049 0.241
0.035 0.032 0.319 0.046 0.058 0.240 l 0.056 0.038 0.336  0.070 0.047 0.325

Note: KS denotes Kolmogorov-Smirnov test on the distributions of Inverse Gaussian, lognormal and normal, with the critical value of
0.0258 at 5% level. * denotes p>0.05 and * denotes p>0.01. The first and third columns from left are the most actively traded stocks in
every sector and the second and fourth columns are the least actively traded stocks in every sector.



Table 1.11: Daily distributions of returns (overall)
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Raw Returns

Demeaned Returns

Significance Significance
1% 5% 10% 1% 5% 10%
/v, 39 60 71 40 60 72
re/\rre 35 48 57 35 49 59
r/ [PV 21 34 49 19 31 46
r./\/bv, 25 ) 54 25 42 55

Note: The table reports the number of stocks (out of 100) for which the null hypothesis of normality of
return is rejected based on the Jarque-Bera test when daily returns are standardized by volatility
measures. ', refers the daily return or demeaned returns, while v, rr,, pv., bv, denote the realized
variance, realized range, realized power variation and realized bipower variation respectively.
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Table 1.12a: Daily distribution of raw returns (sectors)

Daily Raw Return of 100 stocks

Significance Significance Significance Significance

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Series CD CS ENG FIN
r/Jrv, 6 7 7 2 2 4 1 5 7 5 8 9
YN 7 8 8 4 4 6 1 1 3 1 3 5

r/Jpv. 2 3 5 2 4 9 0 2 2 5 5 5

rdJbv, 5 6 8 2 3 3 0 1 4 4 5 7

Series HC IND IT MAR

re/ TV, 4 6 8 3 6 6 7 8 9 5 8 9

1/ JT7, 2 4 4 4 5 5 4 5 7 5 8 8

e/ PV; 1 1 3 2 3 4 1 2 4 2 4 5

r/Jbo, 2 3 3 2 4 5 4 9 9 36 8
Series TEL UTL

r/roe 4 T 9 23 3
r/Jrre 45 5 3 5 6
rt/\/ﬁ
ro/Jbv, 2 3 5 1 2 2

7 3 4 5

W)
(=)}

Note: The table reports the number of stocks in each sector (out of 10 in each sector) for which the null
hypothesis of normality of return is rejected based on the Jarque-Bera test when daily returns are

standardized by volatility measures. 7, refers the daily return, while 7v,,77,, pv,,bv, denote the realized

variance, realized range, realized power variation and realized bipower variation respectively.
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Table 1.12b: Daily distributions of demeaned returns (sectors)

Daily Demeaned Return of 100 stocks

Significance Significance Significance Significance

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Series CD CS ENG FIN
r /T, 6 7 7 2 2 5 2 5 7 5 8 9
re/Jrr, 7 8 8 4 5 6 1 1 4 1 2 5
re/ PV, 1 4 6 2 4 8 0 2 2 5 5 5
/by, 5 6 7 3 3 3 0 1 5 3 5 8
Series HC IND IT MAR
r/\Jrv, 4 6 8 3 6 6 7 8 9 5 8 9
re/r7e 2 4 5 4 5 5 4 5 7 5 8 8
re/\[pve 1 1 3 2 2 3 1 2 3 2 3 5
r./\[bv, 2 3 3 2 4 s 4 9 9 3 6 8
Series TEL UTL
re/ TV, 4 7 9 2 3 3
r/\frre 4 5 5 3 6 6
re/\pve 2 4 6 3 4 s
r/\[bv, 2 3 5 1 2 2

Note: The table reports the number of stocks in each sector (out of 10 in each sector) for which the null
hypothesis of normality of demeaned return is rejected based on the Jarque-Bera test when daily returns are

standardized by volatility measures. 7, refers the demeaned daily return, while v, 77, pv,, bv, denote the

realized variance, realized range, realized power variation and realized bipower variation respectively.
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Table 1.13: Table of rankings

Sector CD CS ENG FIN HC IND IT MAR TEL UTL
Realized Volatility Measures

ry, 6 10 3 2 7 8 4 1 5 9
rr, 5 10 4 1 7 8 2 3 6 9
pv, 5 10 4 3 7 8 2 1 6 9
bv, 6 10 3 2 7 8 4 1 5 9
Market Activity Measure

vol, 5 9 7 2 3 4 1 8 6 1
Jumps

Ji 5 2 8 9 6 7 10 3 1 4
J, 2 4 8 5 9 310 7 1 6
Standardized Returns

nl\m, 6 1 3 8 4 4 8 8 6 2
v 1\, 9 3 1 2 3 5 5 9 5 5
./ pv, 4 6 2 9 1 4 2 6 10 6
v [ Jbv, 8 3 1 7 3 6 9 8 3 2
Robison’s Long Memory

“@ (rv,) 8 5 6 7 4 2 1 3 9 10
“d@ (rr,) 39 7 6 5 4 2 1 8 10
“@ (pv,) 2 6 9 8 7 4 1 3 5 10
“@ (bv,) 2 5 7 8 6 3 1 4 9 10
Volatility-Volume Relation

R*(rv,) 9 7 1 4 6 5 3 2 10 8
R*(rr) 7 8 2 3 6 5 4 1 9 10
R*(pv,) 6 8 1 307 4 5 2 10 9
R*(bv,) 6 7 1 39 5 4 2 10 8

Note: This table reports the rankings of sectors according to realized volatility measures, trading volume,
intraday and daily jump tests, number of rejections of normality on standardized returns, long memory test
and the OLS results. 1 denotes the highest value (lowest rejection) and 10 denotes the lowest (highest
rejection). 7V, 11y, PV, bv,, vOl,, ]t J oy denote realized variance, realized range, realized power variation,

realized bipower variation, trading volume, daily jumps and intraday jumps, respectively.
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Figures

Figure 1.1a: Volatility signature plot of GS (the stock with the smallest number of jumps)
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Figure 1.1b: Volatility signature plot of FTR (the stock with the largest number ofjumps)

Frontier Communications
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Figure 1.2: Plots of Overall Daily Returns (%)

Note: This figure reports the overall sample average daily returns flaom 2000 © 2010 and the value o returns s reported n percentage.



Figure 1.3: Plots o overall average realized volatility measures, continuous variance and jumps
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Note: This figures represent the overall sample average daily realized volatility measures, daily jumps and daily continuous variance from 2247 3 2010



Figure 1.4a: Leverage and feedback effect
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The plots represent the sector median cross-correlations between current realized variances and one day lagged daily returns.
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Figure 1.4b: Leverage and feedback effect
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Figure 1.4¢c: Leverage and feedback effect
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Figure 1.4d: The leverage and feedback effect
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Figure 1.5a: Markov regime switching model on realized volatility measures (overall sample)
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Note: From up to clown: realized variance, realized bipower variation, realized power variation and realized range.
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Figure 1.5b: Markov regime switching model on realized volatility measures (Sector CD and CS)
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Note: From up to down: realized variance, realized bipower variation, realized power variation and realized range.
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Figure 1.5¢: Markov regime switching model on realized volatility measures (Sector ENG and FIN)
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Figure 1.5d: Markov regime switching model on realized volatility measures (Sector HC and IND)
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Figure 1.5e: Markov regime switching model on realized volatility measures (Sector IT and MAR)
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Figure 1.5f: Markov regime switching model on realized volatility measures (Sector TEL and

UTL)
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Note: From up to down: realized variance, realized bipowcr variation, realized power variation and realized range.



Figure 1.6a: Autocorrelation functions (ACFs) of realized volatility measures (overall average)
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Note: The figure represent the autocorrelation functions of the overall sample average realized volatility measures up to 50 lags.
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Figure 1.6b: Autocorrelation functions (ACFs) of realized variance (sector average)
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Note: The figure represent the autocorrelation functions of the sector average realized variance up to 50 lags.
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Figure 1.6¢: Autocorrelation functions (ACFs) of realized range (sector average)
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Note: The figure represent the autocorrelation functions of the sector average realized range up to 50 lags.
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Figure 1.6d: Autocorrelation functions (ACFs) of realized power variation (sector average)
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Note: The figure represent the autocorrelation functions of the sector average realized power variation up to 50 lags.
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Figure 1.6e: Autocorrelation functions (ACFs) of realized bipower variation (sector average)
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Figure 1.7: Log-PDF plots of returns (sector average)
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Figure 1.8: Distributional plots for realized measures of volatility (overall sample average)
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Chapter 2

On the Significance of Trading Volume and
Number of Trades in High Frequency Data

Abstract

The value relevance of trading volume and the number of trades has been widely investigated but with
no definitive conclusion emerging as to which is a better measure of market activity. We generalize
from previous studies in a number of ways. First we consider various realized volatility measures and
investigate whether the relation varies with the volatility measure used. We apply a variety of
econometric techniques which include looking at: 1) long memory properties of activity measures as
compared to measures of volatility; 2) correlation structure; 3) whether structural breaks are common
between volatility and activity measures; 4) the explanatory power of activity measures on volatility; 5)
Granger causality; 6) GARCH augmented with market activity measures; and 7) estimation of the
moments of information flow, matching them with empirical moments of trading volume and the

number of trades.

Our findings show the number of trades to be a better measure of market activity than trading volume.

The result holds across sectors.

Giving established the superiority of the number of trades, we segment the number of trades into three
different categories: trades that takes place at the same price; at a higher price and at lower price; where
higher and lower is relative to the price in the previous period. The aim is to find which trades measures
carry most significant information, in the sense that it is more capable of explaining volatility. Our
results suggest that trades which happen at either lower or higher prices tend to have greater
explanatory power than those taking place at an unchanged price. Again our results hold across the

different sectors being investigated.
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2.1 Introduction

The relation between volatility and variables measuring market activity has been
studied extensively. Early treatment of the topic dates from Osborne (1959), who
models the stock price change as a diffusion process to the market volatility. Various
studies have used different volatility measures and market activity measures, with
different types various frequencies of data. All of these together have settled in a well-
documented contemporaneous positive relationship between the two measures. Giot et
al (2010) summarize the volatility-volume relation under three categories.
Competitive model and strategic model are both built on adverse selection and
asymmetric information. The third model, Mixture Distribution of Hypothesis (MDH)
model, assumes that volatility and trading volume are positively correlated, given that
both are driven by the same underlying latent market information flow (Clark, 1973).
In this chapter, we examine the volatility-volume relation within the framework of
MDH.

The pioneering work under MDH by Clark (1973) shows that a mixture of normal
distributions can be used to model the distribution of volatility. He finds that squared
daily price changes are positively related to volume, and that stock returns generally
follow the normal distribution when volume is used as a subordinator. Tauchen and
Pitts (1983) adopt the standard MDH model and argue that volatility and volume are
both normality distributed and subordinated to the same latent market information
arrival process. A later modification by Andersen (1996) allows the model to
distinguish uninformed and informed volume. Only the informed volume, which is
due to asymmetric information, incorporates the same information arrival flow with
market volatility. Liesenfeld (2001) introduces a new latent information flow which

primarily affects volatility, rather than trading volume.
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In addition to the above five papers which focus more on the adequacy of the model
framework according to data fitness, many other studies test the volatility — volume
relation empirically. Epps and Epps (1976) find a positive relation between the sample
variance of the change in price and volume during a fixed time interval. Westerfield
(1977) gives further confirmation to Clark’s subordination process and checks the
validity of the model by investigating a large number of sample stocks. Harris (1987)
extends MDH and finds the same results as Clark (1973), using data of different
transaction levels within a day. Garcia et al (1986) model volume and volatility under
the VAR framework. Gallant, Rossi and Tauchen (1992) suggest positive correlation
between conditional volatility and volume using 60 years of S&P 500 composite index
at daily frequency. Parametric methods investigating the volatility-volume relation
also confirm the relation. For example, Lamoureux and Lastrapes (1990) show that
daily trading volume has a good explanatory power on the stock volatility. When the
GARCH (1, 1) variance equation is augmented with contemporaneous volume, ARCH
effects tend to be negligible.

Many studies focus, not only upon the relation between volume and volatility but also
upon the explanatory power of the number of trades, which is another widely used
market activity measure. Harris (1987) suggests the number of trades may be a good
estimator in the information arriving process, which therefore could be used in the
mixture model. Jones, Kaul and Lipson (1994) conclude that stock volume adds no
additional information in explaining volatility, beyond the number of trades. Chan and
Fong (2000) and Ané and Geman (2000) reach similar conclusions.

Apart from the different market activity measures used in the literature, volatility, a
variable that is latent as the market information arrival flow, had also attracted

attention. The volatility measures that are used in the papers mentioned above are
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primarily (absolute) price changes, squared returns, and regression residuals (to
overcome the persistence). These measures are calculated from low frequency data
(daily, week, or monthly) and often appear to be noisy and inconsistent.

The availability of high frequency data enables the construction of more accurate
volatility measures. ABDL (2001) compute realized variance using sums of squared
intraday returns. It is now well documented that realized variance, as well as other
realized measures of volatility, is less noisy than the traditional low frequency
counterparts, thus providing better model estimates both in-sample and out-of- sample
than the traditional low frequency volatility measures.

With the use of high frequency data and realized measures of volatility, the volatility-
volume relation has been re-examined. The positive relation is further strengthened by
the fact that realized measures of volatility become less noisy and more closely
convergent upon the true latent volatility when the data is sampled infinitely. Marten
and Luu (2003) test the MDH using high frequency data and realized variance. Their
findings show that realized measures of volatility challenge almost every conclusion
based on daily squared returns under MDH framework. The use of accurate volatility
measures gives support to MDH. Similar and improved findings are reported by Chan
and Fong (2006) who use high frequency data of 30 US stocks to test the OLS
regression first proposed by Jones et al (1994). Giot el al (2010) further test the
volatility-volume relation by decomposing realized variance into a continuous part
and a jump part based on Barndorff-Nielsen and Shephard (2004, 2006) bi-power
variation and the Huang and Tauchen (2005) method. Their findings suggest that the
volatility-volume relation holds only for the continuous part in the realized variance.
Both Chan and Fong (2006) and Giot e/ al (2010) find the number of trades rather

than volume to be the stronger driving force in the volatility-volume relation.
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Even so, notwithstanding all the empirical studies, there remain gaps to be filled. For
instance, although the extant literature examines the most widely used high frequency
volatility estimator, realized variance, many other high frequency measures have been
neglected. In addition to the trading volume, the number of trades and average trades
size, this is calculated as volume divided by number of trades, is both extensively
analyzed. However, we haven’t found any research which further decomposes the
number of trades. Trades that are happened when there is a price change are likely to
contain different market information to those trades that happened when prices do not
change. Since most empirical studies claim that the number of trades is the dominant
factor in the volatility-volume relation, it is interesting to ask if there is any dominant
factor in the number of trades itself.

In this context, the objective of this chapter is to address the volatility-volume relation
using different realized measures of volatility and different market activity measures.
Various models are adopted to address this issue, both graphically and
econometrically. We aim to investigate if any single market activity measure emerges
as the primary driving factor to any realized volatility measures.

In short, this chapter contributes to the literature in a number of distinct ways. First,
previously indicated, our sample covers a period of 11 year and consists of 100 stocks
from 10 sectors traded in the US equity market since January, 3, 2000. To the best of
our knowledge, our sample is the most extensive data set used to investigate the
volatility-volume relation. Moreover, we obtain our data from the TICK database
rather than the commonly used TAQ database. The TICK database adjusts the
dividend payments and stock splits and so provides greater accuracy. Second, we use
four different realized measures. Previous literature either uses low frequency

volatility measures or uses realized variance. Here we use realized variance, realized
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range, realized power variation and bipower variation. Third, we decompose the
extensively studied the number of trades into three components, the up trades, the
down trades and the same trades, and attempt to determine whether the well-
documented stronger relation between number of trades and volatility (as against
between volume and volatility) still holds when the number of trades is further
decomposed. Fourth, we not only investigate the volatility-volume relation on a 100-
stock collective aspect, but also look at it from a sector specific aspect. Our database
includes both very actively traded stocks from the IT and Financial Services sectors
and less actively traded stocks from the Ultility sector. With stocks from varying
degrees of trading activity, we achieve a better insight into the relationship. In
particular, we observe that some sectors with lower trading volumes have a relatively
higher number of trades.

The rest of chapter unfolds as follows. Section 2 is provides literature review. Section
3 presents the theoretical framework. Section 4 sets out the. Section 5 presents a data
description. Section 5 gives the empirical results. Section 6, the final section,

summarizes our conclusions.

2.2 Literature Review

The volatility-volume relationship has been investigated extensively over decades.
Karpoff (1987) summarizes the importance of volume and volatility relation in four
parts. First, the relation affords insight into the financial market structure. Second, the
relation of volume and volatility may help researchers to draw inferences in regard to

their joint determination. Third, the volatility-volume relation could be applied to the
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empirical distribution analysis. For instance, the mixture of distribution hypothesis
(MDH) is generally supported by tests upon volume and price changes. Finally, the
volatility-volume relation may permit inference to be made about further implications

for derivatives market analysis.

Unlike volume, or other observable market activity measures, volatility is usually
treated as latent. There are various measurements for volatility. To cite a few: price
changes or absolute price changes (Ying (1966) Clark (1973); squared returns
(Andersen, 1996); absolute returns (Andersen, 1996); GARCH (Engle, 1982); and
realized volatility (Andersen er al, 2001). All of these volatility measures have all
been used to test the volatility-volume relation empirically. Even with various
definitions of volatility, the conclusions reached under the MDH are generally
compatible, although some tests do present contradictory findings. In the following
section, we review the most frequently cited empirical studies which discuss the
relation of volatility and volume (or number of trades) within the MDH framework.
We start from early studies that primarily use low frequency data and then discuss
papers that consider realized measures of volatility. A detailed literature review

relating different realized volatility measures is provided in Chapter 1.

The Ying (1966) test on the absolute price change and volume is one of the earliest
studies of the volatility-volume relation. Standard & Poor’s 500 composite stocks
closing price index and volume of stock sales on the NYSE are used from January
1957 to December 1962, at daily frequency. The sample is divided into 5 classes
according to the mean and standard deviation. Ying’s findings all suggest a positive

correlation between volume and volatility.
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Clark (1973) also finds a positive relation between stock volatility and volume for
daily data from the US cotton futures market, from 1945 to 1958. He shows that price
change (as a measure of volatility) is not normally distributed. However, it could
exhibit a generally normal distribution through the subordination process. This paper
introduces the MDH, which would be viewed as a core model to explain the volume
and volatility relationship. According to MDH, stock return is directed by a stochastic
information arrival process which affects stock prices and returns in turn. Clark
assumes volume is exogenous. Under this assumption, he concludes that volume has a

good explanatory power on the stock volatility.

Epps and Epps (1976) also test the distribution of price variability. They build up a
model of the price-formation process in which the sample stock volatility, defined as
conditional variance of the price changes in the paper, is a function of volume. There
exists a positive relation between them. Transaction data of 20 stocks from the NYSE,
during January 1971, are used. The OLS results for single stocks suffer varying
degrees of biases. Moreover, not all of the coefficients on volume are significant. To
address these problems, Epps and Epps compute the maximum likelihood of the
coefficients on volume under the assumption that the error term is normal. After this

adjustment, the overall significance level of the estimation is considerably improved.

Tauchen and Pitts (1983) conducts another important study on the relation of volume
and volatility. It extends earlier work in two ways. First, their study is derived from
the joint probability of volume and volatility over any interval within the trading.
Second, the authors determine how the joint distribution changes as the number of
trades increases. Using 90-day US T-bills from January 1976 to June 1979, the

authors build up a more general model of the volatility and volume, known as the
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bivariate MDH later, which could explain both the previous studies and the data in
their paper. The Tauchen and Pitts model is mainly relevant to intra-day trading. In
their preliminary test, the authors find when they add a trend about the number of
trades in the market (as the number of trades cannot be provided directly by then), the
volatility and volume regression will raise the coefficients on volume. This finding is
consistent with their prediction that the mean volume should increase and the
volatility should decrease as the size of the market increases. The paper reaches three
conclusions. First, the mixture distribution of volatility and volume incorporates all
the relevant information flow on volume and volatility. The correlation of trading
volume and volatility increases with the variance of the rate of information flow. Like
previous studies, their data shows a positive relationship between volume and
volatility. Furthermore, their paper argues that the test results of volatility-volume

relation could be misleading where volume is not fixed during the sample period.

Harris (1987) further extends the findings of Clark (1973) and Epps and Epps (1976)
about MDH in two aspects: the number of trades should be proportional to the number
of information processes, and the number of trades should be correlated to the
volatility and volume. If there is autocorrelation in the number of trades, it should be
stronger than this of volume. Other predictions are concerned with the transaction
intervals volatility and volume. Under the assumption that transactions occur at a
uniform rate in the event time, Harris predicts that 1) as transaction intervals become
longer, volatility and volume should become more closely normally distributed; 2)
transactions interval volatility should not be correlated with transaction interval
volume; 3) Transaction interval volatility and volume should have no autocorrelation
problem. 50 stocks from NYSE are selected to test the predictions. For each stock,

Harris computes the volatility and volume over daily intervals and fixed intervals of 1,
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50 and 100 transactions. His test results confirm most of the predictions. In particular,
Harris concludes that the squared daily price changes and volume are positively
correlated and that actual daily price changes and volume are weakly positively
correlated with a bivariate normal mixture of distributions model. Another is that the
test results suggest that the number of trades can produce a good estimate of market

information flow

Gallant, Rossi and Tauchen (1992) undertake a comprehensive test using data of daily
closing prices of S&P composite stock index and the daily volume of stocks from the
NYSE from 1928 to 1985. In consideration of the long sample period and possible
bias arising from calendar effects and long-term trends, the authors make various
adjustments on the raw data. The adjustments include using day-of-week dummies,
dummy variables for non-trading days, for special months (e.g., January effects) and
for special years (war time), and also time trend variables. Following adjustment, both
volume and volatility show more stable properties. The strategy on conditional density
estimation is primarily nonparametric where the semi-nonparametric (SNP) estimation
is the main technique. More specifically, the contemporaneous conditional price-
volume relationship, the conditional moment structure of stock price change, dynamic
price-volume relationship, and risk premium and conditional price volatility are
examined sequentially. There are four findings: first, there is a positive relation
between volume and conditional volatility; second, large price movements are usually
associated with large trading volume; third, the leverage effect is alleviated when
volatility is conditioned on lagged volume; and finally, the positive relation of risk and

return exists after conditioning on lagged volume.
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A similar piece of research concerning volatility-volume relation but using parametric
method is that of Lamoureux and Lastrapes (1990). They use daily data of 20 actively
traded stocks from 1981 to 1985 to test GARCH model and investigate ARCH effects.
When GARCH (1, 1) is tested, all 20 stocks show that ARCH effects exist, supporting
the hypothesis that ARCH reflects an uneven but persistent information flow to the
market. When GARCH (1, 1) variance equation augmented with volume is tested, the
coefficient on volume is significantly positive for each single stock. This suggests a
positive correlation between volume and volatility. Alternatively, the lagged squared
residuals contribute very little explanatory power when volume is added to the model.
The ARCH effects tend to disappear. From their test results, the authors conclude that
daily trading volume has significant explanatory power on stock volatility, and the

positive coefficient further confirms a positive correlation.

Other empirical works which build on Lamoureux and Lastrapes (1990) include
Najand and Yung (1991) Chen et a/ (2001), Hussain (2011) and Louhichi (2011). All
these works use GARCH family models. Different market activity measures
(contemporaneous and lagged) from different markets and different countries have
been examined, including trading volume, number of trades, size of trades, and bid-
ask spread. Of course, there are variations between the different studies. For instance,
one of the most important findings of Lamoureux and Lastrapes (1990) paper is that,
when contemporaneous volume is augmented in the GARCH model, the augmented
variable becomes positively significant and the GARCH effect is greatly reduced.
Only Louhichi (2011) reaches the same conclusion using stocks from Euronext Paris
and CAC40 Index. Hussain (2011) augments both contemporaneous and lagged
market activity measures with EGARCH model using high frequency DAX 30 data.

He finds that statistically significant augmented variables will not reduce the
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persistency of GARCH models. The paper further finds that the relationship between
volatility and unexpected volume is positive and that the relationship between
volatility and expected volume is negative. With and research based on low frequency

data, Chen et al (2001) reach the same conclusion of Hussein (2011).

Studies that investigate the role of the number of trades in the volatility-volume
relationship have received increasing attentions. Jones, Kaul and Lipson (1994) use
daily data of 853 stocks to investigate the explanatory power of the number of trades.
They find that it is the number of trades, not volume, that determine volatility. The
data are calculated from the average of closing bid and ask quotes and are collected
from NASDAQ-NMS between 1986 -1991. Jones, Kaul and Lipson divide stocks into
5 portfolios based on market capitalization. At first, the paper reports the correlation
between volume, number of trades and average trading size, which is defined as “the
total number of share divided by number of trades”. The correlation between number
of trades and average trading size is much lower than both correlation between
volume and number of trades, and between volume and the average trading size. This
implies that volume and number of trades contain different information. The volatility
is calculated according to Schwert (1990), but more dummies are used. On the next
step, The OLS, which regresses volatility on average trading size and the number of
trades, both separately and together, is applied to each portfolio. There are two main
findings: 1) volume has very little explanatory power when volatility is both
conditioned on the number of trades and trading size. It contains no information
beyond the number of trades. 2) both the number of trades and the size of transactions
are endogenously determined. Each of these findings remains the same when the
sample is divided into two sub-periods, or use different measure of volatility and

volume, or alternative regression specifications.
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Another frequently cited work giving support to the number of trades is that of Ané
and Geman (2000). Their focus is upon the normality of the stock returns and they
extend the work of Clark (1973. The paper shows that the normal distribution of
returns can be obtained through a stochastic time change. Traditionally, empirical
studies have used trading volume, but Ané, and Geman (2000) use both volume and
number of trades for the stochastic time changes. The paper uses high frequency data
of two stocks, at frequencies of one, five, ten and fifteen minutes respectively. The
density estimation mainly uses Kernel methods, which are nonparametric. The
distributions of stock returns, volume and number of trades are constructed. When
returns are conditional on the number of trades, they tend to be normal. Therefore, it is
concluded that the number of trades is a better mixing variable to recover the

normality of the stock returns than traditionally used volumes.

The models used in the paper are given as

12

6, = a+ BAvol, +ij |6e_j| + [2.1.1]
J=1
12
8 = a + yAnt, +ij |6.—;| + n? [2.1.2]
Jj=1
12
G, = a+ BAvol, + yAnt, + Y p;|6i—;| + 03 [2.1.3]
J=1

where Avol, and Ant, are the first difference of trading volume and number of trades.

Luu and Martens (2003) tests the MDH using both realized volatility and squared
returns. The data used in this paper are constructed from 10-year S&P 500 index-
futures transaction prices. After conducting a series of tests (for instance the GARCH

extended with volume, bivariate VAR model for volume and volatility and long
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memory test in volume and volatility), they find their results vary significantly when
different volatility measures are used. When lagged realized volatility is added to the
variance equation of GARCH, the lagged volume over open interest is no longer
significant. This is because all useful information is already captured when realized
volatility is included in the equation and therefore the lagged volume becomes
unnecessary. The authors further conclude that the insignificance of lagged volume
does not necessarily reject the MDH. Although lagged volume is not significant in the
variance equation, the lagged volume over open interest is. This is consistent with the
Andersen (1996) which suggests that volume should be split into two parts: namely
liquidity trading and speculative trading. Another finding is that, when VAR of daily
squared returns and volatility are performed, the uni-directional causality is only
found from volatility to volume, but not in reverse. This result fails to support the
MDH. When daily squared return is replaced by realized volatility, however, the bi-
directional causality is observed, giving the support to MDH. The paper also tests the
long memory of squared returns, realized volatility as well as volume and in all cases
the statistics confirm that the null of long memory cannot be rejected. The authors
conclude that realized volatility is a more accurate volatility measure to support the
MDH comparing to the daily squared returns, which is believed to be noisier and less

efficient.

Chang and Fong (2006) study the volatility-volume relation using high frequency
data. This work may be viewed as an extension of the papers by Jones, Kaul and
Lipson (1994) and Ané and Geman (2000), but it also investigates the number of
trades-volatility relation and order imbalance (absolute and with signs)-volatility
relation. The authors compare the results of regressions of absolute residuals on trade

frequency measures with the results of regressions of realized volatility on trade
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frequency measures. The latter performs much better than the daily absolute residual,
as it is much less noisy. The regression results also suggest number of trades is the
most capable measure in explaining realized volatility. When realized volatility is
regressed on the number of trades, the adjusted R-squared is 42%. The finding is
consistent across time period, firm size (defined by market capitalization) and
aggregation frequency. Although they are all statistically significant, the trade size and

order imbalance add little explanatory power.

Izzeldin (2007) performs a comparative study between trading volume and number of
trades to see either is a good proxy for market activity. Like Ané and Geman (2000),
this paper also uses the high frequency data of Inter and Cisco in 1997, but at different
time frequency of 10, 30, and 60 minutes and daily. The Generalized Method of
Moments (GMM) J test is first applied to test the moment restrictions implied by the
MDH. The test results show that both volume and number of trades could be used as
the mixing variable in the MDH, but number of trades provides stronger support. The
other tests, including augmented GARCH and subordination process to achieve

returns normality. The results are all in favour of the number of trades.

Giot, Laurent and Petitjean (2010) look at the relation among trading activity, realized
volatility and jumps, inspired by the work of Chang and Fong (2006). In order to
better study the positive relation between volume and volatility, the authors not only
decompose the realized volatility into continuous part and jump part, but also compare
the explanatory power of different trade frequency measures, namely trading volume,
number of trades and absolute order imbalance. They use high frequency equity data
from 100 largest stocks traded in NYSE from 1995 to 1999, which includes 1199

trading days. After conducting a series of regressions such as OLS, GMM, Robust
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Regression, Median Regression and TOBIT with and without GARCH effect, the
authors find that the positive volatility-volume relation holds for the continuous
component of volatility only. Trade variables are positively related to the continuous
part, while the relation between jump components and volatility appears to be
negative. They also find that number of trades is the dominant factor in the relation of
volume and volatility, while trading volume and order imbalance fail to increase
explanatory powers in the relation. The conclusion holds for both continuous volatility

and discontinuous jumps.

2.3 MDH Framework

The Mixture of Distribution Hypothesis states that both daily price changes and
trading volume are governed by the same latent information process, therefore, prices
changes and trading volume are positively correlated. Both price volatility and volume
should be a mixture of the conditional distribution, given the condition is the market
information flow. Returns conditional on the mixing variables are normally

distributed.

MDH is firstly proposed by Clark (1973) who considers a univariate framework.

returns =, |i,~N(1,0,) [2.2.1]

volume =loga, ~ N(u, ,07) [2.2.2]

cov(x,a |i)=0 [2.2.3]
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where 7, is returns over a specific time interval ¢, which is set empirically at the daily
level. a, is trading volume and j is the latent market information flow. Finally, o,

o, H, are all positive. Clark models volume as lognormal which allows the presence

a,

of excess kurtosis in the unconditional distribution of return series.

The bivariate MDH model is first introduced by Tauchen and Pitts (1983). Tauchen
and Pitts’s model assumes volume is endogenous. Hence, returns and volume follow a

bivariate normal distribution conditional on the daily information flow,

|, ~N(0,07i,) [2.3.1]
a,|i, ~N(u,i,,0%1,) [2.3.2]
cov(r,a, i) =0,cov(r’,a,)#0 [2.3.3]

The bivariate MDH model allows volatility to be dependent on the time series

behaviour of the mixing variable i which also drives the trading volume.

The models by Clark (1973) and Tauchen and Pitts (1983) both assume that the latent
market information flow is serially independent. An assumption that is sometimes
unrealistic, given the observed serial dependence of both volume and returns is
assumed to be driven by the latent information. Andersen (1996) further modifies the
MDH model by allowing the split of volume into liquid trading and informed trading
and further allowing the liquid trading unrelated to the information flow. It also

assumes that j is serially dependent. In the presence of serial correlation of

information flow, both volume and volatility should be positively related to the

previous volume and volatility, respectively. The Andersen (1996) model is given by
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n i, ~N(u,,00) [2.4.1]
a,/cli, ~ P(my,mji,) [2.4.2]
cov(7,v,|3,)=0 [2.4.3]

m, reflects the liquidity trading part while the informed trading is proportional to the
information flow. m, itself is independent of the information flow. The remaining
part of trading volume that is due to new information is represented by mi,. Andersen
argues that, if a large number of information arrivals leads to (m,,m,i,) becoming

sufficiently large, the Poisson process in [2.4.2] might be approximated by the normal

distribution as
a,/cli,~N([p,i,,051,) [2.4.4]

where ¢ is an unknown scaling factor when detrended volume is used. Another
difference between Andersen and Tauchen and Pitts’s bivariate models is that

Andersen (1996) allows for a non-zero mean of the returns series.

Liesenfeld (2001) extends the modified MDH model of Andersen (1996) by assuming

information flow could be written as a lognormal stochastic volatility model,

In(i)= A = y+04_, +vs,,& ~ iid.N(0,1) [2.5]

This normal AR (1) process of i looses the assumption made by Clark (1973) and

Tauchen (1983) which the mixing variable is not serially correlated and allows

lognormal distribution at the same time.
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The Liesenfeld bivariate MDH model is given as

r A ~N(u, ") [2.6.1]
a |4 ~Nu,e",ore*) [2.6.2]
A Ay~ Ny +62,_,v*) [2.6.3]

The stochastic volatility specification allows the latent information flow affect
volatility primarily, in turn puts more weight on the price volatility. However, the
stochastic volatility specification also makes the model estimation more complicated
as stochastical volatility is not known in closed form as previous univariate and

bivariate MDH models are.

2.4 Data and Variable Description

We construct our dataset using 100 stocks originally traded in the US equity market
from January, 2000 to December, 2010: 2767 trading days in total. All stocks are
obtained from the high frequency TICK database which adjusts stock splits and
dividend payments. As discussed in Chapter 1, our data are aggregated at the 5-minute
level and all realized measures of volatility are calculated from the S5-minute
aggregated returns. We further segment into 10 sectors according to the sector
segmentation criterion of the S&P 500. The method of construction of realized

measures of volatility was discussed in detail in a previous chapter.
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Since TICK allows stock splits, trading volumes (vol,) are also adjusted indirectly.
Furthermore, in addition to the most frequently discussed trading volume and number
of trades, we decompose the number of trades into ‘up trades’ (uz,), ‘down trades’ (
dt,) and ‘same trades’ (st,).ut, is recorded when a transaction is made at a higher
price than its previous trade. dr, is recorded when a transaction occurs at a price
below the previous trade. st, is a transaction in which a security is traded at exactly
the same price as its previous one. The sum of ws,, df, and s, is nt,. To our

knowledge, this is the first empirical study which uses up/down/same trades to

investigate the volatility-volume (trades) relation.

The descriptive statistics of volume and trades measures is reported in Table 2.1. As
trading volume is, per se, a bigger measure than trades, we rescale the volume by

1/1,000,000 and trades measures by 1/10,000 for easier comparison.

All market activity measures are all rightly skewed, highly persistent and have fat
tails. The trade measures are more serially correlated than vo/, , according to the Q
statistics. sf, is the most persistent measure of all. uf, and df, exhibit similar
properties to each other. We find that ¢, is mainly composed of sz, (over 70% across
sectors). This implies that most trades happen at level prices. The trade measures are
not stationary in many stocks. This could be explained by the relatively long sample
period time and the rapid development of the US equity market. vol, exhibits higher
stationarity than trade measures. There is a general upward trend of all the market
activity measures (Figure 2.1). The IT sector is the most actively traded sector with

average trading volume of 30.6 million and average number of trades of 5.7 million.

The ULT sector is the least actively traded sector with 2.1 million average trading
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volume and 0.7 million number of trades. Ranking patterns are different for the
number of trades: ENG sector ranks 7" according to trading volume but is the 4™ most
active sector if ranked by number of trades. For consistency with Chapter 1, we will

still use trading volume as the benchmark for sector activity in the chapter.
[Table 2.1 here]
[Figure 2.1 here]

Robinson’s d long memory test results are provided in Table 2.2, together with the
overall average autocorrelation functions in Figure 2.2. The statistics confirm that all

the market volatility measures exhibit long memory. s¢, is the most persistent and
vol, the least. The d statistics of ut, and d, are similar across sectors and generally
less persistent than NT and sz,. MAR has the most persistent vol/,, nt, and sz, while
ENG reports the most persistent u#, and dt, . IT has the lowest d statistics of vol, and

it is also the most activity traded sector.
[Table 2.2 here]
[Figure 2.2 here]

Table 2.3 reports the cross-sectional mean correlations between market activity
measures and realized measures of volatility. Our results are very similar to those
reported by Chan and Fong (2006) and Giot ef al (2010). Overall, we find that: trading
volume is sigfinicantly and positively correlated with trade measures (over 70%);
trade measures are highly correlated with each other (over 90%); all market activity
measures are highly correlated with realized measures of volatility: realized measures

of volatility are more highly correlated with vol, than with nt, ( corr(rv,,vol, ) =
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39.4%, corr(rv,,nt,) = 31.2% ); realized measures of volatility are more highly
correlated with wur, and dt, then with vol, ( corr(rv, ut, ) = 41.4%. corr(rv, dt,)=
41.3%); the correlation between realized measures of volatility and st, is the weakest
(corr(rv,,st, )=26.3%). This finding contradicts with those of Chan and Fong (2006)

and Giot et al (2000) which both find higher correlations between volatility and

number of trades than between volatility and volume.

We then look at the sector average correlations, where we find that: realized measures

of volatility correlate more highly with vol/, than with nt, in 8 out 10 sectors.
Realized measures of volatility are more highly correlated with u¢, and d¢, than with
vol, in 7 out of 10 sectors. The exceptions are CD, HC and TEL. The remaining of

conclusions are the same as for the overall averages.

To conclude, the positive correlations between realized measures of volatility and
market activity measures suggest that volatility and market activity measures are
driven by common latent factors. It may the number of traded that is happen when

prices change be the main driving force behind the volatility-volume relation.

[Table 2.3 here]

2.5 Methodology



126

In the previous section, we summarize the main theoretical models which focus on the
estimation of model parameters and latent variable(s). However, our main interest is to

compare the theoretical implications of the MDH model with the empirical dynamics.

In this section, we outline a series of econometric models to test the validity of the
volatility-volume relation under MDH. We first identify whether common structural
breaks exists between realized volatility measures and market activity measures. Then,
we regress different realized measures of volatility on market activity measures. The
model was first proposed by Jones ef al (1994) and later modified by Chan and Fong
(2006) who confirm the validity of the model using high frequency data. GARCH
augmented with lagged market activity measures is discussed next. This model was
first discussed by Lamoureux and Lastrapes (1990) who augmented contemporaneous
volume with GARCH. In our model, we follow Najand ef a/ (1991) and treat market
activity measures at a one period lag. Bivariate VAR is then reported as different
researches reach the different conclusions so that the bi-directional Granger causality
(which supports MDH) is not universally found. The fifth model is the estimation of
information flow using Generalized Method of Moment (GMM). We adopt and
develop the model from such previous works as Richard and Smith (1994), Andersen
(1996) and lzzeldin and Murphy (2010). We estimate the theoretical information
moments and compare them with the observed empirical moments. The last model is
the standardization procedure to recover returns normality by using market activity

measures as the standardization factors.

2.5.1 Single Structural Break
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Although the Augmented Dickey-Fuller (1979) test is the most commonly used to
detect the unit root, one of its disadvantages is that it assumes no structural break. This
assumption is unlikely to hold when the sample time period is long. Hence, Zivot and
Andrews (1992) propose a single structural break test which assumes the presence of
the break is as an exogenous phenomenon.

The original Zivot and Andrews (ZA afterwards) test has three types of models. In this
chapter, we consider the first model, which permits a one-time change in the level

(mean) of the series.

k
Ay, =c+ay,_, +yDU, +Zdey,_j +e, [2.7]

/=1

Where DU, is an indicator dummy variable for a mean shift happening at each

possible break-date (TB).

The ZA test has been applied widely in macroeconomics data sets to identify the break
date. Here we apply the test to rv,, vol, and nt, to investigate the following issues: 1)
whether the volatility measure and trade activity measures have the same break date
for the same stock; 2) whether there is any particular date emerging across sectors and

across volatility and market measures.

2.5.2 OLS Regression

The second method uses Ordinary Least Squares (OLS) regressions to investigate the
explanatory powers of market volatility measures on realized measures of volatility.
This method can be viewed as a direct test of the MDH as volume (number of trades)

is proportional to the information flow, as dealers conduct trading activities in the
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given trading time and in response to new market information. The model was first
introduced by Jones et al (1994) in regressing daily number of trades and trading
volumes on absolute return residuals, a proxy of volatility first proposed by Schwert
(1990). Similar works followed: Ané and German (2000), Chan and Fong (2000,
2006) and most recently, by Giot et al (2010). Applying different data sources and
different measures of volatility and market activity, the papers all reach a similar
conclusion: there is a positive relation between volatility measures and market activity
measures. Market activity measures explain proportions of volatility, ranging from 5%
to 45%, depending on the measures used. In Chan and Fong (2006), the authors
compare absolute return residuals with realized variance and find that the volatility-
volume relation is much stronger when realized variance is used. It is generally
accepted that the number of trades explains more volatility than trading volume. Here
we follow closely the approach by Chan and Fong (2006) by regressing realized
variance, realized range, realized power variation and realized bipower variation on
trading volume, number of trades and trade decompositions. Across all the literature,
the number of trades is shown to reflect more of the daily information arrivals as it

explains the greatest amount of the volatility.

The models are specified as

gvol,
Bnt, [2.8.1]
12 o
rv, =a, +a, M, +Zj=l PyTV,—; +3 Yitdty 1+ &,
8,dt,
riStll
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gvol,
At [2.8.2]

12
r, =a, +a, M, + E S Py, Y v, -+

8.,
rl‘ s til J

R
pvol,
nt,
~ - B, [2.8.3]
pv, =o, +a, M, + Zj:l PyPV,_, +q yut, r+&,
8dt,
7,st, |

gvol,
Aty [2.8.4]

12
bv, =a, +a, M, + Zj=1 pybv,_, +3 yut, +&,

i ir

é.dr

51,
TV , TTe , PV and bv;, are realized variance, realized range, realized power
variation and realized bi-power variation of stock 7/ on day ¢. M, is a Monday dummy,
vol;;, nt;,, ut;, , dt;, , st;, are respectively trading volume, number of trades, number
of up trades, number of down trades, and number of same trades of stock i on day ¢;
and p;; is a measure of volatility shock persistence at lag j. The Monday dummy is set
to account for the well-documented Monday effects in equity markets and the 12 lags

is to account for the persistence in the volatility measures.

As some of the market activity measures are trend stationary as indicated by the
Augmented Dickey-Fuller test statistics, we form a stationary series of those market

activity measures following a nonlinear trend model as used by Chen et al (2001) and

Chiang (2010):

Ar=a+ fit+ Bt + ¢ [2.9]
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where A denotes the raw market activity measures and the residual &, is the de-
trended market activity measures. A paper by Chan and Fong (2006) considers the
situation of both unfiltered and detrended series without reporting the stationarity of

the market activity measures. The results from both series reach the same conclusion.

2.5.3 GARCH and Augmented GARCH

Lamoureux and Lastrapes (1990) test the GARCH and augmented GARCH models to
investigate the explanatory power of trading volume. They find that when volume,
which is used as a measure of the daily information flow to the market, is used at the
weakly exogenous mixing variable and augmented in the GARCH model, the ARCH
effects tend to disappear and the persistence in the volatility will alleviate. In turn,
these findings suggest trading volume is a good proxy for rate of information arrivals
in the market. Similar models are adopted by, for instance, Bessembinder and Seguin
(1993) which discuss both expected and unexpected trading. Marten and Luu (2003)
extend trading volume and realized variance with the GARCH. There are also studies
using the number of trades, rather than volume, which is shown to be a better measure

to explain MDH under the Augmented GARCH models.

Here we will follow Lamoureux and Lastrapes (1990) but extend the augmented
GARCH models, using various market activity measures to see which explains the

volatility best.
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r=pts,
£ |®_ ~N@O,h) [2.10]
(vol _,
nt,_
h=o+as’, +ph_+ys ut,_, ‘
dt_,

| %,

where 7, is daily returns calculated from intra-day returns, ¢, is the residual which
follows a conditional Gaussian distribution with zero mean and variance 4, . @,

stands for a one day lag information set. All the market activity measures are lagged
one term, following the conclusion of Najand ef a/ (1991) that contemporaneous
market activity measures may cause a simultaneity problem leading to inconsistent
estimation of the coefficients. Therefore, we assume one-period lagged volume to be
exogenous. The one-period lagged volume is also used in Chan et al (2001) and Luu et

al (2003).

2.5.4 Bivariate VAR models

It is well documented in the literature that a dynamic structure exists between market
activity measures and realized measures of volatility. Lagged volatility measures may
affect current market activity measures and lagged market activity measures may
affect current volatility. This dynamic could be investigated by implementing a VAR

(p) for realized measures of volatility ¥, and market activity measures, 4, . A

commonly used model to investigate the causal relationship between the variables is

the Granger Causality test. Previous studies find either or both directions of the
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causality for different data. For example, Fung and Patterson (1999) and Chiang et al
(2010) find volatility Granger causes volume; Darrat ef al (2003) find significant
Granger causality from volume to volatility; and bi-directional causality is reported by

Brooks (1998) and Marten and Luu (2003).

To date, no conclusive results have been reached. Hence it is interesting to test the
dynamic structure between different realized measures of volatility and market
activity measures, to see whether bidirectional Granger causality, which supports the

MDH, can be found. The bivariate VAR is given as:

)4 p
V=YV +D B4, +¢, [2.11.1]
Jj=1 Jj=1
r )4
A=V, +Y B +&, [2.11.2]
J=1 Jj=1

We test either H,:q, =a,...= ¢, =0against the alternative hypothesis that market

activity measures Granger cause realized measures of volatility; or

H,: B, =By, =...= B, = 0against the alternative that realized measures of volatility

Granger cause market activity measures. The optimal lag length p is determined

according to the Schwarz Information Criterion (SIC) and varies across the different

volatility measures.

2.5.5 Generalized Method of Moments (GMM)



The fifth method estimates the moments of information flow using the Generalized
Methods of Moments. The estimated moments are then matched against the moments
of trading volume and the number of trades. The GMM produces as a by-product the
J-test of over-identifying restrictions which evaluates the goodness of fit of the
moment restrictions underlying the MDH. The GMM procedure has been featured in
earlier works such as Richardson and Smith (1994), Andersen (1996), Ané and Geman

(2000), and Murphy and Izzeldin (2010).

The use of the GMM serves three main purposes in highlighting the information
content of volume, number of trades and the constituents of trades. First, to estimate
the moments of information conditional on market activity measures. Second, to
compare whether the estimated moments are matched with the empirical moments and
to see which activity measure best approximates its theoretical counterpart. Third, to
observe system convergence and to test the overidentifying restrictions. Although we
would not expect all market activity measures to result in system convergence, the
degree of convergence using different activity measures has its own interest which we

do not pursue here.

We focus on specifically the bivariate model. There are several advantages in using
GMM to test the MDH. For instance, it imposes no distributional restrictions on
information flow. Allowing for the joint test of restrictions also can also be evaluated

using the Hansen J-test.

According to the MDH, when returns 7, and the observed market activity measures a,
are conditional on the information flowi,, they are independently and normally

distributed as:
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T P Ur it U';g it 0
(ai) lie~N ((#aiit),(o taétit)) [2.13]

The model implies a set of moment restrictions which could be applied to the data and

tested using the GMM J-test of over-identifying restrictions. Given the first four

moments of returns and market activity measures, the general moment restrictions for

both skewness and kurtosis for the sample moment vector s, (8) can be written as

s (0) =

eq2r2a= (1~ 1 (@, ~ 4,V = 020 (L i) = (G217 + 027 + ) = 247,

eqlr=r,—p,
eq2r=(r,— ) -0, - u'm,
eqdr=(r,—p,)’ =3u,.07m, — u’m
eqdr=(r,— ) =30, (1+m) -6’0, (my+m,) - p1.'m,
eqgla=a, - ,u;‘
eq2a=(a,~u,) ~o, - u,m,
eq3a=(a,—p,) =3p,0.m ~pu>m,
eqda=(a,— )" =30, (14 m)~6p 0, (my+m,) = u'm,
eqlrla=(r,~ . )a,~ ,) = 1, tzm,
eq2rla=(r,— 1,)*(a, - 1, )= 0, i,y = 11" 4, 71y
eqlr2a=(r,— u,)a,— i, ) =0 p,m, = iy 14, 7y
eg3rla=(r,— 1) (a,— 1,) =31, 1, 0, (m, +m,) = pi, p1m,

eqlr3a=(r,— )@, — 1, )’ =34, 1.0 (my +my) = gt p12m,

[2.14]

The first four equations denote the first four moments of return; the next four

equations denote the first four moments of market activity measures and the last six

equations denote the cross moments of return and market activity measures. The first

four moments of considered here is written as

r — r
my = UMy
m} = oZml + p2m

m§ = 3 07my + pyms
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mj = ptm + 607ml + 602 uPmiml + 30*(ms + (mi)*)
m{ = ugm}
mg = agmi + ugm}
m§ = 3ua07mi + pzms
mé = pudmi + 60%*m + 602u*miml + 30 (mb + (mi)z)
We also assume a non-stochastic mean for THE information flow process i which

m, =1 to overcome the identification problem. Therefore, we have
F=rom,a =a -m,o, =0 m,m,=m,/m:,m,=m/m, m,=m, | m
LM, a,=a, om0, =0, Wy, my =my Ly My =My L my, my = my i

Following the normalization, we consider the combined restrictions (non-zero mean

case) which have 14 moment conditions in total as follow:

Non-Zero & SKEWNESS+ = {eqlr, eq2r, eq3r, eqdr, eqla, eq2a, eq3a, eqda, eqlrla,
eq2rla, eqlr2a, eq3rla, eq2r2a, eqlr3a}
With 7 estimated parameters:

2

9 = (/'ll, ’O-I; ’Iua, ’o.a, ’mZ’mS’m4)

which leaves us with 7 over-identifying restrictions.

The market activity measures whose moment restrictions fit the data best are taken as

the best proxy of market activity.

2.5.6 Recovering Returns Normality
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Clark (1973) argues that returns viewed in “volume” time are normal. Ané and Geman
(2000) argue that returns standardized by number are normal. Izzeldin and Murphy
(2010) follow the standardization procedure of Ané and Geman (2000) yet find that
the number of trades standardized returns are not normally distributed. Here we shall
replicate Ané and German (2000)’s procedure by standardizing returns on different
market activity measures. Since the results of Ané ef a/ (2000) cannot be replicated in
any other paper, the task per se would not be expected to recover normality via
standardization but rather would be to show which market activity measure(s) recover

the return normality most.

Mathematically, this standardization is expressed as
rl\Ja,~N(u,,0,) [2.15]

where g, is the market activity measures.

2.6 Empirical Results

2.6.1 Single Structural Break

Among 100 stocks, only two have the same structural break date for rv,, vol, and nz,.

Although in different sectors, both GPS and COST share the same breaking date of

24/07/2007. The commonality of break dates between vol, and nt, is greater than that

for »v, and vol,/nt,. 18/100 stocks are detected with the same break date for vol/, and
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nt,, whereas 7/100 stocks are detected with the same date for rv, and vol, and the
number of stocks which have same date between rv, and nt, is only 3. In general,

therefore, our results suggest that market activity measures do not tend to share break

dates with rv, ; and that market activity measures (¢, and vol,) do tend to share break

dates.

Break dates detected in #v,, together with nt, and vol , show quite distinct pictures
from each other. Figure 2.3a-e plot the break dates for rv,, vol, and nt, of every

single stock and the detailed dates are provided in Table 2.4. The break dates are most
discrete in »v, and most condensed in nf,. Another interesting finding from the ZA
test is that each sector appears to have a common or closely proximate break date for
stocks within the sector, at least for market activity measures. This conclusion holds
especially in the case of nt,. For instance, 03/01/2007 is detected as the break date of
NT for 4/10 in the ENG sector. Within the same sector, 05/07/2007 and 02/01/2008
are detected for two stocks. Stocks from the same sectors tend to share close, if not the
same date. One example could be the break date of rv, from IT sectors. 7/10 stocks
have break dates near 2002, when the internet bubble was prevailing.

To summarize, the single most significant structural break date does not necessarily
share among rv,, vol, and nt,. Nevertheless, for the same market activity measure,
stocks within one certain sector are detected some common break dates. Even though
the 2008 financial crisis has huge effect, when we estimate volatility measures, there
are very few stocks that are detected with a break date during the peak period of the
crisis. The most volatile days are not always associated with the most significant

structural break point.



These results have important implications empirically. Since the break date is different
from one measure to another, as well as from one stock to another, the detected date is
vital for accurate evaluation of any economic/econometrics model which are intended
to account for structural changes.

[Table 2.4 here]

[Figure 2.3a-e here]

2.6.2 OLS Regressions

The results of volume regressions were discussed in Chapter 1 and reported again in
Table 2.5a. To summarize, pv, is the most explained realized measures of volatility
in the volume regression, with R* at 67.8%. At sector level, ENG and MAR report

the highest R across realized measures of volatility®.

The results of regressing realized measures of volatility on the number of trades are
reported in Table 2.5b. Similar to vo/,, nt, explains a high proportion of realized
measures of volatility. The average R®, unlike many existing literature, are not
significantly higher than the average R’ from the trading volume regression. pv,,

again, is the most explained among all realized measures of volatility. The coefficient

for nt, is significant for all the stocks, with the exception of one stock when nr, is

& One of worries regarding the model specification lies in the estimated residuals. In our case,
most of the residual series from the regressions are not i.i.d. In the Jones et al (1994) paper which the
model was tirstly proposed, the authors stated that estimation method (OLS) provides consistent yet not
necessarily efficient estimators of the parameters. Meanwhile. the Newey-West standard errors (not
reported in the chapter) also confirm that the more than 95% ot parameters are significant. Since the
main concern in this section is to evaluate the performance of different volatility measures on an
established econometrical model. we do not alter the specification of the model. Furthermore, the works
of Chan and Fong (2006) and Giot et al (2010) do not report the performance of the residuals and treat
them as i.i.d.s. Here we follow the same procedure to make our results more comparable to the
literature.



regressed on realized range. In addition, 4 out of 10 sectors have higher R? when

regressing realized measures of volatility on vol, than on nt,, namely CD, CS, IT and

UTL. The rest sectors though have higher R? in nt, regressions, the gain in R? is

marginal.
[Table 2.5a & 2.5b here]

Although nt, does not necessarily have higher explanatory power than vol,, we find
that decomposing »f, can enhance the goodness of fit. Table 2.5¢ and 2.5d report the
results for up trades and down trades regressions, respectively. Comparing the results
between up/down trades and number of trades as well as volume, the R*of ut,/d,

regressions is approximately 2% higher over average, suggesting additional

explanatory power on realized measures of volatility than vol, and nt, . The
percentage of significant coefficients is between 98% and 100%. At sector level, all

sectors show a higher R’ from ut,/dt, regressions than that from vol, regressions.

[Table 2.5¢ & 2.5d here]

Table 2.5e shows the results for the same trades as the explanatory variable. In

general, st has a lower explanatory power than the other 4 market activity measures.
Even at sector level, the R from the st, regression are consistently lower than that

from the rest three trade measures and only 3 out of 10 sectors have higher R from

st, regressions than from vol, regressions, namely, FIN, MAR and TEL.

[Table 2.5¢ here]
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Combining the results from Table 2.5a-e, we find that the well-documented positive
volatility-volume relation holds for all the realized measures of volatility and market
activity measures. Market activity measures explain over 50% of variation in various
realized measures of volatility on average. Nevertheless, in contrast to existing
literature, our analysis shows the explanatory powers of these two measures are very

similar, with nt, slightly higher in terms of the number of significant coefficients.
When we decompose nf, into up, down and same trades, the regression results imply
that it is the ut, and df, that provide additional information, thereby giving nt, the
appearance of providing more information than vol, . This result is intuitive, because,
when prices change, the corresponding market activity measures shall carry more
market information than the market measure when the prices remain the same. On the
other hand, we find that, among different realized measures of volatility, the R* of
rv, regressions are generally the lowest and the pv, regressions generally provide the
highest R*across sectors and across market actively measures. The lower R” of rv,
regressions might be explained by the existence of jumps components in the rv,. Giot
et al (2010) show that the positive volatility-volume relation does not hold for jump
part. Thus, jump-contained rv, may prove to be more difficult to be explained by the

market activity measures than other realized measures of volatility. Izzeldin and Shi
(2012) find the same conclusion as Giot et al (2010) using a different jump

construction method’.

2.6.3 GARCH and Augmented GARCH

° We also run the regression using the pre-filtering market activity measures (no-detrending),
the conclusions remain the same. However, the regressions of detrended market activity measures

N

produce higher adj. R .
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The results of GARCH and Augmented GARCH models for the overall sample are
provided in Table 2.6a. First of all, the ARCH coefficient & and GARCH coefficient
B are significant for all 100 stocks in the sample for the GARCH (1, 1). The sum of
(ar+ B) across all the sample stocks is positive and close to 1. This ensures the
stationarity of the model and indicates a high level of persistence which is known as
the “volatility clustering” in GARCH models. However, the GARCH effect remains
significant when lagged market activity measures are augmented with GARCH (1, 1).
The persistence of volatility remains strong and only decreases marginally when
comparing (a + ) from augmented GARCH models with that from GARCH (1, 1).
Augmenting market activity measures does not reduce the persistence of GARCH
volatility. In our case, the significance of the augmented variables is rejected at the 5%
level for many stocks. The number of market activity measures that significance is not

rejected at the 5% level is 36/100 for vol _,, 60/100 for nt,_;, 68/100 for uz,_,, 67/100
for dt,_jand 57/100 for st,_,. The maximized log-likelihood (LOGL) value and Jarque-
Bera statistics of standardized errors of trades-augmented GARCH equations are also
smaller than those of vol,_, augmented GARCH, indicating a better goodness of fit of
trade measures over vol,_, . However, LOGL and JB statistics of GARCH (1, 1)
suggest when GARCH augmented with market activity measures, the market activity

measures do not necessarily improve the overall performance of the augmented

models.

At the sector level, the conclusion that market activity measures are not necessarily
significant variables is further strengthened. The reports are presented in Table 2.6b.

For instance, in the sector of Consumer Staples (CS), the augmented vo/,_, are not

significantly greater than zero for all 10 stocks within the sector. In sector ENG and
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sector MAR, the number of augmented vo/,_; that is significantly greater than zero is

one and two stocks respectively (both out of 10). FIN sector has the lowest rejection,

40%, when vol

_, is augmented in the GARCH.
The results of trade measures augmented GARCH equations suggest a degree of

improvement. When n¢,_, is used as the augmented variable, the number of rejections

decreases for 8 out of 10 sectors. Taking CS sector as an example, the probability of

significant augmented nt,_, increases to 80% while that of augmented vol,_, is 0%.
The results of augmented ut, |, dt,_, and st, | provide the same conclusion as »z, .

Our finding contradicts that of L-L (1990) but is consistent with that of Chan et a/
(2001) and Marten et al (2003): the former paper uses contemporaneous volume while
the latter two papers use lagged volume. L-L find a significant reduction of
persistence (according to the sum of (a + £)and all the augmented vo/,_; in the model
appear to be significant). On the other hand, Chan et al (2001) suggest that, although
augmented volume contributes some explanation to the GARCH model, it does not
reduce the persistence of the original model. Marten et al (2003) also finds that
augmenting volume does not reduce the value of (a+ f3)as the augmented volume is
not a significant variable in a paper where high frequency data is used to construct the

return and GARCH series.

Further, our result is mostly in line with that of Martens and Luu (2003). The
relatively low significance level for volume than for trade measures, especially up and
down trades might be explained by the findings of Andersen (1996), that
informational asymmetries and liquidity need motivated trading volume where there is

a greater incidence of new information.
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To summarize briefly, augmenting lagged market activity measures does not
necessarily enhance the goodness of fit of the GARCH model. The persistence of
GARCH (1, 1) is not reduced by augmenting extra market information proxies.
Augmented trading volume is insignificant for over 60% of the sample stocks while,

for the most parts, augmented traded measures are significant. Once again, uf,_, and
dt,_, are the best performing market activity measures at overall and sector-average

levels.

[Table 2.6a & 2.6b here]

2.6.4 Bivariate VAR Model

The linear Granger causality is first tested, using the most and least actively traded
stocks respectively in our sample, namely C and OKE. In order to investigate
causality at the overall sample average level, we use the average value of our 100-

stock sample to conduct the same test.

The results are ambiguous. For OKE, the bi-directional Granger causality between
trading volume and realized measures of volatility are all rejected at the 5% level.
With only one exception, we find only unidirectional Granger causality from trading
volume to realized measures of volatility, not reversely. This finding is not in line with
many studies, which detect either a unidirectional Granger causality from volatility to
volume, or bidirectional causality (see Garcia et al (1986), Brooks (1998), Fung and
Patterson (1999), Martens et al (2003), Chiang et al (2010)). However, this finding is
in line with a paper by Darrat et al (2003) which also finds significant causality from

volume to volatility.
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On the other hand, the test statistics of the Granger causality test, between the number
of (up/down/same trades) and volatility measures, generally confirm the existence of

bi-directional Granger causality'®.

In the case of OKE, we find only unidirectional Granger causality from volume to
volatility measures but bi-directional Granger causality between the number of trades

measures and volatility measures.
[Table 2.7a here]

The bi-directional Granger causality between volume and volatility measures is
conclusively rejected when we test C. Again, the test statistics point to a unidirectional
Granger causality from volume to realized measures of volatility. The results of
causality between number of (up/down/same) trades and volatility measures are more
ambiguous than the results from OKE. The null hypothesis, that the trade measures do
not Granger cause volatility measures are all not rejected at the 5% level. However,
for instance, realized range, realized power variation and realized bi-power variation
do not Granger cause the number of trades at the 5% level. The similar conclusions
could be found in rv; = ut, , rry > uty, pve = uty, bv, - ut,, rv, = dt,, pv, - dt;

and pv; — st,.
[Table 2.7b here]

Due to ambiguity existing in the individual stocks, we test Granger causality using the
average value of aggregated daily data of 100 stocks. For all the test results, the null

hypothesis, that marker measures (volatility measures) do not Granger cause volatility

¥ The Granger causality from realized power variation to number of trades, from realized power
variation to number of same trades, and from realized bi-power variation to number of trades, are all

rejected at the 5% level.
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measures (market measures), are rejected. The results point to a clear bi-directional
Granger causality between market activity measures and volatility measures, and so,

support MDH.

[Table 2.7¢ here]

2.6.5 GMM

Table 2.8 reports the GMM results of the number of estimated moments of the
information flow i that the significance cannot be rejected and the number of over-

identifying test that the significance cannot be rejected, both at the 5% level.

We first use J-test to evaluate the validity of MDH under GMM. Given the number of

restrictions in Section 4, for y7 >14.067, we reject the null that the MDH restrictions

imposed on information moments is valid. For some stocks, the estimated moments
show significant negative signs, where positive signs are expected as volatility and
market activity measures are positively correlated. Similar negative results for second
and third moments are also reported by Richardson and Smith (1994). Most negative
estimates occur in the fourth moment. The higher are the moments, the more difficult
it is to obtain accurate estimates for GMM. Negative signs do not necessarily imply
the rejection of the model. Therefore, we still use J-test statistics as one of the

benchmarks for model validity.

The bivariate moments with ¢, produce the highest number of stocks for which the

J-test is not rejected at the 5% level (35/100), followed by df, (32/100), st, (32/100),
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nt, (28/100) and vol, (19/100). These results give more support for uf, and df, as

dominant factors in MDH. An interesting finding from the J-test result at sector level,
is that IT and TEL, the sectors with the largest and smallest number of jumps, are the
sectors having the highest number of J-test rejections. This result implies that the
presence of jumps has little impact in recovering the estimated moments of

information flows.

We further consider the estimated moments to assess the validity of the MDH. In the
1994 paper by Richardson and Smith, several stylized facts of the bivariate model are
documented. Our results from different market volatility measures support all the
stylized facts: the unobservable information flow shows: 1) small variations relative to
the mean (m2); 2) positive skewness (m3); and 3) large kurtosis (m4). Furthermore, in
line with the literature, the second and third moments are better recovered using
bivariate model (over 95% for the second moment and over 85% for the third). The
fourth moment is not recovered for more than one third of the sample stocks, many of
which are estimated with extremely large and implausible values. For the second and

third moments, bivariate results using uf, and dt, appear the best. st, performs best in
recovering the fourth moments. vo/, and nt, produce very similar results with nz,

slightly better in the second and third moments.

Finally, the empirical moments of the re-centred market activity measures are
computed and compared with the estimated moments. For the second and third
moments, the difference between empirical and estimated moments is smaller than the
difference for the fourth moments. Moreover, the second moments of the empirical

and of the bivariate methods are closer for those stocks that the J test is not rejected at
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the 5% level in many cases. Among all the market activity measures, the second

moment, both empirical and estimated, of vol,, is the closet.

[Table 2.8 here]

2.6.6 Recovering Returns Normality

Similar to papers that followed Ané and Geman (2000), our results contrast with the
2000 paper. We standardize daily return series by re-centered market activity
measures. Also different from the results reported in a previous chapter, where
realized measures of volatility are used as the standardization factor, the normality of
market activity measures standardized returns is rejected at the 5% level for all the
stocks according to the Jarque-Bera statistics for normality. The normality of return
series standardized by volume has been improved greatly across the sample. On the
other hand, when return series are standardized by trade measures, the normality is
further distorted in most cases. Table 2.9 shows results for the sector average returns
and standardized returns. The JB statistics further confirm the results from the
individual stocks that all five market activity measures are not able to recover the
normality of daily returns under the direct standardization procedure. The normality of
volume standardized returns is a further improvement in comparison with that of raw

returns and of returns standardized by trade measures.

The results suggest volume is a better market information proxy than trade measures

according to the standardization procedure. The conclusion of Ané and Geman (2000)
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that returns standardized by re-centered number of trades could be normal is not found

in our data.

[Table 2.9 here]

2.7 Conclusion

We apply a series of tests and models to test the validity of MDH using high
frequency data. The volatility-volume relation is re-examined, using various realized
measures of volatility and different market activity measures. Four realized measures
of volatility, namely realized variance, realized range, and realized power and bipower
variations, and five market activity measure, namely trading volume, number of trades
and its constituents (up/down/same trades), are tested for 100 stocks over an 11-year
sample period . We address following issues: 1) correlations between realized
measures of volatility and market activity measures; 2) common break-dates; 3) OLS
regressions proposed by Jones et al (1994) and Chan and Fong (2006); 4) GARCH
augmented with realized volatility measures; 5) Granger Causality; 6) bivariate

estimation of MDH model using GMM; 7) recovering Return Normality.

The conclusions reached are as follow:

In most sectors, volume correlates more with volatility than the number of trades.

Trading volume is highly correlated with trade measures. On the other hand, the
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correlation between the number of up/down trades and various realized measures of

volatility dominates that of volume.

Realized variance, trading volume and number of trades usually do not have common
break-dates. Break-dates are more common between realized variance and trading
volume relative to the number of trades. Within the same sector, stocks tend to have

close or same break- dates, at lease for market activity measures.

The numbers of up trades and down trades explain more volatility than volume or the
number of trades. The number of same trades explains volatility most poorly. This

conclusion holds for every stock in the whole sample.

Augmenting lagged market activity measures does not necessarily improve the model
fitness of GARCH (1, 1). The significant reduction in model persistence is no longer
found. Lagged volume is not a significant variable in more than 60% of stocks. The
number of up trades and the number of down trades also outperform the rest market
activity measures in terms of the percentage of significant variables and Log

Likelihood statistics.

Bi-directional Granger causality is found when the overall average realized measures
of volatility and market activity measures are tested. At individual stock level, the test
results point to unidirectional Granger causality from market activity measures to
realized measures of volatility, yet not in reverse for any of the realized measures of

volatility to market activity measures.

The bivariate MDH model is generally supported. In the case of a non-zero mean, the
second and third moments of the information are much easier to recover than the

fourth moments. Again, the best results are given, when the numbers of up/down
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trades are used in the bivariate model. When comparing the empirical moments of the

re-centred market activity measures with the estimated ones.

The normality of returns standardized by market activity measures is rejected in every
case. However, returns that are standardized by trading volume are closer to the

normal distribution.

The test results do not always lead to the same conclusion yet patterns emerge.
Overall, the MDH is favourably supported by realized volatility measures across
sectors and remains strong in the presence of crises. The volatility-volume relation is
held no matter the level of the market activity measures yet the relation tends to
appear stronger in those highly actively traded sectors. Realized power variation
provides the strongest support of the MDH among the realized volatility measures
while the number of up trades and the number of down trades are the main driving
factors that make the number of trades a more informative market activity measure
than trading volume. The number of trades is only more informative than trading

volume when number of trades happens as a result of a price moving.



Tables
Table 2.1a: Summary statistics of market activity measures
CD CS ENG FIN HC IND IT MAR TEL UTL
Trading Volume (vol,)
Mean 6.674 4.325 6.249 24.828 9.462 7.387 30.564 5.347 6.585 2.062
S.D. 2.678 1.806 3.296 38.161 3.984 5375 8471 4.005 4711 1.018
Skewness 1.180 1.877 1.617 2.641 1.519 3.663 1.108 1.615 1.684 1.636
Kurtosis 4.893 8.953 8.348 11.024 6.788 28916 6.087 5.965 7.358 7.672
Jarque-Bera 1056 5710 4503 10640 2719 83623 1665 2216 3498 3751
ADF -3.082 -3.902 -3.056 -2.493 -4.213 -3.105 -7.209 -2.210 -1.929 -5.387
p value 0.028 0.002 0.030 0.117 0.001 0.026 0.000 0.203 0.319 0.000
ACF(36) 0.553 0.475 0.638 0.72 0.463 0.561 0.058 0.787 0.698 0.494
Q(36) 36939 32675 50899 60010 29896 43285 5822 68584 54502 34364
Number of Trades (nt,)
Mean 1.873 1.319 2.021 4527 2.195 1.766 5.702 1.750 1.283 0.670
S.D. 1.943 1.441 2458 7244 2.168 2.206 3.805 2.178 1.509 0.733
Skewness 1.417 1.635 1.664 2438 1.358 2.040 1.703 1.378 1.279 1.489
Kurtosis 4.704 5.941 6.585 10.284 4.627 8375 7.390 4.091 3935 5.395
Jarque-Bera 1261 2230 2758 8858 1156 5250 3560 1013 856 1683
ADF -1.673 -2.029 -1.851 -1.957 -1.841 -1.988 -2.672 -1.807 -1.404 -1.862
p value 0.445 0274 0.356 0.306 0.361 0292 0.079 0.378 0.582 0.351
ACF(36) 0.861 0.84 0.853 0.8 0.839 0.81 0.725 0.87 0.865 0.826
Q(36) 79775 77974 80187 69604 77269 73930 63733 81559 80452 75796
Number of Up Trades (ut,)
Mean 0.243 0.201 0.323 0.532 0.297 0.266 0.666 0.284 0.146 0.114
S.D. 0.203 0.205 0.391 0.773 0224 0.278 0.364 0.322 0.145 0.118
Skewness 1.965 3.027 2.718 3.196 2.126 2317 2216 1.661 1.631 2315
Kurtosis 9.680 19.115 16.449 20.768 12.098 12.055 13.025 6.861 6.525 12.616
Jarque-Bera 6925 34165 24261 41108 11627 11930 13850 2991 2659 13133
ADF -2.105 -2.516 -2.369 -2.638 -2.515 -2.354 -4.294 -2.409 -1.690 -2.414
p value 0.243 0.112 0.151 0085 0.112 0.155 0.001 0.139 0.436 0.138
ACF(36) 0.768 0.717 0.762 0.689 0.722 0.755 0.547 0.795 0.808 0.735
Q(36) 66052 63437 69263 55953 62136 66327 43993 71944 73460 64367
Number of Down Trades (dt;)
Mean 0.243 0.201 0.322 0.531 0296 0.264 0.666 0.282 0.146 0.114
S.D. 0.203 0.206 0.392 0.774 0.225 0.279 0.365 0.323 0.145 0.118
Skewness 1.955 3.007 2.702 3.186 2.118 2303 2212 1.655 1.628 2313
Kurtosis 9.552 18.772 16.101 20.629 11911 11.844 12.957 6.751 6.468 12.485
Jarque-Bera 6713 32849 23154 40511 11225 11464 13686 2884 2609 12840
ADF -2.108 -2.517 -2.370 -2.636 -2.508 -2.344 -4.288 -2.408 -1.696 -2.410
p value 0.242 0.112 0.151 0.086 0.114 0.158 0.001 0.140 0433 0.139
ACF(36) 0.768 0.717 0.763 0.69 0.723 0.756 0.548 0.796 0.809 0.735
Q(36) 66280 63630 69391 56033 62318 66569 44041 72085 73589 64413
Number of Same Trades (st;)

Mean 1.387 0917 1.376 3.465 1.602 1.235 4.370 1.183 0.991 0.442
S.D. 1.548 1.050 1.708 5755 1.738 1.666 3.226 1.564 1.225 0.507
Skewness 1.341 1.361 1.384 2.388 1.260 2.065 1.387 1.424 1.243 1.301
Kurtosis 4.203 4230 4534 9.604 3.949 8.442 5.767 4.104 3.708 3.998
Jarque-Bera 996 1029 1155 7659 836 5380 1770 1076 770 895
ADF -1.626 -1.800 -1.704 -1.848 -1.731 -1.984 -2.431 -1.650 -1.333 -1.750
p value 0.469 0.381 0.429 0.358 0415 0.294 0.133 0.457 0.616 0.406
ACF(36) 0.876 0.870 0.881 0819 0.858 0.818 0.769 0.889 0.871 0.857
Q(36) 82205 81725 83757 72305 79956 75243 69011 84214 81234 79732

Note: Summary statistics of daily market activity measures for the 100 stocks over the period 01/01/2000 to 31/12/2010 are reported at sector average

level. S.D. denotes standard deviation. ADF is the augmented Dickey-Fuller statistics for the null of a unit root with 5% and 1% critical values of 2.862
and -3.433 respectively. ACF (36) is the autocorrelation at 36th lags and Q (36) is the Q statistics at 36th lag. Volume is rescaled by dividing by 1,000,000
and trade measures are rescaled by dividing by 10,000.



Table 2.1b: Summary statistics of logarithmic market activity measures

CD CS ENG FIN HC IND IT MAR TEL UTL
Trading Volume (vol,)
Mean 1.824 1.392 1.709 2.455 2.170 1.836 3.383 1.443 -0.370 0.617
Maximum 3.166 2.892 3610 5.729 3.636 4.437 4416 3.605 2.484 2229
S.D. 0.383 0.369 0.494 1.105 0.388 0.532 0.275 0.666 1.448 0.458
Skewness 0.087 0412 0.131 1.050 0231 0.823 -0.363 0.389 0.199 0.124
Kurtosis 2916 3.560 2.530 2.763 3.115 3.757 5.463 2319 1.653 2915
Jarque-Bera 4316 114311 33.369 S15.115 26.097 378.249 760.169 123.024 227.609 7.956
ADF -3.353 -3.807 -2.637 -1.167 -4.307 -2.815 -6.898 -1.838 -1.142 -3.492
p value 0.013 0.003 0.086 0.691 0.000 0.056 0.000 0.362 0.701 0.008
ACF(36) 0.562 0.484 0.693 0.886 0.485 0.664 0.059 0.825 0.957 0.552
Q(36) 36469 31630 56151 83436 31607 51415 4966 73249 94560 38792
Number of Trades (nt,)
Mean 0.105 -0.291 -0.193 0.289 0.288 -0.143 1.550 -0.550 -2.362 -1.043
Maximum 2.631 2377 3.052 4.057 2.792 2.903 3.546 2225 0.300 1.646
S.D. 1.023 1.068 1.449 1.575 1.024 1.194 0.609 1.305 0.924 1.186
Skewness 0.366 0.351 0.097 0.561 0.152 0.397 0.229 0.355 0.419 0.085
Kurtosis 1.728 1.780 1.594 1.842 1.815 1.845 2426 1.514 1.870 1.885
Jarque-Bera 248.336 228.382 232.343 299.655 172.571 226.588 62.168 312.776 228.266 146.783
ADF -1.046 -1.237 -1.377 -0.962 -1.328 -1.196 -2.371 -0.602 -0.923 -1.556
p value 0.739 0.660 0.595 0.769 0.619 0.678 0.150 0.868 0.781 0.505
ACF(36) 0.938 0.937 0.955 0.954 0.926 0.942 0.802 0.957 0.924 0.934
Q(36) 90415 91197 94523 93994 89613 91790 71414 94296 89273 91378
Number of Up Trades (ut;)
Mean -1.690 -1.967 -1.817 -1.421 -1.459 -1.770 -0.530 -1.965 -2.362 -2.653
Maximum 0.829 0.967 1.572 2.249 1.005 1.150 1.463 1.010 0.300 0.193
S.D. 0.718 0.825 1242 1.219 0.705 0.936 0.492 1.258 0.924 1.028
Skewness 0.506 0.416 -0.002 0.553 0.001 0.281 0.137 0.062 0.419 -0.103
Kurtosis 2207 2.480 1.930 2.118 2613 2.192 2911 1.800 1.870 2.383
Jarque-Bera 190.651 111.000 132.008 230.728 17.252 111.847 9.610 167.779 228.266 48.877
ADF -1.691 -1.780 -1.702 -1.500 -1.933 -1.569 -3.145 -1.422 -0.923 -1.977
p value 0.436 0.3907 0.4302 0.5336 03171 0.4984 0.0235 0.5728 0.7813 02972
ACF(36) 0.874 0.892 0.936 0.923 0.854 0.909 0.68 0.943 0.924 0.907
Q(36) 79797 84461 91720 89453 78809 86871 55584 92545 89273 87780
Number of Down Trades (dt,)
Mean -1.697 -1.978 -1.834 -1.434 -1.465 -1.785 -0.531 -1.983 -2.372 -2.671
Maximum 0.824 0.957 1.560 2248 0.996 1.141 1.460 0.998 0.290 0.181
S.D. 0.722 0.832 1.250 1.229 0.709 0.944 0.493 1.269 0.930 1.038
Skewness 0.509 0423 0.015 0.553 0.010 0.302 0.137 0.075 0.425 -0.079
Kurtosis 2.196 2453 1.911 2.102 2.592 2,172 2.909 1.782 1.862 2334
Jarque-Bera 194.141 117.101 136.711 233912 19.253 121.189 9.621 173.528 232.399 54.038
ADF -1.688 -1.764 -1.683 -1.484 -2.106 -1.544 -3.145 -1.393 -0.918 -1.951
p value 0437 0.3986 0.44 0.5421 0.2423 0.511 0.0235 0.5875 0.7831 0.3088
ACF(36) 0.875 0.893 0.936 0.924 0.855 091 0.681 0.944 0.924 0.908
Q(36) 79954 84654 91772 89591 78944 87029 55639 92646 89374 87891
Number of Same Trades (st;)

Mean -0.347 -0.798 -0.727 -0.223 -0.201 -0.685 1.202 -0.914 -1.009 -1.009
Maximum 2232 1.736 2.449 3.660 2.387 2.639 3.260 2224 1.882 1.882
S.D. 1.193 1.225 1.586 1.771 1.216 1.364 0.763 1.572 1.502 1.502
Skewness 0.282 0.308 0.140 0.531 0.144 0.39%4 -0.103 0.250 0.308 0.308
Kurtosis 1.630 1.626 1.491 1.749 1.646 1.729 2.077 1.620 1.444 1.444
Jarque-Bera 253.307 261273 271514 310248 220.959 257.720 103.094 248.259 322.959 322959
ADF -0.874 -1.030 -1.180 -0.799 -1 -1.008 -1.996 -0.979 -0.502 -0.502
p value 0.797 0.7444 0.6851 0.8189 0.7139 0.7525 0.2888 0.7627 0.8884 0.8884
ACF(36) 0.951 0.949 0.962 0.961 0.944 0.952 0.866 0.961 0.964 0.964
Q(36) 92706 93050 95493 95166 92296 93337 80808 95249 95362 95362

Note: Summary statistics of daily logarithmic market activity measures for the 100 stocks over the period 01/01/2000 to 31/12/2010 are reported at sector
average level. S.D. denotes standard deviation, ADF is the augmented Dickey-Fuller statistics for the null of a unit root with 5% and 1% critical values of
2.862 and -3.433 respectively. ACF (36) is the autocorrelation at 36th lags and Q (36) is the Q statistics at 36th lag. Volume is rescaled by dividing by
1,000,000 and trade measures are rescaled by dividing by 10,000.



Table 2.2: Long memory test

CD CS ENG FIN HC IND IT MAR TEL UTL Overall
m vol, 0.342 0.347 0.419 0.443 0.358 0.379 0.334 0.445 0.419 0.389 0.388
m nt, 0.469 0.471 0.480 0.465 0.461 0.479 0.461 0.480 0.474 0.468 0.471
% ut, 0.462 0.464 0.475 0.454 0.447 0.474 0.452 0.473 0.474 0.460 0.463
m dt, 0.462 0.464 0.475 0.454 0.447 0.475 0.452 0.473 0.474 0.460 0.464
= st, 0.468 0.472 0.481 0.469 0.466 0.480 0.468 0.481 0.472 0.472 0.473

Note: Table reports the sector average and overall average Robinson’s d statistics of long memory test. VOL= volume, NT= number of trades, UT = number of up trades,

DT = number of down trades, ST = number of same trades. All 4 statistics are significant at 5%.
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Table 2.3: Correlation matrix

vol, nt, ut, dt, st, TV, T, P, bv,
vol, 1.000
p value -
nt, 0.739 1.000
p value (0.000) -
nt, 0.738 0.924 1.000
p value (0.000) (0.000) -
dt, 0.737 0.924 0.999 1.000
p value (0.000) (0.000) (0.000) -
st, 0.719 0.991 0.874 0.874 1.000
p value 0.004 (0.000) (0.000) (0.000) -
v, 0.394 0.312 0.414 0.413 0.263 1.000
p value (0.000) (0.029) (0.011) (0.011) 0.036 -
L 0.416 0.362 0.470 0.470 0.310 0.924 1.000
p value (0.000) (0.013) (0.019) (0.019) (0.041) (0.000) -
pU; 0.426 0.345 0.446 0.445 0.295 0.955 0.899 1.000
p value (0.000) (0.025) (0.009) (0.010) (0.027) (0.000) (0.000) -
bv, 0.404 0.325 0.429 0.429 0.274 0.963 0.920 0.958 1.000
p value (0.000) (0.029) (0.010) (0.010) (0.031) (0.000) (0.000) (0.000) -

Note: This table reports the overall average correlation between realized volatility measures and market activity measures.
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Table 2.4: Common structural break dates for volatility and market activity measures

31e) Piedy A3a9uy K1euonadsi( Joumnsuo))

A3ojouyd3 ] uonewaofu|

SUOLJBIIUNWIW O |,

Zivot & Andrews Single Structure Break Test

U, vol, nt, v, vol, nt,

AMZN 20011130 20070423 20070423 AVP 20080728 20080102 20071019
BBY 20021227 20070618 20070618 BFB 20070723 20090421 20070227
DIS 20080902 20080102 20080102 Q COST 20070724 20070724 20070724
GPS 20070724 20070724 20070724 E EL 20071018 20080103 20080102
HD 20071017 20060628 20070620 :E‘; KMB 20071019 20070709 20070709
IPG 20080409 20071031 20071031 (g? KO 20080101 20070212 20070709
MAR 20080104 20080528 20080523 % PEP 20070711 20070710 20070717
MCD 20030507 20060908 20070720 PG 20080102 20070419 20070709
NWSA 20080627 20081002 20080902 UL 20080104 20080903 20080613
BHI 20080619 20060421 20070103 ALL 20080905 20070717 20070717
CHK 20080619 20080416 20080208 AXP 20071031 20071031 20071009
CvxX 20090903 20090511 20070705 BAC 20080906 20090112 20080602
DVN 20080102 20090511 20080102 - BK 20080107 20080102 20080102
HAL 20080702 20050722 20070103 2 C 20080627 20090219 20071009
oxY 20071011 20090427 20070103 E- GS 20070724 20070718 20070710
SUN 20090319 20090511 20070103 = JPM 20071031 20080102 20080102
TEA 20080902 20040211 20070718 MS 20080707 20071031 20071031
WMB 20030327 20030813 20080102 TRV 20070720 20080619 20080102
XOM 20070720 20090511 20070705 WFC 20071231 20080603 20080603
ABT 20070710 20080102 20080102 BA 20080612 20070720 20070720
AMGN 20021008 20011120 20090427 CAT 20080902 20080902 20080102
BSX 20080707 20090512 20080619 CMI 20070725 20090511 20070420
GILD 20010924 20040202 20070709 — GD 20070724 20030717 20070521
HUM 20080115 20080102 20080102 § GE 20080902 20080904 20080102
INJ 20080904 20070216 20070216 g HON 20080625 20010924 20070417
MDT 20080829 20060323 20070717 e LUV 20080102 20061019 20080102
MRK 20080117 20080104 20070718 MMM 20071009 20030930 20070710
PFE 20080625 20080417 20080102 ups 20080618 20090424 20070709
UNH 20080619 20080311 20080102 UTX 20080102 20080102 20070709
AAPL 20070720 20090123 20090123 AA 20080902 20080925 20070705
CSCO 20021031 20030324 20071031 AKS 20080701 20080902 20080624
DELL 20020726 20011119 20071016 DD 20080102 20080102 20070706
EMC 20020512 20061109 20070524 DOW 20080915 20080902 20080618
HPQ 20030318 20080104 20080102 § FCX 20070720 20070226 20070221
IBM 20071011 20070103 20070222 g 1P 20080902 20080304 20080102
INTC 20021107 20020607 20080102 “ NEM 20071031 20090323 20070706
MSFT 20071011 20071015 20071015 NUE 20090320 20090424 20070719
ORCL 20021209 20040305 20080102 WY 20070720 20061214 20070119
XRX 20021024 20090506 20080506 X 20071231 20080902 20080701
AMT 20030128 20090508 20070718 AEP 20030127 20030528 20080102
BT 20071224 20090428 20061127 CEG 20080812 20080424 20070523
CTL 20070725 20081002 20080929 DUK 20030214 20070103 20070522
FTR 20021216 20090512 20071231 ETR 20070719 20070518 20070129
Q 20030325 20021121 20070607 S EXC 20070521 20030529 20070524
S 20080108 20080116 20070103 g OKE 20080908 20030109 20070203

20030403 20060921 20070601 PCG 20010924 20070606 20070605
TEF 20080104 20010924 20071011 PEG 20021018 20020708 20071231
YOD 20021114 20080915 20080903 PGN 20070604 20070522 20070523
VZ 20071211 20080104 20080102 SO 20021114 20070523 20070522
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Table 2.5a: OLS regressions of volume on realized volatility measures (sector and overall

average)
(6))) CS ENG FIN HC IND IT MAR TEL UTL OVERALL
Realized Variance (7V,)

¢Ti 0.652 0.884 0.862 0.754 0.366 0.546 0.148 0.502 0.987 6.524 1.222

% R? 45209 47722 63.934 58489 48804 56.552 58540 61.338 41.284 45.708 52.758

% Significant 90 100 100 100 100 100 100 100 90 80 96

Realized Range (77,)

¢Ti 0.492 0.742 0.754 0.684 0.336 0.500 0.147 0.440 0.784 5.305 1.018

o R? 53.103 48.450 64393 62929 51.572 53.684 60.287 66.735 47.463 37977 54.659

% Significant 90 100 100 100 100 100 100 100 90 80 96
Realized Power Variation ( pV,)

al. 0.488 0.845 0.737 0.540 0.368 0.585 0.161 0.485 0.953 2.691 0.785

% R‘Z 65.675 64767 73242 71911 64.822 70210 70.751 72310 59.947 64.193 67.783

% Significant 100 100 100 100 100 100 100 100 920 90 98
Realized Bipower Variation (bv, )

¢_[ 0.416 0.699 0.792 0.679 0.344 0.529 0.140 0.473 0.865 6.831 1.177

% R‘z 53.658 52.003 64.847 59.713 51452 57.629 58.568 62.895 47391 51.795 55.995

% Significant 100 100 100 100 100 100 100 100 90 90 98

Note: Volume is rescaled by dividing by 1,000,000. p;; measures the persistence of volatility shock at lag j. M, is the

Monday dummy. ¢i

. D2,
is equally-weighted cross sectional mean coefficients for volume. The R* is the mean value of

100 stocks. The last row reports the percentage of ¢" coefficients which are statistically significantly from zero at

5% level.
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Table 2.5b: OLS regressions of number of trades on realized volatility measures (sector and

overall average)
(83)) CS ENG FIN HC IND IT MAR  TEL UTL OVERALL
Realized Variance (7V,)
B,, 1.915  3.336 1.888  2.144 1.069 1.916 0359  2.267 3.348 11.081 2.932
% RZ 44814 46410 63.657 60.495 49.642 57389 57.328 63.129 42.025 44.460 52.935
% Significant 100 100 100 100 100 100 100 100 100 100 100
Realized Range (77))
BI. 1.665  2.753 1.784 1.910 1.043 1.866  0.368  2.024  3.056 10.400 2.687
% RZ 52.930 48.066 64.681 64.550 52.762 55233 59.109 68.639 48.610 36.871 55.145
% Significant 100 100 100 100 100 100 100 100 100 99 99
Realized Power Variation ( PV,)
B,. 1.693  3.113 1.869 1.536 1.074 1.952 0406 2.124  3.601 5.161 2.253
% Ez 65357 64306 73.162 73389 65.238 70.642 69.603 73.754 60.649 62.963 67.906
% Significant 100 100 100 100 100 100 100 100 100 100 100
Realized Power Variation (th )
ﬁi 1.493  2.575 1.745 1.948  0.983 1.767 0343  2.117 2980 11.572 2.752
o }_{-2 53.680 51.040 64.668 61.694 52238 58.160 57.418 64.617 48.108 49.922 56.154
100 100 100 100 100 100 100

% Significant 100 100 100 100
Note: Number of trades is rescaled by dividing by 10,000. P measures the persistence of volatility shock at lag j.

n P2
Ml is the Monday dummy. ﬂ" is equally-weighted cross sectional mean coefficients for number of trades. The R

is the mean value of 100 stocks. The last row reports the percentage of ﬂ” coefficients which are statistically

significantly from zero at 5% level.
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Table 2.5¢c: OLS regressions of number of up trades on realized volatility measures (sector and
overall average)

(8)) CS ENG FIN HC IND IT MAR TEL UTL  OVERALL

Realized Variance (7'V,)

}—/;, 23.635 16.598 9979 15.703 10304 12914 5554 15725 30323 57.447 19.818
o R? 46.283 48.116 64.286 62.626 52.889 59.579 59.637 64.283 43.613 46.890 54.820
% Significant 100 100 100 100 100 100 100 100 100 90 99

Realized Range (/7))

}7” 21463 15.035 9.767 14.146 10331 12.863 6.051 14.547 27.129 52.268 18.360
o R? 54986 50.445 65510 66486 57213 58251 61.646 70.052 50.656 39.331 57.458
% Significant 100 100 100 100 100 100 100 100 100 80 98

Realized Power Variation ( DV, )

}_/-” 20.409 16.601 9.676 11.478 10.253 13.000 5.880 14.428 28353 26.955 15.703
% R2 66.500 65.507 73.615 75.084 67.340 72240 71436 74.827 61.746 64.926 69.322
% Significant 100 100 100 100 100 100 100 100 100 100 100

Realized Power Variation (bvl )

}7” 19369 13423 9.189 14502 9380 12268 5432 14737 26486 60.692 18.548
o R’ 55.381 52950 65.225 63.928 55453 60.441 59.752 65.794 49.633 52.351 58.091
% Significant 100 100 100 100 100 100 100 100 100 90 99

Note: Number of up trades is rescaled by dividing by 10,000. pij measures the persistence of volatility shock at lag j.
M, is the Monday dummy. }7,-‘ is equally-weighted cross sectional mean coefficients for number of up trades. The

R%is the mean value of 100 stocks. The last row reports the percentage of ¥, coefficients which are statistically

significantly from zero at 5% level.
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Table 2.5d: OLS regressions of number of down trades on realized volatility measures (sector and overall

average)
CcD (oh} ENG FIN HC IND IT MAR TEL UTL OVERAL
Realized Variance (7V,)
ét 24060 16213  9.976  15.632 10298 12.877 5548 15.664 30.227 56.856 19.735
o, R2 46.900 47984 64.258 62.552 52.874 59.482 59.643 64.253 43.620 46.811 54.838
% Significant 100 100 100 100 100 100 100 100 100 80 98
Realized Range (/7))
é’ 22,006 14754  9.738  14.107 10.317 12.837 6.050 14.478 27.071 52.062 18.342
% R? 55985 50275 65455 66.441 57.165 58.185 61.660 70.014 50.665 39.307 57.515
% Significant 100 100 100 100 100 100 100 100 100 90 99
Realized Power Variation ( pV,)
9—” 20409 16.601  9.672 11424 10248 12960 5874 14376 28279 26.732 15.674
o R? 66.500 65.507 73.604 75.031 67331 72176 71.443 74805 61.758 64.877 69.344
% Significant 100 100 100 100 100 100 100 100 100 100 100
Realized Power Variation ( bVl )
0_” 19.754 13.156  9.188 14440 9.376 12214 5426 14.679 26499 60.054 18.479
Eg 4.931 3.046 2524 4870 2212 2873 1.155 3510  8.459  29.037 6.262
% R? 56.193 52.828 65.199 63.863 55440 60.335 59.760 65.766 49.649 52.271 58.130
% Significant 100 100 100 100 100 100 100 100 100 100 100

Note: Number of down trades is rescaled by dividing by 10,000. p,; measures the persistence of volatility

shock atlagj. M , is the Monday dummy. (9,-, is equally-weighted cross sectional mean coefficients for

number of down trades. The R’ is the mean value of 100 stocks. The last row reports the percentage of

A

7

it

coefficients which are statistically significantly from zero at 5% level.
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Table 2.5e: OLS regressions of no. of same trades on realized volatility measures (sector and

overall average)
CD Cs ENG FIN HC IND IT MAR TEL UTL  OVERALL

Realized Variance (7V,)

2.120  5.005 2.077 2513 1.232 2292 0367 2462 4072 26.186 4.833

T
% EZ 43931 44.673 62.177 58.778 48.130 55377 56.665 61.711 41.378 43.331 51.615
% Significant 100 100 100 100 100 100 100 100 100 80 98
Realized Range (/7))
Z_'” 1.814  3.822 1.935 2.245 1.178 2156  0.365 2.138  3.736 22511 4.190
% ]_{_2 51.804 45.734 63.000 63.044 50.952 52.894 58433 67.170 47.730 35.583 53.634
% Significant 100 100 100 100 100 100 100 100 100 80 98
Realized Power Variation ( PV, )
‘[_'i, 1.876 4260  2.079 1.848 1.234 2331 0424 2330 4.431 10.091 3.090
% Ez 64.604 62.821 71.881 72,167 64.080 69.070 69.041 72498 60.139 61.977 66.828
% Significant 100 100 100 100 100 100 100 100 100 80 98
' Realized Power Variation (bv, )
ZT” 1.631 3.644 1.924 2259 1.140  2.074 0.345 2.288 3.618 28.640 4.757
% EZ 52.725 49.178 63220 60.077 50.726 56.170 56.762 63.248 47.504 48.861 54.847
% Significant 100 100 100 100 100 100 100 100 100 80 98

Note: Number of same trades is rescaled by dividing by 10,000. ,Dij measures the persistence of volatility shock at lag
J- M, is the Monday dummy. 17,, is equally-weighted cross sectional mean coefficients for number of same trades.
The 1—32 is the mean value of 100 stocks. The last row reports the percentage of fi, coefficients which are statistically

significantly from zero at 5% level.



Table 2.6a: GARCH and augmented GARCH results (overall average)

161

Augmented Augmented Augmented Augmented Augmented
GARCH(1,1) with vol, with nt, with ut, with dt, with st,
Overall
) 0.0299 0.0321 0.0287 0.0276 0.0283 0.0271
a 0.0719 0.0789 0.0836 0.0833 0.0822 0.0825
B 0.9230 0.9025 0.8849 0.8710 0.8824 0.8752
Y - -0.0059 0.0577 0.6025 0.7297 0.1325
LOGL -5334.8974 -5360.0646 -5348.0031 -5346.4766 -5342.9512 -5347.5545
% significance 100 36 60 68 67 57
Note: The Augmented GARCH model is given as
re=pu+ &

£|Pe-1~N(0, he)
hy= w+ag’ +Bhy+yMT,_,
Where MT;_; denotes the market activity measures, namely, volume, no. of trades, no. of up trades, no. of down trades, and no. of same trades.
All the coefficients and stats are reported as the overall average. LOGL denotes the log likelihood. Finally, % significance is the percentage of significance when market activity
measures are augmented in to GARCH (1, 1) model.
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Table 2.6b: GARCH and Augmented GARCH results (by Sector)
Augmented Augmented Augmented Augmented Augmented

GARCH(1,1) ) ; ; . _
with vol, with nt, with ut, with dt, with st,
Consumer Discretionary
® 0.0517 0.0546 0.0522 0.0541 0.0425 0.0509
a 0.0613 0.0682 0.0748 0.0847 0.0932 0.0602
E 0.9346 0.8891 0.8958 0.9005 0.8454 0.9335
Y - -0.0226 0.0259 -0.1671 -0.0732 0.0055
LOGL -5659.2815 -5682.5424 -5661.4010 -5700.8682 -5697.7368 -5654.2061
% significance 50 70 60 60 80
Consumer Staples
® 0.0594 0.0592 0.0566 0.0589 0.0588 0.0592
a 0.0653 0.0652 0.0773 0.0651 0.0649 0.0648
E 0.9231 0.9225 0.8691 0.9176 0.9178 0.9193
Y - 0.0010 -0.0155 0.1092 0.1094 0.0237
LOGL -4476.1458 -4473.4490 -4508.0289 -4470.4460 -4470.3890 -4470.7534
% significance 0 80 70 70 70
Energy
7] 0.0209 0.0214 0.0213 0.0158 0.0226 0.0130
a 0.0688 0.0696 0.0688 0.0763 0.0704 0.1026
F 0.9228 0.9216 0.9173 0.8601 0.8999 0.7593
Y - -0.0014 0.0254 2.0677 0.3812 0.3931
LOGL -5635.8358 -5632.3467 -5630.5658 -5635.6407 -5626.4629 -5676.9409
% significance 10 60 80 80 60
Financials
@ 0.0199 0.0162 0.0195 0.0133 0.0199 0.0203
a 0.0883 0.0973 0.0900 0.0982 0.0894 0.0889
E 0.9093 0.8613 0.9042 0.8509 0.9038 0.9062
Y - 0.0206 0.0132 0.4989 0.0807 0.0151
LOGL -5416.4291 -5445.8499 -5410.7547 -5432.8209 -5409.6799 -5410.9254
60 40 60 60 40

% significance




Table 2.6b: GARCH and Augmented GARCH results (by Sector) (continued)
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<l ™ KL

LOGL
% significance

GARCH  Augmented Augmented Augmented Augmented Augmented
with vol, with nt, with ut, with dt, with st,
Health Care
0.0140 0.0140 0.0134 0.0130 0.0130 0.0134
0.0587 0.0671 0.0578 0.0583 0.0583 0.0577
0.9306 0.8861 0.9284 0.9267 0.9267 0.9290
- -0.0129 0.0013 0.0248 0.0255 0.0002
-5254.6396  -5321.1110  -5248.8244  -5248.5231  -5248.4882  -5249.0200
50 30 40 30 50
Industrials
0.0399 0.0393 0.0393 0.0355 0.0342 0.0315
0.0837 0.0686 0.0673 0.0939 0.0822 0.0964
0.9244 0.9212 0.9197 0.8354 0.8599 0.8016
- 0.0022 0.0227 0.5811 0.4017 0.2696
-5172.1900  -5167.6292  -5166.5138  -5187.5230  -5180.2644  -5193.7272
50 60 60 60 70
Information Technology
0.0683 0.0673 0.0711 0.0628 0.0693 0.0658
0.0643 0.0631 0.1324 0.0976 0.0970 0.0942
0.9326 0.9329 0.8232 0.8407 0.8692 0.8728
- 0.0002 0.0136 0.4943 0.6765 0.0469
-5671.6072  -5667.3012  -5714.6977  -5706.9399  -5690.8365  -5689.7323
40 60 60 60 30
Materials
-0.0371 -0.0373 -0.0370 -0.0366 -0.0367 -0.0372
0.0542 0.0537 0.0538 0.0510 0.0510 0.0538
0.9380 0.9374 0.9339 0.9368 0.9367 0.9350
- 0.0018 0.0241 0.1590 0.1606 0.0227
-6025.1570  -6022.2661  -6019.8252  -6018.9239  -6018.8325  -6020.3489
20 80 80 80 70




Table 2.6b: GARCH and Augmented GARCH results (by Sector) (continued)

GARCH Augmented Augmented Augmented Augmented Augmented
with vol, with nt, with ut, with dt, with st,
Telecommunication Services
@ 0.0308 0.0187 0.0237 0.0306 0.0294 0.0238
a 0.0649 0.0735 0.0933 0.0875 0.1051 0.0786
B 0.9333 0.8957 0.8387 0.8096 0.8022 0.8874
¥y - -0.0049 0.3600 1.5901 5.1552 0.3915
LOGL -5255.9304 -5349.3049  -5333.9312  -5284.4665 -5316.8194  -5318.0448
% significance 40 50 80 80 50
Utilities
@ 0.0309 0.0675 0.0264 0.0283 0.0302 0.0302
177 0.1096 0.1628 0.1209 0.1205 0.1107 0.1275
B 0.8814 0.8574 0.8190 0.8319 0.8627 0.8080
¥ - -0.0425 0.1058 0.6667 0.3796 0.1570
LOGL -4781.7575 -4838.8453  -4785.4882 -4778.6137  -4770.0019  -4791.8464
% significance 100 40 70 90 90 50
Note: The Augmented GARCH model is given as
rT=pt &

&|Pr1~N(0, hy)
ht =wta 8?_1 + I;ht—-l +yMT,_4

Where MT;_, denotes the market activity measures, namely, volume, no. of trades, no. of up trades, no. of down

trades, and no. of same trades.

All the coefficients and stats are reported as the sector average (10 at each sector). LOGL denotes the log
likelihood.Finally, % significance is the percentage of significance when market activity measures are augmented in

to GARCH (1, 1) model.
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Table 2.7a: Granger Causality test of OKE (least active)

Causality Lags F-Stats Prob. Causality Lags F-Stats Prob.  Causality Lags F-Stats Prob.
Volume No. of Trades No. of Up Trades
v, = vol, 5 0381 (0.862) 4 rv, - nt, 15 3930  (0.000) | rv, - ut, 14 7.556  (0.000)

vol, - rv, 4.085 (0.001) _ nt, - rv, 10.440  (0.000) ; ut, - rv, 12.786 (0.000)
T, - vol, 3 1.444  (0.228) _ Tr, - nt, 5 6.359  (0.000) _ T, = ut, 5 13.557 (0.000)
vol, - rr, 8.376  (0.000) _ nt, - rr, 18.419  (0.000) _ ut, - rr, 21.436  (0.000)
pv, - vol, 5 1.395  (0.223) _ pv, - nt, 5 2.068  (0.067) 4 pv, > ut, 5 4228 (0.001)
vol, - pv, 1.049  (0.387) 4 nt, - pv, 16.636  (0.000) _ ut, - pv, 19.653  (0.000)
bv, - vol, 5 1.943  (0.084) - by, - nt, 5 3.904  (0.002) _ by, — ut, 5 9.000  (0.000)

vol, - by, 0.786  (0.559) _ nt, - by, 11.237  (0.000) | ut, - by, 12.273  (0.000)
No. of Down Trades No. of Same Trades

Ty, = dt, 15 8.432  (0.000) 4 rv, - st; 15 2.028 (0.011)

dt, - rv, 12.252  (0.000) _ st, > ry, 8.170  (0.000) _

T, - dt, 15 10.344  (0.000) _ rr, > st, 5 2390 (0.036) _

dt, - rr, 7.262  (0.000) _ sty > 11, 15.110  (0.000) _

pv, - dt, 15 3.509  (0.000) 4 pv, - st 5 0.685  (0.635) _

dt, - pv, 8916  (0.000) _ sty - pv, 12.792  (0.000) _

bv, - dt, 15 5.862  (0.000) _ by, - st, 5 1.494  (0.188) _

dt, - by, 5.881  (0.000) _ st, - by, 9.830 (0.000) _’

Note: The null hypothesis is A does not Granger cause B. No. of lags is decided according to the Schwarz information Criterion.
The numbers in bold are the ones of which p-values are not significant at 5%.



Table 2.7b: Granger Causality test of C (most active)

Causality Lags F-Stats Prob. | Causality Lags F-Stats Prob. | Causality Lags F-Stats Prob.
Volume No. of Trades No. of Up Trades
rvy - vol, 6 1.554  (0.157) | rv, — nt, 5 2591 (0.024) | rv, — ut, 3 1.749  (0.155)
vol, - rv, 5.299  (0.000) | nt, — rv, 32.434  (0.000) | ut, - rv, 18.057 (0.000)
rr, — vol, 6 1.063  (0.383) | rr, — nt, 5 1.965  (0.081) | rr, — ut, 5 0.876  (0.496)
vol, - rr, 5.542  (0.000) | nt, - rr, 33.596  (0.000) | ut, - rr, 11.185 (0.000)
pv, — vol; 6 1.163  (0.323) | pv, — nt, 6 1.167  (0.321) | pv, — ut, 3 0.900  (0.440)
vol; - pv, 6.325  (0.000) | nt; - pv, 22.646 (0.000) | ut, — pv, 15.100  (0.000)
bv, - vol, 6 0.793  (0.576) | bv, - nt, 6 1.781  (0.099) | bv, > ut, 6 0475 (0.827)
vol; - bv, 6.291  (0.000) | nt, — bv, 33.317  (0.000) | ut, - bv, 11.371  (0.000)
No. of Down Trades No. of Same Trades
rv, — dt, 3 1.761  (0.152) | rv, - st, 5 3.950 (0.001)
dt, - rv, 18.136  (0.000) | st, - rv, 38.755 (0.000)
rr, - dt, 5 2.856  (0.014) | rr, > st, 5 2.856  (0.014)
dt, - rr, 40.089  (0.000) | st, — rr, 40.089  (0.000)
pv, - dt; 3 0.875  (0.453) | pv, — st, 13 1.519  (0.103)
dt, - pv, 15.127  (0.000) | st — pv, 16.424  (0.000)
bv, — dt, 6 2950  (0.007) | bv, — st, 6 2.950 (0.007)
dt, - bv, 39.835  (0.000) | st, > by, 39.835 (0.000)

Note: The null hypothesis is A does not Granger cause B. No. of lags is decided according to the Schwarz information Criterion.

The numbers in bold are the ones of which p-values are not significant at 5%.
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Table 2.7c: Granger Causality test of overall average market activity measures and realized volatility measures

Causality Lags F-Statistic  Prob. Causality Lags F-Statistic Prob. Causality Lags F-Statistic Prob.
Volume No. of Trades No. of Up Trades
rvi—>vol, 12 3.927 (0.000) 7 rvi—>nt 10 13.553 (0.000) | rve > uty 12 18.084  (0.000)
vol, - rv, 7.057 (0.000) _ nt, = rve 13.164  (0.000) _ ut; — rve 11.319  (0.000)
rry — vol, 10 3.467 (0.000) ; rry — nt; 10 11.262 (0.000) _ Iy = ut, 16 12.133 (0.000)
vol; - rry 8.174  (0.000) A nt, - rry 21.018  (0.000) _ ut, - rry 17213 (0.000)
pv, - vol, 9 3.892 (0.000) 4 pv, =t o 7.864 (0.000) _ pv,—out o 8.999 (0.000)
vol, - pv, 6.168 (0.000) * nt, - pv, 10.429 (0.000) * ut; - pv, 7917 (0.000)
bv, »voly 10 4351 (0.000) _ bv, - nty 10 12.662  (0.000) _ bvi > ut, 10 17.487  (0.000)
vol; — bv, 6.532 (0.000) _ nt, - bv, 15.661  (0.000) | ut, — bv, 13.939  (0.000)
No. of Down Trades No. of Same Trades

rv, - dt; 12 18.411 (0.000) _ rv, = st; 12 10.358 (0.000)

dt, - rv, 12.021  (0.000) 4 st, - v, 12.875  (0.000) _

T, > dt; 16 12.223 (0.000) “ I, — st 15 6.745 (0.000) _

dt, - rr, 17.623  (0.000) V st, - rry 13.831  (0.000) _

pv, — dt; 10 9.538 (0.000) _ pv, = sty 10 5.871 (0.000) _

dt; - pv, 8.778 (0.000) 4 st; = pv, 10.331 (0.000) _

bv, — dt; 10 17.972 (0.000) * bv, - st, 10 9.439 (0.000) _

dt, — bv, 14.819 (0.000) _ st, = bv, 14.908 (0.000) _

Note: The null hypothesis is A does not Granger cause B. No. of lags is decided according to the Schwarz information Criterion. The numbers
in bold are the ones of which p-values are not significant at 5%.
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Table 2.8: GMM Results

Bivariate Moments with vol,
Bivariate Moments with nt,
Bivariate Moments with ut,
Bivariate Moments with dt,

Bivariate Moments with st,

Bivariate Moments with vol,
Bivariate Moments with nt,
Bivariate Moments with ut,
Bivariate Moments with dt,

Bivariate Moments with st,

Bivariate Moments with vol,
Bivariate Moments with nt,
Bivariate Moments with ut,
Bivariate Moments with dt,

Bivariate Moments with st,

m2 m3 md JTest m2 m3 md4d JTest m2 m3 md4d JTest m2 m3 m4 JTest
CD CS ENG FIN

9 9 6 3 9 9 8 1 10 9 7 2 9 8 8 5

8 8 4 3 10 10 7 3 10 9 5 s 10 9 8 4

10 10 3 5 10 10 6 4 10 10 7 4 10 8 8 6

10 10 4 3 10 10 6 5 10 9 7 4 8 8 7 4

9 9 5 3 10 10 8 3 10 10 7 6 10 9 8 6
HC IND IT MAR

8 6 5 3 10 9 7 0 10 9 6 0 10 10 6 1

10 10 7 1 10 8 6 3 9 9 9 0 8 7 4 3

10 10 6 2 10 10 5 6 10 9 7 2 10 10 7 3

9 10 7 2 10 10 5 5 10 10 7 3 10 10 9 4

10 9 6 2 9 9 6 7 10 10 7 0 10 9 5 2
TEL UTL OVERALL

10 8 4 2 9 7 4 2 94 84 61 19

10 8 6 3 10 9 5 3 95 87 61 28

9 8 6 0 10 10 3 3 99 95 58 35

10 9 9 0 10 10 o6 2 97 96 67 32

9 9 8 2 10 9 9 1 97 93 69 32

Note: This tables reports the number of stocks that the recovery of the estimated information flow moments and the over-identifying J test are not rejected

at the 5% level.
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Table 2.9: Standardization results of sector average returns on market activity measures

# rl\vol,  ril\nt, [l Jut, riJdi,  rlJst, | r v lvol  rldnt, v /\Jut,  w/Jdi,  r /st
CD CS
Skewness 0.445 0.219 0.554 0.418 0.483 0.622 _ 0.317 0.234 0.670 0.627 0.706 0.655
Kurtosis 9.455 6.455 12.592 10.359 10.579 13.503 _ 10.551 5.895 11.642 10.931 11.133 12.107
Jarque-Bera  4895.004 1398.580 10749.640  6323.878 6729497  12897.440 _ 6620.154 991.804 8816.615 7433.480 7856.215 9759.462
p value (0.000)  (0.000) (0.000)  (0.000)  (0.000)  (0.000) | (0.000) (0.000)  (0.000)  (0.000) _ (0.000) _ (0.000)
ENG FIN
Skewness -0.404 -0.167 -0.098 -0.117 0.018 -0.135 _ -0.240 -0.021 0.105 0.070 0.157 0.091
Kurtosis 11.575 4.536 9.311 9.235 9.211 10.003 _ 14.159 5.055 9.311 8.799 8.779 9.480
Jarque-Bera  8553.035 284912 4597.029 4488.294 4447414 5662.960 _ 14382.610 487.158 4597.525 3879.747 3861.926 4844.706
p value (0.000)  (0.000) (0.000)  (0.000)  (0.000)  (0.000) | (0.000) (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
HC IND
Skewness 0.047 0.053 0.120 0.053 0.113 0.168 _ -0.198 -0.016 0.170 0.133 0.206 0.166
Kurtosis 9.164 5.437 8.987 8.284 8.294 9.248 f 7.090 4.234 7.742 7.238 7.269 8.108
Jarque-Bera  4381.467 686.122 4139.674 3220.375 3237.143 4513.316 _ 1946.997 175.692 2605.981 2078.401 2121.178 3020.663
p value 0.000)  (0.000) (0.000)  (0.000)  (0.000)  (0.000) | (0.000) 0.000)  (0.000)  (0.000)  (0.000)  (0.000)
IT MAR
Skewness 0.277 0.061 0.105 0.010 0.023 0.182 _ -0.534 0.047 0.100 -0.173 0.308 0.110
Kurtosis 7.656 5.187 7.522 5.308 5311 8.496 _ 8.621 6.205 11.905 13.905 14.277 11.134
Jarque-Bera  2535.008 552.995 2362.796 614.312 615.902 3498.387 _ 3774.455 1185.332 9146.702  13723.540 14706.270 7632.859
p value (0.000)  (0.000) (0.000)  (0.000)  (0.000)  (0.000) | (0.000) 0.000)  (0.000)  (0.000)  (0.000)  (0.000)
TEL UTL
Skewness -0.096 0.135 0.322 0.272 0.375 0.303 _ 0.033 0.029 -0.062 -0.249 0.077 -0.019
Kurtosis 8.674 6.254 9.361 8.217 8.333 10.022 _ 10.989 6.226 11.584 11.806 11.456 12.143
Jarque-Bera  3716.473 1229.379 4713.158 3171.796  3344.000 5727.778 _ 7359.564 1200.139 8497.934 8967.929 8246.561 9637.859
p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) _ (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: This table reports the skewness, kurtosis as well as the Jarque-Bera statistics for normality of sector average returns standardized by different market activity measures.
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Figures

Figure 2.1: Market activity measures plots
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Note: The figures present the overall sample average market activity measures. Volume is rescaled by dividing by 1,000,000 and trade
measures are rescaled by dividing by 10,000.
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Figure 2.2: ACFs of Market Activity Measures
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Note: ACFs up to 100 lags are plotted for overall average market activity measures.



Figure 2.3a: Structural break dates of realized variance: 2000-2004
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Note: The figure reports the structural breaks dates of realized variance according © the ZA test fram 2000-2004. The stocks shown i the same colour are categorized i the same
sectors.



Figure 2.3b: Structural break dates o realized variance: 2004-2010
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iNote: The figure reports the structural breaks dates of realized variance according © the ZA test from 2004-2010. The stocks shown i the same colour are categorized i the same
sectors.
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Figure 2.3C. Structural break dates o trading volume: 2000-2006
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Note: The figure reports the structural breaks dates of trading volume according © the 7ZA test fram 2000-2006. The stocks shown in the same colour are categorized i the same
sectors.



Figure 2.3d: Structure break dates o trading volume: 2006-2010
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Note: The figure reports the structural breaks dates of trading volume according © the 7ZA test from 2006-2010. The stocks shown in the same colour are categorized in the same
sectors.



Figure 2.3e: Structural break dates of number o trades: 2000-2010.
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Note: The figure reports the structural breaks dates of number of trades according © the ZA test from 2000-2010. The stocks shown in the same colour are categorized in the same
sectors.
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Chapter 3

Factors Affecting the Recovery to Returns
Normality Using Parametric and Non-
Parametric Volatility Measures

Abstract

This chapter investigates the issue of achieving returns normality using high frequency non-parametric
measures (realized variance, range, and power and bipower variations) and classical parametric
measures (stochastic volatility and GARCH). Our task is twofold. The first is to check the relevance of
stock type and the level of activity on the power of the volatility measure to achieve normality. The
second task is to investigate the impact of: a) sampling frequency; b) jumps; and c) microstructure
noise.

Our findings can be summarized as follows: 1) the nature of the stock is relevant to recovering
normality — It is more difficult to achieve return normality in actively traded stocks; 2) the sampling
frequency affects the recovery of returns normality. For example, the rejections rate of standardized
returns is higher at the 1-second sampling frequency as opposed to the S-minute sampling frequency; 3)
excluding jumps from realized variance has little effect in distorting the normality of standardized
returns at least at S-minute sampling frequency. The effect of jumps is more visible at higher
frequencies; 4) applying filter to counter microstructure noise enhances the process of recovering
returns normality; 5) the performance of non-parametric volatility measures far exceeds that of the

classical measures.
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3.1 Introduction

The assumption that asset returns are normally distributed is fundamental in many
asset pricing models, such as the Black and Scholes (1973) financial derivatives
pricing model, the VaR evaluation in the portfolio management, and so on. It also has
important implications for financial hedging and risk management. However, asset
returns are rarely observed to be normally distributed. This well-established fact is
extensively reported in a large number of empirical studies. In the distant past we
have the papers of Mandelbrot (1963, 67), Fama (1965), and Pratez (1972).
Mandelbrot (1963) attributed the non-normality of stock returns to the fact that the
variance of returns, which is the sum of elementary logarithmic prices changes, is
infinite, which in turn implies that the Central Limit Theorem is violated. Another
explanation of the non-normality of returns is provided by the seminal paper of Clark
(1973) which attempts to explain the non-normality without sacrificing the assumption
of finite variance. He argues that the transactions are not evenly spreader across the
trading hours and therefore the distribution of returns can be viewed as a mixture
distribution through the subordination process. This mixture distributions hypothesis
has attracted the most attention and paved the way for a number of studies that follow.
The univariate mixture distribution model is first proposed by Clark (1973), and then
is modified as a bivariate model by Tauchen and Pitts (1983), Andersen (1996) and
Liesenfeld (2001). According to Mixture of Distributions Hypothesis, although the
returns are not Gaussian, returns subordinated with trading volume could be Gaussian
as both financial prices and trading volume are driven by the same latent information
flow arrivals. Furthermore, Monroe (1978) asserts that any semi-martingale can be

written as a time changed Brownian motion. The Monroe result in essence indicates
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that, as long as we are willing to change the time of the process, there will exist a
filtration that to which the return process can be adapted and be brought back to
normal distribution.

Based on MDH, Ané and Geman (2000) revisit the Clark (1973) paper by replacing
the trading volume by number of the trades as the subordinator. Under the non-
arbitrage assumptions and the conclusion reached by Monroe, Ané and Geman (2000)
find that returns adapted to the time of number of trades are normally distributed.
Nevertheless, recent empirical studies question the results of Clark (1973) or Ané and
Geman (2000) with respect to recovering return normality. The failure to recovering
return normality by volume/number of trades could be attributed to the irregular
arrival of information flows. Prices evolve at different rates during a given time period
(day, hour, 5 minutes, and so on) because the arrival of information is assumed to be
random.

With the availability of high frequency data and the development of continuous-time
models, the non-normality issue has been addressed to better effect by studies which
primarily use high frequency data. Many find that unconditional distributions of raw
daily returns have fat tails yet the distributions appear close to Gaussian when the
returns are standardized by the corresponding realized volatility measures (See for
instance ABDL (2001) ABDE(2001) Areal (2001), BN-S(2004), ABFN(2010)
Fleming and Paye(2007, 2011). ABFN (2010) claims that “the (true) realized
volatility standardized returns should be indistinguishable from a Gaussian if the true
price process belongs to a certain class of pure diffusive processes and market
microstructure frictions are negligible”. Nonetheless, there are situations that easily
invalidate the above statement and hence make the realized volatility measures unable

to restore returns normality. The failure to recover normality by realized volatility
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measures may be attributed to market microstructure noise, the presence of jumps or
also known as the discontinuity in the price path, the leverage effect, the correlation
between price and volatility innovations which might induce the asymmetry in the
standardized return distribution, and the sampling frequency at which the realized
volatility is calculated.

Given the many reasons different that might explain the non-normality of standardized
returns, empirical studies reach a variety of conclusions. For instance, Fleming and
Paye (2011) argue that the presence of jumps affect the normality of standardized
returns, whereas ABFN (2010) suggest that jumps plays little part in the
standardization process.

In this chapter, we discuss the distributional properties of daily returns under the
framework of continuous-time price models. We specifically follow ABFN (2010)
and Fleming and Paye (2011) and extend the number of realized volatility measures
used. In order to compare the power of different realized volatility measures to
recover normality, we apply a series of tests and transform the daily return series to
account for jumps and the effects of microstructure noise: We construct the volatility
series at the optimal sampling frequency according to the volatility signature plots
which help show the microstructure noise and the price jumps. We separate the
continuous variance path and jumps path in the realized variance, relying on the
realized bipower variation proposed by BN-S (2004) to detect the significant daily
jumps based on BN-S (2006) and Huang and Tauchen (2005). We use the
exponentially weighted moving average as a filtering process for daily returns and
realized volatility measures to smooth the market microstructure noise.

The main findings of this chapter are summarized as follows:
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1. Volatility measures estimated using non-parametric methods are superior to
those using parametric methods in capturing the dynamics of the return
process and hence produce more normal returns. Realized power variation
performs the best in the realized volatility measures.

2. Jumps should be included in the price process yet it has little effect on the
normélity of returns. Microstructure noise is by far the dominant factor.

3. The level of trading actively has an impact upon the distributional properties of
daily returns. We find that the sectors that are most difficult to standardize are
those sectors which contain high trading volume stocks.

4. Appling an exponentially weighted moving average filter can, in some
instances, enhance the power of (certain) realized volatility measures to restore
normality. This moving average filter can be applied to all the realized
volatility measures discussed in this chapter. It is also easy to model. The
exponentially weighted moving average filter is more successful with the

highly actively traded stocks/sectors.

In section 2, we review the literature. In section 3, we outline the theoretical
framework for Gaussianity of the standardized returns distributions. Section 4
provides a brief discussion of the data and some preliminary descriptive statistics. The
outcomes of distributional tests are summarized in Section 5. Section 6, finally,

presents our conclusions.

3.2 Literature Review

Some early attempts in using realized volatility measures to standardize returns can be

traced to ABDL (2000) and ABDE (2001). Using foreign exchange data and equity
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stock data respectively, both papers find that returns standardized by realized volatility
(calculated as the squared root of realized variance) are (near) Gaussian. In contrast,
return standardized by GARCH, ARCH and SV are far from normal distribution
although Gaussianity of the parametric volatility standardized returns are better than
the raw returns.

Areal and Taylor (2001) reach similar conclusion in using 8-year FTSE-100 futures
prices data. The paper assigns both equal weights and optimal weights to realized
volatility and finds that returns standardized by optimal weighted realized volatility
are closer to the normal distribution. However, the normality of standardized returns
remains rejected at the 5% level.

ABD (2007b) test the returns distribution using both simulated and 17-year 2-minute
S&P 500 futures data. The simulation procedure considers following assumptions of
high frequency stochastic volatility: no-leverage pure diffusion, no-leverage jump
diffusion, leverage pure diffusion and leverage jump diffusion. Moreover, the effect of
microstructure noise is also considered in the simulation. Then real empirical data is
tested. Contrasting with conclusions of ABDL (2000), that prices follow a pure
diffusion process, the results from both simulated and real data show that the price
follows the jump-diffusive representation. It is also revealed that microstructure noise
may play a critical part in determining the distributional properties of intraday
aggregated returns. Accounting for both the leverage effect and daily and intraday
jumps in the volatility is crucial in determining the return distributions.

Fleming and Paye (2007) investigate the impact of microstructure noise on the
distributions of returns standardized by realized volatility. Using 10-year data of 20
stocks traded in the Major Market Index, the authors conclude that microstructure

noise leads to an upward bias of realized volatility, hence making v, standardized
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returns artificially normal distributed. However, as long as the bias is corrected, rv,

standardized returns are substantially departure for normal distribution and appear to
be platykurtotic. Another important finding is that the choice of sampling frequency
has an important effect upon the standardization result. The volatility signature plots

show that the standard deviation of rv, decreases with sampling frequency and the

kurtosis exhibits an increasing trend when the sampling frequency is higher.

After the ABD (2007b) paper, which discusses the impact of jumps in the v, on the

distributional properties of standardized returns, there were similar publications.
ABFN (2010) use 30 DJIA stocks to revisit the impact of jumps, the leverage effect
and market microstructure noise. Individual stocks have higher volatility, contain
more jumps and are more greatly influenced by the microstructure noise than index
futures data. This has enabled researchers to obtain new evidence on the validity of
previous studies. To examine the role of jumps, ABFN (2010) use two different daily
jump detection methods: The first is the widely used single daily jumps detection
method first proposed by Huang and Tauchen (2005). This heavily relies on another
realized volatility measure: realized bipower variation (BN-S, 2004, 2006). The
second jump detection method allows for the presence of multiple jumps within one
trading day. ABFN (2000) also suggest S-minute as an optimal sampling frequency.
The findings support the ABD (2007) paper and point to the conclusion that prices
may be described by a jump-diffusion process, but after allowing for leverage and/or
feedback effects. The presence of jumps in the prices has little impact on the
distributional properties of standardized returns.

Khalifa er al (2011) follow the methodology proposed by ABFN (2010), but further
consider absolute returns, realized bipower variation and integrated volatility via

Fourier transformation (IVFT) for high frequency US gold, silver and copper futures
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data between 1999 and 2008. Their findings include: the normality of metal futures
returns is more difficult to achieve. None of the three series recover the normality of
returns at the 1% level, no matter which volatility measures are used. Realized
bipower variation performs the best among all the measures. The presence of
microstructure noise might be the explanation. However, when jumps and the leverage
effect are accounted for in the manner suggested by AFBN (2010), the normality of
demeaned financial-time returns of three metal markets cannot be rejected at the 1%
level.

Another work which also looks at the impact of jumps on distributional properties of
standardized returns is that of Fleming and Paye (2011). Using 20 stocks in MMI, the
authors construct realized variance and realized bipower variation and compare the

properties of returns standardized by these two measures. Their findings favour bv,

standardized returns, which appear to be closer to normal distribution. According to
BN-S (2004, 2006), realized bipower variation is jump robust. When jumps are
excluded, the Gaussianity of standardized returns is greatly improved. This paper uses
3-minute aggregated bipower variation as their volatility signature plots suggest. On
the other hand, the better performance of realized bipower variation in the
standardization procedure, shows realized volatility as a noisy estimator of the
quadratic variation.

Chevallier and Sevi (2011) use EXC CO2 emission 2008 futures data to discuss the
distributional properties of returns and standardized returns. As distinct from the
extensive studied financial data, the environmental economic data show an optimal
sampling frequency of 15-minute. Realized volatility is calculated and then used to

standardize daily returns. The paper compares returns standardized by rv, and by

GARCH (1, 1). The latter provides a closer fit to the normal distribution.
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Apart from realized variance and realized bipower variation, the distributional
properties of returns standardized by other realized volatility measures have also been
studied. Martens and van Dijk (2007) look at the unconditional distributions of daily
returns standardized by realized range using S&P 500 index futures data from 1999-
2004. The results show that the normality of returns standardized by the (squared root
of the rescaled) realized range cannot be rejected at the 5% level. However, returns
standardized by realized volatility, which are constructed from the same data set, lead

to a rejection of the null that rv, standardized returns are normally distributed.

Fuertes et al (2009) investigate standardized returns distributions by considering four
realized volatility measures: realized variance, realized range and realized power and
bipower variation and one parametric volatility, GARCH (1, 1). They use 14 actively
traded US equity data from 1997 to 2003. Realized range is the most successful
volatility measure and brings 13 out of 14 returns back to normal at the 5% level.
Realized power variation is the second best, followed by realized power variation and
realized variance.

From the above literature, it is evident that the power of realized volatility measures
to achieve the Gaussianity of daily returns is generally stronger than the traditional
GARCH/SV measures. However, conclusions differ as different datasets are
considered. Findings have not converged to any conclusion as to which realized
volatility measure(s) under what condition(s) are most successful in recovering returns
normality under the standardization procedure. In the following sections, we shall
discuss this issue by considering different volatility measures (parametric and

nonparametric) and different market conditions.
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3.3 Theoretical Framework

In line with the literature, we consider a jump-diffusion process which views asset
prices as containing a continuous sample path and a non-continuous part (jump part).
Recall [1.1], assume price process P;, which is semi-martingale, follows a geometric

Brownian Motion,

dp(t) = p()dt + o ()dW () + k(t)dq(t) 0<r<T

where u(f)denotes a continuous and locally bounded process, o(f)is the constant
volatility parameters, W (¢) denotes a standard Brownian Motion. Both x(¢) and o(¢)
are jointly independent of the Brownian motion. g(¢) is the counting process and k(¢)
the size of the corresponding jumps. When dg(f) =1a jump is present at time ¢ and

dq(t) =0 otherwise.

In reality, the empirical tests are conducted in discrete time. Implied by the jump
diffusion process from [1.1], the one-period continuously compounded discrete time

asset returns is calculated as

r=p—-p., t=1,2.. [3.1]

The ‘one-period’ equals one day. The distribution of daily return 7, depends on the

continuous-time model. Here we consider three general model conditions which show

how standardized returns should be standard normally distributed under each.

3.3.1 Pure Diffusion Case
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This is the simplest continuous-time model assume there is no jumps, no leverage and
feedback effects in the prices. ¢(r)=0, o(f)and W (u)re independent of each other

forall 1>0 and % >0 .Therefore,

/([ o @dny™ ~ NQD,  +1,2,3... [3.2]

where J./l—l o (u)du is the integrated variance (IV).

The distributional properties under [3.1] are conditioned on ex post sample path
realization of o(¢) over the corresponding discrete time return interval, (¢ —1,¢]. The
integrated variance is latent, yet various estimators of IV has been discussed and

studied extensively, starting with the realized variance by ABDL (2001).

3.3.2 Jumps

The presence of jumps in the asset data has been extensively reported. Allowing for
jumps when modelling asset prices returns has been explicitly argued. See for
example, Eraker ef al (2003) and ABD (2003, 2007a, b). [3.2] is no longer valid when
an additional component is added to the ex post price. If the size of jumps is assumed

known, and then the corresponding jump-adjusted returns can be written as

?

=P =D k(s), t=1,2,3.... [3.3]

=41
As jumps are assumed to be independent of the Brownian Motion W (¢), when they

are excluded from the return series, the adjusted returns link only with the diffusion

component and hence should again be normally distributed after standardization:

P/ '_l o wdu)" ~NQ©,1), =1,2,3... [3.4]
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It is important to separate the continuous sample path and jumps by adopting a jump
detection method. Here we use the non-parametric jump detection method by
Bollerslev ez al (2009) and allow for the presence of jumps of different magnitudes.
The detailed discussion of the jump-detection method is provided in Chapter I,

Section 1.5.2.

3.3.3 Market Microstructure Noise

Another force that drives the returns from normal distribution is the presence of
market microstructure noise. With high frequency data analysis, noise is more
prevalent in the tick-by-tick data. Microstructure noise has been attributed to such as
the bid-ask bounce, latency, and information asymmetry. Eliminating microstructure
noise is essential to remove bias in the estimation. A large number of studies have
addressed this problem, some of which focus on removing or filtering microstructure

noise. See for example, Hansen and Lunde (2005), Bandi and Russell (2006, 2008).

Specifically, Hansen and Lunde (2005) assume that the observed price ( p, ) is the sum
of true price ( p, ) and noise (@, ),
P =p-0 (3.5]

From which noise-adjusted returns is denoted as
r=p-p., t=1,2,3.. [3.6]

Assume that market microstructure noise is independent. As for the case of jumps,

noise-adjusted returns standardized by the IV should also result in Gaussianity.

rl( j"_laz(u)du)-‘“ ~N(O,1), £=1,2,3... [3.7]
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However, the independent noise assumption may not always hold in reality especially
when sampling data at the highest frequency. If we assume the condition of Section
3.1, such that prices follow the Brownian semi-martingale pure diffusion process
without leverage effects, the sampling frequency m converges to infinity, Hansen and

Lunde (2006) claim that
RV, -1V L5 [3.8]
and that the standardized returns follow a distribution of

17,
1V +w

t t

n ! RV, ~ N(Q, ) [3.9]

This distribution has mixing weights jointly determined by the integrated variance and

the noise term and so should be leptokurtotic.

3.4 Data and Descriptive Statistics

The dataset used here is the same as the previous two chapters. We consider four
realized volatility measures: realized variance, realized range and realized power and
bipower variations. Our main concentration, in line with the previous two chapters, is
the S-minute sampling frequency. It has been argued that sampling frequency
influences the outcome of standardization (Fleming and Paye, 2007). However, the
extent to which the sampling frequency may distort the distribution of standardized
returns has not yet been examined using a large data set. To fill this gap, we further
construct the realized volatility measures and returns using a sampling frequency of 1

second, which is the highest possible frequency for this dataset. The summary
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statistics of 1 second aggregated returns and realized volatility measures are given in
Table 3.1.
[Table 3.1 here]

We first look at the properties of 1-second returns. The difference, not surprisingly,
between 1-second and 5-minute aggregated returns is not that deviated from each
other. The mean values of returns are similar between the two sampling frequencies.
The standard deviation of 1-second returns is lower, as is the kurtosis. 5-minute
returns have lower skewness in general. The Jarque-Bera statistics of 1-second returns
is also lower than that of 5-minute returns.

In comparing Table 3.2 with Table 1.4, three of four realized volatility measures
constructed at 1-second sampling frequency show much higher values for the mean
and standard deviation. This is because market microstructure noise is overwhelmed at

such a high sampling frequency. The exception of r7, arises from the fact that 7, is

constructed with a bias-correction factor in the equation. The price change between
the highest and lowest prices is at a minimum for the 1-second frequency. 77, is also
downward biased when the trading is infrequent. Our results are consistent with those
reported by Fleming and Paya (2011) who also find an upward bias for realized
volatility measures (rv, in their case) when sampling at 1 second using trade data. On
average, the means of realized volatility measures are at least twice as large at 1-
second sampling frequency as at 5-minute sampling frequency. This difference is even
larger in actively traded sectors. The sector average rv, in IT sector is 5.722, it
increases to 37.810 when the sampling frequency increases to 1 second. Similar
results are reported for FIN and HC sectors. The dramatic difference between realized
volatility measures sampled at different frequencies shows the impact of market

microstructure noise to be most severe at the highest sampling frequency.
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[Table 3.2 here]

We construct the continuous variance and jumps series from 7v, and bv,, according to
[1.14] and [1.15]. Table 3.3 reports the summary statistics of cv,, jumps and 7v, .

When sampling at 1-second frequency, the size of jumps increases accordingly. Jumps
also become strictly positive. However, large jumps are still not necessarily associated
with high volatility days ~ a finding we have reported in Chapter 1 under 5-minute
sampling frequency.

In summary, at 1-second sampling frequency, returns, realized volatility measures, as
well as jumps, are different from the S-minute sampled counterparts. 5-minute is the
most commonly used as various studies have shown that 5-minute sampling frequency
most efficiently balances the intraday information content and the microstructure
noise. In Chapter 1, we drew the volatility signature plots of two stocks and showed

that 5-minute is an optimal sampling frequency for rv,, bv, and rr,. As stated earlier,

it is still interesting to compare the standardization results of 1-second data with those
of 5-minute data. This comparison allows us to investigate the extent of the influence
of jumps and microstructure noise arising from sampling frequencies. In the following
empirical results section, we start reporting the standardization results from returns

standardized by realized volatility measures from various sampling frequencies.

[Table 3.3 here]

[Figure 3.1 and 3.2 here]
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3.5 Empirical Results

In this section, we report the results of the distributional properties of standardized
returns. We first investigate the aggregational Gaussianity of intraday returns using 10
stocks. Then we compare the returns standardized by realized volatility measures at 1-
second and 5-minute sampling frequencies, respectively. 5-minute sampled realized
volatility measures work more successfully than 1-second sampled ones for all the
sectors. Next, we compare the standardization power between realized volatility
measures and two parametric volatility measures, namely, GARCH and stochastic
volatility. This comparison is based on 5-minute sampled data only. We find that the
non-parametrically estimated realized volatility measures have stronger power to
achieve the returns normality. Fourth, we investigate the impact of jumps. The
presence of jumps in the realized volatility has little impact of recovery the return
normality, at least at 5-minute sampling frequency. At 1-second sampling frequency,
excluding jumps from realized volatility shows an improvement of recovering
normality. Fifth, we use a moving average filter to microstructure noise in the realized
volatility measures. The MA filtration removes the microstructure noise contained in
the realized volatility measures and enhances the performance of realized volatility
measures when used to standardize the returns. In the last part of this section, we
select the 30 most actively traded stocks (T30 stocks) in the whole sample and
summarize the standardization results of these stocks. The results from the T30 stocks

suggest that the level of stock activity matters in recovering the normality.
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3.5.1 Aggregational Gaussianity of Returns

Aggregational Gaussianity is a well-established stylized fact of asset returns. It
implies that the distribution of returns converges more closely to a standard normal as
the time scale that used to calculate the returns increases. This statistical property
describes returns distribution behaviour and has important applications in modelling
tail risk behaviour, see for example Eberlein and Keller (1995), Barndorff-Nielsen
(2001), Conti (2001), and Roger et al (2011).

In this section, we aim to establish whether stocks from different market sectors
converge to Gaussianity at similar rates. We are also interested to see whether the
capability of the realized measures to restore normality is associated with the degree
returns conforms to aggregational Gaussianity.

We select 10 representative stocks (one from each sector), where normality could be
restored for 5/10 at both the 1-second and S-minute frequency and not for the
remaining. For each of the stocks we observe returns at 5, 30, 60 and 300 seconds. For
the same stocks we calculate realized volatility at the I-second and 5-minute
frequencies to standardize the daily returns.

Table 3.4 shows the results of aggregational Gaussianity (left panel) and the
standardized returns (right panel). The left panel displays the percentage change in the
JB test statistic relative to the previous sampling frequency whereas the right panel
reports the standardized test statistics.

The results from the left panel shows return distributions gradually converge to
normality as the sampling frequency decreases. We observe a significant decrease of
the JB statistics as we move from 1-second to 5-minute, with two exceptions of PG
(CS sector) and AA (MAR sector). When the time scale increases, the assumptions

underlying the CLM starts to hold as the time scale is more uniformly.
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The standardized returns (right panel) all show lower JB test statistics at 5-minute
frequency than their counterparts at 1-second frequency. This conclusion holds for
both stock groups irrespective of whether normality is achieved. The largest difference
in the JB test statistics between the 1-second and 5-minute frequencies statistics are
shown in “Sprint Nextel” happens to be for the most jumps-contained sector.

Despite normality converging rate is relatively constant, the average converging rate
for the stocks where returns normality could be recovered higher. This finding holds
for all the intraday sampling frequencies that have been considered. This result is
interesting as it may identify a general criterion as whether returns normality could be
restored. It also shows that assumptions of the central limit theorem tend to be

affected to a certain extent by the nature of the stock under consideration.

[Table 3.4 here]

3.5.2 Standardized Returns: Different Sampling Frequencies

Table 3.5 shows the results of returns standardized by realized volatility measures
which are aggregated both at the 5-minute and 1-second sampling frequencies,
respectively. In the table, we report the percentage of the stocks that return normality
is rejected at the 5% level according to Jarque-Bera normality test. The results are

presented both at sector level and overall level. 1

[Table 3.5 here]

1 Eor brevity, we only report the percentage of rejections based on the IB test statistics at 5% level. The detailed
statistics of JB test together with skewness and kurtosis of each single stock is provided in the appendix. We also
test the normality using the Kolmogrov-Smirnov (KS) density test. The KS test provides the identical conclusion as

IB test.



The result of standardized returns aggregated at Smin has been reported and discussed

in Chapter 1. To summarize briefly: pv, outperforms the three other realized volatility
measures in most of the sectors and overall. by, works second best. rv, is the worst

performed realized volatility measure. The two most successfully recovered sectors
are ENG and UTL whereas the two least successful sectors are MAR and IT. Among
these four sectors, UTL is the sector by which a large number of daily and intraday
jumps are detected and IT is detected with least daily and intraday jumps.

The result of returns standardized by 1-second aggregated realized volatility measures
is in the lower panel. Comparing the 1-second result with the 5-minute result, the
percentage of rejections has increased at overall level for all the realized volatility

measures. The increase is more dramatic for pv,, bv, and rr,, of which the rejections

increase from 34%, 42% and 48% to 77%, 86% and 94%, respectively. Compared

with other realized volatility measures, the percentage of rejections based on rv,

standardized returns increases to a lesser extent, from 60% to 66%.

One explanation for the smaller increase of normality rejections on rv, standardized

returns is provided by Fleming and Paye (2011). They suggest that upward bias in
realized variance due to the microstructure noise, which is more prominent in 1-

second aggregated rv,, can reduce the standard deviation and increase the kurtosis of

standardized returns and hence lead to a false appearance of normality. This at least
partially explains why the returns normality of some stocks is rejected when sampled
at S-minute, is not rejected at when sampled at 1-second frequency.

Figures 3.3a, b and 3.4a, b show respectively the density plots and QQ plots of

sector-average raw returns sampled at 5-minute and 1-second frequencies. The
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distributions are not normal and have long tails. The density plots and QQ plots of
returns standardized by realized volatility measures sampled at 1-second and 5-minute
frequencies are given respectively in Figure 3.5 to 3.12. Here we also use sector
average returns and realized volatility measures. This is for both simplicity and the
representation of the sectors.

Although providing less formal evidence than the statistics, the density and QQ plots
are nevertheless informative. It is evident that the realized volatility measures
standardized returns are much closer to the standard normal distribution than raw
returns both at 1-second and S-minute levels, especially for the tails of the QQ plots.
The tails have been greatly shrunk than raw returns and show only small deviations
from the 45-degree lines. In comparing the density and QQ plots of 1-second and 5-
minute standardized returns, the plots show that returns standardized by S5-minute
sampled returns are closer to the Gaussian distribution than their 1-second

counterparts. This finding is most evident for r7, standardized returns. At the 5-minute
sampling frequency, the density and QQ plots of 77, standardized returns are better
fitted than the »v, standardized. For the 1-second sampling frequency, both plot types

clearly deviate from the standard normal.

[Figure 3.3a, b to 3.12a, b here]

Here we use the sector-average realized volatility measures to standardize sector-
average daily returns. The figures are expected to be different from the results of
individual stocks. This is because taking average value might remove the idiosyncratic
risks presented in the individual stocks. However, the sector-average standardized

returns also help us observe some trends which are less obvious at individual stock
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level. The plots confirm that some sectors are more difficult to standardize than
others.

By compariﬁg the power to recover returns normality of different realized measures at
different sampling frequencies, we find that the effect of microstructure noise, which
arises from change to the sampling frequency, plays a more important role when the
sampling frequency is ultra-high. In the next section, we further address the effect of
the presence of jumps, by comparing the recovery of normality for realized volatility

measures which do, and do not contain jumps.

3.5.3 Standardized Returns: with and without Jumps

Table 3.6 reports the percentage of normality rejections for returns standardized by
realized variance, realized bipower variation, realized power variation and continuous

variance. Except for rv, , the remaining three measures are all jump robust.

Continuous variance, whose construction is based on the theoretical framework of
Huang and Tauchen (2005), is by definition, the continuous path of the quadratic

variation and converge to the integrated variance.
[Table 3.6 here]

In general, jump robust realized volatility measures recover returns normality more

successfully than rv,. Extracting jumps from »v, does not always aid the recovery of
normality. The percentage of normality rejection of returns standardized by cv, is
higher than for returns standardized by pv, and bv,, although cv, is expected to be a

more accurate estimator of the integrated variance. The percentage of normality
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rejection for 7;/\/6‘—V, is 46%, and for 7 /\/bv, and r/\/pv, is 42% and 34%,
respectively.

ABFN (2010) report similar findings from their investigation of 30 DJIA stocks. They
argue that a large jump tends to increase the (absolute) value of returns and realized
volatility of standardized returns. Therefore, the impact of jumps is muted. As
discussed in the previous section, the sector that contains the least number of
significant jumps (IT) is also the sector that records the highest rejection percentage.
This failure not only applies to returns standardized by rv,, but also to returns
standardized by pv,, bv, and cv,.

To further investigate the effects of jumps to recovering normality, we also compute

the cv, from 1-second aggregated data and find that the rejection percentage of cv,

standardized returns is even higher (77%) than that for rv, standardized returns

(66%). However, the rejection of #, / \/E,— is 86%. At the 1-second aggregation level,
cv, is a more efficient realized volatility measures than v, .

Here we plot the density plots and QQ plots of sector-average returns standardized by
cv,. First, we find that the plots of cv, standardized returns mimic bv, standardized
returns. At the 5-minute level, the plots of 7 /fcv, and 7,/[bv, are much closer than

their 1-second level counterparts. This finding is also confirmed by the skewness and
kurtosis as well as the JB statistics both at individual stock level and sector average

level. For some stocks, cv, is the least successful volatility measure in restoring the
return normality. The plots from 1-second data tell a different story. Plots of 7, /\jcv,

show closer fitness of Gaussianity than those of 7,/ \[bv, .



199

[Figure 3.13a, 13b and Figure 3.14a, 14b here]

To summarize, the standardization results for both sampling frequencies suggest that
the effect of jumps in recovering normality is more of a problem at the 1 second
aggregation level. At the 5 minute level, the presence of jumps is less of a concern.
Instead of jumps, microstructure noise within realized volatility measures from the

ultra-high sampling frequency is the predominant factor in biasing returns normality.

3.5.4 Standardized Returns: Moving Average Filtration

The results from previous sections suggest that microstructure noise is the important
factor in distorting the normality of standardized returns. Extensive attempts have
been made to eliminate the microstructure noises in realized volatility measures. Early
attempts can be traced to Zhou (1996) who uses a simple moving average filter. Later
attempts include those of Maheu and McCuddy (2002), Ait-Sahalia et al (2005),
Russell and Bandi (2006, 2008), Oomen (2005), Owens et al (2006), Zhang et al
(2005), Zhang (2006), Hansen, Large and Lunde (2006) and Barndorff-Nielsen et al
(2008). These papers either construct realized volatility measure that is robust to
microstructure noise (realized kernel for instance), or separate the noise from rv,, or
smooth the noise contained in the rv,. The above-mentioned attempts primarily focus
on realized variance only and leave the three other realized volatility measures
unexamined, To smooth the microstate noise, we apply a moving average filter to
daily realized volatility measures. The use of moving average filter for realized
variance has been considered in ABDE (2001), Maheu and McCuddy (2002) and

Hansen, Large and Lunde (2006), to smooth intraday returns before constructing
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realized variance. Hansen, Large and Lunde (2006) show that MA-based realized
volatility estimator is consistent and asymptotically Gaussian distributed about the
integrated variance under restrictive assumptions. Empirically, improved performance
of realized variance has been confirmed using both individual stocks and foreign
exchange data. Inspiring from yet contrasting with the MA method used in other
papers, we propose the Exponentially Weighted Moving Average (EWMA) filter,
which can be applied not only to the realized variance, but also to the reaming three
realized volatility measures. Market microstructure is more predominant at the
intraday level than at the daily level, as long as MA filter is effective at the intraday
level, it is expected to be effective at daily level as the microstructure noise tends to
mitigate at the daily level. The EWMA filter is shown to be easy to apply and is
especially widely used in volatility forecasting. It generally yields the lowest MSE
among other forecasting models. (For a detailed survey of EWMA, see Poon and
Granger, 2003).

An n-period EWMA of a time series y, is defined as

n-1 /1!'—1
=) w- -y, O=0S0 [3.10]
S e

As n converges to infinity, A" =0, @, — 0and the EWMA converges to

wA)=1-H3> 2y, (3.11]

i=0
Therefore, the EWMA may be defined independently of the window length n. The
EWMA in [3.11] may be computed using the recursion

1,2 = (1= 2)y, + A, (A) [3.12]
where y, is the realized volatility measure and 4 is known as the decay parameter or

smoothing parameter and takes the value between 0 and 1.
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It is clear that the closer the decay parameter to 1, the more weight is put on the
previous period’s estimate relative to the current period’s value (day in this case). We
consider three values: 0.25, 0.5 and 0.75. The result for 1 =0.5is reported as this
weighting provides the best outcome in the filtration'>.

We plot the EWMA filtered realized volatility measure in Figure 3.15. The figure
shows that the filtered volatility measures are less noisy than the original series.

Table 3.7 reports the percentage of normality rejections of returns standardized by
MA filtered realized volatility measures. In some cases, using filtered realized

volatility series brings the standardized returns closer to normal. In general, the

percentage of rejection decreases to 38% for 7, //rv,, and to 40% for r,, /\[bv,,,

(the percentage of rejection for 7, //rv, is 60% and for r, //bv, is 42% respectively).
EWMA works exceptionally well on rv,. Before applying MA filtration on rv,, the

highest rejection of 7/ frv, is 80% from FIN, IT and MAR sectors. When

’

standardized by MA filtered rv,, the percentage of rejection decreases to 20%, 60%

and 30% respectively. The rejection of CD and TEL is 70% under raw series and
decreases to 40% and 20% respectively after filtration. These results indicate a
considerable improvement. However, the percentage of rejection for returns

standardized by MA filtered pv, and rr, further increase. The MA filter is less able to

enhance the returns normality of the stocks that normality is recovered by raw realized

volatility measures.

[Table 3.7 here]

[Figure 3.15 here]

12 Another noise filtration method is proposed by Owens ef a/ (2006) who filter the noise within RV using the
Kalman filter and Kalman smoother. We investigate these filters as well and find that they are less effective than

EWMA in terms of recovery returns normality.
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3.5.5 Standardized Returns: Parametric and Nonparametric
Volatility Measures

In this section, we standardize returns by the volatility of parametric and non-
parametric measures. The extent of normality that can be achieved in the standardized
returns acts as an indicator of the performance of volatility measures (parametric and
non-parametric) in accounting for the factors causing returns non-normality.

The normality of returns standardized by two parametric volatility measures, GARCH

(1, 1) (garch,) and stochastic volatility (sv,), is rejected at the 5% level for all stocks.

Normality is greatly improved as compared with raw returns. There is a contraction in

the tails of garch,/sv, standardized returns relative to the raw returns, yet they remain
significantly leptokurtic. The distributions of sv,/ garch, standardized returns all show
excess kurtosis. When used as the standardized factor, garch, and sv, display a

similar performance and tend to depart from normality by similar magnitudes. The

density and QQ plots of garch,/sv, standardized returns from Figure 3.16 and 3.17

are less satisfactorily fitted when compared with non-parametric volatility
standardized returns.
Same conclusion is reached in ABD (2000b) and ABFN (2010). Both papers consider

the case of garch only. The difference between parametric and non-parametric

volatility measures lies mainly in the estimation approach, as ABD (2000) state. The
parametric measures are estimated conditional on the discrete path of returns up to day
t, whereas non-parametric volatility measures are estimated conditional on the
continuous path of stochastic volatility up to and including day #. The degree of

information contained in the two volatility measures is shown to be quite distinct.
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These results indicate that the non-parametric volatility measures are more capable in
capturing the dynamics of the market and hence in recovering returns normality. If we
were to measure volatility accuracy based on recovering normality, we might

conclude that garch, and sv, were not that accurate in comparison with the non-

parametric measures.

[Figure 3.16a, b and 3.17a, b here]

3.5.6 Standardized Returns: 30 Most Actively Traded Stocks

Another focus of this chapter is whether the recovering power of realized volatility
measures is associated with the level of stock activity. We investigate the 30 most
actively traded stocks within the sample. We are particularly interested in this
subsample because most of these stocks are the most extensively studied in the
literature. They may also draw more implication for the practitioners.

The standardization results according to the percentage of rejection are reported in
Table 3.8. To compare the different performance of the top 30 stocks and the overall
sample, we also report the results of 100 stocks in the lower panel.

The 30 most actively traded stocks contain fewer significant jumps on average than
the overall sample. However, the percentage of normality rejections is obviously
higher. This result further suggests that the number of jumps contained in the realized
volatility measures and returns has little impact in recovering returns normality
through standardization processes. On the other hand, liquid stocks have less
microstructure noise than stocks with larger trading volumes. From their examination
of the relation between microstructure noise and various liquidity measures using all

NYSE traded common stocks over 10-years, Ait-Sahalia and Yu (2009) conclude that
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“Trading volume, which aggregates the information in trade size and number of
trades, is positively correlated with noise”. Hence, T30 stocks are expected to have
more noise on average.

Here we also consider the effect of MA filtration on the T30 stocks. The percentage of

rejections is significantly changed: 80% to 13% from 7,/ \/r, tor,, /Jrv,, ,» 67% to

17% from 7,/ \(bv, tor,,, /\[bv,,, , and 47% to 40% from 7./ [rr; to r,, /"y, . The

only exception is for pv,, where rejections increase from 43% to 57%.
In our sample, more than half of the T30 stocks come from FIN, HC and IT sectors
(18/30). We reported in the previous section the considerable reduction of normality

rejections of ma-rv, standardized returns in these sectors. The overall results from

T30 stocks further strengthen the augment: except for pv,, applying MA on the other
three realized volatility measures successfully filters the microstructure noise
contained in the realized volatility measures and hence enhance the power of the
realized volatility measures of standardizing returns. The higher the level of noise that
is contained in the stock prices, the more powerful is the MA filter.

Moreover, one explanation for the failure of ma- pv, is that pv, itself is already a
consistent and efficient estimator of the integrated variance. Smoothing realized
power variation erases valuable dynamics/information that weakens its power to
capture the dynamics of the returns process and hence renders it incapable of

capturing the factors causing non-normality.

[Table 3.8 here]
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3.6 Conclusion

Different realized measures of volatility, namely realized variance, realized range,
realized power and bipower variations, sampled at the two frequencies (1-second and
S-minute, respectively) have been compared based on their power to recover the
normality of 100 stocks from 10 sectors. The most noteworthy findings are
summarized as follows:

Realized power variation is the most efficient unfiltered"® realized volatility measure
in terms of recovering returns normality.

Adjusting for jumps has little (if any) impact upon the restoration of normality to
standardized returns at the 5-minute sampling frequency. However, removing jumps
from realized variance enhances the power of restoring normality to standardized
returns at the 1-second sampling frequency. Jumps are a more likely reason for
distortion to the distributions of standardized returns at the higher sampling frequency.
The non-parametric measures are superior in recovering returns normality when
compared to the parametric GARCH and stochastic volatility. Both GARCH and
stochastic volatility fail to recover normality in all of the cases considered.

The presence of market microstructure noise in realized volatility measures is the
main factor distorting the Gaussianity of standardized returns.

The stocks that are highly traded are found to contain fewer jumps yet are more
difficult to achieve returns normality under the raw realized volatility measures.
Exponentially Weighted Moving Average filtered realized volatility measures bring
normality in cases where the unfiltered series fail. This moving average filter works
better on more actively traded stocks which are constructed at the 5-minute sampling

frequency. This does not apply to the 1-second sampled realized volatility measures.

13 «Unfiltered” refers to the volatility series that are not filtered by the EWMA.
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Table 3.1: Summary statistics of sector average daily returns sampled at 1-second frequency (in %)
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Daily Return (R))

CD cs ENG FIN HC IND IT MAR TEL UTL
Mean 0.034 0.050 -0.038 -0.022 -0.002 -0.002 0.019 -0.072 -0.002 0.011
Maximum 12.969 7.935 13.000 11.710 9.480 6.507 14.860 9.972 6.507 11.060
Minimum -8.744 -6.762 -13.495 -16.987 -8.679 -7.461 -7.506 -13.917 -7.461 -8.170
S.D. 1.512 0.939 1.697 2.000 1.187 1.293 1.685 1.786 1.293 1.255
Skewness 0.437 0272 -0.398 -0.283 0.056 -0.180 0.283 -0.596 -0.180 0.044
Kurtosis 9.708 10.621 11.325 14.103 9.143 6.776 7.653 8.958 6.776 10.959
JB 5276.202 6730.441 8063.353 14249.520 4352.462 1658.602 2533.426 4256.286 1658.602 7303.437
ADF -30.796 -41.830 -12.933 -26.495 -14.927 -12.324 -20.800 -10.824 -12.554 -39.580
p value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: Summary statistics of daily returns for the 100 stocks over the period 01/01/2000 to 31/12/2010 are reported at sector average level. S.D. denotes standard deviation. ADF
denotes the augmented Dickey-Fuller statistics for the null of a unit root with 5% and 1% critical values of 2.862 and -3.433 respectively.
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Table 3.2: Summary statistics of realized volatility measures (1-second frequency)

CD CS ENG FIN HC IND IT MAR TEL UTL

Realized Variance (¥V,)

Mean 19.132 6.325 15.838 23.250 13.097 9.411 37.810 13.764 9.411 8.849
Maximum 1735920  183.691 926.965  834.948 248.949 318203 921.619 469.200 318203 3056.518
Minimum 1.963 0.624 1.258 0.716 1.582 0.977 3.087 1.981 0.977 0.528
S.D. 40.932 9.953 38.510 53.897 16.344  12.864 77.337 20954  12.864 70.348
Skewness 27.568 6.881 13.693 8.264 3.913 8915 5.397 10.420 8.915 36.346
Kurtosis 1123.083  85.521 247.210 95.714 30.373  155.993  41.199 171.735 155.993 1452.115

Realized Range (77})

Mean 3.121 0.874 2,126 9.626 1.952 1.595 10.349 2.359 1.595 1.340
Maximum  732.703 252317  357.327 885489 171.930 192.823 631.591 414.894 192.823 1300.007
Minimum 0.120 0.056 0.024 0.022 0.089 0.026 0.455 0.024 0.026 0.008
S.D. 15.118 5.847 10.148 36.445 4.605 5.475 25.135 11.108 5.475 26.051
Skewness 41.279 33.711 20.196 11.869 20962  19.989 9.137 24.423 19.989 45.864
Kurtosis 1966.744  1328.622  594.086  211.605  694.267 605.469 160.524 800.140 605.469 2247.235

Realized Power Variation ( PV, )

Mean 56.955 23.224 43.250 69.248 44221 35201 111.501  43.806  35.201 22582
Maximum 612.664  330.327 1002.797 1335332 530.175 646.562 1319.961 920.776 646.562 576.207
Minimum 9.645 4227 8.068 4.148 7.776 5.219 18.348 8.184 5.219 3.238
S.D. 49.717 22.281 51.527 107.554  34.317 32319 143307 48501 32319 31.164
Skewness 2.833 4.087 7.950 5.101 3.188 5.160 3.793 6.152 5.160 8.976
Kurtosis 16.416 32.499 100.894 42.011 23.409  61.001 20.669 67.271 61.001 121.064

Realized Bipower Variation (bV, )

Mean 15.307 5.103 12.825 19.237 10.721 7.734 32.261 10.689 7.734 7.007
Maximum  521.104  151.837  875.707 697.669 219.567 282.746 832.096 411.028 282.746 2427.890
Minimum 1.460 0.508 1.036 0.571 1.277 0.740 2.436 1.533 0.740 0.402
S.D. 22.725 8.327 34.300 44,767 13.607  11.028 66.106 17.687  11.028 57.129
Skewness 6.973 7.119 14.421 8.369 4.142 9.543 5.366 11.026 9.543 35.463

Kurtosis 107.949 89.329 271.916 99.409 34720 176539  41.567  187.378 176.539 1378.429

Note: Summary statistics of daily volatility measures for the 100 stocks over the period 01/01/2000 to
31/12/2010 are reported at sector average level. S.D. denotes standard deviation.
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Table 3.3: Summary statistics of realized variance and its components (1-second frequency)

Mean
Maximum
S.D.
Skewness

Kurtosis

Mean
Maximum
S.D.
Skewness

Kurtosis

Mean
Maximum
S.D.
Skewness

Kurtosis

CD CS ENG FIN HC IND IT MAR TEL UTL
Realized Variance (7'V,)

19.132 6.325 15.838  23.250 13.097 9.411 37.810 13.764 9.411 8.849
1735.920  183.691 926.965 834.948 248949 318.203 921.619 469.200 318.203 3056.518
40.932 9.953 38.510 53.897 16.344 12.864  77.337  20.954 12.864 70.348
27.568 6.881 13.693 8.264 3.913 8.915 5.397 10.420 8.915 36.346
1123.083  85.521 247.210 95.714 30373 155993 41.199 171.735 155993 1452.115
Continuous Variance (CV,)

18.902 6.092 15.593  23.023 12.889 9.197 37.612 13.491 24.138 8.581
1734.716  183.501 926908 834.755 248.824 318.085 921.517 469.068 1091.594 3056.288
40.927 9.963 38.522 53913 16.349 12.876 77355  20.964 38.577 70.352
27.534 6.874 13.690 8.259 3.913 8.901 5.395 10.418 10.684 36.343
1121.161 85355  247.098 95.631 30.370  155.611 41.170 171.624 230.886  1451.924
Jumps (J[ )

0.230 0.233 0.245 0.227 0.208 0.215 0.198 0.273 0.243 0.268
1.860 1.459 1.035 1.049 0.704 1.073 0.890 1.618 1.251 1.556
0.091 0.071 0.076 0.079 0.053 0.053 0.066 0.098 0.077 0.081
7.309 5.699 2.279 1.851 1.879 2.710 0.543 2.558 2.344 3.223
107.876 67344 17.344  15.752 14.293  37.404 8.747 24.581 29.030 35.616

Note: This table reports the mean, standard deviation, skewness, kurtosis and maximum at sector average
realized variance and its continuous and non-contiguous components from 03/01/2000 to 31/12/2010.



Table 3.4: Aggregational Gaussianity of returns

Intraday Returns

rl v,

1sec Ssec 30sec 60sec 300sec _ Isec 300sec

% change in JB Procter & Gamble  0.00% -70.93% -99.20%  28.73%  -100.00% _ JB 8.477 0.786
(PG) | pvalue  (0.014)  (0.675)

% change in JB Exxon Mobil 0.00% -98.66%  -99.16%  -62.57%  -93.43% _ JB , 5.215 4.968
(XOM) | pvalue  (0.074)  (0.083)

% change in JB Bank of NY Mellon 0.00% -86.17% -9891% -53.09%  -94.47% _ JB 6.120 4.691
(BK) | pvalue  (0.047)  (0.096)

% change in JB Dell Inc. 0.00% -77.98%  -96.36% -84.09%  -89.29% _ JB 6.944 3.409
(DELL) | pvalue  (0.031)  (0.182)

% change in JB Entergy Corp. 0.00% -9997% -99.86% -76.84%  -100.00% _ JB 7.679 0.963

(ETR) _

average % change in JB -86.74%  -98.70% -49.57%  -95.44% _ p value (0.022) (0.618)
% change in JB The Home Depot 0.00% -81.14% -97.53% -75.45%  -98.03% _ JB 27.730 7.850
(HD) | pvalue  (0.000)  (0.020)

% change in JB Amgen Inc. 0.00% -99.11% -98.86%  -56.66% -74.76% _ JB 38.027 11.105
(AMGN) | pvalue  (0.000)  (0.004)

% o,__m:mo in JB General Electric 0.00% -81.50% -96.99% -54.18%  -82.83% w JB 91.549 19.832
(GE) | pvalue  (0.000)  (0.000)

% change in JB Alcoa 0.00% -45.41%  -98.94% 16.78% -87.67% _ JB 3325977  15.766
(AA) | pvalue  (0.000)  (0.000)

% change in JB Sprint Nextel Corp  0.00% -74.38%  -88.61% -61.95%  -97.68% _ JB 4820.770  15.357

() |

average % change in JB -76.31% -96.19% -46.29%  -88.19% _ p value (0.000)  (0.000)

Note: This table reports the % of change in the Jarque-Bera statistics of the intraday returns calculated at different sampling frequencies and
the Jarque-Bera statistics and p values of rv, standardized returns sampled at 1-second and 5-minute frequencies. The sampling frequencies for

aggregational Gaussianity are 1, 5, 30, 60 and 300 second, respectively. The 10 stocks are selected from each market sector.
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Table 3.5: Percentage of rejection of normality on standardized returns sampled at different frequencies

210

CD CS ENG FIN HC IND IT MAR TEL UTL Overall
% of Rejection of Normality ( 5-minute)

nl ,\N_ 70% 20% 50% 80% 60% 60% 80% 80% 70% 30% 60%

r /by, 60% 30% 10% 50% 30% 40% 90% 60% 30% 20% 42%

r/\pv, 30% 40% 20% 50% 10% 30% 20% 40% 60% 40% 34%

il 80% 40% 10% 30% 40% 50% 50% 80% 50% 50% 48%
% of Rejection of Normality (1-second)

r/ ,\H 80% 100% 50% 80% 60% 50% 60% 60% 80% 40% 66%

/b, 90% 100% 80% 80% 90% 60% 80% 80% 100% 100% 86%

r /P, 90% 100% 40% 80% 70% 60% 50% 80% 100% 100% 77%

/Iy, 100% 90% 100% 100% 90% 90% 70% 100% 100% 100% 94%

Note: The table reports the percentage of stocks for which the null hypothesis of normality of return is rejected based on the Jarque — Bera test when daily returns are standardized
by volatility measures. 7, refers the daily returns, while rv,, rr;, pv,, bv, denote the realized variance, realized range, realized power variation and realized bipower variation

respectively. The higher panel reports the rejection based on 5 minute sampling frequency while the lower panel reports the rejection based on 1 second sampling frequency. The

percentage is based on 5% significant level.



Table 3.6: Percentage of rejection of normality on standardized returns sampled at different frequencies (including and excluding jumps)

211

CD

CS

ENG

FIN HC IND IT MAR TEL UTL Overall
% of Rejection of Normality ( S-minute)

iy, 70% 20% 50% 80% 60% 60% 80% 80% 70% 30% 60%

r /by, 60% 30% 10% 50% 30% 40% 90% 60% 30% 20% 42%

r e, 60% 30% 20% 50% 60% 40% 90% 50% 50% 10% 46%
% of Rejection of Normality (1-second)

n I\, 80% 100% 50% 80% 60% 50% 60% 60% 80% 40% 66%

r by, 90% 100% 80% 80% 90% 60% 80% 80% 100% 100% 86%

r /e, 80% 100% 60% 80% 50% 70% 70% 60% 100% 100% 77%

Note: The table reports the percentage of stocks for which the null hypothesis of normality of return is rejected based on the Jarque ~ Bera test when daily returns are standardized
by volatility measures. 7, refers the daily returns, while rv,, bv,, cv, denote the realized variance, realized bipower variation and realized continuous variance, respectively. The

higher panel reports the rejection based on 5 minute sampling frequency while the lower panel reports the rejection based on 1 second sampling frequency. The percentage is based
on 5% significant level.



Table 3.7: Percentage of rejection of normality on standardized returns (MA filtered realized volatility measures)

% of Rejection of Normality ( 5-minute)

CD CS ENG FIN HC IND IT MAR TEL UTL Overall

o | Vi) 40% 40% 40% 20% 10% 30% 60% 30% 20% 90% 38%
Tty | [ OViaaay 60%  S0%  40%  20%  20%  30%  20%  40% 30%  90% 40%
Tatty /N[ PVicsn 80%  90%  70%  70%  70%  70%  50%  60% 90%  100% 75%
Tasssy | T 70%  50%  80% 5%  40%  80%  50%  70% 80%  100% 67%

Note: The table reports the percentage of stocks for which the null hypothesis of normality of return is rejected based on the Jarque — Bera test when daily
returns are standardized by EWMA volatility measures. r, refers the daily returns, while rv,, rr, pv,, bv, denote the realized variance, realized range,
realized power variation and realized bipower variation respectively. The percentage is based on 5% significant level.

Table 3.8: Percentage of rejection of normality on standardized returns (T30 stocks)

% of Rejection of Normality (T30, S-minute)

vy, v [ \Jbv, r./pv, vl
80% 67% 43% 53%
5:.3\ LTI oy | APV Voo ! PY 3::\:\ Ln
13% 17% 57% 40%

Note: The table reports the percentage of stocks for which the null hypothesis of normality of return is rejected
based on the Jarque — Bera test when daily returns are standardized by EWMA filtered and raw volatility
measures for the 30 most actively traded stocks. The percentage is based on 5% significant level.
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Note: This figure presents the overall sample average daily returns which arc sampled at 1second frequency. The returns & reported ly percentage.



Figure 3.2: Plots o overall average realized volatility measures, continuous variance and jumps (I-second sampling frequency)
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Figure 3.3a: Density plots of sector-averages daily returns sampled at S-minute
frequency
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Figure 3.3b: QQ plots of sector-averages daily returns sampled at 5-minute frequency
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Figure 3.4a: Density plots of sector-averages daily returns sampled at 1-second
frequency
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Figure 3.4b: QQ plots of sector-averages daily returns sampled at 1-second frequency
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Figure 3.5a: Density plots of sector-averages daily returns standardized by realized
variance sampled at 5-minute frequency
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Figure 3.5b: QQ plots of sector-averages daily returns standardized by realized variance
sampled at S-minute frequency
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Figure 3.6a: Density plots of sector-averages daily returns standardized by realized
bipower variation sampled at 5-minute frequency
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Figure 3.6b: QQ plots of sector-averages daily returns standardized by realized bipower
variation sampled at 5-minute frequency
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Figure 3.7a: Density plots of sector-averages daily returns standardized by realized
power variation sampled at 5-minute frequency
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Figure 3.7b: QQ plots of sector-averages daily returns standardized by realized power
variation sampled at S-minute frequency



Figure 3.8a: Density plots of sector-averages daily returns standardized by realized

range sampled at S-minute frequency
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Figure 3.8b: QQ plots of sector-averages daily returns standardized by realized range

sampled at 5-minute frequency
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Figure 3.9a: Density plots of sector-averages daily returns standardized by realized
variance sampled at 1-second frequency
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Figure 3.9a: QQ plots ofsector-averages daily returns standardized by realized variance
sampled at 1-second frequency



Figure 3.10a: Density plots of sector-averages daily returns standardized by realized
bipower variation sampled at 1-second frequency
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Figure 3.10b: QQ plots of sector-averages daily returns standardized by realized
bipower variation sampled at 1-second frequency



Figure 3.11a: Density plots of sector-averages daily returns standardized by realized

power variation sampled at 1-second frequency
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Figure 3.11b: QQ plots of sector-averages daily returns standardized by realized power

variation sampled at 1-second frequency
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Figure 3.12a: Density plots of sector-averages daily returns standardized by realized
range sampled at 1-second frequency
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Figure 3.12a: QQ plots of sector-averages daily returns standardized by realized range
sampled at 1-second frequency
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Figure 3.13a: Density plots of sector-averages daily returns standardized by realized
continuous variance sampled at 5-minute frequency
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Figure 3.13b: QQ plots of sector-averages daily returns standardized by realized
continuous variance sampled at 5-minute frequency
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Figure 3.14a: Density plots of sector-averages daily returns standardized by realized
continuous variance sampled at 1-second frequency
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Figure 3.14b: QQ plots of sector-averages daily returns standardized by realized
continuous variance sampled at 1-second frequency
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Figure 3.16a: Density plots of sector-averages daily returns standardized by GARCH

sampled at 5S-minute frequency
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Figure 3.16b: QQ plots of sector-averages daily returns
sampled at 5-minute frequency
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Figure 3.17a: Density plots of sector-averages daily returns standardized by GARCH sampled

at 5-minute frequency
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Figure 3.17b: QQ plots of sector-averages daily returns standardized by GARCH sampled at 5-

minute frequency
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Appendix
Table A.1: Returns standardized by parametric and nonparametric volatility measures at S-minute sampling frequency (Sector CD)
. h h h h n s s . h s s h h h h
' v, rr, v, bv, o, sV, ga, ' v, ¥, /\EIS /\ﬂ cv, sV, ga,
AMZN BBY
Skewness  0.411 0.113 0.118 0.107 0.117 0.083 0.261 0.248 _ -1.485 0.096 0.089 0.113 0.071 0.076 -0.134 -0.085
Kurtosis 9.065 2.775 2.786 3.020 2.819 2.938 4.855 4.878 _ 36.815 2.733 3.080 3.007 2.842 2.806 8.337 6.176
JB 4319 11.704 11.736 5.279 10.129 3.646 427.899 434.959 _ 132846 12.486 4.405 5.891 5.187 7.044 3293 1166
p value (0.000) (0.003)  (0.003) (0.071)  (0.006) (0.162) (0.000) (0.000) _ (0.000) (0.002) (0.111) (0.053) (0.075) (0.030) (0.000) (0.000)
DIS GPS
Skewness  0.224 0.078 0.081 0.074 0.097 0.118 0.113 0.029 4 0.238 0.005 0.011 0.004 -0.002 0.024 0.087 -0.036
Kurtosis 6.185 2.635 2.735 2.779 2.775 2.786 3.534 3.681 _ 7.294 2.664 2.935 2.920 2.705 2.717 5.295 5.693
JB 1193 18.105 11.065 8.120 10.228 11.676 38.754 53.944 _ 2152 13.035 0.541 0.750 10.044 9.508 610984 836.909
p value (0.000) (0.000) (0.004) (0.017) (0.006) (0.003) (0.000) (0.000) _ (0.000)  (0.001) (0.763) (0.687)  (0.007) (0.009)  (0.000) (0.000)
HD IPG
Skewness  0.576 0.118 0.148 0.135 0.115 0.113 0.293 0.273 _ 0.528 0.083 -0.004 0.074 0.090 0.150 0.131 -0.094
Kurtosis 6.883 2.759 2.880 2.895 2.876 2.870 4.124 4.626 _ 20.576 2.902 3.496 3.325 2.959 3.171 9.121 8.984
JB 1891 13.081 11.830 9.639 7.850 7.799 185.234  339.133 _ 35745 4.324 28.385 14.680 3.940 13.803 4327 4132
pvalue  (0.000) (0.001)  (0.003)  (0.008)  (0.020)  (0.020)  (0.000)  (0.000) | (0.000) (0.115) (0.000) (0.001)  (0.139)  (0.001)  (0.000)  (0.000)
MAR MCD
Skewness  0.222 -0.088 -0.107 -0.048 -0.102 0.240 0.193 0.048 _ 0.218 0.065 0.093 0.045 0.086 -0.046 0.199 0.077
Kurtosis 8.810 2.929 3.242 3.107 2.995 6.220 5.154 5.638 _ 9.460 2.766 2.850 2.953 3.021 3.547 6.767 5.455
JB 3915 4.178 12.098 2.399 4.807 HEHHHE 552,147 803.518 _ 4833 8.261 6.579 1.200 3.481 35.450 1655 697.810
p value (0.000) (0.124)  (0.002) (0.301) (0.090) (0.000) (0.000) (0.000) _ (0.000) (0.016) (0.037) (0.549) (0.175) (0.000) (0.000) (0.000)
NWSA TWX
Skewness  0.521 0.039 -0.017 0.058 0.044 -0.221 0.524 0.496 _ 0.208 0.101 0.137 0.092 0.131 0.138 0.085 0.004
Kurtosis 10.781 2.843 4.535 3.028 3.729 4.809 10.078 9.820 _ 9.195 2.670 2.869 3.046 2.779 2.730 6.596 3.917
B 7106 3.540 271.739 1.619 62218  396.394 5903 5476 _ 4445 17.225 10.642 4.171 13.510 17.174 1494 96.936
p value (0.000) (0.170) (0.000)  (0.445)  (0.000) (0.000) (0.000) (0.000) _ (0.000) (0.000) (0.005) (0.124)  (0.001) (0.000) (0.000)  (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr, pv,, bv,, cv, sv,, ga, denote realized variance, realized range, realized power

variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is S minute.
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Table A.2: Returns standardized by parametric and nonparametric volatility measures at 5-minute sampling frequency (Sector CS)

L Lo non r oot |, n o n _n h % n_or
! rv, e, v, /\wlx cv, sV, ga, ! v, rr, v, by, cv, sV, ga,
AVP BFB .
Skewness 0220  0.071  0.075  0.088  0.078 0473  -0.021  -0.040 | 0.315  0.034 0061 0051 0060 0473 0245  0.032
Kurtosis 9275  2.863  3.070  3.124 2911 6817  7.88 6972 | 10338 3.358 4515 3396 3424 7.020  7.113 6387
B 4562 4515 3177 5370 3756 1781 2023 1820 | 6254 15324 266453 19272 22442  1917.604 s s
pvalue  (0.000) (0.105) (0.204) (0.068) (0.153) _ (0.000)  (0.000) (0.000) | (0.000) (0.000) (0.000) (0.000) _(0.000)  (0.000) _ (0.000) _ (0.000)
COST EL
Skewness 0336 0.130  0.101  0.091  0.135  0.193  0.142  0.081 | 0.148  0.086  0.061 0079 0063 0135 0366 0287
Kurtosis 7320 2.770 2728 2.902  2.801  3.055  3.894  3.640 | 7.250 2988  3.188  3.128 2987  3.451 5.098  5.369
JB 2204 13932 13221 4938  13.044 17594 101432 50234 | 2093 3419 5818  4.805  1.822  31.801  569.407 685.139
pvalue _(0.000) (0.001) (0.001) (0.085) (0.001)  (0.000)  (0.000)  (0.000) | (0.000) (0.181) (0.055) (0.090) (0.402)  (0.000)  (0.000) _ (0.000) _
KMB KO
Skewness -0.036  0.094  0.108 0075 0063  43.067 -0.307 -0.345 | 0266  0.072  0.098  0.108  0.112  -0324  0.086  0.034
Kurtosis 10763 2.904 3212 3231 2974 2115918 8612  7.461 | 8119  3.081 3211 3300  3.146 33798  4.177 4303
JB 6949 5141 10560 8739  1.880  S.E+08  3674.1  2349.6 | 3054  3.170  9.529 15743 8191 108455 163211 196367
pvalue  (0.000) (0.077) (0.005) (0.013) (0.391)  (0.000)  (0.000)  (0.000) | (0.000) (0.205) (0.009)  (0.000) (0.017) _ (0.000)  (0.000)  (0.000)
PEP PG _
Skewness  0.147  0.022  0.010  0.007  0.046  0.093 0018  -0.034 | 0229 0.029  0.034  -0014 0017  0.660  -0.122  -0.203
Kurtosis ~ 10.082  2.823  3.016  3.058 2956 4224 4743 4356 | 10909 2942  3.061 3213  3.085 8703 5719  5.787
B 5793 3.837  0.075 0414 1204 175786 350.502 212463 | 7237  0.78 0970 5304 0962 3926 858997 914.419
pvalue _(0.000) (0.147) (0.963) (0.813) (0.548)  (0.000)  (0.000) (0.000) | (0.000) (0.675) (0.616) (0.071) (0.618)  (0.000)  (0.000)  (0.000)
UL WMT
Skewness -0.058  -0.034  -0.054  -0.070  -0.040  -0.520  -0.133  -0.165 | 0210  0.091  0.081  0.101 0071 0052 0251  0.141
Kurtosis 8258 2902  3.185  3.144 2989 11718 6389 4310 | 7329  2.875 2945  3.109 2945 3534 4153 3.910
JB 3180 1.639 5286  4.651 0745 8656 1332 210493 | 2181 5594 3393  6.034  2.693  34.056  182.158  104.697
pvalue  (0.000) (0.441) (0.071) (0.098)  (0.689)  (0.000)  (0.000)  (0.000) | (0.000) (0.061) (0.183)  (0.049) (0.260) _ (0.000) _ (0.000) _ (0.000)

Note: Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr, pv,, bv,, cv,, sv,, ga, denote realized variance, realized range, realized power

variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is 5 minute.
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Table A.3: Returns standardized by parametric and nonparametric volatility measures at 5-minute sampling frequency (Sector ENG)

% h h h h h h " h 7 h h K 7
" /\M r, v, by, c, sV, ga, £ v, FY, /\MM /\wﬂ cv, sV, ga,
BHI CHK A
Skewness -0.074  0.109  0.096  0.08  0.092  0.112  0.052 0.010 | -0478  0.056  0.084  0.023 0063  0.064 048  0.046
Kurtosis  6.806  2.852 2948 2920 2878  2.854  3.359 3412 | 15730 2.807 2872 3.087 2841 2807  7.853  4.483
B 1673 8.033 4525 4144 5597 8264 16075  19.605 | 18789 5761 5174 1116 4784  6.187 2825  254.69
pvaluc _(0.000) (0.018) (0.104) (0.126) (0.061) (0.016)  (0.000)  (0.000) [ (0.000) (0.056) (0.075) (0.572)  (0.091) (0.045) (0.000)  (0.000) _
CvX DVN
Skewness 0.172  0.037  0.059 0017  0.067  0.09  -0.071  -0.117 | -0.096 -0.026 -0.048 -0.039  -0.005 -0.038 -0.038  -0.130
Kurtosis ~ 13.415 2780  3.014 2954 2870  3.000  3.521 3.678 | 7336 2733 3415 2865  2.898 2800  4.401  4.808
JB 12519 6226 1618 0379 4015 3758  33.580 59246 | 2172 8.518 20924 2788 1221 5249 226900 384.632
pvalue  (0.000) (0.044) (0.445) (0.827) (0.134) (0.153)  (0.000)  (0.000) | (0.000) (0.014) (0.000) (0.248)  (0.543) (0.072)  (0.000)  (0.000)
HAL OXY .
Skewness -2.764  0.033  0.035  -0.027  0.047 0036  -0251  -1.555 | -0.393 -0.007 -0.041  -0.062  0.014 0051  -0.197  -0.166
Kurtosis 61460 2794  3.042  3.164 2782 2782 12806  27.633 | 8.669  2.842 2963  2.846  2.863 2994 4038  3.560
B 397534 5.415 0773 3442 6496 6050 11115 71073 | 3776  2.897 0932 4489 2260 1225 142009 48.930
pvalue  (0.000) (0.067) (0.679) (0.179) (0.039) (0.049)  (0.000)  (0.000) | (0.000) (0.235) (0.628) (0.106)  (0.323) (0.542)  (0.000) _ (0.000)
SUN TE .
Skewness  0.153  0.027  0.037 0019 0036  0.021  0.073 0.050 | -1.353 0069 -0.082 -0.101  -0.038  0.064 0038  -0242
Kurtosis ~ 8.655  2.944  3.031  3.065 2988 2982  4.011 4077 | 26572 2902 3.050 3189  3.030 2807 5612 5569
JB 3698 0.689 0751  0.655  0.630 0236 120324 134967 | 64904 3278 3413 8806 0779  6.187 786974 787.969
pvalue  (0.000) (0.709) (0.687) (0.721)  (0.730) (0.889)  (0.000)  (0.000) | (0.000) (0.194) (0.181) (0.012)  (0.677)  (0.045)  (0.000) _ (0.000)
WMB XOM .
Skewness -2.338  -0.001  -0.018  -0.072  0.008  1.114  -0.154  -0.384 | 0.197 0.061  0.097  0.038 0067 0005 -0.068 -0.124
Kurtosis ~ 46957  2.743 2811 3215  2.802 46400  6.544 6.115 | 12204 2721 2924  2.893 2823 2733 3413 4.404
B 225286 7.637 4258 7707 4564 215917 1459.125 1186.785 | 9784  10.689  4.968 1977  5.653 8203  21.786 234.452
pvalue  (0.000) (0.022) (0.119) (0.021) (0.102) (0.000)  (0.000)  (0.000) ] (0.000) (0.005) (0.083) (0.372)  (0.059) (0.017) _ (0.000) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr, pv,, bv,, cv,, sv,, ga, denote realized variance, realized range, realized power
variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is S minute.



Table A.4: Returns standardized by parametric and nonparametric volatility measures at S-minute sampling frequency (Sector FIN)

233

, h I n h h I h - 7 5 7 h h h h
ALL AXP .
Skewness -0.033  0.065  0.074  0.093  0.083  1.001  0.116 0.093 | 0.057 0050 0058 0022  0.057 2019  -0.035  0.093
Kurtosis 21060  2.861 2945 3396  2.904 15610  8.698 5956 | 7.956 2751  2.896 2913  2.826 33776 4313 5956
B 37603 4.177  2.890 22029 4274 18735 3749.848 1011319 | 2834 8272  2.831  1.091  5.001 110641 199.458 1011
pvalue  (0.000) (0.124)  (0.236)  (0.000)  (0.118)  (0.000)  (0.000)  (0.000) | (0.000) (0.016) (0.243) (0.580)  (0.082) (0.000)  (0.000)  (0.000)
BAC BK ~
Skewness -0.508  0.016 -0.014  -0.036  0.004  0.114  -0.121  -0.414 | 0348  0.095 0045 0123 0073 0102  0.141  -0.074
Kurtosis ~ 20.028  2.648 2841 3356 2727  3.080  7.486 5504 | 13236 2930 3202 3202 2960 2940 6407 5296
B 33547 14376 2989 15208  8.608  6.685 2327.164 801.620 | 12135  4.691 5610  11.692 2611 5159 1348  610.127
pvalue  (0.000) (0.001) (0.224)  (0.000) (0.014) (0.035)  (0.000)  (0.000) | (0.000) (0.096) (0.061) (0.003) (0.271) (0.076)  (0.000) _ (0.000)
C GS _
Skewness -1.814  0.154  0.175  0.052  0.153 0282  -0.285  0.080 | -0.098 0041 0019 0030 0033 0065 -0.174  -0431
Kurtosis 28052 2731 2908  3.158  2.830  3.608  7.908 4448 | 9.978  2.691 2950  2.888  2.809 2822 5222  8.174
B 73877 19295 15031  4.160 14124 79261 2814.873 244553 | 5618  11.808  0.456  1.868  4.694 5586 583274 3172
palic _(0.000) (0.000) (0.001) (0.125) (0.001) (0.000)  (0.000) _ (0.000) | (0.000) (0.003) (0.796) (0.393) (0.096) _(0.061) (0.000) (0.000)
JPM MS
Skewness  0.529  0.122 0100  0.I51  0.109  0.145 0410  -0.021 | -0.845 0.035  0.042  0.042  0.057 0035 0248  0.079
Kurtosis 13747 2733 2.835  3.186 2753  2.862  7.463 4728 | 22517 2647 2.816  2.886  2.687 2648 4540  4.263
B 13445 15050 7710 14482 12541 11947 23740111 344404 | 44247 14901 4705 2323 12768 14843 302.049 186.637
pvalue  (0.000) (0.001) (0.021) (0.001)  (0.002) (0.003)  (0.000)  (0.000) | (0.000) (0.001) (0.095) (0.313)  (0.002) (0.001) _ (0.000)  (0.000)
TRV WFC )
Skewness 0364  0.053  0.066  0.075  0.038  0.192  0.340 0262 | 0.086  0.122  0.116 0105  0.126 0325 0247 0213
Kurtosis ~ 9.708 2755  3.113  3.017  2.833 9468  7.265 7460 | 18265 2.887  3.013  3.624 2929 4561 7136 4782
JB 549 8171 3474 2601 3915 4828  2150.616 2324972 | 26870 8321  6.197 50008  7.869 327535 2000 386910
pvalue  (0.000) (0.017) (0.176) (0.272) (0.141) (0.000)  (0.000)  (0.000) | (0.000) _(0.016) _(0.045) _(0.000) _ (0.020) (0.000) (0.000) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, bv,, cv,, sv,, ga; denote realized variance, realized range, realized power
variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is 5 minute.



Table A.5: Returns standardized by parametric and nonparametric volatility measures at 5-minute sampling frequency (Sector HC)

Lk / 7 z 7 7 Lo Lt / / / 7
N\~ ~\<~ N\‘.\ /\NWI&&- /\y Qd\\ MJ\\ N Q~ \x\ Nxd\- /\M /\M\-‘ /\Nﬂuﬁ Q<~ .m.d\\ %. Qn
ABT AMGN
Skewness  0.001  0.028  0.065  0.026  0.043 0139 0074  -0.021 | -0273  0.002 -0.023 -0.046  0.007  0.022  -0.079  -0.260
Kurtosis 6479  2.885  3.149  3.087 2996  3.676  4.696 5300 | 6.640  2.690 2843 2961 2732 2717 4486  4.842
B 1396 1.889 4517  1.188  0.851  61.440 334.041 610216 | 1562  11.105 3.081  1.139 8282  9.441 257300 422397
pvalue (0.000) (0.389) (0.105) (0.552)  (0.654)  (0.000)  (0.000)  (0.000) | (0.000) (0.004) (0.214) (0.566)  (0.016)  (0.009)  (0.000)  (0.000)
BSX GILD
Skewness  0.119  0.121  0.132  0.118 0258  -8.996  0.045  -0.003 | 0.009  0.046  0.001  0.025 0032 0047 -0.054 -0.066
Kurtosis ~ 7.807  2.685  2.887 2817  3.752  267.642 4.800 5504 | 7.496 2747 2823  3.068 2813 2745  3.770  3.835
JB 2670 18.166  9.560 10239  95.865 8108857 374319 723.021 | 2328 8353 3615  0.806 4496 8491  69.686  82.266
pvalue  (0.000) (0.000) (0.008) (0.006) (0.000) (0.000) (0.000)  (0.000) | (0.000) (0.015) (0.164) (0.668) (0.106) (0.014)  (0.000)  (0.000)
HUM JINJ
Skewness -0.178  0.130  0.123  0.095  0.163  0.154  0.055  -0.032 | 0.085  0.042 0054  0.026  0.061 0774  0.107  0.016
Kurtosis 7384  2.865 2929  2.891 2916 2938 5290 5260 | 8.140 2851 2978  3.137  2.890 34355  4.141  4.406
JB 2231 9.855 7591 5543 13.039 11398  606.091 589.423 | 3049 3373 1417 2473 3.104 112516 155277 227.968
pvalue  (0.000) (0.007) (0.022) (0.063)  (0.001)  (0.003)  (0.000)  (0.000) | (0.000) (0.185) (0.492) (0.290)  (0.212)  (0.000)  (0.000)  (0.000)
MDT MRK
Skewness -0.150  0.035  0.086  -0.005  0.018  0.016  0.062 0029 | 0.054 0065 0039  0.060  0.044 0077 -0311  -0.54]
Kurtosis 6367  2.809 3274 2952  3.087 2996 4300  4.180 | 8.172 2790  2.868  3.029  2.896  3.461  7.507  7.944
JB 1318 4760 12070 0280  1.029  0.117 196462 160.810 | 3086  7.076 2711 1750  2.157 27164 2387 2953
pvalue (0.000) (0.093) (0.002) (0.870)  (0.598)  (0.943)  (0.000)  (0.000) | (0.000) (0.029) (0.258) (0.417)  (0.340)  (0.000)  (0.000)  (0.000)
PFE UNH
Skewness  0.177  0.052  0.080  0.071 0063  0.017  0.143 0100 | 0453  0.017  0.039 0016 0017 0046  -0269 -0.223
Kurtosis ~ 5.049  2.683 2801 2828 2872 2796  3.939 4292 | 16458 2786  3.027  3.048 2810  2.803 4956 4911
JB 498350 12.802  7.459 5729 3736 4.907  111.103 197.091 | 20977 5398  0.801 0389 4277 5410 474363 443.897
pvalue  (0.000) (0.002) (0.024) (0.057) (0.154)  (0.086)  (0.000)  (0.000) | (0.000) (0.067) (0.670) (0.823) (0.118) _(0.067)  (0.000) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, bv,, cv,, sv,, ga, denote realized variance, realized range, realized power

variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is 5 minute.
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Table A.6: Returns standardized by parametric and nonparametric volatility measures at S-minute sampling frequency (Sector IN

I3

- h h h h n h h . h s s h 7 h h
BA CAT
Skewness  0.045  0.047  0.043  0.035  0.048 0.072 0.042  -0.025 | -0.018  0.019 0006 0015 0030 0051 0139  0.025
Kurtosis ~ 5.264  2.763  2.810 2812  2.763 2.797 3.748 3708 | 6160  2.698 2995 2811 2872 2782 4325  4.049
JB 591.652  7.535  5.008  4.663  7.562 7.169 65293 58019 | 1151.600 10698  0.022 4215 2298  6.673 211.365 127.092
pvalue  (0.000) (0.023) (0.082) (0.097) (0.023)  (0.028)  (0.000)  (0.000) | (0.000)  (0.005) (0.989) (0.122) (0.317) (0.036)  (0.000)  (0.000)
CMI GD
Skewness -0.188  0.045  -0.001  0.051  0.039 0.016 0.108  0.162 | -0.198 0031  0.051  -0.003  0.045  0.037  -0.160  -0.037
Kurtosis ~ 7.699 2762 3.162 2856  2.863 2.840 4628 4662 | 6900 2815 3389 2973  3.020 5876 5502  4.994
JB 2562 7.502  3.013  3.595  2.858 3.065 310761 330429 | 1771740 4381  18.668  0.088  0.987 951.048 733.614 458948
pvalue  (0.000) (0.023) (0.222) (0.166) (0.240)  (0.216)  (0.000)  (0.000) | (0.000)  (0.112) (0.000) (0.957)  (0.610)  (0.000)  (0.000)  (0.000)
GE HON
Skewness  -0.092  0.128  0.124  0.100  0.133 0.046 0.115 0193 | -0433 0038 0041 0011 0077 0058  -0.511  -0.366
Kurtosis ~ 9.363  2.673 2724 2873  2.685 2.880 4927 4706 | 10093  2.842 2965 2996 2931 2932 10998  6.112
B 4671 19832 15852 6423 19.559  2.660  434.181 352748 | 5886.503  3.539  0.929  0.058 3270  2.063 749 1179
pvalue  (0.000)  (0.000) (0.000) (0.040)  (0.000)  (0.264)  (0.000)  (0.000) | (0.000) (0.170) (0.629) (0.972)  (0.195)  (0.357)  (0.000)  (0.000)
LUV MMM
Skewness  0.105  0.164  0.152  0.171  0.179 0.176 0473 0495 | 0300 0046 0032 0057  0.029 0005 0047  -0.244
Kurtosis ~ 6.992  3.010  3.158  3.100  3.094 3.047 5654 6554 | 7273 2935 2998  3.167 2983  3.897 5835  6.610
JB 1842 12457 13526  14.580 15825 14599 915584 1569 | 2146380 1449 0466 4712 0428  92.414 927749 1530
pvalue  (0.000) (0.002) (0.001) (0.001)  (0.000)  (0.001)  (0.000) (0.000) | (0.000) (0.485) (0.792) (0.095) (0.807) _ (0.000)  (0.000)  (0.000)
UPS UTX
Skewness  0.184  -0.020  -0.055  -0.009  -0.038 0.226 0306  0.064 | -0.234  0.049 0037 0031 0074 009  -0.168  -0.207
Kurtosis ~ 7.262  3.052 3348  3.329 3247 14.332 5369 4977 | 9330 2772 3.023  3.003 2852 2906 5439 5986
JB 2109 0507 15387 12552 7710 14728120 690414 452.429 | 4644.655  7.099  0.697 0442 5043 4756  699.096 1048
pvalue  (0.000) (0.776) (0.000) (0.002) (0.021)  (0.000)  (0.000)  (0.000) | (0.000) (0.029) (0.706) (0.802) (0.080) (0.093)  (0.000) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, bv,, cv,, sv;, ga, denote realized variance, realized range, realized power
variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is 5 minute.
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Table A.6: Returns standardized by parametric and nonparametric volatility measures at 5-minute sampling frequency (Sector IND)

r

; : i ’ g n f 4 , g 4 g d % 4 h
! rv, rY, v, by, cv, sV, ga, ' v, rr, /\ﬁlx )\.@uﬂ cv, sV, ga,
BA CAT )
Skewness  0.045  0.047  0.043  0.035 0048 0072 0042 -0025 | -0.018 0019 0006 0015 0030 0051 039 0025
Kurtosis 5264 2763  2.810 2812 2763 2797 3748 3708 | 6.160  2.698 2995 2811  2.872 2782 4325  4.049
B 591.652  7.535  5.008  4.663  7.562 7169 65293 58019 | 1151.600 10.698  0.022 4215 2298  6.673 211365 127.092
pvalie _(0.000) (0.023) (0.082) (0.097) (0.023) (0.028) (0.000) (0.000) | (0.000) (0.005) (0.989) (0.122) (0.317) _(0.036) (0.000)  (0.000) _
CMI GD
Skewness -0.188  0.045  -0.001 0051  0.039 0016 0108  0.162 | -0.198 0031 0051  -0.003  0.045 0037 -0.160 -0.037
Kurtosis ~ 7.699 2762 3.162  2.856  2.863 2840  4.628  4.662 | 6900 2815 3389 2973  3.020 5876 5502  4.994
JB 2562 7502 3013 3.595  2.858  3.065 310761 330429 | 1771.740 4381  18.668  0.088  0.987 951048 733.614 458.948
pvalue _(0.000) (0.023) (0.222) (0.166)  (0.240) (0.216)  (0.000)  (0.000) | (0.000) (0.112) (0.000) (0.957) (0.610) (0.000) (0.000) _ (0.000)
GE HON
Skewness  -0.092  0.128  0.124 0100  0.133 0046  0.115 0193 | -0433 0038 0041 0011 0077 0058  -0511  -0366
Kurtosis ~ 9.363  2.673  2.724  2.873  2.685  2.880 4927 4706 | 10.093 2842 2965  2.996 2931 2932 10998  6.112
B 4671 19.832 15852 6423 19.559  2.660 434181 352748 | 5886.503  3.539  0.929  0.058  3.270  2.063 7496 1179
pvalue  _(0.000) (0.000) (0.000) (0.040)  (0.000) (0.264) (0.000) (0.000) | (0.000) (0.170) (0.629) (0.972) (0.195) (0.357) _(0.000) (0.000)
LUV MMM
Skewness  0.105  0.164  0.152  0.071  0.179  0.176 0473 0495 | 0300 0046 0032  0.057 0029 0005 0047  -0.244
Kurtosis ~ 6.992  3.010  3.158  3.100  3.094  3.047 5654 6554 | 7273 2935 2998 3167 2983  3.897 5835  6.610
JB 1842 12457 13526 14580 15825 14599 915584 1569 | 2146380 1.449 0466 4712 0428 92414  927.749 1530
pvalue _(0.000) (0.002) (0.001) (0.001) (0.000) (0.001) (0.000)  (0.000) | (0.000) (0.485) (0.792) (0.095) (0.807) (0.000)  (0.000)  (0.000)
UPS UTX .
Skewness  0.184  -0.020 -0.055  -0.009  -0.038 0226 0306 0064 | -023¢  0.049 0037 0031 0074  0.090  -0.168  -0207
Kurtosis ~ 7.262  3.052  3.348 3329 3247 14332 5369 4977 | 9330 2772 3.023  3.003 2852 2906 5439  5.986
B 2100 0507 15387 12552 7710 14728 690.414 452429 | 4644.655  7.099  0.697 0442 5.043 4756  699.096 1048
pvalue  (0.000) (0.776) (0.000) (0.002) (0.021) (0.000) _(0.000) _ (0.000) | (0.000)  (0.029) (0.706) _(0.802) _(0.080) _(0.093) (0.000) _(0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, by, cv,, sv,, ga, denote realized variance, realized range, realized power
variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is 5 minute.
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Table A.7: Returns standardized by parametric and nonparametric volatility measures at S-minute sampling frequency (Sector IT)

237

4 5 it h s h Ul h h Ui h h h h
AAPL CSCO -
Skewness  0.037  0.124  0.130  0.092  0.142 0153  0.042 0019 | 0391 0051 0066  0.048  0.044 0053 086  0.05
Kurtosis ~ 5.110 2739 2757 2777 2793 2819 3876 4163 | 11487 2748 2837  3.118 2775 2740 6015  4.146
JB 513941 15000 14621  9.642 14270 14.592 89249 156.131 | 8374472  8.538  5.077  2.664 6724  9.045 1064  152.752
pvalue _(0.000) (0.00) (0.001) (0.008) (0.001) (0.001) (0.000) (0.000) | (0.000) (0.014) (0.079) (0.264) (0.035) (0.011) (0.000) (0.000) _
DELL EMC
Skewness  0.181  0.048  0.038  0.075 0070  -0.118  0.063  -0.043 | 0.096 0061 0053 0035 0073 0064 0124 0075
Kurtosis ~ 7.309  2.857  2.870  3.182 2897  4.085 4068 3957 | 8054 2718 2783 2958 2752 2704 4423 4140
IB 2156 3409 2.622 6410 3467 142.030 133.436 106486 | 2962.432 10866 6715 0767  9.511 11976 240511 152458
pvalue  (0.000) (0.182) (0.270) (0.041) (0.177) (0.000) (0.000)  (0.000) | (0.000)  (0.004) (0.035) (0.681) (0.009) (0.003) (0.000)  (0.000)
HPQ IBM .
Skewness 0294  0.050  0.041 0006 0047 0372  0.37  0.100 | 0060 0022 0020 0005 0050 0240  0.106  -0.089
Kurtosis  7.053 2722 2.846 2882 2763 5385 5294 5689 | 7.246  2.684 2837 2897 2749 3775 4927  3.963
B 1934 10070 3494  1.624  7.481 718843 615.135 838501 | 2080.406 11705 3238 1246  8.449 95369 433321 110605
pvalue  (0.000)  (0.007) (0.174) (0.444)  (0.024) (0.000) (0.000)  (0.000) | (0.000)  (0.003) (0.198) (0.536) (0.015) (0.000) (0.000)  (0.000)
INTC MSFT -
Skewness  0.065  0.069  0.061 0053 0067 0074 0070  -0.002 | 0257  0.12 0152  0.103  0.108  -0.007 0074 0114
Kurosis 5790 2741 2723 2850 2733 2727 3442 3514 | 6380 2794  2.856 2982  2.862 3532 3953  3.927
B 899.165  9.920  10.589  3.882 10307 11121 24731 30498 | 1354.820 10.624 13.094 4927  7.519 32598 107191 105.006
pvalue  (0.000)  (0.007) (0.005) (0.144)  (0.006) (0.004) (0.000)  (0.000) | (0.000)  (0.005) (0.001) (0.085) (0.023) (0.000)  (0.000) _ (0.000)
ORCL, XRX ,
Skewness  0.507  0.082  0.096 0075  0.092 0093 0077  0.038 | -0.243 0083 0106 0075 0079 0145 -0250  -0240
Kurtosis 11382 2.652 2730 3.058  2.604  2.638 3701  3.867 | 15026  2.852  3.042  3.140  3.178  3.136  8.021  8.187
IB 8219  17.053 12595  2.990 14768 19.118 59296  87.301 | 16700.040 5.684 5403  4.857 6499 11855 2935 3129
pvalue  (0.000)  (0.000) (0.002) (0.224) (0.001) (0.000) (0.000) (0.000) | (0.000)  (0.058) (0.067) (0.088) (0.039) (0.003) _(0.000) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, bv,, cv,, sV, ga, denote realized variance, realized range, realized power
variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is 5 minute.



Table A.8: Returns standardized by parametric and nonparametric volatility measures at 5S-minute sampling frequency (Sector MAR)

U r s h 7 U U h K n K r h i
o R R T T T A R R R T R R I T
AA AKS .
Skewness -0.417  0.112  0.104 0087  0.122  0.111  0.025 -0.069 | -0223 0089  0.119 0054 0101  0.111  0.053  0.045
Kurtosis ~ 7.920 2706  2.854  2.836 2739 2711 3.642  3.536 | 7.490  2.868  3.174  3.052 2995 2956 5347  6.254
JB 2870 15766 7481  6.619  14.673 15328  47.818 35374 | 2347 5622 10064  1.663 4716 5909  636.535 ##sss#
pvalue  (0.000) (0.000) (0.024) (0.037) _ (0.001) (0.000)  (0.000)  (0.000) | (0.000) (0.060) (0.007) (0.435)  (0.095) (0.052)  (0.000)  (0.000)
DD DOW '
Skewness 0.049  0.154  0.197  0.139  0.179 0250  0.188  0.088 | 0.168 0136  0.132  0.144  0.127 0234 0460 0204
Kurtosis ~ 7.482  2.884  3.070  3.078 2955  3.629  4.690 4536 | 8.834 2892  3.065  3.073  2.898  4.099 8051  5.573
B 2317 12468 18426  9.552 14934 74411 345673 275429 | 3937  9.866  8.517  10.169  8.668 164336 3039  782.327
pvalue _(0.000) (0.002) (0.000) (0.008) (0.001) (0.000) (0.000)  (0.000) | (0.000) (0.007) (0.014) (0.006) (0.013) (0.000) (0.000)  (0.000)
FCX IP
Skewness -0.230  0.093  0.144 0059  0.141 0243 0063  -0.075 | -0.148  0.006  0.018 -0.012  0.009  0.027 -0.115 -0.117
Kurtosis 6384 2799 3256  2.859 2964  3.826 4596 4111 | 10.143 2750  2.843 2925  2.819 2901 4992  4.123
B 1345 8.696 17.091  3.888 9290 105979 295333 144768 | 5892 7204 2974 0714 3830 1470 463829 151711
pvalue  (0.000) (0.013) (0.000) (0.143)  (0.010) (0.000) (0.000)  (0.000) | (0.000) (0.027) (0.226) (0.700)  (0.147)  (0.480)  (0.000) _ (0.000)
NEM NUE .
Skewness 0.172  0.107  0.129  0.116  0.115  0.114  0.189  0.135 | -0.511  0.041  0.003  -0.009  -0.002  0.034  -0.379  -0.447
Kurtosis ~ 7.411 2711 2858 2882 2750 2717 4073  4.034 | 9419 2891 3513 3.002 3118 2915 6525  6.876
JB 2257 14924 9995 7758 13331 15233  149.193 131.651 | 4871  2.114 30348  0.038  1.608 1367 1499 1824
pvalue  (0.000) (0.001) (0.007) (0.021)  (0.001) (0.000) (0.000)  (0.000) | (0.000) (0.347) (0.000) (0.981)  (0.447) (0.505)  (0.000)  (0.000)
wY X .
Skewness -0.334  0.104  O.111  0.080  0.114 0111 0.1 0059 | -0.389 0070 0.055 0037 0064 0071 0011  -0.030
Kurtosis ~ 8.989  2.858  3.129  3.020 2942 2901 4174 4439 | 6115 2750  3.018 2794 2818 2771 3703  4.052
JB 4186 7262 7.568 2999 6374 6761 164507 240319 | 1188  9.431  1.413 5509 5699 8316 56983  127.924
pvalue  (0.000) (0.026) (0.023) (0.223)  (0.041) (0.034) (0.000)  (0.000) | (0.000) (0.009) (0.493) (0.064) (0.058) (0.016) _ (0.000) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. 1v,, 171, pvy, by, cv,, s, ga; denote realized variance, realized range, realized power

variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is S minute.
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Table A.9: Returns standardized by parametric and nonparametric volatility measures at S-minute sampling frequency (Sector TEL)

239

4 J d d 7 Y 4 7 d d h " 5 4

" ry, rr, /\H /\wﬂ cv, sV, ga, " rv, vy, pv, bv, cv, sV, ga,

AMT BT B

Skewness -0.454  0.055 0037 0038 0054 0072 0080  -0.056 | 0.020 0.027 -11571 0041  0.041  3.027 -0.119 0032
Kurtosis ~ 14.652  2.664  3.028 2919 2817 2715 4106  4.683 | 7.956  3.020 370.827 3301  3.008 60011 4703  4.171
B 15747 14382 0728 1443 5.196 11724 143.857 328029 | 2832 0375  ###EE## 11191 0771 374294 340857 158615
pvalue  (0.000) (0.001) (0.695) (0.486) (0.074) (0.003)  (0.000)  (0.000) | (0.000) (0.829) (0.000)  (0.004)  (0.680) (0.000) (0.000)  (0.000)

CTL FTR _

Skewness -0.201  -0.090 -0.075 -0.103  -0.080 -0.135 -0.113  -0251 | -0456 0.116  0.178  0.34 0090  0.164  0.081  -0.007
Kurtosis ~ 8.842 2878  3.069  3.071 2951  3.137  6.664  9.543 | 14.656 2920 3418 3422 3011 3592 4951 4652
B 3954 5433 3139 5431 3243 10550 1554 4965 | 15760  6.908  34.826  28.788  5.166 52442 442.064 314.548
pvalue  (0.000) (0.066) (0.208) (0.066)  (0.198)  (0.005)  (0.000)  (0.000) | (0.000) (0.032)  (0.000)  (0.000)  (0.076) (0.000) (0.000)  (0.000)

Q s -

Skewness -0.549  0.052 0028 0080 0067 0063  0.68 0422 | -0850 0.153 0150  0.1i4 0181  0.284  -0.154  -0.068
Kurtosis ~ 26.816  2.781  3.170  3.179  2.872 2801  5.626  12.621 | 13.893  2.802 3214  3.026 2901  3.690  6.091  4.920
IB 65535 6743 3711 6597 3953 6.392 808309 10755 | 14013 15357 15709  6.097 16191 92171 1113 427.068
pvalue  (0.000) (0.034) (0.156) (0.037)  (0.139) (0.041)  (0.000)  (0.000) | (0.000) (0.000)  (0.000)  (0.047)  (0.000) (0.000) (0.000)  (0.000)

T TEF .

Skewness 0421  0.139  0.151  0.IS1 0099 0833 0157 0049 | 1155 -0.052 -0073  -0.05 -0046 0067 0647  0.054
Kurtosis ~ 6.611 2755 3.047 298  2.828 11957 3.788  3.811 | 23778 2756 2913 3.083 2904 5177 12434 5576
JB 1585 15.832 10792 10.559  7.984 9543 82987  76.832 | 50390 8110 3358 2262  2.028  540.037 10455  766.645
pvalue _(0.000) (0.000) (0.005)  (0.005)  (0.018) (0.000)  (0.000)  (0.000) | (0.000) (0.017)  (0.187)  (0.323) (0.363) (0.000) (0.000)  (0.000)

voD vz, _

Skewness 0.152  -0.004 -0.010 -0.012  -0011 -0209 0191  0.149 | 0460  0.00  0.123 0139 0119 0205 0101  0.088
Kurtosis ~ 8.860  2.793 2928  3.153  2.828 4635 5172 5539 | 6769 2754 2911 2991 2840  3.895 3879  4.048
JB 3970 4936 0.640 2778 3483 326717 560.880 753.660 | 1735 11561  7.917 8927  9.490 111531 93.801  130.122
pvalue  (0.000) (0.085) (0.726)  (0.249) (0.175) _ (0.000) _ (0.000)  (0.000) | (0.000) (0.003) (0.019)  (0.012) (0.009) (0.000) (0.000) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv, bv,, cv,, sv,, ga, denote realized variance, realized range, realized power
variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is 5 minute.



Table A.10: Returns standardized by parametric and nonparametric volatility measures at S-minute sampling frequency (Sector UTL)

- n s 5 i n h h - 7 h s s h i 7

! r, I, pv, by, cv, /\m /\Msw ! v, vy, pv, bv, cv, sV, ga,

AEP CEG )

Skewness -0.426  0.029  -0.021 0005 0019 0033  -0.080 -0.251 | -5.074 -0.085 -0.067 -0.166 -0.065  0.824  -0.390  -0.615
Kurtosis 22015 2926  3.193  3.169  3.010  3.609 8517 4548 | 90.456 2.928  3.203  3.215 2945  12.680 6413  8.565
B 41769  1.031 4494 3313 0.176  43.096 3512 305407 | 893684 3.944  6.839  18.124 2270 11084 1413 3744
pvalue  (0.000) (0.597) (0.106) (0.191) (0.916)  (0.000)  (0.000)  (0.000) | (0.000) (0.139) (0.033) (0.000)  (0.321)  (0.000) _ (0.000)  (0.000)

DUK ETR )

Skewness 0349  0.091  0.045  0.054  0.093 2390  -0.047 -0.126 | -0271 -0.030 -0.027 -0.054  -0.045 -0.037 -0.234  -0.320
Kurtosis 10453 2735 2933 2.855  2.846  38.178  4.017  4.055 | 11333 2930  3.254  3.094  3.000  3.397 578  5.182
B 6460 11930 1463 3791 6707 144727 120297 135661 | 8040  0.963  7.776 2373 0.934  18.628 920.322 595.822
pvalue  (0.000) (0.003) (0.481) (0.150)  (0.035)  (0.000)  (0.000)  (0.000) | (0.000) (0.618) (0.020) (0.305)  (0.627)  (0.000) _ (0.000)  (0.000)

EXC OKE '

Skewness 0449  -0.032  -0.059  -0.031  -0.059  -5241 0226  -0.089 | -0.061 -0.002  0.003  0.006  0.044 0200  0.146  -0.031
Kurtosis  10.643 2758  3.092 2958  2.866  129.858  5.898  4.253 | 19.042 2.847 3543  3.042 3070 4246 4392 6234
B 6827 7221 2569  0.643  3.667 1866684 991.584 184.612 | 29673 2718  34.041 0218 1458 196240 233302 1207
pvalue  (0.000) (0.027) (0.277) (0.725)  (0.160)  (0.000)  (0.000)  (0.000) | (0.000) (0.257) (0.000) (0.897)  (0.482)  (0.000)  (0.000)  (0.000)

PCG PEG i

Skewness -3.057  -0.003  0.047  0.0i2  -0.012  0.820  -0.326  -1.038 | 0.124  0.049 0010  0.028  0.053 0054  -0.142  -0.078
Kurtosis 75986  2.905 3203 3375  3.078 13762 18593 15594 | 9.734  3.050 3424 3265  3.084 3291 5231 4354
B 618465 1.038 5748 16311 0772 13638 28081 18785 | 5235 1392 20732 8483 2124  11.028 583.007 214.182
pvalue  (0.000) (0.595) (0.056) (0.000) (0.680)  (0.000)  (0.000)  (0.000) | (0.000) (0.499) (0.000) (0.014)  (0.346)  (0.004)  (0.000)  (0.000)

PGN SO i

Skewness 0.390  -0.016 -0.003  -0.012  -0.030  0.038  -0.115  -0.199 | 0235  0.103  0.136  0.116  0.128 0002  0.080 0079
Kurtosis 11975 2961  3.133  3.135 2967 6160  3.871 4295 | 8466 3281  3.583 3525 3367 AT35 4159 4677
B 9358 0303  2.054 2175  0.541 1142 93443 211649 | 3470  13.933 47.790 37.953  23.097 345579 157.751 327.204
pvalue  (0.000) (0.860) (0.358) (0.337) (0.763)  (0.000)  (0.000)  (0.000) | (0.000) (0.001) (0.000) (0.000) _ (0.000) _(0.000) (0.000) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rry, pv,, bv,, cv,, sv,, ga, denote realized variance, realized range, realized power
variation, realized bipower variation, realized continuous variance, GARCH (1,1) and stochastic volatility, respectively. The sampling frequency is 5 minute.
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Table B.1: Returns standardized by realized volatility measures at 1-second sampling frequency (Sector CD)

r /! ¢ i’ d . 5 /i i’ /i h
»\M“. pv, by, cv, rv, 1, pv, by, cv,
AMZN BBY
Skewness 0.389 0.167 0.072 0.101 0.167 0.169 -1.472 0.099 -0.454 0.086 0.073 0.097
Kurtosis 8.888  3.249 2.846 2959 3275 3252 | 3633883 2911472 13.86547 3.371016  2.956  2.920
B 4067.133  19.930 5102 4888 21496 20547 | 129143 5409  13706.050 19288 2706  5.090
p value (0.000)  (0.000)  (0.078)  (0.087)  (0.000) _ (0.000) | (0.000)  (0.067)  (0.000)  (0.000)  (0.259) _(0.078)
DIS GPS
Skewness 0274  0.146 -0.129 0.101  0.149  0.148 0.265 -0.003 -0.132 0.022 0049  0.004
Kurtosis 6.149 3371 3.956 3221 3487 3368 | 7.252 3.002 7.270 3454 3310 3.011
B 1178.158 25757 113202 10347  37.502  25.820 | 2116506  0.006 2110573 23948 12205  0.022
p value 0.000)  (0.000)  (0.000)  (0.006)  (0.000)  (0.000) | (0.000)  (0.997)  (0.000)  (0.000)  (0.002)  (0.989)
HD IPG
Skewness  0.540  0.205 0.045 0.193 0204  0.205 0.388 -0.029 -6.749 -0.039  -0.118  -0.134
Kurtosis 6.652 3270 3.823 3.160 3367 3274 | 18.159 4.436 150.825  4.930 5210  4.976
IB 1671.805  27.730 78918  20.052  34.835  28.012 | 26438790  237.074 2528435 428011 566595 458.324
p value 0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000) | (0.000)  (0.000)  (0.000)  (0.000)  (0.000) (0.000)
MAR MCD
Skewness  0.199  -0.050 1.455 -0.021  -0.047  -0.724 0221 0.102 0.600 0.120 0206  0.127
Kurtosis 8799 3330  81.926 3532 3576 9.943 | 9.388 3.303 8.021 3356  4.066  3.390
B 3813.798 13413 704082 32.081 38463 5744364 | 4727.773 15412 3072954 21290 150554 24938
p value (0.000)  (0.001)  (0.000)  (0.000)  (0.000) _ (0.000) | (0.000)  (0.000)  (0.000)  (0.000)  (0.000) _(0.000)
NWSA TWX
Skewness 0.306 0.142 0.371 0.216 0.232 4.118 0.293 0.233 0.163 0.188 0.245 0.241
Kurtosis 11769 4233 25.113 5217 5879 84.133 | 9.963 3.786 3.233 3571 3.937  3.846
JB 7147.082  148.118 45282.000 472076 786345 748998 | 5628714  96.233 18567  53.877 129018 109.332
p value (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000) | (0.000)  (0.000)  (0.000)  (0.000) _ (0.000) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr, pv,, bv,, cv, denote realized variance, realized range,
realized power variation, realized bipower variation, and realized continuous variance, respectively. The sampling frequency is 1 second.
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Table B.2: Returns standardized by realized volatility measures at 1-second sampling frequency (Sector CS)

h d 4 " L h h h d 5
d 7
rv, rr, pv, bv, cv, v, rr, pv, bv, cv,
AVP BFB
Skewness 0.233 0.084 0.121 0.084 0.097 0.175 0.266 0.056 -0.829 0.021 -0.107 0.981
Kurtosis 9.157 3.184 27.955 3.429 3.492 4.100 _ 11.70605  4.115229 35.06983 4.078358  4.997 64.138
JB 4323.964  7.073 70638 24.021  31.803  153.443 | 7043489 116310  95474.130  107.820  373.548 398341
p value (0.000)  (0.029)  (0.000)  (0.000)  (0.000)  (0.000) | (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)
COST EL
Skewness 0.313 0.151 0.108 0.103 0.176 0.179 0.230 0.099 0.393 0.078 0.100 0.186
Kurtosis 7.115 3.269 3.008 2.850 3.334 3.404 _ 7.776 3.236 59.871 3.433 3.384 4.528
B 1997.535 18904  5.356 7482 27137 33691 | 2546.688  10.505  357869.500  23.484  20.778 284377
p value (0.000)  (0.000)  (0.069)  (0.024)  (0.000)  (0.000) | (0.000)  (0.005) (0.000) (0.000)  (0.000)  (0.000)
KMB KO
Skewness ~ -0.033  0.172 0.103 0.158  0.177  0.194 0.259 0.108 0.312 0.119  0.102  0.105
Kurtosis ~ 10.731  3.233 13.425 3574 3389 4.082 | 8.037 3.442 5.310 3.501 3495 3.445
JB 6888.536  19.857  12530.010  49.379 31.916 152.258 _ 2956.050  27.896 660.351 35.454 33.076  27.902
p value (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000) | (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)
PEP PG
Skewness 0.101 0.046 1.087 0.007 0.028 0.063 -0.226 0.026 0.475 -0.024 -0.043 0.053
Kurtosis ~ 10.070  3.341 17.034 3454 3650 3421 | 10719 3.266 6.399 3455 3674 3319
B 5766.861 14351  23251.280  23.776  49.122 22295 | 6892.808  8.477 1436.007 24152 53.236  13.075
p value (0.000) (0.001) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.014) (0.000) (0.000) (0.000)  (0.001)
UL WMT
Skewness -0.102 -0.003 1.366 -0.030 0.013 0.185 0.273 0.138 0.125 0.123 0.112 0.139
Kurtosis 8939 3363 35422 3.669  3.481 7328 | 7.287 2.951 3.704 3033 3308 2.969
B 3349.048  12.518 100395 42.745 22.009  2156.308 _ 2153.341 9.031 64.349 9.034 16.763 8.994
p value (0.000)  (0.002)  (0.000)  (0.000)  (0.000)  (0.000) | (0.000)  (0.011) (0.000) (0.011)  (0.000)  (0.011)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, bv,, cv, denote realized variance, realized range,
realized power variation, realized bipower variation, and realized continuous variance, respectively. The sampling frequency is 1 second.

242



Table B.3: Returns standardized by realized volatility measures at 1-second sampling frequency (Sector ENG)

5 g g 4 ‘ gl d ¢ i i
g v, /\ﬂm /\hls z\~w|5 cv, " v, r, v, by, cv,
BHI CHK
Skewness -0.074 0.082 -0.398 0.039 0.043 0.085 -0.559 0.030 -0.109 0.076 0.040 0.041
Kurtosis ~ 6.791 3.005 8.582 2994 3018  3.013 | 16356  3.463 27.663 3.859 3407 3.505
B 1659.764  3.082 3665747 0716 0.880  3.335 | 20044 24309 67877.850  84.894 19191  30.146
p value (0.000)  (0.214)  (0.000) (0.699)  (0.644)  (0.189) | (0.000)  (0.000)  (0.000)  (0.000)  (0.000) _ (0.000)
CVX DVN
Skewness  0.114  0.056 -0.243 0.034  0.064 0.078 0.117  -0.050 10.744  -0.076  -0.005  -0.047
Kurtosis 13788 2.963 10.142 3304 3.105 3134 | 7307 2975 419537 3761 3.648  3.150
IB 13423 1613 5907.704 11224 3170 4907 | 2051 1164 19179644  66.351 46290  3.600
p value (0.000)  (0.446)  (0.000) (0.004)  (0.205)  (0.086) | (0.000)  (0.559)  (0.000)  (0.000)  (0.000) _ (0.165)
HAL OXY
Skewness  -2.747  0.004 -0.209 -0.038  0.061 0.007 -0.391  -0.083 0.149 -0.090  -0.062  -0.069
Kurtosis 61332 2.999 8.182 3104 3.386 3.014 | 8723 3.202 7.826 3.007 3284 3.307
B 395770 0.008  3115.932 1923 18.889  0.041 | 3830 7.838  2683.296  3.686  11.065  13.033
p value (0.000) (0.996) (0.000) (0.382)  (0.000) (0.979) (0.000) (0.020) (0.000) (0.158)  (0.004) (0.001)
SUN TE
Skewness  0.202 0.019 5.488 0.052  0.017 0.097 1359 0117 -0.124 0.070  -0.067  -0.104
Kurtosis ~ 8.611 3.324 135.961 3163 3.388 3839 | 26144 3241 59.874 3761 3449 3.266
B 3525.105 11822 1982362 4150 16.884 85463 | 59890 12464 356758  66.008 24247  13.154
p value (0.000)  (0.003) (0.000) (0.126)  (0.000)  (0.000) | (0.000)  (0.002)  (0.000)  (0.000) (0.000)  (0.001)
WMB
Skewness -2.286 -0.096 -0.185 -0.096 -0.087 -0.094 0.052 0.081 -0.086 0.004 0.064 0.111
Kurtosis ~ 46.109  3.057 6.881 3101 3.155 3.08 | 11715 3.137 5.539 3174 3318 3.191
B 216664  4.624 1752.108 5396  6.266 4430 | 8757.847 5215 746588 3492 13570  9.933
p value (0.000)  (0.099) (0.000) 0.067)  (0.044)  (0.109) | (0.000)  (0.074)  (0.000)  (0.174) _ (0.001) _ (0.007)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, bv,, cv, denote realized variance, realized range,

realized power variation, realized bipower variation, and realized continuous variance, respectively. The sampling frequency is 1 second.
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Table B.4: Returns standardized by realized volatility measures at 1-second sampling frequency (Sector FIN)

- g d d 4 g p ’ h h 4 h
' rv, /\M )\ﬁ|<, /\wﬂ cv, ' v, I, v, bv, cv,
ALL AXP
Skewness 0.036 0.026 -0.156 0.044 0.010 0.043 0.060 0.070 0.084 0.022 0.073 0.094
Kurtosis 20.832 3.246 7.188 3.508 3.209 3.248 _ 8.211 3.142 4.744 3.023 3.167 3.181
B 36662 7.294 2033.6064 30.618 5.064 7.952 _ 3132.834 4.57 353.896 0.275 5.661 7.812
pvalie  (0.000)  (0.026)  (0.000)  (0.000) (0.080)  (0.019) | (0.000)  (0.102)  (0.000)  (0.872)  (0.059)  (0.020)
BAC BK
Skewness -0.523 -0.049 -0.066 -0.073 -0.052 -0.029 0.472 0.085 -0.113 0.090 0.074 0.082
Kurtosis 20.042 3.680 7.515 4.097 3.716 3.657 _ 13.340 3.155 10.499 3.446 3.247 3.142
JB 33610 54.474 2352.285 141.254 60335 50.109 _ 12429 6.120 6490 26.694 9.547 5.406
p value (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) | (0.000)  (0.047)  (0.000)  (0.000)  (0.008)  (0.067)
C GS
Skewness -1.647 0.073 0.267 0.028 0.072 0.103 0.119 0.111 0.062 0.124 0.188 0.141
Kurtosis 25.030 3.990 4.049 4.096 4.459 4.018 _ 13.842 2.747 7.063 3.202 3.069 2.952
B 57205 115.508 159.557 138.907 247.735 124.339 _ 13558 13.083 1905.124 11.769 16918 9.471
p value (0.000)  (0.000) (0.000) 0.000)  (0.000)  (0.000) | (0.000)  (0.001)  (0.000)  (0.003)  (0.000)  (0.009)
JPM MS
Skewness 0.538 0.041 -0.062 0.068 0.034 0.042 -0.794 0.016 0.047 0.000 -0.004 0.021
Kurtosis 13.706 3.347 5.440 3.481 3.348 3.315 _ 22.289 2.824 5.947 3.149 3.064 2.849
1B 13347 14.704 688.419 28.757 14.481 12.240 _ 43185 3.671 1002.289 2.557 0.488 2.836
p value 0.000)  (0.001)  (0.000)  (0.000) (0.001)  (0.002) | (0.000)  (0.160)  (0.000)  (0.278)  (0.783)  (0.242)
TRV WFC
Skewness 0.164 0.037 -1.896 0.113 0.131 0.356 0.036 0.081 -0.013 -0.025 0.070 0.064
Kurtosis 13.009 3.260 65.387 4.146 3.998 5.863 _ 18.210 3.446 5.071 4.368 3.434 3.474
B 11279 8.225 439321 153.355  119.661  1002.010 _ 26673 26.002 494.712 216.066  23.971 27.779
p value (0.000) (0.016) (0.000) (0.000)  (0.000) (0.000) _ (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, 77, pv,, bv,, cv, denote realized variance, realized range,
realized power variation, realized bipower variation, and realized continuous variance, respectively. The sampling frequency is 1 second.
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Table B.5: Returns standardized by realized volatility measures at 1-second sampling frequency (Sector HC)

' d! d! 4 h h h d 5 h
" 8% I, py, /\@I<w cv, " rv, »\M )\wlﬁ by, cv,
ABT AMGN
Skewness 0.004 0.023 0.082 0.030 0.065 0.028 -0.278 -0.035 0.018 -0.059 -0.030 -0.024
Kurtosis 6.415 3.421 5.751 3.480 3.630 3.403 _ 6.594 3.570 3.089 3.429 3.628 3.560
B 1344213 20675 875534 27015 47712 19.084 | 1524757  38.027 1.065 227782 45857  36.458
p value (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) | (0.000)  (0.000)  (0.587)  (0.000)  (0.000)  (0.000)
BSX GILD
Skewness 0.108 0.146 -1.082 0.126 0.078 0.145 0.006 -0.020 -0.630 -0.076 -0.041 -0.021
Kurtosis ~ 7.532  3.435 28.556 3717 3727 3500 | 7.474 2.943 8.938 3210 3.017 2953
JB 2365.590  31.602 75593 66.362 63466 38537 | 2305469  0.568  4244.129 7736  0.813  0.452
p value (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) | (0.000)  (0.753)  (0.000)  (0.021)  (0.666)  (0.798)
HUM JNJ
Skewness 0264  0.119 36.899 0.077  0.103 0.128 0.136 0.105 0.260 0.084  0.I35  0.109
Kurtosis ~ 7.803  3.236 1718352 2.961  3.302 3352 | 8284 3.301 5.725 3.539 3460  3.321
B 2638.680 12.714 3.E+08 2.867 15.108 21.790 _ 3228.090  15.486 887.248 36.735 32.864 17.342
p value (0.000)  (0.002)  (0.000) (0.239)  (0.001) _ (0.000) | (0.000)  (0.000)  (0.000)  (0.000)  (0.000) _ (0.000)
MDT MRK
Skewness -0.168 0.033 0.095 0.003 0.150 0.044 0.035 0.049 0.177 0.040 0.040 0.053
Kurtosis ~ 6.287  2.985 5.130 3111 3.693 2990 | 8.097 3.120 4.667 3232 3215 3110
B 1258.669  0.527 527.257 1426 65690  0.897 | 2995517 2780 334717 6959  6.078 2701
p value (0.000)  (0.768)  (0.000) (0.490)  (0.000)  (0.639) | (0.000)  (0.249)  (0.000)  (0.031)  (0.048)  (0.259)
PFE UNH
Skewness 0.194 0.041 0.120 0.060 0.046 0.041 0.456 0.059 -7.197 0.071 0.062 0.077
Kurtosis ~ 4.934  3.126 4210 3295 3.167 3118 | 16481 3.025 210813 3445 3267  3.165
IB 448795 2.603 175.583 1729 4.217 2374 | 20773740 1.635  4.94E+06 24779  9.868  5.878
p value (0.000)  (0.272) (0.000) (0.003)  (0.121)  (0.305) | (0.000)  (0.441)  (0.000)  (0.000) (0.007) _ (0.053)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, bv,, cv, denote realized variance, realized range,
realized power variation, realized bipower variation, and realized continuous variance, respectively. The sampling frequency is 1 second.
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Table B.6: Returns standardized by realized volatility measures at 1-second sampling frequency (Sector IND)

. 5 n n 5 n . n i 7 7 s
ry, 1Y, pv, by, cv, ry, rY, pv, by, cv,
BA CAT
Skewness  0.053 0.003 0.027 -0.006  0.001 -0.022 0.013 -0.018 0.083 0.001  -0.032  -0.016
Kurtosis 5.297 3.113 5.487 2.869 3.161 3.304 _ 5.343 2.990 9.494 3.093 3.045 3.017
B 609.784  1.481 713.479 1.980 2.978 10909 | 633.116  0.159  4865.452 1.003 0.712 0.153
p value (0.000)  (0.477) (0.000) 0.372)  (0.226)  (0.004) | (0.000) (0.924)  (0.000)  (0.606) (0.701)  (0.927)
CMI GD
Skewness  -0.230 0.071 -9.384 0.049 0.087 0.093 -0.206 0.060 -6.039 0.005 0.031 0.068
Kurtosis 7.762 3.083 221.777 3,182 3.684 4.026 _ 6.641 3.027 196.260 3.365 3.277 3.316
IB 2466.118  2.911 5.20E+06 4597 53651  125.080 | 1530.861 1734  427E+06 15226  9.185 13.587
p value 0.000)  (0.233 (0.000) (0.100)  (0.000)  (0.000) | (0.000)  (0.420) (0.000) (0.000)  (0.010)  (0.001)
GE LUV
Skewness  -0.115 0.082 0.106 0.085 0.078 0.085 0.090 0.091 0.136 0.101 0.100 0.041
Kurtosis 9.256 3.461 3.865 3.677 3.569 3454 | 6.910 3372 5.880 3.474 3.468 3.210
B 4517.602  27.538 91.549 56.170 40154  27.089 | 1765.023 19745  963.931 30519 29.831 5.837
p value (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) | (0.000)  (0.000)  (0.000) (0.000)  (0.000)  (0.054)
MMM UPS
Skewness  0.498 -0.005 -0.436 0.113  -0.010 0.092 0.195 -0.003 1.351 -0.044  -0.050  -0.023
Kurtosis 8.805 2.960 10.924 3.771 3.072 3367 | 7171 3.373 64.548 3.522 3.536 3.019
JB 3999275  0.194 7326.603 74509  0.644 19470 | 2023329 16.073 437591 32278 34250  0.288
p value (0.000)  (0.907) (0.000) (0.000)  (0.725)  (0.000) | (0.000)  (0.000)  (0.000) (0.000)  (0.000)  (0.866)
HON UTX
Skewness  -0.423 0.033 0.897 0.026 0.050 0.006 -0.234 0.049 0.037 0.031 0.074 0.108
Kurtosis 10.040 3.190 26.622 3.363 3.281 3.498 | 9330 2772 3.023 3.003 2.852 3.435
1B 5796.558  4.675 64703.750 15495 10255  28.614 | 4644.655  7.099 0.697 0.442 5.043 27.247
p value (0.000)  (0.097) (0.000) (0.000)  (0.006)  (0.000) | (0.000) (0.029)  (0.706)  (0.802) _ (0.080) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr, pv,, bv,, cv, denote realized variance, realized range,
realized power variation, realized bipower variation, and realized continuous variance, respectively. The sampling frequency is 1 second.
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Table B.7: Returns standardized by realized volatility measures at 1-second sampling frequency (Sector IT)

h h 5 h d d ¢ ¢ % i/
" v, rr, v, by, cv, £ /\Mﬂ /\NM pv, by, cv,
AAPL DELL
Skewness 0.064 0.107 0.083 0.072 0.107 0.111 0.217 -0.003 0.002 0.004 -0.012 -0.033
Kurtosis 5.020 3.273 3.252 2.938 3.236 3.276 _ 7.280 3.245 3.126 3.257 3.321 3.490
B 472.348 13.856 10.507 2.818 11.678 14.469 _ 2133.824  6.944 1.836 7.639 11.910 28.197
p value (0.000)  (0.001)  (0.005) (0.244)  (0.003)  (0.001) | (0.000)  (0.031)  (0.399)  (0.022)  (0.003) _ (0.000)
EMC HPQ
Skewness  0.197  0.038 0.161 0.020  0.043  -0.005 0303 0.025 -0.171 -0.047  0.033  0.039
Kurtosis ~ 8.047  3.120 3.602 3277 3.204 3251 | 7.045  3.188 4.439 3126 3233 3.116
JB 2954311 2.326 53.709 9.023  5.670 7276 | 1928636 4373 252.381 2852 6765  2.234
p value (0.000)  (0.313)  (0.000) 0.011)  (0.059)  (0.026) | (0.000)  (0.112)  (0.000)  (0.240)  (0.034) _ (0.327)
IBM INTC
Skewness  0.059  0.064 -0.052 -0.037  0.075 0.041 0.061 0.064 0.076 0072 0.059  0.112
Kurtosis ~ 7.167  3.164 3.590 2978 3209 3212 | 5700 3.092 3.053 3.048 3149 3241
IB 2003.553 4.987 41.341 0.699 7.621 5.970 _ 842.260 2.855 2.955 2.636 4.142 12.519
p value (0.000)  (0.083)  (0.000) (0.705)  (0.022) _ (0.051) | (0.000)  (0.240)  (0.228)  (0.268)  (0.126) _ (0.002)
MSFT ORCL
Skewness 0.248 0.091 0.134 0.109 0.089 0.064 0.483 0.049 0.084 0.039 0.038 0.091
Kurtosis ~ 6.216  3.613 3.200 3.657  3.625 3.092 | 11183 3.365 3.142 3198 3466  3.599
B 1220.467  47.160 12.883 55.235 48.727 2.872 _ 7827.708  16.436 5.564 5.228 25.739 45.134
p value (0.000)  (0.000) (0.002) (0.000)  (0.000)  (0.238) | (0.000)  (0.000)  (0.062)  (0.073)  (0.000) _ (0.000)
XRX CSCo
Skewness -0.235 0.086 0.092 0.057 -0.007 0.049 0.373 -0.033 -0.004 -0.021 -0.042 0.085
Kurtosis 15.032 3.412 7.146 4.303 5.158 3.374 _ 11.427 3.489 3.331 3.439 3.568 3.409
B 16717 23.010 1985468  197.087 536.797 17213 | 8250922 28.079  12.678 22420  37.949 22618
p value (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) | (0.000) (0.000)  (0.002)  (0.000) (0.000) _ (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, bv,, cv, denote realized variance, realized range,
realized power variation, realized bipower variation, and realized continuous variance, respectively. The sampling frequency is 1 second.
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Table B.8: Returns standardized by realized volatility measures at 1-second sampling frequency (Sector MAR)

. h h h d . h 4 d /i di
1y, p, by, cv, ! ry, IY, Y, bv, cv,
AA AKS
Skewness ~ -0.451  0.036 0.199 0.070  0.036 0037 | -0239  0.086 -13.058 0075  0.149  0.109
Kurtosis 8.308 3.226 8.356 3.181 3.260 3.235 _ 7.271 3.285 427.631 3.267 3.726 3.383
B 3342.485 6.460 3325977 6.069 8.429 7.003 _ 1911.751 11.448 1.87E+07 9.584 63.709 22.437
p value (0.000)  (0.040) (0.000) 0.048)  (0.015)  (0.030) | (0.000)  (0.003)  (0.000)  (0.008)  (0.000)  (0.000)
DD DOW
Skewness  0.035  0.123 0.478 0.157  0.181 0.142 0.113 0.058 -1.191 0.097  0.100  0.052
Kurtosis 7.523 3.169 6.912 3.362 3.461 3.183 _ 8.894 3.007 22514 3.331 3.304 2.999
1B 2358.693  10.224 1869.817 26.574 39.636 13.229 _ 4009.810 1.534 44539 16.987 15.248 1.263
p value (0.000)  (0.006)  (0.000)  (0.000) (0.000)  (0.001) | (0.000)  (0.464)  (0.000) _ (0.000)  (0.000) _ (0.532)
FCX 1P
Skewness  -0.240  0.083 2.611 0.149 0199  0.098 | -0.165  -0.030 0.168 0,022 -0.031  -0.015
Kurtosis ~ 6.462 2972 67.971 3540 3.571 3.092 | 10205 3.034 5.527 2974 3.081  3.139
IB 1330447 3.066 462735100 41436 52874 5392 | 5997.822  0.541 749.074 0293 1191 2318
p value (0.000)  (0.216)  (0.000)  (0.000)  (0.000)  (0.067) | (0.000)  (0.763)  (0.000)  (0.864)  (0.551) _ (0.314)
NUE
Skewness  0.178  0.112 0129 0.113 0.1 -0.456  0.028 40.338 0.000  0.001  0.053
Kurtosis 7.423 2.882 7.152 297 2.868 2.889 _ 9.958 3.227 1936.654 3.728 3.993 3.725
1B 2264.693 7312 2076874 7710 7916 7.072 | 5459.391  6.031  4.1SE+08 58723 109398  61.767
p value (0.000)  (0.026)  (0.000)  (0.021)  (0.019)  (0.029) | (0.000)  (0.049)  (0.000)  (0.000)  (0.000) _ (0.000)
WY X
Skewness 0352  0.071 -0.161 0.095  0.092 008 | -0329  0.038 -0.903 0.027 0099  0.052
Kurtosis 8.987 3.186 26.363 3.407 3.408 3.406 _ 6.322 2.828 38.393 3.019 3.094 2917
JB 4185492 6348 62874110 23245  23.062  22.613 | 1294738  3.984 141819200 0366 5446  2.053
p value (0.000) (0.042) (0.000) (0.000)  (0.000) (0.000) _ (0.000) (0.136) (0.000) (0.833)  (0.066) (0.358)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. 7v,, rr,, pv,, bv,, cv, denote realized variance, realized range,
realized power variation, realized bipower variation, and realized continuous variance, respectively. The sampling frequency is 1 second.
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Table B.9: Returns standardized by realized volatility measures at 1-second sampling frequency (Sector TEL)

h 5 5 7 i r 7 4 s g
A R R R T R T R A R
AMT BT
Skewness  -0.452 0.168 2.142 0.159  0.184 0.154 -0.397 0.086 4.041 0.069 0.123 0.233
Kurtosis 15.583 2.970 71.583 3.479  3.103 3.032 | 9416 3.183 89.083 3.594 3.367 3.940
IB 17746 12630 527E+05 36877 16360  11.097 | 3337.033  5.013 597E+05  29.687  15.588  126.477
p value (0.000)  (0.002) (0.000) (0.000)  (0.000)  (0.004) (0.000)  (0.082) (0.000) (0.000)  (0.000)  (0.000)
CTL FTR
Skewness  -0.221 -0.069 -1.232 -0.033  -0.041 0.143 0.062 0.221 -1.146 0.302 0.352 0.226
Kurtosis 8.868 3.181 29.650 3.407  3.548 4925 | 14951 4.791] 26.458 6.271 5.853 4.671
B 3860.873  5.744 79866 18927 34238 435842 | 15356  365.750 59719 1189.087 928.557  345.586
p value (0.000)  (0.057) (0.000) (0.000)  (0.000)  (0.000) | (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)
Q S
Skewness  -0.474 -0.083 -0.291 0.000  -0.095  -0.087 -0.802 0.113 -0.364 0.124 0.231 0.122
Kurtosis 26.906 5.422 9.069 5256  5.448 5.463 | 13279 4.062 9.425 4.774 4.839 4.103
B 65993.310 679.293 4285882  586.546 694.985  702.816 | 12478.630 135986  4820.770  369.756  414.545  147.119
p value (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)
T TEF
Skewness  0.391 0.064 -0.242 0.113 0.049 0.061 1.180 -0.029 -0.033 0.032  0.141 -0.742
Kurtosis 6.604 3.357 8.291 4.003 3.676 3.558 | 25244 3.022 31.204 3.617 4328 17.115
B 1567516  37.633  3254.665  121.895 53.788  37.607 | 50848 0.388 80839 39.093 187430 23121.530
p value (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) | (0.000)  (0.824) (0.000) (0.000)  (0.000)  (0.000)
VOD VZ
Skewness  0.153 -0.018 -0.284 20.019  -0.021 -0.012 0.488 0.069 0.124 0.151 0.080 0.072
Kurtosis 8.869 3.370 8.083 3.654 3.427 3329 | 6.640 3.283 4.887 3.451 3.389 3.276
B 3982464 15950 3016337  49.479 21189 12530 | 1637.755 11376  417.499 33918 20335  11.136
p value (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.002) | (0.000)  (0.003) (0.000) (0.000)  (0.000)  (0.004)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, bv,, cv, denote realized variance, realized range,
realized power variation, realized bipower variation, and realized continuous variance, respectively. The sampling frequency is 1 second.
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Table B.10: Returns standardized by realized volatility measures at 1-second sampling frequency (Sector UTL)

7 7 / 7 z / / s / s
" 3
AEP CEG
Skewness -0.415 -0.002 -8.842 -0.054 -0.196 0.084 -5.105 -0.091 0.072 -0.126 -0.125 -0.065
Kurtosis 21.837 3.093 242.070 3.463 4.338 3.538 _ 90.319 3.438 34.539 3.657 3.841 3.711
JB 40738 1.001 6584788 25.887  222.852 36.619 _ 859844 24.989 110665 55.157 85.616 60.161
p value 0.000)  (0.606) (0.000) 0.000)  (0.000)  (0.000) | (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)
DUK ETR
Skewness 0.428 -0.041 -1.207 -0.056 -0.059 -0.039 -0.302 -0.004 -0.769 -0.082 -0.017 2.439
Kurtosis 10.698 3.325 21.886 3.788 3.388 3.323 _ 11.375 3.261 44.097 3.889 3.759 66.178
JB 6915.797 12.955 41792 73.072 18.995 12.695 _ 7937.384 7.679 190418 91.926 64.990 457745
p value (0.000)  (0.002) (0.000) (0.000)  (0.000)  (0.002) | (0.000)  (0.022) (0.000) (0.000)  (0.000)  (0.000)
OKE PCG
Skewness -0.138 -0.047 8.981 -0.030 -0.039 -0.049 -3.052 0.028 -0.506 0.062 0.055 -0.025
Kurtosis 21.550 3.041 326.000 3.524 3.308 3.595 _ 75.234 3.286 37916 4.010 3.454 4.486
JB 33529 1.012 1.02E+07 27.092 9.813 41.868 _ 602789 9.762 139960 118.666  25.024 254.015
p value (0.000) (0.603) (0.000) (0.000) (0.007) (0.000) (0.000) (0.008) (0.000) (0.000)  (0.000) (0.000)
PEG PGN
Skewness 0.111 0.001 2.039 -0.034 0.029 0.057 0.401 -0.004 2.271 0.019 0.015 -0.266
Kurtosis 9.763 3.369 33.306 3.872 3.825 3.330 _ 11.903 3.130 62.485 3.583 3.267 7.361
JB 5099.590  15.125 104145 85.296 76.163 14.109 _ 9048.454 1.915 403071 38.703 8.185 2221207
p value (0.000)  (0.001) (0.000) (0.000)  (0.000)  (0.001) 1 (0.000)  (0.384) (0.000) (0.000)  (0.017)  (0.000)
SO EXC
Skewness 0.210 0.143 0.125 0.143 0.134 1.933 0.426 -0.051 1.541 -0.044 -0.099 0.139
Kurtosis 8.472 3.784 6.653 4.125 3.923 32.032 _ 10.639 3.162 21.410 3.573 3.461 3.742
B 3470.970  80.230 1545.129 155.334 106.439 98858 _ 6755.537  4.167 39837.540  38.461 28.779 72.388
p value (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000) | (0.000) (0.124)  (0.000) (0.000)  (0.000)  (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,, rr,, pv,, bv,, cv; denote realized variance, realized range,

realized power variation, realized bipower variation, and realized continuous variance, respectively. The sampling frequency is 1 second.
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Table C.1: Returns standardized by EWMA filtered realized volatility measures at 5-sec sampling frequency (Sector CD)

¥ ma ¥ ma U 7 Ty Ma ¥ ma mu ¥4
T4 - T ny”
/\ PV, /\x ¥ »\ PV wa /\ bY, s /\ PV ma z\ T, ma /\ PV /\®<\.§
AMZN BBY
Skewness -0.085 0.147 0.136 0.067 0.141 _ -1.193 0.045 0.009 -0.022 -0.020
Kurtosis 7.020 3.191 3.160 3.328 3.198 _ 24.672 3.236 3.609 3.868 3.589
JB 1866.119 14.167 11415 14.434 13.657 _ 54808 7.377 42.784 87.182 40.202
p value (0.000) (0.001) (0.003) (0.001) (0.001) _ (0.000) (0.025) (0.000) (0.000) (0.000)
DIS GPS
Skewness 0.198 0.021 0.041 0.032 0.053 _ 0.154 -0.034 -0.062 -0.027 -0.047
Kurtosis 5.725 2.822 2.845 2.934 2.918 _ 6.616 3.169 3.559 3.519 3.192
JB 874.308 3.843 3.521 0.965 2.097 _ 1518.156 3.832 37.778 31.391 5.292
p value (0.000) (0.146) (0.172) (0.617) 0.350) | (0.000) (0.147) (0.000) (0.000) 0.071)
HD IPG
Skewness 0.514 0.109 0.127 0.110 0.106 _ 0.082 -0.028 -0.262 -0.084 -0.015
Kurtosis 7.080 2.991 3.165 3.167 3.045 _ 19.014 3.368 4912 4.140 3.372
JB 2040.648 5.478 10.568 8.827 5.449 _ 29571 15.932 452.958 153.104 16.035
p value (0.000) (0.065) (0.005) (0.012) (0.066) _ (0.000) (0.000) (0.000) (0.000) (0.000)
MCD
Skewness -0.020 -0.122 -0.115 -0.141 _ 0.083 0.028 0.031 0.026 0.084
Kurtosis 7.733 3.178 3.247 3.196 _ 7.371 2.826 2.950 3.191 3.184
JB 2582.933 10.542 13.161 13.656 _ 2205.782 3.835 0.741 4.497 7.142
p value (0.000) (0.005) (0.000) (0.001) (0.001) _ (0.000) 0.147) (0.691) (0.106) (0.028)
NWSA TWX
Skewness 0.201 -0.035 -0.032 -0.028 0.029 _ -0.066 0.028 0.032 -0.024 0.048
Kurtosis 8.750 2.985 4.021 3.342 4.368 _ 7.571 2.840 3.032 3.236 2.918
JB 3830.545 0.592 120.710 13.834 216.136 _ 2410.782 3.318 0.593 6.684 1.865
p value (0.000)  (0.744) (0.000) (0.001) (0.000) | (0.000) (0.190) (0.744) (0.035) (0.394)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. 7V, pma, TT¢ma, PVema, bV ma denote EWMA filtered
realized variance, realized range, realized power variation, and realized bipower variation, respectively. The sampling frequency is 5 minute.
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Table C.2: Returns standardized by EWMA filtered realized volatility measures at 5-sec sampling frequency (Sector CS)

uny Vi Mma Fma Fma Y4 U 7 a4 Vi ma
7 M T o
/\3.1,\: /\\3,5 z\ﬁﬁ.\i z\?\i\x /\x<:§ /\\A.S /\Mwﬁsi )\®<r§
AVP BFB
Skewness -0.010 -0.042 -0.022 -0.038 -0.015 _ 0.393 0.070 0.096 0.095 0.068
Kurtosis 8.616 3.437 3.587 3.740 3.370 _ 10.451 3.357 4.265 3.618 3.434
JB 3636.647 22.871 40.004 63.882 15.912 _ 6471.521 16.967 188.917 48.233 23.852
p value 0.000)  (0.000) (0.000) (0.000) 0.000) | (0.000)  (0.000) (0.000) (0.000) (0.000)
COST EL
Skewness 0.392 0.041 0.015 0.018 0.037 _ 0.077 0.128 0.093 0.114 0.125
Kurtosis 8.471 3.004 2.972 3.259 3.007 ~ 6.622 2.985 3.176 3.159 3.030
JB 3522.429 0.766 0.192 7.858 0.622 _ 1515.407 7.588 7.526 8.892 7.290
p value 0.000)  (0.682) (0.908) (0.020) 0.733) | (0.000)  (0.023) (0.023) (0.012) (0.026)
KMB KO
Skewness -0.067 -0.005 -0.064 -0.059 -0.009 _ -0.143 0.008 0.013 -0.010 0.020
Kurtosis 9.920 3.173 3.686 3.590 3.222 _ 6.839 3.042 3.157 3.221 3.063
JB 5523.493 3.445 56.086 41.701 5.736 _ 1708.364 0.228 2.903 5.704 0.654
p value 0.000)  (0.179) (0.000) (0.000) 0.057) | (0.000)  (0.892) (0.234) (0.058) 0.721)
PEP PG
Skewness -0.166 0.012 -0.031 -0.041 0.028 _ -0.516 -0.072 -0.079 -0.140 -0.105
Kurtosis 9.383 2.973 3.141 3.308 3.046 _ 8.379 2.974 3.114 3.239 3.150
JB 4709.515 0.148 2.754 11.711 0.605 _ 3458.303 2.486 4.412 15.708 7.680
p value (0.000) (0.929) (0.252) (0.003) (0.739) _ (0.000) (0.289) (0.110) (0.000) (0.021)
UL WMT

Skewness -0.330 -0.224 -0.219 -0.286 -0.221 _ -0.194 -0.008 -0.017 -0.029 -0.014
Kurtosis 8.466 3.038 3.220 3.346 3.073 _ 7.720 3.041 3.123 3.303 3.099
JB 3494419 23.327 27.702 51.436 23.045 _ 2586.294 0.223 1.882 10.948 1.219
p value (0.000)  (0.000) (0.000) (0.000) 0.000) | (0.000)  (0.895) (0.390) (0.004) (0.544)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rvepa, 77 ma, PVema bV ma, denote EWMA filtered
realized variance, realized range, realized power variation, and realized bipower variation, respectively. The sampling frequency is 5 minute.



Table C.3: Returns standardized by EWMA filtered realized volatility measures at S-sec sampling frequency (Sector ENG)

p Fima Fima U Finaa . Tima Fima Fima Vi ma
o /\ Vi ma /\ 77 ha »\ PVipaa /\ BY, p1 . /\ Vi Ma % v /\ PV )\ A
BHI CHK
Skewness -0.309 0.055 0.001 0.006 0.064 _ -0.910 -0.058 -0.055 -0.125 -0.051
Kurtosis 5.500 3.055 3.217 3.115 3.108 | 14.140 3.066 3.062 3.389 3.053
B 764.684 1.734 5.436 1.548 3.261 | 14690 2.054 1.833 24.669 1.513
p value (0.000)  (0.420) (0.066) (0.461) 0.196) | (0.000)  (0.358) (0.400) (0.000) (0.469)
CvX DVN
Skewness -0.471 -0.075 -0.104 -0.126 -0.048 _ -0.282 -0.119 -0.181 -0.150 -0.110
Kurtosis 9.793 3.033 3.352 3.159 3.093 | 5775 3.185 3.981 3.343 3.323
JB 5423.203 2.742 19.261 10.225 2.067 _ 924.537 10.463 126.149 23.967 17.628
p value (0.000) (0.254) (0.000) (0.006) 0.356) | (0.000) (0.005) (0.000) (0.000) (0.000)
HAL OXY
Skewness -2.651 -0.171 -0.159 -0.400 -0.131 _ -0.518 -0.073 -0.110 -0.141 -0.061
Kurtosis 44.867 4.030 4.110 6.258 3.802 | 7.473 3.068 3.249 3.064 3.072
JB 205330 135.864 153.790 1297.396 82.128 _ 2430.618 3.021 12.769 9.669 2.290
p value (0.000)  (0.000) (0.000) (0.000) 0.000) | (0.000)  (0.221) (0.002) (0.008) (0.318)
SUN TE
Skewness 0.082 0.031 0.042 -0.014 0.031 _ -2.100 -0.135 -0.178 -0.250 -0.104
Kurtosis 7.624 3.043 3.249 3.085 3.044 | 31315 3.241 3.477 3.867 3.338
JB 2468.502 0.642 7.980 0.922 0.672 _ 94468 15.133 40.774 115.496 18.096
p value (0.000) (0.726) (0.018) (0.631) 0.714) | (0.000) (0.001) (0.000) (0.000) (0.000)
WMB XOM
Skewness -4.092 -0.114 -0.172 -0.341 -0.109 _ -0.233 0.007 0.047 -0.064 0.003
Kurtosis 84.144 3.328 3.417 5.078 3377 | 9.203 3.064 3.215 3.117 3.079
IB 766845 18.417 33.689 551.395 21.902 _ 4460.612 0.497 6.376 3.465 0.718
p value 0.000)  (0.000) (0.000) (0.000) 0.000) | (0.000)  (0.780) (0.041) (0.177) (0.698)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. rv,pa, T7¢pa, PVema DV ma, denote EWMA filtered
realized variance, realized range, realized power variation, and realized bipower variation, respectively. The sampling frequency is S minute.
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Table C.4: Returns standardized by EWMA filtered realized volatility measures at 5-sec sampling frequency (Sector FIN)

Fma Fima n Fima Ty ma Fioma 7 Tiaa
¥ ma Vi ma
/\\S,\,\: /\\3.5 /\%S%s »\@Ss\s )\éi\i z\\\\?ﬂ_ /\ES.?R »\@S.?&
ALL AXP
Skewness -1.038 -0.049 -0.034 -0.051 -0.052 _ 0.089 -0.044 -0.051 -0.065 -0.032
Kurtosis 25.522 3.053 3.145 3.764 3.074 _ 7.838 2.793 2.900 3.032 2.797
JB 58975.410 1.406 2.937 68.419 1.876 _ 2702.630 5.842 2.335 2.069 5.202
p value (0.000) (0.495) (0.230) (0.000) ©391) | (0.000) (0.054) (0.311) (0.355) (0.074)
BAC BK
Skewness -1.749 -0.057 -0.096 -0.218 -0.070 _ 0.121 0.021 -0.042 0.049 -0.007
Kurtosis 27.030 3.006 3.218 3.866 3.104 * 12.370 3.091 3.377 3.375 3.179
JB 67984.490 1.505 9.778 108.381 3.514 _ 10128 1.150 17.236 17.313 3.723
p value (0.000) (0.471) (0.008) (0.000) ©.173) | (0.000) (0.563) (0.000) (0.000) (0.155)
C GS
Skewness -4.154 0.059 0.080 -0.203 0.059 _ -0.415 -0.015 -0.043 -0.064 -0.004
Kurtosis 48.213 3.079 3.279 3.824 3.163 _ 8.794 2.842 3.161 3.092 2.931
JB 243634 2.317 11.927 97.259 4.705 _ 3950.383 2.959 3.821 2.884 0.558
p value (0.000) (0.314) (0.003) (0.000) (0.095) _ (0.000) (0.228) (0.148) (0.236) (0.757)
JPM MS
Skewness -0.317 0.006 -0.027 -0.019 -0.001 _ -0.923 -0.004 -0.007 -0.016 0.014
Kurtosis 13.679 2.950 3.077 3.369 2.972 _ 19.800 2.851 3.043 3.023 2.869
JB 13193 0.303 1.032 15.902 0.092 _ 32931 2.561 0.234 0.183 2.062
p value (0.000) (0.860) (0.597) (0.000) (0.955) _ (0.000) (0.278) (0.890) (0.913) (0.357)
TRV WFC
Skewness 0.586 0.079 0.162 0.143 0.079 _ -0.696 0.110 0.103 0.033 0.110
Kurtosis 11.479 3.263 3.829 3.673 3.366 _ 19.146 3.072 3.234 3.643 3.093
B 8446.766 10.870 91.326 61.716 18.320 _ 30278 6.133 11.169 48.231 6.610
p value (0.000) (0.004) (0.000) (0.000) 0.000) | (0.000) (0.047) (0.004) (0.000) (0.037)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. 7V pa, T7¢ma, PVema bV ma, denote EWMA filtered
realized variance, realized range, realized power variation, and realized bipower variation, respectively. The sampling frequency is 5 minute.
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Table C.5: Returns standardized by EWMA filtered realized volatility measures at 5-sec sampling frequency (Sector HC)

U Fima Fima Foma ¥ ma Fima Fima T
U T ny7
% Vi a /\ FF a »\ PYima bY, 4 ;\ FVi pa % Fipa /\ PV »\ bY, pa
ABT AMGN
Skewness -0.102 0.016 0.054 0.009 0.043 _ -0.649 -0.069 -0.091 -0.171 -0.067
Kurtosis 5.670 3.075 3.227 3.251 3.162 M 6.551 2.955 3.075 3.229 2.997
JB 826.948 0.760 7.289 7.316 3.862 _ 1648.085 2.430 4.475 19.544 2.079
p value 0.000)  (0.684) (0.026) (0.026) 0.145) | (0.000) (0.297) (0.107) (0.000) (0.354)
BSX GILD
Skewness -0.078 0.034 0.053 0.030 0.037 _ -0.104 -0.030 -0.037 0.002 -0.027
Kurtosis 7.823 2.947 3.135 3.151 3.032 _ 8.268 3.073 3.181 3.504 3.125
1B 2684.533 0.847 3.384 3.061 0.733 _ 3204.453 1.028 4.413 29.321 2.144
p value (0.000) (0.655) (0.184) (0.216) 0.693) | (0.000) (0.598) (0.110) (0.000) (0.342)
HUM JNJ
Skewness -0.443 0.069 0.066 -0.002 0.086 _ -0.082 -0.033 -0.022 -0.093 -0.018
Kurtosis 7.472 2.980 3.109 3.179 3.010 _ 8.532 3.027 3.201 3.389 3.072
B 2396.356 2.225 3.393 3.688 3.459 _ 3532.019 0.598 4.888 21.391 0.743
p value (0.000) (0.329) (0.183) (0.158) 0.177) | (0.000) (0.742) (0.087) (0.000) (0.690)
MDT MRK
Skewness -0.524 -0.097 -0.060 -0.177 -0.091 _ 0.109 -0.046 -0.070 -0.081 -0.089
Kurtosis 7.507 2.996 3.306 3.347 3.166 _ 7.953 3.157 3.233 3.614 3.371
JB 2468.394 4.300 12.478 28.348 6.984 _ 2833.996 3.807 8.505 46.578 19.522
p value (0.000)  (0.116) (0.002) (0.000) 0.030) | (0.000) (0.149) (0.014) (0.000) (0.000)
PFE UNH
Skewness 0.151 0.018 0.046 0.055 0.041 _ -0.090 -0.099 -0.060 -0.142 -0.102
Kurtosis 4.759 2.768 2.856 2.901 2.917 _ 13.564 3.040 3.358 3.401 3.094
JB 367.267 6.360 3.374 2.492 1.572 _ 12871 4.706 16.434 27.816 5.794
p value (0.000) (0.042) (0.185) (0.288) (0.456) _ (0.000) (0.095) (0.000) (0.000) (0.055)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. 7V, ma, T7¢ ma, PVeya, bV ma, denote EWMA filtered
realized variance, realized range, realized power variation, and realized bipower variation, respectively. The sampling frequency is 5 minute.



Table C.6: Returns standardized by EWMA filtered realized volatility measures at 5-sec sampling frequency (Sector IND)

; Tima Fima T Vst . Fima ¥4 n Vw4
. /\\x..:m )\xs.,.i /\Nﬁ\ii /\\u<:§ . /\3\:§ »\\J«\i /\%S.?x )\@S%R
BA CAT
Skewness 0.023 0.019 0.011 0.023 0.018 _ -0.120 0.016 0.009 0.011 0.030
Kurtosis 5.273 3.153 3.254 3.282 3.178 _ 4.960 2.850 3.022 2.970 2.929
JB 595.923 2.850 7.464 9.371 3.800 _ 449.434 2.709 0.091 0.154 0.990
p value 0.000)  (0.241) (0.024) (0.009) 0.150) | (0.000) (0.258) (0.956) (0.926) (0.610)
CMI GD
Skewness -0.222 0.091 0.070 0.066 0.090 _ -0.469 -0.058 -0.029 -0.120 -0.057
Kurtosis 7.445 3.058 3.396 3.168 3.088 _ 6.752 3.040 3.334 3.327 3.170
JB 2300.497 4.175 20.347 5.276 4.671 _ 1724.268 1.726 13.277 19.013 4.868
p value 0.000)  (0.124) (0.000) (0.072) ©0.097 | (0.000) (0.422) (0.001) (0.000) (0.088)
GE HON
Skewness -0.642 0.100 0.104 0.035 0.106 _ -0.870 -0.085 -0.139 -0.206 -0.073
Kurtosis 9.912 2.885 2.976 3.132 2.896 _ 9.514 3.037 3.252 3.481 3.063
JB 5698.019 6.117 5.100 2.583 6.446 _ 5240.337 3.478 16.203 46.153 2.931
p value 0.000)  (0.047) (0.078) (0.275) (0.040) | (0.000) (0.176) (0.000) (0.000) (0.231)
LUV MMM
Skewness -0.158 0.134 0.140 0.116 0.136 1_‘ 0.213 0.073 0.058 0.082 0.063
Kurtosis 6.596 3.076 3.172 3.199 3.108 _ 7.010 3.146 3.327 3.402 3.193
JB 1502.603 8.927 12.374 10.740 9.860 _ 1874.683 4.915 13.878 21.723 6.148
p value 0.000)  (0.012) (0.002) (0.005) 0.007) | (0.000) (0.086) (0.001) (0.000) (0.046)
UPS UTX
Skewness -0.057 -0.071 -0.089 -0.092 -0.067 _ -0.380 -0.083 -0.140 -0.143 -0.071
Kurtosis 6.588 3.222 3.514 3.551 3.298 _ 8.946 3.094 3.480 3.529 3.113
B 1485.757 8.024 34.082 38.909 12.315 _ 4142.965 4.163 35.590 41.652 3.803
p value (0.000) (0.018) (0.000) (0.000) (0.002) _ (0.000) (0.125) (0.000) (0.000) (0.149)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. 7V, pma, TTepa, PVema, bv, 4, denote EWMA filtered
realized variance, realized range, realized power variation, and realized bipower variation, respectively. The sampling frequency is 5 minute.
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Table C.7: Returns standardized by EWMA filtered realized volatility measures at 5-sec sampling frequency (Sector IT)

. U, ¥ ma " ¥ ma , ¥ aa T4 T4 Tma
. /\3\,:5 /\\3,5 /\%S%x /\@S.\i o )\3\:\5 /\3\:5 )\.GS.%: »\@55
AAPL CSCO
Skewness -0.077 0.135 0.156 0.088 0.150 _ -0.161 0.019 0.040 -0.026 0.028
Kurtosis 5.175 2.996 3.020 3.047 2.999 _ 7.548 2.882 2.963 3.069 2.886
JB 548.286 8.440 11.294 3.859 10.414 _ 2396.376 1.780 0.899 0.854 1.873
p value 0.000)  (0.015) (0.004) (0.145) (0.005) | (0.000) 0.411) (0.638) (0.652) (0.392)
DELL EMC
Skewness 0.072 -0.037 -0.050 -0.015 -0.031 _ -0.057 -0.008 -0.012 -0.045 0.015
Kurtosis 6.300 2.941 2.916 3.180 2.969 _ 6.417 2.876 2.950 3.163 2.905
B 1258.141 1.017 1.949 3.847 0.560 _ 1347.722 1.805 0.354 4.016 1.156
p value 0.000)  (0.602) (0.377) (0.146) 0.756) |  (0.000) (0.406) (0.838) (0.134) (0.561)
HPQ IBM
Skewness 0.008 0.051 0.009 -0.030 0.046 _ -0.229 -0.014 -0.029 -0.059 0.017
Kurtosis 5.968 3.070 3.097 3.250 3.071 _ 6.164 2.948 3.026 3.132 2.964
JB 1015.846 1.787 1.129 7.630 1.533 _ 1178.095 0.406 0.479 3.619 0.289
p value (0.000) (0.409) (0.569) (0.022) (0.465) _ (0.000) (0.816) (0.787) (0.164) (0.865)
INTC MSFT
Skewness -0.236 0.029 0.025 -0.012 0.041 _ -0.096 0.097 0.110 0.041 0.085
Kurtosis 5.444 2.881 2.885 2.940 2.880 _ 5.631 2.905 2.933 3.010 2.931
JB 714.355 2.025 1.800 0.486 2.433 4 802.083 5.374 6.085 0.792 3.860
p value (0.000)  (0.363) (0.407) (0.784) 0.296) | (0.000) (0.068) (0.048) (0.673) (0.145)
ORCL XRX
Skewness -0.291 -0.017 0.022 -0.111 -0.008 _ -0.693 0.016 0.061 -0.061 -0.010
Kurtosis 8.038 2.909 2.967 3.304 2.932 _ 13.795 3.138 3.323 3.745 3.527
JB 2965.802 1.085 0.346 16.375 0.563 _ 13656.5 2.328 13.708 65.669 32.074
p value 0.000)  (0.581) (0.841) (0.000) ©0.755) | (0.000) 0.312) (0.001) (0.000) (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. 7V, ya, T7¢ma, PVema, DV pa, denote EWMA filtered

realized variance, realized range, realized power variation, and realized bipower variation, respectively. The sampling frequency is 5 minute.
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Table C.8: Returns standardized by EWMA filtered realized volatility measures at 5-sec sampling frequency (Sector MAR)

. ¥ ma Fima ¥ma v . ¥ima Fi.ma Fima £y
o /\ Y, ma /\ ¥ ma /\ PV /\ bY, ps4 e /\ V) ma /\ ¥, ma /\ PV )\ b, \u
AA AKS
Skewness -0.844 0.046 0.025 0.001 0.059 _ -0.495 0.063 0.076 -0.006 0.062
Kurtosis 9.224 2.924 3.031 3.081 2.955 _ 7.437 3.292 3.511 3.513 3.345
JB 4794.013 1.643 0.404 0.760 1.853 _ 2382.961 11.690 32.734 30.324 15.510
p value (0.000) (0.440) (0.817) (0.684) 0.396) | (0.000) (0.003) (0.000) (0.000) (0.000)
DD DOW
Skewness -0.002 0.133 0.164 0.114 0.156 1_‘ -0.114 0.090 0.116 0.074 0.085
Kurtosis 6.578 2.962 3.135 3.105 3.028 _ 7.507 3.055 3.189 3.353 3.124
JB 1475.566 8.297 14.537 7.307 11.310 _ 2348.300 4.049 10.269 16.855 5.120
p value (0.000) (0.016) (0.001) (0.026) 0.004) | (0.000) (0.132) (0.006) (0.000) (0.077)
FCX 1P
Skewness -0.478 0.025 0.068 -0.029 0.075 J‘ -0.508 -0.079 -0.082 -0.112 -0.095
Kurtosis 6.090 3.095 3.652 3.127 3212 _ 9.835 2.985 3.092 3.158 3.079
JB 1206.029 1.325 51.088 2.243 7.754 _ 5504.859 2.901 4.067 8.640 4.932
p value (0.000) (0.516) (0.000) (0.326) ©.021) | (0.000) (0.234) (0.131) (0.013) (0.085)
NEM NUE
Skewness 0.114 0.092 0.132 0.118 0.112 l_‘ -0.437 -0.073 -0.172 -0.164 -0.117
Kurtosis 6.248 2.963 3.116 3.086 3.016 _ 8.466 3.431 4.524 3.709 3.751
B 1222.135 4.080 9.634 7.332 5.769 _ 3532.643 23.841 281.503 70.368 71.347
p value (0.000) (0.130) (0.008) (0.026) ©.056) | (0.000) (0.000) (0.000) (0.000) (0.000)
WY X
Skewness -0.562 0.050 0.048 -0.001 0.061 J -0.519 0.067 0.065 -0.009 0.053
Kurtosis 9.198 3.061 3.222 3.200 3.103 _ 6.436 3.105 3.346 3.147 3.151
IB 4575.020 1.558 6.753 4.620 2.924 _ 1485.7 3.315 15.741 2.534 3.940
p value (0.000) (0.459) (0.034) (0.099) ©.232) | (0.000) ©.191) (0.000) (0.282) (0.139)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. 7V, ya, TT¢pma, PVema, bV pa, denote EWMA filtered
realized variance, realized range, realized power variation, and realized bipower variation, respectively. The sampling frequency is 5 minute.



Table C.9: Returns standardized by EWMA filtered realized volatility measures at 5-sec sampling frequency (Sector TEL)

Skewness
Kurtosis
JB

p value

Skewness
Kurtosis
JB

p value

Skewness
Kurtosis
JB

p value

Skewness
Kurtosis
JB

p value

Skewness
Kurtosis
B

p value

. ¥ a4 n ¥, aa ¥4 - U Uy 7 M ¥ ma
. /\Ea.?i /\3,“5 /\%«.\%ﬁ /\@S.S e »\3.:5 /\3\%& /\N»S‘E »\@‘S,S\A
AMT BT
-1.196 -0.052 -0.122 -0.157 -0.070 _ -0.120 0.012 -0.136 -0.019 0.039
18.028 2.851 3.256 3.353 2.974 _ 7.590 2.997 4.984 3.293 2.995
26696.410 3.820 14.454 25.699 2.367 _ 2435.569 0.069 462.347 10.048 0.690
(0.000) (0.148) (0.001) (0.000) 0.306) | (0.000) (0.966) (0.000) (0.007) (0.708)
CTL FTR
-0.548 -0.181 -0.181 -0.230 -0.178 _\ -0.788 0.006 0.078 -0.001 -0.014
8.579 3.049 3.266 3.445 3.175 _ 13.994 3.034 3.428 3.414 3.255
3726.632 15.349 23.351 47.219 18.112 _ 14222.140 0.146 23.879 19.778 7.561
(0.000) (0.000) (0.000) (0.000) 0.000) | (0.000) (0.930) (0.000) (0.000) (0.023)
Q s
-0.756 -0.005 -0.069 -0.012 0.008 T -1.239 0.061 0.062 -0.023 0.078
20.522 3.143 3.537 3.623 3.188 _ 16.147 2.968 3.287 3.434 3.056
35660.170 2.357 35413 44.782 4.096 _ 20635.750 1.808 11.279 22.006 3.194
(0.000) (0.308) (0.000) (0.000) ©.129) | (0.000) (0.405) (0.004) (0.000) (0.202)
T TEF
0.147 0.064 0.096 0.067 0.048 _ 0.091 -0.220 -0.244 -0.277 -0.233
5.744 2.938 3.082 3.111 3.002 _ 11.158 3.026 3.241 3.434 3.255
877.776 2.326 5.048 3.480 1.059 _ 7676.652 22.446 34.059 57.187 32.598
(0.000) (0.312) (0.080) (0.175) ©.589) | (0.000) (0.000) (0.000) (0.000) (0.000)
VOD VZ
0.056 -0.029 -0.049 -0.044 -0.029 ~ 0.406 0.108 0.120 0.124 0.106
7.939 3.116 3.196 3.463 3.103 _ 7.181 3.017 3.079 3.258 3.037
2813.932 1.943 5.535 25.662 1.622 _ 2091.3 5.377 7.363 14.791 5.357
(0.000) (0.378) (0.063) (0.000) 0.444) | (0.000) (0.068) (0.025) (0.001) (0.069)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. ¥V pma, 77 ma, DPVema DV ya, denote EWMA filtered
realized variance, realized range, realized power variation, and realized bipower variation, respectively. The sampling frequency is 5 minute.
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Table C.10: Returns standardized by EWMA filtered realized volatility measures at 5-sec sampling frequency (Sector UTL)

U Fma U uny” U ¥ma Fima T ma
Uy N uny”
/\ TV aa /\ T, ma »\ PV »\ bY, pua Vi ma /\ FF, ma /\ PV »\ bY, psa
AEP CEG
Skewness -1.440 -0.049 -0.114 -0.123 -0.058 _ -6.838 -0.181 -0.156 -0.354 -0.148
Kurtosis 24.940 3.394 3.836 3.895 3.501 _ 119.829 3.491 3.762 4.252 3.456
IB 56452 19.022 86.613 99.436 30.483 _ 1595188 42.901 78.233 238.440 34.003
p value (0.000) (0.000) (0.000) (0.000) (0.000) _ (0.000) (0.000) (0.000) (0.000) (0.000)
DUK ETR
Skewness -0.042 0.112 0.078 0.065 0.110 _ -0.491 -0.174 -0.196 -0.239 -0.194
Kurtosis 7.685 3.276 3.506 3.500 3.331 ~ 8.668 3.223 3.455 3.464 3.246
JB 2531.504 14.538 32.366 30.740 18.161 _ 3815.704 19.665 41.524 51.153 24.258
p value (0.000) (0.001) (0.000) (0.000) (0.000) _ (0.000) (0.000) (0.000) (0.000) (0.000)
EXC OKE
Skewness -0.038 -0.168 -0.148 -0.195 -0.181 _ ~0.789 -0.058 -0.057 -0.111 -0.037
Kurtosis 8.330 3.146 3.416 3.370 3.253 _ 11.534 2.923 3.348 3.121 3.116
JB 3276.259 15.429 30.090 33.313 22.501 _ 8684.577 2.236 15.429 7.335 2.186
p value (0.000) (0.000) (0.000) (0.000) (0.000) _ (0.000) (0.327) (0.000) (0.026) (0.335)
PCG PEG
Skewness -2.907 -0.063 -0.065 -0.215 -0.067 _ -0.273 -0.008 -0.037 -0.067 0.023
Kurtosis 55.815 3.287 3.642 4.881 3.573 _ 8.931 3.507 4.081 3.865 3.626
JB 325493 11.302 49.430 429.204 39.868 _ 4090.587 29.702 135.461 88.361 45473
p value (0.000) (0.004) (0.000) (0.000) 0.000) |  (0.000) (0.000) (0.000) (0.000) (0.000)
PGN SO
Skewness -0.027 -0.083 -0.069 -0.080 -0.078 _ 0.101 0.105 0.080 0.092 0.116
Kurtosis 9.022 3.265 3.560 3.493 3.244 ~ 7.598 3.483 3.728 3.828 3.546
JB 4181.547 11.322 38.320 30.971 9.717 _ 2441.8 31.927 64.023 82.869 40.538
p value (0.000) (0.003) (0.000) (0.000) 0.008) | (0.000) (0.000) (0.000) (0.000) (0.000)

Note: This table reports the skewness, kurtosis and Jarque-Bera test statistics of normality. 7V 4, 77 ma, PVesa PV ma, denote EWMA filtered
realized variance, realized range, realized power variation, and realized bipower variation, respectively. The sampling frequency is S minute.
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Concluding Remarks

This thesis compares the degree of validity of stylized properties of four extensively
studied realized measures of volatility using a series of econometric models. In this
context, the main research topics examined include: a) Optimal sampling frequency;
b) Impact of jumps; ¢) Correlation relationship; d) Leverage and volatility feedback
effect; e) Volatility regimes; f) Volatility-volume relation; g) The distributional
properties of realized volatility measures and returns; and h) Recovering return
normality.

The thesis uses a unique data set that corrects the bias and errors presented in the
widely used TAQ. We choose 100 stocks traded in the US equity market and segment
them into 10 market sectors. An 11-year sample period which covers two crises is
considered. Using this extensive data, we aim to find out which realized volatility
measure(s) is the best proxy of the true integrated variance. Furthermore, the analysis
based on sector segmentation also has implications for practitioners on the aspects of
risk management and other financial investments.

Chapter 1 provides a general discussion of the above topics. Overall, we confirm
many of the findings of the existing literature: S-minute is the optimal sampling
frequency for at least realized variance and realized bipower variation. Realized
volatility measures exhibit similar properties. They are highly leptokurtic and are best
described by Lognormal and Inverse Gaussian distributions. Both distributions
provide almost indistinguishable empirical fits. Returns standardized by realized
volatility measures are (nearly) Gaussian. Realized volatility measures are highly

positively correlated with each other. On the other hand, the regime characteristics
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vary by both regime type (high-low) and by sector according to the Markov Regime
Switching model. The presence of jumps in the realized variance has little impact on
the properties of realized variance. Jumps have distinctively different properties to
realized measures of volatility. Jumps are small, short-memory, and do not have the
leverage and feedback effects that are found in realized volatility measures. At sector
level, the proportion of detected significant jumps does not vary much across sectors.
However, the sectors which are highly actively traded contain fewer jumps and are
more likely to have lower jump contribution to total volatility. The less actively traded
sectors are detected with more jumps and reports higher jump contribution to total
volatility.

The stylized facts being addressed tend to vary widely across sectors. For example,
the most actively traded sector, IT, shows the highest persistence in realized volatility
measures according to the Robinson’s “d” long memory test, suggesting a potential
better performance in forecasting than the least actively traded sector UTL, which
reports the lowest persistence. The volatility-volume relation also holds stronger in
those actively traded sectors such as IT and FIN, and has the highest model rejection
in the least traded sector, UTL.

Among the four realized volatility measures, realized power variation shows the best
performance across sectors and outperforms the other realized volatility measures. It
has the lowest standard deviation, well-defined distributional properties, and the
highest degree of persistence. It is the most capable of recovering normality and also
robust to jumps. Our findings here are in line with Ghysels et al (2006) where the
superiority of the power variation has also been highlighted. Realized bipower
variation, another jump-robust volatility measure, also shows consistent performance

among all tests. Realized range, the only volatility measure in this thesis that is
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constructed from intraday highest and lowest prices, shows the greatest diversity of all
four realized volatility measures. Finally, the most extensively discussed realized
variance provides the least satisfactory results: For instance, it provides lowest
estimation results in the volatility-volume relation and shows the highest rejection of
normality test when used as a standardization factor.

The following two chapters extend the analysis of Chapter 1. Chapter 2, which
discusses the volatility- volume relation under the framework of Mixture of
Distributions Hypothesis (MDH), contributes to the literature as follows: First, we
identify strong evidence that volatility-volume relation holds under the various
realized volatility measures. The test results are generally stronger than in many recent
empirical studies which also look at this relationship using realized volatility. Second,
the results indicate that the number of trades is a superior market information proxy to
trading volume. In particular, the number of trades that takes place either at higher or
lower prices is the most capable of explaining the realized volatility measures.

In Chapter 3, we analyze the distributional properties of volatility standardized daily
returns. The motivation of this chapter is drawn from the well-documented stylized
fact in the literature that realized volatility measures standardized returns are (nearly)
Gaussian. A great many researchers also record the violation of the Gaussianity of
standardized returns. Possible explanations are mainly founded upon the existence of
jumps and/or market microstructure noise. To identify which are more significant
reasons driving the standardized returns from standard normal, we construct the
realized volatility measures from two sampling frequencies and find that the presence
of jumps could be a reason to reject the normality, but only at ultra-high sampling
frequency. At the optimal sampling frequency (5 minute), jumps have little impact on

recovering the return normality. Instead, market microstructure noise is likely to be a
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main reason. To smooth the microstructure noise, we propose a moving average filter
on realized volatility measures, the microstructure noise in the realized variance as
well as realized bipower variation was effectively filtered. Filtered realized volatility
measures have stronger power to achieve the stock normality in some cases. However,
the moving average filter falls to enhance the power of realized power variation on
recovering returns normality. Moving average filtration does not apply for the ultra-
high sampled realized volatility measures. Our results also provide evidence that more
actjvely traded stocks (by volume) contain more market microstructure noise and
fewer jumps. Filtration on realized volatility measures works better on stocks which

contain a higher degree of market microstructure noise.



265

Bibliography

Ait —Sahalia, Y., Mykland, P.A. & Zhang, L. (2005). “How often to sample a
continuous-time process in the presence of market microstructure noise”, Review of
Financial Studies, 18,351-416.

Ait-Sahalia, Y. & Jacod, J. (2009a). “Estimating the degree of activity of jumps in
high-frequency data”, The Annals of Statistics, 37, 2202-2244.

Ait-Sahalia, Y. & Jacod, J. (2009b). “Testing whether jumps have finite or infinite
activity”, The Annals of Statistics, 39, 1689-1719.

Ait-Sahalia, Y. & Jacod, J. (2010). “Is Brownian motion necessary to model high-
frequency data?” The Annals of Statistics, 38, 3093-3128.

Ait-Sahalia, Y. & Yu, J. (2009). “High frequency market microstructure noise
estimates and liquidity measures”, The Annals of Applied Statistics, 3, 422-457.

Andersen, T. G. (1996). “Return volatility and trading volume: an information flow
interpretation of stochastic volatility”, Journal of Finance, 51,169-204.

Andersen, T.G., Bollerslev, T. & Diebold, F.X. (2007a). “Roughing it up: Including
jump components in the measurement, modeling and forecasting”, The Review of
Economics and Statistics, 89(4), 701-720.

Andersen, T.G., Bollerslev, T., Dobrev, D. (2007b). “No-arbitrage semi-martingale
restrictions for continuous-time volatility models subject to leverage effects, jumps
and i.i.d. noise: theory and testable distributional implications”, Journal of
Econometrics, 138,125~-180.

Andersen, T.G., Bollerslev, T., Frederiksen, P. & Nielsen, M.@. (2010). “Continuous-
time models, realized volatilities, and testable distributional implications for daily
stock returns”, Journal of Applied Econometrics, 25(2), 233-261.

Andersen, T.G, Bollerslev, T., Diebold, F.X. & Labys, P. (1999). “Realized volatility
and correlation™, LN Stern School of Finance Department Working Paper.

Andersen T.G., Bollerslev, T., Diebold, F.X. & Labys, P. (2000). “Exchange rate
returns standardized by realized volatility are (nearly) Gaussian”, Multinational
Finance Journal, 4,159-179.

Andersen, T.G., Bollerslev, T., Diebold, F.X. & Labys, P. (2001). “The distribution
of exchange rate volatility ", Journal of American Statistical Association, 96, 42-55.

Andersen, T.G, Bollerslev, T., Diebold, F.X. & Ebens, H. (2001). “The distribution of
realized stock return volatility”, Journal of Financial Econometrics, 61, 43-76.



266

Andersen, T.G., Bollerslev, T., Diebold, F.X. & Labys, P. (2003). “Modelling and
forecasting realized volatility”, Econometrica, 71(2), 579-625.

Andersen, T.G., Bollerslev, T. & Huang, X. (2011).” A reduced form framework for
modeling volatility of speculative prices based on realized variation measures”,
Journal of Econometrics , 160, 176-189.

Ané, T. & Geman, H. (2000). “Order flow, transaction clock, and normality of asset
returns”, The Journal of Finance, 55(5), 2259-2284.

Ané, T. & Metiis, C. (2010). “Jumps distribution characteristics: evidence from
European stock markets”, International Journal of Business and Economics.9, 1-22.

Areal, N. & Taylor, S.J. (2002). “The realized volatility of FTSE-100 futures prices”,
Journal of Futures Markets, 22(7), 627-648.

Bajgrowicz, P. & Scaillet, O. (2011). *“Jumps in high-frequency data: spurious
detections, dynamics, and news”. Swiss Finance Institute Occasional Paper No.11-36.

Baillie, R., Bollerslev, T. & Mikkelsen, M. (1996). “Fractionally integrated
generalized autoregressive conditional heteroskedasticity”, Journal of Econometrics,
74, 3-30.

Bandi, F. & Perron, M. (2006). “Long memory and the relation between implied and
realized volatility”, Journal of Financial Econometrics, 4, 4, 636-670.

Bandi, F. & Russell, J. (2006). “Separating microstructure noise from volatility”,
Journal of Financial Economics, 719(3), 655-692.

Bandi, F. & Russell, J. ( 2008). “Microstructure noise, realized variance, and optimal
sampling”, Review of Economic Studies,75,339-369.

Barndorff-Nielsen, O.E. (2001). “Modelling by Lévy Preocesses”, Lecture Notes-
Monograph Seires, 25-31.

Barndorff-Nielsen, O.E. & Shephard, N. (2002). “Econometric analysis of realized
volatility and its use in estimating stochastic volatility models”, Journal of the Royal
Statistical Society, Series B 64, 253-280.

Barndorff -Nielsen, O.E. & Shephard, N. (2003). “Realized power variation and
stochastic Volatility”, Bernoulli, 9, 243-265.

Barndorff-Nielsen, O.E. & Shephard, N. (2004). “Power and bipower variation with
stochastic volatility and jumps (with discussion)”, Journal of Financial Econometrics,
2(1), 1-37.

Barndorff-Nielsen, O.E. & Shephard, N. (2006). “Econometrics of testing for jumps
in financial economics using bipower variation”, Journal of Financial Econometrics,

4, 1-30.



267

Bar{)dorff—Nie]sen, O.E., Hansen, P, Lunde, A. & Shephard, N. (2008). “Designing
realized kernels to measure the ex-post variation of equity prices in the presence of
noise”, Econometrica, 76, 1481-1536.

Bessembinder, H. & Seguin, P. (1993). “Volatility, trading volume and market depth;
Evidence from the futures markets”, Journal of Financial and Quantitative Analysis,
29, 21-39.

Bollerslev, T. (1986). “Generalized Autoregressive Conditional Heteroskedasticity”,
Journal of Econometrics, 31, 307-327.

Bollerslev, T., Kretschmer, U., Pigorsch, C. & Tauchen, G. (2009). “A discrete-time
model for daily S & P500 returns and realized variations: Jumps and leverage
effects”, Journal of Econometrics , 150, 151-166.

Bollerslev, T., Litvinova, L. &Tauchen, G. (2006). “Leverage and Volatility Feedback
Effects in High-Frequency Data”, Journal of Financial Econometrics, 4, 353—384.

Boudt, K., Croux, C. & Laurent, S. (2008). “Robust estimation of intraweek
periodicity in volatility and jump detection”, Working Paper.

Brooks, C. (1998). “Predicting stock index volatility: Can market volume help?”,
Journal of Forecasting, 17, 59-80.

Brownlees, C. & Gallo, G. (2006). “Financial econometric analysis at ultra-high
frequency: Data handling concerns”, Computational Statistics & Data Analysis, 51(4),
2232-2245.

Brownlees, C. & Gallo, G. (2010). “Comparison of volatility measures: a risk
management perspective”, Journal of Financial Econometrics, 8(1),29-56.

Chan, C. & Fong, W.M. (2006). “Realized volatility and transactions”, Journal of
Banking & Finance, 30, 2063-2085.

Chan, K. & Fong, W.M. (2000). “Trade size, order imbalance, and the volatility—
volume relation”, Journal of Financial Economics, 57, 247-273.

Chen, G., Firth, M. & Rui, O. (2001). “The dynamic relations between stock returns,
trading volume and volatility”, Financial Review, 38,153-174.

Chiang, T. C., Qiao, Z. & Wong, W.K. (2010). “New evidence on the relation
between return volatility and trading volume”, Journal of Forecasting, 29, 202-515.

Chevallier, J. & Sevi, B. (2011). “On the realized volatility of the EXC CO2
emissions 2008 futures contract: distribution, dynamics and forecasting”, Annals of

Finance, 7, 1-29.

Christensen, K. & Podolskij, M. (2007). “Realized range-based estimation of
integrated variance”, Journal of Econometrics, 141, 323-349.



268

Clark, P. K. (1973). “A subordinated atochastic orocess model with finite variance for
speculative prices”, Econometrica, 411, 135-155.

Conti, R. (2000). “Empirical properties of asset returns: stylized facts and stastical
issues”, Quantitative Finance, 1, 223-236.

Corsi, F., Audrino, F. & Reno, R. (2012). “HAR modeling for realized volatility
forecasting”, Handbook of Volatility Models and Their Applications, Wiley.

Darrat, A., Rahman, F. & Zhong, M. (2003). “Intraday trading volume and return
volatility of the DJIA stocks: a note”, Journal of Banking and Finance, 27, 2035—
2043,

Dickey, D. & Fuller, W. (1979). “Distribution of the estimators for autoregressive
time series with a unit root”, Journal of the American Statistical Association, 84, 427-
431.

Ding, Z., Granger, C. & Engle, R. F. (1993). “A long memory property of stock
returns and a new model”, Journal of Empirical Finance, 1, 83-106.

Dobrev, D. & Szerszen, P. (2010). “The information content of high-frequency data
for estimating equity return models and fForecasting risk”, Working Paper.

Doornik, J. A. & Hendry, D. F. (2009). Econometric Modelling - PCGive 13: Volume
1I, Timerlake Consultants.

Donaldson, G. & Kamstra, M. (2004). “Volatility forecasts, trading volume, and the
ARCH versus option-implied volatility trade-off™, Working Paper 2004-6.

Dufour, J., Garcia, R. & Taamouti, A. (2011). “Measuring high-frequency causality
between returns, realized volatility and implied volatility”, Working paper.

Easley, D. & O'Hara, M. (1987). “Price, trade size, and information in securities
markets”, Journal of Financial Economics, 19, 69-90.

Eberlein, E. & Keller, U. (1995). “ Hypobolic distributions in finance”, Bernoulli, 1,
281-299.

Engle, R.F. (1982). “Autoregressive conditional heteroskedasticity with estimates of
the Variance of U.K. Inflation”, Econometrica, 50, 987-1008.

Eraker, B., Johannes , M. & Polson, N. (2003). “The impact of jumps in volatility and
returns”, Journal of Finance, 58, 1269-1300.

Epps T.W. & Epps M.L. (1976). “The stochastic dependence of security price changes
and transaction volumes: implications for the mixture of distributions hypothesis”,
Econometrica 44,305-321.

Fama, E. (1965). “The behaviour of stock market prices”, Journal of Business, 36,
420-429.



269

Fors‘berg, L. & Bollerslev, T. (2002). ““ Bridging the gap between the distribution of
realized (ECU) volatility and ARCH modelling (of the EURO): the GARCH-Normal
Inverse Gaussian model”, Journal of Applied Econometrics, 17, 535-548.

F}eming, J. & Paye, B. (2007). “The impact of microstructure noise on the
distributional properties of daily stock returns standardized by realized volatility”,
Woking Paper.

Fleming, J. & Paye, B. (2011). “High-frequency returns, jumps and the mixture of
normals hypothesis”, Journal of Econometrics, 160, 119-128.

Fuertes, A.M., Izzeldin, M. & Kalotychou, E. (2009). “On forecasting daily stock
volatility: the role of intraday information and market conditions”, International
Journal of Forecasting, 25, 259-281.

Gallant, A., Hsieh, D. & Tauchen, G. (1992). “Stock prices and volume”, Review of
Financial Studies, 5,199-242.

Geweke, J. & Porter-Hudak, S. (1983). “The estimation and application of long
memory time series models”, Journal of Time Series Analysis, 4, 221-238.

Ghysels, E., Santa-Clara, P. & Valkanov, R. (2006). “Predicting volatility: Getting the
most out of return data sampled at different frequencies”, Journal of Econometrics,
131, 59-95.

Giot, P. & Laurent, S. (2004). “Modelling daily Value-at-Risk using realized volatility
and ARCH type models”, Journal of Empirical Finance, 11, 379-398.

Giot, P., Laurent, S. & Petijean, M. (2010). “Trading activity, realized volatility and
jumps”, Journal of Empirical Finance, 17, 1, 168-175.

Giraitis, L., Kokoszka, P., Leipus, R. & Teyssiere, G. (2003). “Rescaled variance and
related tests for long memory in volatility and levels”, Journal of economeirics, 112.
265-294.

Granger, C. & Ding, Z. (1995). “Some properties of absolute return: An alternative
measure of risk”, Annales d'Economie et de Statistique, 40, 67-9.

Hamilton, J. (1994). “Time Series Analysis”, Princeton University Press.

Harris, L. (1987). “Transaction data test of the mixture of distributions hypothesis”,
Journal of Financial and Quantitative Analysis, 22,127-141.

Hansen, P. & Lunde, A. (2004). “An unbiased measure of realized variance”, Working
Paper.

Hansen, P. & Lunde, A. (2006). “Realized variance and market microstructure noise”,
Journal of Business and Economic Statistics. 24, 127-161.



270

Hansen, P, Large, J. & Lunde, A. (2006). “Moving average-based estimators of
integrated variance”, Working Paper.

Huang, X. & Tauchen, G. (2005). “The relative contribution of jumps to total price
variation”, Journal of Financial Econometrics, 3, 456—499.

Hull, J. & White, A. (1987). “The pricing of options on assets with stochastic
volatilities”, Journal of Finance, 42, 281-300.

Izzeldin, M. (2007). “Trading volume and the number of trades: A comparative Study
using high frequency data”, Working Paper.

[zzeldin, M. & Murphy, A. (2010). “Recovering the moments of information flow and
normality of asset returns”, Applied Financial Economics, 20, 761-769.

Jones, C., Kaul, G. & Lipson, M. (1994). “Transactions, volume and volatility”,
Review of Financial Studies, 7, 631-651.

Karpoff, J. (1987). “The relation between price changes and trading volume: A
survey”, Journal of Financial and Quantitative Analysis, 22, 109-126.

Khalifa, A., Miao, H. & Ramchander, S. (2011). “Return distributions and volatility
forecasting in metal futures markets: Evidence from gold, silver and copper”, Journal
of Futures Markets, 21, 55-80.

Kwiatkowski, D., Phillips, P., Schmidt, P. & Shin, P. (1992). “Testing the null
hypothesis of stationarity against the alternative of a unit root: How sure are we that
economic time series have a unit root?” Journal of Econometrics, 54, 159-178.

Lamoureux, C. & Lastrapes, W. (1990). “Heteroskedasticity in stock return data:
Volume versus GARCH effects”, Journal of Finance, 45, 221-229.

Lee, S.S. & Mykland, P. (2008). “Jumps in financial markets: A new nonparametric
test and jump dynamics”, Review of Financial Studies, 21,6, 2535-2563.

Liesenfeld, R. (2001). “A generalized bivariate mixture model for stock price
volatility and trading volume™, Journal of Econometrics, 104, 141-178.

Liu, C. & Maheu, J. (2005). “Modeling and forecasting realized volatility: the role of
power variation”, Working Paper.

Lo, A.W. (1991). “Long term memory in stock market prices”, Econometrica, 59,
1279-1313.

Louhchi, W. (2011). “What drives the volume-volatility relationship on Euronext
Paris?” International Review of Financial Analysis, 20, 200-206.

Luu, J. & Martens, M. (2003). “Testing the mixture-of-distribution hypothesis using
‘realized’ volatility”, Journal of Futures Market, 23, 661-679.



271

Malmsten, M. & Terasvirta, T. (2004). “Stylized facts of financial time series and
three popular models of volatility”, Working Paper.

Mandelbrot, B. (1963). “The variation of certain speculative prices”, The Journal of
Business, 36, 394-419.

Mandelbrot, B. & Taylor, H. (1967). “On the distribution of stock price difference”,
Operations Research, 15, 1057-1062.

Martens, M. & Dijk, D. (2007). “Measuring volatility with the realized range”,
Journal of Econometrics, 138, 181-207.

Maheu, J. & McCurdy, T. (2002). “Nonlinear features of realized FX volatility”,
Review of Economics and Statistics. 84, 668-681.

McAleer, M. & Medeiros, M. (2008). “Realized volatility: A review”, Econometric
Reviews, 27, 10-45.

Merton. R. (1976). “Option pricing when underlying stock returns are discontinuous”,
Journal of Econometrics. 3, 125-144.

Najand, M. & Yung, K. (1991). “A GARCH estimation of the relationship between
volume and price variability in futures market”, Journal of futures markets, 11, 613-
621.

Nelsen, K. (2010). Financial Econometrics Notes, Oxford University.

Osborne, M. F. (1959). “Brownian Motion in the Stock Market”, Operations
Research, 7, 145-173.

Owens, J. P. & Steigerwald, D.S. (2006). “Noise reduced realized volatility: a Kalman
filter approach”, Advances in Econometrrics, 20, 211-227.

Praetz, P. (1972). “The distribution of share price changes”, Journal of Business, 45,
49-55,

Poon, S. & Granger, C. (2003). “Forecasting volatility in financial markets: A
review”, Journal of Economic Letters, 41, 478-539.

Richardson. M. & Smith, T. (1994). “A direct test of the mixture of distributions
hypothesis: Measuring the daily flow of information”, Journal of Financial and
Quantitative Analysis, 29, 101-116.

Robinson, P. M. (1995). “Gaussian semiparametric estimation of long range
dependence”, Annals of Statistics, 23, 1630-1661.

Robinson, P.M. & Henry, M. (1999). “Long and short memory conditional
heteroskedasticity in estimating the memory parameter of levels”, Econometric
Theory, 15, 299-336.



272

Rogers, L. & Zhang, L. (2011). “Understanding asset returns”, Cambridge Working
Paper.

Schwert, G.W. (1990). “Stock volatility and the crash of 87, Review of Financial
Studies, 3, 77-102.

Stentoft, L. (2008). “Option pricing using realized volatility”, Working Paper.

Tauchen, G. & Pitts M. (1983). “The price variability-volume relationship on
speculative markets”, Econometrica, 51, 485-505.

Tauchen, G. & Zhou, H. (2011). “Realized jumps on financial markets and predicting
credit spreads”, Journal of Econometrics , 102-118.

Taylor, S.J. (1986). Modeling Financial Time Series, Chichester: John Wiley and
Sons.

Terasvirta, T. (2006). Univariate nonlinear time series models, In Mills, T. and
Patterson, K. (eds.), Palgrave Handbook of Econometrics, 396-424. Basingstoke:
Palgrave MacMillan.

Tsay, R.S. (2005). Analysis of Financial Time Series, 2™ Edition, John Wiley & Sons,
Inc., Publication.

Wang, T. & Huang, Z. (2012). “The relationship between volatility and trading
volume in the Chinese stock market: A volatility decomposition perspective”, Annals
of Economics and Finance, 13, 211-236.

Westerfield, R. (1977). “The distribution of common stock price changes”, Journal
of Quantative Analysis, 12, 743-765.

Ying, C. (1966). “Stock market prices and volume of sales”, Econometrica, 34, 676-
686.

Zhang, L. (2006). “Efficient estimation of stochastic volatility using noisy
observations: a multi-scale approach”, Bernoulli, 12, 1019-1043.

Zhang, L., Mykland, P.A. & it-Sahalia, Y. (2005). “A tale of two time scales:
determining integrated volatility with noisy high-frequency data”, Journal of the
American Statistical Association, 100, 1394-1411.

Zhou, B. (1996). “High-frequency data and volatility in foreign exchange rates”,
Journal of Business and Economic Statistics, 14, 45-52.

Zivot, E. & Andrews, D. (1992). “Further evidence of great crash, the oil price shock
and unit root hypothesis”, Journal of Business and Economic Statistics, 10, 251-2



273



