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Abstract

Air concentrations and deposition fluxes of PCBs and PAHs are presented 
for 1991 and 1992 at four UK urban centres (London, Manchester, Cardiff and 
Stevenge). Sampling was also carried out throughout 1993 at a rural location 
in NW England (Hazelrigg). This monitoring programme, part of the toxic 
organic micropollutants survey (TOMPS), has provided the first extensive 
data sets for PAHs and PCBs in the UK urban and rural atmosphere.

Atmospheric PCBs and PAHs were sampled every other week at each of the 
sites using High-Volume air samplers, equipped with glass fibre filters to 
collect particu late  and polyurethane foam plugs to serve as vapour 
adsorbents. Bulk deposition was collected every m onth. Furtherm ore, 
atmospheric PCBs were sampled every day at the rural site, between March 
and June 1994, in a prelim inary attem pt to investigate the influence of 
separate meteorological episodes.

At the four urban sites mean annual £PA H concentrations ranged from
approximately 60 - 150 ng m-3, while the mean XPCB concentration ranged
from 500 - 1500 pg m-3. These concentrations are the same order of 
m agnitude as contemporary concentrations reported in other urban areas on 
an international basis. The lighter, predom inantly vapour phase PAHs of 
fluorene and phenanthrene and the lower chlorinated PCB congeners, 28 
and 52, dom inate the atm ospheric profile for both sets of com pounds 
respectively. XPAH concentrations were actually greater in the Hazelrigg 
atm osphere (~ factor 2) than in Manchester. This was due to significantly 
higher concentrations of fluorene and phenanthrene. This site and another 
rural site in the NW England are under the influence of local sources. 
A dded to this, volatilisation of these lighter compounds from secondary 
sources such as sed im ents/so ils /vegeta tion  may explain the elevated 
concentrations during the warmer summer months. Principal components 
analysis highlighted the dominance of these lighter compounds in the rural 
atm osphere  over the urban  atm ospheres. At H azelrigg the XPCB 
concentrations were lower than the urban sites by a factor of between 3-4, 
reflecting the lack of point sources in the rural environment.

Seasonal variations were evident for the heavier PAH in both the urban and 
rural atmosphere. This was characterised by elevated concentrations in the 
winter, possibly due to increased fuel consumption for residential heating. 
The lighter compounds in the urban atmosphere did not show the seasonal 
cycling evident in the rural atmosphere, probably due to the masking effect 
of increased prim ary emissions in the winter. The XPCB concentrations 
showed elevated concentrations in the summer at all of the sites, the vapour 
phase concentrations of several prominent congeners being correlated with 
tem perature. The more chlorinated congeners showed an increased cycling 
am plitude from winter to summer than the less chlorinated congeners. This



may be due to them being more readily exchangeable between surfaces and 
the atmosphere, than the lower chlorinated congeners.

Partitioning between the particulate and vapour phases for the PAHs and 
the PCBs appears to be controlled mainly by temperature and a compound's 
volatility. Total suspended particulate plays a lesser role, the partitioning
behaviour (calculated partition coefficients at 20°C) for six indicator 
congeners being similar in both the Manchester and Hazelrigg atmospheres. 
As surface area available for sorption is more important than just particulate 
concentration it is postulated here that the amount of area available at the 
earth 's surface, particularly if covered by vegetation, will play a more 
im portant role in vapour phase sorp tion /desorp tion  than atm ospheric 
particulate.

Meteorological episodes typified by high pressure anti-cyclonic systems 
resulted in elevated particulate phase XPCB and XPAH concentrations in 
the Cardiff and Manchester atmospheres respectively. The use of air mass 
back trajectories identified three separate air masses at the Hazelrigg site, 
when XPCB concentrations varied significantly from the sampling mean. 
The lack of profile differences between these air masses (originating from 
different areas) indicate similar sources to the atm osphere, or similar 
processes that occur during transport that result in a uniform profile.

The mean XPAH deposition flux varied from ~5 pg m-2 d_1 at the urban
sites to -2  pg m -2 d-1 at the rural site. The mean XPCB deposition flux
varied from ~0.8 ng m -2 d"1 at the urban sites to ~0.2 ng m -2 d -1 at the rural 
site. Com parison w ith fluxes reported at ru ra l/rem o te  sites in north 
America would suggest that Hazelrigg and a site in the Lake District in NW 
England represent semi-urban areas; it seems that greater distances away 
from urban centres are required before 'true' rural fluxes are obtained.

Large differences in air concentrations between phenanthrene and the 
heavier benzo[a]pyrene were not m atched by a sim ilar difference in 
deposition fluxes. Phenanthrene has an air concentration a factor of -30 
greater than benzo[a]pyrene, yet its deposition flux is only a factor of -2  
higher. The deposition sam pler may be biased against vapour phase 
collection, however, evidence suggests that lighter PAH may be more 
susceptible to photolytic degradation than the heavier compounds. The 
PCBs, unlike the lighter PAHs, are deposited at a similar rate relative to their 
air concentrations. Using source inventory data, PAH and PCB annual 
releases into the UK atmosphere were estimated, and a simple mass balance 
was determ ined for the UK environm ent using the derived depositional 
fluxes.
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Chapter 1 

Introduction

1.1 General Introduction

Over the last 25 years interest has grown in the cycling and effects of 

persistent organic chemicals in the environment. Much of this attention 

has focussed on the semi-volatile organic com pounds (SOCs), whose 

chemical and physical properties have resulted in their presence in every 

en v ironm en ta l com partm ent. These com pounds, p a rticu la rly  the 

organochlorines, are generally produced anthropogenically and considered 

to be xenobiotics - that is, chemicals not produced by nature. The term SOC 

covers an enorm ous range of chemicals found in the environm ent with

vapour pressures ranging from 10"1 - 10'10 Pa. This wide range in vapour 

pressures and diverse physical-chemical properties has made this group of 

organic compounds ubiquitous around the globe, providing a challenge to 

u n d e rs ta n d in g  the processes that control their m ovem ent and 

accum ulation . C ertain  broad groups like the polycyclic arom atic 

hydrocarbons (PAHs), and industrially  produced chemicals like the 

pesticides, polychlorinated biphenyls (PCBs), phthalate esters and the by­

products of pesticide production and waste incineration, the dioxins and 

furans, are of particular interest due to their persistence and toxicity. In this 

thesis the presence and behaviour in the atmosphere of two of these groups
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of compounds, the PCBs and PAHs, were studied.

M ost of the contem porary releases into the environm ent of these 

compounds are directly into the atmosphere, from where the contaminants 

will migrate, breakdown or be deposited onto terrestrial or aquatic surfaces. 

In other words, the atmosphere acts as a highly dynamic m edium for these 

com pounds, and although concentrations may be orders of m agnitude 

lower than those found in soil or sediments, the atm osphere is of key 

im portance in transporting these chemicals. Therefore, the role of the 

atm osphere and the behaviour of these contaminants w ithin it m ust be 

fully understood if we are to predict the movement, processes and ultimate 

sinks. Both the PCBs and the PAHs are included in the UK-DoE Red List of 

priority organic contaminants and the US-EPA priority list of pollutants, 

and described in more detail in the following sections.

1.2 Polychlorinated biphenyls (PCBs)

PCBs were first synthesised industrially in the US in 1929 by an FeCb- 

catalysed chlorination of a biphenyl ring. This reaction produces a mixture 

of individual PCB compounds or congeners, the composition of the mixture 

depending on the proportion of chlorine to biphenyl. Theoretically over 200 

PCB congeners can exist, which differ in the num ber and position of 

chlorine atoms on the biphenyl ring. Figure 1.1 denotes the parent PCB 

structure (a) and an example of an individual congener, number 28 (b). The



num bering scheme was developed by Ballschmiter and Zell (1980) who 

num bered all 209 congeners according to the num ber and position of 

chlorine atom s. The num bering scheme has been accepted by the 

International Union of Pure and Applied Chemistry (IUPAC) and PCBs are 

commonly referred to by their IUPAC numbers.

Figure 1.1 PCB structure

orthometa ortho meta

para para Cl

meta ortho ortho meta

a) Parent PCB chemical structure b) 2, 4, 4* - trichlorobiphenyl

(IUPAC congener #28)

The individual num bered congeners fall into homologue groups according 

to the num ber of chlorine atoms around the biphenyl structure. For 

example, congener 28 is an example of a trichlorobiphenyl as it possesses 

three chlorine atoms. Table 1.1 presents the distribution of PCBs by level of 

chlorination. From these homologue groups, thirty individual congeners, 

covering a wide degree of chlorination, were analysed in this thesis.

Industrial PCB mixtures were classified according to the amount of chlorine 

present. For example, Aroclor mixtures (the trade name given by the 

American chemical company Monsanto) were marked with a four figure



num ber i.e. Aroclor 1248, the 12 denoting the num ber of carbon atoms, 

while the 48 refers to the percentage of chlorine (by weight) present in the 

mixture. Other trade names for technical PCB mixtures include Clophen 

(Bayer, G erm any), Phenoclor (Prodelec, France) and  K anechlor 

(Kanegafuchi, Japan).

Table 1.1 Distribution of PCBs by level of chlorination (Jones et al., 1991).

PCB homologue Molecular Number of
formula isomers

Monochlorobiphenyl C12H9CI 3
Dichlorobiphenyl C12H8 CI2 12
T richlorobiphenyl C12H7CI3 24

Tetrachlorobiphenyl C12H6CI4 42
Pentachlorobiphenyl C12H5CI5 46
H exachlorobiphenyl C12H4CI6 42
H eptachlorobiphenyl C12H3 CI7 24
Octachlorobiphenyl C12H2CI8 12
Nonachlorobiphenyl C12HCI9 3
Decachlorobiphenyl C12CI10 1

The unusually  high chemical stability and electrical resistance of PCBs, 

together w ith their low volatility and resistance to degradation at high 

tem peratures led to a range of industrial applications. These can be 

categorised into 'closed' or 'open' (dissipative) uses. Examples of closed uses 

include their use in capacitors and transform ers as dielectric fluids, 

hydraulic fluids in mining equipm ent and as heat transfer and vacuum 

pum p fluids. Open uses include flame retardants, plasticisers and additives 

to cement, plasters, casting agents, lubricating and cutting oils and use in 

printing inks.
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According to Harrad et al. (1994) peak production in the UK occurred in the 

late 1960's resulting in approximately 40,000 tonnes being sold in the UK 

betw een 1954-1977. It was only in the mid-1960's that PCBs were first 

identified in environmental samples (Jensen, 1972) and that awareness was 

raised of the hazards posed by PCBs to biota and their accumulation in the 

foodchain. Due to their occurrence in the environm ent and the hum an 

health risks posed by PCBs (reviewed by Safe (1994)), restrictions on the 

m anufacture and use have been imposed by most countries. PCBs are 

classified as probable/possible carcinogens to humans by the International 

Agency for Research in Cancer (IARC). However, other health effects such 

as im m u n o su p p ress io n , rep roduc tive  and  developm ent toxicity , 

modification of endocrine pathways and neurotoxicity have been reported 

in a variety of mammals (Safe, 1994) and current concerns and research is 

focussing on these, rather than carcinogenesis.

For the UK, restricted use was imposed in 1976 (APARG, 1995) with only 

certain 'closed' systems still in operation, such as large transformers and 

capacitors. Since their first production in the UK in 1954, PCBs have entered 

the environm ent through both point and diffusive sources such as from 

landfill sites, spillages from transformers and capacitors, production of 

refuse derived  fuel, incineration of PCB waste and the recovery of 

contam inated scrap metal to name but a few. With the advancement of 

analytical techniques, environmental PCB concentrations are now reported 

on an individual congener basis rather than being reported as a commercial
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m ixture (i.e. Aroclor mix). This was an im portant step forward since the 

congener pattern or profile in environmental samples will not be the same 

as that of the profile of the original commercial mixtures.

1.3 Polycyclic aromatic hydrocarbons (PAHs)

PAHs are formed mainly as a result of pyrolytic processes, notably the 

incomplete combustion of organic materials. PAH can be formed in any 

incom plete combustion or high tem perature pyrolytic process involving 

fossil fuels, or more generally, materials containing C and H (Baek et aL,

1991). PAHs consist of two or more fused benzene rings in linear, angular or 

cluster arrangements resulting in several hundred compounds having been 

identified from combustion sources (Menichini, 1992). From this huge 

num ber the US-EPA prioritised 16 on the grounds of hum an health effects. 

These have been found to have the highest animal carcinogenic and 

mutagenic loading according to the IARC (1983; 1987). For this reason there 

is a w ide interest in PAH emission sources, environm ental levels and 

hum an exposures.

On a global scale PAHs are not only derived from anthropogenic sources but 

also from natural sources such as forest/prairie fires and volcanic activity. 

H ow ever, in industria lised  countries - particu larly  in the urban 

environm ent - anthropogenic sources make by far the greatest contribution 

to the environmental burden. Figure 1.2 presents the chemical structures
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Figure 1.2 Chemical structures of the polycyclic aromatic 
hydrocarbons analysed in this study. *US-EPA priority pollutants.
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and names of 15 PAHs examined in this thesis. All these compounds will be 

referred to by their abbreviated names (presented in brackets in Figure 1.2), 

and range from the two-ringed acenaphthene (ACE) to the heavier seven- 

ringed coronene (COR). Of these compounds benzo[a]pyrene (B[a]P) is one of 

the most studied and carries the highest carcinogenic rating (IARC, 1987). 

Health concerns regarding PAHs focus on their metabolic transformation by 

terrestria l and aquatic organism s into m utagenic, carcinogenic and 

teratogenic agents such as dihydrodiol epoxides. These metabolites bind to 

and disrupt DNA and RNA, which is the basis of tumour formation.

There are num erous anthropogenic sources of PAHs, particularly in the 

contem porary urban environment. Major sources include the combustion 

of organic based materials for energy supply, either stationary sources such 

as power stations and domestic heating, or mobile sources like cars, trains 

and aircraft. Incineration of municipal solid waste (MSW), sewage sludge, 

clinical waste and chemical waste also provide major sources of PAHs to the 

environment. Unregulated fires such as recreational fires, waste wood and 

tyre burning  are also likely to make a significant contribution to the 

environmental loading (Wild and Jones, 1995).

1.4 Aims of study

This thesis intends to establish ambient atmospheric concentrations of PCBs 

and PAHs. Little or no systematic collection of data on these compounds
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had been undertaken in the UK prior to this study. This has allowed 

comparisons to be made with other studies on an international basis and 

was envisagd by the Department of the Environment (DoE) as influential in 

forming legislative criteria for air quality guidelines. Temporal and spatial 

variations in PAH and PCB concentrations have been investigated at four 

urban sample sites and at a rural location.

The vapour-particle partitioning in the atmosphere has also been examined. 

By studying this distribution for individual compounds the dominance of 

the vapour or particulate phase for different compounds under different 

conditions can be established, which has implications for transport and 

depositional processes. Depositional fluxes of these compounds have also 

been m easured in both the urban and rural environment and have been 

used in conjunction with source inventories to establish mass balances to 

the UK environment.

Meteorological episodes of unusually high contaminant loading have been 

investigated at the sam pling locations. The influence of meteorological 

factors on contaminant loading and behaviour in the atmosphere has been 

assessed by running an intensive (high resolution) air sampling programme 

at the rural location. Air mass back trajectories would be calculated to help 

explain contaminant loading.

Finally, by identifying and quantifying source compartments within one of
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the urban areas, the cycling nature of a prom inent vapour phase PCB 

congener (PCB 52) could be predicted. A simple box model invoking 

tem pera tu re  as the controlling factor for volatilisation from  these 

com partm ents has been utilised to predict concentrations over an annual 

time scale.

1.5 Thesis layout

To explain the presence of SOCs in the general atm osphere and the 

processes affecting them, Chapter 2 presents a review of the sources of PAHs 

and PCBs to the UK atm osphere, vapour-particle partitioning and the 

physical-chemical properties governing the atmospheric behaviour of these 

contaminants. Atmospheric residence times and depositional processes are 

also discussed, together w ith atm ospheric and depositional sam pling 

strategies.

Chapter 3 details the methods and analytical procedures for the sampling 

and analysis of atmospheric PAHs and PCBs. The sampling was part of the 

Toxic Organic M icroPollutants Survey (TOMPS) funded by DoE. This 

chapter describes the sam pling regime, site locations and methodology, 

including quality control and assurance criteria for the generated data.

Chapters 4 and 5 present the PCB and PAH data respectively for the five 

TOMPS sites and discuss seasonal cycling, vapour particle partitioning and
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spatial variations of these compounds.

Chapter 6 looks into the meteorological effects on contaminant loading in 

the atmosphere and discusses several meteorological episodes identified in 

the TOMPS data. Furtherm ore, a high resolution sam pling study is 

p resen ted  w hich looks into short term  changes in a tm ospheric  

concentrations of PCBs. Meteorological data and air mass back trajectories 

are applied to help in the explanation of these short term fluctuations.

C hapter 7 utilises a model developed by Pankow (1993) to explain the 

vapour phase concentrations of one compound, a tetrachlorinated biphenyl, 

(PCB 52) in the urban atmosphere of Manchester. This m odel assumes 

tem perature  to be the governing factor controlling the atm ospheric 

concentration, defining volatilisation from a series of compartments within 

the box as the primary sources.

C hapter 8 examines the depositional fluxes of both PCBs and PAHs 

m easured  at each of the sam ple sites. Using contem porary data on 

emissions from recently compiled source inventories simple, mass balances 

are developed for the UK. Discrepancies between annual emissions and 

deposition are explored.

C hapter 9 concludes the major points from this thesis and recommends 

those areas needing further research.
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1.6 Units and concentrations

Atmospheric concentrations of PCBs and PAHs are reported in this thesis as

mass per unit volume of air (i.e. ng n r 3 or pg m-3), where ng = 10-9 g and pg

= 10"12 g. To keep with the convention of standard SI m easurements of 

substances in solids or liquids, it would be much better to report air

concentrations as mass per unit mass of air (i.e ng g_1). However this unit is 

rather difficult to perceive and increases with altitude and temperature.

A nother way of commonly expressing concentrations of atm ospheric 

contam inants is by volume per unit volume (also known as the volume 

mixing ratio), expressed as parts per million by volume (ppmv) or parts per

billion (10-9) by volume (ppbv). The mixing ratio can be calculated from the 

contaminant concentration by the following equation:-

ppbv = ng m~3 x Vo x T x P o  
Al To P

W here M is the compound's molecular mass and Vo is the molar volume

of an ideal gas (22.4 x 10'3 m 3 mol"1) with standard temperature (To) 273 K 

and pressure (Po) 101.3 Pa. T is the ambient temperature and P the ambient 

pressure during the sampling period. Thus, a mixing ratio is useful in that it 

is independent of temperature and pressure, and allows a direct comparison 

of one contam inant with another in terms of number of molecules in the
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atmosphere.

Semi-volatile compounds such as the PCBs and PAHs exist both in the 

vapour and particulate phases making the use of volume mixing ratios 

lim ited; it is inappropriate to report particulate phase concentrations as 

volum e per unit volum e m easurem ents. However, because of their 

abundance in the vapour phase, global PCB concentrations have in some 

cases been reported in this manner, particularly for comparison with other 

vapour phase organic contaminants (Standley and Hites, 1991). In this thesis 

the particulate and vapour phase data are always reported as mass per unit 

volume of air.
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Chapter 2 

Semi-volatile Organic Compounds in the 

Atmosphere: A Review

2.1 Sources to the atmosphere

As discussed in Chapter 1 the SOCs studied in this thesis are the PCBs and 

the PAHs. Both these groups of compounds are ubiquitous in the global 

atm osphere and have m any differing sources. PAHs are continually 

produced and emitted to the atmosphere from combustion sources, whereas 

PCBs are no longer manufactured or put to new uses within the UK. PCBs 

are released into the atmosphere either from point sources, such as landfill 

sites and waste incinerators, or by re-volatilisation from surfaces, such as 

soil, vegetation and water.

2.1.1 PAH sources

Much of the PAH input to the global atmosphere arises from forest fires and 

volcanic activity (Nikolaou et al., 1984) as well as from the biogenic 

production of some individual PAHs such as perylene (Sanders et al., 1993). 

How ever, emissions from hum an activities are the predom inant source, 

particu larly  in industrialised countries such as the UK. Atm ospheric
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releases are considered to be from two main combustion categories. The first 

is combustion of materials for energy supply (i.e. oil, petrol, gas, coal, wood 

etc.), and the second is combustion for waste minimalisation such as waste 

incineration (Wild and Jones, 1995). Peters et al. (1981), cited in Baek et al. 

(1991), estimated for the US that 26 % of atmospheric emissions were from 

residential heating and 23 % from mobile sources (i.e. petrol and diesel 

engines). Interestingly different countries have varying emission patterns. 

For example, Ramdahl et al. (1983) estimated that industrial processes 

contribute to 69 % of total atmospheric emissions in Norway, yet only 24 % 

in the US. As Baek et al. (1991) pointed out there may be large uncertainties 

in estim ating emission factors in this way, but certainly it is clear that 

centres of dense population, where energy consumption is at its highest, are 

a significant source of atmospheric PAHs.

For the UK, Wild and Jones (1995) have attempted to budget the various 

PAH sources to the environment including the atmosphere. The emission 

of PAH from the burning of fuels for energy can be spilt into stationary and 

mobile sources. Stationary sources include the burning of fuel for heating 

and power generation (i.e. coal, oil, gas). Wild and Jones (1995) estimated 

that domestic heating results in 600 tonnes of XPAH (X = 16 PAH) being 

released into the atmosphere per annum. Coal and oil fired power stations, 

as well as industrial oil users, release approximately 5.8 tonnes of PAH 

while industrial emissions i.e. refineries, tyre production, alum inium  

sm elting etc. are estimated to emit -18 tonnes per annum. The burning of
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wood is thought to contribute around ~4 tonnes per annum of PAH to the 

atm osphere. How ever, all of these estimates are ham pered by large 

uncertainties over the vapour phase emissions, which effectively excludes 

the lower molecular weight PAHs, resulting in an underestimation of the 

true amount released from this source.

Mobile sources make a significant contribution to the PAH loading in the 

atm osphere. With the increase in motor vehicle numbers the emission of 

PAHs to the atmosphere, particularly the urban atmosphere, is significant. It 

is estimated that at least 60 tonnes of PAH per annum are produced from 

leaded and unleaded petrol car emissions. Diesel driven vehicles (i.e. heavy 

goods vehicles, buses, vans etc.) add a further 19 tonnes of PAH to the 

atmosphere. The projected increase in diesel vehicles (QUARG, 1993b) and 

the rise in the use of unleaded fuel (higher aromatic content [Baek et al.,

1992]) may result in increased PAH emissions to the atmosphere.

Other sources of PAH to the atmosphere include incineration of municipal, 

chemical, clinical and sewage sludge waste. The ash that results from this 

incineration contains a significant amount of PAH but, more importantly, 

stack emissions release PAHs to the atmosphere. These emissions will be 

highly variable, depending on feedstock, incinerator design and combustion 

conditions. On the basis of a plant working 12 hours a day with a rate of 

disposal of 9 tonnes of refuse per hour, (Davis et al., 1976), then Wild and 

Jones (1995) suggest an estimated 56 kg of PAH are emitted annually from
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UK incinerators.

O ther PAH sources, which are unquantifiable, include unregulated fires 

such as forest and heathland fires as well as recreational fires, and the 

unregu la ted  burning  of tyres, wood and other waste. A potentially  

im portan t source to the atmosphere is the soil to air volatilisation of 

previously deposited PAHs, particularly of the low molecular weight more 

volatile compounds. Although this area is poorly understood, Park et a l  

(1990) found that 30 % of naphthlene (two ringed PAH) added to soil was 

lost by volatilisation, while for other PAHs volatilisation was negligible. 

The importance of volatilisation losses for the low molecular weight PAHs 

has been implicated in sewage sludge amended soils (Wild and Jones, 1993).

2.1.2 PCB sources

PCB sources to the atmosphere are subject to similar uncertainties as the 

PAHs. As described in Chapter 1, PCBs were produced in technical mixtures 

classified according to the percentage of chlorine present in the mixture. In 

the UK and most other western countries the use of PCBs was severely 

restricted or banned by the early 1980's (Jones et al., 1991). However, 

substantial stocks may still be tied up in industrial applications such as the 

dielectric fluids in transformers and capacitors (the so called 'closed uses’). 

These are either broken up, resulting in the release of PCBs directly to the 

environm ent or disposed of by incineration. O ther uses were more
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dissipative, the so called 'open uses'. Examples include the use of PCBs as 

plasticisers, fire retardants and agents in printing inks. Many of these PCB- 

associated products have ended up in landfill sites which m ay now be 

releasing PCBs to the atmosphere through volatilisation or on wind blown 

particles. Fugitive atmospheric emissions of PCBs have been m easured 

around several landfill sites (Lewis et al., 1985; Hermanson and Hites, 1989). 

O ther point sources include stack emissions from clinical and chemical 

waste incinerators (Murphy et al., 1985), and the release from scrap metal 

recovery processes. Harrad et al. (1994) attempted to budget the PCBs in the 

UK environm ent and detailed the major sources and their contribution to 

the UK atmosphere. The primary source was considered to be soil-derived, 

w ith approxim ately 88% of the atmospheric burden coming from soils. 

Leaks from transformers and capacitors contribute -9% to the atmospheric 

loading, while the production of refuse derived fuel and the recovery of 

contaminated scrap metal contribute some 3% to the atmospheric burden. In 

general, since the end of production, PCBs have become widely distributed 

betw een the various environm ental com partm ents due to the m any 

diffusive and point sources. Over recent months studies emphasising the 

potential role of vegetation as a significant sink and source to the 

atmosphere for a variety of SOCs have been published (Simonich and Hites, 

1994, Welsch-Pausch et al., 1995). This has raised some uncertainties, in the 

case of the PCBs, over the dominance of soil as a source to air estimated by 

H arrad  et al. (1994). Movement of PCBs from any compartment such as soil, 

water and vegetation will result in a transfer to the atmosphere.
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2.2 Fate of SOCs in the atmosphere

SOCs in the atm osphere will be distributed between the atm ospheric 

particu late  and vapour phases according to the physical conditions 

(tem perature and particulate loading) of the ambient atmosphere and the 

physical-chemical properties of the compounds in question. This vapour- 

particle partitioning plays an important role in determining the behaviour 

and fate of atmospheric SOCs. For example, it affects photo- and chemical 

degradation rates and also determines the relative importance of dry and 

wet deposition processes for a certain compound. The three main factors 

which determ ine a chemical's fate in the atm osphere are, its vapour 

pressure, water solubility and chemical reactivity.

2.2.1 Vapour pressure and water solubility

The SOCs including pesticides, PAHs, PCBs and PCDD/Fs have vapour

pressures ranging  from 10'4 - 10'11 atms (10_1 - 10"7 Pa) at ambient 

tem peratures (Mackay et al, 1992). A compounds volatility (as measured by 

its vapour pressure) will affect its atmospheric fate. Bidleman et a l  (1986) 

deduced  that SOC volatility, expressed by vapour pressure, is the 

dom inating factor governing adsorption to air particulate matter. This 

vapour-particle partitioning will ultimately decide a compound's fate and 

will be discussed in more detail later.

The solubility of a compound will determine how readily it will dissolve in
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rain, in cloud droplets and water surfaces. The dissolution of a compound 

into w ater is determ ined by Henry's Law. Henry's Law states that the 

vapour pressure of a solute is proportional to its concentration (Heys, 1981), 

the proportionality constant is the Henry's Law constant (H).

P = HG

Where P = partial pressure of a gas and C = concentration of a dissolved gas. 

H or Kh  is therefore effectively an air-water partition co-efficient calculated 

from the ratio of vapour pressure of a compound to its water solubility,

expressed in units of atm (Pa) m3 mol-1 at 25 °C, or if divided by RT, the gas

constant (R= 82E-6 m3 atm K-1 mol-1) and a particular temperature (T=K) ,it 

becomes dimensionless (Standley and Hites, 1991). Henry's Law constant is 

a function of tem perature only for a particular gas-solvent system. 

However, each gas-solvent system has a unique Henry's constant. Henry's 

law breaks down when partial pressures exceed 5-10 atm an d /o r when the 

dissolved concentration exceeds 3 mol %. However, for environm ental 

contam inants considered here, the aqueous solubilities and vapour 

pressures of the pure substances are very low. Water solubilities, vapour 

pressure, Henry's Law constants and K ow  (octanol-water partitioning co­

efficients) are given in Table 2.1 for selected PAHs, PCBs and PCDD/Fs. 

Henry's Law constants do not necessarily show a simple linear pattern like 

w ater solubility and vapour pressure, when plotted against molecular 

descriptors like molecular weight. For example, systematic variation of Kh
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Table 2.1 Physicochemical properties for selected PAHs, PCBs and PCDD/Fs. 
(Shiu et al., 1988; Mackay et al., 1992)

Compound MW (a) P(b) Water Sol. (c) H(d) log Kow
g/mol Pa(25oC) g /m3 (25 oC) Pam3/mol

PAH

ACE 154 152 3.8 12 2 3.92
PHE 178 0.113 1.1 324 457

ANTH 178 0.077 0.045 3.96 454
FLUO 202 0.0087 0.26 1.04 522
CHRY 228 0.00011 0.002 0.065 5.86
B[b]F 252 0.000029 0.0015 236 5.80
B[k]F 252 0.000011 0.00081 0.016 6.00
B[a]P 252 0.000021 0.0038 0.046 6.04
COR 300 0.000022 0.00014 0.00042 650

PCB

28 258 0.034 0.037 27.0 5.60
52 292 0.012 0.04 435 5.83
101 326 0.0024 0.017 317 630
138 361 0.00017 0.002 24.9 6.69
153 361 0.00012 0.003 175 6.76
180 395 0.00013 0.0005 342 7.13

Tetra-CB 292 0.095 0.043 245 5.93
Hexa-CB 361 0.0011 0.0035 315 6.75
Octa-CB 430 0.000078 0.00021 38.1 7.11

PCDD/Fs

23,7,8-TCDD 322 0.00012 0.000019 33 631
2,3,7,8-TCDF 306 0.0002 0.00042 15 6.14

23,4,7,8- PeCDFs 340 0.000017 0.00023 05 655
1,2,3,4,7,8-HxCDDs 391 0.0000014 0.0000044 45 7.80

1,2,3,4,6,7,8-HpCDFs 409 0.00000057 0.0000014 1.4 7.42
OCDD 460 0.00000095 0.000000074 0.7 8.21

(a) = Molecular weight, MW (mean values reported for the separate homologue groups)
(b) = Vapour pressure,P (mean value)
(c) = Water solubility (mean value)
(d) = Henry's Law constant, H (mean value)
(e) = Log Kow: logarithmic value of the octanol-water partitioning co-efficient.

(mean value)
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values does not occur with change in molecular weight of PCBs (i.e. Cl 

number) (Burkhard et a l, 1985). However, the PCDDs do show a variation 

in Kh values with a fall of a factor of 1.6 per chlorine added, as a result of 

the decrease in vapour pressure (by 8) and solubility (by 5) (Shiu et a l, 1988). 

If K h is sufficiently high for a certain compound, vapour dissolution into 

droplets is neligible; in other words the compound experiences liquid phase 

resistance. Conversely a low Kh results in a compound experiencing vapour 

phase resistance and the compound will prefer the liquid phase. Henry's 

Law constants generally increase with increased temperature, primarily due 

to the tem perature dependency of chemical vapour pressures; solubility is 

m uch less affected by the changes in temperature normally found in the 

environment.

2.2.2 Chemical reactivity

A com pound's reactivity in the atmosphere, along with its vapour-particle 

partition ing , will determ ine its residence time. For SOCs the major 

transform ation processes include, photolysis or photo-oxidation, oxidation 

by reaction with hydroxyl radicals, ozone or other oxidising agents and re­

arrangem ents to other structures. For many of the SOCs, the distribution 

betw een the particle and vapour phases has a significant effect on its 

atm ospheric reactivity. Aged air masses have been found to be enriched 

with the particle-bound more chlorinated PCDD/Fs (Eitzer and Hites 1989; 

Tysklind et al., 1993), probably due to volatilisation of the less chlorinated
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compounds and their subsequent photolysis. For the PCBs, the reverse is 

found to be the case. In aged air masses the less chlorinated congeners were 

found to prevail, possibly due to the loss of chlorines from the heavier 

compounds by photolysis (Atlas and Giam, 1981). Laboratory studies have 

been undertaken to observe reaction rates of vapour state PCBs and 

PCDD/Fs with OH radicals, O 3 and N O 3 radicals (Atkinson, 1987; Kwok et 

al.; 1994). Kwok et al. (1994) calculated atmospheric lifetimes of gaseous 

PCDD/Fs to be in the order of 1 to 4 days, the OH radical reaction being the 

dom inant tropospheric loss process. Bunce et al. (1989) found that mono­

chlorinated biphenyls have a half-life of several days when exposed to direct 

solar degradation. Atmospheric residence times will be dealt with in more 

detail in Section 2.4.1.

Chemical reactions of PAH in the atmosphere are important because such 

reactions appear to be one of the major removal processes and because the 

products of the reactions may in some instances be more toxic than the 

parent PAH (Nikolaou et a l, 1984). The major atmospheric loss mechanism 

for the more volatile vapour phase PAHs is by reaction with the OH radical 

(Atkinson and Aschmann, 1987; Arey et a l, 1989; Kwok et al., 1994). Vapour 

phase reactions with N 2O5 an d /o r the OH radical in the presence of NO* 

results in the formation of nitro derivatives (nitroarenes). Since the OH 

radical-initiated reaction is a daytime process and the N 2O5 reaction is a 

night-time process, diurnal variations have been observed in the volatile 

nitroarenes (Arey et al., 1989). Calculated rate constants indicate that the OH
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radical and NO 3 radical reactions will be the dom inant atmospheric loss 

processes for phenanthrene, and that the overall atmospheric lifetime of 

vapour phase phenanthrene will be < 1 day (Kwok et al., 1994). The 

reactiv ity  of particulate associated PAH has been more thoroughly 

investigated. Over the last 15 years studies on the transformation of reactive 

PAH on particles have been undertaken, in particular, reactions with gases 

such as nitrogen dioxide (NO2), sulphur trioxide (SO3) and ozone (O3) (Pitts 

et al., 1978; Butler and Crossley, 1981, Lindskog et al., 1985; Yokley et al., 

1986). Degradation of the heavier multi-ringed PAH such as benzo[a]pyrene 

has been found to depend not only on the concentration of the above gases 

but also on the relative humidity and the nature of the sorbent particulate. 

Behymer and Hites (1988) found that the photolytic process is independent 

of PAH structure and dependent on the physical and chemical properties of 

the particulate. Using different types of fly ash, Behymer and Hites (1988) 

found that the substrates that stabilise reactive PAH are black or gray in 

colour and have a significant carbon content. Dark substrates adsorb the 

most light and prevent the light from getting to the PAH. The stabilisation 

of PAH associated with certain types of particulate will result in increased 

atmospheric residence times and hence promote long range transport.

2.2.3 Vapour - particle partitioning

Vapour - particle partitioning of SOCs in the atmosphere was first described 

by Junge (1977), who used the gas-solid, linear Langmuir isotherm theory
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which states, that-the rate, of adsorption-of .a .compound to a surface is 

proportional to the compound's vapour pressure and the amount of surface 

area available:

0  = c0/(P + c0) (2.1)

W here 0  is the fraction of the total atm ospheric concentration of a 

com pound sorbed to the aerosol, P is the vapour pressure of that

compound, 0 is the concentration of the aerosol surface area (cm2 cm-3 air) 

and c is a parameter depending upon the sorbate molecular weight, surface 

concentration necessary for monolayer coverage and the heat of desorption 

of that com pound. Junge's approach to gas-particle partitioning proved 

difficult. However, since finding the concentration of an aerosol surface

area (cm2 cm-3 air) to parameterise the distribution process proved to be a 

difficult task, Yamasaki et al. (1982) got around the problem by assuming 

that the surface area is linearly related to the total suspended particulate

(TSP jig m-3) in the atmosphere. By using TSP, Junge's isotherm approach 

could be applied through the use of a com pound- and tem perature- 

dependent thermodynamic partition coefficient of the form:-

K =
F/TSP (2.2)

A and F represent the equilibrium concentrations of a compound in the 

vapour and particulate phase respectively (ng m -3). F is typically defined as
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the filter retained concentration and A the adsorbent retained concentration 

of an air sampling system. The adsorbent is typically located downstream of 

the filter in any air sampling system. SOC air sampling is discussed in

Section 2.6. The quantity F/TSP (ng fig"1) represents the thermodynamic 

activity o n /in  the particulate matter. The constant K can be viewed as the 

equilibrium  ratio of A to F/TSP, i.e. as the equilibrium  ratio of the 

concentration of a compound in the gas phase to that in /o n  the particulate 

matter. Yamasaki et al. (1982) chose to invert Equation (2.2) to show that an 

increasing partition coefficient, K, denotes decreasing partition to the solid 

phase. A lthough this is the inverse of the usual convention for 

param eterising a two compartmental system the partition coefficient Kp is 

now usually expressed as:-

K = F/TSP = F = K-l
A A(TSP) (2.3)

Various studies have been selected which can be divided up into three 

distinct observations to support Equation (2.3) in validating vapour-particle 

distributions of SOCs in the atmosphere.

Observation 1: The com pound dependent Kp values, at typical ambient 

tem peratures, for a range of PAHs have been found to be remarkably 

sim ilar in different cities including: Osaka, Japan (Yamasaki et al., 1982), 

Portland, OR (Ligocki and Pankow, 1989) and Chicago, IL (Cotham and 

Bidleman, 1992).
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Observation 2: At a certain temperature, such as 20 °C, a linear relationship 

was found between log Kp and log P°l [where log P°L is the sub-cooled 

liquid vapour pressure of that compound] (Foreman and Bidleman, 1987). 

This experimental data supports the theory of Pankow (1987), where Kp 

should correlate with compound vapour pressure at a certain temperature.

Observation 3: Log Kp plotted against inverse tem perature (1/T) (T = 

Kelvin) for a variety of PAHs sampled in Osaka (Yamasaki et a l, 1982) gave 

sufficient linearity to determine the heats of desorption (Hd) [from the slope 

of the line]. The same plots carried out for PAHs sampled in Chicago IL air 

produced similar H d values (Kreiger and Hites, 1994).

The use by Yamasaki et a l (1982) of TSP as a surrogate measurement of the 

amount of surface area available for adsorption by vapour phase molecules 

is therefore acceptable for the Langmuir isotherm approach and allows the 

use of Equation (2.3). Furthermore, the partition coefficient Kp is a strong 

function of atm ospheric tem perature (which affects a com pound's 

volatility) and when Kp is plotted vs. 1/T  then the linear regression takes 

the form (Pankow, 1987)

- Log Kp = m /T  + b (2.4)

Where m and b are the slope of the line and the Y- intercept respectively. 

These are effectively thermodynamic expressions of the partitioning process.
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Several studies have found strong correlations between log (F/TSP)/A  and 

1 /T  for a range of SOCs. T is taken as the ambient temperature during the 

sampling event. Hoff et al. (1992b) examined the partitioning for a variety of 

pesticides and found that there was increased sorption to particulate matter

w ith decreasing tem perature for cis-chlordane, y-H CH , 4,4'-DDT and 

endosu lphan  (the slope of the line depending on the com pound).

Interestingly, no apparent correlation was noted for a-HCH and heptachlor, 

indicating that these compounds remain wholly in the vapour state at 

ambient temperatures.

Pankow (1987) predicted that the value of m and b obtained by the linear 

regression over some ambient temperature range will be given by:-

m  =  H d / 2 . 3 0 3 R  - T a m b /4 .6 0 6  (2 .5 )

b = log ( A t s p t o /2 7 5  [M /T a m b P -5 ) +  1 / 4 . 6 0 6  (2 .6 )

Where H d is the heat of desorption (KJ mol-1) from a surface, R is the gas 

constant and Tamb (K) is the centre of the ambient temperature range for the 

regression. For b (the Y-intercept) Atsp is the surface area of the total

suspended particulate (cm2 cnrr3), t0 is the molecular vibration time (s) and

M is the molecular weight (g mol-1). The slope and the intercept are 

therefore strongly dependent upon Hd and the surface area of the particulate

28



(sorbent) A t s p  respectively. Heats of desorption (from atm ospheric 

particulate surfaces) have been calculated from plots of log (F/TSP)/A  vs. 

1/T  for a variety of SOCs, including PAHs (Yamasaki et al., 1982, Kreiger and 

Hites, 1994), organochlorine pesticides (Cotham and Bidleman, 1992; Hoff et 

al., 1992b) and PCBs (Bidleman et a l, 1986; Hoff et a l, 1992b).

The thermodynamic approach was utilised by Storey and Pankow (1991), 

who studied the partitioning of PAHs to several model aerosols (graphitic 

carbon, sodium  chloride, silica and alumina) as well as standard urban 

particulate matter (UPM). Good agreement between log K p ,s  vs. 1/T  plots for 

the graphitic carbon aerosol and UPM supports the theory that partitioning 

to atmospheric aerosol is adsorptive and non-specific in nature. K p ,s  was a 

surface area corrected K p , derived for the different aerosols from Equation 

(2.6). Agreement between UPM and the other three sorbents, however, was 

not as good as w ith graphitic carbon, indicating that different aerosol 

compositions may affect the vapour to particulate partitioning.

Pankow (1991) improved the simple linear regression (SLR) plots (Log Kp 

vs. 1/T) for individual compounds, to derive a common factor for a whole 

com pound class such as the PAHs. This was done on the basis that similar 

com pounds sorbing to the same particulate m atter should possess very 

sim ilar Y-intercepts [b value, Equation (2.4)]. This common y-intercept 

regression (CYIR) uses a mean b value, calculated from individual 

compounds, to plot the regression. For a class of compounds such as the
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PAHs, the use of a common b value (or Y intercept) has proved more 

reliable in evaluating heats of desorption. These in turn are more highly 

correlated w ith  the heats of vapourisation derived from  laboratory 

experiments.

2.2.4 Deviations from true vapour - particle partitioning

Discrepancies in the non-specific adsorption characterising vapour - particle 

partitioning for SOCs have been highlighted. Variations in log Kp vs 1/T  

plots for a class of compound derived from field data taken at different 

locations and times do occur. For example Hd values calculated for PAHs 

collected in Osaka, Japan in 1982 (Yamasaki et al., 1982) differ slightly from 

H d values calculated from PAHs collected in Indianapolis, IN in 1994 

(Krieger and Hites, 1994). These differences are put down to thermodynamic 

variability such as differences in the am ount of atmospheric particulate 

present and hence the sorbing surface area available (Pankow and Bidleman,

1992). Tem perature is the only environmental factor taken into account in 

the partitioning model of SOCs. However, recent work has highlighted 

hum idity as having a low, but significant effect on the partitioning of PAHs 

to the particulate (Lee and Tsay, 1994); that is increased water vapour 

condenses on the particulate reducing SOC adsorption. Cotham  and

Bidleman (1992) found that high temperatures (-30 °C) and high relative 

hum idities reduced SOC sorption to particulate m atter. Secondly, and 

perhaps more importantly, the sampling system artefacts can result in F and

30



A (Equation (2.3)) not representing their true atmospheric values, resulting 

in a biased Kp (Bidleman et al., 1986). Details of sampling artefacts are 

discussed in Section 2.6. Furthermore, it is now considered that there is a 

non-exchangeable PAH fraction retained within atmospheric aerosol. This 

fraction is released in soxhlet extraction procedures resulting in a biased 

particulate loading, compared to the true exchangeable particulate-PAH 

fraction in the atmosphere (Bidleman et al., 1986).

The partitioning between the particle and vapour phases is therefore 

dependent on the volatility of a compound, the ambient tem perature (and 

hum idity to some degree) and the amount of particulate matter present (i.e. 

the surface area available), which will differ between an urban and rural 

atmosphere. Hence the V /P  partitioning will, in the long term, determine a 

com pound's fate in the atmosphere, since those compounds found mainly 

associated with the particulate are more susceptible to depositional processes 

and shorter atmospheric residence times. On the other hand compounds 

w ith  a significant vapour phase fraction, although least affected by 

depositional processes, may be prone to photochemical transformation. 

C ertain ly  the elucidation of a com pound's d istribu tion  at am bient 

tem peratures allows the fate of that compound to be predicted.
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2.3 The role of atmospheric particulate matter

Particulates in the air consist of very small solid- or liquid-suspended 

droplets and are generally classified according to size. Table 2.2 lists the 

general particulate types and sizes. The origins, sizes and removal pathways 

are discussed in detail in Twomey (1979). Large or coarse particles with 

diam eters (d) greater than 2 - 2.5 pm are produced by mechanical means 

such as aeolian weathering of soils, sea spray, volcanic activity and release 

from plants (e.g. pollen and spores). The smallest particles, d < 0.1 pm, are 

known as Aitken nuclei, which arise from gas to particle conversion. This 

range contains most of the total number of particles, but little mass. The 

lifetimes of Aitken nuclei are short because of rapid coagulation. Mid-sized, 

or accumulation mode particles (0.1 pm < d < 2 pm) are also produced by gas 

to particle conversion and by coagulation of Aitken nuclei.

Table 2.2 Types of suspended particulates in the atmosphere (Wellbum, 1991).

Type Nature Size (diameter)
(pm)

Grit Solids, settle out quickly > 500
Dust Solids, settle more slowly 2 - 500
Smoket Gas-borne solids < 2
M istt Liquid droplets 0 . 1 - 2
Aitken nuclei Solid or liquid droplets < 0.1

t  Accumulation mode particles

The accum ulation mode, which comprises most of the surface area and 

about half the mass of urban air particulate matter, is an important one for 

air p o llu tan ts  (Bidlem an, 1988). C om pared w ith  coarse particles,
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accumulation-mode particles contain high levels of organic compounds, 

soluble, inorganic species (e. g. sulphate, nitrate and ammonium) and many 

trace metals. Accumulation-mode particles are too small to undergo rapid 

gravitational settling and they are more slowly removed by rain and dry 

deposition. As a result, their atm ospheric lifetimes and potential for 

transport over long distances are greater. Residence times of 7 - 3 0  days have 

been quoted (QUARG, 1993).

2.3.1 Nature of urban aerosol and sampling

Over the last 40 years the nature of urban aerosol has changed, in the 1950’s 

and 1960's smoke played a major role in the pollution of UK towns and 

cities. At the time, it largely comprised of carbonaceous soot from coal 

burning. However, with the decline of domestic coal combustion due to the 

Clean Air Act of 1956 (Boubel et a l , 1994), the concentrations of black sooty 

smoke fell. Conversly, concentrations of secondary particulate pollutants 

such as amm onium  sulphate increased due to increased sulphur dioxide 

emissions over Europe.

In recent years growth in the number of diesel vehicles, which can emit 

black smoke, has led to some increase in the blackness of smoke at heavily 

trafficked sites, and it is diesel engines rather than coal combustion which 

are now  the major source of black smoke particles in the UK (QUARG,

1993). The composition of typical urban aerosol is presented in Figure 2.1.
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Figure 2.1 Composition of atmospheric aerosol collected in Leeds (1982/3). 
(QUARG, 1993)
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Sim ple m easurem ent of atm ospheric particu late  is carried  ou t by 

gravimetrically determining a filter before and after air sampling. The mass

difference is reported as the total suspended particulate (TSP - pg n r 3). A 

widely used m ethod in the UK is the black smoke method, where air is 

draw n through a white filter on which the particles produce a stain, the 

darkness of which is measured using a portable reflectometer. However, the 

m ethod does not consider other, non-coloured, particulate. W ith the 

increasing concern over particulate m atter ^ 10 pm in diam eter (PMio), 

m any studies have fractionated the particulate according to size using a
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cascade impactor connected to the air sampling apparatus.

2.3.2 SOCs and atmospheric particulate

Urban atmospheric particulate (regarded as the urban aerosol) is strongly 

influenced by anthropogenic sources. In the early 1980's the airborne toxic 

elements and organic subtances (ATEOS) programme was set up in New 

Jersey, USA, to study airborne particulates in different urban locations 

within a city, as well as a semi-rural background site (Lioy and Daisey, 1985). 

Species m easured included those associated with inhalable particulate 

m atter (IPM) and included extractable organic matter from which PAHs and 

volatile organic compounds (VOCs) were examined. IPM (particles < 15 \xm 

diameter) includes PMio which can deposit in the tracheobronchial region 

of the lungs and is implicated in human health effects (Pope et a l, 1992). At 

each of the locations w ithin the city IPM comprised of mainly mineral 

m atter, such as secondary su lphate and suspended  soil (~70 %). 

Contributions from motor vehicles were ~10 % at each of the sites while 

con tribu tions from  industry  and other com bustion sources varied 

depending on site location. Interestingly, pollution episodes were found to 

influence the composition of the organic fraction of the urban aerosol. 

During these periods, increased concentrations of extractable organic matter 

w ere observed at all of the sites, including the semi-rural site. Diurnal 

variations in particulate loading have been observed, particularly for PMio- 

This bears some sim ilarity to the traffic-dom inated pattern  for CO
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emissions, indicating that traffic is a significant source of particulate. 

Moreover, work carried out in Los Angeles (Rogge et al., 1993) found that 

internal combustion engines burning mineral fuels contribute > 21 % of the 

primary fine particulate organic carbon emitted to the atmosphere.

SOCs have been widely studied in atmospheric particulate, particularly the 

PAHs because of their combustion derived sources (Behymer and Hites, 

1988; Baek et a l, 1992). More importantly, the distribution of SOCs (mainly 

the PAHs) have been examined in the various particle sizes (Katz and Chan, 

1980; Pistikolopoulos et al., 1990; Handa et al., 1980). These studies report 

that particulate bound PAHs are located on the small accumulation-mode 

particles (d < 2pm). Katz and Chan (1980) reported that the particle size 

range of < 1.1 to 3.3 pm contained between 72 - 89 % of the particulate PAHs. 

Similarly, although there is less data on the organochlorines, Kaupp et al. 

(1994) found approximately 90 % of the PCDD/Fs associated with small 

particles, < 1.35 pm in diameter. This is significant in terms of both human 

exposure and atmospheric transport, since accumulation-mode particles 

have relatively long residence times in the atmosphere.

In this thesis atmospheric particulate was determined as TSP collected on a

filter and reported as pg n r 3 of air. A high volume air sampler (Hi-Vol) 

described in Section 2.6 was fitted with a modified PMio head. This was 

installed simply to be a more efficient collector of general atmospheric 

particulate over the conventional pyramidal Hi-Vol head. The baffles and
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collecting shims were removed from the PMio head to allow all particulate 

sizes access to the collecting filter. Collecting and analysing atmospheric 

particulate allows examination of the partitioning between the solid and 

vapour phases for a particular compound. Seasonal variations in this 

distribution can be followed, as well as spatial differences such as between 

urban and rural particulate, where time and dilution may have an effect on 

the aerosol.

2.4 Atmospheric transport

SOCs in the atmosphere are either adsorbed to particulate matter of different 

size ranges when emitted from the source or present in the vapour phase 

and can, during the course of time, undergo association with aerosols as 

they are transported. Since the atmospheric input is of major importance for 

the distribution of SOCs to the terrestrial and aquatic ecosystems, it is 

im portant to m onitor their transport from sources and any subsequent 

compositional changes.

The atm ospheric transport of SOCs has long been recognised as the 

m echanism  resu lting  in the global d istribu tion  of m any of these 

anthropogenic compounds. Long range transport from local and regional 

sources is governed by the spatial pattern of discharge and by the structures 

of global atm ospheric flow. For example, acid deposition in parts of 

Scandinavia is due to transport of acidic pollutants from western Europe
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(Irwin and Williams, 1988). Similarly, atmospheric transport is responsible 

for the movement of SOCs from sources to remote areas. Atlas and Giam 

(1981) discovered PCBs, DDT, dieldrin, chlordane and two phthalate ester 

plasticizers in the atmosphere of a remote Pacific atoll, far removed from 

industrial and hum an activity. The very nature of transport through the 

atm osphere results in the atmosphere acting as a significant source to 

remote areas through the mechanisms of deposition. Certainly in the upper 

Great Lakes region of the USA the atmospheric input of PCBs constitutes the 

greatest source to Lakes such as Superior, Michigan and Huron (Eisenreich 

et al., 1981; Swackhamer and Armstrong, 1986; Murray and Andren, 1992).

2.4.1 Residence times

In the atmosphere as well as in the oceans the mobility of sparsely water 

soluble, semivolatile compounds will be mainly regulated by the ratio of 

particle bonded to non-particle bonded molecules. The ratio is regulated in 

the atmosphere by the surface of particles offered per volume unit and the 

mean tem perature of the specific environment (Junge, 1977) and has been 

discussed in Section 2.2.3. The adsorbed portion will follow the transport 

routes of the aerosols, which - after aggregation - will deposit to surfaces (wet 

or dry) and have shorter residence times than the vapour phase component.

Ballschmiter and Wittlinger (1991) reviewed the global distribution of SOCs 

and assum ed that the residence time of molecules depended on their
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vapour - particle partitioning and particle residence times. The residence 

time (days) of a compound is predicted by dividing the particle residence 

time by the partition ratio 0  (Equation 2.1, Section 2.2.3) at a mean 

tropospheric temperature. With a general particle residence time of between 

6 to 9 days, those compounds with partition ratios of < 0.01 are predicted to 

have residence times of between 190 - 600 days. This is applicable for the 

lower molecular weight more volatile compounds such as the di and tri­

chlorinated biphenyls and the pesticides HCH and HCB w ith vapour

pressures of 10‘2 - 10'3 Pa, and helps explain the ubiquitous global 

d istribu tion  of these com pounds. Using this partition ing  approach 

Manchester-Neesvig and Andren (1989) suggested a residence time of -100 

days for PCBs (averaged across 38 congeners covering the major homologue 

groups). Chemical transformation will certainly reduce residence times of 

atmospheric SOCs (ie < 1 day for phenanthrene (Kwok et al., 1994) but even 

with a particle residence time of 6 days and a wind speed range of 5 - 15 

k m /h , a particulate bound compound has a range of 720 - 2200 km at ground 

level, and probably further at greater heights due to higher wind velocities.

2.4.2 Long range transport

Since the 1970's reports have documented the SOC transport over oceans 

away from source areas. For example, elevated DDT levels have been found 

over the northern Indian Ocean (Tanabe and Tatsukawa, 1980) and western 

Pacific (Tanabe et a l, 1982). PCBs and polychlorinated camphenes (e.g.
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toxaphene) were found in N. Atlantic air carried from N. America 

(Bidleman and Olney, 1974; Bidleman et al., 1981). The movement of SOCs 

have been tracked from where they were generated (sources) to remote 

environments. For example, Bjorseth et al. (1979) found that the particlulate- 

bound PAH loading in the atm osphere of southern N orw ay occurred 

m ainly in air masses having crossed the UK or the European continent. 

Similarly Masclet et al. (1988) measured both vapour and particle-bound 

PAH in a remote site on Corsica in the Mediterranean and found elevated 

concentrations in air masses tracked from north and western Europe. 

Importantly, they found that many of the vapour phase concentrations were 

determ ined by the source area only and that they remained high relative to 

the concentrations in the industrial zone from where the air was derived.

The use of meteorological data to establish back trajectories to allow the 

tracking of pollutants has also been applied to the Artie region. Growing 

concern in the 1980’s over the prolification of SOCs in the polar atmosphere 

led to several studies where air samples were collected along w ith 

meteorological data to establish air mass direction. Oehme and Man0  (1984) 

sam pled various polychlorinated compounds including pesticides such as 

DDT, the HCH isomers and HCB as well as several pentachlorobiphenyls at 

the Arctic islands of Bear and Hopen. The concentration profiles for the 

m easuring station at Bear Island during the autum n of 1982 showed two 

distinct maxima, with different compound composition. The comparison of 

the results w ith the trajectories calculated for this period gave a strong
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indication of long range transport from Europe (first maxima) and the 

USA/Asia (second maxima). Further evidence of long range transportation 

of organochlorines and PAH have been confirmed by Patton et al. (1991) and 

Oehme (1991). Although pinpointing specific events or pollution episodes 

has had some success in the Arctic region, identifying sources is difficult due 

to the distances travelled and the time involved to move from source to 

polar region. Recently Wania and Mackay (1993) proposed a theory where 

compounds with vapour pressures in a certain low range may preferentially 

accumulate in the polar regions. A process of global fractionation may be 

occurring in which organic compounds become latitudinally fractionated, 

'condensing ' at different am bient tem peratures dependent on their 

volatility . C ertainly  the patterns of environm ental d istribu tion  of 

organochlorines in the higher latitudes appear to support this theory (Barrie 

et a l, 1992).

On a synoptic scale western Europe, in particular the UK, is affected by a 

variety of air masses. These bring different weather types to the UK, with the 

predom inance of unstable westerly fronts (Musk, 1988). In contrast, high 

pressure anticyclones (characterised by clear skies and low winds) can persist 

over the UK blocking westerly depressions resulting in stable conditions 

w ith  continental influences. In this thesis the use of back trajectories is 

incorporated to determine the direction of an air mass and hence reveal its 

importance as an influence on SOC loading.
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2.5 Atmospheric deposition

Although it is now established that many of the SOCs are widely distributed 

in the global atm osphere (Ballschmiter, 1991; Iwata et a l ,  1993), 

contam ination of remote terrestrial and aquatic surfaces has occurred 

through depositional processes. As described by Ballschmiter (1991) the 

extent of deposition from the troposphere to the earth or ocean surface 

regulates the spreading of pollutants into unpolluted areas of the world as a 

consequence of the long range atmospheric transport. As the earth's surface 

is 71% w ater then it is probable that the deposition of anthropogenic 

compounds from contaminated air masses occurs mainly at sea, particularly 

as the mean global precipitation pattern favours deposition over the oceans. 

Unlike deposition to terrestrial surfaces the mixing process to deeper water 

layers (at least to 20-50 meters) will be relatively fast, resulting in the oceans 

acting as a transport medium (like the atmosphere) and also as a source, 

w ith  com pounds transported  to rem ote regions or re-entering the 

a tm osphere  th rough  volatilisation. The d istribu tion  of persisten t 

organochlorines in oceanic air and surface seaw ater was thoroughly 

investigated by Iwata et al. (1993) with estimations of gas-exchange fluxes 

across the air-w ater interface in various global locations. Im portantly, 

deposition of organochlorines has become evident in the remote polar 

regions (Tanabe et a l, 1983; Gregor and Gummer, 1989).

On a regional basis SOC deposition is an important source to terrestrial and 

aquatic ecosystems. Assessment of regional air and water quality and

42



implementation of clean air legislation and risk management programmes 

requires an understanding of depositional processes and the quantification 

of contaminant deposition to surfaces. In the Great Lakes region of North 

America where several of the Lakes are in the vicinity of major emission 

sources, deposition of SOCs to these water bodies has been the focus of 

much research. Eisenreich et al. (1981) reviewed the depositional processes 

of SOCs to these water surfaces, emphasising the importance of the vapour - 

particle distribution in affecting deposition. For an organic compound this 

can either be through wet or dry deposition. The importance of dry 

deposition as a source of SOCs to lake surfaces was acknowledged by both 

Eisenreich et al. (1981) and later by McVeety and Hites (1988), who noted that 

the dry aerosol deposition for selected PAHs was greater than wet removal 

processes by a ratio of 9:1.

2.5.1 Depositional processes

The distribution of airborne organics between vapour and particle phases 

strongly affects atm ospheric removal processes. For the more volatile 

compounds such as the di-, tri- and tetra-chlorinated biphenyls and the low 

molecular weight three-ring PAHs that exist predominantly in the vapour 

phase, depositional processes and rates will differ from the particulate- 

bound fraction. The two main types of atmospheric removal processes 

d iscounting chemical transform ation are wet and dry deposition. A 

schem atic diagram  is presented in Figure 2.2 show ing the various
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depositional pathways for vapours and particle-bound organics.

Figure 2.2 Depositional processes which deposit SOCs to the earth's surface 
(adapted from Bidleman (1988)). SOCs partition between the vapour and 
particle phase, precipitation scavenges both of these matrices. Dry deposition 
of particles is also a significant removal process for SOCs.

Vapour-particle distribution so
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2.5.2 Wet and dry deposition

Precipitation events scavenge contaminant-laden particles by incorporating 

the particles into rain drops, either during droplet formation or as the 

droplet falls through the air column (Ligocki et a l , 1985a). Vapour phase 

contaminants are removed from the atmosphere as a result of partitioning 

across the water droplet surface followed by dissolution into the bulk liquid. 

N on-reactive vapours (i.e. vapour phase SOCs) are scavenged by 

precipitation according to Henry's Law, if equilibrium between the vapour 

and aqueous phases is attained (Ligocki et al., 1985a, b). Slinn (1978) 

predicted that a falling raindrop should attain equilibrium with a trace
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organic vapour in a ~10 m fall. As an example from the work of Leister and

Baker (1994) wet depositional fluxes (Fwet - pg m -2 m onth-1) can be 

calculated from a volume-weighted monthly S O C  concentration ( [S O C J v w m ,

pg m-3):

[S O C ]v w m  =  [X C [S O C ]iV i] /[X V i]

F w et = [S O C jv w m  (x)

W here C[S0C]i is the SOC concentration in each individual rain event, Vi is

the volume of precipitation and x is the precipitation rate (m3 m-2 m onth-1). 

The extent of wet scavenging for a compound is given by the ’washout

ratio' (W) which is the concentration in rain (ng L-1), divided by the

concentration in air (ng m -3). The particle washout ratio is given by Wp and 

the vapour phase washout ratio is given by Wv expressed as:-

Wv = RT/H

W here R is the gas constant and H is the Henry's Law constant for that 

com pound at a certain tem perature, T. If the fraction present in the 

particulate phase is defined as 0 , then the overall washout ratio is given by 

(Ligocki et al. 1985b):-

W = Wv(l - 0 ) + Wp0
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In general, washout efficiency is enhanced as the volatility of a species is 

reduced, probably due to particle washout being the prim ary removal 

mechanism for these compounds. Eitzer and Hites (1989) calculated gas and 

particle w ashout ratios for the dioxin and furan homologue groups in 

Bloomington, IN. Plots of Wv and Wp against compound vapour pressure 

showed a strong correlation for Wv and a lack of correlation for Wp, the 

latter indicating that particle washout is a physical process acting on the 

particle and, therefore, all the compounds bound to the particle are affected 

similarly. Wv was found to increase significantly with decreasing vapour 

pressure i.e. as the Henry's constants decreased, compounds became more 

susceptible to washout.

SOCs are removed from the atmosphere during dry periods by dry particle 

deposition and by vapour exchange between the atmosphere and water and 

terrestrial surfaces. Dry particle deposition rates of SOCs depend upon the 

aerodynam ic size distribution and upon micrometeorological conditions 

(Slinn, 1983). Although dry particle deposition rates are very difficult to 

measure directly, modelled and experimentally derived particle deposition 

velocities have been derived for various SOCs including PAHs (McVeety 

and Hites, 1988), PCDD/Fs (Koester and Hites, 1992) and PCBs (Holsen et al.,

1991). M onthly dry particle fluxes (Fpart. dry, Hg m -2 m onth-1) can be 

estimated by:-

Fpart. d ry =  [S O C ] part. V d



Where [SOC] part is the measured particle SOC concentration (pg m -3) and 

Vd is the estimated dry deposition velocity (m month-1).

Gaseous contaminants actively exchange between the atmosphere and water 

and atm osphere and terrestrial surfaces at a rate proportional to their 

concentration gradients (Mackay, 1986). Gaseous fluxes of SOCs have been 

examined over water bodies such as in the Great Lakes region of North 

America. Leister and Baker (1994) used the following equation to derive 

gaseous fluxes to the Chesapeake Bay area on the eastern seaboard 

(Maryland)

F gas, dry — K O L ([S O C ]d iss. ■ [ S O C ] g a s /H )

W here F g a s , d ry  is the S O C  flux resulting from gas exchange (pg m-2 month- 

*),  K o l  is a m ass transfer coefficient expressed on a liquid phase 

concentration basis (cm m onth-1), H is the Henry's Law constant (Pa m-3 

mol-1) and [S O C ]d is s .  and [S O C ] gas are the concentration of S O C  dissolved in

surface w ater (pg L-1) and in the atm ospheric gas phase (ng m -3) 

respectively. Baker and Eisenreich (1990) and Hoff et al. (1992a) found that 

the vapour exchange of SOCs is highly dynamic, with volatilisation during 

the w arm er sum m er months offsetting efficient deposition during the 

cooler, w inter months.
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M onitoring deposition for SOCs in urban areas is less extensively studied, 

but for the PCBs and PAHs depositional fluxes are expected to be orders of 

m agnitude higher. Holsen et al. (1991) determined dry deposition PCB 

fluxes in Chicago air and found them to be three orders of m agnitude 

higher than in remote areas of the USA. In this thesis bulk deposition (wet 

and dry) was collected monthly from both urban sites and a rural location. 

By calculating deposition fluxes simple mass balances could be derived for 

the UK environment, annual release data for PAHs and PCBs was obtained 

from contemporary source inventories.

2.6 Sampling strategies for atmospheric SOCs

2.6.1 Air sampling

Examples of air sampling for SOC have been reported as early as the 1950's 

(Waller, 1952) when benzo[a]pyrene (3,4-benzpyrene), a high molecular 

weight PAH, was collected on filter paper. In this case air was drawn from 

outside a building by means of a small electric pump coupled to a gas meter 

so that the volume of air aspirated could be measured. Filter papers were 

also analysed for other airborne pollutants such as SO2 and black smoke 

shading. Early measurements of airborne pesticides were carried out using 

impingers, gas bubblers and columns packed with solid adsorbents (Yule et 

al. 1971; Miles et a l ,  1970; Stanley et a l ,  1971). These m ethods were 

developed for use in agricultural areas or to monitor insecticide drift during 

forest spraying operations where concentrations in the atmosphere tended
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to be high and the volume of air required for a sample relatively small, of

the order of 5 - 50 m3 (Bidleman and Olney, 1974). In areas well away from 

point sources, where time and atmospheric dilution result in greatly 

reducing the concentration of an airborne compound, large volumes of air 

need to be sampled to obtain detectable levels. There are two ways in which 

a sufficient volume of air can be sampled, one of which is passive air 

sampling (non-active) and the second is high volume air sampling (active).

2.6.2 Passive air sampling

Passive air sampling is a non active technique of sampling large volumes of

air (up to millions of m3). The earliest techniques involved leaving pre­

cleaned screens (nylon mesh) coated in a neutral oil or lipid such as silicone 

oil or glycerin to collect atmospheric particulates for the subsequent analysis 

of pesticides (Risebrough et a l, 1968). However, this technique does not fully 

address the vapour phase component; Risebrough et al. (1968) could not 

detect any PCBs on their screens, when exposed to the north east Atlantic 

trade winds, and correctly presumed that they persist mainly in the vapour 

state. With the improvement of analytical techniques, coated screens (now 

usually m ade of Teflon™ or polypropylene) have been used to assess 

particle associated SOC deposition. Dry depositional fluxes of PCBs have 

been measured in Chicago air by Holsen et al. (1991) using a Mylar-covered 

plate, while PCDD/Fs have been analysed in fog by collecting fog water 

droplets on a Teflon wire mesh and allowing the water to run down into a
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glass collecting vessel (Czuczwa et al., 1989) (SOC deposition collection will 

be discussed later). Various matrices have been employed for passive air 

sampling, including plants (Buckley, 1982; Thomas et al., 1985; Strachan, 

1988; Schreiber and Schonherr, 1992), glass (Weistrand et al., 1992) and 

semipermeable membrane devices (SPMDs) (Petty et al., 1993). Since Klein 

and Weisgerber (1976) suggested that terrestrial plants accumulate airborne 

PCBs, studies have been undertaken on the long term accumulation of SOCs 

in mosses and lichens (Bacci et al., 1986) and plant leaves with a high waxy 

cuticle content such as pine needles (Strachan et a l, 1994). This type of 

sam pling in which the SOCs diffuse into the waxy plant surfaces gives a 

good indication of tropospheric contamination. Their contents in plant 

samples collected in 26 areas around the globe have now established a global 

d istribu tion  pa ttern  for a variety of pesticides (HCB, DDT and its 

m etabolites) (Calamari et al., 1991). Semipermeable membrane devices 

(SPMDs), consisting of a neutral lipid (triolein) enclosed in polyethylene 

layflat tubing, have been demonstrated to be highly efficient passive air 

sam plers (Petty et al., 1993). These devices readily sequester lipophilic 

organic contaminants from the vapour phase and are increasingly being 

used in am bient air monitoring programmes (Lead et a l, unpublished). 

However, their use is limited at present by the uncertainties over the effects 

of temperature, freezing etc. on the uptake kinetics.

50



2.6.3 High volume air sampling

High Volume air samplers (Hi-Vols) are active samplers in that they pum p 

air through a filter system. With a Hi-Vol system particulate associated 

compounds are collected on a precombusted glass- or quartz-fibre filter and 

an adsorbent behind the filter is used to retain  the vapour phase 

component. Unlike the air sampling system used by Waller (1952) in central 

London (m entioned above) they are separate units incorporating an air 

pum p/m otor, air flow regulator and the sampling head. These samplers are 

of alum inium  construction with the sampling head protected by a roof or 

specialised air inlet. A self contained detachable sampling head allows easy 

rem oval of the filter/sam pling matrix with a reduced risk of handling 

contamination. The use of Hi-Vols was pioneered in the 1970's with the 

routine sam pling of particulate bound SOCs in a variety of sam pling 

locations (Gordon and Bryan, 1973; Faoro, 1975; Gordon, 1976). The 

extension of the Hi-Vol to sample gas phase SOCs came about with the use 

of solid adsorbents as a vapour trap. Olney and Bidleman (1974) 

incorporated polyurethane foam (PUF) plugs (situated behind the filter in 

the sampling head) to sample vapour phase PCBs in the marine atmosphere 

of the eastern Atlantic. PUF had originally been used to extract PCBs from 

seaw ater (Gesser et al., 1971) but was found to be compatible with high 

volume air sampling since it offered little resistance to the passage of air. 

Several other adsorbents (discussed later) along with PUF are now routinely 

used in sampling the vapour phase component of SOCs in the atmosphere.

51



2.6.4 Solid phase vapour adsorbents

The use of solid adsorbents for the trapping of organic vapours has long 

been recognised; one of the earliest applications was the use of activated 

charcoal in gas masks during World War One (Thain, 1980). A num ber of 

different adsorbents have been used for trapping (physical adsorption 

processes i.e. Van der Vaals' forces) atmospheric vapour phase SOCs. These 

include Florisil™, porous glass beads, silica gel, polyurethane foam (PUF) 

and two types of porous resin, Tenax and XAD-2. Table 2.3 presents details of 

each adsorbent type and quotes PCB collection efficiencies. Advantages and 

drawbacks of each adsorbent are commented on. PUF which is cut into 

cylindrical plugs (length ~7 cm) and inserted behind the filter is the most 

commonly used adsorbent for ambient air monitoring schemes. Selection of 

a particular adsorbent should depend on the compound(s) to be sampled. 

Billings and Bidleman (1980) showed that hexachlorobenzene (HCB) was 

poorly retained by PUF yet the low molecular weight PCB (Aroclor 1016) was 

effectively trapped. In several cases where more volatile SOCs, such as 

pesticides like HCB and the hexachlorocyclohexane isomers (HCH) have 

been sam pled, then Florisil™ and silica gel cartridges have been utilised 

because of their greater adsorbing efficiency (Lane et al., 1992; Ballschmiter 

and W ittlinger, 1991). Several studies have used XAD-2 resin as the solid 

adsorbent to collect PCBs (Doskey and Andren, 1979; Hollod and Eisenreich, 

1981; Tanabe et a l, 1983) and PCDD/Fs (Turrio-Baldassarri et al., 1994). Tenax 

has also been used to trap vapour phase PAHs (Baek et a l, 1992). The use of
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the adsorbent/filter setup in Hi-Vol air samplers has now become well 

established for the sam pling of airborne SOCs, and have been used 

successfully for the sampling of PCBs, PAHs and PCDD/Fs (Manchester- 

Neesvig and Andren, 1989; Eitzer and Hites, 1989; Holoubek et al., 1992). In 

this thesis all air sampling was carried out using a Hi-Vol air sampler 

incorporating PUF adsorbent (2 plugs) behind a glass fiber filter (GFF). GFFs 

were found to have a greater filtration efficiency of submicron particles (99.1 

- 99.9 %) than cellulose filters (98.0 %) (John and Reischl, 1978). PUFs were 

selected because of their good vapour collecting efficiency, the relative ease 

of pre-clean up, their cheapness and availability.

2.6.5 Sampling artefacts of the filter/adsorbent system

By separating the particulate component on the filter and the vapour 

com ponent on the adsorbent, the vapour/particulate ratio (V/P) can be 

operationally defined as the adsorbent/filter ratio (A/F) (Bidleman, 1988). 

Depending on how temperature and vapour concentrations change during 

the collection period, volatilisation losses (known as blow-off) or adsorption 

gains of SOCs to the particles on the filter may take place (Van Vaeck et al., 

1984; Bidleman, 1988; H art et al., 1992). The A /F  ratio can be positively 

biased relative to the true vapour-particle partitioning ratio if adsorption of 

vapour phase molecules onto the filter or onto particles collected on the 

filter is the dom inant artefact, or it can be negatively biased by blow off of 

sorbed compounds off the particles. Blow off losses are considered to be the
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more dom inant process (Van Vaeck et al., 1984; Bidleman, 1985). Chemical 

change can also occur for molecules collected on the filter, degradation of 

benz[a]pyrene (a high MW, 5-ring PAH) has been observed due to the 

reaction with gas phase components such as O3 and N O 2 (Peters and Seifert, 

1980; Pitts et al., 1980). These artefacts cause A /F  to differ from the true V/P. 

Alterations to the Hi-Vol system have been carried out to examine these 

problems (Van Vaeck et al., 1984; Hart et al., 1992). Adsorption of vapour 

phase molecules onto the filter matrix can be partially compensated by using 

two filters, one behind the other; the amount collected on the back filter is 

subtracted from the amount collected on the front filter to correct for the 

filter's vapour phase adsorption (Hart and Pankow, 1994). Van Vaeck et al. 

(1984) developed an Integrated Gas Phase-Aerosol Sam pling System 

(IGPHASS) which incorporated (1) a cascade impactor (which fractionates 

collected particulate according to size) backed by an adsorbent Tenax 

cartridge, (2) a conventional Hi-Vol sampling head (filter/adsorbent [Tenax]) 

and (3) a specialised (vapour phase only) sampling head. This specialised 

sampling head was designed to eliminate the particle blow-off contribution 

made to the vapour phase component by having ten separate GFFs aligned 

above a single Tenax cartridge (via 10 tubes). During the course of a sample 

day there would be 10 changes to a fresh, unloaded, filter by closing one tube 

and opening  another. In using this com bined system  the overall 

atm ospheric concentration is evaluated and the concentrations in the 

various particle sizes and the true vapour phase concentrations can be 

determined. Of significance, is that the degree of blow off in a conventional
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sam pling head was deduced for a series of organics including PAHs. Van 

Vaeck et al. (1984) concluded that (1) blow off contributions decrease 

gradually  with increasing molecular weight w ithin a com pound class. 

(2) Blow off from particles is tem perature dependent; for the PAHs, 

significant blow off is found for the benzofluoranthenes in the summer and 

yet only up to the chrysene/benz[a]anthracene pair in the winter. (3) PAH

blow off is enhanced by higher sampled air volumes (1000's m 3). (4) The 

blow off artefact is negligible for low molecular weight, volatile, PAHs 

because their vapour-particulate distribution is shifted to the vapour phase. 

Blow off artefact is negligible here because of the minor concentrations on 

the particles. Likewise the high MW PAHs show little blow off due to their 

dominance on the particulate phase. The blow off artefact is most marked 

for in term ediate com pounds which have roughly equal distributions 

between the vapour and particulate phases, in the case of the PAHs this is 

from pyrene to chrysene.

An im portant aspect in using solid adsorbents to sample vapour phase SOCs 

is to assess the collection efficiency of the adsorbent involved. The collection 

efficiency of a solid adsorbent bed depends on the volatility of the organic 

com pound being sampled and the total volume of air pulled through the 

bed. Simon and Bidleman (1979) found the PCB retention volume for PUF 

adsorbent by introducing a PCB spike onto the top of fifteen 1 cm thick PUF 

slices and eluting with a stream of clean air. The PCB moved through the 

column as chromatographic bands, with the band penetration clearly related
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to air volume. Therefore sample breakthrough must be taken into account 

when selecting an adsorbent type, the compounds to be sampled and the 

volume of air to be passed through the adsorbent. The most effective way to 

check for sample breakthrough in the field is to separately analyse front and 

backup adsorbent traps. Billings and Bidleman (1983) found that PUF (1 

plug, 7.6 cm long) efficiently collected heavy PCB (Aroclor 1254), chlordane

and toxaphene effectively over an entire air volume range of 300 - 1600 m 3 

w ith negligible breakthrough to the backup trap. The lighter PCB mix 

Aroclor 1016, was more efficiently collected by Tenax than PUF, but 

breakthrough out of the backup PUF was not evident. This mixture of di- 

and trichlorobiphenyls was effectively retained within a 2-plug PUF trap. 

The air sampling work presented in this thesis was carried out with a 2-plug 

PUF trap. Breakthrough of a PCB spike was not evident when the first and

second PUF (after a 500 m 3 of air ) were analysed separately in a break­

through experiment discussed in Chapter 6.

Further modification of the filter /adsorbent system has come about with 

the development of the diffusion denuder to avoid the sampling artefacts of 

the Hi-Vol. Particulate and vapour SOCs are pulled through the denuder 

section, which is a series of parallel tubes or concentric cylinders that have 

walls coated with a solid adsorbent or a high boiling liquid. Vapours diffuse 

to the denuder walls and are stripped from the air stream. Particles diffuse 

slowly compared with the residence time of air in the denuder and pass 

through to be collected by a filter behind the denuder. SOCs are partially
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stripped from the particles on the filter by the vapour free air stream, but the 

volatilised SOCs are collected in an adsorbent trap behind the filter. Thus 

the sum of SOCs on the filter and backup trap represents the particle bound 

fraction in ambient air. An illustrative diagram of a diffusion denuder and a 

Hi-Vol sam ple head are presented in Figure 2.3. Complete removal of 

vapours by the denuder is essential to the success of this method.

Figure 2.3 SOC sampling using a standard Hi-Vol sampling head and a 

denuder diffuser head. o o
A SO 0  o

Denuder___
section

F ilte r
see.

F ilte r
see.

Hi-Vol Head— 7

Adsorbent

Air flow
A ir

o = vapour phase V  = particle bound SOCs

The drawback of diffusion denuders is that they can only sample at fairly 

low rates (1 - 20 L/m in) in relation to Hi-Vols (100 -1000 L/m in), (Coutant et
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al., 1992; Lane et al., 1992). The low flow rate is required to maintain both 

lam inar flow and a suitable residence time in the denuder tube to allow 

diffusion of vapour phase molecules to the walls. Comparisons of a denuder 

sam pler with a filter/PU F sampler (low volume) showed no significant 

differences (vapour and particle) in total PCB concentrations (Krieger and 

Hites, 1994). Interestingly, the heats of desorption calculated from the 

vapour-particle partitioning of 14 PAHs, measured with a denuder sampler 

(Krieger and Hites, 1994), were comparable (r = 0.81) to those sampled with a 

standard filter/PU F Hi-Vol set up (Yamasaki et al., 1982). This shows that 

the Hi-Vol A /F  ratio is a reasonable indicator of the true atmospheric V /P  

ratio for PAHs.

2.6.6 Deposition collection

In Section 2.5 the various depositional pathways for SOCs are presented; 

basically they can be split into wet and dry deposition. Deposition sampling 

has developed to sample either one or the other, or both together as bulked 

deposition. Galloway and Likens (1976) recommended that inert surfaces be 

used in the collection of organics in precipitation. Glass, stainless steel, 

aluminium and Teflon™ have all been used as collecting surfaces (Likens et 

al., 1983; Mazurek et al., 1987; Meyers and Hites, 1982; Strachan and Hunealt, 

1984). Plastics other than Teflon™ are not suitable for trace organic work 

because they may introduce contamination into the sample or cause losses 

by adsorption to the plastic surface. Even with inert surfaces one of the
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problems associated with deposition collectors is that collected compounds 

can be lost due to adsorption on the sides of the funnel and collecting vessel 

(Franz et a l, 1991).

2.6.7 Wet deposition

Examples of wet deposition studies on PAHs, PCBs and PCDD/Fs are 

provided by McVeety and Hites (1988), Murray and Andren (1992) and Eitzer 

and Hites (1989) respectively. Basically wet deposition samplers consist of a 

collecting vessel (glass) connected to a collecting surface (usually funnel 

shaped), via a tube to provide elevation. This elevation prom otes the 

collecting surface away from local topographical irregularities and also 

prevents insplash from surrounding surfaces (Sevruck, 1993). Wet only 

samplers are often incorporated with an automatic lid which opens at the 

onset of a precipitation event (rain sensor) and closes at its cessation (Brun 

et al., 1991). To reduce adsorption losses to the collecting vessel a solid 

adsorbent can be added either to the top of the collecting vessel or 

incorporated in the tubing, upstream of the main vessel. Thus compounds 

are scavenged directly from the precipitation as they enter the collecting 

vessel and losses due to adsorption or volatilisation (from the collected 

sample) are kept to a minimum. XAD and Tenax have been used as the 

adsorbent in several precipitation studies (Strachan and Huneault, 1984; 

Pankow et a l, 1984). An automatic rain sampler with a large Teflon-coated

collection surface (0.89 m2) was developed by Pankow et a l  (1984). This
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surface was efficiently closed upon the cessation of a rain event, the lid 

(Teflon coated) being operated by a motor, controlled by a rain sensor. No 

portion of the sampler was above the collection surface, dry deposition 

which may have accumulated on the exterior of the sampler could not be 

splashed onto the Teflon sheet. This sheet was formed into a funnel shape, 

the collected water ran down into a glass jar, where, upon reaching a certain 

level, was pum ped through a series of Tenax A dsorp tion /T herm al 

Desorption (ATD) cartridges for analyte extraction. This sampler design has 

been successfully used by Czuczwa et al. (1988) and Murray and Anders 

(1992). Horstmann and McLachlan (1994) found that if only the water in the 

collecting vessel of a simple rain collector were to be analysed then the wet 

deposition of PCDD/F would be under estimated by a factor of four, due to 

adsorption losses to the funnel and the vessel walls. They developed a 

sam pler in which the precipitation first passes through a glass fibre filter, 

which removes much of the particulate material, and then through an XAD 

cartridge where the compounds were extracted. A solvent sprinkler system 

was later developed to rinse the funnel immediately after a rain event to 

remove adsorbed compounds.

N ot all wet deposition is efficiently sampled by the apparatus mentioned 

above. For example, several studies have sam pled fog for pesticides 

(Glotfelty et a l , 1987), PCDD/Fs (Czuczwa et al, 1989) and PAHs (Leuenberger 

et a l,  1989) using 'strand' collectors which rely on wind blown drops, or 

condensation of water droplets onto a mesh, or closely packed vertical
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filaments. Capel et al. (1991) incorporated the use of Teflon™ screens (wire 

lattice) to sample urban fog events. Air was pulled onto the screens by 

means of a fan (the air flow was smoothed by a baffle), the fog droplets 

condensed onto the screens and ran down onto a Teflon coated tray, and 

then into a glass collecting vessel for subsequent analysis.

2.6.8 Dry deposition

The dry  depositional pathw ay of SOCs is an im portant contributor to 

terrestrial and aquatic surfaces, earlier methods of sam pling involved 

leaving oil coated screens facing into the wind to trap particles. McClure and 

LaGrange (1977) and Heesen et al. (1979) collected dry deposition on mineral 

oil-coated plates. After the exposure period the oil was scraped off and 

analysed. The use of coated surfaces to collect dry deposition is preferred, as 

dry  surfaces can result in re-suspension of previously deposited material 

and  lead to underestim ations in the am ount of actual deposition 

(Christensen et al., 1979). Murphy (1981) suggested that the use of non-polar 

oils actively scavenge vapour PCBs from the air as well as particles and 

hence over estimate dry deposition. He recommended the use of polar 

fluids to cover inert surfaces for deposition sampling. Holsen et al. (1991) 

erected Mylar covered PVC plates with sharp leading edges to collect dry 

deposition of PCBs in Chicago air, the Mylar was covered with a high MW 

polar grease (Apezion L) to trap airborne particulates.
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2.6.9 Wet and dry (bulk) deposition collectors

If a net depositional flux of a compound is required, then both wet and dry 

deposition need to be collected. Gardner (1993) developed a sampler that 

collected both wet and dry deposition of PAHs separately. The wet 

deposition was collected via a stainless steel funnel into a 5L glass collection 

vessel. W ith cessation of a rain event the funnel was covered over 

automatically by the dry deposition collector. This was basically a polished

stainless steel tray (0.307 m2) with a 3 cm lip. The tray was filled with water, 

the level m aintained by a 1L constant head pressure water reservoir. The 

use of water as a dry deposition collecting surface was used in this case as a 

surrogate for a lake surface. Christensen et al. (1979) found that pans filled 

w ith  w ater or ethylene glycol-water collected 1 . 5 - 3  times as much 

organochlorine dry deposition as did a dry surface (where deposition could 

be re-suspended). Deposition collected for this thesis was bulked (both wet 

and dry) using a deposition gauge provided by W arren Spring Laboratory 

(Clayton et al., 1992). This sampler was similar to wet deposition samplers 

used by McVeety and Hites (1988), except that an autom ated cover was 

excluded so that dry deposition could be sampled between rain events. 

Basically the gauge consisted of a 5 L glass collecting vessel connected to an

elevated Teflon coated aluminium frisbee (0.04 m 2) via 1.75 m Teflon tube; 

any deposition would therefore only come into contact with Teflon or glass. 

The glass vessel was positioned in a lagged plastic container fitted with a 

therm ostat to prevent freezing (a diagram is presented in Figure 3.1 in
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Chapter 3).

2.6.10 Sampling artefacts of deposition collectors

An area of uncertainty in sam pling lies in the efficient collection of 

deposition, in particular the quantitative collection of precipitation. Any 

exposed surface of the sampler will disrupt the air flow around it and, 

depend ing  on design, could result in the inefficient collection of 

atm ospheric aerosol. Sevruk (1993) reported that the deformation of the 

w ind field above the precipitation gauge orifice increased windspeed and 

turbulence, resulting in small particles falling leeward of the precipitation 

gauge. The use of a wind shield helps to reduce the wind speed over the 

collecting surface, hence increasing the collection efficiency. Sampler design 

is im portan t for m aintaining collection efficiency, in particu lar the 

collecting surface thickness, shape and rim height. The depth of the 

collecting surface has been found to effect particle collecting efficiency (Hall 

and Waters, 1986). Most collectors are funnel shaped with a large depth; Hall 

and Waters (1986) found that the particle collecting efficiency was greatly 

im proved when a shallow collecting gauge was used. An inverted frisbee 

was found to have the right depth and aerodynamic design to be an efficient 

collector over other designs [(i) simple flat disc, (ii) British Standard Deposit 

gauge]. Figure 2.4 shows the collection efficiency (%) of selected particle sizes 

over various windspeeds for the 'inverted frisbee' design.
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Figure 2.4. Particle collection efficiency (%) for the frisbee over various wind 

speeds (Hall and Upton, 1988).
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Due to its efficient collecting properties a spun aluminium Teflon coated 

'inverted frisbee' was selected for the collecting surface of the deposition 

samplers used in this thesis. A stainless steel wire mesh was placed into the 

bottom  of the frisbee to reduce splash out of impacting precipitation. The 

inverted frisbee design was successfully used for dry deposition sampling of 

PCDD/Fs by Koester and Hites (1992). The artefact produced by adsorption of 

SOCs to the surfaces of the sampler has been recognised and has led to the 

use of inert materials, in particular Teflon because of its low friction, non 

static properties. However, recent work has shown that Teflon surfaces 

adsorb PCBs (Murphy and Sweet, 1994). In the comparison of a stainless steel 

collecting surface to a Teflon coated surface Murphy and Sweet (1994) found 

that m ultiple rinses of the Teflon surface with methanol showed high
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am ounts of PCBs even in the third methanol rinse. Furthermore, rinses 

with methanol while the surface was isolated from the atmosphere with a 

polyethylene glove bag, also showed the presence of high amounts of PCBs. 

This adsorbing problem with PCBs can be put dow n to the w etting 

properties of Teflon. Precipitation beads on its surface and only runs off 

when sufficiently large droplets are formed. During precipitation events of 

low intensity the water remains in contact with the Teflon for long periods 

of time. In addition, solvents will also bead when used to rinse the surface, 

or if large volumes are used there will be sheet-flow resulting in a short 

contact time. These complications caused by the wetting surface of the 

Teflon make it difficult to reproducibly rinse it's surface. These problems 

with Teflon were only highlighted after the TOMPS sampling campaign was 

underw ay. Nevertheless, the derived depositional fluxes were comparable 

to other studies, details of depositional fluxes being presented in Chapter 8.
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Chapter 3 

Methods and materials

3.1 Introduction

This chapter describes the protocol for ambient atmospheric sampling and 

deposition collection for a long term sampling programme of urban and 

rural air. Included in this Chapter are the analytical procedures and the 

quality assurance/controls for data generation.

3.2 Sampling protocol

The Toxic Organic M icroPollutants Survey (TOMPS) was initiated and 

funded by the Department of the Environment (DoE) and administered by 

the former W arren Spring Laboratory. Administration is now carried out by 

the N ational Environm ental Technology Centre. The aim  of this 

p rogram m e is to m easure am bient atm ospheric concentrations and 

deposition  rates of selected semi-volatile organic contam inants w ithin 

several urban sites, later extended to a rural or background site.

Four urban sites were included in the study: London, Manchester, Cardiff 

and Stevenage. The rural site was located at Hazelrigg, near the Bowland 

fells in north Lancashire; details of the sites are presented in Table 3.1. At the
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four urban sites the sampling equipment was located at roof top height, 

approximately 25 m high. Here the air was well mixed in relation to street 

level and well away from localised sources. At the rural location the 

sam pling equipment was placed at ground level. As a prerequisite to site 

selection all air samplers and deposition gauges were at least 2 m away from 

any obstruction, the sites were selected to be away from any vents, flues or 

chimneys. Plates 3.1 and 3.2 show the Manchester and Hazelrigg sampling 

sites respectively.

3.2.1 High-Volume Air Sampler

Air sampling was undertaken using a General Metal Works Inc. (OH, USA) 

PS-1 H igh Volume Air Sampler (Hi-Vol). These were of alum inium  

construction and consisted of a sampling head supported on a body holding 

the m otor (pum p), Magnehelic m anom eter gauge and tim er un it (an 

example of a Hi-Vol is displayed in Figure 3.1). Prior to installation at a 

working site the instrument was first calibrated using a U-tube manometer.

A calibration curve displayed in Figure 3.2 depicts air flow (m3 m in-1) 

against air pressure settings (inches H 2O). The volume of air aspirated is 

calculated from the length of time that the Hi-Vol is running, and the mean 

aspiration rate over this period. During a sample period the m anometer 

setting w ould fall according to the particulate loading on the filter. The 

m ean value between the start and finish manometer reading is used to 

derive the flow rate from the calibration curve. Although this is a simple
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Plate 3.1 Manchester TOMPS sampling site (roof top location), featuring a Hi- 
Vol and two deposition collectors.

[Mu 5 »»»»*) *«

Plate 3.2 Hazelrigg, TOMPS rural sampling site, situated near Lancaster in 
NW  England.
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way of finding the volume of air aspirated, it assumes that the drop off rate 

is linear. For a short sampling period this is acceptable, but for longer periods 

of over a week, then this method can lead to inaccuracies in calculating the 

volume of air actually sampled. To improve the accuracy, the manometer 

reading was recorded every 100 seconds using a Grant Instrum ent Data 

Logger (8-bit Squirrel), linked to a pressure transducer. The information was 

dow n loaded from the 'Squirrel' to a com puter were the change in 

m anom eter reading could be observed with time, and the volume of air 

aspirated could be accurately determined.

Figure 3.2 Calibration curve for Hazelrigg Hi-Vol.
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Flow 0-1 
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3.2.2 Deposition gauge

The deposition gauge consisted of a 5 L glass collecting jar which was kept in 

a lagged plastic container with a thermostat to prevent freezing. Inserted
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into the neck of the jar was a 2 m Teflon tube onto which a Teflon-coated 

inverted metal frisbee deposition collecter was fitted. The Teflon tube was 

shrouded with a plastic pipe which was connected to the lid of the plastic 

container. This gave support to the whole structure and protected the tube 

and the jar. A diagram of the deposition gauge is presented in Figure 3.1.

3.2.3 Sam pling procedure

Sampling commenced at the four urban sites in January 1991 and is ongoing. 

This thesis will discuss data up to the end of December 1992. Sampling 

ceased at the Stevenage site in April 1992. The rural sample site started 

operation in December 1992 and is also ongoing. Data will be presented here 

for the first year (i.e. to the end of December 1993). Appendix 1 presents the 

sample week numbers and corresponding dates for each site. Data from all 

the sites is publically available (Clayton et al., 1992). Analysis for three of the 

sites was done at Lancaster (Manchester, Cardiff and Hazelrigg) and forms 

the main focus of this work. However, data from the other sites, London 

and Stevenage, have also been included for comparative purposes.

At each site an air sample was taken over a seven day period. The Hi-Vol 

was set at a specified aspiration rate (manometer - 10 "H2O) and the timer 

unit set to run the motor for 30 minutes in every hour. This resulted in

approxim ately 500 m^ of air being sampled each week. This volume was 

selected as appropriate due to previous studies conducted in both urban and
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rural atm ospheres where the sampling volumes were in the order of

hundreds of m 3 for PAHs (Arey et a l, 1989; Foreman and Bidleman, 1990), 

PCBs (Bidleman and Olney, 1974; Doskey and Andren, 1981) and PCDD/Fs 

(Eitzer and Hites, 1989). PCBs and PAHs were analysed on alternate weeks to 

the PCDD/Fs, so that over the period of one year, at any one site, 26 samples 

were analysed for PCBs and PAHs and 26 for PCDD/Fs.

Total deposition was collected once a m onth w ith no differentiation 

between wet and dry deposition. This resulted in 12 monthly samples each 

year. Each sample consisted of a 5 L jar containing water and particulate 

m atter, a quarter PUF plug used for pulling through the Teflon tube in order 

to clean it, and 100 mL of pesticide-grade hexane used to rinse the frisbee and 

the tube.

3.3 Analytical protocol

3.3.1 Pre-sampling preparation

Each Hi-Vol was equipped with a sampling module. This module held a 

circular 10 cm diameter Whatman GF/A filter (pore size 1.5 pm) and two in 

line polyurethane (PUF) foam plugs (vapour trap). The module could be 

rem oved as a single unit to prevent handling contamination. The filters

w ere baked at 450 ®C for 14 h prior to m odule construction and 

gravimetrically weighed after cooling. The PUF plugs were pre-extracted in
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dichloromethane (DCM) for 16 h, loosely wrapped in aluminium foil, and 

air dried in a clean air cabinet. The dried PUF plugs were placed into a pre­

cleaned glass sleeve which fitted into the module behind the filter head. An 

alum inium  plate was screwed into place over the exposed filter, and 

alum inium  foil was wrapped over the rear air vent to avoid contamination 

when the modules were being transported.

The 5 L jar of the deposition sampler was rinsed with DCM and MilliQ® 

water prior to its transport to the field. 25 mL of 5% copper sulphate solution 

was added to the jar as an algicide. Similarly, the inverted metal frisbee and 

anti-splash mesh were thoroughly rinsed in DCM. A plastic cover was taped 

over the frisbee when in transport to and from the field or when in storage.

3.3.2 First stage sample clean up

Air samples. A  schematic diagram showing the steps taken for atmospheric 

sample clean up is presented in Figure 3.3. Basically this involved solvent 

extraction followed by solid phase extraction using open column adsorption 

chromatography to remove interfering contaminants from the analyte.

The sampling module was dismantled in the clean air cabinet and the PUFs 

were w rapped separately in aluminium foil. The filter was placed into a 

desiccator for 24 h and then re-weighed to obtain the mass of the collected

particulate or total suspended particulate (TSP). TSP concentrations (pg n r 3)
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Figue 3.3. Flow chart showing the various stages in sample clean up and
analysis of air samples.
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are presented for the Manchester, Cardiff and Hazelrigg sites in Appendix 1. 

The filter was wrapped in aluminium foil and placed into a plastic bag,

along with the PUF plugs and stored at 4 °C prior to analysis. Samples were 

stored for no longer than 1 month before analysis. Kloster et al. (1992) found 

sample integrity to be preserved for PAHs after 4 months of storage at room 

tem perature. The PUF plugs and the glassfibre filters were extracted 

separately  in a 6-place Biichi soxhlet using pesticide-grade hexane 

(Rathburns Ltd.). The extraction was run for 16 h, before being taken down 

to near dryness and removed from the soxhlet. Extracts were then 

quantitatively transferred to 10 mL glass vials, using several DCM washings 

(to facilitate solvent exchange). The volume was then gently reduced to 1

mL on a heating block (at 35 °C) under nitrogen. The 1 mL extract was then

passed through 1 g of Florisil™ (60-100 mesh) packed into a glass pasteur 

pipette and eluted with 9 mL of DCM. This volume was then reduced again 

to 1 mL, passed through a 0.5 pm syringe filter and transferred to Hewlett 

Packard (HP) 2 mL chromatography vials for analysis of PAHs.

Deposition samples. A schematic diagram showing deposition sample dean  

up  is presented in Figure 3.4. The first step involved filtering the  water 

th rough  a 18.5 cm W hatman paper filter to  remove large particulate 

material. This filter w as carefully air dried in  a d ean  air cabinet an d  soxhlet 

extracted along w ith  a quarter PUF p lug  u sed  to w ipe  the in te rio r of the  

metal frisbee. PAHs and PCBs w ere extracted w ih pesticide-grade n-hexane 

for 16 h. Like the air samples, the deposition samples underw en t a solvent



Figure 3.4 Flow chart showing the various stages in clean up and analysis of
deposition samples.

Sample reduced to 1 mL 
and filtered

Disk washed with two 10 mL 
aliquots of DCM___________

Solvent exchange to 10 mL of 
DCM

Deposition filtered through 18.5 cm 
Whatman filter paper

Filtered water passed 
through conditioned C-18 
extraction disk

Filter dried and extracted 
with quarter PUF (frisbee wipe) 
for 16 h in n-hexane

DCM aliquots bulked and reduced 
to ~ 1 mL. Elute through 1 g Florisil 

with a further 9 mLs DCM

PAH analysis

Elute through 1 g Florisil

Solvent exchange to 
1 mL of dodecane

Facilitate solvent exchange 
to lOmL n-hexane

PCB analysis



exchange to DCM after soxhlet extraction. The filtered water was conditioned 

w ith 5 mL of m ethanol/L  of water. This was then filtered through a pre­

treated C-18 Empore disk which retained organic compounds from the water 

sample. The C-18 disk was subsequently washed with two 10 mL aliquots of 

DCM; these were added to the DCM from the filter paper and PUF extract 

and evaporated under a gentle stream of nitrogen. Clean up by column 

chromatography followed the same procedure as the air samples. In the case 

of deposition samples each Florisil™ column had ~0.2 g of anhydrous 

sodium  sulphate added to the column to remove any water left within the 

sample.

3.3.3 Second stage sample clean up

Air and deposition samples. After PAH analysis the 1 mL of DCM extract 

was then gently evaporated under nitrogen and solvent exchanged back into 

1 mL of hexane. This was eluted through 1 g of Florisil™ with a further 9 

mL of hexane. This volume was gently evaporated under a nitrogen stream 

to approximately 5 mL. 1 mL of dodecane (Aldrich Inc.) was added and the 

volume further reduced until 1 mL of dodecane was left (evaporative losses 

of dodecane were considered to be negligible relative to hexane). The final 

extract volume of dodecane, was transferred to a 2 mL HP vial for analysis of 

PCBs.
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3.4 PAH analysis

The analytical techniques employed in the determination of PAHs are high 

resolution gas chrom atography (HRGC) and high perform ance liquid 

chromatography (HPLC). At Lancaster the HPLC system was used. Both these 

m ethods have different detection systems which can be utilised.

HRGC. Two types of detection systems are used for PAH analysis, the first is 

flame ionisation detection (FID) and the second is mass selective detection 

(MSD). FID has good sensitivity but responds to a wide array of organic 

com pounds and therefore has low selectivity, resulting in chromatographic 

interferences. MSD is a highly selective detection m ethod and gives 

unam biguous quantification of individual compounds; this detection is 

now widely used for PAH analysis.

HPLC. UV/Vis diode array detectors are commonly used in PAH analysis 

where the UV profile, scanned over a range of wavelengths, provides 

characteristic fingerprints for individual compounds. This system is ideal for 

m atrices where PAH concentrations are relatively high, as it has a low 

sensitivity compared to the other detectors. A second detection system used 

in conjunction w ith HPLC, is Fluorescence detection, which is a highly 

selective and sensitive technique and can only be applied to compounds that 

fluoresce. Basically a PAH is exposed to UV radiation of a given wavelength 

and the fluorescent light emitted is detected. Due to its highly sensitive
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nature this system is suitable for PAH analysis in atmospheric samples, 

where concentrations are low relative to other matrices.

HPLC-fluorescence detection. At Lancater PAH sample analysis was 

perform ed by HPLC with fluorescence detection. This consisted of a Perkin 

-Elmer LC 250 binary pump and a Perkin Elmer LS 40 fluorescence detector. 

A 2 pL injection of sample or standard was injected into a loop through a 

Rheodyne 7161 valve. Compound separation was carried out on a PhaseSep 

'Spherisorb' octadecylsilane (ODS) (reverse phase) column. The mobile 

phase was an acetonitrile/water gradient running over 50 minutes at a flow

rate of 1.5 mL m in-1. The gradient programme along with wavelength 

changes during the run time are displayed in Figure 3.5. An autom ated 

program m e of wavelength changes, which optimised the sensitivity for the 

range of selected PAHs, was adopted. Data generated from the HPLC system 

was transfered by chromatography server to a VG Minichrom data handling 

software package (vl.60) for quantification.

Calibration standards were prepared from a stock solution containing all the 

PAHs m ade up from solids purchased from G reyhound (UK) and 

Prom ochem  (UK). New standards were prepared every 2 m onths with 

standard regressions being obtained for each PAH compound over a range of

relevant on-column concentrations (0.2 - 4.0 pg pL '1). Sample peak areas 

were compared to the regression equations generated from the calibration 

standards.
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Figure 3.6 shows the chromatogram of a PAH standard (1.25 pg m L'1 of each 

PAH) w ith nam ed peaks. As mentioned in Chapter 1, 15 PAHs were 

quantified in each sample. Co-elutions occurred between FLUO and MPHE 

and between D[ac]A and B[k]F and were therefore quantified together.

3.5 PCB analysis

As with all organochlorine analysis, PCB analysis is carried out using high 

resolution gas-chromatography (HRGC) incorporating a capillary column. 

PCBs are detected by either electron capture detection (ECD) or mass selective 

detection (MSD). The samples analysed at Lancaster were detected using 

ECD, with verification of several samples by MSD.

HRGC-ECD. A Hewlett Packard 5890 gas chromatograph equipped with a

63Ni ECD was used for PCB analysis. Splitless injections of 1 pL were 

automatically injected onto a 50 m Ultra 2, 5% phenyl methyl silicone coated 

capillary column (i.d. 0.2 mm, film thickness 0.11 pm) via an HP 7673 auto­

injector unit. The temperature programme was as follows:- 100 °C start, then 

14 °C m in '1 to 200 °C which was held for 13 min, then 14 °C m in '1 to 280 °C 

and held for 8 min. The injector temperature was kept at 280 °C and the ECD 

at 350 °C. The carrier gas was helium maintained at a flow rate of 0.4 mL

m in-1 and the make up gas was nitrogen with a flow rate of 65 mL min k A 

Chrompack (Inc.) gas filtration unit, consisting of a molecular
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sieve/m oisture desiccator and oxygen trap was used to purify the gases 

before entering the gas chrom atograph. All data was transfered via 

chrom atography server to VG Minichrom data handling software package 

(vl.60), where data was quantified and stored.

A PCB standard mix was prepared at Lancaster containing 51 congeners 

purchased from Greyhound (UK), Promochem (UK) and Ultrascientific 

(USA). Synthesised primary calibration solutions, available from a variety of 

m anufacturers, were not purchased on the grounds that the Community 

Bureau of Reference (BCR) does not accept the accuracy of these solutions 

(Wells et ah, 1992). The congeners in the standard mix were selected on the 

grounds that they were present in significant proportions in the original 

Aroclor mixtures (Manchester-Neesvig and Andren 1989), and have been 

w idely reported in a variety of environmental compartments (Atlas and 

Giam, 1981; Sanders et ah 1992; Oehme, 1991; Iwata et at. 1993; Alcock et ah 

1993, H arrad  et ah 1994, D uarte-D avidson and Jones, 1994). The 

concentrations of the congeners in this standard mix varied according to the 

characteristic response of each compound to the ECD. This range was from

598 pg jiL-1 for congener 3 to 25 pg pL_1 for congener 204. Calibration 

standards were prepared from this standard mix and the response of the ECD 

regularly calibrated. Five standards were run for each calibration (neat, x0.5, 

x0.25, xO.10 and x0.05 dilutions) with sample peak areas being quantified 

against the calibration curve. Between calibrations one standard was run 

w ith every batch of samples to test the existing calibration and to assess
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chromatographic response and retention time drift. Figure 3.7 displays the 

chromatogram of the Lancaster standard mix (neat) with peak identification.

GC-ECD analysis is a highly sensitive and precise technique. Peak area 

m easurem ents have been found to be much more precise than GC-MS 

(Pavoni et al., 1991), with the analysis of numerous samples being much 

easier to perform with sensitivity and precision being very good over a wide 

range of concentrations. However, problems can arise in peak resolution 

and the interferences from other halogenated compounds. Pesticides such as 

hexachlorobenzene (HCB) and DDT (and it's metabolites) can interfere with 

PCB peaks in a sample chrom atogram  (Pavoni et al., 1991). Peak 

quantification is solely based on retention time using a standard, sample 

chromatograms therefore need to be regularly confirmed by GC-MSD.

H R G C - M S D .  A high resolution gas chromatograph coupled to a mass 

selective detector was used to quantify the presence of PCB congeners in 

several samples throughout the sampling period. GC-MSD analyses were 

carried out on a Hewlett Packard HP5970B mass selective detector operated 

in selected ion mode (SIM) (unit mass resolution; El mode, 70 eV) and 

interfaced to a HP5890 gas chromatograph. Congener separation was carried 

out on an Ultra 2, 5 % phenyl-methyl silicone coated capillary column (50 m 

x 0.2 mm i.d., 0.11 pm film thickness) using the following tem perature

programme: 100 °C for 2 min, then 20 °C min"1 to 140 °C, then 4 °C min-1 to

200 °C which was held for 13 mins. and then 4 °C min-1 to 280 °C , which was
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held for 8 mins. Both injector and detector temperatures were kept at 300 °C 

with 1 |iL of sample being injected in the splitless mode. Mass spectrometric 

conditions enabling congener qualification are displayed in Table 3.2.

Table 3.2 : Mass Spectrometric conditions employed

No. of Ions Monitored Ion Ratio Time Window IUPAC nos.
Chlorine (m/m2+) (min) monitored

1 188/190 3.12 13-15.5 1-3
2 222/224 1.54 14-19.5 4-15
3 256/258 1.03 16-26 16-39
4 290/292 0.77 19-35 40-81
5 326/328 1.56 23-43 82-127
6 360/362 302/304* 1.50 27-48 128-169
7 394/396 1.03 35.5-50 170-193
8 430/432 372/374* 1.54 42.5-51.5 194-205
9 464/466 1.33 48-53 206-208
10 498/500 1.16 52-55 209

13C12 labelled PCB

Quantification by GC-MSD. Relative response factors (RRF) were calculated

based on the ratio of analyte response to that of an appropriate 13C i2-internal 

standard (IS). Congeners were quantified relative to two standards according

to their degree of ortho-substitution. These internal standards were 13Ci2

PCB 77 and 13Ci2 PCB 169. A quantification standard was run before and after 

each batch of samples and the RRFs of analytes relative to the appropriate IS 

were calculated according to:-



RRF = (A nat/A is). (Cis/Cnat)

Where Anat = response of native analyte 

Ais = response of IS 

Cis = concentration of IS 

Cnat = concentration of native analyte

The RRFs used for quantifying samples were the mean of those calculated 

for the two quantification standards run before and after the sample batch. 

Concentrations (C) of analytes in sample extracts were calculated using the 

following formula and adjusted for internal standard recoveries. Di- to tetra- 

chlorinated congeners were adjusted according to the recoveries of PCB 40 

and penta- to nona- according to PCB 185.

C = (Anat/Ais)/RRF . (Wis/Ws)

Where, Wis = weight of IS added 

Ws = weight of sample analysed

3.6 Quality assurance and control

"Quality assurance (QA) is a system of activities aimed at ensuring that the 

inform ation provided in the environm ental assessment meets the data 

users needs. It is designed to provide control of field and laboratory 

opera tions, resu lts of sam ple collection and analytical activ ities” 

(Liabastre et al., 1992).
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As data for this study was collected over a long time period (ie > 1 year), it 

was im perative that quality assurance procedures were built into the 

experim ental program m e, to ensure the accuracy and precision of the 

generated  data. The QA program m e covered every aspect of the 

experimental procedure, incorporating good laboratory practice, up to date 

laboratory books and a series of quality controls for the air sam pling 

procedures and analytical protocols. Separate laboratory books were kept for 

each sample site with dates, sample times and sample numbers logged upon 

each visit to a particular site.

3.6.1 Quality control

Blank samples. With every batch of air samples, blank PUF plugs and filters 

were extracted so that pre-sampling contamination could be subtracted to 

obtain true air concentrations. For deposition samples, a blank consisted of 

an 18.5 cm W hatman paper filter and two pre-extracted quarter PUF plugs. 

For the air sampling a series of field blanks were operated. This involved 

taking a made up sampling module to the sample site and returning it in 

the same m anner as the real sample. Contamination from transport and on 

site handling could therefore be eliminated to leave a 'true' air sample. Field 

blanks were stored with air samples prior to analysis.

A 'rolling' system of blanks was developed for the long term sampling 

programme. This entailed the extraction of six replicate blanks to obtain a
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mean blank value for each compound. By incorporating later blank extracts 

to the data set and removing the oldest ones, a running m ean blank 

.concentration for each com pound was kept updated  throughout the 

sam pling duration. Mean blank concentrations are presented for the PAHs 

and PCBs in Tables 3.3 and 3.4 respectively.

Detection Limits. Prior to routine analysis the sensitivity of a particular 

analytical procedure/m easurem ent had to be verified. This was carried out 

by deriving the limits of detection (LOD) for each compound. To verify the 

whole analytical method the method detection limits (MDL) were derived. 

MDL was the minimum concentration of a compound (analyte) that could 

be identified, measured and reported with 99% confidence that the analyte 

concentration was greater than zero (Liabastre et al. 1992). MDLs were 

calculated as the standard deviation of the mean blank concentration times 

the Student t-value at the 99% confidence limit (for six replicates the value 

was 3.14), thus; an individual sample had to exceed the mean blank by three 

standard deviations U s > xb  + 3 SD) to be considered positive. Values that 

fell below the LOD were considered as non-detectable (ND). LODs for PAHs 

and PCBs are presented in Tables 3.3 and 3.4 respectively.

Surrogate Standards. These standards are sim ilar in both chemical 

composition and behaviour to the analyte of interest, but are not present in 

the matrix to be sampled. They are applied to the sample matrix to quantify 

losses of analyte in the field. An exact quantity of this standard is spiked onto
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Table 3.3 PAH blank values and method detection limits for the HPLC-fluorescence method

PAH PUF mean blank LOD Filt mean blank LOD
ng/PUF (SD) ng/500m3 ng/Filt(SD) ng/500m3

ACE N D 2.54 N D 2.52
FLU N D 11.0 N D 11.0
PHE 7.10 (9.73) 36.1 N D 12.5
ANTH 14.6 (15.6) 61.4 2.67 (4.41) 15.2
FLUO/MPHE 1.63 (3.55) 12.1 N D 54.0
PYR N D 21.0 N D 21.0
BENZANTH 1.8 (4.0) 13.8 N D 20.1
CHRY N D 47.0 N D 47.0
B[b]F 5.41 (7.7) 28.5 5.3 (7.0) 26.3
D[ac]A/B[k]F 27.2 (12.0) 63.4 10.3 (8.0) 34.3
B[a]P 11.2 (15.1) 56.3 3.82 (5.33) 19.7
B[ghi]P 42.5 (16.0) 90.5 14.4 (10.1) 44.7
COR 34.4 (16.9) 85.1 15.4 (7.4) 37.6

LOD=Limits of detection 
N D =N on detect 
N A =N ot analysed
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Table 3.4. PCB blank values and method detection limits for the GC-ECD method

PCB PUF mean blank LOD Filter mean blank LOD
pg/PUF (SD) pg/m3 pg/Filter (SD) p g /m 3

30 N D 0.40 N D 0.40
18 2.51 (1.12) 5.87 0.35 (0.40) 1.55
54 N D 0.60 N D 0.60
28* 1.85 (0.83) 4.34 0.14 (0.11) 0.47
52* 0.87 (0.77) 3.18 0.49 (0.32) 1.45
104 N D 0.40 N D 0.40
44 0.59 (0.77) 2.90 0.38 (0.22) 1.04
40 0.57 (0.43) 1.86 N D 5.00
61 0.25 (0.20) 0.85 N D 2.50
66 1.64 (1.23) 5.33 1.02 (0.12) 1.38

101* 1.06 (0.55) 2.71 0.91 (0.41) 2.14
77/110* 0.48 (0.35) 1.53 0.36 (0.41) 1.59
82/151 0.97 (0.19) 1.54 0.72 (0.14) 1.14

149 2.52 (0.29) 3.39 2.74 (0.09) 3.01
118* 0.06 (0.10) 0.36 N D 2.50
188 N D 0.40 N D 0.40

153* 1.22 (0.32) 2.18 0.81 (0.10) 1.11
105 0.44 (0.26) 1.22 0.40 (0.06) 0.58

138* 0.57 (0.32) 1.53 0.74 (0.09) 1.01
187 N D 0.48 0.36 (0.04) 0.48
183 N D 0.40 0.07 (0.11) 0.40
128 1.4 (0.58) 3.14 N D 2.50
185 N D 0.40 N D 0.40
204 1.35 (0.74) 3.57 0.60 (0.08) 0.84

180* 1.66 (0.65) 3.61 1.48 (0.03) 1.57
170 0.57 (0.40) 1.77 N D 2.50
198 N D 0.20 N D 0.20
201 0.31 (0.25) 1.06 0.11 (0.05) 0.26
208 N D 0.20 N D 0.20

194/205 0.53 (0.21) 1.16 0.29 (0.03) 0.38
206 N D 0.20 N D 0.20

* - 8 congeners analysed at all sites 
LOD - Limits of detection.
N D  - Non Detect.

93



the m atrix and the recovery of this standard after sample clean up and 

analysis is monitored. The concentrations of the native analytes are adjusted 

according to the recovery of the standard. Two pg (in 5pl of hexane) of 

dibenz[ah]anthracene (D[ah]A) (the PAH surrogate standard) was spiked 

onto the G F/A  filter (matrix) before module construction for air sampling, 

and onto a G F/A  filter which was placed into the 5 L jar of the deposition 

apparatus. Siilarly, two PCB congeners, numbers 40 and 128, were used as 

surrogate spikes (100 ng of each in 10 pi of hexane) for PCBs and applied in 

the same m anner as the PAH spike to the filter of the air sampling module 

and to the filter of the deposition collector. These compounds were chosen 

as surrogate standards on the grounds that they were not detectable in 

am bient air. Selection of these compounds was on the basis of previous 

studies indicating their absence from ambient atmospheres (Tuominen et 

al., 1988; M anchester-Neesvig and Andren, 1989) and on prelim inary 

samples taken in Manchester air. All 15 PAH sample concentrations were 

adjusted according to the recovery of D[ah]A. For the PCBs the mono- to 

tetra- chlorinated homologues were adjusted according to the recovery of 

congener 40 and the penta- to nona- chlorinated homologues according to 

the recovery of congener 128. Surrogate spike recoveries had to be > 50 % 

and < 120 % if a sample was to be accepted.

Matrix spikes. Before samples could be run through the extraction and clean 

up procedure it was necessary to quantify any analyte loss from the method. 

This was achieved by spiking six blank PUF plugs and six blank filters
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(matrices) with a neat PAH and PCB calibration standard (matrix spike) 

containing exact concentrations of each analyte. Mean m ethod recoveries 

were determined for each analyte from the six PUFs and the six filters. These 

are displayed in Tables 3.5 and 3.6(a+b) for the PAHs and PCBs respectively. 

Sample analytes were corrected according to the method recovery.

3.6.2 Accuracy

Accuracy indicates the degree to which the analytical measurement reflects 

the true value of the analyte in the sample. Accuracy was determined in two 

ways, firstly from the recovery of the surrogate standards and secondly from 

the recovery of the matrix spikes. The mean matrix spike recovery indicates 

the analytical performance of the extraction and clean up procedure, with 

sam ple analytes being autom atically corrected against this recovery. 

Surrogate standard recoveries varied from sample to sample and gave an 

indication of analyte loss from within the field. These had to be > 50 % and < 

120 % if a sample was to be accepted.

3.6.3 Precision

The precision of any analytical procedure is determ ined by running  

duplicate samples. This quantifies the variability in the analytical method by 

running replicates of the same sample. As each air sample comprised of two 

PUF plugs and one filter it was not possible to split a sample. A solvent

95



Table 3.5 PAH method recoveries from spiked PUF plugs and filters. 
Data for six replicates, together with means and ranges,

PUF plugs

PAH %rec %rec %rec %rec %rec %rec range Mean %rec

ACE 35 46 49 46 44 40 35-49 43
FLU 45 52 48 49 53 43 43-53 48
PHE 60 65 znW 62 64 68 60-69 65

ANTH 62 75 81 71 73 71 62-80 72
FLUO/MPHE 79 85 84 82 80 85 79-85 82

PYR 83 73 69 73 81 72 69-83 75
BENZANTH 96 88 90 91 90 94 88-96 91

CHRY 96 91 102 97 94 98 91-102 96
BfbJF 99 104 96 101 97 100 96-104 100

D[ac}A/B{k]F 98 81 83 87 86 89 81-98 87
B[alP 98 83 79 86 89 86 79-98 87

D[ah]A 82 85 83 85 84 85 82-85 84
B[ghi]P 114 86 92 99 96 97 86-114 97

COR 105 85 86 90 90 94 85-105 92

Filters

PAH %rec %rec %rec %rec %rec %rec range Mean %rec

ACE 22 15 19 19 19 18 15-22 19

FLU 40 50 38 37 46 441 37-50 ,42

PHE 60 65 60 62 60 62 60-62 61

ANTH 71 68 69 U7 68 70 68-71 69

FLUO/MPHE 79 85 84 '78 79' 79 79-85 81

PYR 59 63 56 60 62 61 .56-63 601

BENZANTH 84 73 89 82 81 83 73-89 82

CHRY 85 101 % 91 93 93 85-101 92

BMF 91 99 99 99 98 93 91-99 96

D[ac]A/B[k]F 84 '90 83 86 82 90 82-90 86

BlalP 81 ,84 77 82 80 80 80-84 81

U[ah]A 95 95 90 '95 93 92 m m 94

B|ghi]P 83 98 96 95 91 90 83-98 92

COR 103 96 96 99 95 99 95-1© 98



Table 3.6a Percentage recoveries of PCB matrix spike from 6 PUF plug replicates.

PCB %rec %rec %rec %rec %rec %rec range Ave % Rec

30 57 79 68 56 60 61 56-79 64
18 66 86 96 87 90 78 65-96.6 84
54 82 97 88 77 81 76 76-97 83
28 86 109 93 94 97 94 86-109 95
52 89 94 106 100 99 96 89-106 97

104 88 97 98 87 95 91 88-99 93
44 88 97 95 90 97 88 88-97 92
40 79 90 87 78 81 85 78-90 83
61 78 87 90 88 87 85 78-90 86
66 90 98 97 104 98 97 90-104 97

101 93 93 91 87 92 90 87-93 91
77/110 91 92 93 87 91 91 91-93 91
82/151 96 96 94 94 98 93 93-98 95

149 104 105 93 108 103 102 93-108 102
118 104 118 92 89 103 99 89-118 101
188 100 100 100 97 100 99 97-100 99
153 102 102 104 92 100 100 93-104 100
105 101 101 104 90 98 101 90-104 99
138 108 93 113 100 104 1(B 93-113 104
126 69 56 51 52 57 57 51-69 57
187 106 92 97 95 99 97 92-106 98
183 95 95 100 96 99 94 94-100 96
128 93 86 97 97 92 95 86-97 93

185 82 76 93 94 84 88 76-94 86
204 92 82 94 94 91 90 82-94 91

180 82 80 97 96 90 87 80-97 89

170 107 103 96 98 100 101 96-107 101

198 104 99 93 96 99 98 93-104 98

201 103 90 96 99 95 99 90-103 97

208 95 99 93 94 95 95 93-99 95

194/205 91 100 102 97 91 92 91-100 96

206 90 92 92 93 93 91 91-93 92



Table 3.6b Percentage recoveries of PCB matrix spike from 6 filter replicates.

PCB %rec %rec %rec %rec %rec %rec range Ave %

30 67 65 80 83 84 79 65-84 76
18 76 76 76 66 71 71 66-76 72
54 83 85 80 98 89 85 80-98 87
28 102 99 105 83 99 96 83-101 97
52 96 109 100 99 104 98 96-109 101
104 95 104 96 101 98 100 95-104 99
44 92 97 85 91 96 87 85-97 91
40 85 86 79 90 77 78 77-90 83
61 90 90 90 91 90 90 90-91 90
66 104 99 102 101 104 99 99.-104 102

101 92 91 90 93 89 93 89-93 91
77/110 98 98 79 76 89 82 76-98 87
82/151 100 100 94 103 99 100 94-103 99

149 105 95 85 99 93 99 85-105 96
118 103 91 86 89 96 88 86-103 92
188 102 101 86 96 99 94 94-102 96

153 99 95 90 93 97 91 90-99 94

105 101 98 80 82 92 88 80-102 90

138 101 89 90 95 96 92 89-101 94

126 65 59 65 64 65 61 59-65 63

187 102 100 100 101 101 100 100-102 101

183 99 98 86 80 88 90 86-90 90

128 103 102 114 89 93 97 93-114 99

185 99 96 90 96 93 98 90-99 95

204 101 97 93 92 97 95 93-101 96

180 103 96 90 92 95 95 90-103 95

170 102 101 100 90 98 100 90-103 98

198 100 99 96 87 100 91 87-100 95

201 102 103 96 105 103 100 96-105 101

208 99 92 95 90 95 92 90-99 94

194/205 97 96 90 95 97 93 90-97 94

206 104 97 105 91 99 100 90-105 99



extract sp lit to form duplicate sam ples w ould have resu lted  in 

concentrations below detectable levels for many of the analytes. Instead six 

replicates of the US National Institute of Standards and Technology (NIST) - 

Standard Reference Material (SRM) 1649 - were extracted and cleaned up in 

exactly the same way as the air samples. PAH and PCB concentrations for the 

six replicates are presented in Tables 3.7 and 3.8 respectively. Precision is 

expressed as the percent relative standard deviation (RSD) of the replicate 

samples.

For analytes to be accepted for routine measurement the average RSD for 

each analyte m ust be < 50 % if measured concentrations were > 5 times the 

LOD, and < 100% if measured concentrations are < 5 times the LOD. These 

objectives could not be met for the two ringed PAH, naphthlene, and the 

lighter mono- and di-chlorinated biphenyls. Hence, these compounds were 

not quantified in the air or deposition samples.

3.6.4 Data assurance

To assure the validity and accuracy of the data generated it was necessary to 

check the analytical protocol by periodically extracting the NIST - SRM 1649. 

This m aterial was certified for PAH concentrations only. Extractions were 

cross referenced with the certified values. Table 3.9 gives the certified PAH 

values for this m aterial and the mean and standard deviation of six 

extracted batches. This material was not certified for PCBs. However PCB
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Table 3.8. Precision of the PCB method (%RSD) by analysing replicates of urban reference 
dust NIST-SRM 1649.

PCB ng/g "g/g °g /g "g/g "g/g "g/g Mean (SD) %RSD

30 ND ND ND ND ND ND
18 18.4 19.6 11.6 105 12 2 155 14.7(3.74) 25
28 17 14.1 12.7 185 102 15.8 14.7(3.01) 20
52 21.1 18.1 14.6 16.4 14.8 21.7 17.8 (3.07) 17
104 10.1 9.38 7.17 9.84 11.3 12.4 10.1 (1.78) 18
44 14.1 12.8 1154 12.9 135 11.4 12.8(1.06) 12
40 158 154 3.32 3.19 2.89 3.91 2.74 (0.97) 35
61 10.9 7.8 637 724 7.4 7.41 7.85 (1.56) 20
66 42.7 30.1 33.6 39.7 363 43.7 37.7 (5.32) 14

101 55.6 44.2 482 52.9 43.6 51.8 49.4 (4.86) 10
77/110* 56 42.7 405 51.1 65.1 823 56.3 (15.5) 27
82/151* 33.9 27.9 252 302 18.9 255 26.9 (5.07) 19

149 81.1 65.1 61.6 77.3 66.6 683 70.0(7.55) 11
118 16.6 17.1 13.3 15.4 132 133 14.8 (1.78) 8
188 17.1 12.4 153 175 10.8 115 14.1 (2.91) 5
153 65.6 59.9 60.6 68.6 58.9 713 64.1 (5.12) 13
105 4.95 9.66 4.03 956 5.13 6.71 6.72(2.51) 37
138 51.4 47.1 46.8 535 53 51.9 50.6 (2.99) 6
187 39.9 32.4 343 402 25.1 29.9 34.4 (6.21) 18
183 18.1 19.7 19.6 17.1 12.1 155 17.0 (2.88) 17
128 12.7 10.9 185 213 6.16 11.6 13.6 (5.54) 41
185 11.1 10.1 8.98 5.74 7.19 9.63 8.79 (1.98) 23
204 052 151 1.76 139 0.67 1.76 1.27(0.54) 43
180 118 126 118 119 88.6 101 112(14.0) 13
170 38.3 32.4 25.6 315 29.7 26.4 30.7(4.63) 16
198 1.93 1.44 059 223 158 153 1.65 (0.46) 28
201 235 18.6 18.1 23.4 182 19.4 20.2 (2.63) 13

208 6.12 3.% 3.92 634 355 254 4.40(1.51) 24

194/205* 25.1 215 22.1 25.1 18.1 19.7 21.9 (2.82) 13

206 28.4 195 22.4 285 195 135 22.1 (5.68) 26

* co-elutions
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Table 3.10 Mean PCB congener concentrations in NIST - SRM 1649 from this study 
(mean from six replicates see Table 3.8) and from Schantz et al. (1993).

This study Schantz et al.
PCB Mean (SD) Mean (SD)t

° g /g  ng/g

30 ND
18 14.7(3.74)
28 14.7(3.01) 19.8(1.6)
52 17.8(3.07) 24.6(1.9)
104 10.1 (1.78)
44 12.8 (1.06)
40 2.74 (0.97)
61 7.85 (1.56)
66 37.7(5.32)

101 49.4(4.86) 41.7(2.1)
77/110* 563 (15.5)
82/151* 26.9 (5.07)

149 70.0 (7.55)
118 143 (1.78) 29.8 (1.6)
188 14.1 (2.91)
153 64.1 (5.12) 75.4 (4.1)
105 6.72 (2.51)
138 50.6(2.99) 77.6(4.8)
187 34.4 (6.21)
183 17.0 (2.88)
128 13.6 (5.54)
185 8.79 (1.98)
204 1.27 (0.54)
180 112 (14.0) 70.6 (4.6)
170 30.7 (4.63)
198 1.65 (0.46)
201 202 (2.63)
208 4.40(1.51)

194/205* 21.9 (2.82)
206 22.1 (5.68)

* co-elutions 
t  mean of two replicates



analysis was carried out to establish a mean concentration for each congener 

(Table 3.8). If a new extract resulted in a significant deviation from this mean 

(± 3SD), then that sample batch was re-analysed for PCBs. Table 3.10 presents 

the mean concentration and standard deviation for each congener and, 

included for a comparison, the mean concentrations of six congeners 

derived by Schantz et al. (1993).

PCB and PAH data presented for the London and Stevenage sampling sites 

were generated in a different laboratory, Warren Spring Laboratory (WSL). 

Therefore, if data was to be comparable it was necessary to verify the 

performance of both laboratories by analysing a series of intercomparison 

sam ples. One such intercom parison study was the joint analysis of 

Fragmentiser feedstock residue (fragmented electrical appliances) conducted 

by GC-MSD for PCBs. A good agreement was found between Lancaster 

University and WSL, as shown in Table 3.11.

Table 3.11. Comparison of PCBs in a fragmentiser residue sample 
supplied by Warren Spring Laboratory.

PCB WSL (jig/Kg) Lancaster (pg/Kg)

28 439 574
52 1355 1504
101 3450 1991
77 72 3195 (inc. PCB 110)
153 1162 941
138 1694 1495
126 17 38
180 193 594 (inc. C12 labelled 180)
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Chapter 4 

PCBs in UK air

4.1 Introduction

Due to their persistence, toxicity and propensity for bioaccum ulation, 

polychlorinated  biphenyls (PCBs) have elicited considerable public, 

governm ental and scientific interest since the mid-1960's. PCBs are now 

widely distributed being detected in soil (Alcock et al., 1993), sediments 

(Sanders et al., 1992) as well as biota such as vegetation (Reiderer, 1990), 

marine mammals and seabirds (Lothigius, 1991) and hum an tissue (Duarte- 

Davidson et al., 1993)

M uch of the previously published data on these persisten t organic 

com pounds has been obtained by reseachers studying their environmental 

behaviour in the Great Lakes region of North America. It is here that the 

greatest concern has been expressed over the adverse effects on wildlife, 

given PCBs persistence, propensity to be repeatedly deposited and volatilised 

between air and soil or air and water and their ability to be accumulated 

through the foodchain. PCBs have now been detected in areas far removed 

from their source(s) such as the polar regions (Barrie et al., 1992; Wania and 

Mackay, 1993). They are therefore subject to transboundary migration and 

can be considered truly global pollutants, the atmosphere effectively acting
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as a transport m edium  for these compounds. The m ovem ent of PCBs 

through the atmosphere is key to an understanding of their global cycling 

(Tanabe, 1988). At any one time the loading of these compounds in the air is 

small in proportion to the total loading in other compartments (e.g. soils) 

(Harrad et al., 1994). However, the atmosphere acts as a highly dynamic 

medium, with PCBs being deposited to land or water and then repeatedly re­

entering the air by volatilisation and /o r re-suspension. Monitoring of PCBs 

in the atmosphere is therefore essential, if transport and cycling are to be 

followed and understood.

Industrialised nations in temperate latitudes in the northern hemisphere 

are commonly believed to constitute the principle global sources of PCBs. 

Sources of PCBs to the atmosphere have been described in Chapters 1 and 2 

but, in brief, H arrad et al. (1994) considered the major sources to the 

contem porary UK atm osphere to be soil derived, with ~88 % of the 

atmospheric burden coming from soils (contaminated as a result of aerial 

deposition, landfill and spills). They estimated leaks from transformers and 

capacitors to contribute ~9 % to the atm ospheric loading w ith the 

production of refuse derived fuel and the recovery of contaminated scrap 

metal contributing some 3 % to the atmospheric burden. If these are the 

main sources to the UK atmosphere then it is important to monitor PCB air 

concentrations and report them in an international/regional context. This is 

particularly important now that PCB manufacture has ceased, as releases to 

the air are predom inantly from previous uses or from contam inated
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m atrices such as soils and sediments. In this Chapter the atm ospheric 

behaviour of PCBs was investigated through the routine sam pling of air 

from  both urban and rural locations, sample site location and sam pling 

m ethodo logy  being p rev iously  described in C hapter 3. A nnual 

concentration patterns at these five sites have provided an insight into the 

behaviour of these chemicals in the atmosphere. Seasonal variations in PCB 

concentrations were followed, along with the vapour-particle distribution 

for individual congeners. Factors affecting this distribution being discussed 

relative to both the urban and rural atmospheres. Spatial variations were 

also investigated to allow comparisons between urban and rural sites. By 

studying the atm ospheric behaviour over annual time scales this has 

provided a greater understanding of the processes that will affect their 

transport, fate and ultimate sinks.

4.2 Congener selection

As discussed in Chapter 1, PCBs are a complex set of individual compounds 

(congeners) each having a unique structure and properties that control its 

behaviour in the environment. There are 209 posible PCB congeners 

(Ballschmiter and Bell, 1980), of which approximately 100 occur in the 

environm ent (Ballschmiter and Wittlinger, 1991). Manchester-Neesvig and 

Andren (1989) sampled air in northern Wisconsin, USA and identified a 

maximum of 92 congeners from one particular sample. However, on a 

routine basis they found an average of 30 congeners in every vapour and
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particulate air sample. In this study 8 congeners were selected for analysis at 

each of the sites, with a further 22 being analysed in the Manchester, Cardiff 

and rural (Hazelrigg) locations. The 8 congeners common to all the sites 

were 28, 52, 101, 77/110, 118, 138, 153 and 180. Congeners 77/110 were not 

resolved under the analytical conditions and were therefore quantified 

together. Six of the congeners are commonly referred to as the indicator 

congeners (28, 52, 118, 138, 153 and 180) as they are routinely screened for in 

m ost environm ental samples now that the advent of capillary gas 

chrom atography has allowed congener-specific quantification (Duarte 

-Davidson et al., 1991). These 6 congeners have been selected due to their 

dominance in the original commercial PCB mixtures (Manchester-Neesvig 

and Andren, 1989) and their persistency in both biotic and abiotic matrices 

(Harrad et al., 1994).

In m any studies, more than the 6 indicator congeners have been analysed. 

For example, atm ospheric studies in N orth America and Canada have 

selected further congeners to provide comprehensive information on the 

loading and behaviour of PCBs in ambient monitoring programmes. These 

extra congeners are selected on the basis of: 1) relative contribution to the 

overall loading w ithin the atmosphere, 2) representation of a particular 

hom ologue group, 3) persistency (atmospheric residence time) and 4) 

toxicity i.e. the non-ortho and mono-ortho substituted congeners which 

contribute significantly to the toxicity of the PCB mixtures (Safe, 1994).
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Table 4.1 presents the full compliment of 30 (8 + 22) congeners analysed in 

this study. The percentage, by weight, of each of these congeners to four 

widely used Aroclor mixtures is also displayed. These 30 selected congeners 

contribute to -50 % of the total congener weight in each mixture, and > 70 % 

in the case of Aroclor 1260. Therefore, these congeners cover a large 

proportion of the total environmental loading through the use of PCB 

technical m ixtures. Furtherm ore, this selection covers the major PCB 

hom ologues, from  the lighter trich lorobiphenyls to the heavier 

nonachlorobiphenyls, thereby representing a wide range of different 

physical-chemical properties.

4.3 UK PCB data in an international context

As described in Chapter 3, twenty six weekly samples were taken 

consistently over each year (every other week) at the various sites. A 

sum m ary of the PCB concentrations at the four urban sites of London, 

Manchester, Cardiff and Stevenage for the sampling period 1991/1992 are 

presented in Table 4.2. London, the largest city, had the highest median (and

mean) XPCBa (Xa = 8 congeners) concentration of 1150 (1350) pg m -3, with 

the m edian  (and mean) concentrations at M anchester, C ardiff and

Stevenage being 404 (455), 490 (575) and 304 (370) pg n r 3 respectively. The 

m edian (and mean) concentrations of the XPCBb (Xb = 30 congeners) in

Manchester and Cardiff were 1050 (1160) and 1390 (1490) pg m '3 respectively. 

The median concentrations tend to be more representative of large data sets
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Table 4.1 PCB congeners quantified in 

Congener Name t

this study. 

GC Aroclor weight percentsA
IUPAC no. • Co-elutions 1242 1248 1254 1260

30 2,4,6-TCB . _

18 2,2',5-TCB 8.35 454 0.15 0.15
28* 2,4,4-TCB 23.05 2033 039 037
52* 2/2’,5/5'-TeCB 233 335 431 0.25
44 2/2'/3/5’-TeCB 3.36 5.25 232 0.09
61 2,3,4/5-TeCB - - - -

74 2,4,4',5-TeCB 61/74 135 235 0.62 0.06
66 2/3,/4,4’-TeCB 3.64 7.66 1.10 0.09

101* 2,2,4^/5-PCB 0.44 1.19 7.06 2.46
110 23/3',4',6-PCB 0.66 1.90 9.61 138
77 3 3 ’,4,4'-TeCB 77/110 - - - -

82 2,2'3,3',4-PCB - - - -

151 2,2',3^,5',6-HCB 82/151 0.24 058 1.89 3.10
149 2/2'/3/4'/5,/6-HCB 0.15 0.34 5.93 8.68
118 2,3'4,4',5-PCB 0.17 0.61 2.83 030
188 2/2',3/4'/5/6,6'-HeCB NR NR NR NR
153* 2,2',4,4',5/5’-HCB 031 035 535 5.91
105 2/2l4/4'^/5'-HCB 030 035 5.25 5.91
138* 2/2'/3/4,4'/5-HCB 0.09 039 535 5.23
187 2,2',3,4',5,5',6-HeCB 0.11 0.13 0.41 4.88
183 2,2',3,4,4’,5',6-HeCB 0.05 0.10 0.40 3.28
185 2,2',3,4,5,5',6-HeCB 0.03 0.04 0.05 0.75
204 2,2'/3/4,4'/5/6/6,-OCB NR NR NR NR
180* 2,2,,3,4,4,,5,5,-HeCB 0.17 0.44 134 12.07
170 2/2'/3/3,/4,4,/5-HeCB 032 033 134 12.07
198 2,2',3,3',4,5^',6-OCB 0.04 0.05 0.06 0.16
201 2,2,/3/3',4,/5/5'/6-OCB 0.10 0.13 0.09 3.30
194 2/2’/3/3,,4/4',5/5’-OCB - - - -

205 2/3/3'/4,4'/5^ ,/6-OCB 194/205 0.08 0.19 0.90 2.19
206 2/2'/3/3'/4/4'/5 /5,/6-NCB 0.04 0.06 0.06 037

44.7 52.6 523 73.4

• Arranged in order of elution from the Ultra 2(5%  phenyl methyl silicone coated) column 
employed in this study.

* Six indicator congeners.
t  T = tri, Te = tetra, P = penta, H = hexa, He = hepta, O = octa, N  = nona.
A Manchester-Neesvig and Andren, 1989
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Table 4.2 Summary of PCB congener data for weekly samples taken every other week throughout 
1991/92 at the four urban sites (pg/m A3).

Cardiff Manchester

Congener Mean Median Range SD Mean Median Range SD

28 222 159 33.4-1040 206 133 115 9.74-309 67.4
52 129 125 21.2-370 733 101 963 16.7-202 433

77/110* 983 55.3 21.6-632 11.7 80.7 62.9 12.0-241 523
101 913 71.7 26.3-360 733 843 67.1 14.4-224 51.7
118 38.6 212 3.02-322 5.99 29.9 25.6 2.36-74.4 18.0
153 323 22.0 4.65-147 32.0 36.9 32.4 6.06-122 202
138 33.4 192 6.51-216 43.9 283 222 11.7-114 22.1
180 17.0 12.4 ND-100 173 24.0 20.7 ND-101 173

IPCBa 575 490 112-1520 352 456 404 180-844 183

30 163 6.04 ND-110 22.6 17.1 13.4 1.23-70.6 15.6
18 397 362 97.4-1540 278 198 188 1.66-568 101

104 10.9 9.96 6.44-36.5 10.6 8.44 5.71 ND-49.3 10.1
44 102 1.06 6.15-246 62.9 117 108 10.5-393 76.4
61 27.0 193 4.82-106 21.9 223 20.3 3.81-77.4 14.1
66 99.1 1.03 3.08-317 74.9 983 912 1.46-257 57.6

82/151 2.27 133 1.01-101 20 2 2 66 243 1.52-84.0 19.6
149 55.1 383 1.08-209 48.0 652 583 5.61-198 41.0
188 123 6.42 2.08-167 253 11.1 7.15 1.33-74.4 13.4
105 28.0 153 8.81-292 483 273 23.1 3.06-93.5 20.7
187 102 6.94 1.95-62.4 123 173 13.7 2.37-105 17.9
183 5.17 336 1.94-23.2 5.43 8.72 638 3.03-37.9 6.42

185 4.43 231 ND-18.5 5.46 635 435 1.57-23.3 631
204 1.66 025 ND-10.0 2.63 2.41 1.48 ND-15.3 338
170 4.61 3.05 0.75-25.8 5.47 663 3.91 0.62-36.0 730

198 128 032 ND-12.2 226 133 0.76 ND-16.3 237

201 125 031 0.56-9.38 1.92 3.74 221 ND-25.2 532

208 030 0.64 ND-6.74 133 176 036 0.63-9.72 235

194/205 2.60 131 ND-15.2 3.18 5.48 4.15 ND-33.6 530

206 1.00 038 ND-6.65 1.79 138 034 ND-14.7 2.97

IFCBb 1490 1390 415-3710 785 1160 1050 223-2360 501
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Table 4.2 Continued

London Stevenage

Congener Mean Median Range SD Congener Mean Median Range SD
28 557 484 190-1490 291 28 186 151 77.5-845 137
52 531 443 116-1770 352 52 109 843 2.91-705 118
77 163 15.4 4.62-60.3 11.1 77 3.42 233 1.35-28.3 5.24

101 117 975 30.7-302 693 101 31.1 233 10.8-154 27.0
118 52.9 39.0 15.3-241 423 118 11.9 105 4.72-54.5 8.91
153 263 215 10.1-58.0 13.8 153 12.9 11.6 3.65-39.6 7.56
138 23.0 195 6.14-56.8 11.9 138 930 7.91 3.14-21.6 4.32
180 12.0 9.11 1.83-58.7 105 180 6.15 535 22.6-216 4.48

IPCB 1350 1150 413-3850 758 IPCB 370 304 141-1840 299

* Note: At Manchester and Cardiff congener 77 and 110 were quantified together.
110 will account for > 90 % of this total.

ND = non detect
iPC Ba = sum of 8 congeners analysed at all four sites.
IPCBb = sum of 30 congeners analysed at Cardiff and Manchester only (including the IPCBa 

congeners).
* Max summer monthly concentration /  min winter concentration
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as they avoid the effects of unusually high values which elevate the mean 

concentrations.

In order to set the UK urban PCB data in context, Table 4.3 presents PCB air 

concentrations from five international urban studies conducted over the 

last 10 years. D uring the 1970's and early 80's atm ospheric PCB 

concentrations were reported in terms of the commercial Aroclor mixtures. 

That is the chromatographic patterns found in atmospheric samples had to 

be matched and quantified against those found in the commercial mixtures. 

W ith the advances of capillary GC, congener-specific information can now 

be obtained, resulting in more useful data which takes into the account the 

tendency of individual PCB congeners to disperse, volatilise, degrade and be 

deposited at different rates in the environment, in relation to their varying 

physical-chem ical properties. The studies in Table 4.3 were therefore 

carefully chosen on the grounds that they reported individual congener 

inform ation rather than just total XPCB concentrations. The six indicator 

congeners common to each of the studies were reported separately as well as 

the total XPCB concentrations. These five urban sites had mean XPCB

concentrations ranging from 208-1590 pg m"3, while the UK sites show mean

concentrations varying from 370-1350 pg m‘3. Therefore contem porary 

atm ospheric XPCB concentrations are similar for urban centres on an 

international basis. Interestingly, the town of Bloomington IN, USA, listed 

in Table 4.3 has a mean XPCB concentration similar to the atmospheres of 

Ham burg and London. Although this town is considerably smaller than
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these two cities, the proximity of three dum p sites containing PCB- 

contaminated waste were considered to be a major source to the atmosphere 

(Hermanson and Hites, 1989; Panshin and Hites, 1994).

Three of the urban sites in Table 4.3 were located in Germany, whilst the 

other two were situated in different continents (Africa and the United 

States). Even w ith sampling taking place in different years the XPCB 

concentrations were similar, indicating either uniform contamination in 

these urban environm ents following the cessation of PCB production, 

a n d /o r  sim ilar processes that lim it their presence in the am bient 

atmosphere. PCBs in the ambient urban atmosphere will be a composite of 

the various emitting sources. Now that PCB production has ceased (Barrie et 

a l ,  1992), sources are likely to be similar from one urban area to another. 

Point sources such as metal reclamation works, chemical waste incinerators 

and PCB superfund dumps like those at Bloomington (IN), USA (Table 4.3) 

will affect a localised area, but in terms of the ambient atmosphere of a large 

city such as London or Manchester these sources will be diluted and simply 

contribute to the urban atmospheric loading.

PCB concentrations at the rural site for 1993 are displayed in Table 4.4. The

m edian (mean) XPCBb concentration was 324 (348) pg m _3 which is 

approximately a factor of 3-4 times lower than the median concentrations at 

the Manchester and Cardiff sites for 1991/92. In comparison to London and 

Stevenage, where only the eight indicator congeners were monitored, the
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Table 4.4 Rural atmospheric PCB concentrations (pg/m A3).
Ontario Wisconsin Kosetice

Congener Rural site (Field Station). Canada c USA d Czech Rep. e

Mean Median Range SD Mean Mean Mean
28 45.2 44.5 <4.34-104 24.1 16.1 115 115
52 23.4 22.1 <3.18-55.1 15.3 165 105 482

77/110 10.8 10.1 <1.53-42.0 11.6 4.05 NR NR
101 10.6 455 <2.71-38.5 12.1 6.42 NR 613
118 8.44 7.14 <0.36-25.9 7.89 2.31 134 NR
153 6.80 3.97 <2.18-27.9 7.86 3.24 5.26 69.1
138 3.91 0512 <1.53-24.6 6.11 2.88 3.44 68.1
180 10.2 927 <3.61-37.7 8.99 1.19 NR 23.0

XPCBa 119 102 265-247 60.4 53.0 136 648

30 551 5.06 <0.41-23.4 5.88 NR NR NR
18 139 218 675-417 79.6 6.60 NR NR

104 1.17 1.01 <0.40-8.98 2.19 NR NR NR
44 15.6 18.4 <2.90-42.5 13.4 6.90 NR NR
61 9.93 8.14 <0.85-51.5 113 234 NR NR
66 6.43 357 <5.33-23.5 737 654 NR NR

82/151 334 2.16 <1.54-15.4 4.04 1.37 NR NR
149 13.1 15.3 <3.39-30.4 115 236 NR NR
188 2.31 2.01 <0.40-10.8 2.97 NR NR NR
105 7.12 6.7 <1.22-24.4 6.95 0.165 NR NR
187 556 2.93 <0.48-18.9 6.29 1.74 NR NR
183 0.338 0331 <0.40-3.82 0381 0.748 NR NR
185 0.133 0.285 <0.40-2.40 0.477 0.135 NR NR
204 ND ND ND - NR NR NR
170 1.84 1.79 ND-9.56 226 0.482 NR NR
198 0358 0332 <0.20-7.81 1.76 ND NR NR
201 1.12 0.924 <1.06-6.54 1.61 0.920 NR NR

194/205 653 7.07 <1.16-17.9 4.76 0.121 NR NR
206 ND ND ND - 0.150 NR NR

ZPCBb 348 324 114-732 159 84.1 NR NR

XPCBa = sum of 8 congeners
XPCBb = sum of 30 congeners (including XPCBa congeners)
ND = Non-detect 
NR = N ot reported
c Samples taken July 1988-July 1989,15km from nearest potential source (Hoff et al., 1992a). 
d Samples taken April1984-March 1985, remote area (Manchester-Neesvig and Andren, 1989). 
e 17 samples taken March 1989-March 1991, rural area of S. Bohemia (Holoubek et al., 1992).
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m edian XPCBa concentration at the rural site was 102 pg m -3. This was 

approximately a factor of 10 lower than London and a factor of 3 lower than 

Stevenage. Clearly the rural location has a m arkedly reduced XPCB 

concentration over the urban sites indicating the reduction in PCB sources 

to the ambient rural atmosphere. Included in Table 4.4 are three other rural 

stud ies from  C anada, USA and the Czech Republic, the XPCBa

concentrations range from approximately 50 to 650 pg m-3 between these 

three sites, the atmospheric concentrations being the highest in the Czech 

study. To compare rural and urban atmospheres, Figure 4.1 displays the 

range and median £PCB concentrations from seven contemporary studies. 

Where possible, the selected rural studies had sampling programmes over 

an annual time scale, so that simple seasonal differences would not be 

depicted between sites. All of the rural sites had an annual median XPCB

concentration of < 500 pg m -3, apart from the study in south Bohemia in the

Czech Republic, which had a median concentration of 570 pg n r 3. This was 

approximately a factor of 10 higher than the Canadian study in Ontario and 

a factor of 2 higher than the rural location of this work. There are several 

possible reasons for the elevated rural concentrations in the Czech Republic. 

Firstly PCB use continued in eastern Europe after many western countries 

had ceased (Barrie et a l, 1992). Secondly the Czech workers acknowledge the 

difficulty in selecting a true background site in a country with a high density 

of towns, villages and various types of industry, where continued PCB use 

may have resulted in increased environmental contamination.
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Figure 4.1. A tm ospheric total £PCB (vapour plus particulate phase) 
concentrations over annual time scales at three city and four rural locations. 
Results are presented as 'box and whisker' plots. The centre of the box is the 
m edian air concentration, the ends of the box are the upper and lower 
quartiles and the ends of the whiskers are the furthest concentration within 
one interquartile range (i.q.r.) either side of the box. Air concentrations out of 
this range are represented as outlier points.

* = concentrations > ± 1.5 (i.q.r.) < ± 3 (i.q.r.); ° = concentrations > ± 3 (i.q.r.)
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In contrast to these rural locations the city studies show a marked elevation 

in PCB air concentrations. On a national basis Harrad et al. (1994) estimated 

that ~ 12% of PCBs to the UK atmosphere were derived from activites 

m ainly centred around urban areas, i.e. the use of transform ers and 

capacitors and recovery of contaminated scrap metal. Furthermore, the high 

density of both public and domestic buildings will add to the atmospheric 

burden in urban areas. Indoor air concentrations have frequently been 

found to be an order of m agnitude higher than outdoor concentrations 

(Balfanz et al., 1993; Krieger and Hites, 1994). The ventilation of indoor air 

will therefore act as a source of PCBs to the 'outside' atmosphere. Sources of 

PCBs to indoor air have been considered to be sealant materials (Balfanz et 

al, 1993) and lighting fixtures (MacLeod, 1980). These important sources of 

PCBs have been largely ignored by Harrad et al. (1994), but it is important to 

acknowledge that indoor air may be a significant source of PCBs to the urban 

atm osphere.

The 'lines' of the box plots (extending to the furthest concentration within 

one interquartile range either side of the box) displayed in Figure 4.1 cover a 

large range of concentrations. For the London and Manchester data these 

lines overlap with the data from several of the rural studies. This shows 

that there are large fluctuations in atmospheric concentrations throughout 

the course of a sampling year indicating seasonal fluctuations. Several of the 

studies in Figure 4.1 show elevated air concentrations that fall outside the 

norm al range of the box plot and can be considered to be anomalies or
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outliers (represented as points). It is likely that specific meteorological 

conditions have influenced the PCB loading in the air samples represented 

by these outliers. Air mass transport of contaminants from a polluted source 

area has been shown to elevate PCB concentrations above the seasonal 

norm  at more remote sites (Hoff et a l, 1992; Oehme et a l, 1995). These 

outliers generally w arrant special consideration because they point to 

specific events or processes that have resulted in elevated concentrations. 

M eteorological conditions affecting contaminant loading and air mass 

transport of SOCs are discussed in more detail in Chapter 6.

4.4 Congener concentrations and atmospheric profile

On an individual congener basis the more volatile tri- and tetrachlorinated 

congeners were found to predominate in the urban atmosphere of the UK. 

Congeners 28 and 52 constituted > 50 % of the XPCBa throughout each 

sam pling year. Again, for the other urban studies in Table 4.3 these are the 

dom inant congeners, with the exception of the city of Ulm in Germany, 

where only one air sample was taken during a winter period. In winter 

atmospheric concentrations of PCBs have been found to be at their lowest 

(M anchester-Neesvig and Andren, 1989). Seasonal effects on congener 

concentrations are discussed further in Section 4.5. At the Manchester, 

Cardiff and rural sites, where the full compliment of 30 congeners were 

analysed, the tri- and tetrachlorinated congeners dom inated the mean 

annual XPCB air concentrations by > 50 %, w ith the three most
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predom inant congeners occurring in the order of 18 > 28 > 52. Figure 4.2 

displays the percentage contribution each congener makes towards the £PCB 

concentrations (annual average) for Manchester, Cardiff and the rural site, 

respectively. This Figure shows the dominance of the lighter tri- and 

tetrachorobiphenyls on the congener profile in the atm osphere. The 

contribution towards the XPCB generally decreases with increasing level of 

chlorination. Interestingly, congeners 30 and 104, which are examples of a tri- 

and a pentachlorobiphenyl respectively, make only a small contribution (~1 

%) to the to ta l concentration  rela tive  to the o ther tri- and  

pentachlorobiphenyls. This is because these two congeners made only a 

small contribution (< 0.05 % w /w ) or were absent altogether from the 

various Aroclor and Clophen commercial mixtures (Schulz et al., 1989). At 

the ru ral location, the lower chlorinated congeners dom inated the 

atmospheric profile, as found at the urban sites. From Table 4.4 the three 

congeners 18, 28 and 52 comprise -57 % of the annual average XPCBb air 

concentration at the rural site. Similarly, congeners 28 and 52 are dominant 

in the rural atm ospheres of the other three sites listed in this Table. 

Congeners are therefore prevalent in the atmosphere, depending on their 

abundance in the commercial PCB mixtures and on their vapour pressure.

4.5 Seasonal variations in atmospheric concentrations

From Figure 4.1, the annual IPCB concentrations displayed at the two UK 

city sites and the UK rural site, show a wide range in concentrations. That is,
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over the course of a year there appears to be a large fluctuation in the 

atmospheric concentrations at both the urban and the rural locations. Figure 

4.3 (a+b) displays time series plots of XPCB concentrations in London air 

throughout 1991/1992 and rural air during 1993, respectively. Overlaid on 

these figures are the mean temperature profiles during these periods. These 

two figures show that as temperature rises with the onset of summer the 

am bien t a tm ospheric  XPCB concentration increases - the low est 

concentrations occurring during the cooler winter months. This seasonal 

cycling is similar at both sites indicating a process common to both urban 

and rural atmospheres, regardless of anthropogenic activity, i.e. in the urban 

environm ent there is the added potential of num erous point sources. 

Furtherm ore, seasonal changes in PCB concentrations has been shown to 

occur in other ambient atmospheres. For example, Hermanson and Hites 

(1989) observed elevated vapour phase PCB concentrations during the 

sum m er in the atmosphere of Bloomington, IN; likewise Hoff et al. (1992a) 

carrying out a high resolution sampling programme in Ontario, Canada, (air 

samples taken every other day for the period of a year) reported elevated 

concentrations in the warmer summer months with reduced concentrations 

during the winter.

The effect of changing season (or changing air temperature) was apparent at 

all the sampling sites of this study. Figure 4.4 shows a correlation between 

am bient air tem perature and total (vapour and particulate) XPCB 

concentrations for the Manchester and rural sites for 1992 and 1993
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Figure 4.4 Regressions of total (vapour and particulate phase) XPCB 
concentrations against mean tem perature at the M anchester and rural 
locations.
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respectively. The correlation coefficient between the air concentrations and 

temperature was 0.54 (P<0.01) for the Manchester data and 0.60 (P<0.01) for 

the rural data. These m odest correlations do not reflect the strong 

correlations (r > 0.8) observed by both Manchester-Neesvig and Andren 

(1989) and Hermanson and Hites (1989) at their respective sampling sites in 

W isconsin and Bloomington, IN. However, it should be noted that their 

sam pling periods were much shorter - over a day rather than the weekly 

sam pling used here. Their high resolution sampling over a 24 h period 

would result in a narrower temperature range being encountered and hence 

reflect more accurately the effects of tem perature on atmospheric PCB 

concentrations.

Seasonal change can be observed in the concentrations of individual 

congeners at both the urban and rural sample sites. The total concentration 

for each congener comprises of both the vapour and particulate phases. 

Separate vapour phase and particulate phase concentrations of three 

congeners (18, 118 and 153) were plotted against temperature in Figure 4.5 

for data obtained at the Manchester site. Positive correlations were evident 

betw een tem perature and the vapour phase component, but not for the 

p a rticu la te  phase com ponent of these congeners. V apour phase 

concentrations of individual congeners were strongly influenced by 

tem perature. PCBs therefore have a tendency to volatilise from surfaces in 

the w arm er sum m er months, resulting in elevated vapour phase air 

concentrations. The particulate phase concentrations do not show these
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correlations. Only the particulate concentrations of congener 153 showed a 

m odest negative correlation with temperature (the correlation coefficient 

being -0.44, significantly different from zero at P = 0.05). That is, as 

tem pera tu res decrease in the w inter period the particu la te  PCB 

concentration increases, possibly by condensation of the vapour phase 

component onto particulate surfaces. However this is not the only process as 

the correlations between temperature and particulate phase concentrations 

were generally weak or non-existent, indicating the involvement of other 

possible factors such as the amount (surface area presented) and type of 

particulate in the atmosphere. These will play an im portant role in the 

sorption/desorption of PCB congeners in the atmosphere as suggested by 

Pankow and Bidleman (1992). Vapour/particle partitioning will be further 

examined in Section 4.6.

Seasonal cycling was therefore evident in the XPCB concentrations at each 

of the sample sites, tem perature being invoked as the major controlling 

factor. On average, ambient summer concentrations were greater by a factor 

of ~2 than winter values (see Figure 4.3). Table 4.5 presents the summer and 

w inter means for the individual congeners measured at the four urban sites 

of London, M anchester, Cardiff and Stevenage where sum m er was 

nom inally defined as June, July and August and w inter as December, 

January and Februrary. All the congeners show a significant increase in 

mean concentrations from winter to summer.
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Interestingly, light and heavy congeners exhibit rather different behaviour in 

the atmosphere. In this study the range of congeners analysed have vapour

pressures and molecular weights ranging from -10"1 - 10-5 Pa and 257.5 - 462.2

g m ol-1 (congener 18 - congener 206) respectively (Mackay et al., 1992). Figure

4.6 shows the seasonal cycling in Manchester and the rural location of the 

tetra-CB congener 28, and the hepta-CB, 180. Distance weighted least squares 

(DWLS) lines have been fitted to the mean monthly concentrations for each 

congener (SYSTAT v5.0), data for Manchester taken for 1992 and the rural 

site for 1993. This has produced a smoothed curve clearly showing the 

increase in concentrations from winter to summer for each congener. The 

am plitude of this cycling is greater for the higher chlorinated congener 180. 

Even though congener 28 predom inates in the atm osphere, greatly 

outweighing the contribution made by 180 to the XPCB concentration, the 

change from winter 'low' to summer 'high' is more marked for this higher 

chlorinated congener at both sampling sites. In other words it shows a greater 

'peakedness' in curve shape, w ith the ratio of w inter to sum m er 

concentrations being eight for 180 and yet only two for congener 28 in 

M anchester. Again, at the rural location the ratio of winter to summer 

concentrations is greater for the more chlorinated congener, five for 180 

com pared to two for congener 28. Maximum winter to summer ratios are 

presented for each congener measured at the Manchester and rural sites in 

Table 4.6. The increase in this ratio with increasing molecular weight agrees 

with the work of Hoff et cil (1992a) who reported the amplitude (Am) of the 

peak to minimum ratio of monthly averages to be largest for the higher
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chlorinated PCBs in rural Ontario air. It is therefore apparent that this 

phenom enon is not solely an urban trait, where num erous sources may 

influence the atmospheric loading of both the heavier and lighter congeners.

Table 4.6 Winter/Summer congener ratios* in the Manchester and rural atmospheres. 

* Max summer monthly concentration /  min winter concentration.

Congener Manchester Rural
IUPAC no. 1992 1993

30 1.9 1.0
18 1.8 3.1
28 2.0 1.4
52 1.7 2.1
44 2.8 2.3
61 2.3 2.1
66 2.0 1.5
101 3.0 2.4

77/110 - -

82/151 - -

149 4.1 4.2
118 4.8 3.9
188 3.1 3.0
153 3.2 2.9
105 4.2 4.2
138 3.4 3.2
187 2.8 2.9
183 4.6 4.0
185 4.1 3.7
204 8.3 7.5
180 8.0 5.0
170 4.0 3.7
198 5.2 5.1
201 7.7 7.0

194/205 - -
206 8.0 -

In this study the difference in amplitude between congeners is not as clear as 

that reported by Hoff et al (1992a) were the Am ranged from eight for 

trichlorinated congeners to forty for pentachlorinated congeners and above. 

However, their sample site was located in rural Canada, away from point 

sources with an annual mean XPCBa concentration being ~ 25 times lower
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than the annual mean of London (see Table 4.2 and Table 4.4). Perhaps more 

im portantly, the annual temperature variation is more marked in Ontario 

(Canada) than at any of the urban sites in this study. Temperatures in Ontario

typically fluctuate between 23 and -8 °C from sum m er to w inter; in

M anchester (for example) the fluctuation was only between 19 and 4 °C. 

These observations may be consistent w ith outgassing of previously 

deposited PCBs constituting a significant source of PCBs to the atmosphere, 

especially in the summer months.

If tem perature is invoked as the major controlling factor - why should the 

cycling am plitude be greater for the more chlorinated congeners? One 

possible explanation involves looking at the major sorbing compartments 

from which SOCs such as PCBs volatilise off with the onset of warmer 

tem peratures. Vegetation and soil have become increasingly recognised in 

recent years as major compartments in the role of both sink and source, for a 

range of atmospheric SOCs in the terrestrial environment (Strachan et a l,  

1994; Jones, 1994; Simonich and Hites, 1994; Welsch-Pausch et al., 1995). It is 

postulated that from these compartments volatilisation during the warmer 

sum m er months results in the elevated PCB concentrations found in the 

atm osphere (Jones, 1994). For both soil and vegetation (foliage) it is 

considered that there are two compartments in each, the first being where the 

com pounds reside initially and are readily  exchangeable w ith  the 

atmosphere. This compartment could include the waxy cuticles of leaves and 

the pore-w ater of the soil, and may also include 'accessible' soil organic
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matter. From this first compartment the compounds are considered to be 

susceptible either to volatilisation, or to migration to a second compartment. 

This second compartment could be the deeper wax layer or the internal leaf 

structure, or in the case of soil, the organic fraction where the compounds 

become tightly bound. In this second compartment it is considered that the 

com pounds are not as readily exchangeable with the atm osphere as in 

com partm ent 1. It is considered, therefore, that the more chlorinated 

congeners will be less mobile than the lower chlorinated congeners. This 

could be due to their higher molecular weight, more complicated structural 

configuration, higher lipophilicity and higher oc tano l/w ater partition  

coefficients. That is, their migration to this secondary compartment will be 

slower relative to the lighter congeners.

Figure 4.7 schematically represents the two sub compartm ents and the 

proposed m ovem ent of PCB congeners, 'light' congeners are nom inally 

taken to represent tri- and tetra-chlorinated congeners and 'heavy' as 

hexachlorinated and above. With reduced movement from the first to the 

second compartm ent, over an annual time scale, the higher chlorinated 

compounds will be increasingly available for re-volatilisation with the onset 

of higher seasonal temperatures. This is due to their lack of mobility and 

hence build up in the first compartment.
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Figure 4.7 Diagram showing the potential differences between the behaviour of the lighter 

congeners and the heavier, more chlorinated, congeners when associated with the 

so il/vegetation  compartment. Differences in the degree of atmospheric cycling may be 

explained by the reduced or slower movement of the heavier congeners to a sub-compartment, 

making them readily available for re-volatilisation back into the atmosphere with the onset 

of warmer temperatures.
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The lighter congeners which may migrate more easily to these 'inner' sub­

compartm ents will not be as readily volatilised from these areas, and will 

therefore show a less pronounced increase in air concentrations during the 

w arm er summer months. This theory may help to explain the increase in 

the seasonal cycling amplitude of the higher chlorinated congeners observed 

in the data collected from both an urban and rural location.

A  second possible explanation is that the lighter congeners being more 

volatile, require colder temperatures than those experienced in a typical UK
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winter, before significant reduction in atmospheric concentrations occurs. 

The heavier, less volatile, congeners will more readily condense onto 

surfaces, highlighting the large seasonal change in their observed air 

concentrations.

4.6 Vapour/particle distribution

As described in Chapter 3 the atmospheric PCB vapour phase component was 

collected and analysed separately from the particulate phase for those 

sam ples collected at the Manchester, Cardiff and rural locations. The 

particulate phase was defined as that trapped on a glass fibre filter and the 

vapour phase defined as that associated with two in-line polyurethane foam 

(PUF) plugs. Semi-volatile organic compounds (SOCs) such as the PCBs will 

distribute themselves between the vapour and particulate phases primarily 

according to their vapour pressure, ambient temperature and the amount of 

surface area available for adsorption (Cotham and Bidleman, 1992). The basis 

of the atmospheric partitioning of SOCs was discussed in Chapter 2, Section 

2.2.3. In this section both particulate and vapour phases were studied 

separately so that the distribution of the PCB congeners could be examined at 

the various sample sites.

Figure 4.8 presents the XPCB concentrations at Cardiff for the years 1991 and 

1992. Each sample week shows the vapour and the particulate phase 

component. Clearly the vapour phase XPCB dominates over the particulate
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phase throughout each sample year. On an annual basis ~ 95 % of the XPCB 

was found in the vapour phase in the Cardiff atmosphere. Similarly for 

Manchester and the rural location > 90 % of the XPCB concentrations were 

found in the vapour phase. Other workers have also reported the dominance 

of the vapour phase component over the particulate phase (Bidleman and 

Olney, 1974; Manchester-Neesvig and Andren, 1989; Krieger and Hites, 1994). 

Manchester-Neesvig and Andren (1989) reported that between 83 - 97 % of 

the XPCB sampled in rural Wisconsin air was present in the vapour phase 

over a one year period. Seasonal changes in the ZPCB vapour phase were 

apparent in the ambient atmospheres of this study. For example, during the 

sum m er periods in the Manchester atmosphere > 98 % of the XPCB was 

found in the vapour phase while during the winter periods this was reduced 

to ~ 85 %. The fact that atmospheric vapour phase PCB concentrations vary 

in a cyclic manner over the course of a year, suggests that these compounds 

are being removed and replenished over a reasonably short time period. 

Tem perature has been invoked as the major controlling factor for vapour 

phase concentrations (Pankow, 1993). Indeed significant correlations can be 

observed between XPCB concentrations and tem perature for both the 

M anchester and rural atmospheres in Figure 4.4. Furthermore, stronger 

correlations were found betw een tem perature and vapour phase 

concentrations only (see Figure 4.5).

On an individual congener basis the distribution between the vapour and 

particu late  phases was dependent on the level of chlorination and
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temperature. This is highlighted in Table 4.7 for selected congeners sampled 

in M anchester and rural air. In every case, the vapour phase component 

clearly dominates, although this dominance decreases with increasing level 

of chlorination (reduced vapour pressure) and during the colder winter 

months. This effect has also been noted previously by others in both the 

urban atmosphere of Denver, COL (Billings and Bidleman, 1983) and the 

rural atmosphere of northern Wisconsin (Manchester-Neesvig and Andren, 

1989). All the congeners in Table 4.7 predominantly reside in the vapour 

phase during the summer (> 90 %) but in the winter the am ount of any 

congener in this phase is reduced. For the lighter congeners such as 28 and 52 

this is by only a few percent, but for the more chlorinated congeners there 

may be a fifty percent reduction in the vapour phase concentration.

Table 4.7 Percentage of selected PCB congeners associated with the PUF (nominally prescribed 

as the vapour phase) in Manchester air in 1991 and rural air in 1993.

Manchester Rural
Congener Summer Winter Summer W inter

28 99 92 99 90
52 99 93 99 96
101 98 78 99 75
118 98 72 99 71
153 96 58 99 75
138 95 44 99 75
180 90 62 95 57

Summer - June, July, August
Winter - December, January, February

The reduction in vapour phase concentrations is not necessarily matched by 

a corresponding increase in particulate phase concentrations. Seasonal
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cycling of particulate phase concentrations was less discernible in both urban 

and rural atmospheres. To show this, both the vapour and particulate 

concentrations of congener 153 were displayed over an annual time scale for 

the rural and Manchester sites in Figure 4.9. Congener 153, a hexachlorinated 

biphenyl, was selected as an example because as a mid-weight congener it had 

significant concentrations in both phases. The increase in vapour phase 

concentrations for this congener during the summer is evident at both sites, 

but the particulate concentrations do not show a clear seasonal pattern. This 

lack of pattern  was also evident in the particulate XPCB concentrations. 

Figure 4.10 (a+b) displays the particulate XPCB concentrations for the 

M anchester and rural sites respectively. Overlaid on these figures are the 

total suspended  particulate concentrations (TSP) determ ined in the 

atmospheres of both sites for each sample week. The TSP loading does not 

appear to change with season, and in fact for the Manchester atmosphere 

rem ained fairly consistent throughout the whole 2 year sampling period. 

Sim ilarly in the rural atm osphere seasonal fluctuations in the TSP 

concentrations were not evident throughout 1993. Manchester, however, 

displayed the higher TSP loading with a mean (range) concentration of 47 (13

-150) pg m -3 compared to the rural mean (range) concentration of 31 (13 - 59)

pg m -3. This shows that a greater surface area was available for sorption in 

the urban atmosphere, coupled with higher atmospheric PCB concentrations 

led to elevated particulate phase concentrations over the rural atmosphere. 

On average urban XPCB particulate phase concentrations were a factor 2 

higher than rural concentrations. It is therefore likely that changes in the
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Figure 4.9 Separate vapour and particulate phase concentrations of 
congener 153 over an annual time frame in an urban (Manchester) and 
rural (Hazelrigg) atmosphere.
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Summer

Sample week 1991

Rural
30

Vapour phase 

Particulate phase

20 -

1 0 -

IU li Jill
_ , _  ^  |  p,  «-h  CO Lf l ON f H  CO LO t>s  ON H  CO LO N  ON r—< CO LO

, < T N L O I > s O N ^ 2 ^ ^ 2 r 1 c s S S J o c O C O C O C O ^ T f ^ ^ T f L O l O L O

Summer

Sample Week 1993

142



Sam
ple 

week 
1991/92

XPCB particulate phase pg m-3

•—* t—4 N3
8 8 8 8

3a.

101

*  m

Hto*0
M
3
0 3

T 3V
3o'(3

TSP pg m -3

143

Figure 
4.10a 

Particulate 
phase 

XPCB 
concentrations 

and 
total suspended 

particulate 
(TSP) 

concentrations 
in 

M
anchester 

air.



ZPCB particulate phase pg m-3

8 a

C/3

ST
*
n

8*
vjO
V

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55

<x:

S3

m

oo

TSP |ig  m -3

H
C/3-a

M

3
0 3

-C30>an‘£5T
flT

144

Figure 
4.10b 

Particulate 
phase 

XPCB 
concentrations 

and 
TSP 

in 
rural air 

during 
1993.



particulate associated PCB concentration results through changes in a 

combination of factors, such as temperature and atmospheric particulate. 

H ow ever, as m entioned in the previous section correlations between 

particulate associated congener concentrations and temperature were weak or 

non-existent. Therefore partitioning between the two phases is a more 

complicated picture. Factors such as the size and nature of the atmospheric 

particulate may play an important role. Measurement of TSP alone does not 

give sufficient detail on the various size fractions present within a particular 

air sample, as many SOCs have been found to be predominantly associated 

with particles of diameter < 10 pm (Katz and Chan, 1980; Kaupp et al., 1994). 

Furtherm ore other factors such as hum idity have also been shown to 

influence the partitioning behaviour of SOCs (Lee and Tsay, 1994). Water 

molecules compete with the surface binding sites on the particles reducing 

organic vapour adsorption, which would otherwise occur.

In order to examine the effects of temperature on the vapour/particle (V/F) 

partitioning of PCBs in this study, TSP weighted adsorbent/filter (A/F) 

partition coefficients were plotted against inverse tem perature for the six 

indicator congeners (28, 52, 101, 153, 138 and 180). The A /F  partitioning 

nominally represented the true atmospheric V /P  ratio and is expresed as the 

TSP weighted partition coefficient [(F/TSP)/A] according to Pankow (1987). 

This is further described in Chapter 2, Section 2.2.3, but in effect is the ratio of

the sorbed concentration of a com pound (pg pg ^) to its gaseous

concentration (p§ m~^). Rural and Manchester data sets for each congener
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were combined in each plot so that the partitioning in these different 

atmospheres could be examined. The relationship between temperature and 

the partitioning coefficient [(F/TSP)/A] is presented in Chapter 2, Section

2.2.3 and takes the straight line form expressed as:-

log[(F/TSP)/A] = m /T  + b

Where m and b are the slope of the line and the Y-intercept respectively, and 

T is the mean ambient temperature (K) during a particular sampling week 

(Pankow, 1987).

Figure 4.11 displays the plots of log [(F/TSP)/A] against inverse temperature 

for the selected congeners. A positive correlation was observed for each 

congener, that is the partitioning coefficient increased (moving up the Y-axis) 

w ith decreasing temperature (moving away from zero on the X-axis). This 

denotes an increased partitioning to the solid phase with a reduction in 

tem perature. Moreover, as seasonal patterns could not be deduced for the 

particulate phase PCB concentrations at either urban or rural sites (for the 

tem peratures encountered in this study) then the increase in partition 

coefficents with a reduction in temperature was through a decrease in A (the 

vapour phase concentration). Vapour phase concentrations do show 

variations with season displaying significant correlations with temperature 

(see Figure 4.5). If particulate phase concentrations do not change with 

temperature, then an alternative argument is that the partitioning is
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dom inated not by particles in the atmosphere but by the earth's surface. This 

theory was pu t forward by Hoff et a l (1992b) who acknowledged the large 

discrepancy in surface area available for sorption between terrestrial surfaces 

and the particulate in the atmosphere. For example, by taking the mean rural

TSP loading (this study) of 31 pg m-3, a specific surface area of particles of 0.05

cm2 pg-1 (Pankow, 1987) and an atmospheric mixing layer thickness of 2000

m, then a total surface area of atmospheric particulates in a 1 m 2 column up

to the top of the mixed layer is approximately 0.31 m2. The surface area of 1

m 2 of earth's surface is significantly larger than this, particularly if the surface

is covered by vegetation. Simonich and Hites (1994) estim ated 1 m2 of 

terrestrial surface occupied by temperate vegetation has an overall surface

area of 7 m 2. Thus it may be the case that terrestrial surface vapour exchange 

dominates over the atmospheric particulate and plays a more important role 

in the annual cycling of atmospheric PCBs.

For each congener in Figure 4.11 the rural data points do not form separate 

clusters from the urban (Manchester) points. That is the partitioning 

coefficients for the temperature ranges encountered do not differ between the 

u rban  and rural atm ospheres. This indicates that although the TSP 

concentrations differed between the sites the partitioning process did not. 

E ither the TSP substrates were similar between the urban and rural 

atmospheres or the partitioning process is dominated by terrestrial surfaces as 

suggested earlier. Rural TSP has been found to differ in composition
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compared to urban TSP. An intensive study carried out in urban districts of 

New Jersey (USA) found ~ 50 % greater inhalable particulate matter (IPM) 

[particles of diameter <10 pm], compared to a rural control site (Lioy and 

Daisey, 1986). Yet it is this size fraction of atmospheric aerosol that contains > 

90 % of the bound SOCs. This would indicate, therefore, that at a rural 

location such as the one in this study the partition coefficients for the selected 

congeners should be higher than those depicted in Figure 4.11, and hence 

differ from the urban values. This was not apparent, providing further 

evidence that TSP alone is not a major factor in the partitioning of 

atmospheric PCBs.

For the lighter congeners (28 and 52) the partition coefficients range from ~

log -4 (0.0001) at 20 °C to -log -2 (0.01) at 2 °C. For the more chlorinated 

congeners of 153, 138 and 180 the change in coefficient range is much greater 

over these temperatures. For example congener 138 has a coefficient of 0.0003

at 20 °C and 0.1 at 2 °C. This is a change of three orders of m agnitude 

com pared to the lighter congeners which change by only two orders of 

m agnitude. This implies that in temperate climates, such as the UK, the 

lighter more volatile congeners will undergo less reduction in vapour phase 

concentrations, compared to the more chlorinated congeners with the onset 

of cooler tem peratures (i.e. winter) - in other words there is reduced 

partitioning to solid surfaces for these lighter congeners. Indeed, this is 

supported by the fact that the more chlorinated congeners display greater 

seasonal cycling with a higher amplitude change in concentrations between
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winter and summer (see Table 4.6). Furthermore lower temperatures than 

those encountered in this study w ould be required to increase the 

partitioning coefficients for the lighter congeners.

Partitioning in both rural and urban atm ospheres is therefore clearly 

dependent upon ambient temperature and the compound's volatility. To 

show  this, Figure 4.12 displays the relationship between the partition

coefficients at 25 °C for the six congeners represented in Figure 4.11 and their

respective vapour pressures (Pa at 25 °C). A strong correlation was evident 

where r = -0.92 (P <0.01).

Figure 4.12. Partition coeffitients for six indicator congeners plotted against respective vapour 

pressures at 25 °C (298K).
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Similarly, strong correlations have also been found for a variety of semi- 

volatile organochlorine contaminants such as DDT (and its metabolites), 

chlordane and the HCIT isomers (Bidleman 6t ul., 1986, Cotham and 

Bidleman, 1992).
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As am bient temperature and congener vapour pressure effectively govern 

the partitioning process both in the urban and rural atmospheres then they 

will have a significant effect on the transport and deposition of PCBs. As 

observed in Figure 4.11 the partitioning coefficients changed over two orders 

of m agnitude for congeners 28 and 52 at the am bient tem peratures 

encountered in this study. The change in vapour phase concentrations was 

not as significant as the change for the more chlorinated congeners. These 

heavier congeners with the lowest vapour pressures, will sorb to solid 

surfaces more readily than the lighter, more volatile, congeners. Therefore 

the lighter congeners have the potential for greater transport away from 

source areas, a significant increase in the partition coefficients only being 

brought about by much colder temperatures, resulting in a decrease in 

vapour phase concentrations.

This adds further evidence to the 'global fractionation' theory of Wania and 

Mackay (1993), where in colder climates, such as the polar regions, lower 

tem peratures will result in increased partitioning to surfaces such as snow 

and ice. Lighter congeners may be transported further north in the vapour 

phase than the heavier congeners before finally undergoing partitioning to 

surfaces due to the much reduced temperatures.



4.7 Summary

Eight PCB congeners were analysed at all of the TOMPS sites, with a further 

22 being analysed at Manchester, Cardiff and the rural site (Hazelrigg).

London had the highest annual mean concentration of 1350 pg m-3 out of all 

the urban locations. UK urban concentrations were comparable to other 

urban areas on an international basis. The contemporary urban atmosphere

displaying XPCB concentrations of ~200 - 2000 pg m -3. The rural site was 

approxim ately a factor of 3 - 4 lower than the mean concentrations of 

M anchester and Cardiff. Internationally, rural locations displayed reduced 

concentrations over urban areas due to, presumably, a reduction in point 

sources such as the release of contaminated air from buildings.

The atmospheric PCB profile at each sampling site was dom inated by the 

low er chlorinated, tri- and tetrachlorinated, congeners. Congeners were 

p revalen t in the atm osphere according to their vapour pressure and 

abundance in the commercial PCB mixtures.

Over the course of a year seasonal fluctuations resulted in a wide range of 

SPCB concentrations at each sample site. Increases in atm ospheric 

concentrations were observed during the warmer summer m onths, with 

correlations being apparent between tem perature and total (vapour and 

particulate) XPCB concentrations. Stronger correlations occurred between the 

vapour phase component only and tem perature, thereby show ing that
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tem perature  is the major controlling factor for vapour phase PCB 

concentrations.

The less volatile, more chlorinated congeners showed increased seasonal 

cycling with a greater amplitude change from winter to summer. These 

heavier congeners may be more readily exchangeable with the atmosphere, 

due to their reduced ability to migrate to secondary compartments, unlike the 

lighter congeners (i.e. to migrate from leaf cuticle/soil pore water to deeper 

leaf s tru c tu re /so il organic matrix). In these secondary com partm ents 

congeners may be less readily available to the atmosphere. Alternatively, UK 

w inter tem peratures may not be cool enough to significantly reduce the 

vapour phase component of the lighter congeners, relative to the heavier 

PCBs.

More than 90 % of the £PCB concentration was found in the vapour phase. 

On an individual congener basis the distribution between the vapour and 

particle phases was dependent on the level of chlorination and temperature. 

For the six indicator congeners, increased partitioning to the solid phase with 

a reduction in temperature was observed at the Manchester and rural sites. 

As particulate phase concentrations did not change with tem perature it is 

possible that partitioning is dominated not by atmospheric particulate but by 

the earth's surface.
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Chapter 5 

PAHs in UK air

5.1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) produced by combustion sources 

are ubiquitous in urban and rural atmospheres. Due to the adverse health 

effects linked to PAHs, environmental monitoring is essential, as it is 

generally believed that long-term chronic exposure to environm ental 

carcinogens is of greater significance than short term  acute exposure 

(Harkov, 1982). Many studies have focused on the urban atmosphere due to 

the high num ber of PAH sources, combined with the fact that a population 

of high density is exposed to these contaminants. Furthermore, long term 

atm ospheric sam pling is required in both urban and rural locations to 

examine seasonal cycling, changes in the vapour-particle partitioning and to 

examine atmospheric transport and deposition. In this chapter atmospheric 

PAH data is presented from a 2 year sampling survey in four urban locations 

and a 1 year survey at a single rural location. Details of sites, sampling 

m ethods and analytical techniques are presented in Chapter 3. Briefly, the 

four urban sites were in London, Manchester, Cardiff and Stevenage and the 

rural location was near Lancaster in NW England.
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5.2 Annual urban concentrations

Annual average PAH concentrations are summarised in Table 5.1 for the 

four urban sites for both 1991 and 1992. The weekly concentrations for each 

compound for the Manchester, Cardiff and Hazelrigg sites are presented in 

Appendix 2. The mean annual £PAH (X of 15 compounds) concentrations

ranged from 59 in Cardiff (1992) to 166 ng n r 3 in London (1991). London and 

Manchester had the highest mean concentrations throughout the two years, 

followed by Stevenage and Cardiff. Stevenage, the smallest urban site, had a 

mean XPAH concentration greater than Cardiff; Cardiff is the only urban 

centre to be located near the coast. The data presented in Table 5.1 and 

described above refers to the summed vapour and particulate phases of each 

PAH compound. Comparisons with other urban data can be made only with 

those studies that have sampled both phases i.e. a solid adsorbent has been 

utilised to trap the vapour phase component. Numerous PAH studies have 

only sam pled the particulate phase (filter retained portion), neglecting the 

vapou r phase and underestim ating the total PAH loading in the 

atm osphere (Gordon and Bryan, 1973; Gordon, 1976; Harkov, et al., 1984; 

Colmsjo, et al., 1986; Bodzek et al., 1993). Tuominen et al. (1988) and Baek et 

al. (1992) have shown the importance of the vapour phase in contributing to 

the total PAH concentration in the air. Table 5.2 presents total (vapour and 

particulate) I P  AH concentrations reported from several urban areas on an 

international basis. Where possible individual compound concentrations 

have been reported. Comparison of the measurements reported in Table 5.2
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Table 
5.1. M

ean 
and 

range 
of PAH 

air concentrations 
(n

g/m
A3) at the 

four 
urban 

sites 
for 

1991 
and 

1992.



d 
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Table 
5.2 

Urban 
atm

ospheric 
PAH 

concentrations 
(n

g/m
A3) reported 

by 
various 

w
orkers 

(vapour and 
particulate 

phase).



with the PAH concentrations of this study (Table 5.1) should be carried out 

w ith great prudence, since they were performed according to different 

procedures and conditions of sample collection. Factors such as the season 

when sampling took place, meteorological conditions, time of day and the 

characteristics of the sampling site i.e. sampling height, will all affect PAH 

concentrations (Menichini, 1992). An important consideration is sampler 

location within the urban centre itself, since Thrane and Mikalsen (1981) 

found a decrease of a factor of ~0.3 - 0.5 in XPAH concentrations from 

ground level to a height of 25 m in Oslo, Norway. Furthermore the various 

analytical techniques employed will result in discrepancies betw een 

different sampling programmes. Nevertheless from Table 5.2 it is possible to 

conclude that urban atmospheres have mean XPAH concentrations in the

order of lO's-100's ng m-3. This is in agreement with concentrations found at 

the UK urban sites in this study.

On an individual compound basis the PAH loading in the atmosphere is 

dominated by the lighter three ring compounds, notably PHE and FLU (MW 

<200) for the urban sites presented in Table 5.1. This again is consistent with 

other studies of urban air [Table 5.2] (Tuominen et a l, 1988; Baek et a l, 1992). 

Apart from FLUO and PYR, all the other PAH compounds measured had 

mean concentrations an order of magnitude lower than FLU and PHE at 

each of the four urban sample sites. B[a]P, the most carcinogenic PAH

detected (IARC, 1987), ranged from ND-2.35 in Stevenage to 0.18-13.7 ng n r 3 

in Cardiff for the two sampling years. The German Federal Agency had
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proposed a guideline limit of 10 ng m-3 for the annual mean B[a]P 

concentration (Baek et a l, 1992). None of the urban sample sites in this 

study had an annual mean near this limit. Manchester had the highest

mean annual concentration (1991) of 1.82 ng m-3.

5.2.1 B[a]P in London air

London was probably the first major city where reliable measurements of 

PAHs in air were made, with some data reported prior to the infamous 

smogs of the mid-1950's. In 1952, Waller (1952) reported the measurement of 

3,4-benzopyrene (or (B[a]P) in 'town air' sampled in central London and 

elsew here, using fluorescence detection. He reported the m ean B[a]P 

concentration for air sampled at County Hall in 1947-1951 to be 4.6 jig/100

m 3 or 46 ng m-3.

Further m easurem ents by Commins and Ham pton (1976) through the 

1960's and 1970's elsewhere in central London led them to conclude that 

B[a]P concentrations had declined to "about one tenth" of Waller's values in 

25 years. Concentrations detected at St. Bartholomews Hospital, for example,

averaged 26 ng m-3 in 1962-63 and 5 ng m -3 in 1972-73. The TOMPS data in 

this study suggest this decline in B[a]P has continued still further - to an

average of 0.8 ng m -3 in 1991/92. The highest central London value

m easured during our study was 10.2 ng m -3 compared to 3300 ng m 3
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reported for ’foggy days' by Waller (1952). Clearly, even allowing for 

im provem ents in analytical techniques and the inevitable spatial 

differences between the sites used by Waller (1952), Commins and Hampton 

(1976) and this study, these data provide good evidence that air quality in 

London has improved considerably with respect to this particular aromatic 

hydrocarbon over the last 45 years or so - perhaps by two orders of 

magnitude.

Coal burning for domestic space heating was widely practiced in London up 

to the 1950s. These numerous diffuse and inefficient combustion sources 

w ere likely to have generated a much greater PAH burden to the 

atm osphere than the contemporary gas and electric domestic heating 

appliances which are used most extensively in modern homes. In contrast, 

this general trend in improved B[a]P concentrations in inner London has 

occurred over a time when vehicle use (with gasoline and diesel 

comsumption) has increased enormously in the UK as a whole.

5.3 Rural PAH concentrations

As a comparison to the four urban sites, rural air was sampled for PAHs, a 

site being established near Lancaster at Hazelrigg in NW England (see 

Chapter 3). Table 5.3 presents the mean and range of concentrations for 

individual compounds sampled during 1993. Data from other studies also in 

rural locations where both the particulate and vapour phases were sampled
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Table 5.3 PAH air concentrations (ng/m A3) at the rural location for 1993 and at rural lo 
from other studies. Mean concentrations (range).

This Study Lake District Birkenes Kosetice
PAH (Hazelrigg) NW England South Norway Czech Rep.

a b c
ACE 2.48 (0.07 -10.3) *5.63 (0.08-39.3) NR 0.99 (ND-1.80)
FLU 44.3 (1.46-195) if NR 2.13 (ND-5.20)
PHE 141 (2.91-686) 14.9 (2.30 -107) NR 2.35 (0.46-4.65)
ANTH 6.91 (ND -16.8) 1.61 (0.16-7.49) NR 0.42 (ND-0.64)
FLUO - 3.83 (0.38-23.4) NR 0.61 (ND-1.39)
FLUO/MPHE 6.26 (0.16-32.0) - NR -

PYR 4.98 (0.14 -15.5) 5.83 (0.26-62.5) NR 0.88 (ND-2.50)
BENZANTH 0.54 (ND - 2.42) +1.05 (0.04-6.16) NR -
CHRY 0.98 (ND - 8.41) + NR 1.47 (ND-2.33)
B[b]F 0.50 (0.05 - 2.99) 2.39 (0.10-16.9) NR ND
B[k]F - 0.51 (0.02-3.73) NR 0.47 (ND-4.70)
D[ac]A/B[k]F 0.41 (0.03 - 2.65) - NR -
B[a]P 0.40 (0.01-3.35) 2.98 (ND-32.2) NR 1.18 (ND-2.8)
B[ghi]P 0.53 (ND - 3.42) - NR -
Cor 0.17 (0.03 - 0.97) - NR -

IPAH 210(23.9-987) 39.3 (5.28-254) 20(7-40) 6.69 (0.72-10.1)

a Air samples taken over a year at Esthwaite water, Lake District (Gardner, 1993).
* co-elution for ACE/FLU 
t  co-elution for BENZANTH/CHRY
b Average of 10 samples, individual concentrations not reported (Thrane and Mikalsen 
c 10 samples taken at a background GEMS station, South Bohemia (Holoubek et al., 19! 
ND = not detected



are also included. Importantly, the mean annual XPAH concentration at the 

Lancaster rural site (1993) was higher than at any of the urban sites (1991 and 

1992). However on an individual compound basis, this was largely due to 

the concentrations of the lower molecular weight PAHs of FLU and PHE 

which had mean concentrations greatly exceeding the urban concentrations.

Figure 5.1 displays the mean individual rural PAH concentrations (1993) 

with the Manchester concentrations for 1992. It must be noted that the data 

was collected from two different years. However the sampling frequency and 

the num ber of samples collected for each year were the same for both sites. 

From Figure 5.1 the low molecular weight compounds of ACE through to 

ANTH have higher mean annual concentrations at the rural site than in 

Manchester. The two low molecular weight compounds of FLU and PHE 

dom inate the profile at both sites, being substantially higher in the rural 

atm osphere (by a factor of 3 and 4 respectively). The middle weight, four 

ring com pounds of PYR, BENZANTH and CHRY have similar mean 

concentrations at both sites and, from Tables 5.1 and 5.3, also display similar 

concentration ranges throughout the respective sampling years. The heavier 

compounds of B[b]F through to COR are significantly higher in Manchester 

air than in the rural air, ranging from a factor of 2 higher for B[b]F to a factor 

of 3 and 4 higher for B[ghi]P and COR respectively. Sources of these heavier 

com pounds are numerous in the urban environment. Motor vehicles are 

considered to account for the majority of contemporary PAH emissions in 

the urban environment (Baek et ul., 1992). Indeed, Wild and Jones (1995)
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Figure 5.1 Comparison of annual mean PAH concentrations for Manchester 
(1992)and the rural location (Hazelrigg) (1993).

200 -i

1 0 0 -

Rural
Manchester

■  Rural 
Q  Manchester
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estimated that vehicles had the second highest annual PAH emission to the 

UK environm ent after domestic coal combustion. With the decline of coal 

combustion in the urban environment following the implem entation of 

the Clean Air Acts in the 1950's (Boubel et al., 1994), traffic may therefore 

have the highest impact on PAH loading in the contem porary urban 

atmosphere.

The PHE and FLU concentrations measured at the rural location are higher 

than those reported at other rural sites presented in Table 5.3, including 

those reported by Gardner (1993) for a site in the Lake District. His data were 

similar to the Manchester concentrations reported in Table 5.1. In Gardner's 

Lake District study, samples were taken on the shore of Esthwaite Water, 

near to domestic sources where solid fuel combustion is used as the main 

form of residential heating i.e. coal and wood. The concentrations of the 

high molecular weight PAHs (B[k]F onwards) in the Esthwaite atmosphere 

w ere elevated compared to the other rural studies and more closely 

resemble urban concentrations detailed in Table 5.1. High molecular weight 

PAHs like B[b]F, B[a]P and B[ghi]P have been found at high concentrations 

where coal and wood combustion is predominant (Daisey et al., 1986).

Rural atmospheric PAH concentrations are therefore variable, temporally 

and spatially. Global background concentrations of PAHs have been 

established at more remote sites such as the Canadian Arctic (Patton et al., 

1991), Norwegian Arctic (Pacyna and Oehme, 1988) and over the Atlantic
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ocean (Marty et a l, 1984). Here the ambient atmospheres are less susceptible 

to localised sources, but may be influenced by more distant sources through 

long range atmospheric transport (Masclet et a l ,  1988; Patton et a l, 1991). 

Examples of PAH concentrations measured at remote sites are presented in 

Table 5.4. The selected studies have sampled both the vapour and particulate 

phases, the IP A H  concentrations being approxim ately an order of 

m agnitude lower than the rural concentrations reported in Table 5.3. PHE is 

again the dominant PAH having the highest concentrations at all four sites. 

The m ost remote site is the Canadian Arctic site at Alert on Ellesmere 

Island, where the PAH concentrations are markedly lower than the other 

three sites, indicating the reduction in atmospheric PAHs through long- 

range tran spo rt away from source areas. Differences betw een the 

ru ral/u rban  data will be discussed in more detail below.

5.4 Seasonal variations

Figure 5.2 displays the IPA H  concentrations (vapour and particulate) for 

M anchester and London over 1991 and 1992. For each year there are 26 

sample weeks (sampling for PAHs occurred at a frequency of every other 

week throughout the two year period, running consistently throughout 

each year - see Chapter 3). I P  AH concentrations did not vary significantly 

between seasons. There was statistically no significant difference in I P  AH 

levels between seasons in London (ANOVA P < 0.05; F = 1.2 at 3, 38 df). 

Seasons were classified by splitting a sample year into four quarters, three
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Table 5.4 PAH air concentrations (ng/m A3) at remote locations (vapour and 
particulate phase collected).

Coastal region Great Lakes Corsica Arctic
PAH Sweden USA Mediterranean Canada

a b c d
ACE NR NR NR NR
FLU NR NR 2.07 NR
PHE 0.74 1.91 335 0.08
ANTH 0.02 0.03 0.15 0.0008
FLUO 034 026 0.42 0.01
PYR 0.18 0.26 024 0.02
BENZANTH 0.03 0.01 0.16 0303
CHRY 0.11 0.18 0.08 0.01
B[b]F NR NR 0.12 0.03
B[k]F 0.11 NR 0.05 NR
B[a]P 0.14 0.01 0.02 0303
B[ghi]P 0.07 0.09 0.13 NR
Cor 0.09 NR 0.09 NR

IPA H 1.72 2.81 638 0376

a Low volume sample taken over 135 days (Broman et al., 1991) 
b Samples taken on Siskwit Island in Lake Superior, summer and winter 1983 
(McVeety and Hites, 1988).
c Fourteen 24h samples collected on a remote site in Corsica (Masclet et al., 1988) 
d 10 air samples taken between Feburary - April 1988.
Ellesmere Island (Patton et al., 1991).
NR = not reported.
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m onths representing each season i.e. December, January and February 

represented winter, while June, July and August were taken as summer. 

Reasons for there being little seasonal differences in XPAH concentrations 

are due to the low molecular weight compounds such as FLU and PHE 

which dominate the PAH profile and have high concentrations throughout 

the year.

Seasonal cycling can be observed for the higher molecular weight m ulti­

ringed PAH. Figure 5.3 presents the B[a]P and B[ghi]P concentrations for the 

London site through 1991 and 1992. Clearly, elevated concentrations can be 

observed during the colder winter months (weeks 1-5, 43-55 and 93-99), this 

phenom enon has been explained by the increased use of fuels for 

residential/space heating during this period (Santodonato et a l,  1981). The 

tem perature profile in Figures 5.2 and 5.3 effectively mark the winter and 

sum m er periods. Reduction in the proportion of high molecular weight 

PAHs during the summer has been attributed to several factors, including 

reduced fuel combustion for residential heating (Santodonato et a l,  1981) 

and greater photolytic and thermal decomposition of analytes in the warmer 

sum m er m onths (Nikolaou et a l , 1984). In contrast concentrations of the 

lower molecular weight compounds, such as PHE, tend to remain more 

consistent throughout the year. Figure 5.4 presents PHE concentrations in 

Cardiff air throughout 1991/92, this lack of temporal change in the urban 

atmosphere may be due to the ubiquity of this compound, particularly as it 

is released from many different sources at significant concentrations relative
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to other PAHs. (Daisey et al., 1986; Baek et al., 1992). Furtherm ore 

atm ospheric concentrations may be enhanced by re-volatilisation of 'old' 

previously deposited fractions. This phenomenon is discussed in more 

detail in Section 5.5.

5.5 Seasonal cycling in the rural atmosphere

Unlike the urban sites, seasonal cycling of the total XPAH concentrations at 

the rural location was apparent. However the XPAH was dominated by the 

low molecular weight compounds, more so than the urban PAH profile, 

and in particu lar by PHE. Seasonal cycling can be observed in the 

concentrations of PHE with higher concentrations in the warmer summer 

m onths as opposed to the winter. Figure 5.5 depicts the total PHE 

concentrations (vapour and particulate phases) throughout 1993. Summer is 

defined as sample weeks 29-39 and there was a statistically significant 

difference between the summer and winter mean concentrations (t-statistic 

= 20.1, Idf, P<0.05). Worthy of note is sample week 41 corresponding to Sept.

8th - 15th. The XPAH concentration for this sample week was 988 ng m"3, 

with PHE comprising some 70 % of this figure, with a concentration of 685

ng n r 3. For this one sample week the PHE concentration was approximately 

a factor of 3 higher than the sum m er mean for this com pound. 

Furtherm ore the concentrations of the other lighter PAHs (ACE 

FLUO/M PHE) were elevated above their summer mean values for this 

week. Discussion of episodic events like this one are are detailed in Chapter
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Figure 5.5 PHE concentrations in rural air throughout 1993 (Hazelrigg site).
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6, where meterological data is examined to explain anomalies in the data 

sets from the different sites.

Seasonal cycling at the rural site was also observed for other low molecular 

weight compounds; FLU showed a similarity to PHE with higher summer 

concentrations. Even the four ringed PYR showed a marked increase during 

the sum m er months. The higher molecular weight PAHs (MW >250) 

showed opposite trends, being similar to the urban sites with concentrations 

being higher during the cooler winter months. Figure 5.6 presents B[b]F and 

B[a]P concentrations at the rural site throughout 1993. Weeks 1, 3, 5, 47, 49, 

and  51 occurred during  the W inter and A utum n periods w hen 

concentrations were approximately a factor of 3 higher than in the summer. 

Interestingly, similarities can be observed between the seasonal trends 

exhibited by com pounds from two different rural locations. Table 5.5 

presents those quarters of the year when the highest and lowest mean 

concentrations were observed for each compound, from both this study and 

the Esthwaite Water study in the Lake District (Gardner, 1993).

At the Esthwaite site the presence of local sources (wood/coal combustion) 

during the winter quarter has resulted in autumn having the lowest mean 

concentrations for several of the low molecular weight compounds, unlike 

Hazelrigg which has the lowest concentrations of these compounds in the 

winter. ANTH is the only low molecular weight compound (MW<200) to 

behave like the heavier compounds and have elevated concentrations
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during the winter period at both sites. Why ANTH shows this pattern is 

unclear. ANTH is a tricyclic PAH with a molecular weight and vapour 

pressure very similar to PHE. However, in comparison its concentration is 

greatly reduced both in the urban and rural atmospheres.

Table 5.5 Summary of seasonal trends exhibited by compounds.

PAH Esthwaite Hazelrigg (Rural site)

H ighest Lowest H ighest Lowest
Quarter Quarter Quarter Quarter

ACE/FLU Summer Autumn Summer W inter

PHE Summer Autumn Summer W inter

ANTH W inter Autumn Winter Summer

FLUO/MPHE Summer Autumn Summer Winter

PYR Summer Autumn Summer W inter

BENZANTH Winter Autumn Winter Summer

CHRY W inter Autumn Winter Summer

B[b]F Winter Autumn Winter Summer

D[ac]A/B[k]F W inter Autumn Winter Summer

B[a]P W inter Spring Winter Summer

B[ghi]P NR NR Winter Summer

COR NR NR Winter Summer

NR=Not reported.

The am ount of ANTH released annually from two major sources, vehicle 

emissions and domestic coal burning, is similar to the releases of the 

heav ier m uti-ringed  PAHs (Wild and Jones, 1995). Furtherm ore, 

concentration ratios of ANTH with benz[e]pyrene (B[e]P) [a 5 ringed PAH], 

determ ined for several sources were similar to the ratios of B[e]P with the 

heavier multiringed compounds (Daisey 6t qL, 1986). For example, the ratio
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of ANTH/B[e]P for residential coal combustion is ~ 3, for B[ghi]P/B[e]P -  2.5 

and yet for PHE/B[e]P -26. In this respect ANTH is produced in 

approxim ately the same quantity as the heavier PAH for this source. 

Therefore winter time combustion of coal and wood in rural areas may lead 

to a rise in ANTH concentrations, in line with the heavier PAH. Perhaps 

more importantly is evidence that points to the susceptibility of ANTH to 

photolytic decom position. Sanders et al. (1993) using natural light 

conditions investigated the photodecomposition of selected PAHs in 

aqueous solution. Measured half-lives varied by a factor of 25, from < 2 h for 

ANTH to 50 h for FLUO. After only 6 h only 1 % of the original 

concentration of ANTH was present in solution compared to 79 % of PHE. 

A lthough these half-lives are only applicable to an aqueous system it is 

postulated that decomposition would be similar in the atmosphere. During 

the summer months, when the largest number of daylight hours occur, it is 

likely that ANTH would be most susceptible to photolytic degradation, 

resulting in reduced atmospheric concentrations compared to the winter.

Both rural sites have concentration ranges similar to, or greater than, the 

M anchester concentrations, for the low molecular weight PAHs (ACE- 

FLUO). In particular the FLU and PHE concentrations at the rural 

(Hazelrigg) site greatly exceed the urban concentrations as mentioned 

earlier. W hy are some of the low molecular weight PAHs found at higher 

concentrations at the rural site than at the urban locations of this study? 

There are several possible explanations which are presented as follows.■
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5.5.1 Local sources

The location of the rural sample site (Hazelrigg - Lancaster University Field 

Station) is described in Chapter 3. Briefly the sampler was positioned in an 

in a pasture field, approximately 20 m from the nearest building, a small 

wooden meteorological station. A potential source is a major motorway 

(M6) running in a north-south direction situated 0.5 km west of the sample 

site. Vehicular traffic on motorways and major roads are significant PAH 

sources (Tuominen et al., 1988; Masclet et al., 1986). However, Rasheed 

(1989) examined PAH deposition along a transect, perpendicular to each side 

of the M6 motorway, and found that within 50 meters of the hardshoulder 

the depositional flux of the lighter PAHs, including PHE, was similar to 

background levels. His background site was at a location far removed from 

the m otorway (15 km to the east) and 1 km from the nearest metalled road.

Rasheed measured the background flux of PHE as ~0.2 pg m-2 d a y 1. At the 

rural location, used here, an annual mean flux for PHE was established at

-0.6 pg m-2 d a y 1 (PAH depositional fluxes are detailed in Chapter 8). This is 

certainly higher than Rasheed's value indicating that the m otorway may 

have some effect on the ambient atmosphere at Hazelrigg. However the M6 

is 50 m lower than the sampler location in this study and occupies a 

m odified channel which appears to have the effect of directing the air 

movement along a north/south axis away from this sample site.
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5.5.2 Sea and sediments

The aspect of the field station is of a westerly nature, overlooking the coastal 

area of Morecambe Bay with its substantial area of tidal sands, sediments 

and estuarine mudflats. PAHs have been measured extensively in coastal 

sediments due to their accumulation within this enviroment (Hites et al., 

1977; Hites et al, 1980, Smith et al, 1985). Indeed both coastal and freshwater 

sedim ents are considered to be significant sinks for these compounds, 

derived from surface runoff and atmospheric deposition. Accumulation 

over time has resulted in sediment profiles being examined to chronicle 

periods of heaviest contamination and determine source type (Wickstrom 

and Tolonen, 1986; Sanders et al, 1993). Recent work suggests that PAHs can 

be released from sediments into the water column according to their 

individual solubility and octanol-water partitioning constants ( K o w )  A study 

by H elm stetter and Alden (1994) reported that the lighter compounds of 

PHE, PYR and FLUO showed the greatest efflux from the sediment (in that 

order), hence displaying the highest water concentrations upon equilibrium. 

Even at a remote ocean site (east Atlantic) Marty et al. (1984) found that 

atmospheric vapour phase PAHs were an order of magnitude higher than 

particulate bound PAH. Indeed, the vapour phase XPAH was reported as 18

ng m -3 with PHE dominating the profile. This concentration is higher than 

the values reported from remote terrestrial sites in Table 5.4, indicating the 

importance of the ocean as a source of PAH to the surrounding atmosphere. 

It is therefore reasonable to regard the Morecambe Bay area as a potential
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source of the lighter, more volatile PAHs. Law (1981) reported total 

hydrocarbon concentrations measured around the coast of the British Isles 

were higher in samples containing finer sediment types and in samples 

from inshore areas, particularly estuaries and bays.

The tidal area of the river Lune estuary and the southern part of Morecambe

Bay (directly west from Hazelrigg) is approximately 85 km2 (OS Landranger 

m ap no. 102). Assuming the same level of PAH contamination in this 

sediment, with that measured in the Chesapeake Bay area of the eastern 

USA, then the reported flux of PHE from the sediment into the water 

column could be applied to the Morecambe Bay area. The sediment - water

flux for PHE, measured in Chesapeake Bay, was reported as 229 pg m -2 d_1

(Helmstetter and Alden, 1994). Therefore, over an area of 85 km 2 this would 

result in some 20 kg of PHE being released into the water each day. In the 

G reat Lakes region several studies have concluded that the Lakes are 

significant sources of PCBs to the surrounding atmosphere, one of the 

prim ary loss mechanisms being volatilisation from the water surface into 

the atm osphere. PHE which has a lower molecular weight lower and a 

higher vapour pressure than the lightest PCBs, is assumed here to undergo a 

similar process once released into the water column. Assuming the tidal 

area of Morecambe Bay to be a source of PAHs to the atmosphere then a 

significant fraction of the 20 kg released into the water column may be 

volatilised to the atmosphere, given PHE's volatility and the shallow 

estuarine water. Estimating volatilisation fluxes for PAHs is extremely
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difficult. Baker and Eisenreich (1990) could not calculate PAH fluxes across 

the air-water interface of Lake Superior due to uncertainties in PAH Henry's 

Law constants. Even though PHE has a lower molecular weight and a higher 

vapour pressure than the lightest PCBs, its Henry's Law constant is lower, 

indicating its increased vapour phase resistance and tendency to the liquid 

phase, relative to the PCBs. Therefore the volatilisation of PHE from the 

water surface is unlikely to be as great as that calculated for the PCBs in the 

Great Lakes. However, if only 1 % of the 20 kg released daily into the water 

colum n was to volatilise from the surface into the first 100 m of the 

atm osphere, then this would result in a coresponding atm ospheric

concentration of 24 ng m-3. The predominant westerly wind at the Hazelrigg 

site could explain the observed elevated PHE concentrations.

5.5.3 Biogenic production

The biogenic production of PAHs is a poorly studied area, but there is 

evidence from some early studies for plant biosynthesis. Bomeff et al. (1968, 

cited in Sims and Overcash, 1983) demonstrated the biosynthesis of seven

PAHs by algal cells using 14C-acetate as a sole carbon source, PHE was not 

reported in this study, the lightest compound to be detected was FLUO. For 

higher plants, synthesis of PAHs is questionable as Grimmer and Duvel 

(1970) demonstrated the absence of several high molecular weight PAHs in 

plants grown in chambers with filtered air. An earlier study reported that 

the PAH content in beech, oak and tobacco leaves increased as they matured
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from  green  to yellow  (Graf and Diehl, 1966). Edw ards (1983) rev iew ing  PAHs 

in  th e  te rre s tr ia l en v iro n m en t n o ted  experim en ts w h ich  d e m o n s tra ted  

selected  PA H  uptake  by both  leaves and roots and  subsequent translocation 

to d iffe ren t p a rts  of the p lan t. H ow ever, concen tra tions in  p la n ts  are 

g en era lly  less than  those in soil w here the p lan t is grow ing. N evertheless, 

p la n t p ro d u c tio n  m ay be a source of PA H  to the a tm osphere  b u t it seem s 

u n lik e ly  th a t it can be considered  a significant source in  com parison  to 

an th ro p o g en ic  p roduction .

5.5.4 Oufgassing from vegetation and soil

T he a b u n d a n c e  of FLU, PH E an d  A N TH  in  the  a ir of th e  ru ra l site 

(H aze lrig g ) m ay  be due  to the re-vo la tilisa tion  of p rev io u s ly  d ep o sited  

c o n cen tra tio n s  off p la n t surfaces an d  from  the soil, p a rtic u la rly  in  the 

sum m er. The observed  seasonal cycling of increased concentrations d u rin g  

th e  su m m er p e rio d  invokes tem peratu re  as the contro lling  factor fo r the 

v o la ti l is a tio n  of th ese  lig h te r  co m p o u n d s. P la n t su rfaces  h av e  been  

c o n sid e red  as a significant sink for o rganochlorine com pounds an d  have 

b e e n  u tilis e d  as biomonitors for am bien t a tm ospheric  co n cen tra tio n s  of 

ch lo rin a ted  pesticides (Calamari et al., 1991; Strachan et al, 1994) an d  PCBs 

(Umlauf et al, 1994). Reiderer (1990) used  a fugacity  app roach  to  m odel the 

v a rio u s  co m p artm en ts  of a leaf, and  w ith  experim en tal d a ta  fo u n d  th a t 

>90%' of the  exam ined  organochlorines w ere associated  w ith  the w axy  

cuticle on  the leaf surface.
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Recent work has shown that vegetation also plays an important role in the 

partitioning of PAHs from the atmosphere (Simonich and Hites, 1994). The 

PA H /vegetation  partitioning process is primarily dependent upon the 

a tm ospheric  vapour phase PAH concentration and the am bient 

tem perature. At low temperatures (autumn and winter) vapour phase 

PAHs partition into vegetation, and at high temperatures (summer) some 

PAH volatilise and return to the atmosphere. The lighter more volatile 

com pounds of FLU and PHE were found to have lower heats of 

vapourisation and lower vegetation binding energies than the heavier 

m ulti-ringed PAH, indicating their potential for re-volatilisation. Nakajima 

et al. (1995) found concentrations of atmospheric vapour phase PYR (4- 

ringed  PAH) to decrease during the autum n and w inter w hile 

concen tra tions increased in the leaves of azalea (Rhododendron  

oomurasaki). During the warmer summer months the reverse was the case, 

w ith increased atmospheric vapour phase concentrations and a decline in 

leaf concentrations. Furthermore, a strong correlation between log vapour- 

PYR/leaf-PYR and 1/T  indicate that most of the PYR present in the azalea 

leaves was from vapour adsorption. For the high molecular weight PAHs 

such as B[a]P, primarily associated with suspended particulate material in 

the atmosphere, uptake by plant leaves is considered to be by attachment of 

this material to the outside of the leaf (Simonich and Hites, 1994; Nakajima 

et a l,  1995). Permeation of the leaf cuticle by the PAH from the attached 

particulate matter may then take place (Nakajima et al, 1995).
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At the Hazelrigg rural site the predominant low molecular weight PAHs 

(including PYR) showed seasonal cycling with higher concentrations during 

the sum m er months and reduced concentrations in the winter. A possible 

addition to the volatilisation off plant surfaces is the out-gassing of the 

lighter com pounds from the soil. The soil compartment has become a 

significant long term sink for contaminants which come into contact with it 

i.e. from aerial deposition (Jones, 1991). Indeed, budget calculations for the 

UK show that surface soils represent the most substantial 'reservoir' of 

PAHs in the environment (Wild and Jones, 1995) with the low molecular 

w eight PAHs such as PHE being the most abundant. Furthermore, the 

lighter com pounds have higher aqueous solubilities (Mackay et al., 1992) 

than the heavier compounds resulting in an increased potential for 

volatilisation from soil water. This process has been identified as a possible 

loss mechanism from the soil by Jones et al. (1989) and Wild et al. (1990). 

Therefore volatilisation from soil may add to the atmospheric loading of the 

lighter compounds observed during the warmer summer months. Certainly 

the sampler at Hazelrigg was positioned at ground level rather than at roof 

top height (-25 m), hence any effect of volatilisation from the soil would be 

exaggerated in these air samples.

Vegetation - air and soil - air exchange will be common to all rural locations, 

and is not peculiar to the rural site in this study. The closest study site to 

Hazelrigg is Esthwaite Water in the Lake District, where, apart from FLU 

and PHE, the other tri- and tetracyclic PAHs have similar concentration
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ranges (Table 5.3). Therefore at Hazelrigg additional sources such as the 

volatilisation of the lighter PAHs from the Morceambe Bay area must play 

an im portant role in influencing the atmospheric concentrations at this site.

It is possible that some of the processes described above will also influence 

the PHE loading (and other low MW PAH) in the urban atmosphere as well. 

However the annual cycling depicted at the rural location could not be 

observed at any of the urban sites for this compound. This is probably due to 

the continual release of PHE from the numerous urban sources resulting in 

air concentrations remaining consistent throughout the year (see Figure 5.4 - 

PHE concentrations in Cardiff air).

5.6 Vapour-particle partitioning

PAHs may be released from combined sources either in the vapour phase or 

associated with particles (particulate phase) and can undergo rapid phase 

transfers once discharged to the atmosphere. PAH are predom inantly 

generated in the vapour phase and are then adsorbed onto existing particles 

through condensation upon cooling of the emission (Van Vaeck et a l,  1984). 

The vapour pressures of the 15 PAHs examined in this study range from 6 x

10-1 - 2xl0-10 Pa (25 °C), an enormous variation resulting in m arked 

differences in the distribution of compounds between the vapour phase and 

the atm ospheric particulate. This vapour-particle partitioning  for a 

particular compound will ultimately affect it s atmospheric removal rate,
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transport and atmospheric half life (Behmyer and Hites, 1988; Kwok et a l ,  

1994). For example, those compounds predom inantly associated with 

particulate matter will undergo faster deposition than the compounds in the 

vapour phase. Conversely vapour phase com pounds m ay be more 

susceptible to photolytic and chemical degradation. Indeed Kwok et a l  (1994) 

from laboratory experiments, determined that the atmospheric lifetime of 

vapour phase PHE is < 1 day, reaction’s with the OH and NO3 radicals being 

the dom inan t loss mechanism. Figures 5.7a and 5.7b d isplay the 

chromatograms of a filter (particulate) and PUF (vapour) respectively for an 

air sample taken in Manchester. Clearly the later eluting high molecular 

weight PAHs are predominant in the particulate, while the earlier eluting, 

lighter compounds are predominant in the vapour phase. Partitioning of 

the PA H s is therefore strongly influenced by the com pound 's 

physicochemical properties.

5.6.1 Phase distribution

The contribution to the mean I P  AH concentration by the vapour phase 

component exceeded the particulate phase contribution by a factor of 5.5 for 

Manchester and Cardiff. Taking one of the urban sites Figure 5.8 illustrates 

the dominance of the vapour phase component over the particulate phase 

in Manchester air throughout 1991 and 1992. On an individual compound 

basis the lighter PAH such as ACE, FLU and PHE (the most predominant 

PAH) exist almost exclusively in the vapour phase. Broddin et a l,  (1980)
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reported that a considerable fraction of the more volatile PAH escape 

particle incorporation after their production and exist predominantly in the 

atmospheric vapour phase at ambient temperatures. Conversely the five-, 

six- and seven-ring PAHs (MW 250-300) were primarily associated with the 

particulate on the filter (on an annual basis >70% of B[a]P, D[ac]A, B[k]F, 

B[ghi]P and COR were determined on the particulate).

Table 5.6 displays the percentage of each PAH present in the vapour and 

particulate phases during the winter of 1991/92 and the summer of 1992 for 

both Manchester and Cardiff. Similarly the phase distribution of the PAHs is 

presented for the winter and summer seasons at the rural site for 1993. 

London and Stevenage were excluded as the filters and PUF plugs of each air 

sample were extracted together resulting in the loss of phase separation. As 

expected, the phase distribution follows a similar pattern for the three sites. 

Clearly the lighter compounds ACE, FLU, PHE and ANTH (MW <200) 

predom inate in the vapour phase of the ambient atmospheres, changes in 

the phase distribution being minimal, even with a change in season. The 

higher molecular weight compounds of B[b]F to COR (MW 250-300) show 

the opposite trend being primarily associated with the particulate phase, 

particu larly  during the w inter m onths when concentrations of these 

compounds were at their highest. During the summer, however, there is a 

significant vapour phase component for these compounds with ~10 % of 

COR (the heaviest compound) residing in this phase at the urban sites and 

25 % at the rural site. The four-ring PAHs (MW 200-250) PYR, BENZANTH
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and CHRY showed the largest deviations between winter and summer. For 

example, at the urban sites approximately 17 % of BENZANTH was present 

in the vapour phase during the winter period while ~ 74 % resided in the 

vapour phase during the summer. This represents a factor of 4 increase in 

the vapour phase component from winter to summer. Baek et al. (1992) 

report a similar increase in London air with a factor of 4.5 increase for 

vapour phase BENZANTH from winter to summer. At the rural site the 

vapour phase fraction of ACE to BENZANTH is almost 100 % during the 

summer, likewise the vapour phase fraction of these compounds is higher 

in the w inter at Hazelrigg than in M anchester and Cardiff. In the 

atm opshere at Hazelrigg the total suspended particulate concentrations 

(TSP) are, on average, lower than those in Manchester. Hence, this may 

have lead to a reduced surface area for vapour phase adsorption, resulting in 

low ered particulate concentrations in the rural atmosphere. Table 5.7

presents the monthly TSP and temperature (°C) measured at the Manchester 

and Hazelrigg sites.

5.6.2 Effects of temperature and TSP

If a compound's volatility largely determines it's distribution between the 

two phases then changes in temperature will have a marked effect on a 

com pound's partitioning. Temporal variations in the vapour-particle 

partitioning can be observed in Figures 5.9a + b which display the vapour 

and particulate concentrations of PYR over an annual time scale in the
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Table 5.7 Total suspended particulate concentrations (jig m-3) and temperature (°C) at the 

Manchester (1992) and Hazelrigg sites (1993). *

Month T°C TSP

Manchester Hazelrigg Manchester Hazel

January 4 2 103 24

Feburary 7 5 45 49

March 9 5 40 47

A pril 11 9 39 40

May 12 10 42 45

June 15 13 33 27

July 20 18 41 23

August 14 20 35 24

September 11 14 47 13

October 10 9 42 21

November 7 6 32 22

December 6 3 60 20

* TSP and temperature data for each sample week are presented in Appendix 1 for each site.



Figure 5.9a Vapour and particulate PYR cones, in Manchester air (1991).
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Figure 5.9b Vapour and particulate PYR cones, in rural air (Hazelrigg) (1993).
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ambient atmospheres of Manchester (1991) and Hazelrigg (1993) repectively. 

Clearly as the temperature decreases towards winter the concentration on 

the particulate increases at both sites. The seasonal cycling of the vapour 

phase concentrations, represented by a summer maxima at Hazelrigg, is 

m asked at the Manchester site due to the localised urban increase in PAH 

emissions during the winter months (see Section 5.4). Temperature appears 

to be the controlling factor for the partitioning of PYR. For example, the

mean winter TSP concentration in Manchester (67 pg m -3) is approximately

double that found at Hazelrigg (32 pg n r 3) [Table 5.7] yet the vapour-particle 

ratios for PYR are the same (~3) at both sites. This indicates that TSP is 

playing a minor role in the partitioning of PYR. It is assumed that the 

surface area available for sorption will be greater in the Manchester 

atmosphere than in the rural atmosphere.

Correlations m ight be expected between ambient TSP loading and the 

concentrations of the higher molecular weight PAHs such as B[a]P, B[ghi]P 

and COR. TSP concentrations plotted against B[a]P and particulate-E(B[a]P, 

B[ghi]P, COR) concentrations for the Manchester and Cardiff data showed 

only weak correlations of r = 0.37 and 0.30 (P < 0.05), respectively. This was 

consistent with the work of Harkov et al. (1984) and Steinmetzer et al. (1984), 

who found no correlation between filter-collected PAH and TSP. Reasons 

for this weak correlation are probably due to the complex nature of urban 

aerosol. Measurement of TSP does not consider particulate composition or 

distribution of particle size. Size fractionation experiments (Katz and Chan,
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1980; H anda et al., 1980) have revealed that > 90% of particulate PAHs are 

associated with particles of diameter <10 |im. Furthermore, Behymer and 

Hites (1988) have shown that particulate bound PAH have a longer 

atmospheric residence time on particle substrates that are black or grey in 

colour i.e. they help reduce photolytic degradation of bound PAH, unlike 

lighter coloured particles. This association of the higher molecular weight 

PAHs with the smaller size particles has implications for human health. 

H anda et al. (1980) found that 94 % of the particulate-bound fraction of 

atmospheric B[a]P was associated with the particulate size range 0.43-2.10 

pm, which has the ability to be transported deep within the bronchial region 

of the lungs (QUARG, 1993). B[a]P has the highest carcinogenic loading out 

of the 15 PAHs measured in this study (IARC, 1987).

Changes with season in the phase distribution of PAHs invokes compound 

vapour pressure and hence temperature as the controlling factor. Indeed, 

Yamasaki et al., (1982) and Pankow (1991) found high degrees of correlation 

(r = 0.70-0.90) between temperature and the phase distribution of individual 

PAHs. Separate vapour and particle phase measurements of PAHs in the 

M anchester air over an annual time scale allowed correlations to be 

determ ined between vapour/particle (V/P) ratios and tem perature for a 

particu lar com pound. V /P  ratios or partition coefficients (Kp) were 

essentially adsorbent/filter (A/F) ratios of the sampling equipment and are 

expressed in the form (F/TSP)/A as described in Chapter 2 section 2.2.3. A

and F are the adsorbent and filter retained PAH concentrations (ng n r 3)
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respectively and TSP is the total suspended particle concentration (pg n r 3). 

The use of partitioning coefficients provides some insight into the 

behaviour of PAHs in the atmosphere and allows the prediction of phase 

distribution at ambient temperatures for a particular compound. Kp is 

related to the average sampling tem perature (T, kelvin) through log 

[(F/TSP)/A] = m /T  + b. The units of (F/TSP)/A are (ng of PAH per pg of

particle) /  (ng of PAH per m3 of air). By plotting log [(F/TSP)/A] vs. 1/T  the 

effects of temperature can be observed on the partitioning of a compound 

(Yamasaki et a l, 1982; Pankow, 1987). The heat of desorption can be derived 

from the slope of the line m, where m = Hd/2.303R - T a m b / 4 . 6 0 6  (see 

equation 2.5 (Chapter 2)). Plots of log [(F/TSP)/A] vs. 1/T  for PHE and B[a]P 

sam pled in the Manchester and Hazelrigg atmospheres are presented in 

Figure 5.10a and 5.10b respectively. Table 5.8 presents the constants m and b 

along w ith the correlation coefficients (r) and the heats of desorption 

calculated for PHE and B[a]P at both sites.

The partition co-efficient of B[a]P is over an order of magnitude higher than 

that of PHE, explaining it's predominance in the particulate phase. Likewise 

the energy required to desorb B[a]P off the particulate surface in the urban

atmosphere (88.6 KJ mol-1) is substantially higher than that for PHE (58.1 KJ

m ol-1). Again in the rural atmosphere (Hazelrigg) the heat of desorption for 

B[a]P is greater (96.4) than that for PHE. These Kp and Hd values derived 

from the sampling data in Manchester air are similar to the values obtained
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Figure 5.10b Plots of log (F/TSP)/A vs reciprocal temperature for B[a]P at the
Manchester and Hazelrigg sites.
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Table 5.8 Values derived for PHE and B[a]P sampled in Manchester 1992 and Hazelrigg 1993

PAH m b r Kp(20°C) Hd (KJ m ol'1)

Manchester

PHE 5787 -24.2 0.69 4E-5 58.1

B[a]P 8618 -31.6 0.49 6E-3 88.6

H azelrigg

PHE 6120 -21.5 0.68 4E-5 63.8

B[a]P 8856 -35.2 0.61 2E-4 96.4

Constants m and b and r derived from Figs. 5.10a and b, for [F/TSP/ A] = m /T  + b
where m  and b are constants relating to the thermodynamic properties of the compound in questi

m = slope of the line 
b = the Y intercept, 
r = correlation coefficient.
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by Yamasaki et al. (1982) and Krieger and Hites (1994), who took air samples 

in the cities of Osaka (Japan) and Indianapolis (USA) respectively. Yamasaki

et a l  (1982) derived Hd for PHE and B[a]P as 80.2 and 103 KJ m oH , 

respectively, while Krieger and Hites (1994) using a low-volume diffusion 

denuder derived Hd for PHE as 75 and B[a]P as 96. The Hazelrigg Hd values 

fall within the same range of the urban values reported here. Indeed the Kp 

values presented in Table 5.8 are very similar between the Manchester and 

H azelrigg sites indicating that the partitioning behaviour for both 

compounds is the same for the urban and rural atmospheres. If particulate 

differences occur between the two sites then the effect on partitioning is 

negligible, certainly the TSP concentrations are lower in the rural 

atmosphere (see Table 5.7) with - presumably - a reduced surface area for 

sorption compared to the urban site. For PHE, which has markedly higher 

concentrations in the Hazelrigg atmosphere, the partitioning behaviour 

betw een the two sites for this compound is similar, indicating that 

tem perature rather than TSP is the controlling factor. B[a]P however does 

show a difference, with Kp being greater at the Manchester site. As B[a]P is 

m ainly associated with the particulate, changes in TSP concentration may 

have a significant effect on the partitioning behaviour. In this study the 

correlations between log Kp and temperature for PHE and B[a]P are weaker

than those of Yamasaki et al. (1982) who reported correlation coefficients of r 

= 0.88 and 0.83 for PHE and B[a]P respectively. Samples in Osaka were 

collected over a 24 h period instead of seven days like the Manchester and 

Hazelrigg samples. Temperature fluctuations over this 24 h period were far
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less pronounced, resulting in reduced sampling artefacts that will affect the 

vapour-particle distribution of the compounds collected on the filter. 

Bidleman et al. (1986) stressed that the Kp partition coefficients are between 

the vapours and urban air particulate matter on the filter, not airborne 

particles. Furthermore discrepancies between Hd values derived from 

different sampling locations may be due to differences in particle surface 

characteristics (Krieger and Hites, 1994) and the relative humidity (Lee and 

Tsay, 1994), peculiar to that site.

5.7 PAH profile analysis

The PAH content of a sample of urban air can be considered to be a 

composite of the various local sources, combined with the contribution 

from outside that area. It is therefore possible that the pattern or profile of 

the individual compounds making up the XPAH will differ from one urban 

site to another, or from an urban location to a rural one. Certainly air 

samples taken at different locations within one city have shown PAHs to 

vary both qualitatively and quantitatively. For example, Masclet et al. (1986) 

took samples from various locations around Paris; sample sites included a 

car park, a diesel vehicle garage, a highway at road level and ambient air at 

roof top height. Although only particulate phase PAHs were sampled, a 

difference in PAH profile was recorded from site to site, w ith an 

underground carpark and a diesel vehicle garage having the highest XPAH 

concentrations. D ivergent profiles of PAH, from different sam pling
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locations within a city have also been demonstrated by Greenberg et al. 

(1985) and Colmsjo et a l (1986).

Comparisons between cities, therefore, have to be between samples taken in 

ambient well mixed air, away from point sources such as street canyons or 

stack plumes, which have their own characteristic PAH profile. Air sampled 

at roof level is sufficient to obtain well mixed air that has a PAH profile 

reflecting a composite of the emission patterns of all the urban sources (Baek 

et a l, 1992).

Brom an et al. (1991) have shown that PAHs can change in profile 

composition through atmospheric transport from an urban centre to a 

rem ote coastal location. It is therefore im portant to determine profile 

differences between sites to establish possible source differences, particularly 

between the rural and urban atmospheres. Subtle differences in PAH profile 

can be distinguished between sample sites by using a statistical pattern 

recognition technique. Principal component analysis (PCA), a multivariate 

technique, has been successfully applied to distinguish profile differences 

between air samples for a variety of SOCs, including PCDD/Fs (Eitzer and 

Hites, 1989; Tysklind et al., 1993) and PAHs (Broman et al. 1991; Baek et al.,

1992). PCA is particularly useful in handling large data sets by reducing the 

num ber of variables between data sets to a few factors or components. A 

description of PCA is presented in Appendix 2.



In brief PCA is a statistical technique used to identify relationships between 

groups of variables i.e PAH compounds. Variables that are interrelated 

amongst themselves are grouped into single composite variables or factors 

so that each factor (or principal component) is formed of a num ber of 

variables that are highly correlated amongst each other, whilst having low 

correlations with the variables grouped in other factors. This technique has 

the overall effect of simplifying the data to allow for easier interpretation, 

whilst retaining most of the information from the original data set (Munro 

et al., 1986; Daly et a l,  1995). PCA is a very useful technique for the analysis 

of environmental data sets where there are a number of measured variables, 

as in the case with atmospheric PAH concentrations.

PCA in this case was used to determine any pattern distribution differences 

that exist betw een the individual PAH com pounds present in the 

atmosphere of the different sites. In using PCA it was necessary to match 

sample weeks from the same season, otherwise seasonal profile differences 

w ould be highlighted rather than spatial differences. For each compound 

the total concentration (vapour plus particulate) was considered, seven 

sample weeks were selected from the summer quarter of 1992 for each of the 

urban sites and the summer quarter of 1993 for the rural site. Stevenage was 

excluded as sampling ceased at this site in April 1992. PCA has therefore 

been used to look for differences/similarities in the PAH summer profile 

between the urban sites and between the urban sites and the rural location.
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In Appendix 2 the stepwise procedure for the application of PCA is detailed. 

Initially the individual PAH concentrations for the selected sample weeks 

from the various sites were standardised to ensure equal weights were given 

to all the compounds. This ensured that concentration differences between 

sites were not depicted in the final results. Although fifteen PAHs were 

analysed only twelve PAH variables were included in the PCA as two pairs 

co-eluted (FLUO/MPHE and D[ac]A/B[k]F) and hence were classed together, 

while COR was excluded as it was not reported at the London site. In using 

PCA the number of variables was reduced from 12 to 3 or 4 composite factors 

allowing for easier interpretation of the pattern differences that might exist 

from summer air samples between the different sampling locations. Hence 

an unrotated factor matrix was determined (see Appendix 2) to obtain the 

number of factors to be included in the model. All data handling was carried 

out on statistical software SYSTAT version 5.0.

Table 5.9 presents the eigenvalues and variance accounted for (VAF), 

calculated from the unrotated factor matrix of the twelve variables. An 

eigenvalue determines the total amount of variance which is explained by a 

factor and is calculated by adding the squared loadings contained in a single 

column in the matrix. The summed value of all the eigenvalues will equal 

the num ber of factors presented. The mean of the squared loadings in a 

column is obtained by dividing the eigenvalue by the number of items in 

that column. This mean value represents the variance accounted for by a 

factor (% VAF). The optimum number of factors are those that account for
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at least 5 % of the variance, and which have an eigenvalue greater than one 

(Munro et al., 1986).

Table 5.9. Characteristics of the factors obtained from the unrotated factor matrix

Factor Eigenvalue % VAF Communality

1 7.96 66.3 66.3

2 1.89 15.7 82.0

3 1.14 9.4 91.4

4 0.43 3.6 95.0

5 0.32 2.6 97.6

6 0.15 1.3 98.9

7 0.07 0.6 99.5

8 0.02 0.3 99.8

9 0.01 0.1 99.9

10 0.01 0.1 100

11 0.00 0.0 100

12 0.00 0.0 100

Therefore from Table 5.9 the optimum number of factors is 3. These three 

factors explain 91 % of the total variance in the data set. Typically, when 

using PCA on 15-20 air quality variables, 3 or 4 principal components or 

factors can explain most of the variability in the entire data set (Wolff et a l,  

1986). The final column in Table 5.9 is the cum ulative % VAF or 

communality, determined by adding up the % VAF values for each factor.

The matrix of the three chosen factors was then rotated using VARIMAX 

rotation , this is explained in Appendix 2 but in effect produces a 

m athem atically equivalent matrix with a simpler structure, therefore 

allowing for easier interpretation of the data. The resulting factor loading
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matrix shows the correlations between individual PAHs and a parUcular 

factor, so that the role of a particular PAH in certain patterns of 

interdependence can be investigated. It is important to note that rotation 

does not affect the goodness of fit of the model, because although the factor 

loadings in the matrix changes, the communality does not. However, the 

proportion of variance accounted for by each factor does change as rotation 

redistributes the explained variance for the individual factors.

The rotated factor loadings are displayed in Table 5.10 The factor loadings 

represent the contribution of each variable (PAH) towards the overall factor 

or principal component (PC). Variables that have a high loading for a 

particular factor or PC are said to be highly correlated to that factor. A value 

of 0.50 was used as a cut off point to designate high loadings. In Table 5.10 

those variables with a higher loading than 0.50 are highlighted for each 

factor. The VARIMAX rotation has the effect of maximising the number of 

variable loadings of greater magnitude for each PC, so although the 12 PAH 

com pounds have some contribution to all the factors, this contribution is 

only significant towards one of the factors.

B[b]F, B[ghi]P, B[a]P, BENZANTH, D[ac]A/B[k]F, CHRY and ANTH all had 

high positive values for factor 1 which accounted for 55.8 % of the total 

variance. The rest of the compounds had negative values, in particular PHE 

which had a strongly negative correlation to factor 1 of -0.823.
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Table 5.10 Rotated factor loadings for the variables (PAHs) in each of the three factors or 

principal components.Variables with high factor correlations (>0.50) have been boxed.

V ariables Factor 1 Factor 2 Factor 3

B[blF 0.910 0.190 0.283

B[ghi]P 0.907 0.177 0.238

B[a]P 0.906 0.183 0.294

BENZANTH 0.903 0.083 0.318

D[ac]A/B[k]F 0.894 0.234 0.287

CHRY 0.894 0.095 0.321

ANTH 0.841 0.227 -0.070

PHE -0.823 0.296 0.331

PYR -0.027 -0.984 0.138

FLUO/MPHE -0.325 -0.907 -0.076

FLU -0.361 0.125 -0.910

ACE -0.441 0.257 -0.016

Eigen values 6.70 2.11 1.47

% of VAF 55.8 17.6 12.3

Most compounds had a weak positive correlation with factor 2 except PYR 

and FLUO/MPHE which had highly negative correlations, 17.6 % of the 

variance was explained by factor 2. Factor 3 expains 12.3 % of the variance 

w ith only FLU having a strongly negative correlation. All the high 

molecular weight compounds having weak positive correlations with this 

factor.

These factors describe a pattern in the PAH compound distribution, this 

pa ttern  generally being associated with the molecular weight of the 

compound. Factor 1 is clearly dominated by the higher molecular weight

207



PAHs with the lighter compounds having a strong negative correlation. 

Factor 1 being the dominant factor, accounting for approximately 56 % of 

the total variance. All the compounds are weakly correlated with factor 2, 

except the mid-weight compounds of FLUO/MPHE and PYR, which have 

strong negative correlations. The relationship between the factors is best 

presented by plotting the factor loadings against each other. Figure 5.11 

presents the plot of factor 1 against factor 2 (both accounting for over 70 % of 

the variance), this gives a clear picture of the PAH pattern between these 

two factors. Large positive factor 1 loadings are plotted to the right hand side 

(e.g. B[b]F, B[a]P, D[ac]A/B[k]F, B[ghi]P, BENZANTH, ANTH and CHRY) 

with large negative factor 1 loadings to the left (e.g. PHE, FLU and ACE). 

Both these groupings have similar factor 2 loadings (weak positive), unlike 

FLUO/M PHE and PYR which have weak negative factor 1 loadings but 

strong negative factor 2 loadings, both being positioned at the bottom centre 

of the graph. This pattern appears to be determined by molecular weight 

with the lighter compounds being clearly separated from the heavier PAHs. 

Interestingly ANTH, a three ring low molecular weight PAH, is grouped 

with the heavier compounds, having a high factor 1 loading (0.841). This 

may indicate that ANTH is produced from a similar source(s) as the heavier 

com pounds or behaves in a similar manner in the atmosphere. In Section 

5.5 (see Table 5.5) ANTH is found to behave more like the heavier PAHs, as 

opposed to the lighter compounds, with atmospheric concentrations being 

lower in the warmer summer months.
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Figure 5.11 PAH factor loadings (Factor 1 versus Factor 2).
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Once the spatial distribution of each PAH had been determined, the factor 

scores for each individual sample (i.e. 7 samples from Manchester) were 

displayed on a factor plot, to determine whether there was any pattern 

distribution differences between the factors and the compounds present in 

the various samples from the different sites. Figure 5.12 displays a plot of 

factor 1 against factor 2, those samples denoted as L, M, C and R represent 

London, Manchester, Cardiff and Rural respectively, with 7 sample weeks 

for each location.

In Figure 5.12 none of the samples possess strong positive factor 1 

correlations, the majority having strong negative correlations w th this 

factor. Compared with Figure 5.11 this shows that these samples are not 

influenced by the heavier PAH which have a large factor 1 loading, this 

would be expected as the contribution of high molecular weight compounds 

to the PAH profile is diminished during the summer months. Most of the 

sum m er samples at the various sites have a negative factor 1 loading 

indicating the dominance of the low molecular weight PHE, FLU and ACE. 

All of the city samples (L, M and C) are centrally clustered with no apparent 

grouping of any individual site samples. This indicates that the PAH profile 

for all the urban sites are similar during the summer months, in other 

words there are common sources which produce quite a uniform profile at 

each site. One of the city sites (London) has one sample week that deviates 

from this pattern. This sample has a strong positive factor 1 loading, 

positioned far right of centre in the graph, indicating the dominance of the

210



heavier compounds towards the overall profile for this sample week. Upon 

examination of the London data this sample week occurred in late August, 

where, unusually for the time of year the heavier multi-ringed PAH made a 

significant contribution to the PAH profile. This indicated either a localised 

source near the sampler or the occurrence of a meteorological episode, 

which influenced the atmospheric PAH loading for this week. Examination 

of meteorological data could not explain this anomally, as no significant 

weather pattern occurred during this period, such as a stable high pressure 

weather system which could have resulted in a build up of atmospheric 

contamination (Chapter 6 examines the influence of meteorological events 

on the SOC loading in both the urban and rural atmospheres). Therefore it 

is likely that the site for this sample week was under the influence of a local 

source with its own characteristic profile that favoured the high molecular 

weight PAHs. Evidence of roof tarring in the vicinity of the Hi-Vol sampler 

was apparent for this sample week.

The rural samples differ from the urban samples in that they are strongly 

clustered towards a highly negative factor 1 loading. These seven samples 

have been highlighted in Figure 5.12 to mark this cluster, which indicates 

the predom inance of the lighter compounds PHE, FLU and ACE in the 

sum m er rural profile, more so than in the summer urban profile. PCA has 

therefore effectively separated rural air samples from the urban samples, by 

indicating the lighter compounds, in particular PHE, as having more 

influence at the rural site. This profile difference due to the lighter
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com pounds of PHE, FLU and ACE indicates possible source differences 

betw een the ru ral and urban centres. A dditional sources such as 

volatilisation from vegetational surfaces (as discussed in Section 5.5) may be 

responsible for the profile difference at the rural site.

5.8 Summary

The urban atmospheres in this study displayed concentrations similar to 

other international studies, where both vapour and particulate phase PAHs 

had been sampled over an extended period i.e. > 6 months. For the urban 

sites the low molecular weight PAHs of FLU and PHE were the dominant 

compounds in the atmosphere with the heavier PAHs (B[b]F to COR) being 

an order of m agnitude lower. Vehicular traffic with petrol and diesel 

com bustion were considered to be the major source of PAHs to the 

contem porary urban atmosphere. At the rural location the mean annual 

ZPAH concentration was actually higher than the urban concentrations. 

This was due to the predominance of the lighter compounds, in particular 

FLU and PHE which exceeded the 1992 Manchester concentrations by factors 

of 3 and 4 respectively. Comparisons with other rural studies showed 

m arked variations in concentrations between locations. However a similar 

study at a rural site in the Lake District in NW England by Gardner (1993) 

also displayed high concentrations of FLU and PHE, comparable to the urban 

concentrations of this study.
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Seasonal cycling of the £PAH concentrations was not evident at the four 

urban sites, due to the lack of seasonal change by the lighter PAH which 

dom inate the PAH profile. The higher molecular weight compounds of 

CHRY to COR showed a seasonal pattern of high concentrations in the 

winter and low concentrations in the summer. At the rural site the heavier 

compounds showed the same pattern, conversely the lighter more volatile 

com pounds of ACE, FLU, PHE, FLUO/MPHE and PYR displayed higher 

concentrations in the summer and reduced concentrations in the winter. 

This seasonal cycling of individual PAHs at the rural site followed a similar 

pattern to the Lake District study. Elevated concentrations of the lighter PAH 

at Hazelrigg were considered to be influenced by both local sources. These 

include the release from sediments in the Morecambe Bay area and the 

influence of a nearby motorway, however the process of re-volatilisation 

from soil and vegetation may also make a significant contribution to the 

atm ospheric loading. Temperature is invoked as the controlling factor, 

resu lting  in the w arm er sum m er m onths d isplaying the highest 

concentrations for the tri- and tetracyclic PAHs.

The vapour-particle distribution of individual compounds was examined at 

the urban sites of Manchester and Cardiff and the rural location. The % 

distribution for each compound was similar at each site for a particular 

season. Changes in the distribution were observed between the summer and 

w inter seasons. The distribution was found to be heavily influenced by a 

com pound's molecular weight and hence vapour pressure. The lighter
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more volatile compounds of ACE, FLU, PHE and ANTH predominated in 

the vapour phase while the heavier PAHs of B[b]F to COR were primarily 

associated w ith the particulate phase. Changes in season and hence 

tem perature altered this distribution, particularly for the mid-weight PAHs 

of FLUO/MPHE, PYR, BENZANTH and CHRY that had significant vapour 

phase concentrations in the summer but were found to predominate in the 

particulate phase during the winter. Correlations between total suspended 

particulate concentrations in the urban atmosphere and several of the 

heavier particle-associated PAH were weak, indicating the complex nature 

of urban aerosol. PAH partition coefficients calculated from respective 

adsorbent and filter fractions and ambient TSP loading, showed correlations 

w ith tem perature for PHE and B[a]P selected from the Manchester and 

H azelrigg studies. Tem perature and TSP loading ultim ately affect a 

com pound’s distribution, with calculated heats of desorption being 

significantly higher for the heavier multi-ringed PAH.

Principal components analysis (PCA) determined no profile differences 

between the city sites during the summer season, indicating similar sources 

to the urban atmosphere. The rural atmosphere showed a marked increase 

of PHE and FLU to the overall summer profile compared to the urban sites, 

indicating a different source of these compounds to the rural atmosphere. It 

is postulated that local sources and the re-volatilisation from soil and 

vegetation, significantly increase the concentration of the lighter more 

volatile PAH in the atmosphere of the rural site, during the summer.
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Chapter 6

Meteorological influences on atmospheric

SOC loading

6.1 Introduction

Once an organic contaminant is released into the atmosphere from source it 

is subject to transport. For semi-volatile organic compounds such as the 

PCBs and PAHs which are distributed between the vapour and particulate 

phases and have varying degradation rates, transport over long distances is 

possible. Meteorological conditions and air mass movement can result in 

the increase of contam inant loadings in the atm osphere and their 

translocation  to unpollu ted  areas respectively. The build  up of 

contaminants in the atmosphere over large source areas such as cities, due 

to prevailing meterological conditions, can result in 'episodes' such as the 

infam ous London smog events of the 1950's (Boubel et al.f 1994) and the 

winter pollution episode in London during December 1991 (QUARG, 1993).

Transportation of contaminants on the macro scale (200 - 100,000 km) away 

from point sources has been recognised for many of these organic micro- 

pollutants. Atlas and Giam (1981) discovered PCBs, HCH isomers, DDT, 

dieldrin, chlordane and two phthalate esters in the atmosphere of a remote
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Pacific Atoll, 1000's of km away from source areas. Importantly, the effect of 

air mass m ovem ent on SOC loading has been recognised as a factor 

influencing concentrations of these species in the Arctic atm osphere 

(Oehme and Mano, 1984; Hargrave et al., 1988, Barrie et al., 1992). 

Furthermore, the use of air mass back trajectories has allowed the tracking 

of contam inant movement and the speculation over source areas. This 

approach has been applied to explain elevated levels of PAHs in the 

atm osphere of southern Norway (Bjorseth et al., 1979) and at a remote site 

on the island of Corsica in the Mediterranean (Masclet et a l, 1988).

In this chapter uncharacteristic, elevated concentrations of PAHs and PCBs 

in the urban sites of Manchester, London, Stevenage and Cardiff of the 

TOMPS programme, are explained in terms of pollution episodes due to 

prevailing meteorological conditions. In addition the importance of air 

mass direction, is highlighted in a high resolution sampling programme 

(daily samples rather than weekly) conducted at the TOMPS rural location 

(Hazelrigg).

6.2 Atmospheric transport and air mass tracking

An im portant aspect in measuring chemical species such as SOCs in the 

atm osphere, particularly in a rural or remote location, is to establish the 

source or direction of those air masses which influence contam inant 

loading. Alternatively, for continous sampling programmes short term
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variations in the collected data may be explained by calculating a back 

trajectory, to deduce an air mass direction and hence determine it's passage 

from a potential source area.

In essence, a trajectory is the path of an imaginary air parcel as it is acted on 

by winds (Huschke, 1959). An application of single, forward trajectories is to 

follow a parcel of air from the source of a given substance and to see where 

the material could be transported. More likely, as Miller (1987) explained, for 

a chemical measurement that is made at some point, either on the ground 

or in the air, at a given time then a single back trajectory can be calculated, 

giving the path that the air mass travelled previous to the measurement.

There are various methods for calculating air mass back trajectories, all of 

which require regular meteorological data over the tracking period. Miller 

(1987) reviewed the different approaches meteorologists have developed to 

calculate trajectories, dividing them into two categories - dynamic and 

kinematic. Basically, dynamic calculations are made with such fields as 

pressure and tem perature, to draw isobaric or isentropic trajectories, 

whereas kinematic calculations are made with measured wind fields. These 

two main categories can be broken down further into models which may 

have added characteristics, such as including the vertical movement in the 

atm osphere of the advecting air mass. In well defined meteorological 

phenomenon such as large anti-cyclones where air flow is simple, dynamic 

isentropic and kinematic models track the same paths very well. However
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in more complex meteorological situations, it is assumed that the more 

complex isentropic calculations give more accurate trajectories. The 

application of the back trajectory method is therefore determined by the 

following factors: (1) the choice of the type of model used (dynamic, 

kinematic); (2) the level at which the calculation is made (whether it is a 

pressure surface, potential temperature field, layer in the atmsophere, etc); 

(3) the grid size, which determines the area of interest and the distance back 

a trajectory can go; (4) the number of days backward and (5) the amount of 

meteorological data available.

6.3 Calculation of air mass back trajectory

The trajectories calculated for this chapter are of the dynamic - isobaric type 

constructed from surface pressure charts (Synoptic weather summaries - 

Met. Office). Details of the technique, which obtains a geostrophic wind from 

the isobar spacing, are presented in Sykes and Hatton (1976). Basically the 

geostrophic wind is assumed to be parallel to the isobars, and is then used to 

advance the parcel of air by hand, in a horizontal plane only. Therefore, in 

order to construct a trajectory it was necessary to consider a series of surface 

pressure charts at regular intervals of 6 hours.

The geostrophic wind speed is obtained from the isobar spacing of the mean 

sea level pressure according to the equation:-
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V(g) =J_x dp 
fp dn

where V(g) is the geostrophic wind speed, f is the Coriolis parameter, p the 

air density and d p /d n  is the horizontal pressure gradient. For example, if

the latter is equal to 4 x 10'3 mbar km-1 (the latitude taken as 54<>N 

(Lancaster)), and:-

f = 2Q sin 0 = 1.18 x Kb4 s '1

where Q is the earth's angular velocity (7.29 x 10-5 s_1). Assuming an air 

density of 1.2 kg m-3, then:-

V(g) = 4 x 10"4 = 2.8 ms-1
1.18x10^x1.2

To construct a particular trajectory Pi is selected as the position of the air

parcel on chart 1 (surface pressure chart) and Vi is the velocity vector. If 

there is no acceleration, and assuming strictly horizontal motion, the parcel 

would move a distance D'l = Vi x 6 x 60 x 60 in the six hours from chart 1 to 

chart 2, and arrive at a point Q 'l. In the meantime the wind speed may have 

changed, and D 'l only represents a first approximation. To obtain a better 

approxim ation the wind speed V2 at Pi, on chart 2, is used to obtain the 

displacem ent D"i from chart 1 to chart 2, that would have resulted if the 

parcel had moved with a constant velocity V2- The vectors D'l and D"i carry
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equal weight and a second approximation is obtained by the mean of the two 

displacements. This displacement takes the parcel to Qi. Next, chart 2 is used 

to find the displacement D'2 and the procedure outlined above is repeated 

from chart 2 to chart 3 etc., and a smooth curve through the points thus 

determined, represents the approximate trajectory.

For a particular sampling period, a pressure chart is selected which is closest 

to the start of the sampling time. The trajectory is worked back at six hourly 

intervals for 24 hours or greater. Next, a pressure chart is selected which is 

closest to the finish time of the sampling period, and the trajectory is 

worked back to the start of the sample period. This results in two lines on 

the map, between which is the route that the air parcel has taken.

Obviously trajectories determined in this manner can only be approximate, 

with the error growing the further back in time one goes. Sykes and Hatton 

(1976) predicted that computing a trajectory as described above would result 

in a ~ 40 km error when going back over 30 hours. This method does not 

take into account any vertical movement of the air mass and is determined 

from  surface pressure maps (at the 1000 mbar level). Several studies 

m easuring atmospheric SOCs have computed their trajectories at several 

pressure heights i.e. 1000, 925 and 850 mbar (Hoff st qI . 1992b, Tysklind 6t ul.,

1993), this allows the air movement to be assessed at varying heights with 

the 925 and 850 mbar trajectories being more representative of tropospheric 

flow * since errors may occur for surface level trajectories due to air mass
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friction w ith the earth's surface. Because of this uncertainty air mass 

trajectories were calculated for this work only when clear, well defined air 

mass systems were apparent.

6.4 Influence of meteorological conditions on TOMPS data

Contam inant concentrations in the urban atmosphere have been found to 

vary considerably from one day to another (and even from hour to hour for 

pollutants such as CO) (QUARG, 1993). These variations have been largely 

determ ined by meteorological factors. The extent to which pollutants are 

dispersed and diluted depends on wind speed, turbulence, mixing depth and 

in the city environment, the urban topography. Atmospheric turbulence 

determines how rapidly a parcel of polluted air is dispersed as it moves away 

from  source. The build up of pollutants depends on the atmospheric 

conditions. Dispersion is less under stable atmospheric conditions, which 

occur m ainly at night time, than under unstable conditions, which can 

occur during the middle of the day, when heating of the ground causes 

thermal turbulence. The mixing depth is the depth of the atmosphere into 

which the pollutants readily mix. Temperature inversions can restrict the 

depth  of this mixed layer, and act as a lid to the atmosphere, allowing 

con tam inan t concentrations to build  up underneath . T em perature 

inversions occur at night time when there is rapid cooling of the ground, 

and also when warm air moves in over cool ground. In rural areas the 

inversion may lie only a few tens of metres above the ground, however, in
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large urban areas the 'heat island' effect created by the additional heat 

sources produces inversions more typically 100 to 200 m above the ground.

The conditions that favour pollution episodes in urban areas involve low 

wind speeds, stable atmospheric conditions and low mixing heights. These 

meteorological conditions normally occur during anticyclonic weather and 

mainly at night time. During the day the temperature inversion is likely to 

break up as the sun warms the ground. However, during the winter months 

it is possible for inversions to persist throughout the day and they may 

survive for several days before breaking up. The atmospheric PCB and PAH 

data  from  the TOMPS program m e presented in Chapters 4 and 5 

respectively, was analysed to determ ine which sam ple weeks had 

uncharacteristically elevated concentrations. That is when concentrations 

were significantly greater than the seasonal norm (both PCBs and PAHs 

show seasonal cycling).

Figures 6.1a and b represent the total XPAH concentrations (vapour + 

particulate phases) for Manchester and London respectively, throughout 

1991 and 1992. Although the sampling scheme was not synchronised for 

both sites, elevated PAH concentrations can be observed for weeks 6 and 49 

at the London site and weeks 5 and 47 at the Manchester site. These weeks 

approximately correspond with one another between the two sites (±7 days). 

Weeks 5 and 6 cover the period of the 7th - 20th February 1991, while weeks 

47 and 49 relate to the period from the 5th - 19th December 1991. Careful
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examination of the Meteorological Office Daily Weather Summaries reveal 

that the weather conditions were sustained and consistent through each of 

the time periods, over the whole of the UK. Hence the meteorological 

conditions can be considered as the explanation for the build up of 

unusually  high concentrations of PAHs at both sites during each time 

period. For the first period (7th-20th Feb. 1991) London and Manchester had

XPAH concentrations of 745 ng m-3 and 240 ng m-3 respectively. Both values 

were significantly higher (t-statistic = 4.89, ld f , P < 0.05) than the mean

w inter value of 166 ng n r 3 for London and 135 ng m -3 for Manchester. 

During this time the UK was under the influence of a high pressure 

anticyclonic system, typified by clear, calm weather with an air flow from the 

east. This resulted in freezing temperatures and the formation of periodic 

tem perature  inversions leading to a build up of atm ospheric PAH 

concentrations. Sim ilarly, the second period (5th-19th December) 

experienced a high pressure 'blocking' anticyclone positioned over the UK, 

which lasted for much of December. PAH concentrations for London and

M anchester were 830 ng n r 3 and 280 ng n r 3 respectively, significantly 

higher than the mean winter concentrations (t-statistic = 6.25, ldf, P < 0.05). 

During both periods elevations of other atmospheric organic contaminants 

have been reported i.e. for ethane, benzene and toluene (QUARG, 1993). 

Other periods of elevated PAH concentrations are apparent for both cities 

during 1992. For London and Manchester weeks 67 (10th-16th April ’92) and 

101 (16th-23th Dec ’92) respectively have concentrations above their seasonal 

mean values. Unfortunately these sample weeks do not correspond to the
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opposite sample weeks in the other city, resulting that a short term 

meteorological condition (> 7 days) or episode will have no effect on the 

closest PAH sample week in the other city. Therefore, this requires a 

coordination of sampling events between cities, or an increase in sampling 

resolution i.e from a seven day period to a three day period or less.

Interestingly, the two pollution episodes described above (Feb. and Dec. 1991) 

occur du ring  the w inter time when the particulate phase PAH 

concentrations are at their highest, due to the increase in fuel consumption 

for domestic heating (Santodonato et a l, 1981). The PCBs, however, are no 

longer m anufactured, and are not seasonally influenced by anthropogenic 

activity. Therefore, do they show an increase in concentrations during these 

pollution episodes? In Figure 6.2a Manchester's ZPCB concentrations are 

presented for 1991/92 and show the seasonal cycling as highlighted in 

C hapter 4. The episode weeks of 5 and 47 do not show elevated 

concentrations and are not significantly different from the winter mean of

438 pg m-3 (t-statistic = 5.76, ldf, P > 0.10). On the other hand the particulate 

phase XPCB concentrations do show significantly higher concentrations 

during these meteorological episodes at all three city sites (London, Cardiff 

and Manchester). This is highlighted in Figure 6.2b where the Cardiff 

particulate phase IPCB concentrations are presented for 1991/92. Weeks 6 

and 44 correspond to sample dates 21st-28th Feb. 1991 and the 12th-19th Dec. 

1991 respectively, and are significantly higher than the winter mean

concentration of 48 pg m-3 (t-statistic = 22.8, ldf, P < 0.05). The particulate
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phase PCBs are therefore more influenced than the total IPC B  

concentrations, which are dominated by the vapour phase component as 

described in Chapter 4. This implies that the atmospheric particulate loading 

during these episodes increases. Certainly an increase in total suspended 

particulate (TSP) concentrations was evident (Appendix 1) but probably of 

more significance was the probable increase in PMio particulate, which is the 

size fraction containing the majority of particulate-bound organochlorine 

contaminants (Kaupp et a l 1994).

6.5 Intensive air sampling

Air samples for the TOMPs programme were taken over a period of seven 

days. Unless defined meteorological conditions persisted over this time 

short term variations in ambient conditions could not be distinguished. For 

any particular sample short term fluctuations (daily) in contam inant 

concentrations will have become blurred. To examine short term variations 

in atmospheric PCB concentrations a new Hi-Vol air sampler was installed 

at the rural TOMPs location (Hazelrigg, near Lancaster). Air samples were

taken over a 24 h period with approximately 350 m3 of air being aspirated for 

each sample. Sampling commenced on the 23rd March 1994 until June 1994, 

effectively covering the spring and early summer seasons. Due to the 

num ber of samples generated the vapour and particulate phases were not 

analysed separately, instead the the filters and PUFs were extracted together. 

The analytical protocol was identical to the TOMPs air samples which is
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presented in Chapter 3.

In aspirating a large volume of air in a short period of time i.e. 24 h, there 

w as the increased chance of analyte breakthrough - through the 

filter/adsorbent train (Billings and Bidleman, 1983), this is discussed in 

more detail in Chapter 2, Section 2.6.5. Basically, the more volatile species 

i.e. the tri- and tetrachlorinated biphenyls and the three ring PAH may be 

underestim ated due to their loss from the sample train. This process has 

been highlighted as a significant loss mechanism for more volatile species 

like HCH (Pankow, 1993). Therefore as a quality assurance procedure to test 

for sample breakthrough 500 |LiL of the neat PCB standard was spiked onto 

the filter (980 ng £PCB) of a sampling module (filter and 2 PUF plugs). The 

m odule was placed in the Hi-Vol which was operated under normal

sampling conditions, resulting in 500 m3 of air being aspirated over a 24 h 

period. The filter and each PUF plug were analysed separately, the mass of 

PCBs collected from the atmosphere was considered to be negligble 

compared to the spiked quantity. Upon analysis ~ 90% of the XPCB was 

present on the 1st (top) PUF plug with 10% remaining on the filter. The 2nd 

(bottom)PUF plug showed no sign of PCB contamination, indicating that 

b reak th ro u g h  of PCBs from the sam ple train  was not evident. 

Chromatograms of the top and bottom PUFs are presented in Figure 6.3, the 

loading on the first PUF can be clearly observed.
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6.5.1 Meteorological factors affecting PCB concentrations

For this intensive sampling programme daily PCB concentrations were 

determ ined, as well as a record kept of daily meteorological parameters. 

Table 6.1 p resents three sam ple periods influenced by separate  

meteorological events. Each meteorological episode (selected between March 

and June 1994) represents a period when meteorological conditions 

remained relatively constant i.e. there was little variation in wind direction, 

temperature, pressure and humidity. The selected episodes are described as 

follows:-

Episode 1 - Between the 12-16th April a high pressure anticyclonic system 

was centred to the north-west of the UK, resulting in an air stream 

predom inantly from the North East. Conditions were typically cold, with 

clear skies, interm ittent showers and strong northerly winds. These 

conditions persisted until the 17th, when a low pressure weather system 

advanced from the west, resulting in a milder, south-westerly air flow. 

Figure 6.4 shows the back trajectory calculated over this sampling period, 

clearly the air sampled originated from the north. Arctic air masses can 

affect the UK during the winter and early spring, and are characterised by 

cold tem peratures, low hum idity but generally unstable conditions once 

over the UK (Musk, 1988).
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Table 6.1 Selected meteorological episodes influencing atmospheric 
conditions at a rural location in NW England.

Episode 1

Sample dates Vol air (m3) Temp, range QC
12-13/4 393 2 -9
13-14/4 389 2-11
14-15/4 340 3-10
15-16/4 383 2-10

Episode 2

21-22/4 341 6-14
22-23/4 343 9-17
23-24/4 400 8-17

Episode 3

9-10/5 350 5-16
10-11/5 388 8-17
12-13/5 352 10-21

Wind direction Mean pressure Relative
and speed (m /s) mbar Humidity % 

N-NE 7.5 1030 68
N-NE 7.5 -10 1028 62

NE 7 5-10  1027 69
NE 25 1030 70

S-SE <25 1004 79
SE 25-5 .0  1000 76

S-SE 2 5 -5 .0  1000 78

S < 2 5  1012 98
E-SE 5 1012 98

S-SE 5-7.5 1014 99



Figure 6.4 Calculated air mass back trajectories for the rural site at Hazelrigg 
(NW  England). Three separate episodes identified between April and May 
1994.



Episode 2 - Towards the end of April, from the 21-24th, the UK received air 

off the continent. To the south-west and north-west of the UK were two low 

pressure systems, their westwards progression blocked by a weak high 

centred over the continent. The clockwise rotation of the high pressure 

system located to the east of the UK, resulted in air moving from a south­

easterly direction, over the British Isles. This was characterised by stable 

(light winds) mainly dry conditions. A calculated back trajectory displayed in 

Figure 6.4 reveals the path taken by the air sampled at Hazelrigg over this 

time period. The parcel of air originated from the continent, moving in a 

north-westerly direction through the Midlands to NW England.

Episode 3 - From the 10th May onwards, the northern UK was affected by a 

high pressure anticylonic system located to the north-east of Scotland. Air 

was channelled directly eastwards from Holland, northern Germany and the 

Baltic. Conditions were stable with light easterly winds, typified by mainly 

dry conditions, however, mist patches and drizzle persisted throughout the 

m ornings. The back trajectory in Figure 6.4 confirms the air parcel 

movement from the east.

Table 6.2 presents the PCB concentrations for the three meteorological 

episodes described above. Individual PCB concentrations are displayed for 

the six indicator congeners as well as the homologue group concentrations.

The XPCB concentrations ranged from 38.7 - 261 pg n r 3 resulting in a

background mean of 141 pg n r3 for the whole sampling period. Again,
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Table 6.2 Mean PCB concentrations during three meteorological episodes at the 
Hazelrigg sampling site.

Episode 1 Episode 2 Episode 3
12-16/4 21-24/4 9-13/5

PCB(pg m"3)

28 33.6 48.5 21.6
52 13.1 19.4 13.6
101 4.94 8.15 7.00
118 1.94 3.03 2.42
153 2.96 3.78 1.62
138 1.62 1.86 2.70
180 0.940 1.80 N D

PCB-C13 19.7 43.8 23.2
PCB-C14 10.4 14.8 8.49
PCB-C15 3.60 6.21 5.27

PCB-C16 2.60 3.10 2.23

PCB-C17 0.351 0.662 0.451

PCB-C18 N D N D N D

XPCB 119 223 131
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urban concentrations discussed in Chapter 4 are approximately a factor of 3- 

4 higher than the Hazelrigg values reported in this programme. At other 

rural locations the mean XPCB concentrations have been reported as 50 ng

m '3 in Ontario, Canada (Hoff et al., 1992a) and 648 ng n r 3 in South 

Bohemia, Czech Republic (Holoubek et a l , 1992). As with the urban 

concentrations the atmospheric profile is dominated by the tri- and tetra 

-chlorinated congeners.

In episode 1 (Table 6.2) the mean XPCB concentration was significantly 

lower than the mean concentration of the whole sampling period (t-statistic 

= 3.19, 3df, P = 0.05 - PCB). The more volatile tri- and tetrachlorinated 

homologues predominated, with congeners 28 and 52 comprising of ~ 50% 

of the total sum. In comparison, episode 2 had a significantly greater mean 

XPCB concentration. Each homologue group also displayed higher 

concentrations than in episode 1. However, the congener profile stayed 

relatively constant, being chiefly dominated by the tri- and tetrachlorinated 

hom ologues.

Episodes 2 and 3 represent easterly air flows, however, from their 

trajectories in Figure 6.4, the air mass for episode 2 was from the south east 

while episode 3 was directly from the east. Episodes 1, 2 and 3 are all 

examples of deviations from the common westerly air stream, from which 

the background mean was derived over the whole sampling period. Episode 

3 did not have elevated PCB concentrations, the episode mean IPCB
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concentration of 131 pg m_3 was not statistically different from the

background mean of 141 pg m-3 (t-statistic = 6.28, ldf, P > 0.10). Episode 2 had 

the air mass originating from the centre of continental Europe. The passage 

of air over the industrialised Midlands of the UK, probably resulted in the 

increased PCB loading. Episode 3 with the air source originating from the 

Baltic region, had a reduced PCB loading, being no different from the mean 

background concentration. During this period precipitation events were 

noted, with elevated humidity over the other two episodes (Table 6.1). Wet 

removal of organic contaminants from the atmosphere is a signifcant loss 

mechanism  (Ligocki and Pankow, 1985a+b), with the reduction of both 

PAHs and PCBs being reported during rain events (McVeety and Hites, 1988; 

M urray and Andren, 1992; Backe et al, 1994). Although not measured, it is 

probable that precipitation events will have reduced the contaminant 

loading during episode 3. Masclet et al. (1988) undertaking an air sampling 

campaign in the Mediterranean, made a similar conclusion for the loss of 

particulate bound PAHs from an air mass originating over industrialised 

regions.

6.6 Summary

Meteorological conditions affect the ambient atmospheric concentrations of 

PCBs and PAHs. These effects are pronounced usually for a short time 

period (in the order of days). Longer term effects such as the winter episodes 

highlighted in the TOMPS city data may last for up to two weeks,
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concentrations of PAHs and particulate bound PCBs greatly exceed seasonal 

m ean concentrations, resulting in implications for hum an health and 

exposure level criteria.

Intensive sampling (daily) allows variations in ambient concentrations and 

com pound profiles to be examined more thoroughly. In recording 

meteorological parameters and deriving back trajectories, episodes may be 

identified and the air mass paths followed. Three episodes identified at a 

rural site in NW England had their air masses originating from the north 

east, south east and east respectively. The air mass for episode 1 was of 

Scandinavian/Arctic origin, while the air masses of episodes 2 and 3 were 

from continental Europe. In various studies profile differences in separate 

air masses have been identified for PAHs in the Mediterranean (Masclet et 

al, 1988), and for the PCDD/Fs in southern Sweden (Tysklind et al., 1993). 

For the PCBs, although absolute concentrations were higher in episode 2, 

the profiles were similar for all three episodes, indicating that sources and 

transport mechanisms controlling PCB concentrations are similar. This 

supports the work of Panshin and Hites (1994) who found no difference in 

PCB profile, for various air masses sampled at Bermuda in the western 

Atlantic.



Chapter 7

M odelling Atmospheric PCB Concentrations

7.1 Introduction

To obtain a better understanding in the atmospheric cycling and behaviour 

of PCBs it is necessary to attempt to predict atmospheric concentrations over 

terrestrial surfaces. One way involves determining the major sources 

(compartments) to the atmosphere and attempting to quantify the release of 

PCBs from these compartments over a defined time period. In order to do 

this a unit surface area has to be selected and then a theoretical box created 

which extends up into the atmosphere. Sources within the box will be the 

only ones considered to make a significant input to the atmosphere.

By taking this approach the major source compartments can be defined 

w ithin the box, along with an approximation of their contribution to the 

atm osphere for a particular compound. To enable the prediction of PCB 

concentrations in the atmosphere a box model developed by Pankow (1993) 

was utilised. This model was developed to describe the vapour phase 

concentrations of certain semi-volatile organic compounds (SOCs) over 

annual cycles that peak in the summer. This model invokes temperature as 

the major controlling factor of vapour phase concentrations, implying that 

with an increase in temperature there will be decreased partitioning to the 

surfaces (com partm ents) w ithin the box and hence an increase in
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atm ospheric concentrations. It was decided that the box model would be 

applied to the urban area of Manchester to predict m onthly congener 

concentrations in the urban atmosphere. The major source compartments 

w ould be defined and their contribution to the atmospheric loading 

evaluated for each month over a 1 year period (a full seasonal cycle). The 

resulting air concentrations could be compared to the actual sampled air 

concentrations, to investigate whether the tem perature change was 

sufficient to explain the seasonal cycling observed in the vapour phase 

concentrations within this urban atmosphere.

7.2 The Simple Box Model

The basic assumption to this model is that air moving over the surface of 

the earth can exchange organic compounds with the surface, and so the 

potential exists for equilibration between the atmosphere and the surface 

materials. Pankow (1993) described a box that covered an area of the earth's 

surface of interest and extends up into the atmosphere (the height of 

tropospheric mixing ~ 6300 m in temperate latitudes). For PCBs which are 

no longer in production, then it is considered that the majority of the 

vapour phase component in the atmosphere is derived from desorption off 

solid surfaces within the box. Compartments may include soil, vegetation, 

and suspended particulate matter. This process is assumed to be driven by 

tem perature only.
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SOCs can have non-negligible fractions of their environmental masses in 

both the atmosphere and partitioned to surface materials. Tem perature 

driven cycling of SOCs between the atmosphere and the earth's surface has 

been postulated by several reseachers (Manchester-Neesvig and Andren, 

1989; Hoff et ah, 1992a; Wania and Mackay, 1993). Indeed as Pankow (1993) 

stated, partition coefficients depend on temperature, therefore the nature of 

the atm ospheric/surface distribution will depend on the natural, annual 

cycles in the ambient tem perature. This box model solely invokes 

tem perature as the governing factor over atm ospheric vapour phase 

concentrations for SOCs.

For the box model Pankow used two partition coefficients to describe 1) the 

sorption between the vapour phase and the total suspended particulate 

(TSP) in the atmosphere (Kp) and 2) the equilibrium sorption between the 

vapour phase and material at the earth's surface (Km). Kp has been described

in Chapter 2, Section 2.2.3 and takes the form (F/TSP)/A where F (ng n r 3) 

and A (ng n r 3) are the particulate and vapour phase concentrations for an 

SOC at equilibrium respectively. The units of Kp are m3 pg '1.

To derive Km it was necessary to recognise the major sorbing compartments 

w ithin the box, the mass of an SOC that is readily exchangeable with the 

atmosphere for any particular compartment can then be estimated. Note 

that readily exchangeable refers to that fraction of a compound that is
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available to the atmosphere over an annual time basis, so the portion of a 

compound that is locked up in deep soil, buried in sediments or deposited 

within the cores of trees can therefore be discounted. K m  takes the form:-

K m  =  - S  (1 )
A

Where S is the sorbed concentration of an SOC at the earth's surface in units 

of ng sorbed per fig of sorbing material and A is the atmospheric vapour 

phase concentration. Therefore K m  is a type of earth/atm osphere partition

coefficient with units m 3 fig"1. For the numerous compartments within a 

selected box an overall K m  can be calculated from the different sorbing 

compartments by:-

Si(m i/m ) + S2(m2/m ) + S3(m3/m) (2)
1011 = - A -  — A ---------------

Where Si, S 2 and S 3 are the sorbed concentrations (ng pg-1) in the number of 

compartments considered within the box i.e. 1, 2, 3 etc. The parameters m i, 

m 2 and m3 are the masses in fig of sorbing material in each of the considered 

compartments - that is material capable of relatively rapid exchange of SOCs 

with the atmosphere (i.e. on a time scale of a month), and m is the total 

mass of sorbing material added up from all of the compartments within the 

box. Thus with S i/A , S2 /A , S3 / A ,    representing the individual sorption
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constants Kml, Km2, K m 3, , for the different compartments, Equation (2)

therefore represents a weight-average representation of Km for all the 

considered compartments within the box.

By taking this approach Pankow (1993) could then estimate the total, readily 

exchangeable mass of a given SOC that distributes itself between the surface 

and the atmosphere within the box. This he represented as q (ng) and is 

assumed to be fixed over an annual cycle of interest. Although q might be 

quite large, units of ng were selected for this parameter because atmospheric 

m easurements of organic compounds are frequently carried out at the ng

m ‘3 level. A mass balance for q is represented as:-

q (ng) = VA + VKpTSPA + KmmA (3)

Where V is the volume of the box. As q is fixed over an annual time frame 

then Equation (3) can only be applied to those compounds that have no 

significant inputs over a yearly period, that is there are no new emissions in 

the zone of interest and it is only (or at least mostly) prior released material 

that is cycling between the atmosphere and the earth’s surface. For this 

reason PAHs (continually produced and emitted) and pesticides in curent 

use cannot be applied to this model. Equation (3) can then be re-arranged to 

determine A (the equilibrium vapour phase concentration) .-
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a  = q/ v
1 + KpTSP + Kmm /V  (4)

The term  q /V  is the equivalent atmospheric concentration (ng m-3) of the 

readily exchanging fraction of a compound and m /V  is the equivalent

atm ospheric concentration (pg n r 3) of sorbing surface materials. The 

quantity KpTSP gives the dimensionless TSP-sorbed/gaseous ratio, while

K m (m /V ) is the surface-sorbed/gaseous ratio for a chosen compound 

(dimensionless). In order to predict changes in A with temperature Pankow 

then looked at the temperature dependence of the partition coefficents. 

Partitioning between the vapour phase and any other phase (i.e. TSP) can be 

expressed as a function of the heat of desorption for the compound in 

question and the temperature. In the case of simple physical adsorption to 

the solid surfaces of atmospheric particles, for a given compound Pankow 

predicted:-

T. A tsp to

P = 275(M/fji/2 e » 1/RT (5)

W here Atsp is the specific surface area of the aerosol particles in the

atm osphere (cm2 pg '1), to is a fundamental vibration time (s) of the sorbed

com pound on the surface of the TSP, Hi (KJ m oH ) is the compound's heat 

of desorption from the surface of the TSP, R is the gas constant, T is the

tem perature (K) and M is the molecular weight (g moT1). Based on the
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nature of Equation (5) Pankow wrote a good approximation that:-

Kp ^KpeH1/ RT (6)

where Kp is a pre-exponential factor essentially independent of T and for a 

given com pound class such as the PCBs is largely independent of any 

particular congener. The value of Hi depends on the compound or congener 

in question. Similarly, there is reason to believe that Km will follow an 

equation that is similar to Equation (6) with:-

Km^Kme^/RT (7)

where Km is a pre-exponential factor independent of T and characterises the 

sorption of a given compound class to the materials at the earth’s surface. 

W ithin a com pound class, like Kp , the value of Km will be largely 

independent of the compound. Hm is the compound dependent heat of 

desorption from those materials (compartments) in the box.

Equations (6) and (7) can then be substituted into Equation (4) to give:-

q/V
A "  1 + KpeQ1/K1TSP + g PieHm/ K'1'(m/V) (8)
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Therefore a change in T will alter the A value (q/V  remains fixed for a 

particu lar com pound in the box over an annual time scale). As TSP 

increases, then A will decrease because the volumetric concentration of the 

sorbing mass in the atmosphere is increasing. Analogously, m /V  in 

Equation (4) is the equivalent volumetric concentration of sorbing material 

at the earth’s surface. As with TSP, as m /V  increases, for fixed q /V  the value 

of A will decrease. For fixed q/V, TSP and m /V  represented in Equation (8) 

increases in T during the spring and summer will increase A because the 

com pound in question is being driven off both the TSP and m /V . The 

degree to which A approaches q/V  will depend on Kp, H i ,  TSP, Kjn, H m  and 

m /V  and, importantly, on how large T becomes. Seasonal variations in T in 

tem perate zones can then cause significant cycling between the earth's 

surface and the atmosphere.

Pankow postulated that the more volatile compounds such as the lighter 

PCB congeners will be characterised by A being far greater than F. That is the 

total atmospheric concentration (i.e. A + F) will be very nearly given by A, 

furthermore the mass of TSP will be extremely low compared to the mass of

sorbing materials at the earth's surface. Therefore the jCpe^^/^TSP term in 

Equation (8) will be negligible for all but the heaviest SOCs. Therefore A can 

be predicted by shortening Equation (8) to

q/V
A_ 1 +ICmeHm/KT(m/V) (9)
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Monthly A concentrations can then be predicted in the box atmosphere by 

simply substituting in the monthly T values. The application of this model 

is not w ithout its assumptions and is important that these are clearly 

understood. Firstly it is assumed that near equilibrium exists for vapour 

phase concentrations (i.e. A values) of SOCs between the atmosphere and a 

mass m at the earth's surface. Secondly the temperature dependence of the 

earth/atm osphere partitioning causes seasonally based, annual cycles of SOC 

concentrations in the atmosphere. At a given point in time a mean 

tem perature T for the box is the temperature that controls partitioning in 

the whole of the box. Thirdly the value of q (ng) for the readily exchanging 

portion of a given SOC in the box is fixed over an annual time scale. Inputs 

to the box over an annual type of time frame are small compared to the 

existing inventory in the box. Pankow also assumes that the north /sou th

m ovem ent out of a box positioned in temperate latitudes (30-60°) is 

negligible. The box should also extend around the globe to avoid east/w est 

mixing which may be extensive.

7.3 Application of the box model to the city of Manchester

For this study the box model was applied to the city of Manchester to predict 

m onthly A concentrations of congener 52 (tetrachlorinated biphenyl) 

throughout 1991. The model is only suitable for those congeners which are 

predom inantly in the vapour phase, therefore congener 52, one of the major 

congeners found in the atmosphere, was selected as an example. The
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theoretical box was much smaller than that anticipated by Pankow - but it 

was believed that the potentially large source of readily exchangeable PCB 52 

inside this box would negate the effects of any loss by advection. The box 

dim ensions are presented in Table 7.1 but basically the surface area

incorporated the whole of Greater Manchester (2.1 x 108 m2). The height of 

the box extended up to 2000 m. The height of tropospheric mixing (6300 m) 

used by Pankow (1993) was considered to be too great for a box area of this 

size, considering the residence time of air over Manchester. Harner et al. 

(1995) used a working height of 2000 m, in an air-soil exchange fugacity 

model for the southern UK. It should be acknowledged, however, that there 

is large uncertainty over the choice of height to use. Harner et al. (1995) 

considered that treating the atmopshere as a well mixed box to 2000 m, as in 

their model, was a possible source of error. Most atmospheric measurements 

are carried out at ground level, thus ground level concentrations may be 

higher, with mixing to 2000 m being slow.

Within this urban box the total readily exchangeable mass of PCB 52 (q) was 

calculated from Equation (3). The major sorbing compartments had to be 

identified and m, S and Km estimated for each; these parameters for each 

compartment are presented in Table 7.1. The estimation of Km is crucial if q 

is to be realistic for PCB 52. The various sorbing compartments considered in 

the application of the box model to Manchester, are described as follows.

1) Soil The soil layer (2 cm depth) of the ’open land' fraction within the box



for the three sorbing compartments (veg/soil/urban dust) applied in the

Manchester, UK 

Box area, a = 2.1 x 10® m^

Box height, h = 2 x 10® m 

Box volume, V = 4.2 x 1011 m®

Open land area -20 % 

area = 4.2 x 10^

Compartment 1 - Soil

Soil- top 0.02 m (soil density lg  cm"®) = 8.4 x1011 g

Soil concentration PCB-52 = 0.02 ng g"1 (Lead and Jones, unpub.)

Sorbing mass (soil water), m l = 2.1 x lO1'7 pg

Concentration of PCB-52 in soil water, s i = 8.0 x lO"1  ̂ng pg"1

Km = 7.4 xlO"11

Compartment 2 - Vegetation

Sorbing mass, waxy cuticle, m2 = 8.4 x 101* pg (Reiderer, 1990)

Herbage PCB-52 = 0.03 ng g '1 (Duarte-Davidson and Jones, 1994)

Concentration of PCB-52 in cuticle, s2 = 3 x 10"® ng pg"1

Km = lx l0" 9

Urbanised area -80% 

area = 1.7 x 10® m®

Compartment 3 - Urban Dust

Urban dust = 1.8 g m"  ̂ (Allot et al., 1994)

PCB-52 in urban dust = 18.4 ng g"1 (NIST 1649 SRM - Chapter 3)

Sorbing mass (moisture), m3 = 7.6 x 101® pg

Concentration of PCB-52 in dust moisture, S3 = 7.7 x 10~9 ng pg 1

Km = 2.4 x 10"11

Table 7.1. Terms used 

Simple Box model.

250



was considered as a potential PCB source (-20% of the surface area of the box 

included farmland, parkland etc.)- The soil pore water was taken as the 

compartment which, over the period of one year would be responsible for 

any exchange between the atmosphere and the soil. Soil water PCB 52 

concentrations were derived from average urban soil concentrations

m easured by Lead and Jones (unpub. data) [ng g_1] using the equation 

developed by Hartley and Graham-Bryce (1980), which fractionates the total 

am ount of com pound present in the soil into the respective soil 

com partm ents using the distribution coefficient (Kd) and Henry's Law 

constant (H) for that compound/congener.

M liq /M  = Vliq / (P l iq  +H V air + rbKd) (10)

Where, M is the total amount of PCB 52 present, V is the volume, rb is the 

bulk density of the soil and the subscripts refer to the liquid and air phases. A

typical soil density of 1.0 g cm'3 was used in the equation, along with typical

percentages of the soil air volume (25 %) and soil water (25 %). Kd and H

were derived for congener 52 from Mackay et al. (1992).

2) Urban dust Dust covering the mineral surfaces of the urban area 

(considered to be -  80% of the total surface area within the box) was taken as 

one of the primary sorbing compartments. Allot et al. (1994) found a loading

of urban dust to be 1.8 g nv2 for a road surface in an industrial town located 

in north-west England, UK; this value was applied to the Manchester box.
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PCB 52 concentrations determined in the NIST Urban Reference Dust 1649 

collected in Washington D.C. were taken as representative of the congener 

concentrations in this material. These were presented in Chapter 3, section 

3.6.4 (Table 3.8). The organic fraction of urban dust [13.5%] (Fergusson and 

Ryan, 1984) is significantly larger than many types of soil and could at least 

partially account for the higher concentrations in dust than in soil. Km was 

derived by selecting a component of the dust from which PCBs (in particular 

congener 52) would be readily exchangeable to the atmosphere. Like soil, this 

was considered as the dust moisture. To determine the fraction of a congener 

in the dust moisture, Equation (10) of Hartley and Graham-Bryce (1980) was 

applied. The dust was treated in exactly the same way as the soil 

compartm ent.

3) Building air For this compartment a Km value could not be estimated as 

the amount and type of PCB contaminated material was unknown. Instead 

building air was considered only as a significant source of PCBs, in this case 

the amount of congener 52 released from a percentage of building space was 

estim ated over an annual time scale. Several studies have shown that 

indoor air can have significantly higher PCB concentrations than ambient 

outdoor air (Macleod, 1981; Balfanz et al, 1993; Alcock et a l, 1994) suggesting 

that the ventilation of building air may contribute to the atmospheric PCB 

loading in the city environment. An average UK urban 3 storey building has

a volume of 5000 m3 with a ventilation efficiency of ~ 50 % h r '1 (Building 

Research Establishment pers. comm.). The available data on indoor air 

concentrations is biased towards large public buildings i.e. schools and
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laboratories so these data were applied only to large non-domestic buildings.

Five percent of the total urban area (Manchester city centre ~8.5 x 10^ m 2) was 

considered to be covered with 3 storey buildings or greater. In the course of 

one m onth these buildings will have replaced their indoor air volumes 

approximately 360 times. Indoor PCB concentrations measured by Alcock et 

al. (1994) were applied to the Manchester model. A m onthly release

concentration of congener 52 (ng m~3) was loosely derived for the building 

component. Therefore its contribution to the overall atmospheric loading 

could be assessed.

4) Vegetation The 'open land' fraction of the box consisting of parklands, 

farm land and gardens was assumed to be covered by vegetation. Above­

ground vegetation is an important sink for some SOCs from the atmosphere 

(Simonich and Hites, 1994). This surface vegetational compartment is also 

likely to act as a contributory source to the atmosphere with the seasonal 

elevation of temperature. The concentrations of PCB 52 associated with root 

systems or inside woody plant tissue were ignored since it was assumed that 

they would not be readily exchangeable with the atmosphere. Reiderer (1990) 

found that > 90 % of HCB and PCP in leaves were associated with the waxy 

cuticle. It was assum ed that this surface layer was the dom inant 

sorbing/desorbing component of the vegetation, although McLachlan and co­

workers have shown that plant leaves can have at least 2 'compartments’ 

('inner' and 'outer') where PCBs may be retained (Tolls and McLachlan,

1994; H aut et al, 1994). The total mass of cuticle is between 180-1500 kg ha*1 

for temperate forests and agricultural plant communities (Reiderer, 1990). A



figure of 660 kg ha"1 was assumed to apply to the gardens and open 

parklands considered here. Congener 52 concentrations in herbage samples 

were taken from Duarte-Davidson and Jones (1994).

A weight-averaged Km was determined from the individual Km values of 

PCB 52 for the three different compartments of urban dust, vegetation and 

the soil respectively using Equation (2). This was applied to Equation (3) to 

obtain q (ng), this value can be divided by the volume of the box to give q/V

(ng m -3), which is the total atmospheric equivalent concentration of the 

readily exchanging fraction of the congener. Equation (9) was utilised to 

predict the vapour phase concentration of PCB 52 in the M anchester 

atm osphere  for each m onth during 1991. Mean m onthly am bient 

tem pera tu res (in K) were taken as T to give m ean m onthly air 

concentrations.

Firstly the terms of H m  and K ^m /V  had to be derived before Equation (9) 

could be solved for different T. Theoretical H m  values can be derived from 

m easured heats of vapourisation ( H v ) by regressing compounds with a 

known H v  against corresponding H m  (Pankow, 1993). H m  values can also be 

obtained using field values by plotting the log partitioning ratio for PCB-52 

of the form (F/TSP)/A against 1000/T and multiplying the slope of the line 

by 2.303R (see Chapter 2, Section 2.2.3). Figure 7.1 displays a plot of log 

(F/TSP)/A  vs. 1000/T (24 samples throughout 1991), the slope of the line
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Figure 7.1 Plot of log partition coefficients (F/TSP/A) of PCB-52 over inverse 
T (1000/K). Twenty four samples taken in Manchester air throughout 1991. 
Correlation parameters of the form log (F/TSP)/A = m /T  + b, result in m = 
5002 and b = -20.9. The heat of desorption (Hm) derived from the slope of the 
line is 95 (± 20) KJ m ol'1.

-2-!

r = 0.543̂-

4 -

-5-

3.4 35 3.6 3.7
1000/T

Figure 7.2 Simple box model predictions of PCB_52 vapour phase 
concentrations in Manchester air. Fit 1 uses Hm and Kmm/V taken from
Pankow (1993), 67.0 KJ mol-1 and 10-11 respectively. Fit 2 uses Hm derived
from this study as 95 KJ mol-1 and Kmm /V  as -ID"19. The building air
com ponent of 0.08 ng m-3 was sim ply added onto each m onthly 
concentration predicted in Fit 1 to give the "Fit 1 + building air" prediction. 
This gives an indication of how potentially im portant the building 
compartment is, as a source to the urban atmosphere.

0.2
Fit 1 
Fit 2

Fit 1 + Building air 

Observed

0.0 60

Month 1991
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being 5002 and the intercept (b) -20.9. The derived value of Hm for congener 

52 was 95 (± 20) KJ mol"1 while laboratory studies predict Hv (~ Hm) as 80.8 KJ 

mol"1 (Falconer and Bidleman, 1994). Pankow (1993) derived a Hm of 67.0 KJ 

m o l'1 using the data of Hoff et al. (1992a) while Panshin and Hites (1994)

obtained a Hv of 77 KJ mol-1. The scatter observed in Figure 7.1 resulted in a 

weak correlation (r = 0.54). This correlation for PCB 52 was weaker than that 

obtained by Hoff et al. (1992b), hence H m  was derived with a large standard

error (± 20 KJ mol-1).

Kmm /V  was then determined by rearranging Equation (9) to:-

log [ q/V  -1] = log K m m / V  + Hm/2.303RT (11)
A

By applying H m to Equation (11) Kmm /V  could be calculated once q /V  had 

been derived from Equation (3). The terms applied in the above equations 

for PCB 52 are displayed in Table 7.2. As the derived value of H m was 

significantly higher than the value used by Pankow (1993) his estimates of 

K m m /V  and Hm for congener 52 were also included for comparative

purposes.
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Table 7.2 Terms, applied to' Equations (3) and (9) for the application of the box model to

M anchester.

A = 0.113 ng irf- (mean for 1991 only) Fitl'

F = 0u003iignf® (mean)

TSP= 40 ng mr® (mean)

KplSP = 2.6 x 10"2

Average weighted Km = 1 x 10"̂  m^ pg“l

JCmm /V = 10-11 

Hm = 67.0 KJ mol'1

Fit 2

q/V  = 0.116 ngnf^

q=4J8xlO^®ng Kmm/V = ~10r19 

Hn = 95 KJ mol'1

♦Values for PCB 52 from Pankow (1993)

By applying the box model in this scenario it is important to clarify that the 

size of the box is considerably smaller than that used by Pankow (1993). For 

the M anchester box any volatilised PCS' 52 is likely to leave the box (i.e. 

advective movement) particularly over a time period of 1 year. Therefore 

the sorbed fraction within the box had to be sufficiently large to maintain a 

constant q /V  throughout this period. For PCB 52 if is believed that there was 

a sufficient sorbed quantity in the proposed compartments to maintain this, 

and  fulfil the key assumption in Pankow’s model that the mass q of 

exchanging com pound remains constant over this time period. The 

param eters used to estimate the contribution of PCB-52 from buildings are 

presented in Table 7.3. Included in this table are the mean monthly
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Table 7.3. Parameters used in the estimation of PCB-52 release from building air. Average
monthly temperatures (K) and TSP (pg m"3) used in the Simple Box Model for Manchester 
(1991).

Building source

Area covered by 3 storey buildings (5 % of urban area) = 8.5 x 106 m2

Average volume = 5000 m3 •

Average height = 25 m

Total building volume = 2.1 x 108 m3

Indoor PCB-52 air concentration = 0.465 ng m"3 • •

Building ventilation efficiency = 50 % hr"1 •

Total mass of PCB-52 released from buildings over one month = 3.5 x 101® ng 

Monthly contribution of building air to 'box' concentration =

mass released over 1 month/volume of box = ~ 0.08 ng nrf3

Monthly mean temperature and TSP concentrations

Month K TSP Month K TSP

January 276 60 July 291 41

February 278 49 August 290 35

March 285 20 Sept. 290 47

A pril 284 39 Oct. 284 42

May 286 42 N ov. 279 32

June 285 33 Dec. 278 38

• Building Research Establishment (pers. comm.)

• • Alcock et al. (1994)

258



temperatures applied to the box model and the mean TSP loadings.

The model fits are presented in Figure 7.2 along with the actual monthly 

concentrations of PCB 52 throughout 1991. The three model fits are; one (Fit 

1) using the values of H m  and Kmm /V  derived by Pankow (1993) two (Fit 2) 

using the values of H m  and Kmm /V  derived from this study (Table 7.2) and 

three (Fit 1 + building air) where the building air component is added to 

each m onthly Fit 1 concentration. From Table 7.3 the contribution by

building air results in an additional 0.08 ng n r 3 per month of PCB 52 to the 

Manchester box. All the fits illustrate the seasonal cycling of congener 52 

occurring within the atmosphere of the Manchester box. Fits 1 and 2 show 

the significance of the v e g e ta tio n /so il/d u s t com partm ents on the 

a tm ospheric vapour phase concentrations of PCB 52. However the

derivation of an accurate Hm is essential for the application of the model.

Pankow's derived Hm of 67.0 KJ mol-1 (Fit 1) is possibly more realistic as it

closely correlates with heats of vapourisation derived from laboratory 

experiments. For this reason the building air component was added onto the 

Fit 1 m onthly concentrations. The resulting fit (Fit 1 + building air), 

although resem bling the observed concentrations, really depicts the 

significance of building air in urban areas as a source of PCB 52. The

additional concentration to the box of 0.08 ng n r 3 per month must only be 

taken as approximate. The modelled concentrations of Fit 1 and Fit 2 more 

closely resemble rural air discussed in Chapter 4. After the building source
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the most significant compartment (greatest contributor of congener 52 to the 

atmosphere) was found to be the vegetation, followed by soil. These two 

com partm ents can explain the atmospheric vapour phase concentrations 

found at the rural location in the north west of England. As the two model 

fits of Fit 1 and Fit 2 (Fig. 7.2) are lower than the measured concentrations, 

then the city air may be subject to a source(s) of PCB such as building air or 

other point sources not considered here. The building air component, for 

example, is probably underestimated, given the number of public and 

domestic dwellings within the Greater Manchester area. Point sources such 

as emissions from landfills and incinerators (Murphy et a l, 1985) may also 

make contributions to the urban atmospheric loading. If air moves through 

the box by advection then outgoing air will supplement the atmospheric 

PCB concentration of surrounding areas, resulting in an urban area acting as 

a source on a regional scale.

7.4 Summary

The annual cycle which has been observed in the atm ospheric 

concentrations of some SOCs (that demonstrate summer maxima), provides 

strong evidence that tem perature-dependent partitioning is playing an 

im portant role in causing the observed fluctuations. The equilibrium box 

model applied here, provides a rough way to parameterise changes of this 

type, particularly for the lighter PCB congeners which are predominantly 

found in the vapour phase. The application of the Box Model has proved
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successful in predicting the annual cycling of a tetrachlorinated congener in 

an urban atm osphere, invoking temperature as the controlling factor. 

However, the simplicity of the model has required several assumptions, 

prim arily  that the amount of readily exchangeable PCB 52 is constant 

throughout a twelve month period, or the amount removed by advection is 

adequately replaced by a substantial reservoir, counteracting this loss. Also, 

can the ambient air temperature (T) taken at some central, single point on 

the surface (roof top in Manchester) be applicable to the whole box? It is 

possible that microenvironments such as street canyons or wood canopies 

influence the atmosphere around them, and hence alter the predicted 

partitioning of SOCs for the whole box. Furthermore, it is assumed here that 

the soil and dust solution concentrations, are in equilibrium with their 

respective solid phases.

Therefore the use of the Box Model in this senario is one of illustration, 

p rov id ing  a useful tool in interpreting the collected field data. The 

agreement between predicted values and measured values suggest that the 

major sorbing compartments have been recognised in the Manchester box. 

The contribution by each compartment to the box atmosphere has been 

predicted. The following order shows the importance of the considered 

compartments as sources of PCB 52 to the atmosphere - vegetation > urban 

dust > soil. Vegetation therefore plays a major role in the cycling of PCBs 

even in this urban box, where only 20 % of the land is considered to be 

'open' and free of hard surfaces. On a national basis vegetation must,

261



therefore, play a large role in the partitioning and cycling of SOCs, probably 

acting as a source to the atmosphere during the warmer seasons and a sink 

during the winter. The two compartments of soil and urban dust, contain a 

large reservoir of PCB 52. The majority of this may not be readily 

exchangeable with the atmosphere over a short time period (~ 1 year), 

probably  being strongly bound to the organic matrix w ithin these 

com partm ents.

For the urban environment the model cannot quantify the release from the 

num erous point sources, perhaps the most important being the ventilation 

of indoor air. Although an estimate is made for the release of PCB 52 from 

large public buildings (represented in Figure 7.2 as Fit 1 + building air) this 

can only be taken as approximate. Taking the building component as a 

whole this is probably underestimated given the number of public and 

domestic dwellings within the Greater Manchester area. This indicates that 

num erous point sources, in the confines of the urban environm ent, 

com bined w ith a significant building source of PCBs (indoor air 

concentrations are frequently amongst the the highest measured anywhere 

(Alcock et a l, 1994; Kreiger and Hites, 1994)) are likely to explain the urban 

atm ospheric loading. Hence, on a regional scale, cities may be acting as 

sources to surrounding areas following outgassing of PCBs from buildings, 

former industrial uses, landfills and incinerators.
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Chapter 8 

Atmospheric Deposition

8.1 Introduction

SOCs released into the atmosphere from various processes such as 

industrial emissions, energy production/consum ption, waste incineration 

and the re-volatilisation from secondary sources such as vegetation, soil and 

sedim ents will eventually be deposited to the terrestrial or m arine 

environm ent. Deposition from the atm osphere may be either m any 

kilometers away from the original source or alternatively, localised around 

a particular source such as an incinerator or motorway. In order to assess 

regional air and water quality and implement clean air legislation an 

understanding not only of the processes that scavenge contaminants from 

the atm osphere is required but also a need to quantify the am ount of 

deposition to any one area. Atmospheric transport and deposition are 

im portant sources of many SOCs and trace elements to terrestrial and 

aquatic ecosystems. SOCs such as PCBs and PAHs, recognised as ubiquitous 

environm ental contaminants, are deposited from the atmosphere by both 

wet and dry deposition, these processes having been discussed in Chapter 2, 

section 2.5.1. Aerial deposition has been found to be the primary source of 

these contaminants to remote areas such as the Great Lakes (Eisenreich et 

a l ,  1981; Swackhamer et a l , 1988) and the Polar regions (Gregor and 

Gum m er, 1989; Barrie et a l ,  1992). It is therefore necessary to monitor
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depositional fluxes in order to relate these values to known sources, and to 

assess the movement between the atmosphere and the earth's surface.

In this study bulk (wet + dry) deposition was collected each month at the 

five TOMPS sites. The deposition was analysed for PCBs and PAHs, 

sampling and analytical details being presented in Chapter 3. As the area of 

the collecting surface (Teflon coated frisbee) was known, along with the 

duration of exposure, depositional fluxes (mass deposited per unit area per 

day) could be calculated for these contaminants. Deriving deposition fluxes 

allows the rate of deposition to be assessed for a particular compound, 

allowing a mass balance to be established to determine whether releases to 

the atmosphere, and hence air concentrations, are related to the depositional 

flux.

8.2 Deposition sampling artefacts

As depicted in Chapter 2, Section 2.6.9, deposition sampling has major 

inherent artefacts. Firstly, are the collecting surfaces a good surrogate for 

natural surfaces?, secondly is sample integrity maintained throughout the 

exposure time?. The Teflon-coated metal frisbee (collecting surface depicted 

in Figure 3.1) has been shown to be an efficient collector of atmospheric 

aerosol (Hall and Upton, 1988), however there has been no research on its 

collecting abilities for SOCs in the vapour phase. Gardner (1993) has shown 

that significant removal of atmospheric PAHs is through vapour phase
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deposition. In several studies where deposition of organics has been

monitored the collecting surface has usually been larger (~lm 2) than the one 

used in this study (Pankow et a l, 1984; Ligocki et a l , 1985a, b).

The materials used for the collecting surfaces have also been brought into 

question.The collecting vessel in this study was a 5 L glass jar connected to 

the inverted frisbee by a 1.75 m Teflon tube. Teflon, widely recognised for its 

'non-stick' properties (low sorbent capacity), has been found to sorb 

organochlorines to some extent and give poor reproducibility on the 

analysis of repeated solvent rinses (Murphy and Sweet, 1994).

Sample integrity is brought into question when the sampling equipment is 

left in the field for the period of a month. Many hydrophobic compounds 

such as the SOCs, dissolved in the collected precipitation, will migrate to the 

particulate or be adsorbed onto the vessel sides. Furthermore, losses from 

the collected sample by volatilisation cannot be ruled out, particularly 

during the warmer summer months. Several studies have experimented 

with depositional equipment which incorporates a solid adsorbent upstream 

from the final collecting vessel (Strachan and Huneault, 1984; Horstmann 

and MacLachlan, 1994). This has the effect of removing the dissolved 

fraction from the precipitation, effectively 'locking up' the contaminants 

and preventing further movement.

W ith these artefacts in mind, deposition samples collected using the
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eqiiipm ent in this study may not be accurately representing the true 

deposition of both PAHs and PCBs. However, the generated flux data 

presented in this Chapter does give an approximation, and is comparable to 

other studies on an international basis. Due to the above m entioned 

artefacts and the length of time taken to obtain a sample, no attempt was 

made to separate the dissolved phase from the particulate phase for any of 

the compounds. Instead, the generated flux data was used to compare the 

various sites - both urban and rural - and relate these fluxes to the measured 

air concentrations. Furthermore, with basic depositional inform ation 

simple mass balances could be derived for the UK environment.

8.3 PAH deposition

Table 8.1 presents depositional flux data for the u rban /rural sites of this 

study and for two other sites in the north west of England. International 

data on PAH fluxes is sparse and what is available is mainly centred on the 

Great Lakes region of North America. The fluxes monitored at these more 

rem ote sites have also been included for comparison with the UK data.

London has the highest mean flux of 10.3 pg XPAH n r 2 d _1, displaying the

greatest flux range of 0.32 - 46.0 pg n r 2 d"1. London also has the highest 

m ean XPAH air concentration (discussed in Chapter 5) being -1.4 times 

greater than that measured in Manchester, the mean deposition flux was 

also greater by a factor of -1.4. Similarly, London’s air concentration was 

greater than Cardiff's by a factor of 1.8, the deposition flux, again being
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Table 8.1 Deposition flux rates (XPAH) (pg/mA2/day).

UK
Urban area Winter Summer Mean Median Range

London (1) 19 16 10 7.7 0.33-46
Manchester (1) 5.6 2.1 5.8 33 1.8-27
Cardiff (1) 4.1 2.9 5.1 3.9 1.0-18
Stevenage (1) 6.6 0.71 4.3 2.9 0.32-20
Castleshaw (2) 3.9 1.1 1.3 030 0.21-6.0
(Nr. Manchester)

Rural area

Hazelrigg (1) 1.7 25 1.9 1.7 0.95-2.5
Esthwaite (2) 3.9 W 2.6 23 0.20-8.5

USA
Rural/remote area

Chesapeake Bay (3) 054
(Maryland)
Siskwit Bay (4) 051
(Lake Superior)
Commencement Bay (5) 4.7
(Puget Sound - Washington)

* Sampling ceased April 1992
(1) This study
(2) Castleshaw, near Manchester; Esthwaite water, L. District (Gardner, 1993)
(3)Sampling over a two year period 1990 -1991 (Leister and Baker, 1994)
(4) Sampling over a two year period 1983-1984 (McVeety and Hites, 1988)
(5) PHE and B[a]P only, 1991 [Cited in Leister and Baker (1994)]



greater by a factor of ~ 1.8 (2.0). Correlations between depositional fluxes and 

air concentrations were not derived, since deposition fluxes were 

determ ined from samples collected over m onthly periods (to ensure 

detectable concentrations). The air samples, however, were collected over a 

m uch shorter time scale (1 week periods). Therefore any short term 

variations in deposition fluxes (possibly related to the fluctuations in air 

concentations) would be masked by the prolonged collection period.

The m ean fluxes measured at the two UK rural sites (Hazelrigg and 

Esthwaite) are significantly lower than the central urban locations (by a 

factor of ~3), however they are comparable to Castleshaw, a semi-urban 

location on the NE outskirts of Manchester. This would indicate that 

deposition of PAHs in these rural areas is similar to suburban areas like 

Castleshaw, implying that greater distances away from conurbations are 

needed before PAH deposition is significantly reduced. Certainly studies on 

air mass transport has shown that urban areas act as a source of PAHs on a 

regional scale (Broman et al., 1991). However, W indsor and Hites (1979) 

noted that the PAH deposition decreases dramatically with distance from 

urban centres. For example, they found that within a 100 km of Boston, 

USA, the total PAH abundance in freshwater sediments (directly related to 

atmospheric deposition) decreased by three orders of magnitude. These two 

UK rural sites are within a 100 km from urban areas, and do not show a 

decrease by three orders of magnitude. At the Esthwaite site local effects may 

also make a significant impact. For example, Gardner (1993) ascribed
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increased, winter depositional fluxes to the influence of local coal and wood 

burning for domestic heating. Given the size of the UK and the population 

density , m any rural areas (particularly dow nw ind of the major 

conurbations) will reflect semi-urban PAH deposition rates similar to those 

m onitored at Castleshaw.

In Table 8.1 the mean winter and summer XPAH fluxes are presented for 

the UK sites. Clear seasonal trends in the monthly depositional fluxes could 

not be distinguished at any of the TOMPS sites. Figure 8.1 displays the 

m onthly XPAH fluxes for the two urban sites of London and Manchester; 

no discernible seasonal patterns were observed. Furthermore, unlike the air 

concentrations, individual compounds such as B[a]P showed no seasonal 

pattern as well. However, by taking the mean XPAH flux of the winter and 

sum m er m onths respectively, the mean winter flux is greater than the 

summer flux at both urban and rural locations, however for the rural site at 

Hazelrigg there was found to be no significant difference between winter 

and sum m er (P > 0.05). At this particular site PHE and ACE dominate the 

flux profile in the summer months, corresponding to their elevated 

atmospheric concentrations at this time of year. Gardner (1993) monitored 

wet and dry deposition separately at the Esthwaite and Castleshaw sites and 

found that dry deposition dominated during the summer months, with wet 

deposition dominating in the winter.
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Table 8.2 presents the percentage contribution each PAH makes to the mean 

XPAH deposition at both urban and rural locations. Similar to the air 

concentrations PHE is the dominant compound in the flux profile at each of 

the urban sites FLUO, MPHE and PYR also make a significant contribution 

(> 10 %) to the total deposition. Again, this follows a similar pattern to the 

atm ospheric profile. To support this finding for the UK urban sites the 

deposition profile is also presented for the the city of Portland, Oregon; again 

PHE, FLUO and PYR are the dominant compounds in the flux profile. In 

this particular study wet and dry deposition were monitored separately. The 

two UK rural sites show a different profile from the urban locations. At 

Hazelrigg the lighter compounds of ACE and FLU make up a significant 

percentage of the mean deposition (> 12 % each), from the air data presented 

in Chapter 5 FLU comprises between 6 - 20% of the £PAH air concentration. 

At Esthwaite the reverse appears to be the case; the mean depositional 

profile (deposition samples taken over a year, July 1990 - July 1991) is 

dom inated by the higher molecular weight compounds of B[a]P, D[ac]A, 

B[k]F and B[b]F. Gardner (1993) explains this phenomenon on the local 

effects of coal and wood combustion. These higher molecular compounds 

are predominantly associated with the particulate phase (Halsall et al., 1994) 

and are therefore likely to undergo rapid deposition close to the source.

An interesting discrepancy between the heavier multiringed PAH and the 

lighter more volatile compounds, are the large differences observed in their 

respective air concentations and yet only small differences between their
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depositional fluxes. This can be illustrated by looking at the behaviour of 

PHE and B[a]P respectively at two different locations. In Table 8.3 the air 

concentrations and the fluxes of these two compounds are presented for two 

very different sites: 1) the urban site in Manchester (this study); 2) the rural 

site of Chesapeake Bay on the eastern seaboard of the USA (Leister and 

Baker, 1994). Although the sites are different, the sampling regimes in both 

studies covered the period of a year or greater.

Table 8.3 Mean PHE and B[a]P air concentrations and depositional fluxes measured at the 

urban site of Manchester, UK, and the rural site of Chesapeake Bay, USA.

Air conc. (ng nrf3) Flux (ng m'2 d"1) *

Chesapeake Bay

PHE 1.4 57

B[a]P 0.013 16

Manchester

PHE 45 1100

B[a]P 15 520

* flux reported in ng rather than pg, for comparison with air cones.

The m ean air concentrations and fluxes are significantly lower, for both 

com pounds, at the rural site in Chesapeake bay. The difference in air 

concentrations between PHE and B[ajP is a factor of -100 for Chesapeake Bay 

and -30 for Manchester. The deposition fluxes, however, do not show this 

prounounced difference. In fact, PHE deposition is only greater than B[a]P by 

a factor of -3.5 at Chesapeake Bay and by only a factor of -2  in Manchester. 

At both sites therefore, B[a]P deposition is more marked than for PHE
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relative to their respective atmospheric concentrations. It is therefore

possible that significant amounts of PHE are broken dow n in the 

atmosphere before deposition can occur. Unlike B[a]P which exists mainly in 

the particulate phase and hence will be deposited faster, PHE is present 

predom inantly  in the vapour phase and therefore more available for 

photolytic and chemical degradation (Kwok et a l, 1994). Alternatively, B[a]P 

m ay sim ply be collected more efficiently, due to its association with 

atmospheric particulate. However as the sampling equipment was markedly 

different in design between this study and the Chesapeake Bay study, then 

collecting efficiencies would also differ and the pattern would not be the 

same for the two studies. This discrepancy between air concentations and 

deposition fluxes is observed both in the urban and rural environment. 

Again at the UK rural site at Hazelrigg, the PHE air concentrations showed a 

sum m er maxima (Chapter 5), however the mean deposition flux of PHE 

was not elevated relative to the mean air concentration. The difference 

between B[a]P and PHE mean air concentrations was by a factor of -350, 

whereas the deposition fluxes varied by only a factor of —11.

8.4 A mass balance of PAHs in the UK environment

By determ ining fluxes in both UK urban and rural areas, the amount 

deposited to terrestrial surfaces annually can be estimated. Importantly, the 

mass deposited can be matched with emissions from known sources, and 

hence a potential mass balance may be determined. In recent years efforts
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have been concentrated on compiling a UK source inventory for a variety of 

SOCs including PCBs and PAHs (Harrad et al., 1993; Wild and Jones, 1995, 

APARG, 1995). A source inventory lists the major sources of a particular 

compound class, such as the PAHs, and quantifies the mass released from 

each considered source (i.e. waste incinerators) by extrapolation of several 

measurements (i.e. stack emissions). Wild and Jones (1995) quantified the 

prim ary sources of PAHs to the UK atmosphere, their summary of annual 

PAH emissions (tonnes) is presented in Table 8.4. Wild and Jones estimated 

that the annual release of XPAH is ~ 700 tonnes per year, further work on 

the UK source inventory reveals an estimated XPAH emission of between 

560 - 1700 tonnes per year (APARG, 1995). If unregulated fires and 

volatilisation from secondary sources (i.e. soils and vegetation) are added to 

this, then it is possible that these figures could well underestimate the total 

XPAH released into the UK environment each year.

By taking the PAH air concentrations presented in Chapter 5 the total 

atmospheric loading can be estimated for the individual PAHs. This was 

done by taking an overall mean air concentration for each PAH from the 

urban and rural data. By calculating the volume of air over the UK this 

allowed a total atmospheric loading to be estimated. With the surface area of

the UK being 2.5 x 1011 m 2 (Geodata, 1983) and taking the boundary layer 

mixing height of 2000 m (Harner et a l, 1995), then this gives a UK air mass

volume of 5 x 1014 m 3. Table 8.5 presents the mean air concentrations for 

each PAH and their respective calculated atmospheric burdens. Hence the
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defined UK air mass was estimated to have a I P  AH burden of 53 tonnes at 

any one time, with the low molecular weight compounds of PHE, FLUO and 

PYR dominating.

From the calculated depositional fluxes it is possible to determine the 

annual flux in tonnes to both urban and rural surfaces. Table 8.6 presents

the mean urban and rural flux for each PAH. Ten percent (2.5 x 1010 m 2) of

the UK surface is considered to be urbanised, while 90% (2.25 x 1011 m2) is 

considered to be rural. Using the respective urban and rural PAH fluxes the 

loading of each PAH to the two surfaces can be calculated. Approximately 70 

tonnes of PAHs are deposited to urban surfaces while 150 tonnes are 

deposited to rural surfaces; therefore for the total UK surface some 220 

tonnes of I P  AH are estimated to be annually deposited. This leaves -700 

tonnes of the estimated emission of PAH unaccounted for.

Table 8.5 PAH air concentrations and estimated burden in the UK air mass.

PAH Air UK atmospheric
concentration burden

(ng/mA3) (tonnes)

ACE 2.3 1.2
FLU 19 9.5
PHE 63 32
ANTH 1.8 0.90
FLUO/MPHE 7.0 3.5
PYR 5.4 2.7
BENZANTH 0.85 0.43
CHRY 1.4 0.70
D[acJA/B[k]F 0.98 0.49
B[b]F 0.41 0.21
B[a]P 0.67 0.34
B[ghi]P 2.4 1.2
COR 0.43 0.21

y.PAH 110 53
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Such a large imbalance between the amount released annually into the 

atm osphere and the amount deposited, requires further explanation. It is 

considered that there are three main processes that can explain this 

imbalance: (1) There are significant PAH losses in the atmosphere due to 

breakdow n/reactions; (2) PAH are transported away from the UK with 

prevailing winds; and (3) there is greater PAH deposition in the vicinity of 

point sources.

Several studies have highlighted the susceptibility of PAH to chemical and 

physical transformations in the atmosphere (Nikolaou et al., 1984; Baek et 

ah, 1991). As mentioned earlier in Chapter 2, section 2.2.2, the lighter, 

predominantly vapour phase PAHs were found to react with OH radicals, O3 

and NOx- Kwok et a l (1994) under simulated laboratory conditions predicted 

the lifetime of atmospheric PHE to be in the order of ~1 day. Degradation of 

particulate-bound PAHs by O3 and NOx has also been observed under 

laboratory conditions (Lindskog et al., 1985). However, photochemical 

transform ation has generally been considered to be the most im portant 

m ode of atmospheric decomposition of PAH for both particulate and 

vapour phases (Masclet et a l, 1986; Baek et al, 1991). The degradation rates 

by photolysis of different PAH show a wide variation, but the extent of 

photochemical decay for particulate-bound PAH is strongly influenced by 

the nature of the substrate on which they are adsorbed (Behymer and Hites, 

1998). Even if PAH have greater half-lives adsorbed to particulate matter 

such as soot and fly ash then they are more susceptible to settlement and /or
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scavenging from the atmosphere than the vapour phase component.

A part from the loss by physical-chemical processes PAHs may also be 

transported away from the UK by air mass movement. Masclet et a l (1988) 

investigated the long range transport of PAHs from NW Europe to the 

Island of Corsica in the Mediterranean. They concluded that many of the 

industrialised countries, such as the UK, France and Germany were an 

im portant source of PAHs. Tysklind et a l (1993) found evidence that 

PC D D /Fs, SO2, NO2 and soot are transported eastwards from the UK to 

Scandinavia. It is therefore likely that PAHs will be transported eastwards to 

Scandinavia and mainland Europe where they will be eventually deposited. 

Secondary sources such as re-volatilisation from soils and vegetation, 

a lthough  not quantified, could increase the atm ospheric loading 

significantly. Evidence for this has been noted at the Hazelrigg rural site 

(Chapter 5), where elevated concentrations of the lighter, more volatile PAH 

were found during the summer months.

Another im portant factor leading to an imbalance between emissions and 

deposition is that many of the PAH, particularly the particulate-bound PAH, 

could be deposited within the vicinity of a source. The overall w e t/d ry  

deposition figure presented in Table 8.6 represents a national deposition 

away from point sources. Localised deposition around point sources has 

been examined by various workers. For example Hewitt and Rasheed (1990) 

found that up to 30 % of selected PAHs are deposited within 50 m either side
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of a motorway. This particular work was described in Chapter 5, were the 

deposition flux of PHE at a distance of > 50 m from the motorway was 

equivalent to a site well removed from any roads. If PAH deposition is 

therefore enhanced near point sources then the overall PAH deposition 

loading to the total UK surface is therefore likely to be underestimated. 

Furtherm ore, the rural flux data used to estimate the annual deposition 

loading to -90 % of the surface area of the UK, is based on just two sites 

located in NW England, the extrapolation of the deposition at these two 

sites to the whole of the UK may lead to errors. It must be noted, however, 

that these estim ates of deposition and releases (emissions) are only 

estimates and that the source inventory is incomplete and subject to a high 

degree of uncertainty (APARG, 1995).

In order to assess these different factors that lead to an imbalance between 

am ount emitted and amount deposited, then it is necessary to examine the 

release and deposition of the individual compounds. From Table 8.4 the 

compounds that dominate the emission profile are FLUO, PYR and CHRY, 

yet for the deposition (Table 8.6) the lighter compounds of PHE and ACE 

dominate. Indeed for PHE, -80% that is released from the primary sources 

can be accounted for by the deposition. For the heavier compounds CHRY - 

B[ghi]P only between 10 and 20 % of the amount released can be accounted 

for. Therefore, this may indicate that deposition of these heavier 

com pounds is greater when near the source. Certainly the urban flux of 

these compounds is an order of magnitude higher than the corresponding

281



rural flux (Table 8.6), yet the air concentrations are, on average, only a factor 

of 2 higher. The annual release of the lighter PAH such as PHE and ACE is 

probably underestimated in Table 8.4. Secondary sources such as soil and 

vegetation are not included and yet may account for the largest releases to 

the UK environment (by volatilisation). If PHE dominates the atmospheric 

and depositional profile, as well as being degraded rapidly in the 

atmosphere, then it is likely that secondary sources will play an important 

role in the release of this compound.

8.5 PCB deposition

The range of ZPCB fluxes encountered at the sites of this study and 

internationally are presented in Table 8.7. For the UK urban sites the range 

of encountered fluxes cover two orders of magnitude during the two year 

sampling programme. Unlike the air concentrations presented in Chapter 4 

where London possesses the highest mean concentration, Cardiff has the

highest mean deposition flux of 2.2 jig n r 2 d a y 1. Although this figure is 

significantly higher than the mean fluxes of the other urban sites (P <0.01), 

on an international basis the city of Chicago has a much greater flux, a value

of 4.9 jig m*2 d a y 1 (dry only) being reported - higher than all the UK sites. 

Furthermore, the median depositional fluxes for Cardiff and Manchester are

1.5 and 0.29 respectively; these fluxes are lower than the means which 

indicate that abnormally high values are elevating the means. At the Cardiff

site between February and April 1992 the measured fluxes were > 4 jig n r 2
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Table 8.7 Deposition flux rates (XPCB) (ng/mA2/day).

UK
Winter Summer Mean Median Range

Urban
London (1) 0.80 039 038 025 0.025-3.9
Manchester (1) 055 025 0.41 029 0.078-1.4
Cardiff (1) 1.4 23 22 15 0.053-6.8
Stevenage (1) 0.15 0.45 033 0.18 0.035 - 2.1

Rural
Hazelrigg (1) 

USA

029 0.17 0.18 0.16 0.049 - 0.33

Urban
Chicago (2) - 43 4.9 23-9 .7
Bloomington, IN (3) - - 0.18 0.15-0.45

Rural/remote
Chesapeake Bay (4) - - 0.009 -
L. Michigan (5) - - 0.021 -
Bermuda, Atlantic (6) 
Enewetak Atoll,

• * 0.036

Pacific (7) - - - 0.0005 - 0.008

1 this study XPCB = 8 congeners GPCBa - see Chapter 4)
2 Dry deposition only £PCB = 109 congeners (Holsen et al., 1991).
3 Calculated flux IPCB = 60 congeners. (Panshin and Hites, 1994).
4 XPCB = 74 congeners, dry flux was calculated (Leister and Joel, 1995).
5 XPCB = 17 congeners, dry particulate flux was calculated (Swackhamer et al., 1988)
6 XPCB = 119 congeners, flux calculated from air concentrations and predicted 
atmospheric residence times (Panshin and Hites, 1994).
7 XPCB reported as Arodor mixture (Adas and Giam, 1981).
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d a y 1. Similarly at Manchester fluxes exceeded 1 pg n r 2 d a y 1 during 

December 1991, April 1992 and May 1992.

At Hazelrigg (rural site) the mean annual flux was significantly lower than 

the urban fluxes (by a factor of ~ 4), and covered a narrower range, indicating

the lack of elevated months. Indeed, the median flux of 0.16 jig n r 2 d a y 1 is 

very close the mean of 0.18 due to the absence of abnormally high fluxes. 

The highest flux was 0.29 (December 1992), less than a factor of 2 higher than 

the mean flux. This would indicate, therefore, that the urban sites are prone 

to specific events resulting in elevated PCB deposition. At the rural site, 

however, the depositional flux is more consistent throughout the year. 

W ith the cessation of PCB production, point sources in the urban 

environm ent will be responsible for the elevated air concentrations, as 

noted, when attempting to model urban air concentrations of PCB 28 (see 

Chapter 7). These point sources will also presumably influence depositional 

fluxes. Unlike PAH deposition seasonal differences between the summer 

and w inter were not observed. Although the PCBs exhibited markedly 

higher air concentrations during the summer (Hoff et al., 1992a; Halsall et 

a l,  1995) a corresponding increase in the deposition was not observed. The 

elevation in PCB air concentrations during the summer is mainly through 

the increase in the vapour phase component, the net flux therefore may be 

one of volatilisation off surfaces rather than an increased depositional flux 

to surfaces. Certainly in the Great Lakes region of N. America fluxes from 

lake water, back into the atmosphere, are considered to be one of the
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dom inant processes, outweighing deposition into the lakes (Hombuckle et 

al., 1995). Similarly in the UK, the lack of seasonal pattern in the PCB 

deposition reflects on their current status. Unlike the PAHs that show 

increased air concentrations in the winter (due to anthropogenic input), the 

PCBs are not in current use and fresh inputs to the UK environment are 

small in comparison.

The XPCB fluxes at world rural/rem ote locations in Table 8.7 are markedly 

lower than the rural site in the UK. The mean depositional fluxes at these 

sites are, however, the same order of magnitude as the lowest m onthly 

fluxes reported for the UK sites. Lowest reported depositional fluxes were at 

the remote Pacific site of Enewetak Atoll. However it must be pointed out 

that these are not contemporary measurements and that quantification was 

based on the Aroclor mixes rather than individual congeners.

Mean individual congener fluxes and air concentrations for both an urban 

site (Manchester) and the rural site (Hazelrigg) are presented in Table 8.8. 

Also included in Table 8.8 are the mean air concentrations and fluxes for 

several of the PCB homologue groups measured at Chesapeake Bay, USA 

(Leister and Baker, 1994). All three sites clearly show the predominance of 

the lighter tri- and tetrachlorinated congeners in both the air and in the 

deposition fluxes. Interestingly the ratios between air concentrations are 

similar to the ratios between depositional fluxes for different congeners. For 

example, in Manchester the ratio between the air concentrations of
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Table 8.8 Mean PCB air concentrations and depositional fluxes at three different sites.

Manchester

PCB congener Air cone (ng/mA3) Flux (ng/mA2/day>*

28 0.13 210
52 0.10 78
101 0085 28
138 0028 22
153 0037 27
180 0024 27

Hazelrigg (rural site)

28 0045 49
52 0023 30
101 OOll 20
138 0.0040 6&
153 0.0070 16
180 0.0090 80

Chesapeake Bay (rural) -

PCB Homologue
Tri-CBs 0050 16

Tetra-CBs 0065 30
Penta-CBs 0045 22

Hexa-CBs 0035 1.4
Hepta-CBs 0020 055

* Fluxes in ng rather than pg, for comparison with air cones.
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congeners 28 and 180 is 5.5 and between the fluxes, 7. Similarly, at the rural 

site the ratio between atmospheric 28 and 180 is 5 and between the fluxes, 6. 

Likewise at Chesapeake Bay, where only the homologue groups were 

reported, the ratio between the atmospheric tri-CBs and the hepta-CBs is 4.3 

and between their depositional fluxes, 5.4. This similarity in the ratios 

between light and heavy congeners, both in atmospheric concentrations 

and depositional fluxes, indicates that the congeners are being deposited at a 

similar rate relative to their air concentrations. As discussed earlier with the 

PAHs, this is not the case for the low molecular weight compound PHE, the 

depositional flux being only slightly higher than the flux of the heavier 

compound, B[a]P, yet the air concentration is an order of magnitude higher. 

It is likely that the low molecular weight PCBs are more stable in the 

atm osphere than the lighter PAHs. Certainly the atmospheric residence 

time of the tri and tetra-CBs is estimated to be in the order of weeks 

(Manchester-Neesvig and Andren, 1989), whereas the residence time of PHE 

was determ ined to be in the order of ~1 day, due to rapid chemical 

degradation (Kwok et al., 1994).

8.6 A mass balance of PCBs in the UK environment

As with the PAHs it is useful to be able to balance known releases (i.e. 

sources) with the deposition fluxes reported in this Chapter. Although the 

production of PCBs in the UK has been banned since 1976, a significant 

quantity of PCBs are still emitted to the atmosphere. Discarded electrical
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equipm ent known to contain PCBs is now almost all disposed of via 

chemical waste incinerators, but emissions are still significant from existing 

components that have not been identified to contain PCBs (APARG, 1995). 

Harrad et al. (1994) compiled a source inventory list of PCBs to the UK 

environm ent and estimated that the major primary source of PCBs arises 

from leaks from large electrical transformers and capacitors, followed by the 

recovery of contaminated scrap metal. Table 8.9 presents a list of sources 

from Harrad et al. (1994) and their annual release to the atmosphere for both 

total XPCB and the six indicator congeners, their release is reported in 

tonnes per year. Also included in this Table are additional primary sources 

not considered by Harrad et a l (1994), namely incineration of municipal 

solid waste and chemical waste (APARG, 1995).

The loading of PCBs in the atmosphere at any one time can be estimated by

taking the volume of air over the UK (5 x 1014 m3) and the mean XPCB 

concentration in the atmosphere. Table 8.10 presents the m ean air 

concentrations of the six indicator congeners and their atmospheric loading. 

At any one time the atmosphere contains -  0.06 tonnes of XPCB.

The total depositional loading to the UK surface can then be estimated from 

the measured fluxes. Table 8.11 presents the mean fluxes for both the urban

and rural areas, the UK urban surface area is considered to be 2.5 x 1010 m2

and the rural area 2.25 x 1011 m 2. Therefore in this Table the loading 

( t o n n e s / y r )  o f  the six congeners and the Z P C B  are reported for both urban
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and rural areas. For the whole of the UK the XPCB loading is 23 tonnes per 

year, with the urban surfaces receiving some 40 % of this figure.

Table 8.10 Mean UK PCB air concentrations (ng/m A3) and total 
atmospheric loading (tonnes).

PCB Mean air 
concentration 

(ng/mA3)

Atmospheric
loading
(tonnes)

28 0.045 0.023
52 0.023 0.012
101 0.008 0.004
138 0.004 0.002
153 0.006 0.003
180 0.010 0.005

IPCB 0.12 0.06

The XPCB deposited (23 tonnes) is far greater than that released from 

sources ( 4 - 5  tonnes). At any one time the reservoir in the atmosphere (0.06 

tonnes) is only a fraction of that released or deposited. Therefore either the 

source inventory is grossly underestimated or there are additional sources 

releasing PCBs into the atmosphere. Since their production PCBs have 

become widely distributed in the UK environment, it is now considered that 

soils are the major reservoir for previously released/deposited PCBs (Jones, 

1994). It is increasingly likely that vegetation may also be a reservoir for 

PCBs and other SOCs (Simonich and Hites, unpublished). W ith the 

cessation in PCB production and the decline in air concentrations, the 

equilibrium  has shifted so that these natural sinks have now become 

im portant secondary sources for atmospheric PCBs. Indeed, in the Great 

Lakes region of the USA the surrounding atmosphere is now considered to 

be a sink for the re-volatilisation of PCBs from surfaces (Jeremaison et al,
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1994; Hornbuckle et a l, 1995). Volatilisation from these secondary sources 

(i.e. soil and vegetation) is considered to make a significant input to the 

atmosphere. Therefore if releases into the atmosphere from these sources 

are taken into account, the discrepancy between the am ount of PCBs 

released and the amount depositied should be reduced.

H arrad  et al. (1994) estim ated the mass of XPCB released through 

volatilisation from UK soil to be ~ 40 tonnes per year. It is important to note 

the author's assumptions, firstly UK soils were considered to be uniformly

contaminated with the median soil concentration of 30 pg XPCB kg-1 and 

that secondly, only the PCB fraction in the first 1 cm of soil would be 

available to the atmosphere over the period of a year. Nevertheless, the 

mass of 40 tonnes results in a significant increase in the amount released to 

the atmosphere. Table 8.12 presents the yearly release, estimated by Harrad et 

al. (1994), of PCBs through volatilisation from soil and from sewage sludge- 

amended land.

The excess XPCBs which are not deposited may undergo atmospheric 

transport away from the UK. Long range transport of PCBs has been 

investigated in several studies, notably the movement away from source 

areas to more remote sites (Hoff et a l ,  1992b; Panshin and Hites, 1994b). 

Literature on the physical/chemical degradation of PCBs in the atmosphere 

is sparse, but evidence of photochemical degradation has been reported for 

the lower chlorinated congeners in the vapour phase (Bunce et al., 1989).
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Manchester-Neesvig and Andren (1989) estimated that the atmospheric 

residence time of PCBs is in the order of weeks to months. This means that 

atmospheric transport may be a significant loss mechanism from the UK 

environment, rather than by degradation in the atmosphere.

Table 8.12 Estimated volatilisation release of PCBs from secondary sources (tonnes per year).

PCB Soil Land-applied sewage

28 5.1 0.0057

52 4.0 0.012

101 2.4 0.0035

138 0.84 0.0015

153 1.0 0.0013

180 0.60 0.0021

XPCB* 40 0.085

*X = 44 congeners

Although the addition of secondary sources results in the XPCB emissions 

outweighing the XPCB deposition (by factor of ~2), it must be clarified that 

Harrad et a l (1994), in their estimation of primary and secondary sources, 

used a XPCB where the X = 44 congeners. For the depositional loading 

(Table 8.11) the XPCB comprised of only the eight congeners common to all 

the sample sites of this study (see Chapter 4, Section 4.2). Even though these 

eight congeners are environmentally the most prominent, the depositional 

loading will still be underestimated relative to the 44 congeners used by 

Harrad et a l (1994). By including the additional 22 congeners monitored in 

the deposition at the Cardiff, Manchester and rural locations, the total
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depositional loading is estimated to be increased to ~ 40 tonnes per year. 

This figure is closer to the estimated XPCB releases from both primary and 

secondary sources. Examination of the total annual release and deposition of 

the six indicator congeners listed in Tables 8.9 and 8.12 (for sources) and 

Table 8.11 (for deposition), illustrates the near balance between sources and 

deposition. For example, the total UK depositional loading for congeners 28 

and 52 is 9.4 t/year and 3.8 t/y r  respectively (Table 8.10). The release from 

sources for these two congeners is estimated as 5.3 and 4.2 t /y r  respectively. 

Similarly for congener 101 the deposition is 2.2 t/y r  and the release is 2.5. For 

these congeners, therefore, the release almost equals the deposition. In the 

case of 28 the deposition actually exceeds the estimated annual release.

Even with this approximate balance between the mass released and the mass 

deposited it is probable that the release estimates are still underestimated, 

particularly for the secondary sources. Atmospheric transport of PCBs away 

from the UK and any atmospheric degradation, will further distort this 

balance, reducing the amount available for deposition. Releases from 

vegetation as well as the volatilisation from UK water bodies may make a 

significant impact on the atmospheric loading. Furthermore, significant PCB

volatilisation fluxes (0.82 - 2.2 pg n r 2 d a y 1) have been reported for the 

southern part of the North Sea (Thome et al., 1992 - cited in Panshin and 

Hites, 1994b), indicating that shallow coastal regions surrounding the British 

Isles may also be a significant secondary source.



8.7 Summary

Monthly depositional fluxes for PAHs and PCBs are reported at four urban 

sites and one rural location for periods of up to, or greater than, one 1 year. 

Despite inherent artefacts associated with the length of sampling time and 

the actual sampling equipment, the generated fluxes are comparable to other 

studies.

PAH fluxes were higher in the urban sites than at the rural location by a 

factor of ~3. The rural location of this study (Hazelrigg) and a rural site in 

the Lake District had PAH fluxes comparable to a semi-urban location near 

Manchester. This indicates that greater distances away from urban areas are 

needed, before PAH deposition is reduced to a 'true' rural flux. No clear 

seasonal trends in depositional fluxes were observed, however the mean 

winter flux was greater than the summer flux in the urban areas. At the 

rural location the low molecular weight compounds of ACE and PHE 

dom inate the sum m er monthly fluxes in line with their elevated 

atmospheric concentrations at this time of year.

Large differences in air concentrations between PHE and B[a]P were not 

matched by a similar difference in the deposition fluxes. For example in 

Manchester, PHE had an air concentration a factor of -30 greater than B[a]P, 

yet its deposition flux was only a factor of 2 higher. Indeed this was found to 

be the case for both the rural site in this study and a rural study in the USA.
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It is possible that PHE in the atmosphere is degraded more rapidly than 

B[a]P, resulting in reduced deposition. Likewise B[a]P, which is generally 

associated with the atmospheric particulate, may be more readily deposited. 

Furthermore, the sampling equipment may be more efficient at collecting 

particulate than vapour deposition, resulting in a bias towards B[a]P.

By examining the source inventory for PAHs an estimated annual release 

burden to the UK environment has been calculated. A discrepancy was 

found betw een this figure (—1000 tonnes) and the am ount annually 

deposited to terrestrial surfaces (~200 tonnes). This discrepancy may be 

explained by five processes: 1) loss of PAHs in the atmosphere through 

physical-chemical transformations, 2) atmospheric transport of PAHs away 

from the UK environment, 3) underestimation of PAH deposition due to 

significant deposition occurring near the vicinity of a source, 4) 

uncertainties over the emission estimates or 5) a combination of these 

factors.

Urban PCB fluxes were approximately a factor of 4 higher than the mean 

rural flux. The UK rural flux at this site was higher than rural/rem ote fluxes 

measured in the USA. PCB deposition did not show any seasonal variations 

at any of the sites in this study, possibly reflecting their current status, which 

unlike the PAHs results in comparatively low inputs to the UK 

environm ent. PCB deposition is dom inated by the lighter tri- and 

tetrachlorinated congeners. The ratio between air concentrations of the
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congeners 28 and 180 was similar to their ratio in deposition. This was also 

the case in a rural study in N. America and suggests that PCBs, unlike the 

PAHs, are deposited at a similar rate relative to their air concentrations. It is 

postulated that PCBs are more stable in the atmosphere than the lighter 

PAHs, certainly their atmospheric residence time is longer, being in the 

order of weeks rather than days.

Using source inventory data the amount of PCB released annually into the 

UK environment was estimated from primary sources to be approximately 4- 

5 tonnes, while the release from soil (secondary source) was estimated to be 

approximately 40 tonnes. This annual release estimate is greater than the 

am ount estimated to be annually deposited. This is derived from the flux 

data in this study as approximately 23 tonnes. If the full compliment of 30 

congeners are included then the deposition loading increases to 

approximately 40 tonnes. Indeed the amount released is still considered to 

be underestim ated as releases from other secondary sources such as 

vegetation and coastal waters have not been quantified. It is considered here 

that atm opsheric transport away from the UK will account for the 

descrepancy between the amount released and the amount deposited.
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Chapter 9 

Conclusions

This thesis presents a long term study of atmospheric PAHs and PCBs in 

both the UK urban and rural atmospheres. Attempts have been made to set 

this data in an international context as well as to study the spatial differences 

between the different study sites. Compound behaviour in the atmosphere 

such as seasonal fluctuations and the vapour - particle distribution have 

been examined. Deposition fluxes have also been monitored and simple 

mass balances derived. The following conclusions can be made from this 

work.

9.1 Atmospheric PAHs

* Mean annual XPAH concentrations ranged from 59 ng m -3 in Stevenage

to 166 ng m-3 in London. Comparisons can only be made with those studies 

where the vapour phase has been sampled, and preferably in ambient air at 

roof top height. On an international basis contemporary urban XPAH

concentrations range from 10's - 100's ng m-3.

* The low molecular weight compounds (MW < 200) of PHE and FLU 

predom inate in the urban atmosphere and apart from FLUO and PVR all

298



other compounds are an order of magnitude lower. For B[a]P, the PAH with 

the highest carcinogenic rating, none of the sites exceeded the German

Federal Agency mean annual limit of 10 ng m-3. In fact evidence here 

suggests that B[a]P concentrations have decreased by possibly two orders of 

m agnitude in London air over the last 45 years.

* The mean annual XPAH concentration at the rural location (Hazelrigg) 

was greater than the urban air concentrations, specifically due to the 

predom inance of FLU and PHE. These compounds were greater in the 

Hazelrigg atmosphere over Manchester by a factor of 3 and 4 respectively. 

However the heavier compounds of B[b]F - COR were lower in the rural 

atmosphere by between a factor of 2-4. It is suggested that the rural site in 

this study and another rural site in the Lake District (NW England) are 

under the influence of local sources. Deposition fluxes would suggest that 

greater distances away from urban areas are required before a 'true' rural 

atmosphere is encountered.

* Volatilisation from marine sediments, soil and vegetation may act as 

secondary sources for the lighter more volatile compounds.

* Seasonal variation of winter ’high’ to summer 'low' was evident at all of 

the sites for the heavier particulate-associated PAH. In the rural atmosphere 

the lighter compounds showed a seasonal increase in the summer, possibly 

due to the volatilisation from secondary sources. This seasonal cycling for
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the lighter compounds may be masked in the urban atmosphere due to the 

increased emissions from anthropogenic activity in the winter months, this 

includes the increased use of fossil fuels for residential heating.

* ACE, FLU, PHE and ANTH predominate in the vapour phase with the 

higher molecular weight compounds of B[b]F to COR being primarily 

associated with atmospheric particulate. Temperature appears to be the 

major controlling factor for the vapour - particle distribution with TSP 

playing a minor role. Heats of desorption derived from the data were greater 

for B[a]P than for PHE in both the rural and urban atmospheres.

* During the summer months the PAH profile is similar at all of the urban 

sites, indicating similar sources to the urban environment. Principal 

component analysis highlighted a prevalence of the lighter PAH in the rural 

atm osphere over the urban sites, indicating the possible effects of 

volatilisation from secondary sources.

* L ighter PAHs show a reduced deposition relative to their air 

concentrations, indicating that these compounds are rapidly degraded in the 

atmosphere once released. From a national source inventory -1000 tonnes 

of XPAH are released annually into the UK atmosphere compared to -200 

tonnes deposited. PAHs may, therefore, be either degraded in the 

atm osphere, depositied close to source (thereby underestim ating the 

am ount actually deposited) or be transported by air mass movement away
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from the UK.

9.2 Atmospheric PCBs

* London had the highest annual mean XPCB concentration of 1350 pg rrr3

with Stevenage the lowest at 370 pg n r3, the concentrations in the UK being 

sim ilar to other urban centres on an in ternational basis. Rural 

concentrations were approximately a factor of 3-4 lower than the urban 

values at Manchester and Cardiff. Elevated urban concentrations may be 

explained by numerous point sources often centred around urban areas and 

also the ventilation of building air into the ambient urban atmosphere.

* O n an ind iv idual congener basis the more volatile tri- and 

tetrachlorinated biphenyls predominated at each of the sites. Congeners 

were prevalent in the atmosphere according to their vapour pressure and 

abundance in the commercial PCB mixtures.

* Seasonal variations in the XPCB concentrations occur in the urban and 

rural atmospheres with increases being observed in the warmer summer 

m onths and a reduction during the winter. This seasonal cycling of summer 

'high' to w inter 'low' therefore occurs in both the urban and rural 

atm ospheres, regardless of anthropogenic activity. On an individual 

compound basis the more chlorinated congeners show a greater amplitude 

change in the cycling pattern from winter to summer. Possible explanations
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for this are that the heavier congeners are more readily exchangeable from 

surfaces with the onset of warmer temperatures or, alternatively, the less 

chlorinated congeners do not condense readily onto surfaces with the mild 

winters experienced in the UK. In other words, colder temperatures than 

normally experienced in the UK, may be required to reduce vapour phase 

concentrations of these compounds.

* Greater than 90 % of the XPCB are found in the vapour phase, On an 

individual congener basis the vapour phase component clearly dominates, 

but decreases with increasing level of chlorination and during the cooler 

winter months. As with the PAHs the vapour-particle distribution is largely 

controlled by temperature. Particulate phase concentrations did not vary 

with season, indicating that terrestrial surface vapour exchange may play a 

more important role in the annual cycling of atmospheric PCBs. On average 

the rural TSP concentrations were a factor of 2 lower than in the Manchester 

atmosphere, yet the partitioning behaviour of the six indicator congeners 

did not differ between sites.

* Concentrations of particulate phase PAHs and PCBs were found to be 

elevated above the seasonal average for several winter sampling weeks at 

the urban sites. For these weeks, meteorological conditions were typified by 

high pressure stable anti-cyclonic systems, with low wind speeds, little cloud 

cover and low mixing heights. In a high resolution sampling programme 

the XPCB concentrations varied, depending on the source of the air mass.
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Air mass back trajectories confirm that air masses over NW England 

originate from different areas. In an investigation of three separate episodes, 

the XPCB concentration was different, but the congener profile remained 

the same, indicating that PCBs are well mixed regionally, an d /o r processes 

affecting PCBs during transport, are similar.

* Urban PCB deposition fluxes are approximately a factor of 4 higher than 

the rural flux. PCBs are deposited at a similar rate relative to their air 

concentrations, indicating that PCBs may be more stable in the atmosphere 

than the lighter PAHs. Atmospheric transport is probably one of the 

dom inant loss processes for PCBs from the UK environment, explaining the 

discrepancy between the amount released and the am ount deposited 

annually.

9.3 Further research

1) The continuation of routine long term sampling of SOCs in urban and 

rural atmospheres will allow future trends in atmospheric concentrations to 

be assessed. For the PAHs this data can be used to set air quality guidelines, 

w ith ongoing data collection used to assess the effectiveness of emission 

controls, such as traffic limitation schemes in urban areas. Due to their 

longevity and persistence, PCB monitoring will be required to assess if 

atmospheric concentrations have stabilised since the post-production era. It 

is likely that secondary sources and numerous point sources may maintain
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atmospheric concentrations for many years, resulting in continued long 

range transport and the contamination of remote locations.

2) Further research is required on the mobilisation of SOCs from secondary 

sources, notably volatilisation from soils, sediments and vegetation. As 

primary sources are reduced, re-cycling from secondary sources will become 

a major source to the atmosphere, making a significant contribution to the 

national inventory.

3) Insufficient is known about the atmospheric chemistry of the PAHs and 

the PCBs, particularly in regards to their degradation rates and atmospheric 

half-lives. This is important for the transport and deposition rates of these 

contaminants, and may at least partially explain the discrepancy between 

current estimates of national emissions and deposition.

4) Deposition sampling methodology needs to be improved, particularly for 

the collection of compounds that exist largely in the vapour phase. 

Deposition to p lant/soil surfaces should be investigated to examine the 

accumulation of SOCs over an annual time scale and to investigate the 

compartmentalisation of the different compounds.

5) Long range transport and the influence of meteorological conditions need 

further work. It would be interesting to establish what conditions favour 

transport either to, or away from, the UK. Furthermore, a high resolution
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APPENDIX 1



London - Sampling dates

Sample Start Finish T* TSPf Sample Start Finish T TSP
Week Date Date aC p.g/mA3 Week Date Date 2C |ig/mA3

2 10.1.91 17.1.91 6 NA 52 2.01.92 9.01.92 5
4 24.1.91 31.1.91 8 54 17.01.92 24.01.92 6
6 7.2.91 14.2.91 2 56 31.01.92 7.02.92 8
8 21.2.91 28.2.91 5 58 14.02.92 21.02.92 11
10 7.3.91 14.3.91 7 60 28.02.92 6.03.92 11
12 21.3.91 28.3.91 12 62 13.03.92 20.03.92 9
14 4.4.91 11.4.91 14 64 27.03.92 3.04.92 16
16 18.4.91 25.4.91 14 66 10.04.92 16.04.92 15
18 2.5.91 9.5.91 10 68 24.04.92 1.05.92 17
20 16.5.91 23.5.91 17 70 8.05.92 15.05.92 20
22 30.5.91 6.5.91 18 72 21.05.92 29.05.92 20
24 13.6.91 20.6.91 17 74 5.06.92 12.06.92 24
26 27.6.91 4.7.91 24 76 19.06.92 26.06.92 25
28 11.6.91 18.6.91 23 78 3.07.92 10.07.92 24
30 25.7.91 1.8.91 26 80 17.07.92 24.07.92 23
32 8.8.91 15.8.91 24 82 31.07.92 7.08.92 20
34 22.8.91 29.8.91 27 84 14.08.92 21.08.92 18
36 5.9.91 12.9.91 19 86 28.08.92 04.09.92 17

38 19.9.91 26.9.91 15 88 11.09.92 18.09.92 18

40 3.10.91 10.10.91 16 90 25.09.92 02.10.92 16

42 17.10.91 24.10.91 13 92 9.10.92 16.10.92 16

44 1.11.91 7.11.91 10 94 23.10.92 30.1092 10

46 14.11.91 21.11.91 10 96 6.11.92 13.11.92 11

48 28.11.91 5.12.91 2 98 20.11.92 27.11.92 9

50 12.12.91 19.12.91 6 100 4.12.92 11.12.92 6
102 18.12.92 24.12.92 5

NA

*T = Mean temperature
|T S P  = total suspended particulate
NA = Not available



Manchester - Sample dates

ample Start Finish T TSP Sample Start Finish T TSP
Veek Date Date 2C jj.g/mA3 Week Date Date 2C ng/mA:

1 16/1/91 23/1/91 10 30 53 15/1/92 22/1/92 11 62
3 31/1/91 6/2/91 11 149 55 29/1/92 5/2/92 13 150
5 13/2/91 20/2/91 12 89 57 12/2/92 19/2/92 17 56
7 27/2/91 6/3/91 16 62 59 26/2/92 4/3/92 15 63
9 13/3/91 20/3/91 15 26 61 11/3/92 18/3/92 16 27
11 27/3/91 3/4/91 13 13 63 25/3/92 1/4/92 23 19
13 10/4/91 17/4/91 12 60 65 8/4/92 15/4/92 21 61
15 24/4/91 1/5/91 11 18 67 22/4/92 29/4/92 21 18
17 8/5/91 15/5/91 13 25 69 6/5/92 13/5/92 22 26
19 22/5/91 29/5/91 13 68 71 20/5/92 27/5/92 25 69
21 5/6/91 12/6/91 15 43 73 3/6/92 10/6/92 31 44
23 19/6/91 26/6/91 18 32 75 17/6/92 24/6/92 26 32
25 3/7/91 10/7/91 21 60 77 1/7/92 8/7/92 22 61
27 17/7/91 24/7/91 23 30 79 15/7/92 22/7/92 29 30
29 31/7/91 7/8/91 20 35 81 28/7/92 5/8/92 26 42
31 14/8/91 21/8/91 19 35 83 12/8/92 19/8/92 21 26
33 28/8/91 4/9/91 22 75 85 26/8/92 2/9/92 21 38
35 11/9/91 18/9/91 21 40 87 9/9/92 16/9/92 22 20
37 25/9/91 2/10/91 15 48 89 22/9/92 30/9/92 21 61
39 9/10/91 16/10/91 11 86 91 7/10/92 14/10/92 19 51

41 23/1 0/91 29/10/91 8 43 93 21/10/92 28/10/92 12 27

43 6/11/91 13/11/91 7 21 95 4/11/92 11/11/92 21 36

45 20/11/91 27/11/91 8 52 97 18/11/92 25/11/92 14 28

47 5/12/91 11/12/91 7 73 99 2/12/92 9/12/92 13 32

49 18/12/91 23/12/91 3 47 101 16/12/92 23/12/92 11 88

51 2/1/92 8/1/92 8 31 103 29/12/92 6/1/92 11 72



Cardiff - Sample dates

Sample Start
Week Date

2 24/1/91
4 7/2/91
6 21/2/91
8 6/3/91
10 28/3/91
12 11/4/91
14 25/4/91
16 9/5/91
18 24/5/91
20 6/6/91
22 19/6/91
24 4/7/91
26 17/7/91
28 2/8/91
30 15/8/91
32 28/9/91
34 12/9/91
36 3/10/91
38 19/10/91
40 30/1 0/91
42 14/11/91
44 28/11/91
46 12/12/91
48 2/1/92
50 16/1/92

Finish T TSP Sample
Date 2C ng/mA3 Week

31/1/91 NA 48 52
14/2/91 56 54
28/2/91 158 56
13/3/91 23 58
4/4/91 68 60
18/4/91 43 62
2/5/91 56 64
16/5/91 29 66
30/5/91 33 68
13/6/91 41 70
27/6/91 51 72
11/7/91 39 74
26/7/91 53 76
8/8/91 22 78

21/8/91 46 80
5/9/91 73 82

25/9/91 42 84
9/10/91 48 86

24/10/91 35 88
6/11/91 46 90

21/11/91 66 92
5/12/91 95 94

19/12/91 41 96
9/1/92 25

24/1/92 61

Start Finish T TSP
Date Date 2C ng/mA3

30/1/92 5/2/92 NA 42
12/2/92 19/2/92 67
25/2/92 4/3/92 89
11/3/92 20/3/92 61
25/3/92 1/4/92 51
9/4/92 15/4/92 33

23/4/92 29/4/92 60
6/5/92 13/5/92 17

27/5/92 4/6/92 26
10/6/92 17/6/92 66
24/6/92 2/7/92 41
9/7/92 16/7/92 23

23/7/92 4/8/92 45
13/8/92 21/8/92 32
26/8/92 4/9/92 36
9/9/92 17/9/92 43

23/9/92 30/9/92 72
9/10/92 16/10/91 40

22/10/92 30/10/9: 48
5/11/92 18/11/91 71

26/11/92 4/12/92 45
11/12/92 17/12/9: 21
23/12/92 6/1/93 51

NA - Not available



Stevenage - Sample dates Hazelrigg (rural) - Sample dates

Sample Start Finish T TSP Sample Start Finish T TSP
Week date date aC ng/mA3 Week date date 2C ^g/mA3

2 10.1.91 17.1.91
4 24.1.91 31.1.91
6 7.2.91 14.2.91
8 21.2.91 28.2.91
10 7.3.91 14.3.91
12 21.3.91 28.3.91
14 4.4.91 11.4.91
16 18.4.91 25.4.91
18 2.5.91 9.5.91
20 16.5.91 23.5.91
22 30.5.91 6.6.91
24 13.6.91 20.6.91
26 27.6.91 4.7.91
28 11.7.91 18.7.91
30 25.7.91 1.8.91
32 8.8.91 15.8.91
34 22.8.91 29.8.91
36 5.9.91 12.9.91
38 19.9.91 26.9.91
40 3.10.91 10.10.91
42 17.10.91 24.10.91
44 1.11.91 7.11.91
46 14.11.91 21.11.91
48 28.11.91 5.12.91
50 12.12.91 19.12.91
52 2.1.92 9.1.92
54 17.1.92 24.1.92
56 31.1.92 7.2.92
58 14.2.92 21.2.92
60 28.3.92 6.3.92
62 13.3.92 3.4.92
64 27.3.92 3.4.92
66 9.4.92 16.4.92

NA NA 1 2/12/92 8/12/92 6 18
3 16/12/92 23/12/92 5 32
5 29/12/92 6/1/93 4 59
7 13/1/93 20/1/93 9 38
9 27/1/93 3/2/93 7 40
11 10/2/93 17/2/93 8 53
13 24/2/93 3/3/93 5 24
15 10/3/93 17/3/93 9 55
17 24/3/93 31/3/93 10 53
19 7/4/93 14/4/93 12 36
21 21/4/93 28/4/93 13 31
23 5/5/93 12/5/93 14 23
25 19/5/93 26/5/93 12 31
27 2/6/93 9/6/93 13 36
29 16/6/93 23/6/93 15 10
31 30/6/93 7/7/93 19 38
33 14/7/93 21/7/93 17 13
35 28/7/93 4/8/93 21 13
37 11/8/93 18/8/93 18 22
39 25/8/93 1/9/93 16 19
41 8/9/93 15/9/93 15 18
43 22/9/93 29/9/93 13 26
45 6/10/93 13/10/93 10 19
47 20/10/93 27/10/93 8 20
49 3/11/93 10/11/93 9 26
51 17/11/93 24/11/93 4 47
53 30/11/93 8/11/93 -1 25
55 15/12/93 22/12/93 6 52

NA = Not available



APPENDIX 2



Application of principal component analysis (PCA) 
for PAH data presented in Chapter 5.

(Duarte-Davidson, 1992; Daly et al, 1995)

PC A  re d u c es  the  m easu rem en ts  (air co n cen tra tio n s  o v er tim e) on 
in d iv id u a l objects (sam ple locations) to single w eighted averages, in such a 
w ay  th a t these w e ig h ted  averages preserve as m uch  of the difference 
betw een the objects as possible. In effect this reduces the m easured variables 
(PAH com pounds) to several principal variables or factors, p reserv ing  as 
m uch as possible the structure of the sample, yet defining the m ain variables 
in  the data set.

1) The PA H  concentrations at the various sample sites w ere standard ised  by 
calculating z-scores. The concentrations over seven weeks for each variable 
(PAH) at the different sites, p roduced a m ean value of zero and a standard  
dev iation  of one. N on-detects w ere replaced in the data set w ith  the lim it of 
detection  concentration  for that com pound. O ther w orkers using data sets 
w ith  a h igh  n u m ber of non-detects, have incorporated  random  num bers 
generated  betw een zero and the detection limit (Poland, pers. comm.).

2) A correlation m atrix  of the z-scores, for all the variables, was com puted, 
and  variab les th a t w ere not related  to each other w ere rem oved from  the 
m odel.

3) A n u n ro ta te d  factor m atrix  of the data  w as used  to determ ine  the 
g roup ings of the variables into the different factors. Initially as m any factors 
as variab les w ere de term ined , so tha t the first factor w as form ed by a 
com bination  of variables that accounted for the largest am ount of variance 
in  the sam ple, and  the second factor accounted for the next largest am ount 
o f v a rian ce , an d  is u n co rre la ted  to the first. Successive com ponen ts 
ex p la in ed  p ro g ressiv ely  sm aller po rtions of the to tal sam ple  variance. 
Therefore, it w as possible to elim inate those factors that accounted for a low 
p ro p o rtio n  of the total variance in the data set. The op tim um  num ber of 
factors to be included w ere determ ined by the factor eigenvalues, and by the 
variance accounted  for - by each factor. These values w ere calculated from 
the un ro ta ted  factor m atrix as follows:

The factor m atrix  w as form ed by coefficients called factor loadings 
w hich  give an indication of how  m uch w eight is assigned to each 
factor. Factor loadings having large coefficients (i.e. near 1) for a 
variable that is closely related to that factor.

Eigenvalues were calculated by adding the squared loadings, 
con tained  in a single colum n of the matrix. The eigenvalue for the 
factor in that colum n, determ ines the total am ount of variance w hich 
is explained by that factor.
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The variance accounted for by tha t factor (%VAF), rep resen ts the 
average of the squared loadings in a column. This is obtained by 
d iv id ing  the eigenvalue by the num ber of items in that column.

The com m unality  (or cum ulative % VAF) is determ ined  by add ing  
u p  all the % VAF values for all the factors. The optim um  num ber of 
factors are those that account for at least 5% of the variance, and 
w hich have an eigenvalue greater than one.

4) The factors chosen w ere then ro ta ted  to orthoganol positions using  
V arim ax ro ta tion . A m athem atically  equivalent m atrix  w as form ed w hich 
h ad  a sim pler structure, and therefore allow ed for the easier in terpreta tion  
of the data. O rthoganol data was form ed by factors which w ere uncorrelated 
w ith  each other. A factor loading m atrix was produced w hich represented  
bo th  reg ression  w eigh ts and correlation coefficients. R otation effectively 
red is trib u ted  the explained variance for the individual factors, changing the 
variance accounted  for, by each factor, bu t not affecting the com m unality. 
F urtherm ore , ro ta tion  sim plified the structure of the m atrix by m axim ising 
the  n u m b er of factor load ings of greater m agn itude  (and also sm aller 
m agnitude), for each factor. This resulted in the creation of a distinct pattern, 
by  w hich  each variab le  is m ainly  associated w ith  one factor. This also 
av o id ed  the d ifficu lties  en co un tered  w hen  several factors have h igh  
loadings on the sam e variables, resulting in a lack of pattern.

5) Scores for each factor w ere calculated by m ultip ly ing the factor loadings 
for a particu lar variable by the location's (M anchester, Cardiff etc.) score on 
each variable. The factor score m atrix had  as m any row s as sam ple weeks (7 
a t each location), w ith  each colum n representing a factor. Factor scores were 
th en  p lo tted  again st one ano ther to establish re la tionsh ips betw een  the 
d ifferen t locations.


