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ABSTRACT

Recent reports have indicated that leaf growth of plants in drying soil can be 

regulated by chemical signals originating from the roots. A potential signal is the plant 

hormone abscisic acid, ABA. This thesis aimed to identity sources of variation in the 

sensitivity of cereal leaf growth to ABA using a detached shoot leaf elongation assay. 

Preliminary experiments showed that altering the nutrient composition or pH of the 

feeding solution had no effect on sensitivity. Assay variability resulted in considerable 

uncertainty over whether observed genotypic differences in sensitivity were real, or 

reproducible. Increasing the air temperature around the detached shoots greatly 

increased the sensitivity of leaf growth to ABA. Increased concentrations of ABA in 

the elongation zone ( [EZ-ABA] ) of detached shoots seemed to account for this 

increased sensitivity. When detached shoots were fed sap from droughted plants, sap 

ABA concentration could not explain the growth inhibitory activity. Measurement of 

[EZ-ABA] accounted for this "unexplained" growth inhibition. When intact plants were 

subjected to a slowly developing drought, growth was reduced by 35 % without any 

increases in [EZ-ABA]. Measurement of leaf water relations and xylem sap pH 

similarly failed to account for the growth inhibition. The diurnal growth pattern of 

droughted plants suggested an interaction of water relations with chemical signals. Use 

of a coleoptile growth assay showed that individual application of mild osmotic stresses 

or ABA did not inhibit growth. However, osmotic stress and ABA applied together 

significantly reduced growth. This interaction may be an important mechanism in 

explaining leaf growth inhibition of droughted plants. It also accounts for the relative 

(compared to droughted plants) insensitivity of leaf elongation to ABA in the leaf 

elongation assay.
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CHAPTER 1. 

INTRODUCTION

1.1 WHY STUDY DROUGHT EFFECTS ?

In surveying agricultural productivity in the United States, Boyer (1982) 

concluded that unfavourable physicochemical environments depressed crop yields by 

71 %. Of the various stresses faced by plants, drought was shown to be responsible for 

41 % of insurance payments to farmers for crop losses in the period 1939 to 1978 

(Boyer, 1982). It is likely that similar statistics apply globally. Such statistics lead 

Kramer (1974) to conclude that "in fertile soils plant growth and yields are reduced 

more often by water deficits than by any other cause."

1.2 WHY EMPHASISE LEAF GROWTH ?

As noted by Hsiao (1973), drought can affect almost any aspect of plant 

performance and biochemistry; including cell growth, cell wall and protein synthesis, 

cell division, enzyme activities, hormone levels, stomatal behaviour, photosynthesis, 

respiration, phloem translocation, ion uptake, proline and sugar accumulation, xylem 

cavitation, organ senescence and abscission. Of all these processes, a restriction of leaf 

growth is among the most sensitive to soil drying (Hsiao, 1973).

Leaf growth greatly affects plant productivity. Monteith (1977) demonstrated 

a single unifying relationship for a variety of crops where dry matter production 

increased linearly with the amount of radiation intercepted, this interception being 

dependent on leaf growth. While the relationship between leaf growth and crop yield is 

a direct one for forage species, grain crops which are source-limited (i.e. the limitation 

is dependent on the availability of assimilate to fill the grain) show a relationship 

between crop Leaf Area Index and grain yield (e.g. Aggarwal and Sinha, 1987).

1



Therefore the understanding of the regulation of canopy expansion is of great 

economic importance.

Leaf growth depends on both the supply of new cells and the enlargement of 

those cells, determined by the rates of cell division and cell expansion respectively. 

There is evidence that both processes are co-ordinated (Ben-Haj-Salah and Tardieu, 

1995). In this thesis, only leaf elongation is considered.

1.3 WHY STUDY THE GRAMINEAE ?

The family Gramineae (commonly known as the grasses) contains most of the 

staple food crops of the world such as rice, wheat, com, oats, barley, and sorghum. 

Grasses are also the basis of most pastures used for grazing. The economic importance 

of these crops, and the regulation of their leaf growth under drought, would therefore 

be impossible to overstate.

The grasses are especially suitable to the study of leaf growth as changes are 

chiefly in extension growth. This is in contrast to dicotyledons, where growth involves 

changes in length, width and thickness. Although grass leaves also exhibit changes in 

width and thickness, such changes are mostly noticeable between leaves of different 

insertion levels on the main stem. Over the development of a single leaf, the most 

noticeable single change is in length.

Grasses are also especially amenable to the study of the spatial distribution of 

growth. While dicotyledons have complex spatial patterns of expansion across their 

leaf surface (Maksymowych, 1962), the visible portion of the grass leaf (lamina) has 

actually ceased elongation. Cell expansion in grasses is restricted to a small zone of 

cells at the base of the leaves. Files of cells are produced by cell division, and expand 

through the elongation zone. Although the elongation zone is enclosed by the sheaths
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of subtending leaves, there are ways of elucidating the spatial patterns of growth in the 

elongation zone (Section 5.2).

Scientists have long been interested in the effects of plant hormones and ionic 

solutions on leaf growth. Previous investigations have been hampered by the 

unavailability of a technique to manipulate chemical concentrations around the 

expanding cells in a non-destructive manner. The recent development of a leaf 

elongation assay with detached cereal shoots (Munns, 1992) appeared to offer a means 

of reliably assaying growth in response to a hormone application, where the 

concentration of hormone reaching the elongation zone via the transpiration stream 

was accurately known. For these reasons, the study of gramineacous growth was of 

practical advantage.

1.4 WHY CONSIDER ABA IN A STUDY OF LEAF GROWTH UNDER 

DROUGHT ?

1.4.1 The occurrence and importance of chemical signalling in droughted plants

For a plant cell to grow, water in the cell must exert a hydrostatic pressure on

a cell wall that is capable of deforming. This hydrostatic pressure (measured in MPa) is

known as the cell's turgor pressure or turgor potential or simply turgor (V|/p). Turgor

may be simply expressed as the difference of its component potentials, the water 

potential (\}/w) and the osmotic potential (\j/^), by the equation: \|/p = \|/w - (In

actual fact, there are other terms such as l|/m, the matric potential due to surface 

tension and ipg, the gravitational potential; both of which are important only in certain 

cases. For these reasons, the simplified version of the equation is usually given.). Water 

potential is a fundamental measure of the free energy status of water. By convention, 

V|/w of a tissue (any organ such as leaf, stem, or root) or cell or subcellular 

compartment is usually given a negative sign to indicate that water will flow from a
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higher q/w (closer to 0 MPa) down a chemical potential gradient towards that leaf. The 

more negative the V|/w, the greater the chemical potential gradient existing. The 

osmotic potential of a tissue is dependent on the presence of dissolved substances, 

which lower the free energy status of that water. As solutes accumulate in a tissue, the 

value of becomes more negative. The measurement of these potentials is central to

the field of plant water relations.

The development of the thermocouple psychrometer (Richards and Ogata,

1958; Boyer and Knipling, 1965), and the pressure bomb (Scholander et al., 1965) 

gave plant physiologists the ability to measure q/w and i|Jn, allowing the calculation of

Vj/p. The development of the cell pressure probe (Green et al., 1971), and its 

subsequent use in intact plants (Husken et al., 1978) allowed the direct measurement of 

V|/p. The theory and operation of these pieces of equipment have been reviewed 

extensively (e.g. Boyer, 1969; Boyer and Nonami, 1990) and will not be dealt with 

here. When carefully applied, estimates of q/p using different techniques can yield 

essentially the same results (e.g. Boyer and Potter, 1973; Nonami et al., 1987).

Use of these devices allowed investigators to describe relationships between 

leaf elongation rate of grasses and the leaf water potential (vj/l), when the water 

relations of plants were altered by changing the water potential around the roots by 

addition of osmotica (e.g. Acevedo et al., 1971) or allowing the soil to dry out (e.g. 

Boyer, 1970). These studies confirmed that growth was most rapid at higher values of

q/L °r q/p.

The values of q/L at which leaf growth ceased was found to vary greatly 

between studies according to species (Boyer, 1970), the time of day (Chu and 

McPherson, 1977), the rate of soil drying .(Cutler et al., 1980) and the growth 

environment of the plants (Watts, 1974). These differences were accounted for by
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differences in solute accumulation (and hence Xj/̂ ) during stress. Hence turgor was 

considered to be the principal driving force for growth.

However, the measurements of \\f]̂  in grasses had been made on mature, non­

expanding tissue. Although the presence of water potential gradients existing between 

mature and expanding parts of cereal leaves had been suggested by Watts (1974), 

Michelena and Boyer (1982) showed that perturbed water relations in the lamina of 

droughted maize plants was not reflected in decreased turgor in the elongation zone. 

At about the same time, observations were made that stomata, whose movements were 

also assumed to be dependent on leaf water potential and turgor in the same way as 

leaf growth was (e.g. Turner, 1974), closed in response to low soil water potential 

without there being any change in shoot water potential (Bates and Hall, 1981; 1982). 

Such responses of stomata or leaf growth required that the plants had some mechanism 

other than leaf turgor for sensing the availability of the water in the soil. Jones (1980) 

and Cowan (1982) suggested that such a mechanism(s) would involve the transfer of 

chemical information from the roots to the shoots via the xylem. Such control has been 

termed non-hydraulic or chemical signalling. This distinguishes it from hydraulic 

signalling, as discussed above, which represents transmission of reduced soil water 

availability via changes in the xylem sap tension, which are reflected in lower \|/ls.

Since these early reports there has been a proliferation of reports in the 

literature where limitation of leaf growth or stomatal conductance (gs) has been 

attributed to non-hydraulic signalling. This type of information has been collected in 

response to different plant stresses such as salinity (e.g. Termaat et al., 1985), soil 

compaction (e.g. Masle and Passioura, 1987) and soil drying (see Appendix 1 for a 

non-exhaustive list). Researchers have devised a number of means to apparently 

unequivocally demonstrate the operation of chemical signals, by breaking the link 

between soil drying and perturbed water relations. The whole plant (or "Passioura- 

type") pressure chamber grows the plant in a pot to which a balancing pressure can be



applied to the roots to maintain shoots at full turgor, such that xylem sap exudes from 

a cut surface (Passioura and Munns, 1984). Split root techniques divide the plant root 

system between 2 or more containers so that some roots are exposed to drying soil 

(and hence generate a chemical signal) while others remain under well watered 

conditions to supply the shoot's water requirements. This system is considered to be 

similar to many field conditions, where drying of the surface soil exposes only a small 

proportion of the plant's root system to drying soil. This situation has been mimicked 

by growing plants in large soil columns.

Analysis of the reports in Appendix 1 shows some interesting trends in the 

pursuit of research on chemical signalling of drought, with respect to the system of soil 

drying and species used and the physiological processes and putative chemical signals 

measured (see Table 1.1). It is important to note that a number of very comprehensive 

field studies have validated the existence of chemical signalling in the field, supporting 

the more artificial laboratory studies which are characterised by low light intensities 

and VPDs. Researchers have concentrated on crop species, which is not surprising 

considering the economic argument. Interestingly, all reports for herbaceous 

dicotyledons concerned one species (Helianthus anmms). A disproportionate number 

of studies have measured only stomatal conductance; which probably reflects the 

relative ease of porometric measurements of gs, as opposed to the relative sensitivities 

of gas exchange and leaf growth to drought. This bias is reflected in the discussion of 

the following sections. Of the studies which have sought to identify a potential 

chemical signal, a majority have measured the plant hormone abscisic acid (ABA) to 

the exclusion of other signals. This emphasis may simply reflect the relative ease of 

measurement of ABA using modem immunological techniques, or may be taken as 

indirect evidence of an important role for ABA in the control of leaf growth and gs. 

However, it is necessary to critically examine the physiological evidence in favour of a 

role for ABA in controlling shoot physiology.

6



Table 1 .1 : Analysis of experimental trends in studies of soil drying-induced root to 
shoot communication. The references and data base used in compiling this Table may 
be found in Appendix 1.

Experimental Details Reports

Drying Protocol:

Whole Plant Pressure Chamber 4
Vertically Split Root System (Two or more Pots) 9
Horizontally Split Root System 12
(Soil Columns or Large Pots)
Field Studies 5

Species Used:

Herbaceous Monocotyledons 16
Leguminous Dicotyledons 5
Herbaceous Dicotyledons 5
Woody Species 6

Physiology Measured:

Stomatal Conductance / Transpiration only 20
Leaf Elongation Rate only 3
Both 6

Putative Chemical Signals Measured:

No 11
ABA only 13
ABA and other signals 4
Other only 1

1.4.2 The evidence for ABA as a root signal molecule

The early observations of stomatal closure in response to external ABA 

treatment (Mittelheuser and Van Steveninck, 1969; Jones and Mansfield, 1970) and the 

observation that bulk leaf ABA content could increase in detached leaves in response 

to dehydration (Wright, 1969), specifically in response to changes in leaf water 

potential (Zabadal, 1974; Wright, 1977) and turgor (Pierce and Raschke, 1980; 1981), 

meant that ABA has always been implicated in stomatal closure. The supposed 

mechanism was that drought-induced changes in leaf water potential would liberate 

ABA from the mesophyll chloroplasts where it is normally sequestered in unstressed
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leaves (Heilmann et al., 1980), and that this ABA would move to the guard cells to 

initiate stomatal closure (see e.g. Mansfield and Davies, 1981).

To fulfil the requirements of a root signal molecule, it was necessary to show 

that roots were capable of ABA synthesis, that the ABA could move from the roots to 

the shoots, and be capable of quantitatively affecting shoot physiology.

1.4.2.1 ABA Synthesis in the roots

A number of experimental approaches have been applied to establish that 

roots can accumulate ABA without import of ABA from the shoot. Experiments with 

detached roots have shown increased ABA concentration in response to dehydration in 

air (Milborrow and Robinson, 1973; Walton et al., 1976; Cornish and Zeevart, 1985; 

Zhang and Davies, 1987b) and in response to osmotic stress (Cornish and Zeevart, 

1985; Lachno and Baker, 1986). Experiments with whole plants which have been 

phloem-girdled, to prevent movement of ABA in the phloem to roots, have also shown 

increases in root ABA concentration when the root system was subjected to an osmotic 

stress (Walton et al., 1976) or partially dehydrated in air (Cornish and Zeevart, 1985). 

However, detailed investigations are necessary to show that enhanced root ABA 

concentration in intact, draughted plants is a result of synthesis and not redistribution 

of ABA as a result of perturbed leaf water relations in older leaves. Growth cabinet 

studies have shown that this is probably the case, with enhanced root ABA 

concentration in the upper part of the soil profile preceding decreases in leaf water 

relations and stomatal conductance of draughted plants (Zhang and Davies, 1989a; 

Trejo and Davies, 1991). A tight relationship between root ABA concentration and soil 

water content can exist over a drying cycle and for roots from different parts of the soil 

profile (Zhang and Davies, 1989a). However, this may occur only under growth 

cabinet conditions when VPDs and water fluxes are low. In contrast to growth cabinet 

studies, where dehydration of only part of the soil profile increased root and xylem



ABA concentrations to initiate stomatal closure, field studies showed appreciable 

increases in root ABA concentration only when the whole soil profile was close to 

depletion (Tardieu et al., 1992a).

1.4.2.2 Transport of ABA in the xylem

Although ABA was detected in xylem sap as early as 1968 (Lenton et al., 

1968), indicating its mobility in the plant, the origin of such ABA was uncertain. The 

experiments of Hoad (1975) suggested that placing the roots under osmotic stress did 

result in increased xylem sap ABA concentration, but that this ABA originated in the 

leaves. Recently, computer modelling suggested that a root stress treatment would 

result in the liberation of ABA normally sequestered in the leaf mesophyll chloroplasts, 

and that this ABA would move into the phloem to travel to the root and only from 

there, via the xylem sap to sites of action in the leaf (Slovik et al., 1995).

To test whether ABA could move from a droughted root to the leaf to initiate 

stomatal closure, Zhang and Davies (1987b) loaded the root system of Commelina 

plants with ABA by overnight immersion of roots in an ABA solution. Some of the 

leaves were covered in aluminium foil to prevent stomatal opening when the lights 

came on. Immediately prior to the light coming on, the ABA was removed and the 

roots allowed to stand in moist air. When the light came on the following morning, 

transpiring leaves showed stomatal closure; closure being proportional to the 

accumulation of ABA in the epidermis. This provided clear evidence that ABA was 

capable of moving from roots, which were not contributing to the transpiration stream, 

(analogous to roots in dry soil) to the leaves and promoting stomatal closure.
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1.4.2.3 Effects of xylem sap ABA on shoot physiology

Relationships between ABA concentration and shoot physiology were initially 

difficult to demonstrate since stomata could close without an increase in the ABA 

content of the bulk leaf (e.g. Beardsell and Cohen, 1975; Burschka et al., 1983). It was 

shown that gs in split-root maize plants could decline by 30-40 % before changes in 

leaf ABA content were detected (Blackman and Davies, 1985; Zhang and Davies, 

1990a). In other studies, leaf ABA content only increased once the stomata had closed 

(Trejo and Davies, 1991). However, it was recently shown that xylem sap ABA 

concentration increased much earlier and to a greater extent than bulk leaf ABA 

content (Zhang and Davies, 1989b; 1990a). Such studies have also demonstrated 

correlations between xylem sap ABA concentration and stomatal conductance or leaf 

growth rate of droughted plants in growth cabinet studies (Zhang and Davies, 1989b; 

1990a; 1990b; Khalil and Grace, 1993) and in the field (Tardieu eta/., 1992b).

1.4.2.4 Testing the physiological significance of increased xylem ABA

However, as the soil dries, the concentration of all xylem sap constituents will 

necessarily rise as transpirational fluxes decrease, as noted by Tardieu and Davies 

(1993). Thus any solute, irrespective of its effect on stomata, should give the negative 

exponential relationship demonstrated between xylem sap ABA concentration and 

stomatal conductance. Consequently, more rigorous tests of the physiological 

significance of ABA are required, such as those formulated by Jacobs (1959), and 

subsequently modified by Jackson (1987). Correlation and duplication can indicate a 

potential regulatory role of a particular hormone in a particular process. In these types 

of experiments, the link between xylem ABA concentration and stomatal conductance 

generated by soil drying can be compared with a relationship generated by external 

application. External application of ABA by root-feeding plants with different 

concentrations of synthetic ABA (Zhang and Davies, 1990a) or stem injection of ABA
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(Tardieu et al., 1993), has demonstrated relationships between stomatal conductance, 

leaf growth and xylem ABA concentration that were closely comparable to those 

caused by roots in drying soil. Deletion and re-instatement are more certain criteria 

to test the specificity of hormone action, achieved by manipulating endogenous 

hormone levels. One type of deletion experiment has employed the split-root system 

(Gowing et al., 1990) to allow excision of the putative source for extra ABA (i.e. roots 

in drying soil). The result that partially dried, split-root apple seedlings showed growth 

recovery when the roots in drying soil were excised provided clear evidence of an 

inhibitory chemical signal (presumably ABA). Another type of deletion and re­

instatement experiment in assessing the role of ABA in controlling stomatal 

conductance and leaf growth is the use of the immunoaffinity (LA) column to remove 

ABA from xylem sap, as discussed below.

In this type of experiment, a portion of the xylem sap of interest is passed 

through an IA column (composed of ABA antibodies) to remove ABA. The 

antitranspirant activity of the xylem sap can then be tested in the presence (unprocessed 

sap) and absence (after passage through the IA column) of ABA by feeding the sap to 

detached leaves and gravimetrically monitoring transpiration (a transpiration bioassay), 

or incubating epidermal strips in the sap and measuring stomatal aperture (an epidermal 

strip bioassay). In a similar manner, the growth inhibitory activity of the sap can be 

tested using a leaf elongation assay (Munns, 1992).

Using a transpiration bioassay system, Munns and King (1988) and Zhang and 

Davies (1991) obtained contradictory results. Munns and King (1988) demonstrated 

that ABA added to distilled water, at a concentration comparable to that found in the 

xylem sap of unwatered wheat plants, failed to reduce transpiration rate in detached 

leaves by as much as xylem sap from unwatered plants. They concluded that 100 times 

more ABA than was apparently present in sap of unwatered plants was needed to 

promote the same effect. They also showed significant antitranspirant activity in xylem
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sap after removing ABA. On the basis of these results they proposed that xylem sap of 

wheat plants contained an unidentified compound with antitranspirant activity. Zhang 

and Davies (1991), however, demonstrated that removal of ABA, by means of an 

immunoaffinity column, eliminated the antitranspirant activity of maize xylem sap. Like 

Munns and King (1988), Trejo (1994) showed that ABA was unable to account for all 

the antitranspirant activity in Phaseolus vulgaris xylem sap.

Recent results of Munns et al. (1993) apparently confirmed the existence of 

another compound with antitranspirant activity, although there is some doubt that their 

compound occurs in vivo, since significant antitranspirant activity only developed with 

sap storage at -20°C. The antitranspirant activity of freshly collected sap is apparently 

explicable by ABA concentration, although the variability of the transpiration bioassay 

sensitivity (up to a 20 % change in antitranspirant activity on particular days) makes it 

difficult to be certain.

Although 2 of 3 of the immunoaffinity column experiments apparently 

demonstrated the existence of other antitranspirant activity, it must be noted that such 

experiments employ fully turgid tissues and thus do not address the important concept 

of tissue sensitivity (see Section 1.5) which may be crucial in arguing a regulatory role 

for ABA. Another criticism of such immunoaffinity column experiments is that they 

may collect sap from relatively stressed plants. It is noted that the effectiveness of ABA 

diminishes with increasing severity of stress (Correia and Pereira, 1995) and thus xylem 

sap may contain a compound which is important in maintaining long term stomatal 

closure and does not regulate stomatal behaviour in the early stages of a drying cycle.

Since Munns' group has so far failed to unequivocally demonstrate the in vivo 

occurrence of the proposed antitranspirant compound, and since other growth 

inhibitory compounds have not yet been identified (but see Campbell et al., 1995 for a 

report of a novel growth inhibitory compound in grape vine which seems to be
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involved in the regulation of bud dormancy and not extension growth per se); there 

remains a compelling reason to examine the effects of ABA on leaf growth.

1.4.2.5 What ’’measure” of hormone do cells respond to ?

In testing the effects of a xylem sap component on shoot physiology, it is 

necessary to determine whether the cells are responding to a concentration or a flux of 

that hormone. Concentration is the number of molecules in a given volume while flux is 

the concentration multiplied by the flow rate (of the transpiration stream). The 

calculation of hormone flux to growing leaf cells is uncertain since it is not known how 

the vasculature ensures a supply of water to the elongation zone. The elongation zone 

of leaves may also be a zone where phloem sieve tubes unload, which would also bring 

hormones to growing cells. The discussion which follows is therefore of most 

relevance to stomata.

Useful information has chiefly been obtained from laboratory studies, where 

ABA is fed to detached leaves and shoots. In analysing stomatal responses to a pulse of 

ABA supplied via the petiole to detached cherry leaves, Go wing et al. (1993) found 

that concentration alone could account for 30 % of the variance, while flux accounted 

for 74 %. Use of a simple model to calculate apoplastic concentration showed that this 

variable had the greatest explanatory power, but information from the model cannot be 

validated in the absence of data on the rate of ABA metabolism. It seems likely that 

this rate will be highly variable depending on environmental variation such as the water 

status of the plant.

Trejo et al. (1995) were able to change ABA flux at a given ABA 

concentration fed by altering the temperature and VPD surrounding detached shoots. 

At a given concentration, a 3-fold variation in ABA flux had no effect on the restriction 

of conductance; while the same flux achieved by increasing the ABA concentration was
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able to further decrease conductance. The same authors also used a microscopic 

system to vary the ABA flux to detached epidermes. Significantly, stomata were only 

capable of responding to an increase in flux of an order of magnitude. Field data also 

indicate that rather limited (less than 2-fold) changes in ABA flux could not account 

for afternoon stomatal closure (Correia et al., 1995).

However, the importance of hormone concentration alone has been challenged 

by Trewavas (1981), who showed that in a number of systems, sensitivity of cells to 

the hormone was at least as important as changes in concentration in determining tissue 

response. This tenet has been adopted by proponents of chemical signalling of soil 

drying, with a perceived need for more information about the sensitivity of various 

systems to the ABA signal (e.g. Davies et a l , 1994). It would therefore seem 

important to investigate the phenomenon of hormone sensitivity.

1.5 WHAT IS SENSITIVITY ?

Since Trewavas' (1981) paper, there has been controversy concerning the 

nature of plant sensitivity to hormones. While original controversy centred on the 

importance of sensitivity versus changes in endogenous concentration (Cleland, 1983 

vs. Trewavas, 1983), in more recent times the definition of sensitivity has been 

controversial (Fim, 1986; Weyers et a l, 1987).

In Trewavas' (1981) definition, sensitivity was referred to as the competence 

of the tissue to respond to the hormone. It could be measured by tissue response to a 

single, usually saturating, hormone concentration. The examples of sensitivity given by 

Trewavas (1981) measured a given plant parameter (e.g. growth rate) after a pre­

determined time. Determination of the dose-response curve was necessary to ensure 

that a saturating hormone concentration was applied. However, it has been found that 

different dose-response curves could be obtained with the same system applied with
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same species (e.g. the response of coleoptile growth to exogenous IAA) according to 

whether the initial rate of response or the response after a pre-determined time was 

measured (Cleland, 1972).

This dichotomy of measurement approach has resulted in researchers on the 

stomatal response to ABA offering different definitions of sensitivity according to 

whether the equilibrium response (e.g. Snaith and Mansfield, 1982b) or the initial rate 

of response (e.g. Weyers et al., 1987; Paterson et al., 1988; Peng and Weyers, 1994) 

were measured. The latter response has been considered by its proponents to be a more 

realistic indicator of sensitivity due to the highly variable nature of the physical 

environment (Weyers et a l, 1995). However, there is evidence that ABA can set the 

magnitude of the response around which perturbations in the physical environment, or 

other chemical signals, can alter conductance (Wartinger et a l, 1990). In such cases, 

estimates of the equilibrium response may provide a more realistic measure of 

sensitivity.

Unfortunately, there have been very few attempts to compare data from the 

two measurements of response. Trejo et al. (1995) provide an example where detached 

shoots were fed the same concentration of ABA at different temperatures. Although 

lower temperature resulted in a slower (less sensitive) response, transpiration was 

inhibited to the same percentage of the control shoots (equally sensitive). This example 

shows that the two measurements of sensitivity may not be directly comparable, and 

some judgement must be made as to the physiological relevance of each. In this thesis, 

only equilibrium sensitivity has been studied. This decision was based partially on the 

perceived physiological relevance of the response; and partially on the fact that ruler 

measurement of detached leaves in a leaf elongation assay would provide sufficient 

replication to allow the elucidation of dose-response curves for leaf growth response to 

ABA under different environmental conditions.
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It is necessary to identify the environmental and endogenous variables which 

have been shown to affect stomatal or leaf growth response to ABA. Table 1.2 

presents data from experiments performed with a number of experimentally convenient 

assay systems and in whole plants. While assay systems may be of use in defining 

potential interactions, only experiments with whole plants will determine whether the 

interaction is of any physiological significance. It becomes more difficult to satisfy 

Jacobs' Rules (Section 1.4.2.4) when a certain hormone concentration produces vastly 

different effects according to the plant's circumstances. From an ecophysiologists 

perspective, the presence of such interactions could provide mechanisms to 

dynamically link the plant and its environment.

It is important to note that such interactions are not ubiquitous and different 

species may show contrasting behaviour. Tardieu et a l (1996) showed that the leaf 

water potential x ABA interaction that is critical for the control of stomatal behaviour 

in field-grown maize (Tardieu and Davies, 1992; Tardieu et al., 1993) does not exist in 

sunflower. Identification of an interaction may depend on the range over which an 

environmental variable is altered. Rodriguez and Davies (1982) showed that ABA 

became more effective in an epidermal strip bioassay as the temperature increased from 

18 to 22°C. It is therefore not surprising that Tardieu et a l (1993) did not observe any 

difference in stomatal sensitivity to ABA in the field grown plants subjected to a 

temperature range of 27 to 40°C. It is also important to note that the pretreatment 

history of the plants can be important (Allan et a l, 1994), which may explain 

apparently conflicting results.
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Table 1.2: Factors which may modify the stomatal or leaf growth response to ABA. 
Experimental systems are as follows: ES - Epidermal strip bioassay, ES(P) - leaf 
fragments incubated on solutions, then epidermal strips removed to allow stomatal 
measurement, TB - Transpiration bioassay, LG - Leaf growth assay, WP - Whole plant. 
NI indicates no interaction between ABA and the variable.

FACTOR Species System Reference

TEMPERATURE
Assay Zea mays ES (P) Rodriguez and Davies, 1982

Phaseolus vulgaris TB Eamus and Wilson, 1983
Triticum aestivum TB Ward and Lawlor, 1990
Phaseolus vulgaris TB Comic and Ghashghaie, 1991

NI Zea mays WP Tardieu et al., 1993
Phaseolus vulgaris TB Trejo and Davies, 1994
Beilis perennis ES Honour et al., 1995
Cardamine pratensis ES Honours al., 1995
Commelina communis ES Honour e ta i ,  1995

Pretreatment Commelina communis ES A lla n s al., 1994

WATER STATUS
Commelina communis ES Tardieu and Davies, 1992
Zea mays WP Tardieu and Davies, 1992
Phaseolus vulgaris TB Trejo and Davies, 1994

NI Lupinus cosentinii WP, TB Correia and Pereira, 1994; 1995
NI Helianthus annuus WP, TB Tardieu et al., 1996
NI Acacia confusa 

Lutsea glutinosa
WP, TB Liang et al., 1996

WATER STRESS HISTORY
NI Vicia faba ES

Vicia faba WP
Gossypium hirsutum TB
Commelina communis ES
Solanum melongena TB
Commelina communis ES

Davies, 1978 
Davies, 1978 
Ackerson, 1980 
Wilson, 1981
Eamus and Narayan, 1989 
Peng and Weyers, 1994

CO? Xanthium strumarium TB
NI Xanthium strumarium TB

Xanthium strumarium TB
Commelina communis ES
Solanum melongena TB

Raschke, 1975 
Mansfield, 1976 
Dubbe et al., 1978 
Wilson, 1981
Eamus and Narayan, 1989

ASSAY TYPE
Commelina communis 
Commelina communis

ES ES(P) Blackman and Davies, 1983
ES ES(P) TB Trejo et al., 1993

LEAFAGE
Triticum aestivum 
Zea mays
Commelina communis 
Triticum aestivum

TB
ES
ES
TB

Mittelheuser and van Steveninck, 1969 
Blackman and Davies, 1984b 
Willmer et al., 1988 
Atkinson et al., 1989
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Table 1.2 cont:

FACTOR Species

GENOTYPE
many spp. 
wheat cultivars 
maize cultivars

XYLEM SAP COMPOSITION
Helianthus annum

NUTRIENT STATUS OF PLANTS 
Nitrogen Gossypium hirsutum
Phosphorous Gossypium hirsutum

INCUBATION SOLUTION COMPOSITION
Potassium Commelina communis 

Commelina communis 
Commelina communis 
Phaseolus vulgaris 
Pisum sativum

Calcium Commelina communis
Sodium Commelina communis
pH Commelina communis

NI Valerianella locusta 
Commelina communis

Cytokmin Triticum aestivum
NI Commelina communis 

Hordeum vulgare
NI Commelina communis
NI Commelina communis 

Zea mays
IAA NI Commelina communis

NI Commelina communis 
Commelina communis 
Vicia faba

NAA Commelina communis
GA^ NI Commelina communis
Phenolics Commelina communis
Phytoalexins Commelina communis

System Reference

TB Kriedemann et al., 1972
WP, TB Quarrie, 1983 
ES Rodriguez and Davies, 1982

WP Schurr et al., 1992

TB Radin eta/., 1982
TB Radin, 1984

ES Wilson et al., 1978
ES Willmer et al., 1978
ES Snaith and Mansfield, 1982b
LG Van Volkenburgh and Davies, 1983
ES Zhang and Davies, 1987a
ES De Silva et al., 1985
ES Jarvis and Mansfield, 1980
ES Ogunkanmi et al., 1973
ES Hartung, 1983
ES Paterson et al., 1988
TB Mittelheuser and van Steveninck, 1969
ES Tucker and Mansfield, 1971
TB Cooper etal., 1972
ES Ogunkanmi et al., 1973
ES ES(P) Blackman and Davies, 1983
ES Blackman and Davies, 1983; 1984a; b
ES Tucker and Mansfield, 1971
ES Ogunkanmi et al., 1973
ES Snaith and Mansfield, 1982a, b
ES Dunleavy and Ladley, 1995
ES Snaith and Mansfield, 1984
ES Ogunkanmi et al., 1973
ES Rai et al., 1986
ES Plumbe and Willmer, 1986

Questions which should be addressed in discerning the relevance of a 

particular study include "How closely does the assay situation mimic the intact plant ?" 

and "What concentrations of compound, or what environmental conditions, were used 

to detect the interaction ?" Some of the interactions described in Table 1.2 have been 

criticised on the basis that the assay conditions may be non-physiological. For example, 

Cooper et al. (1972) were able to demonstrate that 10~4m kinetin fed to detached
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barley leaves in the transpiration stream was able to reverse ABA-induced stomatal 

closure. It is doubtful whether such an interaction is of relevance to the whole plant as 

xylem sap cytokinin concentrations in grasses rarely reach lO'^M (Bano et al., 1993). 

The relevance of some of the interactions described in Table 1.2 is therefore open to 

debate. Trewavas (1991) has suggested a specific measure of sensitivity, the "control 

strength", which measures the sensitivity of response to a hormone at the endogenous 

concentration, thus avoiding problems of non-physiological hormone concentrations. 

This approach has not seen much use due to potential difficulties of obtaining a dose- 

response curve at concentrations below the endogenous level, which is necessary to 

accurately assess the control strength.

Part of the reason for the conflicting nature of the reports in Table 1.2 is our 

lack of understanding of the mechanisms of sensitivity variation and our failure to 

measure ABA concentrations at the active site. The differences shown in Table 1.2 

may, in some cases, simply be a reflection of different ABA concentrations at the active 

site under different treatments, and not any actual difference in absolute sensitivity. For 

stomata, the active site is thought to be the ABA concentration at the guard cell 

apoplast (Gowing et al., 1993). For growing tissues, the epidermis is often considered 

to be growth limiting (Kutschera, 1992) and thus measurements of ABA in the leaf 

epidermis may be of relevance. In the absence of measurements of ABA at the active 

site, the differences in Table 1.2 are best thought of as differences in apparent 

sensitivity.

A good example of the difference between apparent and absolute sensitivity is 

provided by Trejo et al. (1993). Different assay techniques provided different dose- 

response curves for ABA-induced stomatal closure in the same plants. When isolated 

epidermal strips were incubated on 10‘6M ABA, stomata closed by 76 % while 

incubation of leaf pieces on the same concentration closed stomata by only 13 %, 

indicating a difference in apparent sensitivity. The difference in the degree of closure
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was accounted for by measurement of ABA in the epidermis; indicating no change in 

the absolute sensitivity of stomatal response to ABA. Given this result, it is surprising 

that the plethora of ABA interactions identified in epidermal strips of Commelina 

communis have not been pursued in transpiration bioassays of the same species where 

the epidermis can be removed at the end of an assay for analysis of epidermal ABA 

concentration. Such studies would add validity to the epidermal strip work, by 

reproducing the interaction in the more realistic situation where the mesophyll can 

exert a controlling influence over epidermal ABA accumulation. Assays using isolated 

portions of tissue, while valuable in assessing sensitivity variation in the absence of the 

external factors (such as cell to cell communication), may be of limited relevance in 

assessing responses of intact plants.

Harris et a l (1988) have demonstrated the ability to measure ABA in 

individual guard cells pairs using a very sensitive enzyme-linked immunosorbent assay, 

allied to single cell methodology. Combination of this measurement technology with a 

microscopic system of measuring the sensitivity to ABA of individual stomata 

(McAinsh et al., 1990; Trejo et a l, 1995) may go some way toward explaining the 

large variability in responses of individual stomata to external stimuli (Spence, 1987) if 

a relationship exists between guard cell ABA concentration and stomatal response. 

However, it is still likely that cells with identical ABA concentrations may show altered 

sensitivity to ABA due to other endogenous factors (such as those listed in Table 1.2).

Disregarding potential problems of accurately measuring ABA concentration 

at the active site, it should be recognised that signal transduction into a physiological 

response involves the interaction of a hormone with a receptor (Weyers et a l, 1987). 

The initial observation of ABA-binding proteins on the guard cell plasmalemma 

(Homberg and Weiler, 1984) has not yet been repeated. Positive identification of the 

ABA receptor(s) and their quantification on a cellular or tissue basis may allow the 

calculation of absolute sensitivity on a response per [ABA] at the active site per



number of hormone receptors" basis. Such a definition, although purely hypothetical at 

present, may further contribute to the distinction between apparent and absolute 

sensitivity.

Despite the cautions involved in the interpretation of results which purport to 

show differences in the sensitivity of plant response to ABA and the difficulties in 

distinguishing absolute changes in sensitivity from apparent ones, it is clear that 

changes in sensitivity do occur. In some cases, such changes may be of more relevance 

in controlling plant response than actual changes in ABA concentration.

1.6 ABA AND LEAF GROWTH

Recent research has shown that the dose-response curve for leaf growth of 

maize plants fed ABA hydroponically in a nutrient solution (Zhang and Davies, 1990a) 

was practically identical to that generated by withholding water (Zhang and Davies, 

1990b), indicating a possible regulatory role for ABA in controlling leaf growth of 

draughted plants. However, Munns (1992) obtained contradictory results with a leaf 

elongation assay. Xylem sap collected from draughted barley plants contained 

2-8x10"^M ABA, and inhibited growth by 60 %. For exogenous ABA to inhibit leaf 

growth to the same extent, 10"5M ABA was required, indicating that xylem ABA was 

not regulating leaf growth in barley. This discrepancy may be rationalised on the basis 

of sensitivity differences between the two experimental systems employed in the two 

studies. In view of this contradictory evidence, it is not surprising that a recent review 

(Munns and Sharp, 1993) called for a greater research effort in this area.

An examination of Table 1.1 indicates that the role of chemical signals in 

controlling leaf growth has historically been less-studied than in the control of stomatal 

behaviour. The paucity of leaf growth sensitivity data in Table 1.2 identifies an area of 

rf>spqrr.h that is in clear need of addressing. A possible reason for this paucity has
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probably been the lack of a suitable assay technique, since the response of leaf growth 

to ABA in disc bioassays may be complicated by wounding effects. The recent 

development of a detached cereal shoot leaf elongation assay (Munns, 1992), which 

isolates the area of excision from the leaf elongation zone to avoid wounding 

responses, provides a tool to allow the systematic identification of variables affecting 

the response of leaf growth to ABA.

The aim of this thesis was to identify variation in the sensitivity of the leaf 

growth response to ABA, and assess its relevance in the control of leaf growth in 

droughted plants. Initial experiments considered the possible variation in leaf growth 

response to ABA induced by different nutrient ions and pH (Chapter 2), genotypes 

(Chapter 3) and temperature (Chapter 4). The possibility that temperature-induced 

variation in ABA response was a result of differences in ABA concentration at the 

active site was assessed by measurement of ABA in the elongation zone (Chapter 5). 

The response of leaf growth to actual xylem sap was considered in Chapter 6. The 

measurement of ABA in the elongation zone allowed a comparison of ABA response in 

the detached shoots with that of intact plants of a similar age which were subjected to 

drought (Chapter 7). The small size of plants used in the soil drying experiments 

precluded comparison on the basis of xylem sap ABA concentrations. The results of 

Chapter 7 showed differences in the sensitivity of detached shoots and intact plants to 

ABA. In an attempt to reconcile these differences, a coleoptile growth assay was used 

to examine any interaction of water potential and ABA (Chapter 8). The relevance of 

these changes in sensitivity to the leaf elongation response of whole plants to drought 

are discussed.
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CHAPTER 2.

RESPONSE OF LEAF GROWTH AND TRANSPIRATION TO ABA IN A 

LEAF ELONGATION ASSAY

2 .1  INTRODUCTION

Traditional methods of chemical application of ABA, such as spraying onto 

leaves (Jones and Mansfield, 1970) or injection of ABA into the stem (Quarrie and 

Jones, 1977) are limited in that hormone concentrations at the active site(s) are not 

known. Although the active site(s) for leaf growth would appear to be the cell walls 

(since ABA can decrease extensibility - Van Volkenburgh and Davies, 1983), 

correlations have been demonstrated between xylem sap [ABA] and leaf growth in 

maize (Zhang and Davies, 1990a; b). Presumably a proportion of the xylem sap must 

reach the elongating cells for such a correlation to be demonstrated. Van Volkenburgh 

and Davies (1983) incubated discs of Phaseolus in ABA solutions or fed ABA into the 

transpiration stream of detached shoots. The former method was better able to 

determine the response, presumably since the ABA could penetrate the wound sites 

and bath the elongating cells. However, interpretation of the growth response in leaf 

discs may be complicated by> wounding responses and uncertainty of penetration of the 

hormone into the tissue (Pratt and Matthews, 1971). Bunce (1990) was able to 

manipulate ABA concentrations in the transpiration stream of intact Glycine plants by 

syringe injection into the petiole. In young cereal shoots, this approach would not be 

feasible since the elongation zone is at the base of the stem. Injection in this zone may 

result in wounding, thus syringe injection of ABA would need to be into the roots.

Recently, Munns (1992) reported a novel method of assaying detached cereal 

shoots for leaf growth response to plant growth regulators. By feeding solutions 

through the cut sub-crown intemode, the concentration of ABA in the transpiration 

stream is precisely known. Since plants are assayed at the same stage of development,
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the assay is particularly suited to comparing species differences, as it is possible to 

avoid the age-related changes in ABA sensitivity that can occur in stomata from leaves 

of different ages (Blackman and Davies, 1984b; Atkinson et al., 1989). Another 

advantage is that both growth and transpiration can be measured in the same plants, 

allowing comparisons to be made of the sensitivity of different physiological processes 

to the same hormone.

To the author's knowledge, the leaf elongation assay (Munns, 1990; 1992) has 

not seen use in other laboratories. This is in contrast to other bioassay systems used to 

evaluate stomatal responses to ABA, such as the use of epidermal peels (Willmer and 

Mansfield, 1969; Tucker and Mansfield, 1971; Ogunkanmi et al., 1973) and detached 

leaves (Mittelheuser and van Steveninck, 1969; Cummins et al., 1971; Kriedemann et 

al., 1972), which have seen extensive use in the circa 25 years since their development.

Munns (1992) gives several criteria to support the use of the assay:

1. detached shoots fed a control solution are able to maintain a constant leaf elongation 

rate (as do intact plants) over the 24 hour period of the assay.

2. leaf growth in the detached shoot responds in the expected way to the plant 

hormones GA (growth promoter) and ABA (growth inhibitor).

3. there is a negative log-linear relationship between ABA concentration and leaf 

growth inhibition, as found in other bioassay systems.

These findings were re-examined here. The response of leaf growth to 

temperature and of transpiration to ABA treatment were also assessed to further 

validate the leaf elongation assay technique. Additionally, the effect of altering the 

chemical composition of the feeding solution on the sensitivity of leaf growth to ABA 

was examined.
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2.2 MATERIALS AND METHODS

Seeds were sown in pots containing a commercial potting compost (Sinclair 

Horticultural Products, Lincoln, England). Seeds were sown 6 cm below the surface of 

the compost to allow the development of a sub-crown internode. Plants were well 

watered every day and raised in a growth cabinet, with temperature maxima varying 

between 22-29°C and minima between 9-16°C and a light intensity at plant height of 

200-300 pmol m"2 s" .̂ Assays were routinely performed with various commercially 

available barley (.Hordeum vulgare L.) cultivars (Klaxon, Firefly and Hanna). The GA 

sensitivity tests employed spring wheat (Triticum aestivum L. cv. RL 4137 and cv. 

Highbury). The latter contains the Rht 1 allele for partial GA insensitivity.

The plants were excavated when the third leaf (all leaves specifically referred to 

in this thesis are on the main stem) was in its exponential phase of growth. The assay 

was performed at this growth stage since the sub-crown intemode is still expanding 

when leaf 1 is expanding (which may result in wounding effects); and when leaf 4 was 

expanding, nodal roots were budding from the crown, which may have contributed 

growth regulators to the transpiration stream (Munns, 1992). Shoots can be assayed 

when leaf 2 is expanding (Munns, 1992), but the growth rate was reduced (compared 

to leaf 3) at a given temperature (data not shown).

Prior to excavation, the plants were placed in the dark for 15 minutes to reduce 

transpiration, reducing the likelihood of gas emboli entering the xylem vessels when 

cut. Plants were excavated circa 2 hours into the photoperiod. The roots were briefly 

washed to remove adhering compost then the coleoptile was stripped away. Removing 

the coleoptile had no significant effect on the subsequent growth of control shoots 

(data not shown) in 3 separate experiments.
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The stems were cut in distilled water approximately 2 cm below the crown 

(node). Development of the sub-crown intemode was essential. Shoots excised from 

plants without the intemode showed a rapid reduction of growth, presumably due to 

wounding in the leaf elongation zone, or submergence of the crown in the feeding 

solution resulting in oxygen deficiency (Munns, 1992). The detached shoots were then 

transferred to vials containing either distilled water (DI) or an artificial xylem (AX) 

solution (ionic composition in mM: K+, 4; NO3", 4.5; Ca^-1-, 0.5; Mg-*^, 0.5; S04++, 

0.5; Na+, 0.2; Cl", 0.7) as a control or a treatment of ABA (Lancaster Synthesis, 

Morecambe, England) made up in the appropriate solution. Concentrations of ABA 

were made up for the active (+) enantiomer. Gibberellic acid (GA3) (Sigma, Poole, 

Dorset, England) solutions were made up in artificial xylem solution. The pH of the 

solutions was not adjusted except in experiments specifically designed to examine the 

effect of pH on the ABA response (Section 2.3.5). This employed the same artificial 

xylem solution, except for the addition of 1 mM KH2PO4 and 1 mM K2HPO4. The 

pH of the solution was then adjusted by the dropwise addition of either 1 M HC1 or 1 

M KOH. The detached shoots were supported in the vials by 5 mL disposable pipette 

tubes as shown in Figure 2.1. A minimum of 5 replicate shoots per treatment were 

used.

The vials were transferred to a growth cabinet with a light intensity at plant 

height of 200-300 pmol m"2 s"1. During the course of the assays, air temperature and 

relative humidity were monitored using a Solexpress SE-100 sensor (Solexpress Ltd., 

Astley, England). Soil temperature (at crown-node depth for intact plants not used in 

leaf elongation assays) was monitored using a mercury immersion thermometer. 

Temperatures and relative humidities were recorded at the times of leaf measurement 

and averaged over the course of the assay. Temperatures did not vary by more than 

3°C during each assay.
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Figure 2.1: Detached barley (.Hordeum vulgare L cv. Klaxon) shoot used for leaf 
elongation assays (0.9 x actual size). Drawing by Andrew Sier.
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The length of leaf 3 was measured, with a piece of graph paper photocopied 

onto acetate, at intervals over a 10 hour period. Average leaf elongation rates (LER) in 

mm h~l were calculated. The effectiveness of ABA in inhibiting leaf growth can be 

expressed as a percentage of control shoots (= LER of ABA-fed shoot / mean LER of 

control shoots x 100) at each measurement period (e.g. Figure 2.2b), or combined for 

all measurements taken during the steady-state phase of leaf growth (or transpiration) 

inhibition to generate a dose-response curve (e.g. Figures 2.4b, 2.5b).

Water loss was measured by placing 6 vials per treatment on an electronic 

balance (Precisa 125A, PAG Oerlikon, Zurich, Switzerland) at 1 hour intervals. At the 

end of the assay, leaf area was determined using a planimeter (LI 3100, Li-Cor Inc., 

Lincoln, NE, USA). Water loss per unit leaf area (transpiration) was calculated, after 

subtracting losses from blank vials (without a detached shoot), in mmol m“2 s"l.

Routinely, less than 5 % of detached shoots wilted over the course of an assay, 

although certain batches showed higher percentages. Given this generally low 

percentage, the water potential of the shoots was not measured. It was assumed that 

cutting the detached shoots under water had released xylem tension and that the shoots 

would be at full turgor.

Means were discriminated using unpaired t-tests in SigmaPlot for Windows 

Version 1.0 - SPW 1.0 (Jandel Scientific, Erkrath, Germany). The significance of the 

linear regression of barley LER on temperature was tested in MENITAB for Windows 

10 - MTW 10.2 (Minitab Inc., PA, USA). Some data were subjected to analysis of 

variance (see Appendix 2) using GENSTAT 5 (Rothamsted Experimental Station, 

Harpenden, England) for all measurement periods.
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2.3 RESULTS AND DISCUSSION

2.3.1 Response of leaf growth to ABA in different ionic solutions

The effect of different feeding solutions on the growth of the detached shoots 

(distilled water- DI or artificial xylem solution - AX) was tested (Figure 2.2a). Control 

(not supplied with ABA) shoots showed a 25-30 % increase in LER over the first 4 

hours of the assay. This was a common feature in many leaf elongation assays, 

although the magnitude of the increase was highly variable (compare Figures 2.2a, 

2.3a). This response may be a recovery from any stresses imposed by excavation of the 

seedlings. A stable maximum LER was attained by control shoots between 4 and 8 

hours. Although statistical comparisons (Student's unpaired t-test, P> 0.05) revealed 

no difference in LER between AX-fed and Di-fed controls at any time (as shown by 

Munns, 1992); the LER of AX-fed shoots was consistently 10 % higher than the LER 

of Di-fed shoots over the first 8 hours of the assay. Stimulation of growth by a dilute 

ion solution (10 mM KC1) has been previously reported in a leaf disc bioassay system 

(Van Volkenburgh and Davies, 1983). By 10 hours, a 35 % (DI) or 20 % (AX) decline 

in LER, relative to the stable maximum LER, had occurred. This decline was greater in 

Di-fed shoots, as observed in 2 subsequent replications of the same experiment (data 

not shown). For this reason, an artificial xylem solution was routinely used in all 

subsequent assays.

There was no change in LER of shoots fed 10"6M ABA (compared to control 

shoots) after 2 hours. By 4 hours, a 50-55 % reduction in LER had occurred, which 

was maintained for the duration of the assay. The timing of the steady-state phase of 

leaf growth inhibition for 10"6M ABA was consistent with Munns (1992).
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Figure 2.2: Effect of different feeding solutions on leaf elongation rate of detached 
barley (Hordeum vulgare L. cv. Klaxon) shoots of maintained at 25°C (a). Treatments 
were 10"^M ABA dissolved in distilled water (A) or artificial xylem solution (A) while 
controls were distilled water ( • )  or artificial xylem solution (O). Points are means ± 
S.E. of at least 7 shoots, (b) Leaf elongation of ABA-treated shoots expressed as a 
percentage of the controls for distilled water ( • )  or artificial xylem solution (O). Error 
bars have been omitted for clarity.
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Expressing the results as a percentage of the controls (Figure 2.2b) revealed the 

attainment of a steady-state level of leaf growth inhibition after 4 hours. The decline in 

LER of the DW-fed controls resulted in a spurious value for the inhibition caused by 

ABA at 9 hours. When this point was disregarded, it was apparent that adding a dilute 

solution of ions to the feeding solution did not affect the response to ABA. This was 

supported by analysis of variance, which showed no nutrient x ABA interaction (see 

Appendix 2). This finding is in contrast to other workers who have found that 

incubation of epidermal strips in ions such as K+ (Wilson et al., 1978; Snaith and 

Mansfield, 1982b), Na+ (Jarvis and Mansfield, 1980) and C a ^  (De Silva et al., 1985) 

can increase (Ca++) or decrease (K+, Na+) stomatal sensitivity to ABA. Similarly, Van 

Volkenburgh and Davies (1983) found that the inhibitory effect of ABA on leaf disc 

growth was completely reversed when the discs were incubated in 50 mM KC1. These 

observations were given some support in the whole plant study by Schurr et a l (1992), 

who found significant correlations between stomatal sensitivity to ABA and 

concentrations of NO3" and C a ^  in the xylem sap of droughted sunflower plants. 

However, transpiration bioassays have shown no difference in stomatal response to 

ABA when leaves were incubated in either distilled water or 10 mM KNO3 (Munns 

and King, 1988). Therefore the results of Figure 2.2b, showing no difference in leaf 

elongation response to ABA in distilled water and a composite nutrient solution, are 

not entirely surprising. These results were confirmed with solutions of 0, 5 and 10 mM 

KC1 and KNO3, which also showed no interaction between nutrient concentration and 

leaf elongation response to ABA (data not shown). When 50 mM KC1 was substituted 

as a feeding solution in the leaf elongation assay, transpiration was inhibited by 30 % in 

comparison to shoots fed deionised water (data not shown), presumably due to 

osmotic effects. For this reason, the possibility of a KC1 x ABA interaction affecting 

leaf growth was not pursued.
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However, such assays have employed tissues detached from plants grown under 

optimum nutrient supply. The stomata of leaves detached from nutrient stressed plants 

(Radin et al., 1982; Radin, 1984) are more sensitive to ABA; however the effect of 

different nutrient solutions on the leaf elongation response of such leaves to ABA has 

not been assessed. It is surmised that differences in stomatal response to ABA in 

epidermal peels in the presence of individual ions may be the result of an unrealistic 

assay situation; since feeding identical solutions via the transpiration stream, where the 

mesophyll has the possibility of controlling the flow of ions to the epidermis, elicits no 

difference in ABA response between distilled water and ion solutions (Munns and 

King, 1988). The correlations described in the study of Schurr et al. (1992) are 

believed to be merely correlations since changes in stomatal sensitivity will occur over 

the course of a drying cycle and could be related to an increase or decrease of any one 

of a number of xylem sap components (Gollan et al., 1992). In the absence of bioassay 

evidence to confirm the conclusions of the whole plant study, the interactions between 

specific nutrient ions and stomatal sensitivity to ABA, as demonstrated by Schurr et al. 

(1992), are best treated as correlations, and not cause and effect.

The possibility that the initial increase in LER (25-30 % over the first 4 hours) 

of control detached shoots (Figure 2.2a) may have affected the response to ABA was 

tested by supplying ABA to treatment shoots at either 0 hours (usual assay procedure) 

or after 4 hours when leaves had attained their maximum LER. No differences in the 

response to ABA (expressed as a percentage of control values) were demonstrated 

(data not shown). In all further experiments, ABA was supplied at 0 hours.

In another test of whether the assay procedure affected the response of leaf 

growth to ABA two assays were conducted using the same batch of plants, but 

excavation of 2 separate groups of plants was separated by 6 hours. No differences in 

the response to ABA (expressed as a percentage of control values) were demonstrated

(data not shown), indicating that levels o f carbohydrate in the growing zone (assumed

32



to be much higher 6 hours further into the photoperiod) did not affect the ABA 

response. In all further experiments, plants were excavated circa 2 hours into the 

photoperiod.

2.3.2 Response of leaf growth to temperature in intact and detached shoots

The increase (first 6 hours) and subsequent decrease (last 2 hours of the assay) 

of LER in control detached shoots seen in Figure 2.2a (but not apparent in Figure 2.3a) 

is very different from the response of intact plants over a similar measurement period 

which show a reduced, though stable, LER (Figure 2.3a). The reduced LER of soil- 

grown plants may be explained in terms of the differences in the meristem temperatures 

experienced, since the meristem is the site of temperature perception for leaf growth 

(Watts, 1972; 1974). Intact plants are expected to have a meristem temperature 

equivalent to soil temperature while the meristem temperature of detached shoots was 

assumed to be that of air temperature. A highly significant (P<0.001) linear regression 

(LER = -0.65 + 0.132T, r^ = 0.85, d.f. = 27) described the relationship between the 

stable maximum LER of detached shoots and average air temperature during leaf 

elongation assays (Figure 2.3b), which suggested that there was close coupling 

between air and meristem temperature under the assay conditions. Although fitting a 

second order regression gave an r^ of 0.91, a linear relationship has been favoured by 

most investigators (Gallagher and Biscoe, 1979; Gastal et al., 1992; Ben-Haj-Salah and 

Tardieu, 1995). The non-linearity in the relationship for the detached shoots was 

noticed only for temperatures of circa 25°C, and perhaps indicates the development of 

stress in the shoots. However, this appears to be a normal response also in intact 

plants, which commonly show a reduction in leaf growth above a temperature optimum 

(e.g. Watts, 1972; Ben-Haj-Salah and Tardieu, 1995). It is difficult to know whether 

this is in response to temperature per se, or in response to the high VPDs which 

accompany high temperature (Squire et a l, 1983). Watts (1972) accounted for a high
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temperature-induced growth reduction in terms of water loss exceeding water uptake, 

which induced low water potential in the elongating cells and restricted growth.

Intact plants showed the same LER response to (soil) temperature (Figure 

2.3b) as did detached shoots. Although more sophisticated temperature measurement 

procedures (such as the use of hypodermic thermocouples to allow precise recording of 

meristem temperature) could have been employed, it is clear that detached shoots are 

capable of responding to temperature similarly to intact plants, further evidence of the 

validity of the leaf elongation assay procedure.

2.3.3 Response of leaf growth to GA3

Table 2.1 shows the growth response of two different wheat cultivars (cv.s 

RL4137 and Highbury), and a barley cultivar (cv. Firefly) to 10"^M GA3. The results 

are very similar to those of Munns (1992), who found that detached wheat and barley 

shoots in a leaf elongation assay increased their growth by about 30 % when supplied 

with 10'^M GA3; with the exception of cultivars containing the reduced-height gene 

{Rht 7), which show partial insensitivity to GA3 and are unresponsive to external GA3 

application. Table 2.1 shows that the response of cereal shoots that do not contain Rht 

1 appeared to be strongly cultivar specific, although growth of Firefly shoots at higher 

temperature may have produced the greater growth promotion than RL4137, since the 

effect of endogenous GA seems to be temperature dependent (Stoddart and Lloyd, 

1986).
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Figure 2.3 : Leaf elongation rate of detached shoots (O) and intact plants ( • )  of barley 
(Hordeum vulgare L. cv. Klaxon) during a leaf elongation assay conducted at 23°C (a) 
and plotted as a function of air temperature (O) and soil temperature ( • )  (b). Linear 
regression in (b) fitted to all data points in SPW 1.0. Points in (a) are means ± S.E. of 9 
shoots, while points in (b) are means ± S.E. of at least 24 measurements taken at least 
4 times during an assay.
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Table 2.1: Leaf elongation rate of different wheat and barley cultivars supplied with 
10“^M GA3. Data are means ± S.E. of at least 16 measurements taken during steady- 
state phase of growth promotion (3-5 hours after supplying GA3).

Leaf elongation Rate (nun h"*)
Cultivar Temperature (°C) Control 10"5M GA^ Percentage 

of Control

Highbuiy (Rht 1) 23 2.89 + 0.19 2.91 ±0.17 103
RL 4137 18 1.81 ±0.11 2.09 ±0.11 115
Firefly 27 2.47 ±0.12 3.42 ±0.11 139

2.3.4 Response of leaf growth and transpiration to a range of ABA concentrations

The response of LER and transpiration to a range of ABA concentrations was 

examined (Figures 2.4, 2.5). Feeding ABA significantly (P<0.10) reduced LER within 

2 hours at all concentrations tested in Figure 2.4a. This result was unexpected 

considering the data in Figure 2.2a showed that 10“̂ M ABA does not reduce LER 

after 2 hours. This inconsistency is an example of the day-to-day variability inherent in 

the assay. A relatively stable LER (unique according to concentration) was reached 

after 4 hours, with 10"^, 10" ,̂ 10“̂  and 10"^M ABA reducing LER by 11 %, 24 %, 58 

% and 77 % respectively. All of these leaf growth reductions were significant with the 

exception of 10“̂ M ABA. The sensitivity of the measurement technique in detecting 

the onset of the ABA response (within 2 hours) in the leaf elongation assay is similar to 

that in the leaf disc bioassay system of Van Volkenburgh and Davies (1983).
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Figure 2.4a: Leaf elongation rate of detached barley (Hordeum vulgare L. cv. Klaxon) 
shoots maintained at 23°C and supplied with artificial xylem solution (O), 10" ( □ ) ,  
10"^M (▼), 10“̂ M (A) and 10'^M ( ♦ )  ABA. Points are means ± S.E. of at least 8 
shoots, (b) Dose-response curve generated from data in (a). Data ( • )  are expressed as 
a percentage of controls and are means ± S.E. of at least 32 measurements taken 
during the steady-state phase of leaf growth inhibition (3-9 hours after supplying 
ABA). The dose-response curve for detached shoots of Triticum aestivum L. cv. Egret 
maintained at 18°C (□ ) (from Munns, 1992) is included for comparison.
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Figure 2.5a: Transpiration of detached barley (Hordeum vulgare L. cv. Klaxon) shoots 
maintained at 23°C and supplied with artificial xylem solution (O), 10"^M (□), 
lO'^M (T), lO'^M (A) and 10"^M ( ♦ )  ABA. Points are means ± S.E. of 6 shoots, (b) 
Dose-response curve generated from data in (a). Data ( • )  are expressed as a 
percentage of controls and are means ± S.E. of 42 measurements taken during the 
steady-state phase of transpiration inhibition (1.5-9.5 hours after supplying ABA). The 
dose-response curves for detached leaf 2 of Triticiim aestivum L. cv. Egret maintained 
at 22°C (A) (from Munns and King, 1988) and detached primary leaves of Egret at 
18°C (□ ) (from Munns et a l , 1993) are included for comparison.



Feeding with ABA reduced transpiration within an hour (Figure 2.5a). Stable 

transpiration rates were maintained in all treatments up to 6 hours. After 6 hours, 

transpiration rates in all treatments declined over the remainder of the assay period to 

reach 76 % of the stable reading obtained between 2 and 6 hours for control shoots. A 

similar decline has been noted before for detached leaf transpiration bioassays but 

previous reports indicate this occurs more rapidly (a linear decline with time, reducing 

transpiration by 23 % within 7 hours - Talha and Larsen, 1975) and with greater 

severity (50 % within 4 hours - Willmer et a l, 1978). Despite this decline, stable 

transpiration rates were obtained after 2 hours with 10”8, io-?, 10"  ̂ and 10“^M ABA 

reducing transpiration by 14 %, 21 %, 45 % and 64 % respectively. All these 

transpiration reductions were significant with the exception of 10"^M ABA. It is 

interesting to note that the response to ABA remained reasonably stable over the 10 

hour assay period, although at the end of the assay declines in the control transpiration 

rates resulted in 10"^M ABA no longer having an effect. This confirmed the results of 

Talha and Larsen (1975), who showed that long measurement periods (up to 11 hours) 

reduced the effect of 10"  ̂ and 10"^M ABA.

Although ABA appeared to affect transpiration more rapidly than leaf 

elongation, these experiments were not designed to obtain data on the rates of response 

to ABA, merely the steady-state rates of leaf elongation and transpiration. Leaf 

elongation assays using ruler measurements in this thesis have a temporal resolution of 

2 hours while simultaneous transpiration measurements were made hourly. Greater 

temporal resolution of these techniques could be attained by reducing replication. 

However, the limits of ruler detection (0.5 mm) would permit, at best, a measurement 

every 15 minutes at high temperatures (30°C) assuming an LER of 4 mm h_V 

Alternatively, studies on the rate of ABA-induced leaf growth inhibition could be 

undertaken using high resolution linearly variable displacement transducers (LVDTs).
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ABA at concentrations from 10"^ to 10"5 M inhibited growth and transpiration 

according to the typical log-linear relationship between ABA concentration and the 

steady-state rates of the process described previously for leaf elongation (Munns, 

1992), transpiration and stomatal opening (Trejo et a l , 1993). Expression of the data 

as a percentage of the control values allowed a comparison of the steady-state 

responses of the two processes in the same plants (Table 2.2). At low ABA 

concentrations (10“  ̂ and lO'^M), there was no difference in the magnitude of the 

response of transpiration and leaf elongation. At high ABA concentrations (10“6 and 

10-5 jeaf  elongation appeared to be more inhibited. However, these results are 

from only one assay and Munns et al. (1993) stress the variability in ABA response 

that can occur between identical assays under similar conditions. An example of this 

variability is given in Figure 4.2. The relative responses of transpiration and leaf 

elongation to ABA at different temperatures are more fully considered in Figure 4.6.

Table 2.2: Sensitivities of growth and transpiration to ABA in the same leaf elongation 
assay. Data are means ± S.E. taken from Figures 2.4b, 2.5b, with the number of 
replicates indicated in parentheses. P value obtained by applying Student's unpaired t 
test (P<0.05 *), (P<0.01 **), (PO.OOl ***).

log [ABA] (M) Leaf elongation 
(% Control) ^

Transpiration 
(% Control)

P Value

-8 - 88.5 ±3.5 (32) 89.4 ± 2.0 (46) 0.805
-7 76.0 ± 2.6 (32) 78.6 ±1.2 (48) 0.329
-6 41.7 + 2.1 (36) 55.7 ± 1.2 (48) 0.000 ***
-5 23.5 ±2.0 (36) 36.9 ± 0.8 (48) 0.000 ***

Expressing data as a percentage of control values allowed comparisons with 

results obtained by other workers. Figure 2.4b compares the dose-response curve of 

leaf elongation with that obtained by Munns (1992). Although 10"^M ABA inhibited 

leaf elongation to a similar degree in both systems, leaf elongation appeared to be less 

responsive to ABA in Munns' system at all other concentrations. Two possible
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explanations may account for this. Genotypic variation in ABA response may be 

involved since different species were used (Triticum aestivum cv. Egret in Munns, 

1992 vs. Hordeum vtdgare cv. Klaxon in Figure 2.4). Alternatively, the 5°C difference 

in temperature may explain the discrepancy. The roles of genotypic variation and 

temperature in altering ABA dose-response curves of leaf elongation are considered in 

Chapters 3 and 4, respectively.

Figure 2.5b compares the dose-response curve of transpiration with those 

obtained by Munns and King (1988) and Munns et a l (1993). Although there are 

differences of genotype and temperature, there is a close similarity of the dose- 

response curves over a range of 10*7 to 5xl0"^M ABA. At concentrations lower than 

10"^M, there are some differences between the dose-response curves, and considerable 

variability within a single dose-response curve. Munns and King (1988) indicate that in 

five experiments, 5xl0“^M ABA gave transpiration rates of 83, 85, 88, 101 and 103 % 

of leaves fed distilled water. This variability is important, for it is in this range that 

xylem sap ABA concentrations occur in draughted cereal shoots (Munns and King, 

1988; Zhang and Davies, 1990a). It is important to note that the dose-response curve 

attained for transpiration using detached shoots (from Figure 2.5a) was very similar to 

that found by Munns' group using single detached leaves, which validates the use of 

detached shoots for assessing transpiration responses.

Table 2.3 compares the sensitivity of the leaf elongation assay described here 

with other commonly used growth and stomatal bioassays. Immediately obvious is the 

wide range of concentrations at which ABA has an effect in different stomatal systems. 

While a fuller discussion of factors affecting ABA sensitivity may be found in Section 

1.5, this table does highlight important differences that occur due to species, different 

incubation solutions and method of assay. The ability of stomata to respond to very 

low ABA concentrations (10_11, 10"10M) in epidermal strip bioassays is very different 

from growth assays, which typically show significant growth reduction at 10"^M ABA.
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Only one "growth" assay, using the floating aquatic duckweed Lemna, showed ABA- 

induced growth inhibition at 10"^M  (Tillberg, 1975).

Table 2.3: What ABA concentrations are needed to demonstrate a significant effect in 
bioassay experiments ?

Assay technique Species log
[ABA]
(M)

Reference

Stomatal
Epidermal Commelina communis -8 Tucker and Mansfield, 1971
Strip Bioassay Commelina communis -7 Ogunkanmi et al., 1973

Commelina communis -10 Ogunkanmi et al., 1973
Commelina communis -8 Trejo etal., 1993
Commelina communis -10 Trejo et al., 1995

Epidermal Strip 
Bioassay with 
whole leaf pieces

Commelina communis -5 Trejo al., 1993

Detached Leaf Hordeum vulgare -7 Cummins et al., 1971
Transpiration Zea mays -8 Talha and Larsen, 1975
Bioassay Commelina communis -5.5 Weyers and Hillman, 1979

Commelina communis -6 Trejo et al., 1993
Hordeum vulgare -7 Figure 2.5

Growth:
Coleoptile Avena sativa -7 Tillberg, 1975
Growth Avena sativa -8 Wright, 1969
Inhibition Avena sativa -9 McWha and Jackson, 1976

Triticum aestivum -8 McWha and Jackson, 1976

Lemna Growth Lemna gibba -11 Tillberg, 1975
Inhibition Lemna minor -7 McLaren and Smith, 1976

Lemna gibba -8 DeKock et al., 1978
Lemna minor -6 Campbell et al., 1995

Leaf Disc 
Inhibition

Phaseolus vulgaris -7 Van Volkenburgh and Davies, 1983

Intact Leaf 
Bioassay

Glycine max -6 Bunce, 1990

Detached Shoot Phaseolus vulgaris -4 Van Volkenburgh and Davies, 1983
Leaf Elongation Triticum aestivum -6 Munns, 1992
Assay Hordeum vulgare -7 Figure 2.4
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Apparent differences in stomatal response to ABA caused by different assay 

techniques can be explained in terms of stomata responding to epidermal ABA 

concentration (Trejo et al., 1993). More ABA accumulated in epidermal strips with 

their mesophyll removed, which emphasised the controlling influence of the mesophyll 

on epidermal ABA, casting doubt on the value of the epidermal strip assay in 

forecasting conditions in the intact plant. This example highlights an important 

consideration; that choice of a suitable bioassay to study potential variation in ABA 

sensitivity should mainly depend on its ability to estimate or reproduce whole plant 

response to ABA.

The leaf elongation assay described here was preferred over the other growth 

assays described in Table 2.3 due to its morphological similarity to intact plants (unlike 

coleoptile or leaf disc systems), its ease of application (unlike intact plant assays which 

rely on stem injection of ABA - Bunce, 1990) and the ability to alter the feeding 

solution. Although the leaf disc assay fulfils the latter criterion, it is unsuitable for 

monocotyledons since the lamina does not contain expanding cells. It is also possible 

that wounding effects and uncertainty of penetration of the feeding solution into the 

tissue (Pratt and Matthews, 1971) may be problems with the leaf disc assay.

2.3.5 Response of leaf growth and transpiration in the presence or absence of 

ABA supplied at different pHs

The response of leaf elongation and transpiration to ABA supplied at different 

pHs showed considerable variability between different batches of plants; a typical result 

is shown in Figure 2.6. It is apparent that both processes show stability in their 

response to solutions across a pH range of 5-8. At pH 9, both processes were reduced, 

however a large percentage (75 %) of the plants showed wilting symptoms. Only 15 % 

of the plants at other pHs were similarly afflicted. On occasion, solutions of pH 8 were 

shown to reduce leaf growth and transpiration, again with a disproportionate
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percentage of these plants showing wilting. It is hypothesised that the wilting originates 

from the blockage of the xylem vessels; this could have been tested by re-cutting the 

shoots and transferring them back to solutions of a lower pH to see if growth recovery 

occurred. The wilting is not altogether surprising, as pH 9 is considered to be non- 

physiological, even in water stressed plants which show an alkalisation of the xylem sap 

(see Table 2.4).

It is unfortunate that there are no data available on the pH of barley xylem sap 

collected from water stressed plants to directly assess the physiological relevance of the 

imposed pH changes. Some comparative data are presented in Figure 7.8, which 

showed maize xylem sap to have a pH of 6.3-6.4 with no change occurring with a mild 

soil drying (which reduced LER by 35 %). Considering that drought-induced pH 

changes are much less than 1 pH unit for quite severe (indicated by the increase in 

ABA concentration) drying treatments (Table 2.4) and the considerable variability 

within a treatment, it is unlikely that pH has a direct effect on leaf growth.

Table 2.4: Changes in xylem sap pH and ABA concentration in well watered (WW) 
and water stressed (WS) plants. Values are means ± S.E. where possible. Data from 
the sunflower study were re-elaborated.

Stress Reference Species Xylem Water Well
Component Stressed Watered

WS <0.10 g g"̂  0 Gollan et al., 1992 Helianthus pH 6.30 ± 0.04 6.64 ± 0.07
WW 0.15-0.20 g g’ l 0 Schurr et al., 1992 annuus ABA(nM) 31 ± 4  371 ± 76

WS - 3-4 days Trejo, 1994 Phaseolus pH 5.66 ±0.12 6.07 + 0.05
withholding water \nilgaris ABA (nM) 72 900
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Figure 2 .6 : Effect of pH on leaf elongation rate (a) and transpiration (b) of detached 
barley (Hordeum vulgare L. cv. Hanna) shoots maintained at 24°C and supplied with 
artificial xylem solution (O) or 10”̂ M ABA (▼). Points are means ± S.E. of at least 
10 (a) and 15 (b) shoots. Data analysis excluded shoots which showed wilting 
symptoms (15 % of total) for pHs 5-8, but included shoots which had wilted (75 % of 
total) for pH 9.
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This conclusion goes against a large body of literature showing effects of pH on 

the growth of coleoptiles (see e.g. Figure 8.9) and stem segments, although the 

controversy over the so-called "acid growth theory" continues (Kutschera and 

Schopfer, 1985; Schopfer, 1989, Cleland et al., 1991; Rayle and Cleland, 1992). 

However, most of the supporting data for this theory comes from excised stems and 

coleoptiles incubated in solutions of pH < 5.5, and little evidence has been found to 

demonstrate effects of pH on intact leaves. In monocotyledons, a rather inconclusive 

correlation between leaf surface pH and maize leaf growth occurred in plants subjected 

to a soil drying treatment (Van Volkenburgh and Boyer, 1985), but there was no 

attempt to manipulate pH and examine the effect on leaf growth. The evidence for acid 

growth in gramineacous leaves is therefore rather weak.

Studies examining coleoptile growth have often employed stronger buffers than 

the 2 mM phosphate buffering system applied here in the detached shoot experiments, 

and found in wheat xylem sap (Munns and King, 1988). The failure to detect an effect 

of pH on growth in Figure 2.6 may therefore represent a failure to over-ride the plant's 

natural buffering system. It may have been worthwhile to have determined the osmotic 

effects of different phosphate concentrations on growth and transpiration of shoots, to 

determine the maximum buffering capacity that could have been used.

Failure to over-ride the plant's buffering system may also explain why ABA 

applied at a higher pHs did not further reduce either leaf growth or transpiration over 

the pH range 5-8. This contradicts data obtained from epidermal strip bioassays, which 

show greater stomatal closure at higher pHs in some (Ogunkanmi et al., 1973; 

Paterson et al., 1988) but not all (Hartung, 1983) cases. Although a whole plant study 

has shown a correlation between stomatal sensitivity to ABA and pH (Schurr et al., 

1992), correlations also existed for NO3'  and C a ^ . As considered earlier, the 

multiplicity of inner correlations between different nutrient ions in the soil drying 

system make it unrealistic to pronounce conclusively on a specific interaction.
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Epidermal strip assays may also be flawed since they do not consider the role of the 

mesophyll in regulating the concentrations of ions around the guard cell apoplast. Until 

some reconciliation between epidermal strip assays, transpiration bioassays and whole 

plant studies (in the case of stomata) or coleoptile, leaf elongation assays and whole 

plant studies (in the case of leaf growth) can be achieved, it is difficult to state with 

certainty the existence of a pH x ABA interaction affecting the leaf growth response of 

plants. Accordingly, the leaf elongation assays described in the remainder of this thesis 

have employed an artificial xylem solution in which the pH was not adjusted.

2.4 CONCLUSIONS

The leaf elongation assay appeared to be a reliable means of assaying for 

chemicals which can affect leaf growth. A potential problem existed when control 

shoots showed declines in LER over the latter stages of a 10 hour assay period. 

However, a stable response to ABA treatment occurred after 4 hours. Therefore 

control shoots maintained their growth for a sufficient period to allow detection of the 

ABA response. Further validity was added to the assay by the observations that LER 

was responsive to temperature as in intact plants, transpiration was affected to a similar 

extent as that found in detached leaf systems and the shoots responded to a growth 

promoter (GA3) in the expected manner. Dose-response curves for leaf elongation and 

transpiration were similar to those reported by other workers.
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CHAPTER 3.

DO GENOTYPIC DIFFERENCES EXIST IN LEAF ELONGATION 

RESPONSE TO ABA ?

3.1 INTRODUCTION

One interesting result from the previous section was that the dose-response 

curves for ABA-induced inhibition of leaf growth were very different between the 

present study and that of Munns (1992) (Figure 2.4b). One possibility for the 

discrepancy may be that different species were used. The possibility that different 

genotypes may vary in their response to ABA may be of considerable adaptive 

significance. Genotypes which show a sensitive response to ABA may be able to 

effectively restrict their leaf area development, allowing more soil water to become 

available later during grain filling. Alternatively, in environments where there is a 

positive correlation between early vegetative growth and grain yield, it may be 

desirable for genotypes to be relatively insensitive to ABA.

Such differences are of physiological relevance only if ABA is regulating 

growth. The role of ABA in controlling the leaf growth of droughted plants remains 

controversial (Section 1.6) and thus differences in leaf growth response to ABA may 

not be of adaptive significance. Regardless, it would be of considerable intrinsic interest 

to identify genotypes differing in their ABA response. If considerable differences were 

detected, it would be a logical development to see if leaf growth behaviour under 

drought was affected. The leaf elongation assay has an advantage in screening for 

genotypic differences since it is possible to avoid confounding effects of genotypic 

differences in water relations that may occur in a soil drying experiment. Although it 

can be argued that a system which examines the ABA response in essentially well- 

watered plants is artificial, it must be noted that considerable leaf growth inhibition can 

occur without the detection of any changes in the water relations of droughted plants
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(Passioura, 1988a; Saab and Sharp, 1989; Gowing et al., 1990). The leaf elongation 

assay approach also has the advantage of being less labour intensive than a soil drying 

experiment. Before embarking on a screening program, evidence of genotypic 

differences in ABA response should be located.

Most of the available evidence has come from studies of the stomatal response 

to ABA. Considerable variation between (Kriedemann et a l , 1972) and within 

(Rodriguez and Davies, 1982; Quarrie, 1983; Blum and Sinmena, 1995) species has 

been shown. It is therefore likely that the leaf elongation response to ABA may show 

intergenotypic variation. An exhaustive study of wheat genotypes (Blum and Sinmena, 

1995) revealed significant variation in growth responses to ABA supplied in 

hydroponic solution. However, this study measured relative growth rate after 7 days 

and thus integrated effects of ABA on leaf area expansion and photosynthesis. 

Differences in coleoptile growth response to ABA have also been demonstrated (Filiti 

and Cristoferi, 1977; Lercari et al., 1978 - both cited in Quarrie, 1983) in wheat 

cultivars. However, preliminary studies with the leaf elongation assay have not revealed 

consistent genotypic differences (Munns, pers. comm.). Therefore, comparisons of a 

number of selected genotypes were initiated.

The possibility of intercultivar variation was tested using wheat cultivars known 

to differ in their detached leaf and field ABA accumulation (Quarrie, pers. comm.) and 

their root growth response to soil drying (Rigby et al., 1994). Two wheat cultivars 

from the study of Blum and Sinmena (1995), known to differ in transpiration and 

growth response to ABA, were also obtained. As a matter of practical necessity, the 

two barley cultivars on which most of the work in this thesis is based were also tested 

for differences. Species differences were assessed by comparing the responses of barley 

and maize. This comparison was considered important since contradictory data have 

been obtained using different techniques on the importance of xylem sap ABA in 

controlling leaf growth in these species (Zhang and Davies, 1990a, b; Munns, 1992),
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despite the close similarity of the dose-response curves for leaf growth response to 

synthetic ABA obtained in different systems in the two studies. The work reported here 

on maize extends the use of the leaf elongation assay to an additional species.

3.2 MATERIALS AND METHODS

Seeds of the wheat (Triticum aestivum L.) cultivars SQ1 and Chinese Spring 

were kindly provided by Dr. S. A. Quarrie, while seed of the cultivars Sunstar and 

Sundor were kindly supplied by Dr. A. Blum. Seeds of the barley (Hordeum vulgare 

L.) cultivars Klaxon and Firefly and the maize (Zea mays L.) cultivar Earliking were 

obtained through commercial suppliers.

Preliminary experiments with maize (Zea mays cv. Earliking) showed it to be a 

less suitable candidate for the assay than wheat or barley. Lateral roots could form on 

the base of the sub-crown intemode and nodal roots could appear at the crown at the 

time leaf 3 was ready to assay. These roots were removed to avoid introducing potting 

compost to the feeding solution. After preparation, the detached shoots appeared as in 

Figure 3.1. The developmental window in which plants were suitable for assay was 

reduced (compared to barley) since plants whose third leaf was greater than 10 cm at 

the time of assay would show a reduced LER 6 hours after the commencement of an 

assay (data not shown). Despite these difficulties, care with selection and preparation 

of plants ensured enough material.

The use of maize shoots with their larger leaves permitted the use of porometry 

to determine if detached shoots maintained similar gas exchange characteristics to 

intact plants. A Delta-T AP4 porometer (Delta - T Devices, Burwell, Cambridge, 

England), which was calibrated before each measurement period, was used.
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Figure 3.1: Detached maize (Zea mays L. cv. Earliking) shoot used for leaf elongation 
assays (0.85 x actual size). Drawing by Andrew Sier.
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All plants were grown at 30/20°C to avoid any possibility of chilling injury in 

maize. Seed of both cultivars in each pair was planted at the same time (except in the 

maize vs. barley comparison, where maize seed was sown 3 days later) in the hope of 

obtaining plants at the same stage of development when the shoot was ready to assay. 

This was not achieved in all cases, and care was taken in selecting shoots for assay that 

they were of the same developmental stage. This reduced the replication from what 

was thought desirable (9 shoots per cultivar per treatment) in some comparisons. Leaf 

elongation assays, as described in Section 2.2, were performed at temperatures of 25- 

30°C using 5 ABA concentrations. Experiments for each pair of cultivars were 

repeated on 2 (Sunstar vs. Sundor) or 3 (all other pairs) occasions.

Data were analysed in two ways. Using the LER data obtained when leaf 

growth inhibition was maximal, LER as a percentage of the control values was 

calculated for each ABA concentration (as in Figures 2.2b, 2.4b). Leaf growth 

inhibition was maximal at 3, 5 and 7 hours after feeding ABA, however in one case 

(Chinese Spring vs. SQ1) only data from 3 hours was used since the LER of control 

Chinese Spring plants had declined by 5 hours (Figure 3.2). This problem was 

previously noted (see the data for 9 hours for Figure 2.2a) and seems to be a cultivar- 

specific difference in the maintenance of LER in detached shoots at high temperature. 

The data (LER % Control) for the different genotypes were compared by applying 

Student's unpaired t-test in SPW 1.0 at each ABA concentration using the data 

combined from 3 measurement occasions (t= 3, 5, 7 hours). Data from each 

experiment were tested (see Appendix 3) and the combined data from all experiments 

also assessed. Data from each experiment are presented graphically in one case (maize 

vs. barley - Figure 3.5a-c) and for the combined data in all other cases (Figures 3.5d, 

3.6). As a comparison, the two data sets for Klaxon were also compared (Figure 3.6d).
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Figure 3.2: Leaf elongation rate of detached shoots of wheat (Triticum aestivum) 
cultivars Chinese Spring (V) and SQ1 (T) supplied with artificial xylem solution. 
Points are means ± S.E. of 7 (Chinese Spring) and 9 (SQ1) shoots.

Alternatively, primary data on LER for each experiment and a combined data 

set including all experiments were analysed in GENSTAT 5 (Rothamsted Experimental 

Station, Harpenden, England) for all measurement periods (except in the case of the 

Chinese Spring vs. SQ1 comparison as discussed above). Data were arcsin transformed 

to satisfy normality of variance. Sample ANOVA tables can be found in Appendix 2. 

The significance of the Genotype x ABA (G x ABA) interactions are presented in 

Table 3.1.

53



In addition to the leaf elongation assays, a detached leaf transpiration bioassay 

was employed to screen for variation in stomatal responses to ABA. Growth of the 

plants was as described above, and leaf 2 was detached at the same stage plants were 

ready for a leaf elongation assay. After leaving plants in the dark for 15 minutes, leaves 

were detached, re-cut under distilled water (DI), placed in Eppendorf tubes containing 

DI and allowed to recover in the dark for 30 minutes. They were then placed in a 

growth cabinet for 45 minutes to allow the stomata to open, then transferred to a 

solution of AX or various ABA concentrations. Transpiration was determined 

gravimetrically as in Section 2.2.

3.3 RESULTS AND DISCUSSION

Figure 3.3 shows that leaf growth and abaxial stomatal conductance in 

detached maize shoots were very similar to intact plants (no significant differences, 

P>0.05, at any time during the assay). Detached maize shoots showed reduced leaf 

growth and stomatal conductance when supplied ABA (in a similar manner to detached 

barley shoots - see Figures 2.4, 2.5), the percentage reduction being dependent on 

ABA concentration.

The response of LER to temperature (T) in detached maize shoots in a number 

of experiments was described by a highly significant (P<0.001) linear regression (LER 

= ‘-2.60 + 0.161T, r^ = 0.73, d.f. = 11) over the restricted temperature range of the 

experiments (24-30°C). Comparison with a similar regression for barley over that 

temperature range was not possible as barley shoots showed a higher, but variable, 

LER (see Figure 2.3b), such that the regression was non significant (P=0.92). 

Comparison of the maize regression with the barley regression (from Figure 2.3b) 

showed that for a given temperature, maize LER was, on average, only 60 % that of 

barley.
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Figure 3.3: Leaf elongation rate (a) and abaxial conductance (b) of intact maize plants 
(■) or detached maize shoots maintained at 30°C and supplied with an artificial xylem 
solution (Q), 10_7M (▼), 10“6M (A) and 10~5M ( ♦ )  ABA. Points are means ± S.E. 
of 8 shoots.
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To generate a dose-response curve for the inhibition of maize leaf growth by 

ABA, further experiments were performed. Figure 3.4 shows the characteristic log- 

linear response to ABA in the maize leaf elongation assay system, which is similar to 

the relationship between leaf growth and xylem ABA concentration determined by 

Zhang and Davies (1990a, b) for intact maize plants grown in drying soil or supplied 

with ABA via a hydroponics solution. The similarity of the responses provided further 

evidence that the bioassay technique may provide valuable information on the 

responses of whole plants.
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Figure 3.4: Response of leaf elongation to xylem sap ABA concentration in intact 
maize plants (solid line) and detached shoots (•) . The solid line, redrawn from Zhang 
and Davies (1990b), plots the leaf elongation response versus xylem sap ABA 
concentration for whole plants subjected to a soil drying treatment or fed a nutrient 
solution containing ABA. The symbols refer to maize leaf elongation assays conducted 
at an average temperature of 27°C. Points are mean leaf elongation, expressed as a 
percentage of controls, ± S.E. of n experiments for 10“̂ M (n=3), 10~7M (n=9), 10'6M 
(n=l 1) and 1 0 '%  (n=8) ABA.
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Figure 3.5 compares dose-response curves of leaf growth versus ABA 

concentration generated in 3 separate experiments for maize and barley (cv. Klaxon) 

plants assayed under the same conditions. In one of 3 experiments (Figure 3.5b) there 

were highly significant (P<0.001) differences in ABA response between maize and 

barley. This suggested that it would be prudent to perform 5 assays per pair of 

cultivars; unfortunately lack of time limited replication. This one experiment resulted in 

there being a significant difference with the combined data (Figure 3.5d) at 10'^M 

ABA, with no significant differences in ABA response at other concentrations. This 

occurred in spite of large differences in growth rate (as discussed above) between the 

two species. ANOVA confirmed the presence of a significant (P<0.01) genotype x 

ABA (G x ABA) interaction in Experiment 2, even when the data from 10"^M and 

10'^M ABA were omitted from the analysis (Table 3.1). This one experiment resulted 

in a significant G x ABA interaction when the data from the 3 experiments were 

combined. The highly significant (P<0.01) genotype x ABA x experiment (G x ABA x 

E) interaction indicates that further experiments should be performed to discriminate 

whether maize and barley differ significantly in their response to ABA.

Comparison of the two barley cultivars (Figure 3.6a) showed that Firefly was 

significantly more sensitive to ABA than Klaxon at all concentrations tested. However, 

analysis of variance (Table 3.1), revealed no significant G x ABA interaction in any 

experiment. It is concluded that the two cultivars do not differ in their response to 

ABA, which highlights the inadequacy of comparing data strictly on the percentage 

inhibition of growth shown.
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Figure 3.5: Dose response curves (as generated in Figure 2.4b) for leaf growth of 
Hordeum vulgare cv. Klaxon (O) and Zea mays cv. Earliking (A) in response to ABA 
for 3 separate experiments: (a), (b) and (c) where the temperature was 26-28°C. Data 
expressed as a percentage of controls, and represent means ± S.E. of at least 18 
measurements taken during the steady-state phase of leaf growth inhibition (3-7 hours 
after supplying ABA). Data from the 3 separate experiments were combined to 
generate the dose-response curve in (d). Significant differences (P<0.05 *), 
(P<0.01 **), (PO.OOl ***) between species at each ABA concentration, as 
determined by Student's unpaired t test, are indicated on graphs.
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Table 3.1: Table of significance of Genotype x ABA interactions for various data sets, 
with (All [ABA]s) or without the data for 10"6 and 10"^M ABA. (P<0.05 *), 
(P<0.01 **), (P<0.001 ***).

Genotypes Data Set Exp. 1 Exp. 2 Exp. 3 Overall

Klaxon All [ABA]s NS ** NS **
vs. Earliking - 10-6/10"5 M ABA NS ** NS **

Klaxon All [ABA]s NS NS NS NS
vs. Firefly - 10-6/10"5 M ABA NS NS NS NS

Sunstar All [ABAJs NS NS NS
vs. Sundor - lO-fylO"5 M ABA NS NS NS

Chinese Spring All [ABA]s * NS * **
vs. SQ1 - lO-fylO"5 M ABA * NS NS NS

Klaxon No. 1 All [ABA]s NS * NS **
vs. Klaxon No. 2 - lO-fyKT5 M ABA NS * NS NS

Comparison of the wheat cultivars Sunstar and Sundor was hampered by poor 

germination. Combined data from only two experiments showed a significant (P<0.05) 

difference in ABA response at lO'^M (Figure 3.6b), the same concentration routinely 

used by Blum and Sinmena (1995) in detecting genotypic differences. This difference 

was not supported by ANOVA, with no significant G x ABA interactions detected in 

either experiment, even when the data from 10“̂ M and lO^M ABA were excluded 

(Table 3.1). Considering this negative result, it was decided to repeat Blum and 

Sinmena's (1995) experiment using these two cultivars in a transpiration bioassay. 

When detached leaves were fed 10~^M ABA, both cultivars exhibited transpiration that 

was 60 % of the controls (data not shown), a result at odds with the large differences 

(15 % of controls for Sundor and 58 % for Sunstar) noted by Blum and Sinmena 

(1995).
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Figure 3.6: Dose-response curves (as generated in Figure 3.5d) for leaf growth in 
response to various ABA concentrations for Hordeum vulgare cv. Klaxon (O) and 
Hordeum vidgare cv. Firefly (♦) (a), Triticum aestivum cv. Sunstar (□ ) and Triticum 
aestivum cv. Sundor (■) (b), Triticum aestivum cv. Chinese Spring (V) and Triticum 
aestivum cv. SQ1 (T ) (c), and two data sets for cv. Klaxon, from Figure 3.5d ( • )  and 
Figure 3.6a (O). Data expressed as a percentage of controls, and represent means ± 
S.E. of at least 12 (c), 21 (b) and 44 (a,d) measurements taken from 3 (a,c,d) or 2 (b) 
separate experiments during the steady-state phase of leaf growth inhibition when the 
temperature was 26-30°C. Significant differences between genotypes (P<0.05 *), 
(P<0.01 **), (P0.001 ***) are indicated on graphs.
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There was a significant (P<0.01) difference between Chinese Spring and SQ1 in 

response to ABA only at 10"^M ABA (Figure 3.6c), with a weaker difference (P<0.05) 

noted at 10"^M (a concentration too high to be regarded as physiologically relevant). 

Only ANOVA for the time period (t= 3 h) was considered relevant, since Chinese 

Spring showed reduced growth in control shoots over the later stages of the assay 

(Figure 3.2). This revealed a significant G x ABA interaction (Table 3.1) but only if the 

entire data set (all ABA concentrations) was used. The fact that the experiment x 

genotype x ABA interaction was not significant (P>0.10) for both ABA data sets 

indicates that the 3 experiments were consistent. It is concluded that these two wheat 

cultivars differ in their response to ABA.

The validity of these genotypic comparisons was examined by comparing the 

data from the two Klaxon data sets (Figure 3.5d vs. Figure 3.6a) in Figure 3.6d. 

Reassuringly, there was no difference in the percentage data for 10'^M and 10“̂ M 

ABA, but significant differences (P<0.01) at the two other concentrations (Figure 

3.6d). Analysis of variance (Table 3.1) showed a significant G x ABA interaction for 

Experiment 2. This was confirmed by a highly significant (P<0.01) G x ABA 

interaction for the data set employing all ABA concentrations. These results are 

worrying, as the variability between different experiments using the one cultivar makes 

it difficult to be certain in comparisons of 2 cultivars, at least for comparisons using cv. 

Klaxon. The only solution would be to increase the replication of experiments. The 

variability in cv. Klaxon would also invalidate the comparisons with maize and cv. 

Firefly.

The only genotypic difference which can be stated with reasonable confidence 

is the comparison of Chinese Spring (CS) and SQ1, which shows that CS is more 

responsive to ABA, at least when expressed as a percentage of control leaves. 

However the detection of this interaction seemed to depend on the use of data from 

one measurement period and using 10“̂ M ABA (Figure j .6c ) .  Rejection of data from
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other time periods was considered valid as control shoots of CS were unable to 

maintain their growth for longer than 4 hours (Figure 3.2). This problem may not have 

been encountered at lower assay temperatures. Despite these cautions, it appears as 

though CS and SQ1 differ in their leaf elongation response to ABA.

It is difficult to account for this apparent change in sensitivity. One possibility is 

that there was greater accumulation of ABA in the elongation zone of CS shoots, 

perhaps due to greater transpiration rates. It was not possible to accurately assess 

transpiration in the CS detached shoots, as leaf 2 was too large and floppy and could 

not be contained within the balance. It was, however, possible to measure transpiration 

in detached single leaves. All 4 experiments revealed no difference in transpiration rates 

of leaves fed 10"^M ABA, but there were consistently higher (12 % in 2 experiments, 

and 48 % in 2 experiments) transpiration rates in SQ1 leaves fed an artificial xylem 

solution (data not shown). This would tend to negate the idea of greater ABA 

accumulation in Chinese Spring shoots, if ABA accumulation is partially dependent on 

the initial transpiration rates of control shoots. When the percentage transpiration 

values were calculated in the experiments, SQ1 was shown to be 15 % more 

responsive to ABA than CS. Such differences may be meaningful if there is no 

relationship between the transpiration rates of the controls and the sensitivity, as 

demonstrated by Blum and Sinmena (1995) in a survey of the transpiration responses 

of 6 wheat cultivars. However, the data referred to here showed a significant 

correlation between sensitivity to ABA and the control transpiration rate (data not 

shown) of 5 wheat genotypes. This correlation revealed that the more rapidly 

transpiring cultivars (prior to ABA treatment) showed the greatest response to ABA. 

Could an analagous relationship hold for leaf growth ? Leaf elongation rates for CS 

and SQ1 were compared 3 hours into leaf elongation assays using the data from all 

experiments (Figure 3.7). There was no difference in the growth rates of solutions fed 

an artificial xylem solution, but CS shoots fed 10’7M ABA showed significantly 

(P<0.01) less growth.
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Figure 3.7: Dose-response curves for leaf elongation rate of Triticum aestivum cv. 
Chinese Spring (V) and Triticum aestivum cv. SQ1 (▼). Points are means ± S.E. of at 
least 12 shoots from 3 experiments.

Future comparisons of genotypic differences in leaf growth response to ABA 

should employ a more narrow range of ABA concentrations (e.g. 0, 10'^M, 5xl0~^M, 

10‘7M, 5xlO~7M ABA). It is important to note that the LER data, when expressed as 

a percentage of controls and combined across experiments (Figures 3.5d, 3.6), showed 

a significant difference at 10~7M in all 4 genotypic comparisons (excluding the data 

from the two Klaxon data sets). This confirmed the conclusions of Blum and Sinmena 

(1995) that this concentration best discriminated cultivar differences.
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3.4 CONCLUSIONS

Identification of cultivars which differ in their sensitivity of leaf growth 

response to ABA seems to be fraught with difficulty, due to the apparent inconsistency 

of response between experiments in the one cultivar. Responses also seemed to be 

inconsistent between different laboratories, as the data here were unable to confirm 

previous differences shown by Blum and Sinmena (1995). Analysis of the results 

according to two different methods (ANOVA of LERs vs. plotting the percentage 

inhibition of growth) revealed some inconsistencies in the conclusions. Before cultivars 

can be indicated to differ in their ABA response, both types of analysis should give 

consistent results. Additionally, the value of employing a wide range of ABA 

concentrations in a dose-response curve is open to criticism as being not 

physiologically relevant.

Despite these cautions, CS seemed to be more sensitive to ABA than SQ1 

when fed 10"^M ABA. This difference did not seem to be related to faster growth or 

transpiration rates in CS. However, this conclusion is based from only 3 experiments 

and more rigorous experimentation is clearly needed to confirm this conclusion for 

plants grown and assayed under different conditions. The abundance of differences in 

stomatal sensitivity to ABA demonstrated by Blum and Sinmena (1995) may not hold 

for a more fundamental process such as growth. Despite the optimism of Munns 

(1992) that the leaf elongation assay would be a useful means of detecting differences 

in cultivar response, such differences (if indeed they exist) have proved difficult to 

resolve. It is therefore unlikely that genotypic variation in leaf growth response to 

externally supplied ABA can account for the different dose-response curves shown in 

Figure 2.4b, nor the difference in species response to xylem sap ABA concentration 

(cf. Zhang and Davies, 1990a; b vs. Munns, 1992).
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CHAPTER 4. 

DOES TEMPERATURE MODIFY THE EFFECTIVENESS OF ABA IN 

INHIBITING LEAF GROWTH ?

4.1 INTRODUCTION

Section 1.5 emphasised that the effect of ABA in bioassay and field situations 

can be modified by other environmental variables. It is thus unrealistic to expect a 

single dose-response curve for any process regulated by ABA. Two environmental 

factors which could influence the responsiveness of leaf growth to ABA are leaf water 

potential and temperature. However, a number of experiments have shown that the 

water relations of expanding tissues can be tightly controlled while leaf laminae show 

perturbed water relations (e.g. Michelena and Boyer, 1982).

Field and growth cabinet studies have revealed that temperature can exert a 

considerable effect on LER (Watts, 1974; Gallagher and Biscoe, 1979; Ong, 1983). 

Any interaction between ABA and temperature would be of considerable importance in 

determining plant growth under a mild water stress.

Previous demonstrations of temperature x ABA (T x ABA) interactions 

affecting stomatal behaviour have generally grown plants at a single temperature 

(pretreatment temperature) and imposed different temperatures during the assay. The 

significance of much of this work is questionable since data have been obtained with 

chilling sensitive species such as maize (Rodriguez and Davies, 1982) and bean (Eamus 

and Wilson, 1983; Comic and Ghashghaie, 1991; Pardossi et a l, 1992; Trejo and 

Davies, 1994) and Commelina communis (Alan et al., 1994; Honour et al., 1995). The 

promotion of stomatal opening in such species when fed ABA at low temperature is 

thought to be an injury response due to a "locking open" of stomata. Growth of 

chilling-sensitive plants at a low pretreatment "hardening" temperature removed the T
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x ABA interaction since stomata were able to close at low temperature in response to 

ABA (Eamus and Wilson, 1983).

Since a temperature x ABA interaction affecting stomata has been 

demonstrated in species such as Triticum aestivum (Ward and Lawlor, 1990), Beilis 

perennis and Cardamine pratensis (Honour et al., 1995), which are not regarded as 

chilling sensitive, the phenomenon may be of general importance. The possibility that 

leaf growth may be similarly affected was tested in spring wheat (Triticum aestivum) 

and barley (Hordeum vulgare).

4.2 MATERIALS AND METHODS

This work comprised 3 batches of plants raised under different conditions at 

different times of the year, as summarised in Table 4.1. Preliminary experiments, 

performed as described in Section 2.2, used a variety of wheat (Triticum aestivum) 

cultivars (cv.s Chinese Spring, Gaza, Highbury, Kharchia, RL 4137, Sicco, TW 161 - 

seed kindly provided by Dr. S.A. Quarrie) and an ABA concentration of 10"^M. Ail 

other leaf elongation assays used 5 different ABA concentrations over a range of 

temperatures from 10°C to 30°C.

To evaluate the occurrence of any T x ABA interaction, a number of data sets 

were constructed, comprising leaf growth of Triticum aestivum cv. Tonic and 

Hordeum vulgare cv. Klaxon as well as transpiration of H. vulgare cv. Klaxon. 

Transpiration (determined gravimetrically as described in Section 2.2) was only 

determined for barley; wheat shoots being unsuitable as leaf 2 was too large and floppy 

to allow precise weight determinations. Primary data on leaf elongation or transpiration 

rates were log transformed to satisfy normality of variance then analysed by ANOVA 

in GENSTAT 5 (see Appendix 2 for table). Data are presented graphically as a 

percentage of the control (no ABA) values during the phase of steady state growth or
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transpiration inhibition (period of maximal response) at each temperature (as in Figures 

2.4b, 2.5b). Data in the graphs were subjected to linear regression analysis in MTW 

10.2 to determine significance.

Table 4.1: Plant material used for leaf elongation assays. Growth environment refers to 
a naturally lit greenhouse (GH) or the growth cabinet (GC) referred to in Section 2.2. 
Maximum and minimum temperatures are means ± S.E. with the number of days in 
parentheses. The values in square brackets indicates the range of temperatures.

Species Growth Temperature (°C) Time of Year
Environment Maximum [Range] Minimum [Range]

Triticum aestivum GH 12+0.4(28) [9-16] 25 +0.5 (28) [22-29] Oct.- Nov.
many cv.s GC 20 + 0.4(13) [17-22] 29 + 0.4(13) [27-33] Nov.-Dec.

Triticum aestivum GH 11+0.4(41) [6-16] 24 + 0.3(41) [20-27] Jan. - Mar.
cv. Tonic

Hordeum vulgare GH 15+0.4(32) [10-18] 26 + 0.6(32) [10-18] Mar.- April
cv. Klaxon GC 12+0.4(9) [10-14] 22 ±0.8 (9) [18-26] Oct. - Nov.

4.3 RESULTS

4.3.1 Preliminary experiments

Primary data on leaf growth of detached shoots of Hordeum vulgare cv. 

Klaxon which were fed a range of ABA concentrations at high (23°C) and low (10°C) 

temperature are given in Figures 2.4 and 4.1 respectively. Leaf growth at low 

temperature appeared to vary over the initial stages of the assay. This was thought to 

result from the frequency of measurement and the limits of accurate ruler measurement. 

When measurements were made less frequently toward the end of the assay, more 

stable growth rates were found. At low temperature, treatment differences due to ABA 

were more difficult to distinguish (than at higher temperature), with significant
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differences in LER being noted for only 10' 6 and 10"5M ABA. Attainment of 

significant differences occurred later in the assay (5.5 hours at 11°C vs. 3 hours at 

23°C). Expression of the steady-state values of LER as a percentage of control values 

revealed a different dose-response curve from that seen at 23°C (Figure 4.1b). 

Although there was no difference in the dose-response curve for 10"  ̂ and 10"^M 

ABA, the effectiveness of 10~6 and 10"^M ABA was reduced at low temperature. 

Thus the response of leaf growth to ABA appeared to be highly temperature 

dependent.

This conclusion was evaluated using detached wheat shoots from a number of 

cultivars grown in either a growth cabinet or a greenhouse. Regardless of genotypic or 

pretreatment history, all data for leaf growth inhibition after 5 hours (when the effect of 

ABA was maximal and there had been no decline in the LER of control shoots) fitted a 

highly significant (P<0.001) relationship between leaf growth (% control) and 

temperature (Figure 4.2). Immediately obvious is the variability which occurred at the 

one temperature, which is consistent with data on transpiration bioassay variability 

obtained by Munns et al. (1993), where day-to-day variation in the sensitivity of the 

assay can be as much as 20 %. Despite this, a significant regression was obtained which 

shows that the effect of 10'6M ABA increases with increasing temperature.
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Figure 4.1a: Leaf elongation rate of detached barley (Hordeum vulgare L. cv. Klaxon) 
shoots maintained at 11°C and supplied with artificial xylem solution (O), 10"^M (□), 
10“̂ M (▼), 10“̂ M (A) and 10“^M ( ♦ )  ABA. Points are means ± S.E. of at least 8 
shoots, (b) Dose-response curve generated from data in (a). Data (O) are expressed as 
a percentage of controls and are means ± S.E. of 16 measurements taken during the 
steady-state phase of leaf growth inhibition (5.5-8.5 hours after supplying ABA). The 
dose-response curve for detached shoots maintained at 23°C ( • )  (from Figure 2.4b) is 
included for comparison.
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Figure 4.2: Effect of temperature on the response of leaf elongation to 10"^M ABA 
supplied to detached wheat (Triticum aestivum L.) shoots of various cultivars (see 
text). No consistent genotypic variation in ABA response was detected. Each point is 
the mean value of % elongation taken 5 hours into an individual assay. Error bars 
omitted for clarity. Data point (□ ) of Munns (1992) also included (see also Figure 
2.4b). Line fitted by linear regression in SPW 1.0 (LER % = 98.3-2.63T, r^=0.66).
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4.3.2 Leaf growth of Hordeum vulgare cv. Klaxon (Figure 4.3)

The ANOVA revealed highly significant effects (P<0.001) of temperature, 

ABA and their interaction (T x ABA) affecting leaf growth with the level of 

significance declining in this order. The model accounted for 64 % of the variance. The 

effect of time was non-significant (P<0.05), as expected since the primary data were 

rates. The interaction time x temperature was non-significant, indicating that 

temperature was held reasonably constant over the course each assay. The interaction 

time x ABA was highly significant (PO.OOl), indicating that ABA was not immediate 

in its effects. However, the rapidity of ABA effects on leaf growth varied considerably 

between experiments (compare Figures 2.2a, 2.4a). The higher order interaction time x 

temperature x ABA was not significant.

The possibility that the T x ABA interaction resulted simply from the use of 

high ABA concentrations was examined by conducting a series of ANOVAs, 

sequentially removing higher ABA concentrations. The interaction remained highly 

significant (PO.OOl) with only the data from 10~  ̂and 10"^M ABA considered. When 

the data set consisted of only the control and 10"^M ABA, no T x ABA interaction 

was detected, but there was also no significant (PO.05) effect of ABA on LER.

4.3.3 Leaf Growth of Triticum aestivum cv. Tonic (Figure 4.4)

This data set was obtained to examine the generality of the results obtained 

with barley. As with barley, ANOVA revealed highly significant effects (PO.OOl) of 

temperature, ABA and their interaction affecting LER. The fitted model accounted for 

60 % of the variance. The interaction was not as significant as in the H. vulgare data (a 

variance ratio of 1.16 for Tonic vs. 25.38 for Klaxon). All model terms containing time 

(time, time x temperature, time x ABA, time x temperature x ABA) were significant 

(PO.05).
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Figure 4.3: Effect of temperature on the response of leaf elongation to 10"^M (□), 
10"^M (▼), 10"%! (A) and* 10“̂ M ( ♦ )  ABA supplied to detached barley (Hordeum 
vulgare L. cv. Klaxon) shoots. Point are means ± S.E. of at least 16 measurements 
taken during the steady-state phase of leaf growth inhibition (3-9 hours after supplying 
ABA) during an individual assay. Lines fitted by second order regression in SPW 1.0.
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The physiological significance of the temperature x ABA interaction can also be 

assessed by obtaining the linear regression parameters for the data plotting leaf 

elongation (% control) against temperature (Table 4.2). Comparison of the slopes of 

the regressions indicates that the batch of Tonic plants were less sensitive to the 

interaction of temperature and ABA than in the other cases.

Table 4.2: Linear regression parameters for 3 data sets plotting leaf elongation (as a 
percentage of control) of detached shoots fed 10"^M ABA at various temperatures. 
Intercept and slope, determined in MTW 10.2, are given with their S.D. in parentheses. 
Significant regressions as determined by MTW 10.2 are indicated (P<0.05 *), 
(P<0.01 **), (PO.OOl ***).

Dataset Intercept Slope P value r̂

Figure 4.2 98.3 (7.6) - 2.63 (0.37) 0.000 *** 0.66
Figure 4.3 84.2 (8.9) -1.48 (0.45) 0.013 ** 0.61
Figure 4.4 76.2 (9.8) - 0.84 (0.48) 0.128 0.34
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Figure 4.4: Effect of temperature on the response of leaf elongation to 10'^M (□), 
10"^M (▼), 10'^M  (A) and 10"^M ( ♦ )  ABA supplied to detached wheat (Triticum 
aestivum L. cv. Tonic) shoots. Points are means ± S.E. of at least 16 measurements 
taken during the steady-state phase of leaf growth inhibition (3-9 hours after supplying 
ABA) during ah individual assay. Lines fitted by second order regression in SPW 1.0.
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4.3.4 Transpiration of Hordeum vulgare cv. Klaxon (Figure 4.5)

Although the temperature and ABA main effects were highly significant 

(P<0.001), there was no detectable T x ABA interaction. The model accounted for 86 

% o f  the variance. All model terms containing time were significant (P<0.05).
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Figure 4.5: Effect of temperature on the response of transpiration to 10“8M (□), 
10“̂ M (▼), 10"^M (A) and 10"^M ( ♦ )  ABA supplied to detached barley {Hordeum 
vulgare L. cv. Klaxon) shoots. Points are means ± S.E. of at least 30 measurements 
taken during the steady-state phase of transpiration inhibition (1-9 hours after 
supplying ABA) during an individual assay. Lines fitted by second order regression in 
SPW 1.0.
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Comparison of transpiration and leaf elongation data across different 

temperatures and ABA concentrations was attempted (as in Table 2.2) in the hope of 

determining which process was more affected by ABA treatment (Figure 4.6). The data 

on the steady-state rates of transpiration and LER inhibition (expressed as a percentage 

of control values) after ABA treatment were compared statistically by Student's 

unpaired t-test. If there was no difference, a value of 0 was recorded. In the case of a 

significant (P<0.05) difference, the mean value of transpiration inhibition was 

subtracted from the mean value of leaf elongation inhibition. Positive values indicated 

that transpiration was inhibited more than leaf elongation; negative values indicated 

that leaf elongation was inhibited more than transpiration. Linear regressions were 

fitted to the set of values obtained at a given ABA concentration.

Across all ABA concentrations, 44 % of experiments showed no difference in 

the relative response of transpiration and leaf elongation; with the percentages at 

10“8, 10-7, j q - 6  io-^m  ABA being 46 %, 63 %, 31 % and 44 % respectively. It 

should be noted that the data for 10“̂ M ABA are biased due to the number of 

experiments performed at high and low temperature (where the chances of obtaining a 

difference in relative response are greater). At all ABA concentrations, there was a 

tendency for transpiration to be inhibited more at low temperatures; with leaf 

elongation being inhibited more at high temperatures. However, only the regressions 

for 10“7m  (P=0.097) and 10“̂ M (PO.OOl) ABA approached significance. As noted 

earlier, the data for 10_6M ABA should be viewed with suspicion due to the uneven 

distribution of data points with respect to temperature. It is concluded that despite 56 

% of experiments showing differences in the relative response of transpiration and leaf 

elongation, that there is probably no real difference in response. This contradicts the 

findings of Munns (pers. comm.) in the bioassay system, who found that transpiration 

was always inhibited more than leaf elongation in the same plants.

76



40 -r
30 -  
20  -

-20

2  80 -r
*7 60 -

40 -  
20  -

o
S _  

■4—>coO
sSo'*
z  - 2 0  -

1 -“l
2  30 1 
q  20 -

-20  -  

-30 -
10 15 20 25 30 35

T E M P E R A T U R E  (°C )

Figure 4.6: Effect of temperature on the relative sensitivity of transpiration and leaf 
elongation to 10"8M (a), 10"7M (b), 10'6M (c) and 10“5M (d) ABA supplied to 
detached barley (Hordeum vulgare L. cv. Klaxon) shoots. Values of transpiration (% 
control) (see Figure 4.5) were subtracted from values of leaf elongation (% control) 
(see Figure 4.3). When there was no significant (P<0.10) difference between the two 
values, a value of 0 was recorded. Positive values indicate that transpiration was 
inhibited more by ABA treatment than leaf elongation; negative values indicate that leaf 
elongation was inhibited more than transpiration. Lines fitted by linear regression in 
SPW 1.0 between all points. Points were obtained from experiments summarised in 
Figures 4.3. and 4.5 (O) and experiments performed in Chapters 5 and 6 (•) .
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4.4 DISCUSSION

This chapter shows a marked temperature dependence of leaf growth responses 

to ABA. High temperature and soil drying commonly co-occur and therefore any 

interaction between the effects of the two variables may have an important influence on 

leaf expansion and canopy development. Definition of the nature of this interaction is 

important even though the mechanisms involved are unknown. It may be that at higher 

transpiration rates at higher temperatures, more ABA accumulates in the elongation 

zone than in the assays performed at low temperatures, where the evaporative demand 

is lower. This possibility is examined in Section 5.3.3.2.

It is also possible that the interaction may be an artefact of employing 

unrealistically high ABA concentrations. This is a common criticism of studies 

purporting to show variation in tissue sensitivity when a range of hormone 

concentrations are employed to generate a dose-response curve. This deficiency lead 

Trewavas (1991) to suggest that sensitivity should only be measured at the 

concentration of hormone found endogenously. It is therefore important that ANOVA 

of the leaf growth data showed a significant T x ABA interaction at 10“̂ M ABA. 

Although this is at the upper end of the range (2-8x10~8M) detected in xylem sap of 

wheat and barley plants growing in drying soil (Munns and King, 1988), Mulholland et 

al (1994) showed that barley plants growing in compacted (1.7 g cm-3) soil had xylem 

sap ABA concentrations in excess of 10_7M ABA. It therefore seems that the 

interaction described in this Chapter may be of physiological relevance.

Temperature modulation of plant response to hormones has been previously 

demonstrated when the amount of hormone does not vary. Stoddart and Lloyd (1986) 

showed that the stimulation of LER by an application of GA3 to wheat plants increased 

with temperature. Walker-Simmons (1988) observed that ABA is 100 times more 

effective at 30°C than at 10°C in restoring dormancy to isolated wheat embryos.
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Stomatal responses to ABA have also been shown to be temperature dependent in 

epidermal strip bioassays, where hormone flux cannot vary with temperature 

(Rodriguez and Davies, 1982; Honour et al., 1995) and in transpiration bioassays 

where flux of ABA has been measured and shown not to vary with temperature in the 

range that influences ABA sensitivity (Trejo, 1994). Since temperature dependence of 

hormone responses appears to be a common mechanism of their action, it is worth 

considering the implications of the interaction reported here.

It is known that well-watered plants exhibit a tight relationship between leaf 

growth and temperature, which can be maintained over the diurnal temperature range 

(Gallagher and Biscoe, 1979; Ong, 1983). Plants in drying soil show an increasing 

divergence from this relationship as temperature increases during the day. Gallagher 

and Biscoe (1979) sought to relate this divergence to changes in bulk leaf water 

potential, which changed from -0.2 MPa pre-dawn to a minimum of -1.5 MPa in the 

middle of the day. Cabinet grown maize plants from which water was withheld reached 

a "pre-dawn" lamina water potential of -1.5 MPa, yet the turgor of the elongation zone 

was not affected (Michelena and Boyer, 1982) and we must therefore argue that some 

factor other than a decrease in turgor is responsible for the soil drying-induced 

limitation of leaf growth of grasses.

It is possible to re-interpret the results of Gallagher and Biscoe in the light of 

our knowledge of chemical signalling. As the temperature increases over the course of 

the day, the divergence from the expected LBR-temperature relationship increases. 

This may be explained by an increased amount of ABA in the elongation zone (due to 

the chemical signal generated that day by roots in contact with drying soil) and 

temperature dependent increase in sensitivity of leaf growth to ABA. The relative 

contribution of ABA amount and sensitivity cannot be assessed at this time.
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Temperature dependent variation in the response of leaf growth to ABA 

arriving in the transpiration stream is likely to be an important adaptive response which 

allows plants to control water loss when the soil dries. Drought is often associated with 

high temperatures and high evapotranspiration, which can rapidly deplete soil water if 

plant leaf area is large. Considering that leaf area production is usually temperature 

dependent, the increased effectiveness of ABA in inhibiting leaf growth at high 

temperature represents an important means of restricting leaf area development during 

periods when high rates of water loss can be a problem. Since leaf growth can be more 

sensitive than stomatal conductance to soil drought (e.g. Saab and Sharp, 1989), this 

mechanism represents an early response to chemical signals produced in the roots.

80



CHAPTER 5.

ABA ACCUMULATION IN THE LEAF ELONGATION ZONE OF 

DETACHED BARLEY SHOOTS

5.1 INTRODUCTION

A possible explanation for the apparent temperature-dependence of the leaf 

growth response to ABA (see Chapter 4) may be that different amounts of ABA 

accumulate in the growing cells under different environmental conditions. A given 

xylem sap ABA concentration may be more effective at high temperature because the 

transpirational flux is higher, delivering more ABA to the site(s) of action.

The experiments described in this Chapter aim to provide information on ABA 

concentrations in the elongation zone (EZ) in the leaf elongation assay system. Such 

data may permit a comparison of this system with intact plants subjected to soil drying 

(Chapter 7). Before measurements of ABA concentration in the EZ were made, it was 

first necessary to define the extent of the elongation zone in the detached shoot system.

5.2 SPATIAL DISTRIBUTION OF GROWTH AND ABA CONCENTRATION 

IN THE LEAF ELONGATION ZONE OF DETACHED SHOOTS

5.2.1 INTRODUCTION

The grass leaf meristem is located at the base of the stem and is enclosed by the 

sheaths of older leaves. Cell division occurs exclusively at the base of stem, then files of 

cells move through an elongation zone. The length of this elongation zone is highly 

dependent on genotypic, developmental and environmental factors. Cells in the 

exposed lamina have ceased elongating.
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Definition of the elongation zone has usually been attempted by destructive 

techniques where cells in the elongation zone are marked in some way and the 

displacement of marks measured at a later time. In ink marking methods, the 

surrounding fully expanded leaves are peeled away and the leaf marked with indelible 

ink (Volenec and Nelson, 1981). A more commonly used technique involves piercing 

the base of the stem with a series of pins mounted at known distances (Davidson and 

Milthorpe, 1966; Kemp, 1980; Schnyder et a l , 1987). Results obtained from these two 

techniques show essentially the same spatial pattern of growth (Schnyder et al'., 1987). 

Since such methods injure the plant and reduce LER, an alternative technique is the use 

of anatomical markers as suggested by Silk et al. (1989). Markers that have been used 

include cell lengths (Volenec and Nelson, 1981; Schnyder et al., 1990), interstomatal 

distances (Paolillo et a l, 1991), and patterns of separation of rings and gyres in the 

walls of protoxylem vessels (Paolillo and Sorrells, 1992). Comparison of destructive 

and anatomical techniques has been shown to give the same spatial distribution of 

growth in some studies (Schnyder et al., 1990) but not in others (Paolillo and Sorrells, 

1992).

Since the grass elongation zone contains a gradient of cells at different stages of 

maturity, gradients of major nutrients (Meiri et al., 1992); cell wall loosening enzymes 

such as peroxidases (MacAdam et a l, 1992 a, b) and xyloglucan endotransglycosylase 

(Palmer and Davies, 1996); and carbohydrates (Spollen and Nelson, 1994) exist in this 

tissue. No data could be found in the literature on the spatial distribution of ABA in 

elongating grass leaves, although ABA showed a pronounced spatial gradient of 

accumulation in maize mesocotyls of seedlings grown at low water potential (Saab et 

al., 1992). Accordingly, the spatial distribution of ABA in response to uptake via the 

sub-crown intemode was studied.
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5.2.2 MATERIALS AND METHODS

5.2.2. 1  Spatial distribution of growth

The marking method of Schnyder et al. (1987) was employed. A mounted set 

of 10 entomological pins, each 2 mm apart, was used to pierce the elongation zone 

starting from the middle of the crown. Two sets of pin marks spanned the basal 36 mm 

of stem immediately after transfer of the shoots to their feeding solution. Eight shoots 

were marked per treatment. LERs of marked and unmarked shoots were measured 

during the assay. After a specified period of time (according to leaf growth rate), the 

first and second leaves of the shoot were stripped away to expose the third leaf. Using 

an eyepiece graticule (Ernst Leitz Wetzlar GMBH, D-6330 Wetzlar, Germany), the 

distance between successive pin marks on the third leaf was recorded. This distance 

was divided by the original distance between pin marks (2 mm) and the time elapsed to 

give the measured Relative Segmental Elongation Rate (RSERmeas) in h“l. The 

growth inhibition caused by marking (which ranged from 27-50 % according to 

temperature and ABA treatment - see Table 5.2) was corrected for in the calculation of 

actual RSER according to the equation: N

RSER meas

RSER =   ---------------LER marked! LER unmarked

Data on RSER were collected for AX-fed and 10"6M ABA-fed barley shoots after 6 

hour and 10 hour periods of growth at temperatures of 27°C and 11°C, respectively.

5.2.2.2 Spatial distribution of ABA concentration

Every 2 hours during leaf elongation assays performed under the same 

conditions as in Section 5.2.2.1, 8 detached shoots per treatment were removed for
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analysis of ABA content. Shoots had their outer leaves removed to reveal leaf 3. This 

leaf was sectioned with a parallel series of razor blades, mounted 3 mm apart. Each 

sample also contained tissue from leaves of a higher serial number enclosed within the 

third leaf. Six mm segments were collected from the elongation zones of 8 shoots 

(necessary to bulk samples to provide enough tissue for one ABA determination) 

during the leaf elongation assays. Samples were collected over salted ice then stored at 

-20°C. Samples were then freeze-dried, powdered and extracted in deionised water 

(extraction ratio 1:30 for control plants; 1:50 for 10'^M ABA-fed plants) at 5°C 

overnight. Samples were then centrifuged and the supernatant removed for analysis by 

the radioimmunoassay (RIA) protocol of Quarrie et al. (1988) as described below. 

Aqueous extracts of maize, barley and wheat leaves are reported to have 

immunoreactive contamination of between 5-15 % (Quarrie et al., 1988; Quarrie pers. 

comm.). The assumption that barley elongation zones would show acceptable levels of 

contamination was tested by thin layer chromatography (TLC) of aqueous extracts (see 

Section 5.2.2.4), which revealed no significant contamination. Data on ABA 

concentrations have not been corrected for contamination.

5.2.2.3 Radioimmunoassay (RIA) for ABA

The ABA concentration of aqueous extracts of barley leaves and elongation 

zones was determined using a competitive RIA using the label, DL- cis, trans [JH] 

ABA (Amersham pic, Little Chalfont, England) and the antibody AFRC MAC 252 (Dr.

S. Quarrie, Cambridge Laboratory, Norwich, England), a re-cloned version of AFRC 

MAC 62, with which the immunoassay protocol (see below) was developed (Quarrie et 

a l , 1988; Quarrie, pers. comm.). AFRC MAC 62 is highly specific for the free acid 

(+)-ABA, as the cross reactivity table (Table 5.1) shows. AFRC MAC 252 is assumed 

to have the same cross-reactivity as MAC 62. Since the leaf elongation assays 

employed here have fed (±)-ABA to the detached shoots, it was considered important 

to determine that the antibody was only recognising (+)-ABA. This test was performed
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by Quarrie (pers. comm.), who showed that a 125 pg (+)-ABA / 50 pL standard gave 

the same number of counts in the RIA using AFRC MAC 252 as did a 250 pg (±)-AB A 

/ 50 pL standard. The reported ABA concentrations are for (+)-ABA, the 

physiologically active form.

The high specificity of AFRC MAC 252 allowed aqueous extracts to be used 

without prior purification. The immunoassay protocol is given below. Standards of 

synthetic (±)-ABA of known dilutions (125-2000pg (+)-ABA / 50 pL) were made up 

(as 250-4000 (±)-ABA / 50 pL) in deionised water. Other "standards" of water and a 

high ABA concentration (lO'^M) were used to determine the maximum binding 

(Bmax) ^  non specific binding (B ^n) respectively. All standards were assayed in 

duplicate in each batch of samples, while each sample was assayed once. A standard 

curve of counts recovered versus (+)-ABA added was produced for each batch of 

samples. The standard curve of counts per minute (B) against known ABA 

concentrations was linearised, after subtraction of B ^ n  from all values (Figure 5.1), 

using the logit transformation to allow the calculation of a gradient, intercept and 

correlation coefficient. The logit transformation of variable B was given by:

Sample counts were converted to tissue ABA concentrations using the linearised plot.

logit B =ln B /B-^

A successful assay was indicated by a correlation coefficient (r2) greater than 0.99.
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Figure 5.1: Standard curve for the RIA, plotting the number of counts (B) against 
known ABA concentrations. The main graph gives means ± S.D. of 4 replicate assays 
done on the same day; the inset gives the duplicate standards for one of these assays. 
Lines fitted by Unear regression in SPW 1.0.

Table 5.1: Cross-reactivity of the monoclonal antibody MAC 62 with ABA and with 
some of its derivatives and metabolites (from Quame et al., 1988).

Compound Percentage cross-reactivity

(+)-2-c/'s-abscisic acid 100
(+)-2-/raws-abscisic acid <0- 1
(±)-2-c/5-abscisic acid 49
(+)-2-c/j-abscisic acid methyl ester 0.4
(+)-2-c/s-abscisic acid glucose ester <0.1
phaseic acid <0-1
dihydrophaseic acid ^  1
xanthoxin <0-1
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Immunoassay Protocol:

1. Into a 2 mL Eppendorf tube (vial) add (in order)

- 200 pL of 50 % phosphate buffered saline (PBS) (50 mM NaH2P0 4 and 100 mM 

NaCl, adjusted to pH 6.0)

- 50 jaL of standard or sample

- 100 jxL of tritiated ABA (circa 8000 cpm) dissolved in buffer solution 

(5 mg globulin / mL PBS)

- 100 pL of MAC 252 dissolved in buffer solution (5 mg bovine serum albumin 

and 4 mg polyvinylpyrrolidone / mL PBS).

Vials are contained in foam racks, 40 vials per rack.

2. Cap the vials, mix thoroughly and incubate in the dark at 4°C for 45 minutes.

3. Centrifuge at 8000g for 1 minute to remove any liquid on caps.

4. Remove caps, add 500 pL saturated NH4SO4 to each tube to precipitate antibody- 

antigen complex.

5. Mix thoroughly and incubate in the dark at room temperature for 30 minutes.

6. Centrifuge at 8000g for 4 minutes to precipitate pellet.

7. Remove caps and place on absorbent towelling to remove moisture.

8. Gently turn vials, in their foam rack, upside down to remove supernatant.

9. Place vials upside down on absorbent towelling for 2 minutes, tap gently to remove 

any remaining supernatant.

10. Add lmL 50 % saturated NH4SO4, cap vials and resuspend pellet.
>

11. Centrifuge at 8000g for 5 minutes to precipitate pellet.

12. Remove caps and place on absorbent towelling to remove moisture.

13. Gently turn vials, in their foam rack, upside down to remove supernatant.

14. Place vials upside down on absorbent towelling for 2 minutes, tap gently to remove 

any remaining supernatant.

15. Add 100 jaL deionised water to each vial and resuspend pellet.

16. Add 1.5 mL of scintillation cocktail, Ecoscint H (National Diagnostics, NJ, USA) 

and mix thoroughly.
17 Place vials into empty 20 mL scintillation vials and count once for 6 minutes on a 

scintillation counter (Tri-carbon 300, Canberra Packard, Pangboume, England).

18. Data are converted from counts per minute (cpm) to ABA concentrations via the

standard curve.
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5.2.2.4 Thin Layer Chromatography (TLC) for detection of immunoreactivity in 

aqueous extracts

Barley plants were grown as in Section 2.2 until leaf 3 was ready to conduct a 

leaf elongation assay. The plants were left unwatered for 3 days prior to collection of 

tissue. The first and second leaves were removed and the portion 10-40 mm from the 

node of leaf 3 was removed from a number of plants. The sample was freeze-dried, 

powdered and extracted in deionised water (extraction ratio 1:25).

Pre-prepared silica gel TLC plates (Aldrich, Gillingham, Dorset, England) were 

cleaned by washing overnight in a 20:80 methanol:ethyl acetate mixture. After drying, 

they were marked with a soft pencil as in Figure 5.2. The silica from Zone B was 

carefully removed to isolate the ABA marker application zone from the aqueous 

extract (sample) application zone. Two plates, representing the extract and a water 

control, were run simultaneously. In the marker and sample application zones, 

respectively, 5 pL of 10“̂ M ABA and 100 pL (repeated applications were necessary) 

of the extract (or control) were placed. The application zones were concentrated by 

placing the plate in a tank of ethyl acetate / water; and allowing the solvent to run to 

the edge of the application zone twice. The plates were then run twice until the solvent 

front reached Zone 10, with the plates allowed to dry between each run. The edge of 

the plate was briefly placed under a UV lamp to visualise the location of the ABA 

marker. The silica from Zone D was then removed (to avoid edge effects). Each zone 

(1-10) of silica was then carefully scraped off into an Eppendorf tube. To each tube, 

200 |uL of water was added to dissolve the silica prior to assaying each solution in 

duplicate in the RIA. The immunoreactivity (expressed in ABA equivalents / 50 pL) of 

each zone in the extract was calculated by subtracting the corresponding values for the 

water control. The distribution of immunoreactivity in barley elongation zones is given 

in Figure 5.3. The marker showed ABA to be in Zones 8 and 9. The percentage of 

immunocontamination was calculated as:
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100- [ (Immunoreactivity in Zones 8+9 / Total Immunoreactivity) x 100 ]

and found to be 16 %. This relatively insignificant amount of contamination meant that 

it was possible to assay barley elongation zones for ABA without prior purification.

10
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3

, 2

MARKER B SAMPLE p j D

Figure 5.2: Marking on TLC plate to delineate marker and sample application zones, 
buffer strip (B) and silica removed at end (D) to minimise edge effect.
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Figure 5.3: Immunohistogram of an aqueous extract of barley {Hordeam vulgare L. 
cv. Klaxon) leaf elongation zones. The bands on the y axis correspond to those marked 
on Figure 5.2. The ABA equivalents on the x axis are derived by subtracting the ABA 
eq.s in a water control from the ABA eq.s actually detected in the assay of the sample. 
Each band for both control and sample were assayed in duplicate. Each bar on the 
graph is the mean value.

90



5.2.3 RESULTS

In all treatment combinations, marking the detached shoots with needles was 

found to have a significant (P<0.05) effect on LER. At high temperature, marking 

reduced LER of control plants by 50 % from 3.2 mm h-* to 1.6 mm h"1 (Table 5.2). In 

all other treatments, marking reduced growth by 23-31 %. These values compare with 

reported values of 21 to 41 % for similarly marked intact Festuca arundinacea plants 

(Schnyder et al., 1987), and 40 % for marked Zea mays plants (Ben-Haj-Salah and 

Tardieu, 1995). Schnyder et al. (1987) showed that the effect of marking decreased 

with time elapsed, so that LER may be reduced by as much as 70 % after 1 hour and 

only 40 % by 6 hours. Hence the effect of marking in experiments with barley do not 

appear excessive given the time period of measurement. It is important to note that 

marking does not influence the spatial distribution of growth (Schnyder et al., 1987).

The effects of temperature and ABA in unmarked plants were consistent with 

the responses seen in Chapters 2 and 4. ABA reduced LER in unmarked plants by 16 

% (but not significantly) at 11°C and by 49 % at 27°C. At low temperature, there was 

no significant effect of marking on the ABA response (LER expressed as a percentage 

of control shoots). However, at 27°C, marking was found to reduce the inhibition of 

growth caused by ABA from 49 % to 23 % (Table 5.2).
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Table 5.2: Effect of marking, temperature and feeding solution on leaf elongation rate 
(LER) and growth inhibition of detached barley {Hordeum vulgare L. cv. Klaxon) 
shoots. Growth inhibition was calculated as 100 - [ LERTreatment / LER^ontroi x 
100], Feeding solutions were an artificial xylem solution (AX) and 10“6M ABA made 
up in AX. LERs are means ± S.E. of the number of replicates in parentheses. 
Measurements taken 3-5 (27°C) and 3-8.5 (11°C) hours into each assay.

Temperature Treatment Leaf elongation rate (mm h"1) 
Unmarked Marked

Marking-induced 
growth inhibition
C/o)

27°C AX
10 ABA

3.16 ±0.11 (16) 
1.61 ±0.16(14)

1.59 ±0.09 (16) 
1.21 ±0.09(14)

50  
24 .

ABA-indticedgrowth inhibition (%) 49 23

11°C AX
lO^M ABA

0.59 ± 0.06 (24) 
0.49 ± 0.05 (24)

0.40 ±0.05 (27) 
0.34 ± 0.04 (24)

23
31

ABA-induced growth inhibition (%) 16 19

Figure 5.4a shows the spatial distribution of growth in the elongation zone of 

detached barley shoots for 2 different temperatures and feeding solutions. The plotted 

growth trajectory was of the "local maximum" (serrni Paolillo and Sorrells, 1992) type; 

as found for other published studies of spatial distribution of growth quantified using 

needle marking techniques. The maximal RSER increased from 0.03 h_1 at 11°C to 

0.20 h"1 at 27°C in AX-fed plants. While growth at 27°C resulted in a pronounced 

local maximum RSER between 10 and 20 mm; at 11°C the maximum RSER occurred 

over a greater length of the elongation zone. Thus low temperature flattened the 

growth profile. ABA feeding had a negligible effect on the growth profile at 11°C but 

inhibited growth at all positions in the elongation zone at 27®C. Neither temperature 

nor feeding ABA changed the length of the elongation zone.
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Figure 5.4: Spatial distribution of Relative Segmental Elongation Rate (RSER) (a) and 
ABA content (b) in detached barley (.Hordeum vulgare L. cv. Klaxon) shoots fed 
artificial xylem solution (O, • )  or 10‘6M ABA (A, A) at temperatures of 11°C 
(closed symbols) and 27°C (hollow symbols). Growth determinations were made after 
6 (27°C) and 10 (11°C) hours. Lines in (a) are third order regressions fitted in SPW 
1.0. Points are means ± S.E. of 8 shoots. ABA determinations are means ± S.E. of 
bulked samples (8 shoots required to make up sufficient sample) taken at 3 times 
during each leaf elongation assay when leaf growth inhibition was maximal.
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For accurate analysis of growth, investigations should be elemental and 

instantaneous (Silk, 1984). In other words, the segments should be short in relation to 

the length of the EZ and elongate little between the time of marking and the time of 

measurement. Elongation of the marked control plants at 27°C over the measurement 

period was 9.6 mm, which is 27 % of the EZ length. At 11°C, 4 mm of growth 

occurred, representing 10 % of the EZ. These percentages are similar to those reported 

by other workers (e.g. 16 % -Schnyder et a l , 1987; 27 % - Meiri et al., 1992; 14-32 % 

- Bernstein et a l, 1993) and thus may be taken as acceptable approximations of the 

instantaneous rates. The 2 mm segment length adopted in this study represents a 

compromise between high spatial resolution of growth and the increase in experimental 

error that would result from measuring distances between closer-spaced holes.

Figure 5.4b shows the spatial patterns of ABA accumulation (expressed on a 

dry weight basis) for barley plants either fed an AX solution or 10"^M ABA at 

temperatures of 11°C and 27°C. For shoots which were fed lO'^M ABA at low 

temperature there was a pronounced elevation of ABA concentration in the basal 10 

mm of the leaf. The constancy of ABA content from 10-40 mm in all treatments 

pointed to this region being an appropriate one to sample in replicated measurements 

of bulk elongation zone ABA content, to allow greater temporal resolution than the 2 

hourly determinations made here.

5.2.4 DISCUSSION

It was interesting that neither low temperature nor ABA treatment altered the 

length of the EZ in detached barley shoots although both treatments reduced leaf 

elongation rate. This is in contrast to the positive relationship between extension 

growth and the length of the EZ found for other treatments such as irradiance

(Schnyder and Nelson, 1989), nitrogen nutrition (Volenec and Nelson, 1983), salinity
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(Bernstein et al., 1993), water deficit (Spollen and Nelson, 1994; Durand et a l, 1995) 

and genetic differences (Volenec and Nelson, 1981; Paolillo and Sorrells, 1992; 

Schunmann et al., 1994) where reduced leaf extension growth has always been found 

to be associated with a shorter EZ. One possibility for the lack of this relationship in 

the current work may be the short time period over which the temperature and ABA 

treatments were applied, which may not have allowed time for the expression of altered 

EZ length. This was necessitated by the finite period of normal growth in the detached 

shoot system (as outlined in Section 2.3.1). Thus growth of cells in the first 2 hours of 

the assay (before the effect of ABA was maximal) may have resulted in the 

maintenance of EZ length under ABA treatment.

Evidence from similar spatial studies of growth in the maize primary root show 

that temperature does not affect EZ length (Pahlavanian and Silk, 1988) over a 

temperature range of 16 to 29°C. This contrasts with the effect of temperature on leaf 

growth of maize plants, where EZ length of leaf 6 declined from 75 mm at 25°C to 55 

mm at 17°C (Ben-Haj-Salah and Tardieu, 1995). This reduction may contribute to the 

well-recognised (e.g. Capell and Dorffling, 1993) chilling sensitivity of maize. There is 

a lack of data on EZ length in response to temperature for chilling tolerant plants, so it 

cannot be said whether the response of detached barley shoots shown here is consistent 

with that of intact plants.

The effect of ABA accumulation on spatial patterns of mesocotyl growth varies 

according to soil water potential (Saab et al., 1992). At high water potential, reduction 

of mesocotyl ABA concentration by application of the carotenoid biosynthesis inhibitor 

fluridone had little effect on EZ length. This result supports the leaf growth data 

presented here, which showed that varying the ABA concentration in the leaf 

elongation zone had no effect on EZ length. The maintenance of turgor by leaf 

elongation zones (Michelena and Boyer, 1982) suggests that the effects of ABA may 

be best studied at high water potential. At low water potential, fluridone treatment
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restored mesocotyl EZ length (Saab et a l, 1992), indicating that ABA was reducing 

EZ length. However, the relevance of such results to leaf growth of intact, droughted 

plants may be questionable as the fluridone experiments were conducted with etiolated, 

non-transpiring seedlings.

Despite extensive validation, the needle-marking method used here continues to 

draw criticism since it lowers LER over the period that spatial growth analysis occurs 

(Paolillo and Sorrells, 1992). Thus it is necessary to adjust the measured RSER 

according to the marking-induced growth reduction. While anatomical markers may be 

a more suitable means of obtaining spatial growth distributions free of potential 

wounding artefacts, there is no suggestion that needle marking alters EZ length. Since 

neither ABA nor temperature altered EZ length, the area for analysis of ABA content 

has been defined.

5.3 MEASUREMENT OF ABA IN THE BULK ELONGATION ZONE OF 

DETACHED SHOOTS

5.3.1 INTRODUCTION %

Although many studies of plants grown in drying soil have measured ABA 

concentrations in the roots (e.g. Zhang and Davies, 1989a; Tardieu et a l, 1992a), bulk 

leaves (e.g. Blackman and Davies, 1985; Zhang and Davies, 1989a), leaf epidermes 

(Zhang e ta l,  1987), elongating stems (e.g. Creelman et a l, 1990) and xylem sap (e.g. 

Loveys, 1984; Zhang and Davies, 1989b), little data could be found in the literature on 

the ABA contents of the elongating cells of leaves. If the bioassay data from Chapter 4 

are to be of use in interpreting the responses of whole plants, it becomes important to 

measure ABA accumulation in the leaf elongation zone.
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Accounting for physiological effects in terms of tissue hormone concentrations 

has not proved universally successful in the field of ABA research. Early attempts to 

correlate stomatal closure with leaf ABA content showed that stomata could close in 

the absence of increased ABA (Beardsell and Cohen, 1975; Burschka et al., 1983; 

Blackman and Davies, 1985) and stay closed after water stress when ABA 

concentrations had returned to basal levels (Beardsell and Cohen, 1975). However, 

Zhang et al. (1987) were able to account for stomatal closure in split-root Commelina 

plants in terms of epidermal ABA concentrations, when the ABA of the bulk leaf had 

not increased. This result was attributed to the epidermis' low buffering capacity for 

ABA. Recently, Trejo et al. (1993) were able to account for differences in apparent 

sensitivity of stomatal closure in different assay systems in terms of epidermal ABA 

concentrations, when the concentration of ABA fed to the stomata was the same. In 

this context, it seemed worthwhile to attempt to account for the variable leaf growth 

inhibition seen at one feeding ABA concentration in the leaf elongation assay system 

(Figure 4.2) in terms of ABA concentration in the EZ. Since the ABA concentration in 

the leaf elongation zone was relatively constant over a considerable length (Figure 

5.4b), the experiments in this section sampled a portion of the elongation zone 10-40 

mm from the node.

5.3.2 MATERIALS AND METHODS

5.3.2.1 Dose-response experiments

Leaf elongation assays with barley plants (Hordeum vulgare cv. Klaxon) were 

performed as described in Section 2.2 at 2 5 using a range of ABA concentrations. 

Periodically, 5 detached shoots were removed per treatment for sampling of the ABA 

content of leaf 2 (the principal transpiring organ of the shoot) and the region of the EZ

10 to 40 mm from the crown. Samples were frozen at -20°C before being freeze-dried.
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Dried samples were powdered before being extracted in deionised water at a ratio 

dependent on the ABA concentration which they were fed (1:40 for control, 10"^M 

and 10'^M; 1:50 for 10"^M). The average dry weight of the EZ was 0.02g, which 

provided enough extract (50 jj.L) for one ABA determination. To maintain consistency, 

one ABA determination of each leaf was performed. ABA analysis was performed 

according to the method of Quarrie et a l (1988) as described in Section 5.2.2.3.

5.3.2.2 Temperature experiments

Leaf elongation assays with barley plants (Hordeum vulgare cv. Klaxon) were 

performed as described in Section 2.2 over a range of temperatures and using 10“̂ M 

ABA. This concentration was chosen as it was known to give a wide range of effects 

on leaf growth (e.g. Figure 4.2). ABA was measured in leaf 2 and the region of the EZ 

10 to 40 mm from the crown. Processing of samples for ABA determination was as 

described above and the RIA procedure as described in Section 5.2.2.3.

5.3.2.3 ABA accumulation in detached, dehydrated tissues

Hordeum vulgare cv. Klaxon plants were grown as described in Section 2.2 in 

preparation for a leaf elongation assay. Plants were well-watered until leaf 5 was 5-10 

cm in length. Shoots were then excavated, leaves 2 and 4 detached and a section 5 cm 

long cut from the middle of each leaf. The leaves surrounding the elongation zone of 

leaf 5 were removed, and a portion of the EZ 10-40 mm from the node was removed. 

The tissue portions of 6 shoots were then placed on a piece of aluminium foil on a 

balance (Precisa 125A, PAG Oerlikon, Zurich, Switzerland) in a growth cabinet and 

allowed to dehydrate until they had lost 10 % of their fresh weight. The pieces of 

aluminium foil containing the tissue portions were then placed on a saturated piece of
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filter paper in a Petri dish. The lid of the Petri dish was replaced and the dishes placed 

in the dark for 18 hours to incubate at high relative humidity. The tissue portions from 

each Petri dish were then placed in Eppendorfs, stored at -20°C, freeze-dried, and 

subjected to ABA analysis as described in Section 5.2.2.3.

5.3.2.4 Experiment where ABA was withdrawn after two hours of feeding

A leaf elongation assay with barley plants {Hordeum vulgare cv. Klaxon) was 

performed as described in Section 2.2 at 24°C and using 10‘^M ABA. After 2 hours, a 

subset of plants fed lO'^M ABA was transferred to artificial xylem solution. Every 2 

hours, 5 detached shoots were removed per treatment for sampling of the ABA content 

of leaf 2 and the region of the EZ 10 to 40 mm from the crown. Collection of samples 

and ABA determination were as described above.

5.3.3 RESULTS

5.3.3.1 Dose-response experiments

Figure 5.5 shows the ABA accumulation over time in the elongation zones of 

detached shoots at the one temperature over a range of ABA concentrations. At all 

feeding concentrations, most accumulation occurred within the first 2 hours. Although 

uptake continued at the same rate after 2 hours (not shown here, but see Figure 2.5a), 

the ABA concentration stayed reasonably stable over the remainder of the assay, 

indicating that ABA metabolism and/or compartmentation had adjusted to the uptake 

rate. This finding allowed sampling of ABA concentration in subsequent experiments at 

only one point in time (6 hours), when LER was stable after ABA treatment.
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The ABA contents detected in shoots fed 10“̂  or 10“̂ M ABA were 

indistinguishable statistically (Student's t test, P>0.05). This situation has been found 

previously in a transpiration bioassay of detached Phaseolus acutifolius leaves (Trejo, 

1994), where the ABA contents of leaves fed either 10“ ABA or deionised water 

were indistinguishable after a 3 hour feeding period. At higher concentrations of ABA 

in the Phaseolus system, ABA accumulation was concentration dependent, as in the 

system described here.
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Figure 5.5: Accumulation of ABA with time in the elongation zone of detached barley 
(Hordeum vulgare L. cv. Klaxon) shoots fed 10~^M (d ), 10“^M (V), 5x10 (A)
and 10“6M (A) ABA at circa 25°C. Points are means ± S.E. of 5 shoots.
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5.3.3.2 Temperature experiments

Figure 5.6 shows the effect of 2 different temperatures on the EZ and leaf 2 

ABA contents and the LER. Growth (Figure 5.6a) and transpiration (data not shown) 

rates in this experiment were inhibited by 15 % and 38 % respectively at 10°C and 72 

% and 56 % respectively at 24°C. Uptake of ABA into leaf 2 (Figure 5.6c) proceeded 

rapidly with most accumulation occurring over the first hour. At 10°C, ABA 

concentration remained stable over the course of the assay with a gradual increase with 

time at 24°C. Concentrations of ABA in EZ ( [EZ-ABA] ) increased rapidly at 24°C, 

with relatively stable concentrations occurring after 2 hours. At low temperature, ABA 

accumulation was slower in the EZ, eventually reaching half the concentration of plants 

assayed at 24°C. The magnitude of ABA accumulation in the EZ at the different 

temperatures may therefore account for the observed differences in leaf growth 

inhibition. This type of experiment was repeated 3 times. Statistical analysis revealed a 

significant (P<0.05) temperature x ABA interaction when LER was modelled 

according to feeding ABA concentration, but no interaction when the data were 

modelled according to [EZ-ABA]. The magnitude of ABA accumulation in the EZ at 

the different temperatures may therefore account for the observed differences in leaf 

growth inhibition.

This conclusion was confirmed by applying a wider range of temperatures. 

Figure 5.7 plots the leaf growth inhibition against both [EZ-ABA] and assay 

temperature for the same shoots. The similarity of the two relationships suggested that 

ABA in the elongation zone was responsible for the apparent effect of temperature on 

ABA-induced leaf growth inhibition.

101



4

3

2

1

0

1200

1000  -

o) 8 0 0  -  

o>
S  6 0 0  -
<
CD

200

1200

^  1000 -  

a .  8 0 0  -

g  6 0 0  -

<
<I
Ll 
<  
LU 
_I

200 -

5 6 7 8 943210

TIME (hours)

Figure 5.6: Leaf elongation rate (a) of detached barley {Hordeum vulgare L. cv. 
Klaxon) shoots fed artificial xylem solution (O, ♦ )  or 10 ABA (A, A) at 
temperatures of 11°C (closed symbols) and 27°C (hollow symbols) and ABA content 
of the bulk leaf elongation zone (b) and the mature leaf (c) over time for detached 
barley shoots fed 10‘°M ABA at temperatures of 11°C ( • )  and 27°C (O). Points are 
means ± S.E. of 8 leaves and 5 ABA determinations.
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To extend the idea that leaf elongation in the detached shoot system could be 

dynamically controlled by the ABA concentration of the elongation zone, and not the 

feeding ABA concentration, an experiment was performed where leaf elongation was 

monitored after a pulse of ABA had been supplied via the transpiration stream, then 

removed (Section 5.3.3.4).

A consistent feature of feeding ABA to detached shoots was a greater 

accumulation in the elongation zone compared to leaf 2. This was particularly 

noticeable when 10“̂ M ABA was fed to detached shoots at high temperature (Figure

5.8), but also occurred with 10"^M ABA (Figure 5.8 inset). However, shoots fed 

1CH>M at low temperature seem to fall on the 1:1 relationship between the two tissues. 

Enhanced ABA concentrations in the elongation zone were also seen when the data 

were expressed on a weight of water basis (data not shown). The significance of this 

result is difficult to comment on since greater EZ ABA accumulation may reflect 

greater cell density and vacuolation in this tissue. Other possible explanations include 

greater uptake of ABA from the transpiration stream by cells of the EZ, increased 

synthesis of ABA in response to transient water deficits in the bioassay system, and a 

reduced rate of ABA catabolism by cells in the EZ. The option of increased ABA 

synthesis was examined in Section 5.3.3.3.
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F i g u r e  5 .7: Leaf growth response of detached barley {Hordeum vulgare L. cv. Klaxon) 
shoots supplied with 10"6M ABA, plotted against the air temperature at which the leaf 
elongation assay was conducted (a) and the bulk elongation zone ABA content (b) 
after 6 hours of ABA feeding at the temperatures in (a), when leaf growth inhibition 
was maximal. Points are means ± S.E. of 8 leaves and 5 ABA determinations. Lines are 
second order regressions fitted in SPW 1.0.
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Figure 5.8: Relationship between mature leaf (leaf 2) ABA concentration and 
elongation zone ABA concentration for detached barley (Hordeum vulgare L. cv. 
Klaxon) shoots.fed artificial xylem solution (O), 10_̂ M (□), 10'^M (T), 10"^M ABA 
at circa 25°C (A) and 10"6M ABA at 10°C (A) for at least 2 hours. The line indicates 
the 1:1 relationship. The inset indicates data between 100 and 400 ng / g DW. Points 
are means ± S.E. of 5 shoots.
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5.3.3.3 ABA accumulation in detached, dehydrated tissue

Table 5.3 shows that in the detached tissue test there was no statistically 

significant difference (Student's unpaired t test, P>0.05) between the laminae of the 

two leaf ages (leaves 2 and 4). Strictly, this is an inappropriate comparison to make as 

the 2 leaves differ both in their age and their point of insertion on the main stem. 

However, Quarrie and Henson (1981) showed that there was no statistical difference in 

ABA accumulation (expressed on a dry weight (DW) basis) in response to dehydration 

of wheat leaves of the same developmental age sampled at different insertion levels. 

Samples expressed on a fresh weight (FW) basis showed differences, but only between 

the flag leaf and other leaves (Quarrie and Henson, 1981). Athough 3 different species 

showed effects of leaf age on ABA accumulation (Quarrie and Henson, 1981), the 

differences in leaf age between the leaf 2 and leaf 4 laminae sampled here must not 

have been sufficiently great to result in differences in ABA accumulation. The ABA 

concentrations in the barley leaf laminae here (circa 2000 ng g DW"1 after 18 hours 

incubation at 90 % FW) correspond well with those reports of Trejo (1994) using 

maize (1800 ng g DW"1) and Henson and Quarrie (1981) using wheat {circa 3100 - 

5400 ng g DW"1 depending on cultivar) and rice {circa 1400 - 5400 ng g DW"1 

depending on cultivar). The values of Henson and Quarrie (1981) are approximate only 

since the original data were expressed in ng g FW"1; a 10:1 FW:DW ratio was 

assumed. Comparison of the capacity for different genotypes to accumulate ABA after 

a pre-determined incubation period may be an inappropriate strategy, as different 

genotypes can differ considerably in their kinetics of ABA accumulation in the 

detached leaf test (Henson and Quarrie, 1981). An analogous criticism can be applied 

to determination of ABA accumulation in different tissues (expanding vs. non­

expanding zones of leaves).
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Table 5.3. ABA contents of the EZ of leaf 5 and the laminae of an expanding (leaf 4)
leaf and a mature (leaf 2) leaf after 18 hours incubation at 90 % of original tissue fresh
weight. ABA data are presented as means ± S.E. with the number of replicates given in 
parentheses.

Tissue Type ABA (ng / g DW)

Leaf 2 Lamina 2139 ±261 (4)
Leaf 4 Lamina 2074 ± 90 (5)
Leaf 5 Elongation Zone 1296 ± 45  (5)

Despite this potential criticism, Table 5.3 shows that the EZ accumulated less 

ABA than the mature and expanding leaves in the detached tissue test. This contradicts 

previous reports that younger leaves have a greater capacity for ABA synthesis 

(Quarrie and Henson, 1981), but such data were obtained only using leaf laminae. 

Therefore the greater ABA accumulation in the EZ seen in the bioassay system (Figure

5.8) is unlikely to be accounted for by an increased synthesis of ABA by cells in the 

EZ.

5.3.3.4 Experiment where ABA was withdrawn after two hours of feeding

Figure 5.9 shows the response of growth, transpiration and ABA 

concentrations in detached shoots when the ABA solution was replaced by the artificial 

xylem (AX) solution after .2 hours of feeding, and when a supply of ABA was 

maintained. After 2 hours, there was substantial accumulation of ABA in leaf 2 and the 

EZ in response to ABA feeding. These concentrations were maintained in shoots 

subjected to a continuous supply of ABA (data not shown but see Figure 5.5), as were 

the steady-state levels of leaf growth inhibition and transpiration (see Figure 5.9a). 

Removal of ABA from the feeding solution resulted in the partial recovery of 

transpiration and leaf growth. Although leaf growth increased over the remainder of 

the experiment for plants which were subjected to a 2 hour pulse of ABA followed by a 

chase of AX solution, a 15 % increase in transpiration occurred 1-2 hours after 

removal of ABA but no further increases in transpiration were noted. The reversibility 

of ABA-induced reductions in transpiration are consistent with previous reports
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(Cummins et al., 1971; Cummins, 1973) but this would appear to be the first report of 

the reversibility of ABA-induced reductions in leaf elongation.

The differential after-effects of drought stress on leaf elongation rate 

(immediate recovery following re-watering - Acevedo et a l 1971) and transpiration 

(may be inhibited for several days following re-watering - Correia and Pereira, 1994) 

would seem to be consistent with the results described in Figure 5.9a. This provides 

additional circumstantial evidence for a role of ABA in the physiology of droughted 

plants.

Removal of ABA from the feeding solution also resulted in the decline of ABA 

concentrations in both mature leaves and elongation zones to new steady state values 

(which were higher than existed in the tissues before the experiment started - Figure 

5.9b). The higher ABA concentration is likely to result from some ABA being made 

unavailable to degrading enzymes, possibly by sequestration in the chloroplasts 

(Heilmann et al., 1980). Although estimation of rates of ABA breakdown was not the 

chief aim of this experiment, it is obvious that ABA catabolism in this system is rapid. 

Half-lives for ABA in the bioassay system are certainly within 2 hours, in agreement 

with the data of Gowing et al. (1993) who experimentally determined a half-life for 

externally supplied ABA in detached cherry leaves of 36 minutes. Comparison of other 

half-life data for ABA in the literature may not be meaningful, as many such 

experiments have measured half-lives for endogenously produced ABA (e.g. Zeevart, 

1983). The data presented in Figure 5.9 do not allow comparison of catabolic rates of 

leaf and EZ tissue. The larger standard error bars on the EZ values may represent a 

slower rate of catabolism or may simply be a result of the greater variability associated 

with measurements of ABA concentration in the EZ. The possibility that cells in the EZ 

degrade ABA at a reduced rate would be consistent with data which suggest that 

young leaves are less able to break down ABA (Zeevart and Creelman, 1988). The 

possibility that cells in the elongation zone may metabolise ABA at a reduced rate is 

worthy of further investigation.
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Figure 5.9: Response of transpiration (A, A) and leaf elongation ( • ,  O) (expressed as 
a percentage of control shoots) in detached barley {Hordeum vtdgare L. cv. Klaxon) 
shoots to continuous feeding with 10_6M ABA (hollow symbols) or 2 hours of feeding 
10"^M ABA, followed by transfer of shoots to artificial xylem solution (filled symbols) 
(a) and the accompanying changes in ABA content (b) of the elongation zone ( • )  and 
mature leaf (♦) in the transfer experiment. Points are means of 5 shoots, with error 
bars in (a) omitted for clarity and S.E.s given in (b).
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5.3.4 DISCUSSION

The data in this Section indicate the usefulness of measuring EZ-ABA. 

Measuring [EZ-ABA] seemed to account for the putative temperature x ABA 

interaction. However, this cannot be stated unequivocally until experiments are 

performed which feed the same ABA concentration to plants at the same flux rate, but 

with the EZ held at different temperatures. This type of experiment may resolve the 

different effects of [EZ-ABA] and any putative T x ABA interaction affecting leaf 

growth. While both ABA concentration and amount are important (and intrinsically 

related), the evidence presented here from detached shoot experiments where the ABA 

flux is varied suggests that leaves are responding more to an accumulated amount of 

ABA than a xylem sap concentration. This situation is very different from bioassay 

studies analysing stomatal responses, which indicate that enhanced ABA accumulation 

under high temperatures and VPDs does not generally produce additional stomatal 

closure (Trejo et a l, 1995).

It is also difficult to completely discard the concept of a T x ABA interaction 

affecting LER given the numerous examples in the literature which report this 

interaction influencing stomata, both in chilling- (Rodriguez and Davies, 1982; Eamus 

and Wilson, 1983; Comic and Ghasghaie, 1991) and non-chilling sensitive (Honour et 

a l , 1995) species. However, this type of interaction appears to be highly variable even 

within a well-studied species such as Commelina communis (cf. Rodriguez-Ontiverous 

1982 vs. Honour et al., 1995) and factors such as pre-treatment temperatures may be 

important (Allan et a l, 1994). The temperature range of the assay may also be 

important. Rodriguez and Davies (1982) report an increase in stomatal sensitivity to 

ABA for maize across the temperature range 18 to 22°C. There was no increase in 

sensitivity for a range of 25 to 40°C (Rodriguez and Davies, 1982; Tardieu et al.,

1993).
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Although [EZ-ABA] may be a useful variable to measure in accounting for the 

LER of detached shoots fed synthetic ABA, it is uncertain whether ABA accumulation 

can explain the growth inhibition of detached shoots which are fed xylem sap from 

droughted plants, or the growth inhibition of draughted plants. These possibilities are 

addressed in Chapters 6 and 7 respectively.

VS.
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CHAPTER 6.

RESPONSE OF LEAF GROWTH TO XYLEM SAP IN A LEAF 

ELONGATION ASSAY

6.1 INTRODUCTION

Although the transpiration bioassay has been used on at least 3 occasions to 

examine the antitranspirant activity of xylem sap (Munns and King, 1988; Zhang and 

Davies, 1991; Trejo, 1994), only one report (Munns, 1992) has fed xylem sap in the 

leaf elongation assay. In that system, sap ABA concentration was unable to account for 

the observed leaf growth inhibition. Xylem sap with an ABA concentration of 

4xlO"^M inhibited leaf growth by 60 %, while synthetic ABA at 10“̂ M ABA was 

required to reduce leaf growth by the same amount. It was concluded that there was an 

additional growth inhibitory substance in barley or wheat xylem sap.

However, more recent work by that group (Munns et a l , 1993) casts doubt on 

the presence of other antitranspirant (and by analogy, growth inhibitory) compounds in 

wheat and barley xylem sap. Freshly collected sap inhibited transpiration to a level 

commensurate with its ABA concentration, and only sap collected from droughted 

plants and stored at -20°C showed major antitranspirant activity, which was ascribed 

to a large polymeric compound which developed under the solute-concentrating 

conditions of storage (Munns et al., 1993). In a similar experiment, Sinclair et al. 

(1995) showed that the antitranspirant activity of maize xylem sap increased with 

storage at -20°C, but that the majority of this activity could be accounted for by 

physical blockage of the xylem vessels.

In view of these recent reports which cast doubt on the existence of 

antitranspirant or growth inhibitory compounds other than ABA <md the differences in 

the dose-response of leaf elongation to ABA generated by different workers (Figure

112



2.4b), it was decided to investigate the potential growth inhibitory and antitranspirant 

effects of maize xylem sap.

6.2 MATERIALS AND METHODS

Maize (Zea mays L. cv. Earliking) plants were grown in 1.5 litre pots in a 50: 

50 mixture of John Innes No.2 compost and gravel. Maize was chosen as it is relatively 

easy to collect large volumes of sap. When 8 leaves had appeared, 75 % of the plants 

were left unwatered for 3 days. A greater proportion of the plants was left unwatered 

since droughted plants exuded less sap when detopped (as found by Zhang and Davies, 

1991). Plants were detopped, a tube placed over the cut stump and the sap allowed to 

exude overnight before collection the following morning, a procedure similar to that 

described by Zhang and Davies (1991) and Sinclair et a l (1995). The sap was 

centrifuged at 8000g for 5 minutes in Eppendorf tubes to spin down cell debris which 

occur in maize sap collected by this method (Zhang and Davies, 1991). The 100 pL 

remaining in the bottom of each Eppendorf tube was discarded. Centrifugation of sap 

from maize plants appeared to be a suitably quick method of preparation for leaf' 

elongation assays, as sap from well-watered plants did not show any growth inhibitory 

activity when supplied to detached barley shoots (see Figure 6.1c). The sap was fed to 

detached barley shoots on the same day as sap collection, to avoid the development of 

antitranspirant activity in the sap with storage at -20°C (Munns et a l , 1993; Sinclair et 

a l , 1995).

Initial experiments fed xylem sap or ABA made up in artificial xylem solution to 

detached shoots at average temperatures and relative humidities of 18°C and 40 % 

respectively. Leaf elongation was recorded eveiy 2 hours, and transpiration hourly. At 

the end of the assay, samples of the xylem sap and the ABA solutions were collected, 

stored at -20°C, and ABA concentrations quantified in a radioimmunoassay (RIA) 

protocol (Quame et a l, 1988), as described in Section 5.2.2.J.
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Later experiments were conducted at average temperatures and relative 

humidities of 28°C and 40 % since leaf growth was more sensitive to ABA at this 

temperature (Figure 4.2). After 6 hours, samples were taken for determination of ABA 

concentration in the bulk elongation zone (10-40 mm from the crown as explained in 

Section 5.3) as described above, and any remaining maize sap collected.

6.3 RESULTS

Figure 6.1 shows that for both assays, and for both leaf elongation (Figures 

6.1a, c) and transpiration (Figures 6.1b, d), that the points for xylem sap collected from 

droughted plants did not lie on the dose-response curve generated from ABA in 

artificial xylem solution. This contradicts the finding that maize xylem sap contains no 

additional antitranspirant activity (Zhang and Davies, 1991) but supports the finding 

that xylem sap contains growth inhibitory activity other than ABA (Munns, 1992). Sap 

from well-watered maize plants was found to inhibit transpiration to the same extent as 

sap from droughted plants (Figure 6. Id), yet leaf elongation was unaffected (Figure 

6.1c). An antitranspirant effect of xylem sap from well-watered plants has previously 

been shown (Munns and King, 1988), although the effect was highly variable between 

different batches of sap. Maintaining well-watered plants at full turgor in a root 

pressure chamber was shown to eliminate most of the antitranspirant activity, 

suggesting that well-watered plants developed transient leaf water deficits during the 

day, which promoted antitranspirant activity in the sap (Munns and King, 1988).
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F i g u r e  6.1: Response of leaf elongation (LER) (a, c) and transpiration (TRANS) 
(b, d) in detached barley (Hordeum vulgare L. cv. Klaxon) shoots fed synthetic ABA 
dissolved in artificial xylem solution (O) or xylem sap collected from detopped, 
droughted ( • )  and well-watered (A) maize plants in two separate experiments (a, b 
and c, d). Points are means ± S.E. of at least 12 measurements taken during the steady- 
state phases of leaf growth and transpiration inhibition (1-5 hours after supplying 
ABA). Shoots were maintained at 15-20°C.
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Table 6.1 shows the effects of the different saps, and of ABA on the 

sensitivities of leaf elongation and transpiration (expressed as a percentage of the 

controls). In the first experiment (Figure 6.1a, b), there were no differences in the 

sensitivities of leaf elongation and transpiration to either ABA or droughted sap. This 

was confirmed in the second experiment, except for 10“̂ M ABA and sap from water 

stressed plants, which inhibited transpiration more than leaf elongation.

In later experiments at the higher assay temperature, sap from droughted plants 

reduced growth by 45 % in a manner inconsistent with the ABA concentration of the 

xylem sap (Figure 6.2a), as seen before (Figures 6.1a, c). However, when leaf 

elongation rate was plotted against the ABA content of the EZ of leaves used in the 

same assay, the point for the droughted sap lay on the relationship (Figure 6.2b) 

generated with synthetic ABA.

Table 6.1: Sensitivities of leaf elongation and transpiration to synthetic ABA solution 
and sap collected from droughted (WS) or well-watered (WW) maize plants. Data are 
means ± S.E. with the number of replicates indicated in parentheses. P value obtained 
by applying Student's unpaired t test. (P<0.05 *), (P<0.01 **), (PO.OOl ***)

Feeding Solution Leaf Elongation Transpiration P Value
(% control) (% control)

Experiment 1:
108M ABA 103.0 ± 11.4(12) 86.8  ±2.5 (16) 0.124
1(T7M ABA 85.0 ± 14.6(15) 71.7 ±2.3 (20) 0.275
lO^M ABA 67.2 ± 9.8(18) 66.1 ±5.3 (24) 0.920
WS SAP 68.7+ 9.9(18) 54.6 ±1.6 (24) 0.109

Experiment 2:
108M ABA 100.5 ±9.2 (16) 99.7 ±6.7 (18) 0.944

10"7M ABA 81.4 + 9.4(16) 84.5 ±3.1 (18) 0.747

lO^M ABA 64.3 ±8.3 (12) 55.4 ±4.4 (18) 0 .000  ***

WS SAP 78.0 ± 9.3 (20) 64.6 ±5.1 (12) 0.011  **

WW SAP 96.5 ±16.6 (12) 64.8± 3.9 (18) 0.359
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Figure 6.2: Leaf elongation rate plotted as a function of xylem ABA concentration (a) 
and elongation zone ABA concentration after 6 hours (b) for detached barley 
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10“̂ M (V), 10_̂ M (A) ABA and xylem sap from droughted maize plants (• ) . Points 
are means ± S.E. of 8 leaves and 5 ABA determinations.
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6.4 DISCUSSION

The literature on the effects of actual sap on plant growth and transpiration in 

bioassays is filled with contradictions and methodological problems, as Table 6.2 

attempts to summarise. The results presented here seemingly add to an already 

confusing picture.

The fact that xylem sap from well-watered plants inhibited transpiration is 

worrying, although not without precedent. Meinzer et a l (1991) showed that root 

exudate from well-watered sugarcane plants inhibited stomatal conductance (gs) in 

detached leaves by 40 to 80 % relative to distilled water fed plants; with increased 

inhibition as the leaf area of the plants from which the exudate was collected increased. 

The cause of the inhibition in the detached leaves was not determined, but was unlikely 

to have been ABA as the delivery rate from cut stumps declined with increasing leaf 

area (Meinzer et a l , 1991). This would suggest the existence of another antitranspirant 

factor in the exudate, perhaps an osmotically inhibitory or inappropriate combination of 

ions; or a physical blockage of the transpiration stream. Regardless of possible causes, 

the fact that sap collected from well-watered plants inhibited transpiration in a manner 

inconsistent with its ABA concentration (Figure 6. Id) would invalidate any judgements 

on a possible regulatory role for ABA in affecting transpiration in water-stressed 

plants.
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Maize xylem sap collected by the same method used in these experiments is 

known to contain large particles (>0.2 pm diameter) which may block xylem transport 

and result in wilting of large (16 cm long) detached leaves (Zhang and Davies, 1991). 

Although the method of sap preparation used here (centrifugation) was not as rigorous 

as Zhang and Davies (1991) (filtering sap), physical blockage seems unlikely since the 

leaf elongation rate of control shoots was essentially the same as shoots fed xylem sap 

(Figure 6.1c) and no wilting of the barley detached shoots was observed. It is assumed 

that growth would be more sensitive than transpiration to an interruption of the water 

supply. Although Zhang and Davies (1991) suggested that wilting may go undetected 

in small (8 cm long) cereal leaves, the average leaf area of detached shoots was 16 cm- 

(compared to 9 cm^ for 16 cm long barley leaves) and thus it is difficult to sustain the 

physical blockage hypothesis for the experiments described here.

The sap collection technique used here has been frequently criticised for giving 

misleading data on hormonal and ionic contents of xylem sap (Munns, 1990; Jackson 

1993), since the low sap flow rates (much less than those in the intact transpiring plant) 

result in the concentration of solutes. The osmotic potential (vp^) of xylem sap samples

was determined by psychrometry to be -0.14 MPa. KC1 of a similar osmotic potential 

(25 mM) inhibited transpiration by 10 % and had no effect on leaf elongation in the leaf 

elongation assay (data not shown) and thus the inhibition of transpiration by sap from 

well-watered plants does not appear to be a purely osmotic effect, but perhaps an effect 

of an unfavourable combination of ions.

Feeding xylem sap collected from well-watered plants, but of a different ionic 

composition to that which the bioassay material normally is in contact with (e.g. due to 

species differences), has been noted to prevent stomatal opening in epidermal strip 

bioassays (Zhang and Davies, 1991, Trejo, 1994) but feeding well-watered maize sap 

to detached wheat leaves did not inhibit transpiration to an extent greater than that 

expected on the basis of ABA concentration (Zhang and Davies, 1991). Why has sap
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collected from well-watered maize plants by essentially the same method as Zhang and 

Davies (1991) and fed to barley leaves (assumed to behave similarly to wheat leaves) 

inhibited transpiration ? One difference in the sap collection technique is that Zhang 

and Davies (1991) only collected the first 0.5 mL collected from the cut maize stump, 

while the study here allowed exudation for 12 hours overnight. Perhaps the ionic 

composition of the exudate changes considerably from that found in the initial droplets 

(collected by Zhang and Davies and assumed to represent the actual transpiration 

stream existing in the vessels when the top was removed). Sequential analysis of K+ in 

sap exuding from detopped maize plants showed a drop in K+ concentration in the first 

0.5 mL, but little change in later samples (Zhang and Davies, 1990b). This contrasts 

with data obtained using the same species and sap collection technique, which showed 

that NO3" concentration steadily increased over a 3 hour period, comprising 0.8-2.0 

mL of sap (Canny and McCully, 1988). This shows that concentrations of ions in 

exudate may be affected by long collection times. Such concentration changes may 

have reduced transpiration in detached shoots fed sap from well-watered plants. 

However, this does not explain the observation that leaf elongation in these shoots was 

unaffected.

It is possible, but unlikely, that the leaf elongation assay was not sufficiently 

sensitive to detect reductions in the LER of detached shoots fed sap from well-watered 

maize plants. Certainly, the dose-response curve for Figure 6. lc shows a much reduced 

slope compared to that portrayed in Figure 2.4b, which probably results from the lower 

assay temperature. However, an experiment performed at 28°C where LER of shoots 

was much higher gave the same result for sap collected from well-watered plants: an 

inhibition of transpiration of about 40 % yet no effect on leaf growth (data not shown).

It seems that xylem exudate from well-watered maize plants contains a 

compound(s) which did not affect leaf elongation but had antitranspirant activity. Such 

activity is considered to be an artefact of the long sap collection times employed in this
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study. Inhibition of transpiration by maize xylem sap was not further considered in later 

experiments, as different sap collection techniques would be required such as the use of 

a whole plant pressure chamber, which would allow sampling of xylem sap at flow 

rates comparable to those existing in the intact plant (Munns and King, 1988; Schurr 

and Schulze, 1995).

Although it appeared that there was another growth inhibitory compound in 

maize xylem sap from droughted plants (Figures 6,1 a, c, 6.2a), measurement of the 

ABA concentration of cells in the leaf elongation zone negated this idea (Figure 6.2b). 

This result would seem to confirm the suggestion of Munns and Sharp (1993) that the 

antitranspirant compound in wheat and barley sap caused ABA to accumulate in leaves 

to which it is fed. It would be interesting to see if confirmation of this suggestion was 

forthcoming in the form of some data.

One possible explanation for this result is that there is some other compound in 

the xylem sap (perhaps a conjugated version of ABA) which is converted to free ABA 

in the elongation zone. ABA conjugates such as ABA glucose ester and ABA methyl 

ester routinely occur in xylem sap but usually remain below 10 % of the free ABA 

(Hartung, pers. comm.). In some stress environments with some species, the levels of 

conjugates can increase by up to 4 fold (Bano et al., 1993). The level of conjugates in 

the maize xylem sap, nor the potential identity of other possible compounds, has not 

been pursued since there was a highly significant relationship between [EZ-ABA] and 

LER, which justified the measurement of [EZ-ABA] in droughted plants (Chapter 7).
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6.5 CONCLUSIONS

Long collection times for maize sap exuding from cut stumps resulted in sap 

from well watered plants showing antitranspirant but not growth inhibitory effects. 

Further judgements on the role of ABA in the antitranspirant activity of maize xylem 

sap from water-stressed plants were thus precluded. This artefact may have been 

removed by collecting sap using a whole plant pressure chamber, which is likely to be a 

more dependable method of collecting the large volumes of sap required for assays at 

high temperature. Leaf elongation was inhibited by sap from droughted plants in a 

manner inconsistent with the ABA concentration of the sap. Measuring [EZ-ABA] 

seemed to account for this growth inhibition, thus indicating the validity of measuring 

[EZ-ABA] in droughted plants.
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CHAPTER 7. 

ACCUMULATION OF ABA IN THE LEAF ELONGATION ZONE OF 

INTACT PLANTS DURING A SOIL DRYING EPISODE

7.1 INTRODUCTION

If the data collected on ABA accumulation in the bioassay system are to be 

compared with plants grown in drying soil, ABA concentrations ( [ABA]s ) and effects 

in the two systems should be comparable. As noted in Section 5.3.1, ABA has been 

measured in many plant parts, but never expressly in the leaf elongation zone of 

droughted plants. This is somewhat surprising considering that the mature and 

elongating parts of grass leaves differ in their capacity for osmotic adjustment (Munns 

et a l, 1979) and turgor maintenance (Michelena and Boyer, 1982) in response to 

drought. It might, therefore, be possible that the elongation zone accumulates more 

ABA in response to soil drying than do the mature leaves, as demonstrated for 

detached cereal shoots fed ABA in the leaf elongation assay (Figure 5.8). Any 

enhanced ABA accumulation may be physiologically important in explaining leaf 

growth inhibition under drought.

ABA accumulation in the EZ may be of considerable practical importance in the 

accurate measurement of plant ABA relations. Although xylem sap [ABA] is known to 

be more sensitive than bulk leaf [ABA] to soil drying (Zhang and Davies, 1989b; 

1990a), there are considerable methodological difficulties in obtaining a valid sap 

sample. This is especially the case in monocotyledons, which generally contain less 

ABA than dicotyledons (Munns, 1990); thus it may be difficult to collect the volumes 

of sap needed by immunological methods. In many small-leaved grasses, it is often 

impossible to express sufficient xylem sap for ABA analysis using the Scholander 

pressure bomb. Investigators may then be forced to collect xylem sap from detopped 

shoots, a method of sap collection that has been criticised as providing unrealistically
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high ABA concentrations (Munns, 1990; Jackson, 1993) since the sap is collected at 

low flow rates atypical of transpiring plants. The problem is exacerbated in small 

plants, as exudation would be the sum of the transpiration stream (the small amount of 

xylem sap existing in the vessels at the time of detopping) and later sap flow through 

the root system. The ABA concentration of exudates can only be regarded as a valid 

measurement of xylem [ABA] when only the transpiration stream is collected, as 

validated by anatomical measurements of xylem volume to allow calculation of the the 

volume of xylem sap existing in the cut stump at the time of detopping (Zhang and 

Davies, 1990b). Given the problems involved with sampling xylem sap from small 

plants, it would seem useful to pursue another measurement of ABA concentration 

which may be related to LER. Although correlations between lamina ABA 

concentration and LER have been shown (Puliga et a l , 1996), the enhanced [EZ- 

ABA] of detached shoots fed ABA (Figure 5.8) warrants further investigation of the 

ABA relations of elongating cells under drought conditions. The studies described in 

this chapter seek to relate leaf elongation rate to ABA accumulation in the leaf 

elongation zone of droughted plants.

7.2 INFLUENCE OF SPATIAL GROWTH DISTRIBUTION ON ABA 

CONCENTRATION DETECTED IN THE GROWING ZONE

7.2.1 INTRODUCTION

Before samples of the bulk elongation zone (as applied in the bioassay system - 

Section 5.3) could be relied upon as valid measures of ABA concentration in the 

elongation zone, it was necessary to consider any effects that drought-induced changes 

in the spatial distribution of growth (Spollen and Nelson, 1994; Durand et al., 1995) 

may have had on the ABA content of the samples collected.
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7.2.2 MATERIALS AND METHODS

Maize {Zea mays cv Earliking seeds) were deep-sown (to induce a sub-crown 

intemode) in 9 litre pots (20 seeds per pot) in a 50:50 mixture of John Innes No. 2 

compost and gravel. A 10 cm thick layer of vermiculite was placed over the seeds to 

permit ease of access for the marking experiments to determine the spatial distribution 

of growth. All plants were well watered until leaf 3 had emerged, when half the pots 

remained unwatered while the other half continued to be watered daily, at the 

beginning of the night period. Average maximum and minimum temperatures and 

relative humidities in the growth cabinet during the experiment were 20°C and 29°C, 

and 29 % and 44 % respectively.

Two days after withholding water, leaf length of six plants per treatment was 

measured. Length measurements occurred every 12 hours to investigate the daily 

patterns of elongation. Each day, eight plants per treatment were marked with a series 

of parallel entomological pins 2 hours into the light period, to determine the spatial 

pattern of growth (as in Section 5.2.2.1). The negative effect of marking on LER was 

not determined in soil-grown plants, and assumed to be circa 25-35 %, as shown for 

detached shoots (Table 5.2).Data on RSER have not been corrected for the effect of 

marking injury. Another set of 8 plants per treatment were sectioned with a parallel 

series of razor blades to determine the spatial pattern of ABA accumulation (as in 

Section 5.2.2.2). ABA concentration of tissues was measured according to the RIA 

protocol described in Section 5.2.2.3 (Quarrie et al., 1988).

Statistical differences between droughted and well-watered plants were 

determined by Student's unpaired t-test in SPW 1.0
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7.2.3 RESULTS AND DISCUSSION

Figure 7.1 shows the time course of leaf growth of the 2 emergent leaves and 

EZ ABA content (averaged over all positions in the EZ) over the experimental period. 

In well-watered plants, there is increased growth during the light period, which can 

probably be attributed to the higher average temperature in the growth cabinet during 

that period. However, even in growth cabinets which maintain a constant temperature 

day and night, leaves of well-watered grasses may show enhanced growth during the 

day (Watts, 1974; Christ; 1978), although higher night growth at constant temperature 

has been noted in tall fescue (Parrish and Wolf, 1983; Schnyder and Nelson, 1988; 

Durand et a l , 1995). None of these studies have expressly measured meristem 

temperature, which would seem to be a prerequisite for ensuring that any day/night 

growth differences at constant cabinet temperature are not due to different meristem 

temperatures, especially in the case of experiments showing reduced LER at night. 

Experiments showing enhanced LER at night are suggestive of plants developing water 

stress during the day despite high levels of soil water, which is indicative of LER being 

sensitive to VPD (Squire etal., 1983). Watts (1972) explained this response to VPD in 

terms of transpirational water loss exceeding water uptake, decreasing water potential 

in the elongating cells. No> attempt has been made to validate this suggestion by 

measuring V|/w in elongating cells, although it is often favoured as an explanation for 

higher night-time LERs (Parrish and Wolf, 1983) in plants which are particularly 

sensitive to VPD.
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Figure 7.1: Time course of leaf elongation rate (LER) of leaf 3 (a) and leaf 4 (b) and 
average elongation zone (EZ) ABA concentration (c) of well watered (O) and 
droughted ( • )  maize plants over a soil drying cycle. Solid bars on the time axis 
indicate the night period. LERs are means ± S.E. of 6 (a) and 4 (b) leaves. ABA 
concentrations are means ± S.E. of 18 samples taken at different positions in the EZ 
(see Figure 7.3 for details of sampling regime). Samples from each position in the EZ 
were bulked from 6-8 plants.

129



Since there was a time lag between withholding water and the beginning of leaf 

length measurements, growth of leaf 3 of droughted plants had already been inhibited 

by 48 % during the light period of Day 3 (Figure 7.1a) and by 30 % in the previous 

nyctoperiod. Further inhibition of LER continued over the course of the drying cycle, 

although this was partially obscured in leaf 3 since the leaves of well-watered plants 

showed reduced LER as they approached maturity. At the end of the drying cycle (Day 

6), day-time LER of leaf 4 of droughted plants was inhibited by 64 %.

Droughted plants did not show any pronounced diel variation of LER until late 

in the drying cycle (Days 5 and 6), when a reversal of the pattern exhibited in well- 

watered plants occurred such that nocturnal LERs of droughted plants were 

significantly (P<0.05) greater than day-time LERs for leaf 3, but not significantly 

(P>0.10) greater for leaf 4. Such enhancement of nocturnal LERs of droughted. plants 

has previously been observed (e.g. Ephrath and Hesketh, 1991; Durand et al., 1995) 

and probably reflects improved water relations of plants during the night. However, the 

signal which restricted leaf growth was not abolished by any improvement in plant 

water relations which occurred overnight. This may be interpreted as circumstantial 

evidence in favour of a chemical signal, although no definitive comments can be made 

in the absence of plant water relations measurements in this experiment. Since the 

restriction of leaf growth varied from day to night, it is likely that any putative chemical 

signal is interacting with plant water relations. This interaction has been demonstrated 

in the control of stomatal behaviour of field-grown droughted maize plants (Tardieu 

and Davies, 1992; Tardieu et al., 1993) and is further investigated in Chapter 8.

By Day 3, ABA concentration in the bulk elongation zone had increased 

significantly (P< 0.05) by 1.8 times from circa 180 ng / g DW in well-watered plants to 

320 ng / g DW (Figure 7.1c). ABA concentration increased with time up to Day 6, 

reaching a maximum of 710 ng / g DW, an increase of 3.9-fold. These ABA 

concentrations appear to be consistent with those previously reported in the leaves of
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both well-watered and draughted maize plants (Zhang and Davies, 1990a; Jovanovic 

and Quarrie, 1990; Pekic etal., 1995).

It was important to show that ABA could accumulate in the EZ for two 

reasons. Firstly, no data could be found in the literature which expressly measured the 

EZ-ABA concentration of draughted plants. Although Jovanovic and Quarrie (1990) 

studied the whole-plant distribution of ABA in draughted maize plants, their data refer 

to "young leaves and apical tissue", and no determinations of the extent of the leaf 

elongation zone were performed. Secondly, there is no reason to automatically suspect 

increased ABA concentration in the EZ under drought, since the stimulus for ABA 

synthesis (i.e. turgor loss) is usually absent in the EZ of draughted plants (e.g. 

Michelena and Boyer, 1982). Although the enhancement of [EZ-ABA] shown here is 

good evidence of a chemical signal, the origin (Is ABA synthesised in the leaves and 

transported in the phloem to the EZ, or synthesised in the roots and transported in the 

xylem to the EZ, or synthesised in the EZ ?) and physiological significance (What are 

the primary events regulating leaf expansion in the early stages of drought ?) of the 

signal are unknown due to the inadequate time course of the leaf length measurements 

and the failure to document plant water relations.

The reduced sensitivity of changes in [EZ-ABA] (as opposed to changes in 

xylem sap [ABA] ) in indicating drought-induced changes in hormonal relations is 

illustrated by the fact that [EZ-ABA] was only increased 1.8-fold in this experiment by 

a drought which reduced LER by 50 %; whereas a similar drought-induced reduction 

in LER elicited a 30-fold increase in xylem [ABA] (Zhang and Davies, 1990b). Thus it 

would seem difficult to discriminate drought-induced changes in plant ABA relations 

by measuring [EZ-ABA]; in a similar manner to which changes in bulk leaf [ABA] are 

not detected despite large increases in xylem ABA (Zhang and Davies, 1989b; 1990a). 

Although this would appear to negate the rationale behind measuring [EZ-ABA], it 

must be noted that it was impossible to obtain a large enough sap sample for ABA
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analysis (using the RIA described in Section 5.2.2.3) from the plants used in this 

experiment, either by expressing xylem sap from detached leaves using the Scholander 

pressure bomb or collecting xylem sap from a single detopped shoot. This is quite apart 

from the technical uncertainties of whether the sap actually represents a captured 

portion of the transpiration stream, as discussed above in Section 7.1.

Figure 7.2 shows the spatial patterns of growth, or relative segmental 

elongation rate (RSER) at Days 3 and 5. The initial stages of water deficit (Day 3) 

reduced maximum RSER by 22 % but did not affect the length of the EZ of leaf 3 

(Figure 7.2a), which remained at 36 mm. Although a similar EZ length (36 mm) was 

found in soil-grown maize and detached barley shoots (Figure 5.4a), the RSER data 

cannot be directly compared since the RSER of barley shoots was corrected to allow 

for marking injury. Data from Day 5 also show that water deficit had no effect on the 

EZ length of leaf 3 (Figure 7.2b). As LER of leaf 3 declined (Figure 7.1a), the EZ 

length of well-watered plants was reduced from 36 mm (Days 3 and 5) to 28 mm on 

Day 6 (data not shown). This reduction in EZ length as leaves approach maturity has 

been previously described (Schnyder et a l , 1990; Palmer and Davies, 1996). Despite 

this reduction, there was no indication that drought reduced the EZ length of leaf 3. 

However, it is difficult to be. certain that drought per se had no effect on the EZ length 

of leaf 3, as the soil drying is likely to delay leaf development, thus any comparisons 

are confounded by the treatments differing in both the intensity of drought stress and 

the developmental stage of the leaf.
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Although the EZ of leaf 4 was not fully determined at Day 5, it is clear that 

maximum RSER has been reduced and extrapolation of the regressions shows that EZ 

length has been reduced (Figure 7.2c). Data from Day 6 confirmed this conclusion, 

with EZ length of leaf 4 being reduced by drought from 50 mm to 36 mm (data not 

shown). Although the EZ of leaf 4 was reduced, there was maintenance of growth at 

the base of the leaf (0-10 mm from the crown in Figure 7.2b). A similar basal 

maintenance has been shown for growing leaves (Spollen and Nelson, 1994; Durand et 

al., 1995) and roots (Sharp et al., 1988) subjected to drought.

It is interesting to note that the spatial pattern of growth for leaf 4 on Day 5 

(Figure 7.2c) is very different from that in leaf 3 (Figure 7.2b) on the same day and 

from that seen when detached shoots are fed ABA (Figure 5.4a), in that EZ length is 

not maintained under drought. Although this would appear to be evidence against the 

role of ABA in controlling leaf growth in droughted plants, by Day 5 it is likely that 

water relations in droughted plants were affected, so the growth profile in Figure 7.2c 

may represent an interaction of perturbed water relations and increased ABA 

accumulation. When the water stress is less severe (Day 3), there is agreement in the 

general profile of spatial distribution of growth under drought stress (Figures 7.2a, b) 

and ABA treatment (Figure 5.4a).

Figure 7.3 compares the spatial pattern of ABA in the elongation zone at Day 5 

The spatial distribution of ABA in detached maize shoots fed ABA via the sub-crown 

intemode is included for comparison. ABA content is expressed on a on a weight of 

water basis, which emphasises (compared to expression on a dry weight basis) the 

spatial variation in ABA content. The spatial pattern of ABA accumulation is 

essentially similar regardless of whether the ABA is produced endogenously in 

response to drought, or supplied externally via the sub-crown intemode in a leaf 

elongation assay. Thus sampling of a bulk elongation zone (as in Section 5.3) appears 

to be a valid measurement to make since ABA concentration is reasonably

134



homogenous in the expanding leaf, 10 to 40 mm from the node, under drought stress 

treatment.

It is interesting that the spatial pattern of ABA in the EZ is similar irrespective 

of whether the source of ABA is endogenous (drought stress treatment) or exogenous 

(feeding via the sub-crown intemode). This would suggest that ABA in the EZ of 

droughted plants accumulates as a result of transport from other parts of the plant, and 

not as a result of synthesis. A possible lack of ABA synthesis in the elongation zone is 

consistent with results showing turgor maintenance in the EZ (e.g. Michelena and 

Boyer, 1982), since turgor loss is considered to be the signal for ABA synthesis (Pierce 

and Raschke, 1980; 1981). However, potential spatial patterns of ABA synthesis using 

detached, dehydrated elongation zones (as in Section 5.3.3.3) were not examined.

7.2.4 CONCLUSIONS

This experiment shows the plant response to a rapid and moderately severe soil 

soil drying, where the initial changes in LER and ABA were not observed due to the 

measurement regime. Although it is impossible to speculate on the possible causes of 

the leaf growth inhibition, ABA may play a role since it has been shown to inhibit 

maize leaf growth (Figure 3.3a); and since it has been shown to accumulate in the EZ 

(Figure 7.1c), which previously has not been conclusively demonstrated. Importantly, 

spatial analysis of growth and ABA accumulation have allowed the definition of an 

essentially homogenous (with respect to ABA) part of the elongation zone to sample in 

more detailed studies of plant water and ABA relations in a milder soil drying 

treatment.
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7.3 DAILY VARIATION IN LEAF ELONGATION AND ABA CONTENT 

OVER A SOIL DRYING CYCLE

7.3.1 INTRODUCTION

The experiment in the previous Section was not performed with sufficient 

temporal resolution to allow determination of the primary events associated with leaf 

growth reductions. While daily measurements provide useful temporal information on 

changes in LER, it is possible to investigate the time course of drought-induced growth 

inhibition over the course of a day using ruler measurements (e.g. Chu and McPherson, 

1977). Such a procedure was adopted as it allowed the determination of whether the 

reduction in afternoon leaf elongation previously described for droughted plants (Chu 

and McPherson, 1977; Van Volkenburgh and Boyer, 1985) could be explained in terms 

of increased ABA accumulation in the leaf elongation zone. Previous studies have 

shown that diurnal changes in gs of droughted plants could not be explained in terms of 

diurnal variation of xylem sap ABA concentration (Loveys et al., 1987; Wartinger et 

al., 1990; Tardieu et al., 1992a; Correia et al., 1995). Although such examples negate 

the possibility of changes in chemical signalling per se (but not potential changes in 

sensitivity) accounting for growth changes, the leaf growth system could well be 

different from stomatal systems since the magnitude of growth inhibition in the 

bioassay system increased with ABA accumulation under high temperatures and VPDs 

(Figure 5.7). It is therefore possible that the higher temperatures and VPDs seen in the 

afternoon (the time at which leaf growth inhibition is first detected in a drying cycle - 

Chu and McPherson, 1977; Van Volkenburgh and Boyer, 1985) may allow an 

accumulation of ABA in the elongation zone. As far as the author is aware, this is the 

first attempt to ascribe diurnal responses of LER in droughted plants to a specific 

chemical signal.
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7.3.2 MATERIALS AND METHODS

Two experiments were conducted at different times of the year using both 

barley (.Hordeum vulgare cv. Firefly) and maize (Zea mays cv. Earliking). In both 

experiments, plants were grown in a 50:50 mixture of John Innes No. 2 compost and 

gravel in rectangular drainpipes (6 cm x 6 cm x 30 cm). Two pre-germinated barley 

seeds or one seed of maize were deep-sown (to induce a sub-crown intemode) in each 

drainpipe. For barley, seedlings were thinned to 1 plant per drainpipe when leaf 2 

appeared. All plants were well watered until leaf 3 had emerged, when half the 

drainpipes remained unwatered for the rest of the experiment while the other half 

continued to be watered daily at the beginning of the night period. Average maximum 

and minimum temperatures and relative humidities in the growth cabinet during the 

experiment were 24°C and 14°C, and 80 % and 52 % respectively for barley; and 

36°C and 22.5°C, and 69 % and 28 % respectively for maize. A 12 hour photoperiod 

was maintained.

Three (barley) or two (maize) days after withholding water, twelve plants per 

treatment were randomly selected for measurement of leaf length of all expanding 

leaves. Measurement of labelled plants occurred 4 times per day so that LER could be 

calculated for 3 periods during the light period and overnight. LER was also calculated 

for 12 hour periods to compare daily leaf elongation rates with the literature. On 

certain occasions, three (barley) or five (maize) randomly selected plants per treatment 

were chosen for sampling ABA and lamina water relations.

Water relations data was obtained by removing a 7 mm diameter disc of lamina 

from leaf 2 and immediately sealing it in a psychrometer cup. The cup was loaded into 

a C-52 chamber (Wescor Inc., Logan, UT, USA) and incubated at 25°C for 3 hours 

before V|/l  was read with a dew point microvoltmeter (HR-33T, Wescor Inc., Logan, 

UT, USA). The disc was then removed, wrapped in aluminium foil, and plunged into
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liquid nitrogen to disrupt the cell membranes. The frozen disc was allowed to thaw for

5 min before being re-sealed in the chamber to incubate for 30 minutes prior to the 

determination of osmotic potential V|!K. Water relations data were used to calculate 

lamina turgor (\|/p) according to the equation: \j/p =

Barley samples for ABA determination were taken from leaf 2 and a 30mm 

section of the EZ (10-40 mm from the node, containing tissue from the youngest 

emergent leaf and any enclosed leaves). In maize, it was possible to separate the 

expanding leaves, therefore sampling comprised leaf 2 and a 30 mm section (10-40 mm 

from the node) of each expanding leaf. All samples were analysed by the RIA (see 

Section 5.2.2.3) of Quarrie et a l (1988).

Every second day, 3 drainpipes per treatment were opened up, the soil column 

divided into 7 cm sections, and a sample of soil collected from each section. The soil 

was transferred to a pre-weighed glass vial (Wv = weight of vial), weighed within an 

hour (Wv+wet sojj), and allowed to dry for 1 week at 70°C before re-weighing 

(Wy+djy soii), allowing the determination of gravimetric moisture content (0) 

according to the equation:

>

0 (%) = (Wwater / W^jy Soil) x 100

= (Wy+wet soil “ Wy+dry soil)  ̂(^v+dry soil -Wv) x 100

From Day 6 in the maize experiment, it was possible to extract a sample of 

xylem sap from leaf 4. Sap was collected at 0.5 MPa above the balancing pressure for a 

period of 5 minutes, which generally produced < 30 |iL of sap. The sap was 

immediately frozen at -20°C after collection. Although the volume of sap did not 

permit quantification of ABA concentration using the ABA assay described in Section 

5.2.2.3, it was possible to measure xylem pH using a microelectrode (Model 9802 BN,
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Orion Instruments, Boston, MA, USA) coupled to a pH meter (DR 359 Tx, EDT 

Instruments, Dover, England).

Statistical differences between droughted and well-watered plants were 

determined by Student's unpaired t-test in SPW 1.0. The significance of correlations 

between variables measured in the soil drying experiments was tested by linear 

regression in MTW 10.2.

7.3.3 RESULTS

The leaf growth data for maize and barley were very similar; therefore Figure

7.4 provides an example of changes in LER of all emergent maize leaves over a drying 

cycle. The leaves which achieved full expansion during the experiment (leaves 3 and 4) 

maintained rapid growth from emergence for a period of 3-4 days before their growth 

rate fell, as described by Palmer and Davies (1996). There was a pronounced diurnal 

rhythm to their growth, which probably reflected changes in temperature in the cabinet, 

since temperature has a major effect on LER (Watts, 1974). Interestingly, for the well 

watered treatment, leaf growth fell in the late afternoon, despite no change (or a slight 

increase) in temperature, as noted previously for well-watered plants in a growth 

cabinet (e.g Parrish and Wolf, 1983) and in the field (e.g. Squire et a l, 1983).

Figure 7.5 shows the diel effects of drought on leaf elongation expressed as a 

percentage of control plants in both experiments. In constructing this figure, the 

percentage inhibition values have been taken only from those leaves which were 

growing rapidly. Leaves at different stages of development were inhibited by drought 

to different degrees at any one measurement period (Figure 7.4). Younger leaves will
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show differences between treatments while older leaves may not (as was shown for 

differences in spatial distribution of growth - Figures 7.2b, c). When leaves 3 and 4 

approached the end of their period of expansion, the LER of the droughted plants 

matched or sometimes exceeded the LER of the well-watered plants. This occurred 

despite the LER of droughted plants being depressed during the period of rapid growth 

and may be a result of delayed development of the droughted leaves.

In the barley experiment (Figure 7.5a), as the drought progressed, differences in 

LER were noticed earlier in the light period, such that significant (P<0.05) differences 

were detected on Day 5 for the period 1500-1900, Day 6 for 1100-1500, Day 7 for 

0700-1100 and not until Days 8, 10 and 11 for the dark period. A similar pattern was 

observed for maize (Figure 7.5b). Withholding water first had a significant (P<0.05) 

effect on LER of maize on Day 4 for the period 1500-1900, Day 5 for the period 0700- 

1100 and Day 6 for the period 1100-1500. By the end of the drying cycle, growth was 

progressively inhibited over the course of the day (Figure 7.5b). Growth was inhibited 

at night on Day 9, but only for leaf 5. This pattern of growth (inhibition of LER only 

during the day in the initial stages of soil drying with night-time reductions in LER 

occurring only later in the drying cycle) has been noted previously for field (Tardieu 

and Ben-Haj-Salah, 1995) and slowly-droughted cabinet-grown (Chu and McPherson, 

1977) plants. It is important to note the similarity between the diurnal patterns of leaf 

growth inhibition in the two experiments (Figure 7.5), which would seem to indicate 

that the same mechanisms of growth inhibition are involved.
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Figure 7.4: Time course of leaf elongation rate of leaf 3 (a), leaf 4 (b) and leaf 5 (c) in 
well-watered (O) and droughted ( • )  maize plants over a soil drying cycle. Solid bars 
on the time axis indicate the night periods. Points are means ± S.E. of 12 leaves.
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Figure 7.6 shows the daily (calculated for the 12 hour period 0700-1900) leaf

growth inhibition, lamina water relations and ABA relations for the barley experiment.

Daily leaf elongation declined by 37 % by the end of the experiment (Figure 7.6a).

Although IpL of droughted plants appeared to be more negative from Day 5, these

differences were significant (P<0.10) only on Day 8 (Figure 7.6b). Water relations data 

are absent for Day 9. The if/^ of droughted plants was significantly (P<0.10) reduced

on Days 6, 8 and 10 (Figure 7.6c). Due to compensatory changes in \\f^ and \\)n by

droughted plants, the turgor of droughted plants was not different (P>0.30) at any

stage in the drying cycle, except on Day 10, when droughted plants showed higher

turgor (Figure 7.6d). Presentation of such data as daily means obscures the diurnal

changes in lamina water relations which are noted in the field (Acevedo et al., 1979)

and which may (e.g. Chu and McPherson, 1977) or may not (e.g. Saab and Sharp,

1989) be detected in growth cabinet studies. In the early stages of the drying cycle 

(Days 5, 6), V|/l  and of droughted plants were not different from well-watered

plants in samples taken at 1300 but were significantly (P<0.05) reduced in samples 

taken at 1700 (n=3). However, these differences were not observed at any other stage 

in the experiment. Leaf ABA of droughted plants was significantly increased only on 

Day 10 (Figure 7.6e). An increase was also noted in the elongation zone on Day 10 at 

this time (Figure 7.6f), but this was not significant as there was a simultaneous increase 

in the [EZ-ABA] of well watered plants. There were no diurnal changes in leaf 2 

[ABA] (data not shown) or [EZ-ABA] (Table 7.1) in either watering regime. 

Consequently, the number of replicates for ABA analysis at each time of day was 

increased from 3 (barley) to 5 (maize).
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Figure 7.6: Time course of daily (calculated for the period 0700-1900) leaf elongation 
of droughted plants expressed as a percentage of well-watered controls (a); and of 
lamina water potential (V|/l) (h), lamina osmotic potential (c), lamina turgor (V|/p) 
(d), mature leaf ABA concentration (L-ABA) (e) and bulk elongation zone ABA 
concentration (EZ-ABA) (f) of well-watered (O) and droughted ( • )  barley plants over 
a soil drying cycle. Points are means ± S.E. of 12 (a) or 6 (b-f) measurements. In b-f, 3 
measurements per treatment were taken during each period 1100-1500 and 1500 
1900.
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Table 7.1. ABA concentration of the bulk elongation zone [EZ-ABA] of well-watered 
and droughted barley (Hordeum vidgare L. cv. Firefly) plants for two periods of the 
day: 1100-1500 and 1500-1900. Values are means ± S.E. of 3 replicate plants. 
Differences between periods were discriminated by Student's t-test in SPW 1.0. NS = 
not significant at P < 0.10.

Well-watered plants

Day [EZ-ABA] (ng / g DW)

1100- 1500 1500- 1900

Droughted plants 

P value [EZ-ABA] (ng / g DW) P value

1100- 1500 1500- 1900

8 115.7 ± 4.1 120.3
9 113.3 ±11.3 144.3
10 151.3 ±11.5 160.0

± 6.7 NS 136.0 ±
± 11.8 NS 106.0 ±
± 5.0 NS 161.3 ±

2.9 133.7 ± 3.5 NS
6.4 132.0 ± 14.7 NS

11.4 176.3 ±13.2 NS

Figure 7.7 shows the daily leaf growth inhibition, lamina water relations and 

ABA relations for the maize experiment. The growth data are similar to the barley 

experiment, with growth being inhibited by 35 % by the end of the drying cycle (Figure 

7.7a). Due to poor germination in the maize experiment, there were insufficient well- 

watered plants to allow collection of psychrometric and ABA data each day. To allow 

statistical comparisons between treatments, the data from well-watered maize plants, 

(sampled on 3 occasions) was combined (n=15) since ANOVA indicated no significant 

differences between measurement periods in either water or ABA relations. For maize, 

the only significant (P<0.10) differences in water relations were detected for V|/l  on the 

afternoon (1500-1900) of Day 7 (Figure 7.7b), and on the same day for both

measurement periods (1100-1500 and 1500-1900) (Figure 7.7c). The only significant 

(P<0.10) difference in lamina turgor was seen on Day 9, when water-stressed plants 

showed higher turgors (Figure 7.7d). Figure 7.7e shows that there was no consistent 

increase in the ABA content of the maize mature leaf In the elongation zone (Figure 

7.7f), ABA had apparently increased by the end of Day 6, but the changes were not 

significant (P<0.05) until Day 8.
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Figure 7.7: Time course of daily (calculated for the period 0700-1900) leaf elongation 
of droughted plants expressed as a percentage of well-watered controls (a); and of
lamina water potential (\|/l ) (b), lamina osmotic potential (\|/^) (c), lamina turgor (\|/p) 
(d), mature leaf ABA concentration (L-ABA) (e) and bulk elongation zone ABA 
concentration (EZ-ABA) (f) of well-watered (hollow symbols) and droughted (filled 
symbols) maize plants over a soil drying cycle. Measurements were taken during the 
periods 0700-1100 (V, T), 1100-1500 (O, • )  and 1500-1900 (□, ■). Points are 
means ± S.E. of 12 leaf elongation measurements (a), 5 water relations measurements 
(b-d) and 5-15 ABA determinations (e, f).
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droughted (filled symbols) maize plants over a soil drying cycle. Measurements were 
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Figure 7.8 shows the response of xylem sap pH in the maize experiment over 

the last 4 days of the drying cycle. There were no differences in pH between droughted 

and well-watered plants. In only one instance (Day 7) did sap pH in droughted plants 

increase (0.2 units) over the course of the day, which contradicts the characteristic 

diurnal variation regularly seen by Schurr and Schulze (1995) in intact well-watered 

and droughted plants of Ricinus communis.
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Plotting leaf elongation rate against [EZ-ABA] for the 2 experiments (Figure 

7.9) failed to produce any relationship between the two variables (cf. the data from the 

detached shoot system in Figure 6.2b). The greater inhibition of LER seen in the 

afternoon (1500-1900) measurements was not accompanied by increased [EZ-ABA] 

(half-filled symbols in Figure 7.9b). The fact that leaf elongation declined in the 

droughted plants without enhanced ABA accumulation indicated that the leaves were 

either responding to some other compound (although the data in Figure 6.2b negate 

this idea), or that the measurement techniques for determining [EZ-ABA] were not 

sufficiently precise to discriminate any differences, or that the ABA in the elongation 

zone of the droughted plants was more effective in inhibiting growth.

Figure 7.10 shows the relationship between elongation zone ABA and mature 

leaf ABA for the 2 experiments reported in this Section. In contrast to experiments 

where ABA was fed to detached shoots (Figure 5.8), there was no preferential 

accumulation of ABA in the elongation zone under the mild water stress treatments 

applied here.
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In contrast to the lack of relationship between LER and EZ-ABA, there were 

significant (P=0.075 for barley; P=0.021 for maize) linear relationships between LER 

VpL (Figure 7.11) in the two experiments, with LER decreasing in conjunction with 

VL- Data on LER were expressed as a percentage of well-watered plants to allow for 

changes in LER due to daily changes in temperature and developmental age of the 

plants in both experiments, and time of day in the maize experiment. It should be noted 

that the relationship in Figure 7.1 la was only significant when the data point from Day 

7, which appeared to be an anomalous point in Figure 7.6b, was excluded. It should be 

emphasised that the ij/l  data were collected from a different set of leaves (leaf 2) from 

those that were measured for LER (leaves 3, 4 or 5), and from different plants. It is 

assumed that the 1|/l  measurements would be representative of changes occurring in 

the plants on which LER was measured. It is likely that collection of data for paired 

determinations of 1|/l  and LER would have increased the scatter of points and 

weakened the significance of the regression.

In the maize experiment, data on LER and 1|/l  collected at two different times 

of the day (1100-1500 and 1500-1900) seemed to fit the one relationship (Figure 

7.11b). This normalisation of the LER data has previously been shown to allow a 

number of unique relationships between LER (in mm h"1) and vj/l , differing in the time 

of day at which measurements were taken, to fit the one relationship (Chu and 

McPherson, 1977). It is, however, unfortunate that only 3 comparisons between the 

two time periods are available for Figure 7.11b, precluding the possibility of testing 

whether the normalisation procedure for LER actually allowed the data to fit the one 

relationship.

It was interesting that the correlation between \ |/l  and LER seen in Figure 7.11 

was linear, as noted by Acevedo et a l (1971) for similar data. This contrasts with the 

more commonly found negative exponential relationship between I|/L and LER (Boyer,
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1970; Ludlow and Ng, 1976; Chu and McPherson, 1977; Squire et al., 1983) seen in 

droughted grasses.

There was no significant (P=0.59) relationship between LER and lamina turgor 

for the maize experiment (Figure 7.12b). However, in the barley experiment, a 

significant (P<0.05) relationship between LER and ipp (Figure 7.12a) was found, with 

turgor of droughted plants increasing as LER declined. It should be noted, however, 

that there are only a limited number of sample points, and the significance of this 

regression hinges on the points for Days 4 and 10; it is unlikely there would have been 

any significant relationship if these two points had been different. The direction of the 

relationship was at variance with similar relationships in the literature, which have 

shown LER to decrease as turgor decreases. It should be noted that most of these data 

have imposed a "drought” by altering the osmotic solution around the roots or rapidly 

droughting pot-grown plants (Hsiao et al., 1985), although some data have been 

obtained from the field (Squire et a l , 1983). An example from the literature, which 

paralleled the form of the relationship shown here, was the data of Jones (1985), who 

showed that over a 10 week period, unirrigated apple trees had higher water potentials 

than irrigated plants.

*

A similar pattern of soil water depletion was found in both experiments. Both 

experiments showed that gravimetric soil water content (0) did not vary significantly 

with time for any soil layer in the well-watered treatment. Figure 7.13 shows the 

changes in 0 over the course of the maize experiment. Initial 0 reductions occurred in 

the uppermost soil layer at Day 4, which is characteristic of drying experiments 

conducted in soil columns (Zhang and Davies, 1989a), and may reflect water use by a 

proliferation of surface roots. As the experiment progressed, 0 fell in all layers of the

soil.

153



100  -

90 -

80 -

70 -o■fcscoO
-oa>
a>■*-<

I

100  -

90 -

80 -

70 -

60 -

 , r

-0 .8  -0.7 -0.6 -0.5 -0.4 -0.3 -0 .2

LEAF WATER POTENTIAL (MPa)

Figure 7.11: Relationship between leaf elongation rate of droughted plants (expressed 
as a percentage of the well-watered controls) and the leaf water potential during the 
barley (a) and maize (b) soil drying experiments. Symbols refer to Days 4 (□), 5 (A), 6 
(V), 7 (O), 8 ( • ) , 9 (A) and 10 (▼) of a drying cycle. Half-filled symbols in (b) are 
for plants sampled between 1500-1900 while the filled or open symbols are for plants 
sampled between 1100-1500. Points are means ± S.E. of 12 elongation rates and 6 (a) 
or 5 (b) water potential determinations. Linear regression in (a) excludes data from 
Day 7, while linear regression in (b) includes data from measurements taken from both 
1100 to 1500 and 1500 to 1900. Linear regressions are LER % = 152.4 + I27.5v|/L ; 
r2=0.71 for (a) and LER % = 128.1 + 1 19.3V|/l; r2=0.56 for (b).
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(expressed as a percentage of the well-watered controls) and the lamina turgor (V|/p) 
during the barley (a) and maize (b) soil drying experiments. Symbols refer to Days 4 
(□), 5 (A), 6 (V), 7 (O), 8 ( • ) ,  9 (A) and 10 (T) of a drying cycle. Half-filled 
symbols in (b) are for plants sampled between 1500 to 1900 while the filled and open 
symbols are for plants sampled between 1100 to 1500. Values are means ± S.E. of 12 
elongation rates and 6 (a) or 5 (b) turgor determinations. Linear regression in (a) 
excludes data from Day 7 (to maintain consistency with Figure 7.1 la) and is described 
by LER % = 167 - 83l|/p; r2=0.84. There was no significant relationship between LER

and l}/p in (b).
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Table 7.2 compares the different parameters measured in these drying 

experiments to show when significant treatment differences were detected. In 

determining the importance of any changes, it is necessary to compare the average 

coefficient of variation (cv%) for the different measurements (Table 7.3) to gauge 

some likelihood of treatment differences being detected for different parameters.
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Table 7.2. Time series of changes in soil and plant parameters measured in soil drying 
experiments with barley and maize.

Parameter
Day on which significant (P<0.05) treatment differences seen

Barley Maize

Leaf Growth - Day 
Leaf Growth - Night 
Leaf Water Potential (vjyj)  
Leaf Solute Potential 
Lamina Turgor 
Soil Water Content (0) 
Elongation Zone [ABA] 
Mature Leaf [ABA]

5(1500-1900)
8
5 (1500-1900), 8 (all data)
5 (1500-1900), 6 (all data) 
No Change
6 (possibly 5 -unmeasured) 
No Change
10

4(1500-1900)
9
7 (not sustained)
6 (not sustained)
No Change 
4
8
7 (not sustained)

In both experiments, leaf growth was amongst the first parameters to differ, 

which was accompanied by changes in the water content of the upper layers of the soil 

profile in the maize experiment (the soil sampling regime for the barley experiment 

precluded identification of synchrony of changes). The timing of changes in water 

relations varied between experiments. In both cases, ip^ appeared to be a more 

sensitive indicator of soil drying than leaf water potential. Changes in ip^ apparently 

compensated for any reductions in ipL such that lamina turgor did not change in either 

experiment. Changes of ABA concentration in the elongation zone and mature leaves 

also appeared to be poor indicators of soil drying, as these occurred 3-5 days after the 

onset of leaf growth inhibition.

In the barley experiment, it was impossible to evaluate the relative importance

of soil water content and changes in leaf water relations in influencing leaf growth; 

since the transient reductions in IpL on afternoons that leaf growth was

first inhibited were unaccompanied by measurements of soil water content. It is 

surprising that reductions in IpL and vp  ̂ were detected then, as much greater

reductions in leaf growth were unaccompanied by perturbed water relations. The 

uncertainty over the detection of water relations in the barley experiment was
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compounded by the need to combine data from two measurement periods to increase 

replication for statistical comparisons, and the greater cv% associated with water 

relations measurements (Table 7.3). In an attempt to remedy this situation, water 

relations variables in the maize experiment were sampled using a greater number of 

replicates at each observation period, precluding the need for pooled data.

In the maize experiment, leaf growth reductions preceded changes in lamina 

water relations by 2 days. Leaf growth was inhibited at the same time that changes in 

soil water content were detected, apparently indicating the regulation of growth by 

chemical signals. As noted previously, the similarity between the diel patterns of leaf 

growth inhibition in the two experiments (Figure 7.5) suggests that the same 

mechanisms of growth inhibition are involved.

Table 7.3: Average coefficient of variation for soil and plant parameters of well- 
watered and draughted soil columns during the maize soil drying experiment. Values 
are means ± S.E. of the number of observation periods shown in parentheses. The n 
value refers to the number of replicates taken at one observation period.

Parameter

Leaf Elongation Rate 
Leaf Water Potential 
Leaf Osmotic Potential 
Lamina Turgor 
Soil Water Content 
Elongation Zone [ABA] 
Mature Leaf [ABA]

Coefficient of variation (cv%) 
W^ll-watered Draughted

12.2 ± 1.4 (8) n=12
31.0 ±5.1 (3) n=5 
11.5 ± 3.5 (3) n=5
19.4 ± 1.0 (3) n=5
9.1 ± 1.1 (8) n=4

22.5 ±6.6 (3) n=5 
10.7 ± 4.5 (3) n=5

16.2 ± 1.8(8) n=12
28.0 ± 4.8 (8) n=5 
10.9 ± 2.3 (8) n=5
18.1 ±2.5 (8) n=5
11.2 ± 1.2 (12) n=4
21.3 ±5.5 (6) n=5
22.6 ± 4.5 (6) n=5

Observation periods

leaf 4, Days 4, 5 
All periods. Fig 7.7b 
All periods. Fig 7.7c 
All periods. Fig 7.7d 
All depths, Fig 7.13 
All periods. Fig 7.7f 
All periods. Fig 7.7e
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It is important to note that the cv% of different parameters will vary over the 

course of a drying cycle, and that the data presented in Table 7.3 are averages. This is 

especially the case for leaf growth, where plant-to-plant differences in the timing of the 

cessation of leaf growth resulted in a doubling of the measured cv% (data not shown). 

However, measurement of ail expanding leaves (Figure 7.4) ensured that one leaf was 

always in the period of rapid expansion, thus reducing the cv%. This technique ensured 

that there was roughly equal likelihood of detecting changes in leaf growth, soil water 

content and \\fK (Table 7.3). Changes in \|/l, lamina turgor and ABA concentrations

were more difficult to detect due to inherent variability in their measurement. The 

difference in cv% between ij/l and Vtc (Table 7.3) is probably responsible for \\JK

being considered a more sensitive indicator of soil drying than 1{/l or turgor (Gallardo 

et al., 1994; Auge et al., 1995). Therefore, when determining on a time course basis 

(disregarding any underlying physiological reasons) whether soil or plant variables 

controlled growth, the most valid comparison would be between soil water content and 

IpTC. Comparisons using lamina turgor and \ |/ l  are prejudiced by the higher cv% of V|/l. 

Comparing the time course of \\fn and 0 (Table 7.2), it is apparent that 0 changed 2 

days before V|Jn in the maize experiment.

It is unfortunate that measurements of stomatal conductance (gs) were not 

attempted in these experiments for comparison of the time course of changes. Leaf 

growth is usually considered to be more sensitive than gs to soil drying (Hsiao, 1973, 

Passioura, 1988a; Saab and Sharp, 1989; Auge et a l , 1994; Ebel et a l , 1994), 

although contradictions can occur (Auge et al., 1995). Table 7.4 compares data from 

two other soil drying experiments with maize where gs was measured. The cv% data 

from these two maize experiments seem consistent with those described earlier for leaf 

growth (Table 7.3) and in the literature for gs (25-35 % - Zhang and Davies, 1990a) 

Comparison of the cv% data shows that it is more likely for differences in leaf growth 

to be detected before changes in gs. In cases where chemical signalling is suspected, 

this statistical anomaly may explain why leaf growth is inhibited prior to gs, when there
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appears to be no difference in transpiration and leaf growth responses to ABA over a 

wide temperature range (Figure 4.6).

Table 7.4: Average coefficient of variation for plant parameters of well-watered and 
droughted plants during two other maize soil drying experiments. Values are means ± 
S.E. of the number of observation periods shown in parentheses. Only the initial stages 
of soil drying were considered in each experiment. The n value refers to the number of
replicates taken at one observation period.

Experiment Treatment Coefficient of Variation (%)
gs LER

Greenhouse Well-watered 16.4 ±3.9 (3), n=8 10.3 ± 2.5 (3), n=12
Droughted 31.2 ± 4.9 (3), n=8 12.8 ±6.1 (3),n-12

Growth Cabinet Well-watered 33.7 + 4.3 (5), n=8 16.7 ± 2.0 (5), n=12
Droughted 41.7 ±6.8 (5), n=8 24.3 ±4.1 (5), n=12

7.3.4 DISCUSSION

Table 7.5 attempts to compare the experiments described here with others 

reported in the literature. Comparisons between drying experiments are difficult to 

make due to differences in the lag period, rate, duration and intensity of soil drying. 

The lag period refers to the number of days after the initiation of soil drying that the 

first significant effects on plant performance (in this case leaf growth) are detected. 

Although the rate of soil drying can be measured by the decay of pre-dawn water 

potential expressed in MPa day"^(e.g. Wilson and Ludlow, 1983, Toft et al., 1987), 

not all investigators have measured this parameter. Comparison of water potential 

measurements between experiments can be difficult due to differences in the timing of 

water relations measurements. For this reason, the rates of soil drying in the 

experiments were expressed as the decay of leaf elongation expressed on a
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LER/o day  ̂ basis. Duration refers to the number of days since the previous watering. 

Unless the investigator is interested in the recovery of plants from drought or the 

survival of tillers in a prolonged drought, the imposition of drought will only proceed 

until leaf growth stops. In the experiments described in this Section, the aim was to 

impose a mild (sensu Hsiao, 1973 where a mild stress is defined as one which decreases 

\PL by up to 0.3 MPa) soil drying treatment, as it is under these conditions that 

chemical signalling is likely to be of most importance. Intensity refers to the magnitude 

of stress imposed, usually measured by the minimum leaf water potential obtained. 

Examination of Table 7.5 shows that the maize and barley experiments (unlike many 

reports) have imposed a slowly developing drought of mild intensity which is likely to 

simulate field conditions in the initial stages of drought. It is only by imposing a 

realistic drying regime that it is possible to elucidate mechanisms which may operate in 

the field.

Many experiments fail to simulate a realistic drought by employing an 

unsuitable combination of plant size (actually transpiring leaf area, since this determines 

water loss), pot size (determining available water) and environmental conditions (high 

VPDs can promote rapid soil drying). Only experience can help in the design of an 

appropriate system in which to impose a drought; although the provision of a drainpipe 

of adequate length to allow normal root development would seem to be essential. Pots 

mimic the field situation of certain duplex soils, where a shallow layer of arable soil 

overlays an impenetrable clay bamer. In such situations, there is a proliferation of roots 

in the upper profile (or pot), and the root system simply uses water from the limited 

depth of soil until the water is exhausted. Under such conditions, there is likely to be a 

long lag period of normal growth followed by rapid growth reductions. In such cases, 

hydraulic signalling is likely to be important in controlling plant response. Adaptive 

responses such as the control of water loss by chemical signals would have less time to 

operate effectively in such rapidly drying soils (pots).
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It was fortunate that a slow rate of drying was imposed in the maize and barley 

experiments. Detection of a chemical signal is often dependent on the rate of soil 

drying as determined by pot size (cf. Henson et al., 1989 vs. Blum et a l , 1991) and the 

intensity of stress (Ebel et al. , 1994). An inappropriate stress intensity can result in a 

hydraulic signal occurring, or failure to detect any changes in plant parameters (see 

certain experiments in Saab and Sharp, 1989; Ebel et al., 1994). If an experiment 

progresses long enough, changes in hydraulic parameters may interact with a chemical 

signal.

Therefore in attempting to explain the leaf growth inhibition seen in these 

experiments, the role of chemical and hydraulic messages should be taken into account. 

Initial growth reductions of droughted plants were observed solely during the day, as 

observed in field crops of maize (Tardieu and Ben-Haj-Salah, 1995) and slowly 

droughted pot-grown prairie grass (Chu and McPherson, 1977). It is thus tempting to 

speculate that the message was purely hydraulic, with enhanced turgor of the growing 

celfc at night being responsible for growth recovery. Despite apparently convincing 

relationships between leaf elongation rate and leaf water potential (V(/l ) in droughted 

plants (Figure 7.11) over a small V|/l  range (0.2 MPa), there was either no relationship 

(Figure 7.12b), or a positive,one (Figure 7.12a) between LER and lamina turgor. Since 

turgor is usually considered to be the driving force for cell growth, it is difficult to 

argue for a purely hydraulic control of LER.

The unlikelihood of IPl regulating LER is reinforced by the fact that well- 

watered plants can show a much greater variation in 1|/l (than the 0.2 MPa shown in 

Figure 7.11) with no change in LER (McCree and Davis, 1974; Chu and McPherson, 

1977). It is thus difficult to argue that V|/l Per se has a controlling role in leaf growth, 

especially in the case of the data presented here, when LER and V|/l were not measured 

on the same leaves or even on the same plants ! It is also difficult to maintain a case for 

lj/L as this was measured on cells that are not actually elongating. It has been
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frequently demonstrated that the elongating regions of the leaf can maintain turgor 

while the lamina shows reduced VJ/L and turgor (Michelena and Boyer, 1982; Westgate 

and Boyer, 1984).

However, it is known that growth is dependent on the transfer of water from 

the supplying tissue (xylem) to elongating cells and the maintenance of a (growth- 

induced) water potential gradient between the two tissues (recently elegantly 

demonstrated by Nonami and Boyer, 1993). If the water potential of the xylem were to 

decrease during the afternoon, the supply of water to the elongating cells would be 

disrupted and growth would decline. Such a mechanism may account for the daily 

variation in leaf growth inhibition. It would be difficult to test this possibility 

experimentally as transpiration-induced water potentials during the day would mask 

any growth-induced water potentials, which can only be detected at night (Westgate 

and Boyer, 1984).

Despite the attraction of this hypothesis (the disruption of the growth-induced 

water potential), droughted plants show a reduction in growth even when the water 

potential of the xylem is maintained at atmospheric pressure by pressurising the roots 

(Passioura, 1988a). Pressurised and unpressurised droughted plants show a very similar 

pattern of daily growth reduction over a drying cycle in which growth was reduced by 

up to 50 % in unpressurised plants (Passioura, 1988a), which seems to indicate both 

the existence and potency of root-supplied chemical signals.

The diurnal variation of leaf growth inhibition (Figure 7.5) may be accounted 

for by a chemical message being generated by the surface roots in drying soil (Figure 

7.13) during the day and being transmitted to the shoots. At night, these surface roots 

may be re-hydrated by transfer of water from deeper, well-hydrated roots, so-called 

"hydraulic lift" (Richards and Caldwell, 1987). However, it was not possible to detect 

an ABA message (as accumulation in the leaf elongation zone) despite leaf growth
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reductions of 37% (barley) and 35% (maize) at the end of the experiment. This may be 

a consequence of sampling leaf (or EZ) tissue, since tissue measurements of ABA are 

much less sensitive than measurement of xylem sap (Zhang and Davies, 1989b; 1990a). 

Unfortunately, it was not possible to extract xylem sap from the barley plants in this 

study using the pressure bomb. The sap samples obtained from the fourth leaf of maize 

plants (only after Day 6 when LER had already dropped by 18 %) were not of 

sufficient volume to allow quantification by the RLA used in Section 5.2.2.3. Collection 

of xylem sap samples by root exudation wasn't feasible since the crown was destroyed 

in sampling the bulk EZ. The existence of a chemical message in droughted maize 

plants was suggested by an increase (relative to control plants) in the ABA 

concentration of the guttation fluid on Day 9 (data not shown).

Another possibility for the inability of bulk [EZ-ABA] to explain leaf growth 

inhibition is that epidermal ABA concentration of expanding leaves may be the 

controlling variable. It has been established that the epidermis is frequently the limiting 

factor for growing tissues (Kutschera, 1992) and epidermal ABA concentration may 

mediate this inhibition. Until it is possible to sample the epidermis of 

monocotyledenous leaves, this question cannot be resolved.

From these experiments, it is difficult to argue that either a hydraulic message 

or an ABA message is controlling the growth rate of the droughted plants. It seems 

that the measurement techniques employed in this study were not sufficiently sensitive 

to enable the detection of possible controlling variables such as growth-induced water 

potential and xylem (or epidermal) ABA concentrations.
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Other possible explanations which may explain the growth inhibition seen in 

these experiments include:

1. that drying-induced changes in xylem pH can have a direct effect on growth (Van 

Volkenburgh and Boyer, 1985) or redistribute ABA to the sites of action (Hartung et 

a l, 1988). These two possibilities would be difficult to distinguish experimentally.

2. that ionic changes in the xylem sap can alter the sensitivity to ABA (Schurr et a l,

1992)

3. that other compounds with growth inhibitory activity are involved (Munns, 1992).

With reference to pH, it must be noted that the xylem can be an extremely well- 

buffered system (Gollan et al, 1992) and pH is unlikely to be greatly affected by the 

early stages of soil drying seen in these experiments. Although a line was fitted by eye 

to describe the relationship between sunflower xylem pH and 9 , the large scatter of 

points in the relationship between pH and 9 makes it difficult to accept that xylem pH 

can directly control stomata (Gollan et a l, 1992). This data is supported by the 

observation that a 35 % reduction in daily maize leaf growth rate was not accompanied 

by any increase in xylem sap pH (Figure 7.8). Such data also support the findings of 

studies using the leaf elongation assay (Figure 2.6).

Greatly different sensitivity of gs to soil drying (and xylem [ABA] ) in 

sunflower seemed to be correlated to differences in the ionic composition of the sap 

(Schurr et a l, 1992). It is unlikely that any potential nutrient x ABA interaction was 

inhibiting leaf growth in this study, since no corroborating evidence could be found 

with bioassay studies (Section 2.3.1). The interaction found by Schurr et a l (1992) 

was characterised by large differences in g§ between plants, which would have 

produced a large cv% (characteristic of many studies investigating the effect of soil 

drying on stomatal behaviour). The relative uniformity of the leaf growth inhibitions 

(cv% < 20 %) detected in the drying experiments suggests that the plants were either 

uniformly sensitive to any potential nutrient x ABA interaction, or that it did not exist.
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The results of Figure 6.2b show no compelling evidence for the existence of 

other growth inhibitory compounds in maize sap.

A further possibility is that leaf growth inhibition may be caused by an 

interaction of chemical and hydraulic factors, as suggested by Sharp and Davies 

(1989). Such an interaction can influence stomatal behaviour in the field (Tardieu and 

Davies, 1992). The possibility that such an interaction affects growth is considered in 

Chapter 8.
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CHAPTER 8.

USE OF A COLEOPTTLE ASSAY TO INVESTIGATE THE INTERACTION 

OF ABA AND WATER POTENTIAL ON GROWTH

8.1 INTRODUCTION

The previous chapter demonstrated the apparent failure of changes in 

elongation zone ABA concentration to account for drought-induced changes in leaf 

elongation rate. Although there was a clear relationship between [EZ-ABA] and LER 

in the detached shoot system, droughted plants showed a substantial inhibition of leaf 

elongation in the absence of increased ABA concentration. Measurement of plant water 

relations similarly failed to account for changes in the growth of droughted plants. One 

explanation for the declines in leaf growth may be an interaction between ABA and 

water potential occurring across ranges which were not detectable using the 

measurement techniques used in Chapter 7.

Stomatal research has indicated the presence of a \ |/ l  x ABA interaction in 3 

systems. Tardieu and Davies (1992) applied the Commelina epidermal strip bioassay 

using a range of ABA concentrations and osmotica (PEG solutions). The sensitivity of 

stomatal aperture to ABA was found to increase as the osmotic potential of the 

incubation medium fell from -0.3 MPa to -1.5 MPa. These experiments corroborated 

field data, which showed that the response of maize stomatal conductance to ABA was 

dependent on the water potential of the leaf (Tardieu and Davies, 1992; Tardieu et al.,

1993). Inclusion of such an interaction term was essential in modelling stomatal 

conductance in the field, as purely chemical or purely hydraulic control of stomata did 

not provide sensible (as obtained in the field) information (Tardieu and Davies, 1993). 

Further evidence of a \ |/ l  x ABA interaction has been provided by Trejo and Davies 

 ̂1994) who generated a tension in the xylem of detached Phaseolus shoots in a 

transpiration bioassay by attaching a j0 cm long capillary tube to the base of the
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shoots. Shoots which drew water through this tube showed a more rapid initial 

response to ABA. However, the existence of an V | x  ABA interaction is not 

ubiquitous. Data from field and growth cabinet studies and from transpiration bioassays 

on sunflower failed to show the interaction found in maize (Tardieu et al., 1996).

Choice of a model system in which to investigate a potential 1|/l  x ABA 

interaction affecting growth was between the capillary tubing experiment, or incubating 

coleoptiles in ABA and osmotic solutions. The coleoptile system was chosen as it is 

easily reproducible, less technically demanding, and it allowed comparison with the 

wealth of information attained with this system in the study of coleoptile growth 

responses to indoleacetic acid (IAA). It is worth reviewing the growth of excised 

coleoptiles, to assist in interpretation of the results presented in this chapter.

Coleoptile growth is assumed to be under control of endogenous IAA levels, as 

indicated by Went's classic experiment that showed exogenous IAA could substitute 

for the tip, the assumed site of IAA synthesis, (Went and Thimann, 1937) in allowing 

coleoptile growth. However, an alternative explanation is provided by Trewavas 

(1981), who considers that a concentration of IAA in the tip is due to diffusion from 

the endosperm. In processing coleoptiles for experiments, the IAA-producing tip is 

routinely decapitated then the isolated coleoptiles are usually floated on distilled water 

until sufficient are accumulated for experimentation. In the 30 minutes following tip 

decapitation, there is a transient burst of elongation. This may not be seen by workers 

who float coleoptiles on distilled water for an hour before experimental use. Following 

this burst, growth slows for 75 minutes, the "latent period", and is resumed with 

another transient burst of elongation lasting 30-120 minutes, after which a steady rate 

of growth is maintained for hours (at least 6 in maize coleoptiles - Evans and Schmitt, 

1975; Kutschera and Schopfer, 1985) the "spontaneous growth response". Although 

some studies have shown that the "spontaneous growth response" can be strongly 

gravity-dependent (e.g. Evans and Schmitt, 1975), comparable growth shown by
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coleoptiles floated on solutions in Petri dishes (e.g. Pope, 1993) suggests that the same 

mechanisms are involved. In the absence of absorbable solutes in the incubation 

solution, the spontaneous growth response eventually declines due to insufficient solute 

uptake to maintain turgor (Oertli, 1975). In maize coleoptiles maintained in distilled 

water, this decline occurs 6 hours after excision (Kutschera and Schopfer, 1985). 

Although the length of time of each phase varies between species (Macdowall and 

Sirois, 1977), the time scale above is given for wheat (Macdowall and Sirois, 1976), 

the principal species used in this Chapter.

The initial burst of elongation is thought to represent the response of the 

coleoptile to residual IAA in the section (Evans and Schmitt, 1975). The second burst 

of elongation is thought to represent resumed IAA synthesis in the section (Went and 

Thimann, 1937; Evans and Schmitt, 1975; Weiler et al., 1981). The growth rate of 

excised coleoptiles in the steady phase of elongation is reduced by 37 % compared to 

intact ones (Kutschera and Schopfer, 1985).

A treatment which affects growth may either delay the resumption of normal 

growth (increasing the latent period) or change the steady growth rate. The latent 

period varies from 15 to 45 minutes across an IAA concentration range of 10"7 to 

lO^M (Macdowall and Sirois, 1977). Calculation of coleoptile length after 6 hours 

(using the growth rates determined by Macdowall and Sirois (1977) for each phase of 

coleoptile growth) shows a growth reduction of only 8 % attributed to a longer latent 

period. Given this relatively small variation in coleoptile length due to latent period 

effects for such a large difference in hormone concentration, it is assumed that the 

coleoptile length measured at a single point in time in this study reflects differences in 

the spontaneous growth rate.

In applying a treatment to coleoptiles, there is the concern that the tissue will 

only take up the hormone of interest slowly since the cuticle forms a barrier.
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Macdowall and Sirois (1977) present indirect evidence that IAA penetration into 

coleoptiles is a statistical function of diffusive entry through cut segments. Thus some 

investigators have peeled epidermal strips off coleoptiles (Rayle, 1973) or abraded their 

surface (Evans and Vesper, 1980) to improve hormone penetration. Abrasion to 

remove the cuticle usually only exposes a minority of cells to the outside solution, 

which complicates interpretation of the physiological response, since the response 

integrates the growth of cells protected by the cuticle and those open to the external 

solution (Rayle and Cleland, 1992). Abrasion also physically damages the coleoptiles, 

which may reduce growth rates by about 30 % compared to non-abraded controls 

(Kutschera and Schopfer, 1985). Peeling coleoptiles is technically demanding, and 

there is a risk of damaging the tissue. For these reasons, neither peeling nor abrasion 

were applied to coleoptiles in this study.

8.2 MATERIALS AND METHODS

Wheat (Triticum aestivum cv. Tonic) or maize (Zea mays cv. Earliking) seeds 

were soaked in water for 3 hours, then planted in a tray filled with wet vermiculite. The 

tray was covered with aluminium foil to exclude light, placed in a plastic bag and 

placed in a dark room at 25°C. After 3 days, when the coleoptiles were 10-35 mm 

long, sections were prepared with a 3 bladed cutting device with razors mounted 3 mm 

and 6 mm apart. The apical 3 mm segments were discarded, while the 6 mm segments 

were floated on deionised water until {circa 1 hour later) sufficient coleoptiles were 

available to allow 10 treatments with at least 10 coleoptiles each. No abrasive or 

peeling treatments were performed since both treatments can cause potential problems 

as outlined in Section 8.1 (Rayle and Cleland, 1992). The primary leaf was not 

removed. All preparation was performed under a green safe light.

Randomly selected coleoptiles (between 10 and 18 per treatment) were 

transferred to Petri dishes containing 25 mL of treatment solution. Air was bubbled
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through the solutions to maintain aeration. After 6 hours growth in the dark, the 

coleoptiles were measured with an eyepiece graticule to the nearest 0.1 mm. Six hours 

was chosen as the incubation time since previous studies have shown a steady 

elongation rate at this time in wheat (Macdowall and Sirois, 1976) and maize 

(Kutschera and Schopfer, 1985) coleoptiles, which may (Kutschera and Schopfer, 

1985) or may not (Macdowall and Sirois, 1976) be followed by a deceleration of 

growth rate in the next hour. A short incubation time also prevents the occurrence of 

secondary growth responses to the applied treatments (Pope, 1993). Measurement of 

all treatments took an hour.

Following measurement, all coleoptiles in each Petri dish were washed in 

deionised water for 5 seconds to remove any incubation solution adhering to the 

surface, blotted dry and placed in Eppendorfs over ice. The Eppendorfs were then 

frozen at -20°C and stored for subsequent ABA determination using the 

radioimmunoassay in Section 5.2.2.3 (Quarrie etal., 1988).

Solutions of PEG 10 000, mannitol and KC1 were made up in deionised water. 

The pH of these solutions was not adjusted. Experiments investigating the effect of pH 

on growth used the buffer MES (2-[N-morpholino] ethanesulphonic acid) adjusted to 

the appropriate pH by the dropwise addition of 1M KOH. A stock solution of 10~2M 

IAA was made by initially dissolving the IAA in ethanol. Once soluble, the solution 

was made up in deionised water.

The osmotic potential (V|/TC) of these solutions was determined

psychrometrically with Wescor C-52 chambers. Data on coleoptile growth are 

presented graphically as a function of solute concentration since there was considerable 

uncertainty in the determination of \\fK at high vjJn . Figure 8.1 shows the measured

values of plotted against various known solute concentrations.
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Figure 8.1: Osmotic potential determined psychrometrically plotted against solute 
concentration in mM for mannitol (O) and KC1 (•) , and PEG (■) concentration in 
g/L. Points are means ± S.E. of 2-4 psychrometric determinations. Lines are linear 
regressions fitted in SPW 1.0.

Each experiment was repeated on at least 2 occasions. The presented Figures 

combine data from the two or more experiments. Analyses of variance were performed 

using the general linear model function (to allow for unbalanced replication) in 

MINITAB 10.2 for Windows (MTNTTAB Inc, PA USA). Sample ANOVA tables for
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each section can be found in Appendix 2. Means were discriminated using unpaired t- 

tests in SPW 1.0.

8.3 RESULTS

8.3.1 Responses of maize and wheat coleoptiles to ABA and PEG applied 

separately

These experiments were necessary to establish the influence of a range of ABA 

and PEG concentrations on coleoptile growth. Wheat coleoptiles placed on deionised 

water grew to an average length of 7.17 mm after 6 hours (Figure 8.2a), or 20 % of 

their original length; while maize coleoptiles grew to an average length of 6.55 mm, or 

9 % of their starting length. This compares with other published reports of elongation 

of unpeeled or unabraded coleoptiles in the absence of externally supplied IAA at 25 °C 

(19 % for maize, Kutschera and Schopfer, 1985; 10-15 % for wheat, Macdowall and 

Sirois, 1977; 10 % for Avena; Hasegawa et a l , 1992; 5 % for Avena, Cleland, 1992). 

While the elongation of wheat coleoptiles compared favourably with other species, the 

maize growth was much less>than expected.

Only PEG at concentrations greater than 60g/L (\\fK = -0.08 MPa) significantly 

(P<0.10) inhibited maize and wheat coleoptile growth (see Figure 8.2a), with growth 

reductions of 12 %, 13 % and 39 % at PEG concentrations of 60, 80 and 100 g/L 

respectively in wheat and reductions of 23 %, 42 % and 56 % in maize. It is difficult to 

compare these data directly with other studies, since these have favoured PEGs of a 

lower molecular weight (e.g. Hohl and Schopfer, 1991). There was no difference 

between wheat and maize in their response to PEG, as indicated by a non-significant 

(P>0.10) species x PEG interaction.

174



Figure 8.2b shows that 10*^M ABA had no significant (P>0.10) effect on either 

wheat or maize coleoptile growth. All higher concentrations were found to depress 

growth, with growth inhibitions of 40 %, 50 % and 78 % for ABA concentrations of 

5x10*7 10*6 ^  io-5m  respectively in wheat, and inhibitions of 15 %, 28 % and 44 

% in maize. There was a significant (P<0.001) species x ABA interaction.

The finding that 10'^ABA had no effect on wheat or maize coleoptile growth 

contradicts previous reports that 10“?M ABA reduced coleoptile growth by 30 % in 

wheat (Wright, 1969) and 32 % and 67 % in wheat and oat respectively (McWha and 

Jackson, 1976). However, the response of coleoptile growth to ABA is variable 

between days, as indicated by the highly significant (P<0.01) Experiment x ABA 

interaction for wheat in the two experiments performed. Certainly, later experiments 

(e.g. Figure 8.9) show a significant effect of 10'^M ABA on wheat coleoptile growth.

8.3.2 Responses of wheat coleoptiles to KC1 and mannitol applied separately

Since wheat showed greater growth under the assay conditions, it was chosen 

for further studies. It was decided to expose wheat coleoptiles to other osmotica. 

Mannitol was chosen as it was thought necessary to confirm any PEG responses with a 

similar non-ionic osmoticum; even though mannitol is taken up by coleoptiles and thus 

coleoptiles do no behave as ideal osmometers in the presence of mannitol (Hohl and 

Schopfer, 1991). KC1 was chosen as an ionic osmoticum as it was hoped to further 

investigate, using the coleoptile growth assay, the observation that high (50 mM) 

concentrations of KC1 can overcome the inhibitory effect of ABA on (leaf disc) growth 

(Van Volkenburgh and Davies, 1983).
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Figure 8.2: Segment length of wheat (■) and maize (A) coleoptiles after 6 hours 
growth in solutions of PEG (a) and ABA (b) at various concentrations made up in 
deionised water. Points are means ± S.E. of 17-25 coleoptiles from 2 separate 
experiments. Lines are in (a) are second order regressions fitted in SPW 1.0.

176



Both mannitol and KC1 had highly significant (P<0.001) effects on coleoptile

growth in the range 0-100 mM. Figure 8.3 shows inhibitory effects of mannitol and 

KC1 at concentrations of 60 mM (if/^ = -0.020 MPa) and 10 mM (\\in = -0.068 MPa)

respectively. Comparison of the 2 solutes at the same osmotic potential (e.g. 10 mM 

KC1 vs. 40 mM mannitol at l{/  ̂ = -0.13 MPa) shows that growth was much more

sensitive to the ionic osmoticum, which precluded any further investigation of the 

interaction between KC1 and ABA. The extreme sensitivity of coleoptiles to KC1 was 

surprising. Although transient reductions in coleoptile growth in response to 30 mM 

KC1 have been observed previously (Oertli, 1975; Stevenson and Cleland, 1981), 

presumably due to a reduction in turgor pressure, longer term (22 hours) studies 

showed that 30 to 50 mM KC1 was optimal for growth (Stevenson and Cleland, 1981), 

with growth being promoted relative to 0 mM KC1 controls. This growth promotion 

may be explained in terms of continued solute uptake (of KC1) being necessary for 

long-term growth. Thus the dose-response curve for an ionic osmoticum such as KC1 

will depend on the duration of growth, with short-term studies showing growth 

reductions, and longer-term studies showing growth promotion. Although Oertli's 

(1975) study of Avena coleoptiles showed that after 6 hours, 30 mM KC1 promoted 

growth (and inhibited growth relative to distilled water controls up to 6 hours), one 

can only conclude from the.KCl data in Figure 8.3 that the wheat coleoptiles hadn't 

adapted to their new osmotic environment.

Mannitol at concentrations of 60, 80 and 100 mM inhibited growth by 21 %, 32 

% and 30 % respectively. This is slightly more sensitive than described by Cleland 

(1959), who found that incubation of Avena coleoptiles in 50 and 100 mM mannitol (in 

the absence of IAA) reduced growth after 4 hours by 9 % and 20 % respectively.

Comparison of coleoptile growth in the 2 non-ionic solutes at the same osmotic

potential revealed inconsistencies. Growth was more inhibited by 20 mM mannitol than 

40 g/L PEG (\\JK = -0.055 MPa) yet growth was more inhibited by 100 g/L PEG than
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40 mM mannitol (V|JK -  -0.125 MPa). However, the results are not strictly comparable 

since the sets of experiments were performed on different sets of coleoptiles. Studies

on cucumber hypocotyl elongation showed a greater inhibition of growth by PEG 6000 

than mannitol at the same \|/TC (Michel, 1970).
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Figure 8.3: Segment length of wheat coleoptiles after 6 hours growth in solutions of 
mannitol ( • )  or KC1 (O) at various concentrations made up in deionised water. Points 
are means ± S.E. of 20-29 coleoptiles from 2 separate experiments.
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8.3.3 Responses of wheat coleoptiles to ABA and osmoticum applied together

It was decided to apply the two agents (ABA and PEG or ABA and mannitol) 

together in a concentration range where the individual agents had no effect on growth. 

Figure 8.4a confirms that PEG concentrations up to 40 g/L in deionised water had no 

effect on coleoptile growth, as indicated by the non-significant (P>0.10) main effect of 

PEG in the ANOVA. Although 10~7M ABA in deionised water did not reduce growth, 

ABA inhibited growth by 16 %, 14 %, 26 % and 32 % at PEG concentrations of 5, 10, 

20 and 40 g/L respectively. The bulk of this response took place between 0 and 10 g/L 

(Wn = -° .011 MPa), which indicates the extreme sensitivity of growth to the highly

significant (P<0.001) PEG x ABA interaction. The interactions of Experiment x ABA, 

Experiment x PEG and Experiment x ABA x PEG were all non significant (P>0.10).

This interaction was confirmed applying a broader range of \\JKs using mannitol 

(Figure 8.4b). In contrast to PEG, there was a highly significant (P<0.001) main effect 

of mannitol, with growth being reduced by a relatively uniform 13 % at concentrations 

of 5 mM or higher. This differed from the results of Figure 8.3, where mannitol had no 

inhibitory effects up to 60 mM. Although 10“7M ABA did not significantly (P>0.10) 

inhibit growth at mannitol concentrations up to 10 mM, it reduced growth by 20.5 % 

and 17.3 % at 20 and 40 mM mannitol respectively. Consequently, there was a highly 

significant (P<0.01) mannitol x ABA interaction.

A possible explanation for the increased effectiveness of ABA in inhibiting 

growth at higher osmoticum concentrations may be that more ABA accumulated in the 

tissue. This was not found, as all ABA-treated coleoptiles had the same bulk ABA 

content (Table 8.1), as indicated by the non-significant (P>0.10) osmoticum x ABA 

interaction for both PEG and mannitol when the data on tissue ABA content were 

subjected to ANOVA.

179



7.6

E
E, 7.3 -  

X

o  7 .2  -
z
LU_l
h-
Z
LU
2
o
LU
CO

6.8
0 10 20 30 40 50

PEG CONCENTRATION (g/L)

7.4

7.2 -
E
E

XH-o
z
LU_l
H
Z
LU
2
0
LU
CO

6.6
40 503020100

MANNITOL CONCENTRATION (mM)

Figure 8.4: Segment length of wheat coleoptiles after 6 hours growth in solutions of 
PEG (a) and mannitol (b) at various concentrations with ( • )  or without (O) 10~7M 
ABA made up in deionised water. Points are means ± S.E. of 25-37 coleoptiles from 3 
separate experiments.

180



Table 8.1. ABA contents of coleoptiles incubated in various concentrations of PEG or 
manmtol (MAN) for 6 hours in the presence or absence of 10“̂ M ABA. Values are 
means ± S.E. of the number of experiments indicated in parentheses. The results from
ANOVA of the data are also given.

IPEG] ABA ABA
(g/L) ng / g DW ng / g DW

-10 "7M ABA + 10"7M ABA

0 154.0±18.2 (4) 188.5±16.8 (4)
5 141.3± 9.2 (4) 169.8±12.1 (4)
10 148.5± 6.1 (4) 176.5±17.3 (4)
20 155.8±13.8 (4) 191.3±32.2 (4)
40 138.5±14.5 (2) 166.3± 7.4 (4)

P Values’.
PEG ABA PEG x ABA
0.683 0.008 0.999

[MAN] ABA ABA
(mM) ng / g DW ng / g DW

- 10 -7m  ABA + 10'7M a b a

0 187.0± 0.0 (1) 154.5± 5.5 (2)
5 200.5±16.5 (2) 213.0±12.0 (2)
10 181.5± 2.5 (2) 191.0±18.0 (2)
20 158.0± 9.0 (2) 212.0±10.0 (2)
40 214.5±32.5 (2) 224.0± 5.0 (2)

MAN ABA MANx ABA
0.088 0.316 0.233

Although PEG had no significant (P>0.10) effect on ABA content, there was a 

weakly significant (P=0.088) mannitol effect. Thus mannitol at the concentrations 

applied may stimulate ABA production by wheat coleoptiles, as shown for much higher 

concentrations of mannitol (0.6 M) in Avena coleoptiles (Weiler et a l , 1981).

It was considered important to demonstrate the occurrence of this interaction

using two different solutes as studies using PEG have been criticised due to the

presence of toxic impurities in PEG (Jackson, 1962). It should be noted that the 

interaction occurred over a different range of \\fn for each solute, which may result

from uptake of mannitol by the coleoptile (Hohl and Schopfer, 1991).

8.3.4 Responses of wheat coleoptiles to ABA, IAA and osmoticum applied 

together

Since the growth of isolated coleoptiles is strongly dependent on external IAA 

concentration, it was decided to investigate whether an external source of IAA affected
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the response of coleoptiles to ABA, and the Osmoticum x ABA interactions found 

above.

The response of coleoptile growth to IAA was highly variable from day to day, 

as shown previously (Shinkle and Briggs, 1984), indicated by a highly significant 

(P<0.001) Experiment x IAA interaction for the data shown in Figure 8.5. Wheat 

coleoptiles showed a significant promotion of growth (relative to deionised water 

controls) with 10~7M IAA and continued to show increased elongation with 5xlO~^M 

IAA. It is unfortunate that a larger range of [IAA]s was not spanned to determine the 

concentration at which the effect of IAA became saturating. Other reports indicate that 

coleoptiles respond to IAA over a concentration range of 10~7M to 10”̂ M at pH 5 in 

wheat (Macdowall and Sirois, 1977); and 10“7M to 10"^M (Nissl and Zenk, 1969) and 

10"^M to lO'^M (Cleland, 1972) in oat. The range of IAA concentrations over which 

coleoptiles of a particular species are responsive is dependent on such factors as 

coleoptile age (Nitsch and Nitsch, 1956), the photoenvironment during coleoptile 

growth (Shinkle and Briggs, 1984), time of incubation (Nissl and Zenk, 1969; Cleland, 

1972; Pope, 1993), incubation medium pH (Macdowall and Sirois, 1977; Shinkle and 

Briggs, 1984) and sucrose concentration (Cleland, 1972), and pre-incubation of 

coleoptiles in distilled water. (Macdowall and Sirois, 1977; Vesper and Evans, 1978). 

The time-dependent effect of pre-incubation is assumed to be an effect of depletion of 

endogenous IAA concentration, which sensitises the tissue to subsequent external IAA 

application (Vesper and Evans, 1978). Particularly striking are the different sensitivity 

ranges obtained by Nissl and Zenk (1969) with the same material according to whether 

the initial growth rate was measured in individual coleoptiles maintained under a 

flowing solution which continually brought fresh IAA to the tissue (responsive from 

10-10m , saturating at 10'8M IAA); or whether growth rate was measured after 24 

hours incubation of many coleoptiles in Petri dishes (10“7 to lO^M IAA). The 

difference in sensitivity was attributed to the breakdown of IAA by epiphytic bacteria
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during long incubation times. Thus the range over which coleoptiles respond to IAA is 

likely to be unique to each study.

9.5

9.0 -

E
E 8.5 -  
xi—
o

8.0 -

z
LLI_l
I-
Z
LLI
2
O 7.5 -
LLI
CO

§ -7.0 -

6.5

log [IAA] (M)

Figure 8.5: Segment length of wheat coleoptiles after 6 hours growth in solutions of 
IAA at various concentrations made up in deionised water for 3 separate experiments 
( • ,  O, ■). Points are means ± S.E. of 9-15 coleoptiles.
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Despite the highly significant effect of IAA on coleoptile growth, there was no 

significant (P>0.10) interaction of IAA x ABA across the IAA concentration range 

tested (Figure 8.6). ABA at 10“7M reduced IAA-induced coleoptile growth by 9-25 %, 

confirming previous observations with higher ABA concentrations (10"^-10"^M) 

(Rehm and Cline, 1973) that external ABA application reduces IAA-induced 

elongation.
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Figures 8.7 and 8.8 show the response of coleoptile growth to ABA and an 

osmoticum applied at 3 IAA concentrations. Table 8.2 summarises the statistical 

analyses showing the significance of the osmoticum x ABA interaction in all 

experiments. IAA had a considerable effect on the significance of the osmoticum x 

ABA interaction; with 5xlO"^M IAA rendering the interaction non-significant (P>0.10) 

for both mannitol and PEG, and 10_̂ M IAA rendering the interaction non-significant 

(P>0.10) for only mannitol.

Analysis of the entire PEG data set (Figure 8.7) shows highly significant 

(P<0.01) main effects of ABA, PEG and IAA. There was also a highly significant 

(P<0.001) IAA x PEG interaction, and confirmation of the PEG x ABA interaction 

seen in the absence of external IAA. The interaction IAA x ABA was non significant 

(P>0.10), as seen before in Figure 8.6. The tripartite interaction (ABA x IAA x PEG) 

was also highly significant (P<0.01).

Table 8.2: Table of significance (P values given) for the osmoticum x ABA interaction 
in all experiments. NS = not significant, P<0.05 *, P<0.01 **, PO.OOl ***

Osmoticum [IAA] Exp. 1 Exp. 2 Exp. 3 All Exp.s All [IAA]s

PEG 0 M 0.000 *** 0.211 0.179 0.000 ***
io-7m 0.001 ** 0.004 ** 0.001 ** 0.000 ***

5x10“7M 0.655 0.610 0.698

Mannitol 0 M 0.880 0.009 ** 0.061 0.003 **
io-7m 0.863 0.221 0.427 0.082

5x10"7M 0.587 0.142 0.455
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separate experiments.
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F i g u r e  8.8: Segment length of wheat coleoptiles after 6 hours growth in solutions of 
mannitol at various concentrations in the presence ( • )  or absence (O) of 10"7M ABA 
and with no IAA (a), 10“7M IAA (b) and 5xl0 '7M IAA (c) in the incubation medium. 
Points are means ± S.E. of 23-33 (b,c) or 31-37 (a) coleoptiles from 2 (b,c) or 3 (a) 
separate experiments.
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Analysis of the entire mannitol data set (Figure 8.8) similarly showed highly 

significant (P<0.001) main effects of IAA, ABA and mannitol. However, the 

interaction terms differed in their significance from those seen with PEG, with 

significant (P<0.01) IAA x ABA and IAA x mannitol interactions, and a weakly 

significant (P=0.082) ABA x mannitol interaction. The tripartite interaction (ABA x 

IAA x mannitol) was not significant (P>0.10).

Thus the osmoticum x ABA interaction seen in Figure 8.4 would seem to be 

abolished at high external IAA concentrations. Such data do not indicate whether the 

lack of interaction is due to IAA concentration or the higher growth rate per se. In an 

attempt to resolve this, it was decided to investigate the effect of ABA in concert with 

another treatment (pH) known to affect coleoptile growth.

8.3.5 Responses of wheat coleoptiles to ABA applied at various pHs

In a study of pH effects on growth, Cleland (1992) used a buffer concentration 

of 20 mM MES (2-[N-morpholino] ethanesulphonic acid) as a compromise between 

minimal osmotic inhibition of growth and maximum buffer effectiveness However, 

preliminary experiments with wheat coleoptiles revealed a non-significant (P=0.103) 12 

% growth reduction with 20 mM MES, so 10 mM MES was used in further studies.

Figure 8.9 shows the response of coleoptile growth to 10~7M ABA across a 

range of pHs. Coleoptile length in the absence of ABA declined from 6.88 mm at pH

5.5 by 37 % to 6.55 mm at pH 6.7. This alkali-induced growth reduction is broadly 

comparable to studies described in the literature with A vena and Zea coleoptiles 

(Kutschera and Schopfer, 1985; Schopfer, 1989; Cleland et al., 1991) however 

differences in the buffers used and preincubation times given in these studies precludes 

specific comparisons with the results here. A similar pH-induced growth reduction (34 

%) was noted in the presence of 10"7M ABA. ABA reduced growth by 24 %, 18 %
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and 19 % at pHs of 5.5, 6.1 and 6.7 respectively. Both ABA and pH main effects were 

highly significant (P<0.001) but there was no significant (P>0.10) interaction between 

the two agents.
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Figure 8.9: Segment length of wheat coleoptiles after 6 hours growth in solutions of 
10 mM MES made up in deionised water and adjusted to various pHs, in the 
presence ( • )  or absence (O) of 10“7M ABA. Points are means ± S.E. of 25-31 
coleoptiles from 2 separate experiments.
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8.4 DISCUSSION

The rationale behind the coleoptile experiments described in this chapter was to 

investigate a possible interaction between water potential and ABA, which was clearly 

observed (Figure 8.4) in the absence of external IAA. This interaction did not appear to 

be dependent on the ABA concentration of the expanding tissue (Table 8.1), in 

contrast to the apparent temperature x ABA interaction described for the leaf 

elongation assay system in Section 5.3.3.2 (see Figure 5.7). Again, a bulk tissue 

measurement was made, even though the epidermis is considered to be the limiting 

factor for coleoptile growth (Kutschera, 1992). Although it is possible to remove the 

epidermis of coleoptiles (Rayle, 1973), the number of coleoptiles that would be 

required for analysis of ABA using the RIA employed in this study (assuming an 

arbitrary doubling of ABA concentration in the epidermis compared to bulk coleoptile 

tissue, and an epidermal weight of 10 % of the entire coleoptile) was calculated to be 

prohibitive in terms of time.

It would be desirable to confirm the existence of this interaction using 

continuous recording of growth in a transducer (e.g. Kutschera and Schopfer, 1985) or 

by observing coleoptiles using a time lapse camera allied to image analysis equipment. 

This approach is necessary to show that the effects reported here are not just an 

artefact of a single measurement time being biased by treatment-induced differences in 

lag times for the resumption of growth following coleoptile excision. However such an 

explanation for the effects observed here is unlikely as an analysis of lag times for IAA- 

induced growth showed that a 1000 fold decrease in IAA concentration did not alter 

calculated growth after 6 hours by more than 10 %. This compares with the 30 % 

growth reduction seen when osmotica and ABA are applied together (Figure 8.4).

It was of concern that the osmoticum x ABA interaction disappeared with the 

application of external IAA. This occurred despite there being no IAA x ABA
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interactions in 2 of 3 data sets (Figures 8.6, 8.7). It might be argued that the interaction 

described here is somewhat artificial in that the coleoptiles (in Figure 8.4) are 

elongating, presumably as a result of their endogenous IAA production, at a reduced 

rate compared to intact coleoptiles. Application of external IAA of the appropriate 

concentration can induce isolated coleoptiles to grow at the same rate as intact 

coleoptiles (Kutschera and Schopfer, 1985). Shouldn't, therefore, the interaction be of 

most relevance when the isolated coleoptiles are growing at the same rate as intact 

coleoptiles ? It is likely, however, that the appropriate concentration of IAA required 

for "intact-like" elongation in isolated coleoptiles results in tissue IAA concentrations 

that are many times those that occur endogenously, perhaps due to a wounding- 

induced change in coleoptile sensitivity to IAA. Therefore it is possible to argue that 

IAA treatment is similarly artificial and more credence should be given to the data 

obtained when the coleoptiles are elongating under their endogenously produced IAA. 

Whichever argument applies, it would seem imperative to confirm the existence of a 

water potential x ABA interaction in another growing system, such as the leaf 

elongation assay system using capillary tubing to impose an osmotic stress (Trejo and 

Davies, 1994) or growing plants in vermiculite of low water potential and manipulating 

ABA concentrations by external application (Sharp et al., 1994). If we assume that the 

water potential x ABA interaction (in Figure 8.4) shown by coleoptiles is indicative of 

leaf growth behaviour in intact plants, we have a possible explanation for the leaf 

growth responses to drought seen in Section 7.3.

The magnitude of the interaction accounted for a coleoptile growth inhibition of

32 % (in the PEG data set) over the range of osmotic stresses applied, which is

quantitatively sufficient to explain the leaf growth reductions (35-37 % - see Figures 

7.6a, 7.7a ) seen in the soil drying experiments. However, the V|Jn x ABA interaction

described in Figure 8.4 occurred over a very narrow range of \yK (0 to -0.06 MPa). It

seems unlikely that intact, draughted plants would show a growth response to ABA 

over the same v\JK range. However, the coleoptile may be a model system for the whole
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plant, although any x ABA interaction in intact plants may occur in a different

range. This may still be a restricted range, which would be difficult to quantify using 

psychrometric techniques due to the inherent variability of measurements (Figures 7.6b, 

7.7b). If growth of droughted plants is affected by the \|/TC x ABA interaction over such

a restricted range, it would explain the high sensitivity of leaf growth to drought 

observed in many studies (Hsiao, 1973; Saab and Sharp, 1989).

The existence of such an interaction in droughted plants would also explain the 

diel pattern of leaf growth inhibition (Figure 7.5). Reductions in LER were first 

detected in the afternoon as in previous studies (Van Volkenburgh and Boyer, 1985), 

when xylem tension would be maximal. At night, there is no growth reduction since 

xylem tension is reduced and the ABA signal is diminished as surface roots re-hydrate 

due to the transfer of water from deeper roots which are well-supplied with water.

An interaction of water potential and ABA in controlling growth may also 

explain the frequently observed correlation of lamina water potential and LER in 

droughted grasses (Boyer, 1970; Chu and McPherson, 1977). The significance of such 

correlations has usually been dismissed since well-watered plants may show the same 

range of \{/ls, and the fact that cells in the elongation zone can maintain turgor despite 

reductions in \|/l  (Michelena and Boyer, 1982). We also observed a correlation of \|/l  

and LER in the drying experiments (Figure 7.11), which is similar to the correlation 

between medium osmotic potential and the growth of "droughted" (ABA-supplied) 

coleoptiles.

In addition to the explanatory value of this interaction in accounting for the 

growth of droughted plants, it may have important implications for the assessment of 

inhibitory activities of xylem sap. Although changes in growth inhibitory and 

antitranspirant compounds can regulate shoot physiology in the absence of changes in 

plant water relations (e.g. Saab and Sharp, 1989; Zhang and Davies, 1990a). more
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recent reports have emphasised that ABA and water relations interact in their effects 

(Tardieu and Davies, 1992; Tardieu et a l , 1993). Evidence of such an interaction is 

provided by the requirement of an unrealistically high [EZ-ABA] in the detached shoot 

in order to inhibit LER to a comparable amount as intact plants subjected to drought 

(Figure 7.9a). Thus the failure of the leaf elongation assay system to take account of 

any interaction, by using shoots detached from well-watered plants, may limit its 

usefulness in assessing the growth inhibitory properties of xylem sap.
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CHAPTER 9.

DISCUSSION

WHAT CONTROLS LEAF GROWTH OF GRASSES IN DRYING SOIL ?

IS THERE A ROLE FOR SENSITIVITY MODULATION OF ABA IN THIS CONTROL ?

The traditional answer to the first question is that soil drying results in a decline 

in leaf water potential and turgor, which reduces growth. This mechanism is 

supported by relationships between growth and 1|/l (e.g. Boyer, 1970). It should be 

noted that the bulk of the growth reduction (50-80 %) occurs over a very narrow range 

of water potentials (e.g. 0.3 MPa) and that well-watered plants can show a similar 

variation in ipL over the course of the day, yet show no growth reduction. The 

observation that turgor can be maintained in the elongation zone (Michelena and 

Boyer, 1982) despite reductions in \(/l also argues against simple hydraulic control of 

leaf elongation rate. Specialised experimental systems, which allow maintenance of 

high V|/l in plants which have roots in contact with drying soil, have convincingly 

demonstrated that leaf growth can be controlled by chemical signals originating from 

the roots (Passioura, 1988a; Saab and Sharp, 1989; Gowing et aL, 1990). While the 

relevance of these results to the control of leaf growth in the field has generated 

controversy (cf. Kramer, 1988 vs. Passioura, 1988b), Ludlow et aL (1990) provide 

many examples of the apparent control of leaf growth and stomatal conductance by 

root-supplied signals in the field.

It is unfortunate that two of the most compelling examples of the operation of 

chemical signalling in the control of leaf growth (Saab and Sharp, 1989; Gowing et aL, 

1990) have not quantified any potential signal. By virtue of its ability to inhibit leaf 

growth (Van Volkenburgh and Davies, 1983), its almost universal ability to mimic the 

responses of drought (Trewavas and Jones, 1991) and its well-recognised role in the 

control of stomatal conductance under drought (Davies and Zhang, 1991; Munns and
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Sharp, 1993), ABA clearly must be a contender for a role in the inhibition of leaf 

growth of droughted plants. However, relatively few studies have examined the role of 

ABA in controlling leaf growth of droughted plants (Munns and Sharp, 1993). While 

whole plant studies have indicated a correlation between xylem ABA concentration and 

leaf growth of droughted plants, which is identical to the relationship found by feeding 

ABA solutions to well-watered plants (Zhang and Davies, 1990b); the evidence from 

leaf elongation assay studies is contradictory' (Munns, 1992). When xylem sap from 

droughted plants was fed to detached shoots in the assay, growth was inhibited in a 

manner inconsistent with the sap .ABA concentration.

However, the results from the bioassay study must be treated with caution for 

two reasons. Recent evidence from that group has indicated that storage of xylem sap 

at -20°C (as indicated in the original report) produced a large molecular weight 

compound which seemed to be responsible tor the antitranspirant activity of stored sap 

(Munns et al., 1993). Freshly collected sap had an antitranspiraiit activity apparently 

explicable in terms of its ABA concentration (although variability of assay sensitivity in 

the physiological range makes it difficult to be sure). If these results can be 

extrapolated to leaf growth, it may reconcile the difference between bioassay and 

whole plant studies. Secondly, the concentration of ABA in the elongating cells was 

not measured in Munns' study.

Although a recent study has indicated the presence of another growth inhibitory 

compound in xylem sap (Campbell et a£, 1995), this compound seems to be involved 

in the phenological development of the plant and not involved in the drought stress 

response. Although growth promoting compounds such as cytokinins may be important 

in chemical signalling (Meinzer et al., 1991). the experiment of Gowing et al. (1990) 

appears to negate their role under drought stress. In a split-root experiment, excision of 

the dried root system resulted in growth recovery. Such a treatment cannot increase the 

supply of growth promoters to the shoot: but would eliminate a supply of growth



inhibitors (such as ABA). Therefore assessment of a possible chemical control of leaf 

growth must surely focus on ABA, in the absence of knowledge of other inhibitors.

One of the dogmas of hormone physiology is that variation in response may be 

as much a function of changes in tissue sensitivity to the hormone as changes in 

endogenous concentration (Trewavas, 1981). Previous studies examining the role of 

ABA in controlling leaf growth have usually measured endogenous ABA 

concentrations; there has been no systematic attempt to identify sources of sensitivity 

variation, as there has been for research into stomatal responses to ABA (see Table 

1.2). One report indicated that the effect of ABA on leaf growth could be reversed by 

high KC1 concentrations (Van Volkenburgh and Davies, 1983), indicating that 

sensitivity modulation of leaf growth could occur. The recent development of a 

detached cereal shoot leaf elongation assay (Munns, 1992) provided a means of 

identifying sensitivity modulation of the leaf growth response to ABA.

Initial studies attempted to validate the leaf elongation assay as a reliable means 

of assaying growth, and attempted to verify the previously described report of a 

nutrient ion x ABA interaction (Chapter 2). The reversal of ABA-induced leaf growth 

inhibition by high KC1 concentrations (Van Volkenburgh and Davies, 1983) could not 

be directly tested in detached cereal shoots as the KC1 concentrations required were 

osmotically inhibitory to growth. There was no difference in the short-term leaf growth 

response of shoots fed ABA made up in distilled water or a dilute solution of nutrient 

ions, as shown previously for transpiration by Munns and King (1988). This result 

contradicts the report of Schurr et a l (1992), who demonstrated correlations between 

xylem sap nutrient concentrations and stomatal sensitivity to ABA in individual 

droughted sunflower plants with greatly different sensitivity to ABA. The surprising 

thing about this set of data is that all the plants were well fertilised, yet individual plants 

had different nutrient xylem nutrient concentrations. The multiplicity of inner 

correlations between different nutrient ions in the soil drying system make it unrealistic
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to test lor spedfe tnnrfmiHKms of nutrient, x ABA interactions. Alternatively, the leaf 

elongation assay system cam h t  ̂ n'tioised as being too short term to allow expression of 

any interactions. Umti u3se two types of study are able to provide reconcilable evidence, 

the idlea that hnritod matoeM uptake by dteoughted plants can modify the leaf growth 

response to ABA is best treated m  untested!.

It is important to note that the above discussion of possible nutrient ion x ABA 

interactions refers to weH-fertihsed plants, ©c in the case of detached tissue assays, 

tissues detached from wdMertifised plants Tissues detached from nutrient-stressed 

plants commonly show a greater stomata! response to applied ABA (Radin et al., 1982; 

Radio, 1984). In a similar manner, it would be interesting to test whether detached 

cereal shoots from nutrient stressed plants showed a greater response to ABA. Whole 

plant studies which have imposed different feniiisation regimes on droughted plants 

have failed to demonstrate a nutrient stress effect on the sensitivity of the leaf growth 

response to soil drying (Saab and Sharp, 1989: Passioura and Gardner, 1990; Auge et 

a l, 1995). This may be taken as circumstantial evidence of a lack of nutrient stress x 

ABA interaction if it is assumed that ABA was involved in the drying response. 

However, Auge e ta l (1995) found that the magnitude of the leaf elongation restriction 

in individual plants depended on the measured leaf phosphate concentration, and not 

the applied phosphate concentration. It is clear that future studies of the soil drying 

response would benefit front more rigorous measurement of plant nutrient 

concentrations (in both leaves, xylem saps and ideally the leaf elongation zone) to 

distinguish individual plant response; although the soil drying studies reported in 

Chapter 7 showed little between-plant variation (an average coefficient of variation for 

LER of 12-16 % - Table 7.3) in the sensitivity of LER to soil drying.

One of the potential causes of the apparent nutrient-induced sensitivity 

variation in the study of Schurr et a l (1992) may have been xylem pH. Varying the pH 

of the feeding solution from 5 to S had no effect on the response o f  leaf grow th o f



ABA-supplied shoots. In shoots fed an artificial xylem solution, there appeared to be a 

variable reduction in leaf growth at high pHs, but such reduction usually appeared to 

be associated with wilting of the detached shoots. It was concluded that pH does not 

affect leaf growth of either control or ABA-fed shoots, but it is possible that the 

artificial xylem solutions used may not have had sufficient buffering capacity to over­

ride the plant's endogenous capacity.

The initial work with the leaf elongation assay also provided further evidence of 

its validity. Leaf growth responded to temperature in the detached shoots in a similar 

manner to intact plants. The dose-response of transpiration was very similar to that 

previously described for detached leaves (Munns and King, 1988; Munns et a l, 1993). 

However, leaf growth was found to be roughly an order of magnitude more sensitive 

than that reported by Munns (1992), indicating that sensitivity modulation of the leaf 

growth response to ABA in the detached shoot system could occur. Possible sources 

of this variation were considered to be genotype and temperature.

Genotypic variation in stomatal response to ABA has been previously described 

(Rodriguez and Davies, 1982; Quarrie, 1983; Blum and Sinmena, 1995). Bioassay 

approaches are particularly amenable to identifying this variation as they avoid possible 

complications in field experiments such as genotypic differences in plant water 

relations. Despite selection of genotypes which were thought likely to give different 

responses (and indeed had been demonstrated to differ in their transpiration response 

to ABA), there was only one case (comparison of 2 cultivars) where a consistent 

difference in leaf growth response was noted (Chapter 3). This was not due to greater 

uptake of ABA, or a greater LER of control plants, by the more responsive genotype. 

Further experimentation is clearly necessary to test whether this interaction would 

occur if the plants were grown or assayed under different conditions to those under 

which this study was conducted. Given the relatively small differences in leaf growth 

response (< 20 %) and potential variability between assays (demonstrated by a
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significant G x ABA interaction comparing two batches of plants of the same cultivar), 

future work on variation in these genotypes seems difficult to justify from a logistics 

perspective.

Despite this pessimistic appraisal, genotypic differences in stomatal response to 

a soil drying-induced chemical signal have been previously demonstrated (Blum and 

Johnson, 1993). In this experiment, differences in cultivar response were related to 

differences in root growth; such that genotypes which showed a reduced stomatal 

response to soil drying had fewer roots exposed to dry soil (and hence fewer sites for 

the generation of a chemical signal). Although further work by this group has shown 

one of the cultivars which was less responsive to soil drying was relatively insensitive 

to application of ABA in a transpiration bioassay, comparative tests were not 

conducted with cultivars which were more responsive to the soil drying treatment 

(Blum and Sinmena, 1995).

A related program has been conducted by the Maize Research Institute in 

Belgrade in collaboration with Dr. S. Quarrie, with the aim of characterising genotypic 

differences in ABA accumulation (e.g. Pekic et al., 1995). Despite successful efforts in 

identifying genotypes with different ABA accumulation in detached leaf and field 

studies, there has been a notable lack of success in characterising such genotypes for 

differences in stomatal or leaf growth sensitivity to ABA. Again, possible relationships 

between ABA sensitivity and field response have not been elucidated.

In addition to questioning the logistics of further searches for genotypic 

variation in the leaf growth response to ABA, the rationale behind such a search for 

needs to be questioned. The relevance of genotypic differences in the leaf growth 

response to ABA in field situations is difficult to predict. It is obvious that the 

physiological significance of genotypic variation in ABA response will depend on the 

mechanisms of growth control in the field. If signalling is hydraulic, then differences in
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ABA response are irrelevant. Under conditions where chemical signalling is important, 

the agronomic significance of genotypic differences in the ABA response of leaf 

growth to forage yield will depend mainly on the water stress regime (Ludlow et al., 

1989). If the crop is intermittently irrigated, a sensitive genotype will be at a yield 

disadvantage. In the unirrigated situation, a sensitive genotype may be able to conserve 

water by restricting canopy expansion, allowing survival until the next rain event. It 

may therefore be possible to optimise the crop for its leaf growth response to ABA in a 

given environment. Although the significance of genotypic differences in the ABA 

response of cereal leaf growth to grain yield may seem a tenuous link dependent on 

whether the crop is source limited, chemical signalling has been shown to increase tiller 

mortality and reduce biomass and grain yield (Blum et al., 1991; Blum and Johnson, 

1993). Currently, the doubts over the reality of genotypic differences in leaf growth 

sensitivity to ABA ensure that the objective is best pursued for its intrinsic interest. The 

application of sensitivity differences is more likely to be as a physiological tool for 

investigating the role of ABA in leaf growth, rather than in the agronomic situation.

Like genotypic variation, temperature is a factor which has repeatedly been 

shown to affect stomatal response to ABA (e.g. Rodriguez and Davies, 1982; Eamus 

and Wilson, 1983; Honour et al., 1995). Analysis of LER data collected for detached 

shoots at different temperatures and ABA concentrations showed a highly significant 

interaction between temperature and ABA (Chapter 4). Low temperature reduced the 

effectiveness of ABA. This interaction is potentially of enormous importance in the 

control of leaf growth in the field, since LER of well-watered plants is strongly 

temperature dependent (Gallagher and Biscoe, 1979; Ong, 1983). Greater inhibition of 

leaf growth by ABA at high temperatures would be important in conserving water by 

restriction of canopy expansion, since soil drying and high temperature commonly co­

occur .
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In an attempt to ensure that the greater inhibition of leaf growth at high 

temperature was not an artefact of more ABA being present at the site(s) of action, 

ABA was measured in the leaf elongation zone at different temperatures (Chapter 5). 

This method of sampling was selected to determine whether the ABA content of the 

elongation zone was a more appropriate explanatory variable than the ABA 

concentration fed to the shoots. Either variable may still be regarded as an apology for 

lack of information of the ABA concentration at the active site(s), which is assumed to 

be the apoplastic ABA concentration of the tissue in the leaf elongation zone which is 

limiting growth. Analogies from other growing tissues (coleoptiles and stems) suggest 

that the epidermis is often growth limiting (Kutschera, 1992).

The similarity of the relationship between leaf growth inhibition and 

temperature, and leaf growth inhibition and elongation zone ABA concentration [EZ- 

ABA], in the same plants (Figure 5.7), suggested that the interaction was caused by 

ABA accumulation in the elongation zone. To resolve whether the interaction was a 

function of [EZ-ABA], or a genuine difference in sensitivity, it would be necessary to 

feed ABA to detached shoots at the same transpiration rate, while maintaining the 

elongation zone at different temperatures. Despite the correlation suggested above, it 

would be surprising if the interaction between ABA and temperature found in stomatal 

studies did not hold for leaf growth.

The temperature studies demonstrated a fundamental difference in the control 

of leaf growth and stomata by ABA in bioassay systems. Enhanced ABA accumulation 

in the elongation zone at high temperatures was able to reduce leaf growth (Chapter 5), 

yet such accumulation in the leaves at high temperatures does not generally produce 

additional stomatal closure (Trejo et al., 1995). It would therefore appear that the 

detached shoot is able to regulate the amount of ABA reaching the stomata, but not the 

amount reaching the leaf elongation zone. Metabolic differences between the two 

tissues could be involved. If such a situation existed for intact plants, it would provide
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a possible explanation for the increased sensitivity of leaf growth (relative to stomatal 

conductance) to drought (e.g. Saab and Sharp, 1989). An alternative explanation for 

the enhanced ABA accumulation in the elongation zone is that phloem transport of 

ABA (Wolf et al., 1990) to the roots is disrupted in the detached shoot, resulting in a 

build-up of ABA.

The fact that differences in elongation zone ABA content seemed to account 

for differences in ABA response under different environmental (temperature) 

conditions prompted a consideration of experiments in which detached shoots were fed 

xylem sap (Chapter 6). In agreement with Munns (1992), the ABA concentration of 

xylem sap from droughted plants was unable to account for the leaf growth inhibition. 

However, when leaf growth inhibition was plotted against the concentration of ABA in 

the elongation zone, the point for xylem sap lay on the ABA dose-response curve. This 

suggested that the xylem sap contained a compound which could be converted to ABA 

in the elongation zone. Although high concentrations of ABA conjugates can occur in 

xylem sap from grasses (Bano et al., 1993), they have traditionally been regarded as 

unimportant in the plant due to their stability. The result reported here seems to 

suggest a possible role for ABA conjugates in leaf growth inhibition additional to that 

of free ABA. The identity of any additional compounds was not pursued due to the 

difficulties of obtaining adequate quantities of sap and concerns over the validity of the 

sap sampling strategy. It would be desirable to repeat these experiments using sap 

collected from an intact transpiring plant using a whole plant pressure chamber to see 

whether the inhibition of leaf growth could still be attributed to the ABA content of the 

leaf elongation zone. Despite these methodological concerns, the clear relationship 

between elongation zone ABA content and leaf growth in the detached shoot system 

pointed to the necessity of measuring elongation zone ABA concentration in droughted 

plants.
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The results of the temperature and xylem sap experiments indicated that xylem 

sap ABA concentration may not be the best indicator of leaf growth response. This 

seemed fortunate, as it was impossible to sample the xylem sap of soil-grown plants at 

a similar developmental stage to the plants used in the assay. Although xylem sap is 

regarded as the most sensitive indicator of changes in chemical signalling (Zhang and 

Davies, 1989b; 1990a), it must be noted that the means of sampling xylem sap may 

provide samples which are not indicative of concentrations in the transpiration stream 

(Munns, 1990; Jackson, 1993).

Another complication with analysis of xylem sap constituents from droughted 

plants is that reductions in transpirational water flow will result in less dilution of all 

solutes loaded into the transpiration stream. It is therefore difficult to discern a 

physiological role for a particular xylem sap constituent. However, observations which 

show reductions in leaf growth well before reductions in transpiration (e.g. Passioura 

1988a; Saab and Sharp, 1989) may allov/ the identification of increases in xylem sap 

ABA concentration prior to reductions in transpiration. A detailed time course of leaf 

growth, transpiration and xylem ABA concentration may allow the detection of a 

relationship between leaf growth and xylem ABA concentration prior to decreases in 

transpiration, which would be extremely valuable in providing evidence of a role for 

ABA in controlling leaf growth. This was an original aim of the soil drying 

experiments, but problems of accurate gravimetric measurement of transpiration, and 

problems with obtaining a sufficient sample of xylem sap precluded such a temporal 

analysis. Instead, detailed sampling of leaf growth and elongation zone ABA content 

was achieved.

Although the soil drying studies imposed a slowly developing, mild water 

stress, ideal conditions for the generation of a chemical signal, there was only limited 

ABA accumulation in the elongation zone, despite daily growth reductions of up to 35

%. Changes in xylem sap pH (when it became technically possible to sample) also did
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not account for the leaf growth reduction, in support of the bioassay evidence 

presented in Chapter 2. There was also no clear evidence of hydraulic signalling 

controlling growth (Chapter 7).

However, \|/l  and ij/p have low intrinsic capacity for explaining changes in 

growth reductions due to the large random error associated with their measurement. 

There is also physiological uncertainty since current water relations measurements are 

principally directed at measurement of cells in the lamina, which may have very 

different water relations from elongating cells (Michelena and Boyer, 1982; Barlow, 

1986). However, the lamina is likely to be the first tissue to show perturbed water 

relations (Michelena and Boyer, 1982), which provides some justification for the 

measurement of water relations of cells that are not actually growing.

Importantly, the relationship between LER and elongation zone ABA 

concentration was very different in the soil drying and in the detached shoot 

experiments. One possibility that may explain the greater ABA accumulation in the 

detached shoot system is the lack of roots. It is well known that the phloem is an 

alkaline trap for ABA (Hoad, 1978); any ABA transported from the root that is not 

metabolised by leaf tissue may find its way into the phloem for return to the roots. This 

recycling process may contribute to the drought-induced increase in xylem ABA 

concentration (additional to increased root ABA synthesis in response to soil drying) in 

intact plants. In detached shoots, the ABA is likely to accumulate at the base of the 

shoot. This would suggest that the leaf elongation assay system does not provide a 

realistic assessment of ABA accumulation in the elongating cells of intact plants.

Another reason for the difference in LER response to ABA in the two systems 

may be small differences in water potential in the elongating cells below the detection 

limits of psychrometric measurement. Such a hypothesis would support evidence of
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Sharp and co-workers, who have shown that the effect of ABA on root growth is 

highly dependent on soil water status (e.g. Sharp et al., 1994).

The possibility of a water potential x ABA interaction affecting growth was 

investigated using a coleoptile growth assay (Chapter 8). Although growth was not 

inhibited in the presence of ABA or osmoticum alone, application of both of these 

agents together resulted in a growth reduction of up to 35 %, using either PEG or 

mannitol as an osmoticum. Importantly, in contrast to the temperature experiments 

with the leaf elongation assay, the interaction could not be explained on the basis of 

ABA concentration in the coleoptile elongation zone.

The existence of such an interaction in intact plants may explain both the 

magnitude of the growth reduction, and the diurnal course of leaf growth inhibition, 

seen in the soil drying experiments. The extreme sensitivity of this interaction was 

demonstrated by the fact that the growth response occurred over a very narrow range 

of osmotic potentials. It seems unlikely that intact, droughted plants would show a 

growth response to ABA over the same V|/l  range. However, the coleoptile may serve 

as a model system for the whole plant, although any \|/l  x ABA interaction in intact 

plants may occur in a different range. This may still be a restricted range, which would 

be difficult to quantify using psychrometric techniques due to the inherent variability of 

measurements. If growth of droughted plants is affected by the \|/l  x ABA interaction 

over such a restricted range, it would explain the high sensitivity of leaf growth to 

drought observed in many studies (Hsiao 1973; Saab and Sharp 1989).

Although the coleoptile data alone do not provide a particularly strong case for 

the existence of a water potential x ABA interaction affecting growth, recent results 

from another system (Thompson and Davies, unpublished observations) appear to 

support the effect. The relationship between leaf growth rate and turgor pressure of the 

leaf elongation zone of the first maize leaf was investigated using plants grown in
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hydroponic solutions. Addition of osmoticum to the solution failed to reduce growth or 

cell turgor, as did addition of ABA to the plants in the absence of an osmotic stress 

around the roots. However, the addition of osmoticum to the roots of ABA-supplied 

plants reduced growth, again without a measurable decrease in the turgor pressure of 

cells in the elongation zone.

The results presented in this thesis show two clear examples where the effect of 

ABA on leaf growth is highly dependent on the environmental conditions. 

Unfortunately, the existence of both interactions can still be regarded as potentially 

artefactual due to the nature of the assay systems used in their identification (leaf 

elongation assay in the case of temperature, and coleoptile assay in the case of water 

potential). Future investigations should attempt to manipulate these environmental 

variables in whole plants responding to chemical signals of soil drying.

It should also be noted that this study has chiefly addressed the equilibrium leaf 

growth response to ABA, and not the dynamics of the response. It would be instructive 

to compare the dynamics of leaf growth response to ABA when conditions such as 

temperature, and leaf water potential, are varied. This would assist in verifying the 

existence of the described interactions. While other interactions may also be important 

in certain contexts, it is likely that temperature and water potential are the two 

variables which are of most importance to draughted plants.

While there may still be some doubt as to the role of ABA in controlling leaf 

growth of plants grown in drying soil (Munns and Sharp, 1993), part of this doubt 

must surely result from a lack of understanding of the factors which can alter the 

sensitivity of leaf growth to ABA. It is hoped that the study described goes some way 

towards identifying such sensitivity variation. The challenges that lie ahead include the 

verification of the existence of these interactions in intact plants, and the elucidation of 

potential mechanisms.
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is given on p 235. When two experiments employed the same species/drying treatment 
combination, they are included as the one study.
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APPENDIX 2.

EXAMPLES OF STATISTICS

Sample ANOVA table from Chapter 2 (Figure 2.2a)

Effects of nutrient solution, ABA and their interaction on leaf elongation rate of detached
shoots of Hordewn vulgare cv. Klaxon
NS = not significant, P<0.05 *, P<0.01 **, P<0.001 ***

Source of Variation d.f. s.s. m.s. v.r. Significance

Variation between leaves

Nutrient Solution 1 0.0562 0.0562 1.4839 NS
ABA 1 1.7983 1.7983 47.4987 ***
Nutrient x ABA 1 0.0081 0.0081 0.2139 NS
Residual 25 0.9466 0.0379

Total 28 2.8092

Variation within leaves

Time 1 0.0697 0.0697 4.44 *
Time x Nutrient 1 0.0438 0.0438 2.79 NS
Time x ABA 1 0.0860 0.0860 5.48 *

Time x Nutrient x ABA 1 0.0426 0.0426 2.71 NS
Residual 112 1.7587 0.0157

Total 144 4.8100
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Sample ANOVA tables from Chapter 3 (Figure 3.5b)

Effects of genotype, ABA and their interaction on leaf elongation rate of detached shoots 
of Hordeum vulgare cv. Klaxon and Zea mays cv. Earliking in an individual leaf elongation 
assay.
NS = not significant, P<0.05 *, P<0.01 **, P<0.001 ***

Source of Variation d.f. s.s. m.s. v.r. Significance

Variation between leaves

Genotype 1 0.463 0.463 5.946 *
ABA 4 38.182 9.5456 122.52 ***

Genotype x ABA 4 2.121 0.5302 6.805 ***

Residual 75 5.843 0.0778

Total 84 46.61

Variation within leaves

Time 1 0.9009 0.9009 19.03 ***

Time x Genotype 1 0.9424 0.9424 19.9
Time x ABA 4 4.3749 1.0937 23.1 ***

Time x Genotype x ABA 4 0.3815 0.0954 2.01 NS
Residual 245 11.600 0.0474

Total 339 236.833

237



Sample ANOVA table from Chapter 3 (Figure 3.5d)

Effects of experiment, genotype, ABA and their interactions on leaf elongation rate of 
detached shoots of Hordeum vulgare cv. Klaxon and Zea mays cv. Earliking.
NS = not significant, P<0.05 *, P<0.01 **, P<0.001 ***

Source of Variation d.f. s.s. m.s. v.r. Sigr

Variation between experiments

Experiment 2 16.124 8.062 92.485 ***

Variation between leaves

Genotype 1 9.696 9.696 111.232 ***
ABA 4 85.771 21.443 245.984 ***
Genotype x ABA 4 1.281 0.320 3.675 **
Genotype x Experiment 2 2.536 1.268 14.548 **
ABA x Experiment 8 2.318 0.290 3.324 **
Genotype x ABA x Experiment 8 1.547 0.193 2.219 **

Residual 205 16.750 0.087

Total 234 136.02

Variation within leaves

Time 1
Time x Experiment 2
Time x Genotype 1
Time x ABA 4
Time x Genotype x Experiment 2
Time x Genotype x ABA , 4
Time x ABA x Experiment 8
Residual 683

Total 939

5.800 5.800 100.48 ***
0.794 0.397 6.88 **

3.364 3.364 58.28 ***
9.628 2.407 41.7 ***
0.050 0.025 0.43 NS
1.014 0.253 4.39 **
0.999 0.125 2.16 *
39.428 0.190

105.96
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Sample ANOVA table from Chapter 4 (Figure 4.3)

Effects of temperature, ABA and their interaction on leaf elongation rate of detached
shoots of Hordeum vulgare cv. Klaxon
NS = not significant, P<0.05 *, P<0.01 **, P<0.001 ***

Source of Variation d.f. s.s. m.s. v.r. Significance

Variation between leaves

Temperature 1 242.6 242.6 933.08 ***
ABA 4 180.02 45 173.08 ***
Temperature x ABA 4 26.32 6.58 25.38 ***
Residual 397 102.49 0.26

Total 406 551.43

Variation within leaves

Time 1 0.17 0.17 1.42 NS
Time x Temperature 1 0.11 0.11 0.94 NS
Time x ABA 4 25.37 6.34 54.45 ***

Time x Temperature x ABA 4 0.83 0.21 1.77 NS
Residual 1428 166.35 0.12

Total 1844 744.25
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Sample ANOVA table from Chapter 8 (Figure 8.4a)

Effects of experiment, PEG, ABA and their interactions on segment length of coleoptiles
of Triticum aestivum cv. Tonic
NS = not significant, P<0.05 *, P<0.01 **, P<0.001 ***

Source of Variation d.f. seq s.s adj. s.s m.s v.r. P

Experiment 2 0.39 0.45 0.23 2.78 0.064
ABA 1 4.59 4.57 4.57 55.94 0.000
PEG 4 0.56 0.62 0.15 1.89 0.113
Experiment x ABA 2 0.04 0.06 0.03 0.39 0.675
Experiment x PEG 8 0.75 0.84 0.1 1.28 0.252
ABA x PEG 4 1.85 1.92 0.48 5.89 0.000
Experiment x ABA x PEG 8 0.86 0.86 0.11 1.31 0.239
Residual 272 22.22 22.22 0.08

Total 301 31.24
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APPENDIX 3.

GENOTYPIC COMPARISONS OF LEAF GROWTH RESPONSE TO ABA

Table of significance for experiments comparing leaf growth response to ABA of different 
genotypes. Values for LER were expressed as a percentage of controls and means 
discriminated by Student's unpaired t test. P<0.05 *, P<0.01 **, P<0.001 ***

Genotypic Data Set P values for unpaired t test on LER values expressed as a
Comparison percentage of controls; values when leaf growth inhibition

maximal

10-% ABA 10-%  ABA 10"6M ABA 1 0 %  ABA

Klaxon vs. 
Earliking

Exp 1 
Exp 2 
Exp 3

0.709 
0.880 
0.020 *

0.931 
0.00 *** 
0.675

0.915 
0.00 *** 
0.465

0.740
0.728
0.926

Combined 0.205 0.00 *** 0.070 0.608

Klaxon vs. 
Firefly

Exp 1 
Exp 2 
Exp 3

0.041 *
0.283
0.267

0.045 * 
0.352 
0.00 ***

0.001 ** 
0.004 ** 
0.122

0.004 ** 
0.108 
0.945

Combined 0.008 ** 0.005 ** 0.00 *** 0.009 **

Sunstar vs. 
Sundor

Exp 1 
Exp 2

0.464 
0.005 **

0.096
0.349

0.065
0.515

0.561
0.778

Combined 0.323 0.038 * 0.246 0.69

Chinese Spring vs. 
SQ1

Exp 1 4 
Exp 2 
Exp 3

0.935
0.631
0.901

0.00 *** 
0.009 ** 
0.46

0.082 
0.399 
0.024 *

0.015 *
0.450
0.499

Combined 0.881 0.002 0.976 0.038 *

Klaxon No 1 vs. 
Klaxon No 2

Exp 1 
Exp 2 
Exp 3

0.817 
0.001 ** 
0.078

0.794 
0.046 * 
0.688

0.421
0.139
0.161

0.005 ** 
0.007 ** 
0.337

Combined 0.004 ** 0.503 0.131 0.001 **
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