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Dedication

Para minha mae e para o meu pai por tanto  am or sempre 

To the Amazon, w here the powers of life are predom inant

Charles Darwin, Beagle Diary, on his visit to  the Brazilian rainforest:

"The delight one experiences in such times bewilders the mind, — i f  the eye attempts 

to fo llo w  the flig h t o f a gaudy butterfly, it  is arrested by some strange tree or fru it; i f  

watching an insect one forgets i t  in the stranger flow e r it  is crawling over, — i f  

turning to admire the splendour o f the scenery, the individual character o f the 

fo reground fixes the attention. The mind is a chaos of delight, out o f which a world
o f future & more quiet pleasure will arise."
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Abstract

Land use change and forest degradation are resulting in pervasive changes to tropical 

ecosystems around the globe. While evidence from terrestrial systems demonstrates the 

severity of these disturbances for biodiversity conservation and provision of ecosystem 

services, the consequences for freshwater ecosystems remain poorly understood. This is 

especially true for the Amazon basin, the world's largest basin in both area and total 

discharge, and in particular for the complex network of low-order streams that make up the 

vast majority of its watercourses. These streams connect terrestrial and aquatic ecosystems 

throughout landscapes and host much, if not the majority, of the freshwater fish fauna of the 

Amazon basin, which itself is one of the most diverse in the world. Despite the biological 

significance of these stream networks, the consequences of land use change for the 

condition of instream habitat and fish fauna remain very poorly studied and understood. This 

thesis aims to address part of this knowledge gap by investigating the effects of 

anthropogenic disturbances occurring at multiple spatial scales on stream condition and fish 

assemblages from human-modified Amazonian forests in the state of Para, Brazil.

The thesis starts by asking how instream habitat (composed of both water quality and 

physical habitat features) responds to landscape-scale anthropogenic disturbances and 

natural features (Chapter 2). Chapter 3 then investigates changes in fish species richness, 

abundance and composition following changes in both instream habitat and landscape-scale 

anthropogenic disturbance. Last, in Chapter 4 I attempt to disentangle the relative 

importance of those multiscale environmental predictor variables on species-specific 

disturbance responses, and evaluate the potential effectiveness of the Brazilian legislation in 

accounting for them. The thesis uses field data on fish assemblages, instream habitat, and 

natural features of streams as well as data on land use change at multiple scales of the 

surrounding landscapes from satellite images. A total of 99 low-order streams were surveyed
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from five river basins in two large regions (Santarem and Paragominas, both with more than 

1 million ha) in the eastern Brazilian Amazon agricultural-forest frontier.

I sampled a total of 25,526 fish specimens belonging to 143 species, 27 families and seven 

orders. Streams appeared to be exceptionally heterogeneous in their abiotic and biotic 

features. For instance beta diversity of fish assemblages between streams accounted for ca. 

70% of the total (gamma) diversity in each river basin. Overall these findings underscore the 

importance of multiple land use changes and disturbances, at multiple spatial scales, in 

shaping instream habitat, including links between catchment-scale forest cover and water 

temperature, and the impacts of road crossings on channel morphology. Both landscape and 

instream habitat variables were isolated as having a marked effect on stream fish, but 

instream habitat differences were shown to be particularly important in explaining patterns 

of fish species abundance compared to other landscape factors that are more amenable to 

management such as the protection of riparian forest strips. However the results of the 

thesis also highlight the complexity of Amazonian stream systems and the difficulties in 

disentangling the effects of multiscale environmental predictor variables underpinned by 

naturally heterogeneous biophysical characteristics-with instream habitat and fish 

assemblages affected by a broad suite of drivers that often varied across river basins and 

regions.

I use the findings of the thesis to discuss challenges and recommendations for the 

management and conservation of low-order streams in Amazonian human-modified 

landscapes. In particular I emphasize the need for catchment-wide collective management 

approaches that go beyond the protection of riparian forests within individual properties as 

prioritized by existing Brazilian environmental legislation.

Keywords: forest-agriculture frontier, water quality, physical habitat, human-modified 

tropical forests, ichthyofauna, deforestation, road crossings.
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Resumo

Impactos de atividades antropicas em diferentes escalas espaciais 

sobre a condi^ao ambiental e fauna de peixes de igarapes amazdnicos

Mudan$as no uso da terra e degradagao florestal tem resultado em diversas altera^oes dos 

ambientes tropicais ao redor do mundo. Enquanto respostas dos ambientes terrestres 

apontam para severas consequencias para a conservagao da biodiversidade e provisao de 

servi?os ecossistemicos, os impactos sob os cursos de eigua doce permancem bastante 

incipientes. Isto e ainda mais critico para a bacia Amazonica, a maior em vazao e area de 

drenagem do mundo, particularmente para a complexa rede de igarapes (i.e. cursos d'Sgua 

de pequeno porte ou riachos) que constitui a vasta maioria dos cursos d'Sgua. Os igarapes 

fazem a conexao fundamental entre os ecossistemas terrestre e aquStico atrav£s da 

paisagem. Alem disso os igarapes apresentam uma grande parte das esp£cies de peixes, se 

nao a maioria, da bacia que por si so e a mais diversa do mundo. Apesar da incontestcivel 

relevancia desses sistemas aquaticos amazdnicos de pequeno porte, as consequencias das 

mudan^as no uso da terra para o habitat aqueitico e fauna de peixes permanece uma grande 

lacuna de conhecimento. Esta tese tem como objetivo preencher parte desta lacuna de 

conhecimento investigando os efeitos the disturbios antropicos em diferentes escalas 

espaciais na condi^So biologica (habitat aqu£tico e fauna de peixes) dos igarapes de pequeno 

porte em florestas amazdnicas em paisagens antropicamente modificadas do estado do 

Para, Brasil.

O estudo come;a perguntando como o habitat aqu£tico (representado por caracteristicas de 

qualidade da agua e habitat ffsico) responde aos disturbios antropogenicos da paisagem 

(Capitulo 2). Em seguida, no Capitulo 3 sao avaliadas mudan^as na riqueza de esp£cies, 

abundancia e composigao das comunidades frente a alteragdes tanto do habitat aqueitico
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quanto da paisagem. Por ultimo o Capitulo 4 tem como objetivo investigar a importancia 

relativa das mesmas variaveis ambientais preditoras usadas no Capitulo 3 nas respostas 

especie-especificas, avaliando a potencial efetividade da legislagao ambiental brasileira em 

leva-las em consideragao. Foram utilizados dados coletados em campo (habitat aquatico, 

ictiofauna) assim como inform ates sobre mudan^as no uso da terra em diferentes escalas 

espaciais obtidas de imagens de satelite. Foram amostrados 99 igarapes de l 3 a 3- ordens 

distribuidos em cinco bacias hidrograficas e duas grandes regioes (Santarem e Paragominas, 

ambas com mais de 1 milhao de hectares) na Amazonia brasileira oriental, uma regiao de 

desenvolvimento agricola.

Foram registrados 25,526 exemplares de peixes pertencentes a 143 esp£cies, 27 familias e 

sete ordens; sendo os igarapes amostrados altamente heterogeneos em suas caracteristicas 

bioticas e abioticas. Por exemplo, a diversidade beta entre igarapes representou cerca de 

70% da diversidade total (gama) em cada uma das bacias hidrograficas. De forma geral os 

resultados encontrados enfatizam a importancia de diversos usos da terra e escalas espaciais 

em influenciar o habitat aquatico dos igarapes, incluindo associates entre por exemplo 

cobertura florestal na drenagem e temperatura da agua, ou dos impactos de cruzamentos de 

estradas na morfologia do canal. Ambos, paisagem e habitat aquatico tamb£m influenciaram 

as comunidades de peixes, porem o habitat aquatico mostrou-se particularmente 

import ante em explicar os padrdes de abundancia das especies quando comparado a 

caracteristicas da paisagem geralmente consideradas mais propicias ao manejo (e.g. 

protecao da floresta ripSria). Entretanto os resultados da presente tese tambem ressaltam a 

complexidade dos cursos d'agua de pequeno porte da Amazonia e as dificuldades de 

desvendar os efeitos de indicadores de disturbio antropicos em multiplas escalas espaciais 

sustentados por uma inerente heterogeneidade ambiental - ta n to  o habitat aquatico quanto 

as comunidades de peixes foram influenciados por uma ampla gama de variaveis que 

diferiram nas diferentes bacias hidrograficas e regioes.
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Os resultados encontrados sao utilizados para discutir os desafios e recomendagoes ao 

manejo e conservagao desses sistemas amazonicos em paisagens antropicamente 

modificadas. Enfatizando particularmente a necessidade de estrategias coletivas planejadas 

em escala de drenagem, ou seja, que incorporem mais que zona riparia dentro de 

propriedades rurais individuals como priorizado pela legislagao ambiental brasileira vigente.

Palavras-chave. fronteira de desenvolvimento agricola, qualidade da agua, habitat fisico, 

florestas tropicais antropicamente modificadas, ictiofauna, desmatamento, cruzamento de 

estradas.
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Chapter 1. General introduction

1.1 Freshwater biodiversity

Freshwater ecosystems occupy less than 1% of the Earth's surface, make up 0.01% of all 

water, and provide many vital services relevant to human well-being and poverty alleviation 

(Millennium Ecosystem Assessment 2005). They also host a large proportion of global 

biodiversity including ca. 10% of all known species and ca. 33% of all vertebrates (Strayer and 

Dudgeon 2010). Freshwater fish are both highly diverse, with estimates of up to 13,000 fish 

species in total, and have high levels of endemism (L6veque et al 2008). The Neotropical 

region alone is responsible for 5,600 recognised species of fish, equivalent to 10% of all 

vertebrate species, which are distributed across some of the most diverse river basins in the 

world (Leveque et al 2008; Albert et al 2011a).

Furthermore freshwater ecosystems are considered highly threatened, more so than 

terrestrial and marine equivalents. The main drivers of these threats are linked to 

anthropogenic activities leading to habitat degradation, pollution, flow regulation and water 

extraction, fisheries, overexploitation, and alien species introductions (Strayer and Dudgeon 

2010). However, the scientific knowledge about freshwater systems is incomplete, and 

human-induced changes remain poorly understood and may be underestimated. This 

situation is likely to be more critical in tropical systems than temperate ones. First because 

fish species composition is poorly known for most tropical river basins (Dudgeon et al 2006). 

Second, it is in the megadiverse tropics where landscapes are under rapid and penetrating 

pressure from intensive and rapid development of urban and agricultural lands with 

irreversible widespread consequences for natural ecosystems (FAO 2011; Malhi et al 2014).

Most of our understanding of human-impacts on tropical forests has been developed 

from the study of terrestrial systems. In contrast, aquatic systems have received far less 

research attention, with the majority of work to date being concentrated in a small number
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of well-studied regions, such as Costa Rica, Puerto Rico, and Australia (Dudgeon 2008). 

Moreover, work tends to focus on lakes and large rivers that are of interest for navigation 

and power generation, and which host fish species of commercial value (e.g. Ribeiro & 

Petrere Junior 1990; Batista & Petrere Jr. 2003; Ardura et al. 2010). As a result, tropical low- 

order streams have been largely neglected by scientific research, and remain poorly 

understood. An example of this can be seen in a recent review of 62 studies assessing faunal 

responses to land use change in Amazonia (Peres et al 2010) that included only one study 

investigating freshwater systems, in this case, stream fish (see Dias et al. 2010).

Effective conservation strategies should be built on robust scientific information, and 

the lack of research on tropical low-order streams means they generally carry little weight in 

management and conservation planning (Benstead et al 2003). Global conservation planning 

initiatives aim to prioritise conservation efforts to areas that have unique biological richness 

(irreplaceability) and high vulnerability to threats (e.g. biodiversity hotspot regions, 

protected areas). Almost all are defined based on terrestrial parameters (Brooks et al 2006) 

which are unlikely to match priorities set for freshwater systems (Herbert et al 2010; 

Abraham and Kelkar 2012). The available initiatives that account for freshwater systems are 

far more rudimentary than their terrestrial counterparts: for example, an attempt to 

categorize global freshwater units based on fish species distribution and composition, the 

Freshwater Ecoregions of the World, FEOW (Abell et al 2008), is too coarse to assist regional 

management strategies for low-order streams. Furthermore in Brazil, the IUCN Red Species 

List only started including freshwater fish in 2004, whereas similar information was created 

for other biotic groups in 1968 and has been refined since then. Furthermore, data 

availability means that it is much easier to estimate a threat status for large sized and 

commercially valuable fish species than typical low-order stream fish fauna (MMA 2014).

Given the lack of information outlined above, it is critical to investigate how changes in 

tropical forest landscapes translate into changes in stream systems, as this will help guide

3



1. General introduction

effective interventions in watershed management and biodiversity conservation (Moulton 

and Wantzen 2006).

1.2 Tropical streams

"There is no such thing as a 'typical' tropical stream" (Dudgeon 2008)

Tropical streams share some broad similarities in natural features, such as having a high 

water temperature for a given elevation, and often having high levels of hydrological 

periodicity with intense rainfall and runoff (Boulton et al 2008). However, beyond these 

broad generalities, tropical streams, like temperate streams, are extremely heterogeneous in 

their biotic and abiotic characteristics (Dudgeon 2008), making it very difficult to draw 

further generalizations. In addition to any environmental distinctions, the high levels of land 

use change that characterise much of the tropics in recent decades mean that tropical 

streams can often differ markedly in socio-economic aspects (Moulton and Wantzen 2006).

Both temperate and tropical streams networks do have one important defining 

feature that has profound implications for their conservation and management: their 

hierarchical spatial organization that determines how local conditions are highly dependent 

on their regional context (Frissell et al 1986). This network connectivity is not restricted to 

the watercourses themselves; stream habitats, water quality and aquatic biota are all 

influenced by nested landscape scales factors through complex and varying pathways (Allan 

et al 1997; Townsend et al 2003; Wang et al 2006a). For this reason streams and the 

surrounding lands are increasingly seen as "riverscapes" or riverine landscapes (Schlosser 

1991; Fausch et al 2002; Allan 2004).

1.2.1 Streams in human-modified tropical forests

In tropical rainforests conversion of natural habits for agriculture and major infrastructure 

development continues to be the major driver of environmental change (FAO 2011), with
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additional perturbations from widespread timber and wood extraction, changes in fire 

regimes, landscape fragmentation, expansion of second-growth forests, faunal extinction, 

species invasion, increasing CO2 and climate change (Malhi et al 2014). Alongside tropical 

forests encompass the most diverse fish streams yet the poorest known group among 

vertebrates (Albert et al. 2011a). While our understanding of anthropogenic impacts on 

tropical forest ecosystems has increased in the last decade (Gardner et al 2009) many 

challenges remain in disentangling their effects and understanding the combined effect of 

multiple disturbances. Different activities can operate in synergy, resulting in cascading 

effects that can be manifest over larger spatial and time scales. Moreover different 

landscapes are distinguished by distinct regional contexts (e.g. history of colonization) 

leading to divergent environmental responses (Gardner et al 2009).

The understanding of streams hydrological and biogeochemical responses to 

anthropogenic disturbances has improved in recent decades (Neill et al. 2006; Davidson et al. 

2004; Figueiredo et al. 2010; Macedo et al. 2013). Where the effects of tropical deforestation 

on stream systems have been investigated it is evident that there are myriad consequences 

for changes in stream condition. Terrestrial-aquatic links occur through multiple pathways 

(e.g. groundwater flow, surface runoff; Neill et al 2006) and impacts on small watercourses 

can result in cascading effects on larger river networks (Neill et al 2013). Vegetation removal, 

particularly in the riparian zone, can lead to alterations in runoff from upstream areas, 

resulting in increased erosion and sedimentation, a rise in light incidence and consequently 

water temperature, and a loss of organic matter inputs that are a fundamental source of 

nutrient for aquatic biota in heterotrophic tropical streams (Neill et al 2001; Davidson et al 

2004; Neill et al 2006; Figueiredo et al 2010; Neill et al 2011; Macedo et al 2013; Neill et al 

2013). However the vulnerability of the physical stream environment and fish fauna to land 

use change elsewhere in the catchment remains as a major knowledge gap for streams in 

human-modified tropical forests.
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Profound changes in freshwater ecosystems can often have a negative impact on the 

provision of key ecosystem services, such as the buffering of flood waters, the maintenance 

of water flow during dry periods, and maintenance of water quality through natural filtration 

and treatment (Gregory et al 1991; Millennium Ecosystem Assessment 2005; Brauman et al 

2007) often increasing environmental vulnerability and hazard to human populations. For 

instance in Rio de Janeiro metropolitan region, Brazil, land use change together with natural 

resource exploitation and a mountainous relief has resulted in frequent landslides events in 

the last decade (Smyth and Royle 2000).

Although far less studied than abiotic responses, changes in stream biota following 

anthropogenic disturbance are likely to be pervasive. Alterations in energy input from the 

adjacent vegetation (e.g. leaves, large wood debris, small branches, fruits, flowers) in 

combination with an increase in primary production due to a loss in channel shading (e.g. 

algae and macrophytes) can result in shifts in trophic groups and assemblage composition. In 

Madagascan rainforests, for instance, endemic stream insects have been shown to be 

particularly vulnerable to changes in food resources and declined in abundance and biomass 

in deforested landscapes (Benstead et al 2003; Benstead and Pringle 2004). The composition 

offish assemblages responded to deforestation in Ecuadorian Amazonian streams with shifts 

from omnivorous and insectivorous Characiformes in forested areas to periphytivorous 

Loricariidae in deforested sites (Bojsen and Barriga 2002). Rises in water temperature due to 

increased light incidence resulted in changes in the taxonomic composition offish and 

benthic macroinvertebrates in Costa Rican forest streams (Lorion and Kennedy 2008; Orion 

2009). In African streams, the fish-based index of biotic integrity (IBI) followed changes in 

stream physical-chemical condition, which in turn reflected a loss in catchment forest cover 

(Kamdem Toham and Teugels 1999). Moreover human disturbance such as deforestation can 

also result in invasion by exotic fish species (Pusey &. Arthington 2003).
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1. General introduction

1 .3 The study system: the eastern Brazilian Amazon

The Amazonian rainforest is the largest and most biodiverse expanse of tropical forest on 

Earth and covers 4.5 of the total 7 million km2 of the Amazon River basin drainage area. 

Spreading across nine South American countries, the Amazonian rainforest is of local and 

global relevance for the provision of myriad ecosystem services (e.g. biodiversity 

conservation and climate regulation; Malhi et al. 2008; Peres et al. 2010). The Amazon River 

basin is the largest in area and discharge in the world being responsible for 1/5 of the world's 

freshwater that reaches the oceans (Junk 1983). Brazil holds 60% of the river basin, 

representing 50% of its territory, and has a comparatively large responsibility for its 

management and conservation. Until 2012 20% of the original Brazilian Amazon forest 

extent had already been deforested (INPE 2013). Deforestation has been particularly intense 

across the eastern and southern regions of the Amazon that experienced a colonization 

boom in the 1970s. For instance the eastern state of Para, the second largest state in the 

Amazon, accounted alone for 34% (ca. 138.000 km2) of the total loss of Amazonian primary 

forest between 1998 and 2014 (INPE, 2015).

Since 2004 deforestation in Para has been following a declining trend similar to the 

pattern observed across the Brazilian Amazon as a whole in response to an array of different 

strategies and dynamics, including policy interventions, private sector initiatives and changes 

in market conditions (Nepstad et al 2014). Moreover the coverage of protected areas (PA) 

has rapidly expanded in the last few decades, especially during the late 90s and early 2000s; 

Brazil now has the largest PA system of all countries in the world covering 12.4% of its 

territory (WDPA, 2012). However the future of the Brazilian Amazon remains uncertain in 

the context of ongoing pressures and management challenges. For instance forest 

degradation caused by selective logging, fire and edge effects, long overlooked in both 

science and conservation planning and policy, are increasingly recognised as being of 

comparable importance to deforestation (Laurance et al 2002; Barlow et al 2012; Berenguer
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1. General introduction

et al 2014). In addition, Brazilian Amazon PAs are now facing new threats, including 

expansion of the mining and hydropower sectors (Ferreira et al 2014), reflected in a region 

and global trend of downgrading, downsizing and degazettement (Bernard et al 2014;

Mascia et al 2014; Watson et al 2014).

1.3.1 Amazonian streams and their fish assemblages

Beyond the Amazonas river and its main tributaries, the Amazon basin encompasses an

immense and complex network of low-order streams -  with 1st to 3rd order streams 

representing up to 90% of the total river length (Mcclain and Elsenbeer 2001) -  connecting 

terrestrial and aquatic ecosystems across the region (Junk 1983). These streams drain large 

portions of upland (terra firme  in Portuguese) forest areas that are dependent on local 

rainfall (compared to the annual flood pulse associated with large floodplain rivers; Carvalho 

et al. 2007). Unlike some of the main river channels that originate in the Andes, these small 

streams are typically nutrient poor, and depend on the adjacent forest for the input of 

nutrients, organic material flow and for regulation of sediment input (Lowe-McConnell 

1987). Moreover their channels are shaded by dense vegetation, resulting in low primary 

production and low coverage by algae and macrophytes outside of disturbed areas (Figure 

1.1).
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1. General introduction

Figure 1.1. Macrophytes in low-order Amazonian streams due to disturbances to the riparian 

vegetation (A, B, C; Santarem) in contrast to typically shaded channels (D, E; Paragominas).

All pictures taken by Sustainable Amazon Network (Rede Amazonia Sustentavel, RAS) Aquatic 

Team.

The Amazon basin hosts an exceptionally diverse freshwater fish fauna, w ith some 

2,200 species currently known (Reis et al 2003), and estimates suggesting that the true value 

is maybe twice this. The basin is the most biodiverse in South and Central America, which in 

turn has the most diversified freshwater fish fauna in the world, representing some 10% of 

all vertebrate species (Lundberg et al 1998; Vari and Malabarba 1998; Leveque et al 2008). 

Although there is not an assessment of the extent to which low-order streams contribute to 

the total fish diversity of the Amazon basin, there is mounting evidence that they are highly 

diverse, and host a distinct ichthyofauna, including rare and locally specialised species 

(Mendonga et al 2005; Zuanon et al 2006; Carvalho et al 2007). For instance, up to 45 fish 

species can be registered in a single 50m stream segment (Jansen Zuanon and Rafael Leitao 

personal communication). Moreover recent studies suggest a high level of species turnover 

between adjacent Amazonian low-order streams and river basins (Mendon;a et al 2005; 

Albert et al 2011a; Albert et al 2011b; Barros et al 2013).
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1.3.2 Conservation of Amazonian streams

Conservation planning for tropical freshwater systems that are characterized by a daunting 

knowledge gap is challenging. Information from better studied freshwater systems, such as 

temperate streams, may only partly assist. While the basic principles of ensuring catchment- 

scale protection of native vegetation, maintenance of hydrological and natural flow regimes, 

and biodiversity conservation are general to all freshwater systems, regional planning and 

management need to rely on studies tailored to regional conditions (Moulton and Wantzen 

2006).

Many tropical countries have some type of environmental legislation to protect 

freshwater systems against deforestation (Dudgeon 2008). Usually they include restrictions 

in use of the riparian zone along stream and river networks. However it is long recognized 

that a catchment-based management and conservation planning system is needed that can 

account for the importance of different disturbances at different spatial scales (Wang et al 

2006b; Saly et al 2011; Marzin et al 2012; Macedo et al 2014).

The two Brazilian legal instruments directly concerned with freshwater systems are 

the Fisheries Code (Federal Law N° 11.959 June 29th 2009; Brasil 2009) and the Water 

Resources Regulation (Federal Law N° 9.433 January 8th 1997; Brasil 1997). The first focuses 

on aquaculture and fishing activities, and the second on water quality parameters relevant to 

human consumption. However, both only permit a narrow legal perspective of stream 

condition and mask the importance of other degradation processes resulting in potentially 

misleading conclusions about the biotic integrity of stream systems (Karr and Dudley 1981; 

Casatti et al 2006a; Casatti et al 2006b; Paulsen et al 2008).

The paramount piece of legislation regarding the protection of the broader stream 

environment, including adjacent native vegetation, is the Forest Code (Federal Law N°

12.651, May 25th 2012; Brasil 2012). The Forest Code prescribes the majority of
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environmental regulations for private properties, which in turn together encompass 

approximately 50% of the country's native vegetation (Soares-Filho et al 2010). It stipulates 

that 80% of the native vegetation in properties in the Amazon (reduced to 50% in areas that 

have been zoned for agricultural activities) should be protected in Legal Reserves, with an 

obligation to restore the forest area back to 50% for areas that were illegally cleared prior to 

2008. The law further requires that, depending on the property size, a minimum buffer of 

riparian vegetation must be protected alongside all water courses -  although the revised 

Forest Code reduced the extent of riparian vegetation that is mandated to be restored to 5 

m for areas that have been declared for agricultural use. Our lack of a comprehensive 

understanding on how different spatial scales and distinct activities interact and affect 

Amazonian stream condition hinders our ability to inform adequate management and 

conservation strategies, and evaluate the effectiveness of the available regulations.

Brazil is now facing an enormous window of opportunity regarding conservation of the 

Amazon. Successful efforts from the last decade (e.g. expansion of protected areas and 

multiple actions to curb deforestation) are threatened by current proposals that would 

undermine the protection of the biome; it would include for instance allowing mining 

activities to occur in protected areas (Ferreira et al 2014). Furthermore the planned 

construction of additional hydropower plants will make irreversible and widespread changes 

in the Amazon freshwater networks. These threats are superimposed by a recent revision of 

the Forest Code, that clearly meant several steps back on the environmental protection on 

private properties (Garcia et al 2013; Soares-Filho et al 2014) together with a long history of 

weak law enforcement in this vast biome. The trade-offs between economic development 

and environmental conservation can still run towards a more sustainable management of 

the Amazon but it will depend first on the current government environmental attitude 

(Ferreira et al 2014).
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1.3.3 The Sustainable Amazon Network

This thesis is part of the Sustainable Amazon Network (Rede Amazonia Sustentavel, RAS, 

www.redeamazoniasustentavel.org), a multidisciplinary research initiative focused on 

assessing social and ecological dimensions of land use sustainability in the eastern Brazilian 

Amazon (see Gardner et al 2013 for details). Different from much of the existing work in the 

Brazilian Amazon, RAS adopted a mesoscale spatial experimental design (i.e. covering 

hundreds of kilometres and corresponding with the scale of individual municipalities in the 

country). Studies were conducted in two regions, Santarem (including parts of the 

municipalities of Santarem, Belterra and Mojui dos Campos; hereafter STM) and the 

municipality of Paragominas (PGM), which encompass approximately 1 and 1.9 million ha 

respectively.

The two regions have distinct histories of human land use and occupation. STM has 

been occupied by Europeans since 1661, whereas PGM was formally established in 1959. 

However, there are also many similarities. Both regions are relatively consolidated with 

regards to land use change, with decreasing rates of deforestation of primary vegetation, 

although planned highways mean that Santarem will probably experience both increased 

human colonization and agricultural expansion in the near future. Large-scale, mechanized 

agriculture became established in both regions only in the early 2000s and has increased 

rapidly in recent years (usually at the expense of both pastures and secondary forest), 

currently occupying approximately 40,000 and 60,000 ha in Santarem and Paragominas, 

respectively. Today they are both characterized by a diverse patchwork of well-established 

mechanized agriculture, extensive and intensive cattle pastures, silviculture (mostly 

Eucalyptus spp. and Schizolobium amazonicum, especially in Paragominas), densely 

populated small-land holder colonies and agrarian reform settlements, and large areas of 

undisturbed and disturbed primary forests and regenerating secondary forests (Gardner et 

al. 2013; Figure 1.2).
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1. General introduction

Figure 1.2. Santarem and Paragominas mosaic of land-uses: Eucalyptus sp. monoculture (A), 

soya plantation (B), small black peppercorn crop (C), primary forest (D) w ith preserved 

streams (J), manioc plantation (E) w ith associated use of streams (F) for manioc flour 

preparation (G). Logging (H) and fire associated to pasture (I) are also common. Moreover 

streams are largely used by rural families (L, M, N) including fo r small-scale hydropower 

generation (O), as well as cattle watering (K). Pictures D, E, H taken by £rika Berenguer, the 

other ones by RAS Aquatic Team.

The RAS initiative includes a diverse group of research and non-research partners from 

Brazil and other countries, allowing us to perform a comprehensive assessment of the
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aquatic condition of low-order streams. For this reason, I am the first author of the three 

papers to be submitted from this thesis but they will also include other co-authors. My 

supervisors Dr. Paulo Pompeu (UFLA), Dr. Jos Barlow (Lancaster University) and Dr. Toby 

Gardner (Stockholm Environment Institute) gave equal indispensable contributions to all 

steps of this thesis; they were involved since the first plannings of the study (definition of 

research questions, methodological design, implementation of the field work) through data 

analysis, results structuring and discussion, and prof reading of all chapters. Moreover all 

following partners participated one way or another in the data chapters planning and results 

discussion. MSc. Rafael Leitao (from INPA, Brazil) helped coordinating the aquatic field work, 

and conducted fish and instream habitat sampling with me. Dr. Jansen Zuanon (INPA) helped 

in the planning and implementation of the field work and was responsible for overseeing the 

identification of all fish specimens. Dr. Robert Hughes (Amnis Opes Institute and Department 

of Fisheries & Wildlife, USA) and Dr. Phil Kaufmann (EPA, USA) have a large amount of 

experience in planning stream condition assessments, and the analysis of instream habitat 

and fish responses; RH also participated in field work. MSc. Felipe Rossetti de Paula 

(ESALq/USP at the time of the study) and Dr. Silvio Ferraz (ESALq/USP) were responsible for 

processing the satellite imagery and obtaining the landscape predictor variables. Dr. Jim 

Thomson and Dr. Ralph Mac Nally assisted with the statistical analysis. Dr. Joice Ferreira, one 

of RAS coordinators, played a critical role in planning the experimental design and providing 

support for all aspects of the field work.

1.4 Data sampling

The field work was carried out during the dry season (June to August) in two consecutive 

years, STM in 2010 and PGM in 2011. In each region we sampled a total of 99 stream sites 

(all 1st to 3rdStrahler order on a digital 1:100,000 scale map) spread across five river basins:
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Curua-Una, Tapajos and Amazonas in STM, Capim and Gurupi in PGM, and a gradient of 

anthropogenic disturbances (Figure 1.3). We had two teams of five people each working 

simultaneously, resulting in two stream sites sampled per day. Usually each team was 

composed by three postgraduate students each responsible for instream habitat and fish 

data; benthos; or adult Odonata and aquatic Heteroptera, and two local field assistants.

Figure 1.3. Stream sites from Santarem (A, B, C) and Paragominas (D, E, F) spread across a 

gradient of anthropogenic disturbances including preserved (A, D), intermediate (B, E) and 

degraded (C, F) conditions. All pictures taken by RAS Aquatic Team.

In both regions, sampling started after two or three weeks of planning, reconnaissance 

of prospective sampling areas, and training to make sure all teams were fam iliar w ith the 

methods and the region (Figure 1.4). This preparatory work was very important to  ensure 

that we had a complete set of stream samples that encompassed a broad disturbance 

gradient and to ensure that the time in the field was managed efficiently. Our intensive 

sampling method required at least 6 to 8 hours in the site, meaning that previous knowledge 

o f the local area, estimated time needed to reach the site, and established contact w ith 

landowner were essential.
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Figure 1.4. Aquatic team in the field: reconnaissance of prospective sampling areas and 

preparatory work for field sampling. All pictures taken by RAS Aquatic Team.

Stream sites were chosen based on three main criteria: (i) only one site per stream; (ii) 

wadeable streams (with a maximum of approximately 1.5 m depth) to ensure an effective 

sampling; (iii) spread across the entire region to encompass the mosaic of land uses and a 

gradient of disturbance. A preference was also given to select study sites from the same 

areas as the RAS terrestrial sampling, although this was not always possible because some 

areas lacked in low-order streams.

1.4.1 Landscape env ironm enta l variab les

Landscape environmental variables were measured at three different spatial scales (Figure 

1.5): 1) the whole catchment upstream from the stream site ('catchment'), 2) the 100 m 

buffer along the entire drainage network upstream from the stream site ('riparian network'), 

and 3) a 100 m riparian buffer adjacent to the stream site itself ('local riparian'). Catchment 

boundaries, mean elevation, and slope were obtained through use of digital elevation 

models for Santarem (SRTM images w ith 90 m resolution; NASA - National Aeronautics and
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Space Administration) and for Paragominas (TopoData w ith 30 m resolution; INPE - National 

Institute fo r Space Research). The drainage network was constructed using the hydrological 

model ArcSWAT (Soil and Water Assessment Tool extension for ArcGis) for both regions.

  Drainage

□  Catchment

100m buffer (network) 

|  100m buffer (local)800 1.600 2.400 3,200
Meters

Figure 1.5. Schematic of the spatial scales considered to obtain the landscape environmental 

variables. Riparian buffers are referred as network and local.

Percentage of forest cover in each of the three spatial scales was obtained from a 

land use map (Landsat TM and ETM+ images, 30 m resolution, year 2010) (Gardner et al 

2013; Table 1 for a summary of landscape predictor variables). The history of mechanized 

agriculture was calculated from annual MODIS data from 2001 to 2010 (see details in 

Gardner et al 2013). Finally, riverscape fragmentation was measured using the number of 

upstream and downstream road crossings within a 5 km circular buffer from the stream site. 

The road crossings in the drainage network were identified by photo interpretation using 

georeferenced colour Rapideye images (2010 fo r STM and 2011 fo r PGM, 5 m resolution).

1.4.2 Instream  hab ita t

17



1. General introduction

Instream habitat is composed of both the physical and chemical characteristics of streams 

and can be grouped into water properties (hereinafter "water quality") and physical habitat 

properties (e.g. substrate type, channel morphology, sinuosity, slope, discharge, wood and 

cover). To assess the instream habitat we used a protocol first proposed by Peck et al (2006) 

and Hughes and Peck (2008), which provides a standardized, replicable and complete 

assessment of the physical and chemical characteristics of wadeable streams. The resulting 

dataset enables the calculation of several instream variables representing key aspects of 

instream habitat such as stream size, stream gradient, substrate size and stability, instream 

cover complexity, and stream-floodplain connectivity.

Instream habitat was sampled prior to fish sampling, in a 150 m segment. The 

stream site was subdivided into 10 continuous sections, 15 m long, by 11 cross-sectional 

transects (Figure 1.6). Quantitative and qualitative measurements were repeated across 

transects and along sections according to the method described in the thesis' chapters and 

Gardner et al. (2013; Figure 1.7).

Transect Detail

Site-scale Design

Disturbance

Transects (11)

Thalweg Profile 
(100 points total)

Figure 1.6. Schematic of the sampling design of the instream habitat of Amazonian sites.
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Figure 1.7. Measuring instream habitat characteristics in stream sites: substrate type (A), 

water properties (B), channel slope (C), depth (D), and canopy density (E). All pictures by RAS 

Aquatic Team.

1.4.3 Fish

Following the instream habitat assessment, three people sampled the 150 m stream 

segment for 120 min (12 min per section). Each section was isolated using block nets to 

prevent fish escaping during sampling. Fish were sampled using seines (6 x 1.5 m, 5 mm 

stretched mesh size) and semi-circular hand nets (0.8 m in diameter, 2 mm stretched mesh 

size; Figure 1.8). The use of different equipment and collection techniques was applied to 

encompass all kinds of meso and microhabitats (e.g., riffles, pools, undercut banks, open 

waters, wood debris, leaf packs, sand, marginal vegetation), and consequently fish groups.

All catches were made during daylight hours. Specimens were killed in an anesthetic solution
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of Eugenol and then fixed in 10% formalin. In the laboratory, all sampled fishes were 

transferred to 70% alcohol and identified to species level. Voucher specimens are deposited 

at INPA (Instituto Nacional de Pesquisas da Amazonia) and UFLA (Universidade Federal de 

Lavras) fish collections, Manaus and Lavras respectively, Brazil.

Figure 1.8. Fish sampling in low-order Amazonian streams. All pictures by RAS Aquatic Team. 

1.5 Objectives and s truc tu re  o f the thesis

The main objective of this thesis is to disentangle and understand the role played by multiple 

scale anthropogenic disturbances and natural landscape features in changing the condition 

o f Amazonian streams. I used fish and instream habitat field data, and landscape data from 

analyses of satellite imagery integrated into a single framework of analysis to investigate 

three inter-related sets of objectives (Figure 1.9). First, to investigate how instream habitat 

condition changes in response to past local and catchment level anthropogenic disturbances 

(Chapter 2). Second, to  understand the effects of changes to instream habitat, as well as
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riparian and catchment-scale disturbances on the richness, abundance and composition of 

fish assemblages (Chapter 3). Third, to understand species-specific responses to the 

disturbances at different scales, and the implications of scale-dependent responses for 

current Brazilian environmental legislation for the management or private lands (Chapter 4). 

All three chapters are prepared for submission to Landscape Ecology (Chapter 2), Ecography 

(Chapter 3) and Conservation Biology (Chapter 4).
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M e th o d o lo g ic a l  F r a m e w o r k

v.. mU I..

Santarem 
48 stream sites 
3 river basins

Paragominas 
51 stream sites 
2 river basins

( Chapter 2 )

LANDSCAPE FEATURES
Natural

Catchment size, slope 
H ydro logical distance 

Anthropogenic 
Forest cover 

Mechanized agriculture  
Road crossings 

H is to rica l land use

INSTREAM HABITAT
Water quality 

Physical habitat
Stream size 

Stream gradient 
Substrate size and stab ility  
Instream cover complexity 

Stream-Jloodplain connectivity

FISH

f  Assemblage responses j*

Species-specific resp o n s es^

Chapter 3 

( Chapter 4 j

Figure 1.9. Methodological framework representing overall thesis structure and links 

between chapters.
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2 Multi-scale assessment of human-induced 
changes to Amazonian instream habitats
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Chapter 2. Multi-scale assessment of human- 
induced changes to Amazonian instream habitats

2.1 Abstract

Context. Land use change and forest degradation have myriad impacts on tropical ecosystems. 

Yet their consequences for low-order streams remain very poorly understood, including in the 

world's largest freshwater basin, the Amazon.

Objectives. We investigated how the physical and chemical characteristics of the instream 

habitat of low-order Amazonian streams change in response to past local and catchment level 

anthropogenic disturbances.

Methods. We used field data on instream habitat and surrounding landscapes of 99 streams 

from two regions in the eastern Brazilian Amazon. We conducted random forest regression 

trees to assess the relative importance of different predictor variables in determining changes 

in instream condition.

Results. Multiple drivers, operating at different spatial scales, were important in determining 

changes in the physical habitat and water quality of small Amazonian streams. While we found 

few similarities in modelled relationships between the two regions we did find strong support 

for non-linear responses of specific instream characteristics to landscape change, including a 

potential threshold effect of catchment deforestation on water temperature, with a loss of 

more than 20-30% resulting in consistently warmer streams.

Conclusions. Our results highlight the importance of local riparian and catchment-scale forest 

cover in shaping instream habitat, but also underscore the importance of other land use 

changes and activities, such as road crossings and upstream agriculture intensification. In 

contrast to the local and property-scale focus of the Brazilian Forest code, governing 

environmental regulations on private land, our results reinforce the importance of a rigorously

24



2. Changes in the instream habitat

enforced catchment-wide management strategy to protect the integrity of stream 

ecosystems.

Keywords: anthropogenic impacts, water quality, physical habitat, random forest, watershed 

management, deforestation, land use change, freshwater, Amazon basin, tropics

2.2 In tro d u c tio n

Land use change (LUC) is one of the most important factors altering Earth's ecosystems 

(Vorosmarty and Shagian 2000; Foley et al 2005; Ellis 2011) and affecting global biodiversity 

(Butchart et al 2010) and the conservation of ecosystem services (Millennium Ecosystem 

Assessment 2005; Russi et al 2013). The impacts of LUC are of greatest concern in many parts 

of the tropics, where major agricultural and infrastructure development are still undergoing 

rapid expansion, usually at the expense of natural habitats (Davidson et al 2012; Ferreira et al 

2014). While our understanding of the impacts of LUC on terrestrial tropical systems has 

improved significantly in recent decades (Malhi et al 2014), tropical aquatic systems have 

received far less research attention than terrestrial systems, with the majority of existing work 

concentrated in a small number of well-studied regions, such as Costa Rica, Puerto Rico, and 

Australia (Dudgeon 2008).

Recent studies in the Amazon provide mounting evidence that LUC impacts to stream 

hydrobiogeochemistry can occur far beyond the adjacent forest. Terrestrial-aquatic links occur 

through multiple pathways (e.g. groundwater flow, surface runoff; Neill et al 2006) and 

impacts on small watercourses can result in cascading effects on larger river networks (Neill 

et al 2013). The conversion of forests into pasture and croplands is leading to manifold 

consequences for stream environments, such as changes in water quality (temperature and 

concentration of nutrients), transport of dissolved and particulate materials, and stormflow 

(Neill et al 2001; Davidson et al 2004; Neill et al 2006; Figueiredo et al 2010; Neill et al 2011;
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Macedo et al 2013; Neill et al 2013). Such changes can have marked impacts on the biotic 

communities of streams, such as the negative impacts of temperature increases on many 

aquatic groups (Lorion and Kennedy 2009; Orion 2009; Isaak et al 2011; Thomson et al 2012).

However one major knowledge gap in our understanding of the ecology of tropical 

aquatic systems remain virtually unstudied for the Amazonian low-order streams; the 

vulnerability of the physical stream environment to land use change (Casatti et al 2006a; 

Dudgeon 2008). Together, physical habitat and water properties constitute the lotic 

environment of streams (hereinafter called instream habitat), and are frequently used to 

detect and monitor anthropogenic changes to stream condition (Kaufmann et al 1999).

Although changes in the instream habitat have profound effects on biological 

assemblages and stream condition, our current knowledge of LUC effects on stream physical 

environments is mostly confined to temperate zones (Hughes et al 2006; Kaufmann and 

Hughes 2006; Beschta et al 2013) where impacts include bank erosion and sedimentation, 

alterations in discharge, reduced amount of wood and increases in light incidence (Gregory 

et al 1991; Allan et al 1997; Sutherland et al 2002; Allan 2004; Hughes et al 2006; Beschta et 

al 2013; Yeakley et al 2014). Increases in the concentration of fine sediments can reduce the 

availability of food resources and habitat for fish and invertebrates by covering hard 

substrates and filling interstitial spaces (Nerbonne and Vondracek 2001). In addition, the loss 

of riparian vegetation that often accompanies stream degradation can have a negative 

impact on the provision of key ecosystem services, such as the buffering of flood waters, the 

maintenance of water flow during dry periods, and maintenance of water quality through 

natural filtration and treatment (Gregory et al 1991; Millennium Ecosystem Assessment 

2005; Brauman et al 2007).

In general terms, the responses of tropical instream habitat to LUC are likely to mirror 

those of temperate streams, because key processes are governed by similar hydraulic 

mechanisms. For example, changes in channel substrate are influenced by a combination of
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stream slope, geology, discharge, river bedform, and the presence of large wood and other 

organic materials. However, the specific nature of such relationships may be different in 

tropical regions characterized by recent deforestation, rapid increases in mechanization, and 

high levels of river fragmentation from poorly planned infrastructure developments. These 

anthropogenic differences are overlain upon the distinct natural characteristics of many 

tropical streams (e.g. high water temperature at a given elevation, high levels of hydrological 

periodicity with intense rainfall and runoff, distinct structural features of tropical vegetation) 

and high natural heterogeneity (Junk and Wantzen 2004; Ortiz-Zayas et al 2005; Boulton et al 

2008; Boyero et al 2009). A major research challenge therefore, is to untangle how rapidly 

changing disturbance processes interact with high levels of natural environmental 

heterogeneity to influence the structure and diversity of tropical stream habitats in different 

regions and over gradients of land use change (Ramirez et al 2008; Boyero and Ramirez 

2009).

To address these issues, we used field data from 99 stream sites distributed across 

two large regions in the eastern Brazilian Amazon to conduct a multi-scale assessment of the 

effects of deforestation and land use change on instream habitat for a low-order tropical 

stream system. We recorded differences not only in physical and chemical water properties, 

but also aimed for a comprehensive set of physical habitat characteristics of streams, 

including substrate type and channel morphology among others. The Amazon is the world's 

largest remaining area of continuous tropical forest, but is severely threatened by myriad 

human activities including agricultural expansion, increases in the frequency and intensity of 

fire, large infrastructure developments (particularly dams and mining), the unsustainable 

extraction of timber and other forest products, and an unknown number of small dams in 

small streams resulting from road construction or built to provide water for cattle (Asner et 

al 2005; Morton et al 2006; Peres and Palacios 2007; Fearnside and Pueyo 2012; Castello et 

al 2013; Macedo et al 2013; Ferreira et al 2014). Over the past several years, there has been
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a decrease in annual deforestation in the Brazilian Amazon resulting from, among other 

factors, several initiatives led by the government with support from NGOs and the private 

sector, including an increase in law enforcement and punitive actions, an increase in the 

protected areas network, and the establishment of moratoria on soya and beef from 

recently deforested areas (Boucher et al 2013; Nepstad et al 2014). However, despite these 

positive changes, management strategies have largely failed to address the environmental 

damage caused by deforestation and LUC on the hydrological connectivity of streams 

(Castello et al 2013). Moreover, legal protection of stream environments and associated 

riparian vegetation has been diminished following the revision of the Brazilian national 

Forest Code in 2012 (Federal Law N° 12.651; May 25th 2012; Brasil 2012; Garcia et al 2013; 

Soares-filho et al 2014). The conservation status of small streams is of particular concern 

because they receive much less research attention and conservation action compared to 

major river channels and the impacts of large infrastructure developments such as dams. Yet 

small streams are thought to be the most diverse and extensive ecosystem type in the 

Amazon basin (Junk 1983; Castello et al 2013). For instance in the Cuieiras River basin, in the 

central Amazon, first to third order streams represent ca. 92% of the total stream length for 

the entire basin (Mcclain and Elsenbeer 2001).

This study is part of the Sustainable Amazon Network (Rede Amazonia Sustentavel, 

RAS), a multidisciplinary research initiative focused on assessing both the social and 

ecological dimensions of land use sustainability in the eastern Brazilian Amazon (see Gardner 

et al 2013). We collected a detailed dataset on instream habitat characteristics of 99 stream 

sites covering a wide disturbance gradient in two independent regions (Figure 2.1) to answer 

three specific questions. 1) What are the relationships among natural and anthropogenic 

characteristics that may influence instream habitat? (e.g., natural controls such as catchment 

size and slope, and anthropogenic disturbances such as road crossings, mechanized 

agriculture, and deforestation). 2) Which of these predictor variables explain most of the
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observed variation in instream habitat condition? 3) Are relationships between landscape- 

level predictor variables and differences in instream habitat condition consistent between 

regions?
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Methodological Framework
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Figure 2.1. Methodological framework to investigate the response of instream habitat of 

low-order Amazonian stream sites to local and landscape-scale human disturbances (see 

Table 1). Q l, Q2 and Q3 are the research questions referred to in the Introduction; * see 

section "Selection of response variables" for detailed steps.

30



2. Changes in the instream habitat

2.3 Methods

2.3.1 Study system

We studied two regions in the eastern Brazilian Amazon state of Para: Santarem (composed 

by the municipalities of Santarem, Belterra and Mojui dos Campos; hereinafter 'STM'), 

located southeast of the Amazonas and Tapajos Rivers confluence; and Paragominas ('PGM'), 

in the lower Amazon basin. Our sampling design included 48 small stream sites (1st to 3rd 

Strahler order on a digital 1:100,000 scale map) in STM, draining to the Curua-Una River 

basin (36 streams) or directly to the Amazonas (6) or Tapajds Rivers (6); and 51 in PGM, 

encompassing the Gurupi (24) and Capim (27) River basins (Figure 2.1).

The two regions have distinct histories of human land use and occupation. Santarem 

(ca. 1 million ha) has been occupied by Europeans since 1661, whereas PGM (ca. 1.9 million 

ha) was formally established in 1959. Both regions exhibit decreasing rates of primary 

vegetation deforestation since 2005 and have been bisected by federal highways first 

established in the 1960s and 70s, with cascading influences on regional development. Today 

both regions can be characterized as a diverse patchwork of well-established mechanized 

agriculture, local and regional centres for cattle markets, silviculture (mostly Eucalyptus spp. 

and Schizolobium amazonicum, especially in Paragominas), densely populated small-holder 

colonies and agrarian reform settlements, as well as undisturbed and disturbed primary 

forests and regenerating secondary forests (Gardner et al 2013). Stream samples were 

distributed along a gradient of previously known anthropogenic impact based primarily on 

the amount of remnant forest cover in the upstream catchment of each stream (Gardner et 

al 2013).

2.3.2 Sampling

2.3.2.1 Landscape predictor variables

We conducted land use assessments at three different spatial scales (Figure A2.1a): 1) the
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whole catchment upstream from the stream site ('catchment'), 2) the 100 m buffer along the 

entire drainage network upstream from the stream site ('riparian network'), and 3) a 100 m 

riparian buffer adjacent to the stream site itself ('local riparian'). Catchment boundaries, 

mean elevation, and slope were obtained through use of digital elevation models for 

Santarem (SRTM images with 90 m resolution; NASA - National Aeronautics and Space 

Administration) and for Paragominas (TopoData with 30 m resolution; INPE - National 

Institute for Space Research). The drainage network was constructed using the hydrological 

model ArcSWAT (Soil and Water Assessment Tool extension for ArcGis) for both regions.

Percentage of forest cover in each of the three spatial scales was obtained from a 

land use map (Landsat TM and ETM+ images, 30 m resolution, year 2010; see Gardner et al 

2013; Table 2.1 for a summary of landscape predictor variables). Forest included primary 

forest (whether undisturbed or showing signs of disturbance from fire or logging), and 

secondary forest older than 10 years (considered sufficiently developed to provide significant 

hydrological services based on our expert assessments). To calculate forest cover at different 

hydrological distances from the stream site, we first standardized the distances by the 

maximum distance in each catchment to account for differences in catchment size. Then we 

assigned all pixels in each catchment into near, intermediate or distant categories and then 

calculated the percent forest cover in each of the distance categories (Paula et al 2013;

Figure A2.1b).

The history of mechanized agriculture was calculated from annual MODIS data from 

2001 to 2010 (see details in Gardner et al 2013). Two historical land use indicators were 

calculated for catchments using a time-series of land use maps for the last two decades 

(following Ferraz et al 2009): forest change curvature profile (FCCP; the deforestation profile 

curvature) and land-use intensity index (LUI; the mean time since deforestation). FCCP is the 

maximum deviation of the forest change curve relative to the linear model between initial 

and final forest amount over time. These indicators were calculated using Land Use Change
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Analysis Tools (LUCAT), an open source ArcGIS extension (Ferraz et al 2011; Ferraz et al 

2012 ).

Table 2.1. Landscape variables, natural and anthropogenic, used to predict Amazonian 

instream habitat condition. Selected variables are highlighted in bold.

Landscape Acronym Spatial scale Definition

s
3

Area CAT_ARE Catchment Catchment area

O
Slope CAT_SLO Catchment Catchment slope

CAT_FOR Catchment % forest

Land use
NET_FOR

LOC_FOR

Riparian network 

Local riparian

% forest 

% forest

CAT_MAG Catchment % mechanized agriculture

CAT_FOR_N Catchment % forest "near" the stream site

CAT_FOR_l Catchment
% forest "interm ediate" distance to 
the stream site

Hydrological 
distance to  

forest

CAT_FOR_D

NET_FOR_N

Catchment 

Riparian network

% forest "distant" to  the stream site 

% forest "near" the stream site

NET_FOR_l Riparian network
% forest "interm ediate" distance to 
the stream site

.u NET_FOR_D Riparian network % forest "distant" to the stream site
OJCn
o
*

CAT_FCP Catchment
Forest change curvature profile index 
(FCCP)

c
£ CAT_LUI Catchment Land-use intensity index (LUI)
c

Historical land NET_FCP Riparian network
Forest change curvature profile index 
(FCCP)

use indicators
NET_LUI Riparian network Land-use intensity index (LUI)

LOC_FCP Local riparian
Forest change curvature profile index 
(FCCP)

LOC_LUI Local riparian Land-use intensity index (LUI)

Number of road crossings within a 5

UPS_RCS Catchment
km circular buffer upstream of the 
stream site divided by catchment

network
area

fragm entation Num ber o f road crossings within a 5
DWS_RCS Catchment km circular buffer downstream  of the  

stream site divided by catchment area

We estimated riverscape fragmentation using the number of upstream and 

downstream road crossings within a 5 km circular buffer from the stream site. The road 

crossings in the drainage network were identified by photo interpretation using
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georeferenced colour Rapideye images (2010 for STM and 2011 for PGM, 5 m resolution) for 

the study regions. To map these crossings, we identified features in the images related to the 

road crossings (linear lines crossing the drainage network; Jensen 2000). A subset of about 

half of these identified crossings were validated using Google Earth images. All landscape 

analyses were conducted in ArcGis 9.3© (Environmental Systems Research Institute, 

Redlands, CA, USA).

2.3.2.2 Instream habitat response variables

For each site we sampled stream physical habitat and water quality variables during the 

Amazonian dry season in STM (July-August 2010) and PGM (June-August 2011). Each 150 m 

long stream site was subdivided into 10 continuous sections, 15 m long, by 11 cross-sectional 

transects (Figure A2.2). We measured dissolved oxygen, conductivity, pH, and temperature 

with a digital portable meter placed below the water surface in the centre of the site before 

taking measurements inside the channel to prevent disturbance.

We measured physical habitat at the sites following Peck et al (2006) and Hughes 

and Peck (2008). For each section we took 10 longitudinal equidistant measurements of 

thalweg depth; visual quantification of bars, backwaters, side channels, and channel type 

(pool, glide, riffle, rapid, cascade, waterfall or dry channel); channel slope (measured with a 

flexible, water-filled plastic tube); and sinuosity (measured with compass bearings). We also 

recorded the presence of large wood of different size classes in or above the bankfull 

channel of the site.

For each of the 11 cross-sectional transects we measured depth and visually 

estimated cover of substrate type (bedrock, concrete, boulder, cobble, coarse gravel, fine 

gravel, sand, silt and clay, hardpan, fine litter, coarse litter, wood, roots, macrophyte, and 

algae) along five equidistant points transverse to the long axis of the stream. Transect 

characterization also included bankfull width and depth, mean wetted width and depth,
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incision height, undercut bank distance, and bank angle. We assessed habitat complexity at 

each transect in 10 m plots inside the stream channel, using visual estimates of the areal 

cover of filamentous algae, aquatic macrophytes, leaf packs, roots, large wood >30cm 

diameter, brush and small wood, overhanging vegetation <1 m above the water surface, 

undercut banks, boulders, and artificial structures. We measured vegetation canopy cover 

above the channel with a densiometer at the centre of each transect by facing upstream, 

downstream, left and right, as well as by facing both banks near the banks. We calculated 

discharge from mean current velocity (estimated from the travel time of a floating object 

along three known distances) and mean cross-sectional area (measured as mean depth times 

mean width of the three known distances) of the site.

We calculated an initial set of 171 instream habitat response variables from the field 

data based on Kaufmann et al (1999), including 25 channel morphology, 16 channel unit, 5 

channel sinuosity and slope, 28 substrate size and composition, 33 habitat complexity, 60 

large wood, and 4 stream canopy cover variables. Geometric mean substrate diameter and 

relative bed stability were calculated as described by (Kaufmann et al 2008).

2.3.3 Data analysis

2.3.3.1 Selection of landscape predictor variables

Given the hierarchical nature of the land use predictor variables (catchment scale 

encompasses riparian network which encompasses local riparian scale), we expected high 

levels of correlation among them. To limit redundancy and to produce a smaller set of the 

most representative variables of human-associated disturbances, we first conducted a 

principal components analysis (PCA) to identify which variables contribute the most towards 

distinguishing the landscape disturbance characteristics of different streams; then we 

excluded the variables highly correlated with those metrics (rpearSon> 0.7).
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2.3.3.2 Selection of instream habitat response variables

From the total set of 1 7 1  instream habitat response variables, we selected 2 1  for further 

analysis, ensuring that we included metrics for each key aspect of stream physical habitat 

(according to Kaufmann et al 1 9 9 9 ) :  stream size, stream gradient, substrate size and stability, 

instream cover complexity, and stream-floodplain connectivity. Our selection process 

involved eliminating variables that had more than 9 0 %  of zero values (n= 2 5 )  (i), that were 

highly correlated with other variables (rPearson> 0 .7 )  (ii), that represented the similar 

underlying information included in other variables (e.g. number and volume of wood or 

proportion and count of an individual substrate) (iii), combining those that represented 

closely related features (e.g. % sand substrate and % fine combined into % sand+fine) (iv), 

and finally using our specialist judgement to select from the remaining variables the ones to 

represent the stream physical habitat (v). Together with the 2 1  physical variables we 

considered four water quality variables to yield a total of 2 5  instream habitat response 

variables (Table 2 .2  and A 2 .1 ) .

Table 2.2. Acronyms and definitions of instream habitat (water quality and physical habitat 

features) response variables of Amazonian streams.

Instream habitat Definition

£ TEMP W ater tem perature -  °C
o3o- DO Dissolved oxygen -  mg/L

Si PH pH

i COND Electrical conductivity -  pS/cm

Substrate

FINE Streambed surficial fines < 0.6 mm diam eter -  % areal cover

£ SAFN Streambed surficial sand + fines < 2 mm diam eter -  % areal cover
-c
~Q FNGR Streambed surficial fine gravel 2 to 16 mm diam eter -  % areal cover
O
£ Streambed surficial substrate coarse gravel and larger (> 16 mm

5 diam eter) -  % areal c o ver)
LogioStreambed substrate particle geometric mean diam eter -  mm -

Dgm
(Kaufmann et al 2008)
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Table 2.2. Continued.

Instream habitat Definition

Cover and wood

AMCV In-channel algae and macrophytes -  % areal cover

NTCV
In-channel natural cover (wood, live trees and roots, leaf packs,
overhanging vegetation, undercut banks, boulders) -  % areal cover

W OOD W ood volume -  m 3 /m 2 w etted channel area

Channel morphology

W DDP M ean (wetted width x thalweg depth) -  m 2

DPTH Standard deviation of thalweg depth -  cm

THDP Thalweg depth ratio at bankfull/low flow -  dimensionless

1 BKAN Standard deviation of bank angle -  %
o-c BKWD Ratio: Bankfull width to bankfull thalweg depth -  dimensionless
"o.0 RP100 M ean residual depth at thalweg -  (m 2/m )/c m

$ SINU Channel sinuosity -  dimensionless

SLOP Channel slope- %

FAST Channel fast w ater (% riffle + rapid + cascade + waterfall)

Other

DSCH Low flow  season discharge measured in the field -  m 3/s

LRBS
Logio of relative bed stability estimated at bankfull flow  conditions 

(Kaufmann et al. 2008, 2009)

LDMB
Logio o f critical substrate diam eter (maximum mobile diam eter) at 
bankfull flow conditions (Kaufmann et al. 2008, 2009)

SHAD Canopy density (shading) measured at mid-channel -  %

2.B.3.3 Relationships between land use change and instream habitat

To evaluate how neighbouring land use and land use change influence the physical and 

chemical habitat conditions we modelled instream habitat variables as functions of 

anthropogenic (land use and land use change) and natural (catchment area and slope) 

predictor variables. We used random forest (RF; from Breiman 2001) models, which allow 

complex interactive and non-linear response-predictor relationships, and have excellent 

predictive performance (Prasad et al 2006; Smith et al 2011). Random forests produce an 

ensemble of regression trees, where each tree is fitted to a bootstrap sample of the data, 

and each partition within a tree is split on a random subset of the predictor variables (Ellis et 

al 2012). The data not used to build a tree in each bootstrap sample, called out-of-bag (OOB)
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sample, is used to calculate cross-validation performance statistics and measures of variable 

importance (Ellis et al 2012). We calculated a pseudo-r2 value as 1- MSE/Var(y), where MSE is 

the mean squared error of the out of bag predictions (Ellis et al 2012). This value estimates 

the proportion of variation that can be reliably predicted by the ensemble model. The 

relative importance (Rl) of individual variables was calculated as the mean percentage 

increase in MSE when a variable was randomly permuted, using the conditional permutation 

method in the R 'extendedForest' library (Smith et al 2011), which reduces bias when 

predictors are correlated. Conditional Rl values were computed from the conditional 

permutation distribution of each variable, permuted within three partitions of correlated 

[rPearson > 0.5) variables (see Ellis et al 2012). All models were fitted with 10,000 trees, with 

one third of variables randomly sampled as candidates at each split (one variable selected if 

total variables < 3). Variables with negative relative importance values were excluded from 

final models.

We fitted three RF models for each instream habitat response variable in each 

region: one model using all candidate predictor variables, one using natural variables only 

(catchment area and slope) and one using anthropogenic (LUC) variables only. Comparisons 

of pseudo-r2 values for the three models, together with the Rl values for individual variables, 

provide insights into the relative influence of anthropogenic and natural predictors, and their 

interactions, on instream habitat variables. All analyses were performed in R statistical 

environment (R Core Team 2013).

2.4 Results

2.4.1 Variation in landscape characteristics of stream sites

The first two PCA axes accounted for 65% (STM) and 57% (PGM) of the variation in landscape 

predictors of stream site conditions (Figure 2.2, Table A2.1 and A2.2). For both regions, high 

correlations (rPearson> 0.7) among predictor variables and PCAs were consistent, allowing the
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selection of the same set of relatively uncorrelated variables. Correlations were particularly 

high between catchment and riparian network scale variables, for instance r Pearson between 

catchment forest (CAT_FOR) and riparian network forest (NET_CAT) was 0.91 for STM and 

0.83 for PGM (Table A2.3 and A2.4). We decided to consider the catchment scale throughout 

the study as it encompasses the riparian network zone and provides a broader 

representation of the landscape.
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Figure 2.2. Contribution of landscape predictor variables to the first two PCA axes for 

Santarem (A) and Paragominas (B). Variables in bold were selected for further analysis, with 

excluded highly correlated metrics listed below each of them.
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The subset of variables with low correlations with other predictor variables in both 

regions (Figure A2.3) were: catchment slope (CAT_SLO), catchment area (CAT_ARE), 

percentage of catchment forest (CAT_FOR), percentage of local riparian forest (LOC_FOR), 

local forest change curvature profile (LOC_FCP), catchment mechanized agriculture 

(CAT_MAG) and number of upstream road crossings (UPS_RCS). These variables were used 

as the subset of both natural (catchment area and slope) and anthropogenic predictors of 

variability in the instream habitat response variables.

2.4.2 LUC influences on stream site condition

Random forest models explained some of the observed variance (1.7 to 49.2% in STM and

2.1 to 34.7 in PGM) in 14 out of the 25 instream habitat variables in each region when all 

landscape predictors, anthropogenic and natural, were included in the models (Table 2.3, 

Table A2.5). In general, the inclusion of all predictor variables resulted in better model fits 

than when only natural or only anthropogenic where included, indicating that LUC effects 

can depend on differences in the natural characteristics of a given region. The anthropogenic 

variables alone accounted for 0.8 to 27.6% of the variance in the instream habitat responses 

for STM and 1.1 to 34.7% for PGM. Response variables that were partly explained by LUC 

characteristics in each region included variables from all major instream habitat categories: 

water quality, substrate, cover and wood, channel morphology, and other features.

Table 2.3 Performance of random forest (RF) models showing the percentage of variation of 

the instream habitat response variables explained (pseudo-R2) by models that included all 

predictor variables (All), only the anthropogenic (Ant) and only the natural variables (Nat). 

Note that strong interactions between anthropogenic and natural predictor variables can 

result in pseudo-R2 values for the combined (All) model that exceed the sum of values for
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anthropogenic and natural models (e.g. Dgm in STM; highlighted in light grey). Conversely, the 

combined model can have lower pseudo-R2 values than anthropogenic (medium grey) or 

natural (dark grey) models because the random inclusion of weaker predictors in individual 

trees may lower the overall mean predictive performance (e.g. OD in STM and COND in PGM 

respectively). Values in parentheses in "All" columns show the % contribution of 

anthropogenic variables to total variance explained in combined models.

S TM P G M
uiMmdm iid u iid i

All (% Ant) Ant Nat All (% Ant) Ant Nat
TEMP 5.5 (100) 5.3 0 34.7 (100) 35.2 0

Water DO 1.7(88) 7.7 0 0 0 0

COND 2.3 (35) 0 0 6.8 (28) 0 16.23

FINE 0 0 9.3 6.6(53) 3.4 0.7

Substrate
SAFN 0 0 0 13.5 (44) 6 3.6

FNGR 6.6 (55) 1.7 6.9 0 0 0

D g m 14.6(55) 8.2 2.8 0 0 0

Cover and wood WOOD 12.5 (100) 9.5 0 11.7 (62) 1.7 0

WDDP 31(47) 17.0 9.6 3.2(50) 0 0

DPTH 28.6(59) 18.9 12.4 9.7 (30) 0 0

Channel
morphology

BKAN 0 0 0 6.7(75) 0 3.9

BKWD 5.1 (78) 2.0 0 27.9(45) 3.1 0

RP100 37.2 (40) 16.5 44.6 2.1(52) 0 8.2

SLOP 35.8(37) 12.4 40.0 0 0 0

FAST 0 0 1.9 8.1 (96) 12.3 0

DSCH 49.2 (56) 33.1 40.2 3.8 (87) 8.7 0

Other LDMB 9.2 (67) 14.4 0 2.8 (28) 3.1 0.1

SHAD 18.8(59) 25.8 0 33.7(100) 34.3 0

Variability in ten instream habitat variables were at least partly explained in both 

regions: temperature (TEMP), conductivity (COND), wood (WOOD), bankfull w idth-to-depth 

ratio (BKWD), standard deviation of thalweg depth (DPTH), wetted width * thalweg depth 

(WDDP), residual depth at thalweg (RP100), discharge (DSCH), critical diameter of substrate 

(LDMB), and mid-channel shading (SHAD) (Table 2.3). Among those, five had the same main
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predictor in both regions: local riparian forest cover for SHAD, WOOD and LDMB, road 

crossings for COND, and local forest change curvature profile for DSCH (Table A2.5).

The degree to which the predictor variables explained the instream habitat metrics 

differed between regions. For STM, seven response variables had more than 10% of their 

variation explained by anthropogenic predictors: discharge (27.6%), standard deviation of 

thalweg depth (17.0%), residual depth at thalweg (14.7%), wetted width x thalweg depth 

(14.6%), slope (13.1%), wood (12.5%), and mid-channel shading (11.0%; Table 3). For PGM, 

temperature (34.7%), mid-channel shading (33.7%), and bankfull width-to-depth ratio 

(12.5%) were the instream habitat response variable best explained by the anthropogenic 

predictors.

2.4.3 Influence of region and landscape scale on instream habitat condition

In both regions, variation in instream habitat response variables was driven by many 

predictors, with each explaining small amounts (Figure 2.3). In PGM, forest cover-related 

predictors were more important than other variables in explaining variability in instream 

habitat. On the other hand, in STM road crossings appeared to be the most important 

influence on many instream habitat response variables. Also in STM, mechanized agriculture 

was retained in most of the predictive models, but in PGM, only one instream habitat 

response variable was explained by CAT_MAG.

Partial contributions of single predictors were smaller in STM than in PGM. Local 

riparian forest cover (LOC_FOR) was positively related to wood and accounted for 11% of 

observed variance, with a marked increase in the volume of wood observed when forest 

cover exceeded 80% (Figure 2,4A). Time since local deforestation (LOC_FCP) was responsible 

for 9.5% of the variation in discharge, without a clear directional association (Figure 2.4B). 

Road crossings (UPS_RCS) were negatively related to wetted width x thalweg depth (WDDP), 

an indicator of wetted channel volume, and explained 10.8% of its variance (Figure 2.4C).
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For PGM, local forest accounted for 20.2% of the variance in mid-channel shading, 

showing a consistent positive association (Figure 2.4D). Temperature had a negative 

relationship w ith forest cover at the catchment scale, explaining 20.0% of the observed 

variance (Figure 2.4E). The partial plots suggest there is a potential threshold at ca. 20-30% 

of catchment forest loss above which water temperature is consistently warmer than in 

more forested areas. For bankfull w idth-to-depth ratio (BKWD), local riparian forest cover 

was the most important predictor, explaining 10.6% of its variance (Figure 2.4F), w ith wider 

or shallower channels associated with stream sites having deforested adjacent areas.
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Figure 2.3. Representation of random forest (RF) models showing the percentage of variation 

o f the instream habitat response variables explained (pseudo-R2) by anthropogenic predictor

43



2. Changes in the  instream habitat

variables in Amazonian stream sites. Results are from models that included both 

anthropogenic and natural predictor variables ('All' models shown on Table 2.3).
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Figure 2.4. Raw data distribution (dots) and partial contribution of landscape predictor 

variables (lines) to instream habitat in Santarem (A, B, C) and Paragominas (D, E, F).

2.5 Discussion

Our study is the first comprehensive, quantitative, multi-scale assessment o f the 

consequences o f LUC on the instream habitat of small Amazonian streams, including both 

water quality and physical habitat characteristics. Drawing on detailed landscape and habitat
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2. Changes in the instream habitat

data from 99 Amazonian stream sites we confirm the importance of linkages between 

human activities and some key instream habitat response variables such as water 

temperature, discharge, and the volume of wood, with evidence of associations following 

upstream deforestation. However, our data also highlight the heterogeneous nature of such 

stream systems and the difficulties of identifying specific predictor variables; i.e., most 

habitat variables were affected by a broad suite of correlated predictors that varied between 

regions. We discuss our findings by first comparing them to a priori expectations and then by 

assessing some of the significant challenges involved in understanding the links between 

anthropogenic disturbances and the instream habitat of tropical streams. We draw on the 

relationships observed in our data to suggest priorities for the management of land and 

stream systems to improve the condition of small streams in human-modified tropical forest 

landscapes.

2.5.1 Do human-induced disturbances influence tropical instream habitats as 

expected?

The importance of landscape change in determining changes in instream habitat has been 

the focus of far more research in temperate than tropical streams (Allan 2004; Hughes et al 

2006; Beschta et al 2013; Yeakley et al 2014). In our assessment of small Amazonian streams 

we found clear evidence that human-induced landscape disturbances were associated with 

noticeable changes in all types of instream variables - including water quality (e.g. 

temperature and conductivity in both regions), substrate (e.g. mean substrate diameter in 

STM and sand+fines in PGM), fish cover and wood (e.g. volume of wood in both regions), 

channel morphology (e.g. residual pools and standard deviation of thalweg depth in both 

regions), and other attributes (e.g. discharge and channel shading in both regions).

The strongest effects that we observed are consistent with other findings for 

temperate and tropical streams. Water temperature was strongly and positively related to
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increases in upstream deforestation, with a potential threshold observed in PGM where 

streams with less than 80% upstream forest cover had higher water temperatures. Increases 

in water temperature in response to deforestation have already been documented for 

rainforest streams (Figueiredo et al 2010; Macedo et al 2013), as have temperature-related 

changes in the taxonomic composition offish and benthic macroinvertebrates (Lorion and 

Kennedy 2008; Orion 2009). Observed temperature increases in temperate streams have 

also been known to affect several aspects of the life-histories of aquatic species such as 

development, metabolism, growth and survival (Gillooly et al 2001; Gillooly et al 2002; Isaak 

et al 2011; Neuheimer et al 2011).

We also found that local riparian forest cover was particularly important in 

determining the volume of wood, although a number of other drivers also appeared to 

influence this habitat feature (e.g. mechanized agriculture in STM; catchment forest cover 

and road crossings in PGM). A positive link between vegetation and wood input is not 

surprising but the influence of catchment level drivers highlights that these effects can occur 

across multiple scales. Paula et al (2013) also found that local riparian forests were 

important sources of instream wood in tropical streams, but noted the importance of forests 

along the upstream riparian network zone and the entire upstream catchment because of 

downstream transport of wood. Large wood is a critical factor in determining long-term 

channel structural complexity (e.g. by forming pools and cascades), substrate composition 

for faunal colonization, and sediment and leaf litter accumulation (Wright and Flecker 2004; 

Milner and Gloyne-Phillips 2005; Kaufmann and Faustini 2012).

Effects of land use change on instream habitat were not always consistent between 

studied regions. Some changes in instream habitat that were evident in one region were not 

in the other (e.g. response of temperature to forest cover and land use change effects on 

substrate size and percentage of fine gravel). These differences emphasize the complexity of 

relationships between land use change and instream habitat, and serve to illustrate the
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2. Changes in the instream habitat

variability in responses for regions that have different land use histories. Moreover, this 

complexity highlights the difficulty of any a priori process to select candidate variables to 

describe both drivers and responses to disturbance, and hence the need to survey a wide 

range of measures.

2.5.2 Challenges in understanding the influences of anthropogenic 

disturbances on instream habitat in tropical streams

Identifying key landscape-level drivers of environmental change in freshwater systems, and 

their spatial and temporal scales of influence is critically important for informing 

management and conservation strategies (Wang et al 2006a). This is particularly the case in 

areas such as the frontier regions of the Brazilian Amazon that are experiencing rapid 

changes in land use, such as the conversion from native vegetation to agriculture. Here we 

examine some of the key challenges in drawing these linkages, and discuss implications for 

both policy development and the design of future studies.

2.5.2.1 Disentangling the effects of anthropogenic disturbance from natural 

variation among Amazonian streams

The high level of multi-collinearity between natural stream characteristics and 

anthropogenic disturbance underlines the difficulties of disentangling the relative 

importance of individual factors in determining changes in the physical and chemical 

attributes of streams (Allan 2004). Moreover, we found that Amazonian streams are highly 

heterogeneous in their natural physical and chemical characteristics, hindering our ability to 

detect the effects of specific disturbance signals. This is especially the case regarding stream 

sediment characteristics, which are strongly influenced by both natural landscape features 

and the loss of native vegetation. For example, we found that the percent of sand and fines 

at stream sites varied substantially within both completely forested and largely deforested (<
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10% forest cover) catchments in both regions. This may have resulted from at least three 

factors: 1) our definition of forest, as primary forests and second-growth forests that are 

over 10 years in age may be too broad; 2) land use change itself is not random, and forests 

on sandy soils were avoided for agriculture; and 3) both regions are underlain by paleo-lake 

bed sediments with high levels of sand and fines. In Santarem, stream sites draining forested 

catchments had 31-40% of sand and fines compared to 10-31% for deforested catchments. 

However in Paragominas, the variation was greater for forested catchments (22-63%) and 

encompassed the range observed in deforested catchments (36-47%). For relative bed 

stability (LRBS), an indicator of anthropogenic sedimentation (Kaufmann and Hughes 2006; 

Kaufmann et al 2009), the values were not consistent between regions regarding response to 

disturbance. Deforested streams in Paragominas showed similar LRBS values (-1.4 to -2.9) as 

forested streams (-1.1 to -2.5), whereas in STM LRBS appeared to be reflecting disturbance 

as it was markedly different for forested (-1.4 to -2.2) and deforested (-3.5 to -3.7) streams. 

Increasingly negative LRBS values indicate greater instability and increased erosion, 

accumulation, and/or movement of sediments (Kaufmann et al 1999; Kaufmann et al 2009).

2.5.2.2 Cumulative effects of multiple drivers

Identifying and understanding specific landscape level disturbances that influence instream 

habitats across different land uses and spatial scales is of particular importance for guiding 

stream conservation and management strategies (Heitke et al 2006; Wang et al 2006b). We 

found that multiple drivers, at multiple spatial scales, were consistently linked to changes in 

the stream environment. Our findings highlight the importance of considering catchment 

forest cover as well as local riparian vegetation and that of the entire upstream channel 

network to understand changes in the instream habitat conditions.

The loss of riparian vegetation has a long known detrimental impact for several 

physical and chemical stream processes, such as sediment filtration, bank and flow stability,
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and channel shading with resultant changes in temperature and primary production 

regulation (Karr and Schlosser 1978; Peterjohn and Correll 1984; Osborne and Koviacic 1993; 

Sweeney 1993). However, there are contrasting results regarding whether forest loss at the 

catchment (Roth et al 1996; Marzin et al 2013) or local riparian (Nerbonne and Vondracek 

2001; Wang et al 2006b; Saly et al 2011; Macedo et al 2014) scales is more important in 

influencing instream habitat and aquatic biota. As Wang et al (2006) argued, the relative 

importance of catchment versus site scale depends at least partly on the range of variability 

in habitat and disturbance occurring at each scale.

It is very difficult to separate riparian from catchment-scale effects (Richards et al 

1996; Burnett et al 2006; Saly et al 2011; Marzin et al 2013; Paula et al 2013; Macedo et al 

2014), especially in forested systems like Amazonia where changes can be highly correlated. 

We demonstrated that other non-forest catchment-wide impacts were also associated with 

significant changes in instream habitat, and should therefore be considered in the 

management and planning of stream conservation strategies. Drivers not linked to forest 

cover, such as mechanized agriculture and road crossings, accounted for an important part 

of the instream habitat change, and thus are additional important considerations for 

conserving and managing Amazon stream systems. Mechanized agriculture explained over 

2% of the variation in instream habitat response variables in STM (standard deviation in 

thalweg depth, bankfull width to depth ratio, substrate critical diameter; Table A2.5). Road 

crossings upstream of the stream sites explained up to 7.5% of the variation in instream 

habitat response variables in STM (e.g. wetted channel width x depth, standard deviation of 

thalweg depth, and mean residual thalweg depth; Table A2.5). Road crossings on small 

streams for private access and water use are considered as low environmental impacts by 

the Brazilian Environmental Council (CONAMA 2006; resolution #369) in contrast to our 

results and those of Macedo et al (2013) and Neill et al (2013). In our study, roads often 

crossed streams using undersized and perched culverts, creating small reservoirs upstream
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of the road. We also found small dams built to provide water for cattle, small-scale fish 

production, and local hydroelectric power generation, all of which are commonly overlooked 

as serious disturbances to habitat and biota (Castello et al 2013; Macedo et al 2013; Neill et 

al 2013). Macedo et al (2013) estimated that there are about 10,000 small impoundments in 

the Upper Xingu basin, and demonstrated that together with deforestation, their density 

accounted for 43% of the basin's water temperature increase. Because such dams are prone 

to failure, hazardous to humans, expensive to repair, and often hinder or preclude fish 

migrations, they are targets for removal throughout the USA (Hughes 2012). Our results lend 

support to similar efforts in tropical regions.

2.5.2.3 Accounting for the full gradient of landscape disturbance

Both study regions are characterized by a complex mosaic of land uses: undisturbed and 

varyingly disturbed primary forests (affected by fragmentation, logging and fire), 

regenerating secondary forests, and a continuously varying patchwork of different 

agricultural systems (e.g. cattle ranching, large-scale soybean plantations, and small-scale 

manioc and black pepper plantations). Moreover, because both regions have retained a 

relatively high level of catchment forest cover (69% in Paragominas and 60% in Santarem), 

we sampled few heavily deforested catchments (only two catchments with < 10% forest 

cover in STM and three in PGM), and none of the study catchments were dominated by 

urban areas. The fact that severely degraded streams were absent from the catchments we 

surveyed suggests that environmental regulations may have helped avoid the most extreme 

degradation from occurring, e.g. through total removal of riparian network vegetation. We 

also found that instream habitat variables exhibited distinctly non-linear responses to 

disturbance and that the potential threshold for change in some variables occurred only at 

high levels of disturbance. This might be the case for variables that had similar response 

between the two regions yet had a weak response to disturbance (e.g. water conductivity in
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response to road crossings and critical diameter of stream substrate in response to changes 

in local riparian forest cover). For example, Biggs et al (2004) detected changes in nutrient 

levels only when deforestation was higher than 66%; and Casatti et al (2006) found a 

stronger decline in physical habitat quality than water quality in degraded tropical savannah 

streams.

We also could have included more detailed information on land use change and 

natural predictors, because in both regions we found a considerable amount of unexplained 

variance in instream habitat. For example, the highest explained variance for a single 

instream habitat response variable was 49% in STM and 35% in PGM, whereas it was less 

than 15% for most of them. However the level of detail in predictor and response variables is 

always under cost and time constraints (Hughes and Peck 2008). Moreover, there are 

inherent difficulties associated with describing stream-relevant anthropogenic disturbance 

across landscapes with such high levels of environmental heterogeneity within and between 

different land-uses than we were able to capture. For example, we did not account for forest 

degradation (i.e. fire, fragmentation and selective logging), which is widespread in the study 

region, results in changes in vegetation structure (Berenguer et al 2014), and contributes to 

instream habitat degradation. Although we accounted for deforestation and mechanized 

agriculture, other types of forest and pasture management and crop types could have been 

described in more detail if more accurate GIS data had been available. For example, water 

quality in Amazonian streams can respond differently according to different land uses, such 

as forest clearing followed by slash and burn, pasture, or soybean fields (Neill et al 2001;

Biggs et al 2006; Biggs et al 2008; Macedo et al 2013; Neill et al 2013).

2.5.2 .4  Time-lags in disturbance responses

The ecological consequences of anthropogenic disturbances may take years to become fully 

apparent in ecosystems (Hylander and Ehrlen 2013). Our results indicate that the time since

51



2. Changes in the instream habitat

deforestation was an important predictor of instream habitat change in streams (as 

indicated by the importance of the local deforestation curvature profile index, LOC_FCP, in 

explaining the response of several habitat variables, see Table A2.5). Moreover, many of the 

more severe land use changes in both regions are relatively recent, the effects of which may 

yet to be manifested. Paragominas was founded in 1965 but timber extraction only 

intensified in the 1980s, when it was considered the largest center of timber extraction in 

Brazil and one of the largest in the world (Verissimo et al 1992), and mechanized agriculture 

only grew significantly in the last ten years. Despite being founded in 1754 Santarem also has 

experienced a rapid increase in human population and rates of forest conversion only since 

the 1970s (Amorim 1999), w ith mechanized agriculture becoming relatively common in the 

2000s.

Some instream habitat and ecosystem metabolism features are known to exhibit 

much slower responses to disturbance than others (McTammany et al 2007). We would 

expect water temperature to increase rapidly as a result of the clearance o f riparian 

vegetation, but changes in channel morphology usually respond more slowly. For example, 

the Willamette River, Oregon was snagged and channelized mostly between 1870 and 1910 

and converted from an anastomosed, 2-9 km wide floodplain river to the present mostly 

single-thread system, resulting in the loss of over 75% of the upper river shoreline (Sedell 

and Froggatt 1984). Beschta et al (2013) showed how long-term livestock grazing in the 

western USA resulted in loss o f stream riparian vegetation, bank erosion, channel incision 

and widening. Because such changes typically occur slowly over multiple human generations, 

many observers often fail to recognize them as resulting from land and channel uses.

Finally, we also found that anthropogenic metrics explained less than 10% of the 

variability in all substrate and wood metrics. Working in southwestern Oregon, USA, Burnett 

et al (2006) reported that time delays in the decomposition of wood from prior tree 

mortality and upstream wood input can obscure potentially important linkages between
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changes in wood and logging disturbance. These effects may be even greater in the tropics, 

where many trees have very high wood densities and very slow rates of decomposition. Such 

time lags in stream physical habitat responses help explain why historical land use of 

temperate catchments may account for more biological variability than current land use 

(Harding et al 1998; Brown et al 2009).

2.5.3 Implications for the conservation management of Amazonian streams

Our results highlight some of the inadequacies of current Brazilian legislation in protecting 

stream environments and point to ways in which their management and conservation could 

be improved. Two Brazilian legal instruments directly concerned with instream habitats are 

the Fisheries Code (Federal Law N° 11.959, June 29th 2009; Brasil 2009) and the Water 

Resources Regulation (Federal Law N° 9.433, January 8th 1997; Brasil 1997). The first focuses 

on aquaculture and fishing activities, and the second on water quality properties relevant to 

human consumption. However, both only permit a narrow legal perspective of stream 

condition and mask the importance of other degradation processes resulting in potentially 

misleading conclusions about the biotic integrity o f stream systems (Karr and Dudley 1981; 

Casatti et al 2006a; Casatti et al 2006b; Paulsen et al 2008).

The most important piece of legislation regarding the protection of broader stream 

environment, including adjacent native vegetation, is the Forest Code (Federal Law 12.651, 

May 25, 2012; Brasil 2012) that prescribes the majority of environmental regulations for 

private properties that together encompass approximately 50% of the country's native 

vegetation (Soares-Filho et al 2014). The Forest Code stipulates that 80% of the native 

vegetation in properties in the Amazon (reduced to 50% in areas that have been zoned for 

agricultural activities) should be protected in Legal Reserves, w ith an obligation to restore 

the forest area back to 50% for areas that were illegally cleared prior to 2008. The law 

further requires that, depending on the property size, that a minimum buffer of riparian
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vegetation must be protected alongside all water courses -  although the revised Forest Code 

reduced the extent of riparian vegetation that is mandated to  be restored to 5 m for areas 

that have been declared for agricultural use. Our results highlight two important limitations 

in the effectiveness of this legislation to conserve stream environments. First, we have 

identified the importance of upstream forests -  and not just riparian forests - in determining 

local stream habitat conditions, demanding a more collective-action (versus individual) 

approach to achieving compliance across neighbouring landowners to protect blocks of 

forest in individual catchments. Second, identifying the strong influence of up and 

downstream habitat fragmentation from road crossings, as well as mechanized agriculture, 

on instream physical environments highlights the need for legislation to  go beyond the 

protection of only riparian forests and address the management of entire drainage networks 

(Abell et al 2007; Castello et al 2013).
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2.6 Appendix Chapter 2 (A2)

The tables and figures presented here will be submitted as supplementary material to  the 

Chapter 2 manuscript.

Table A2.1. Mean, range, and standard deviation of landscape predictors and instream 

habitat variables of Santarem and Paragominas stream sites.

Predictor
and

response Unit
Santarem Paragominas

variables Mean Min Max SD Mean Min Max SD

Landscape

CAT_ARE km2 2871.67 83.02 22726.0 4710.08 1253.99 44.30 5045.32 1236.25
CAT_SLO % 7.22 3.96 14.80 2.95 4.64 1.55 9.49 1.83
CAT_FOR % 60.15 4.80 100.00 31.18 68.86 2.71 100.00 27.02
LOC_FOR % 55.16 0 100.00 36.40 37.87 0 100.00 42.95
CAT_MAG % 7.67 0 59.45 13.87 2.52 0 44.04 7.39
LOC_FCP - 0.15 -0.37 0.60 0.20 0.05 -0.27 0.74 0.18

UPS_RCS n/km2 0.0021 0 0.0121 0.0030 0.0031 0.00 0.0226 0.0040

Instream habitat

Water

TEMP °C 25.06 23.50 27.70 0.93 25.61 23.70 29.20 1.43
OD mg/L 6.12 3.22 8.10 1.13 4.65 1.96 6.83 1.20

PH - 4.71 3.08 7.40 0.70 5.34 3.02 7.75 0.95

COND pS/cm 17.02 7.00 23.90 3.75 32.58 15.40 76.20 13.06
Substrate

FINE % 18.81 0 91.43 22.80 9.05 0 40.95 9.07

SAFN % 39.23 1.90 91.43 21.70 31.86 3.81 63.81 12.98
FNGR % 3.47 0 36.19 6.48 7.89 0 50.48 12.33
BIGR % 2.90 0 54.29 8.57 2.45 0 33.33 6.33

D g m mm -0.96 -2.11 1.75 0.82 -0.57 -2.11 1.27 0.67
Cover and

wood
AMCV % 5.21 0 52.27 13.35 12.93 0 76.36 20.24
NTCV % 50.64 2.27 113.64 26.69 76.35 0 223.86 45.87

WOOD m3/m 2 0.0032 0 0.0755 0.0110 0.0031 0 0.0110 0.0032
Channel morphology

WDDP m2 1.35 0.07 4.99 1.33 1.09 0.15 3.44 0.72
DPTH cm 14.75 4.22 33.81 7.12 17.42 5.14 41.10 6.96
THDP - 2.81 1.22 13.21 2.29 2.57 1.38 4.82 0.95

BKAN % 17.58 3.18 35.67 7.50 19.10 3.20 34.35 6.13
BKWD - 17.97 0.81 85.95 16.25 7.93 2.68 38.62 8.09
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Table A2.1. Continued.

Predictor
and

response
variables

Unit

Mean

Santarem 

Min Max SD Mean

Paragominas 

Min Max SD
Channel morphology

RP100 (m2/m)/cm 0.47 0.01 0.90 0.16 0.49 0.25 0.80 0.10

SINU - 1.18 1.02 1.35 0.08 1.16 0 1.49 0.19
SLOP % 0.01 0.001 0.03 0.01 4.73 0.31 24.00 4.08
FAST % 15.89 0 90.00 20.56 14.73 0 70.00 18.09
Other

DSCH m3/s 0.25 0.01 0.97 0.25 0.19 0.01 0.79 0.18

LRBS - -0.26 -1.74 2.22 0.83 0.32 -1.99 2.25 0.74

LDMB - -0.70 -1.81 0.08 0.39 -0.89 -2.06 -0.12 0.36

SHAD % 81.89 8.16 99.33 25.97 66.75 2.67 99.47 32.02

Table A2.2 Landscape variables contributions to the first two PCA axes.

Landscape predictor variables
PCA1

STM
PCA2

PGM
PCA1 PCA2

CAT_ARE -0.03 -0.22 -0.21 0.71

CAT_SLO 0.24 -0.10 -0.28 0.12

CAT_FOR 0.93 -0.20 0.94 0.27

NET_FOR 0.94 0.06 0.96 0.08

LOC_FOR 0.52 0.77 0.69 -0.46

CAT_FOR_N 0.87 0.21 0.89 -0.35

CAT_FOR_l 0.92 -0.28 0.88 0.36

CAT_FOR_D 0.67 -0.46 0.50 0.59

NET_FOR_N 0.86 0.33 0.85 -0.43

NET_FOR_l 0.92 -0.21 0.82 0.37

NET_FOR_D 0.73 -0.39 0.60 0.67

UPS_RCS -0.29 -0.36 -0.47 0.28

DWS_RCS -0.37 -0.22 -0.20 0.38

CAT_FCP -0.40 -0.61 -0.07 -0.06

NET_FCP -0.84 0.00 0.07 0.25

LOC_FCP -0.83 0.11 0.13 0.45

CAT_MAG -0.65 0.32 0.18 0.26

CAT_LUI -0.45 -0.74 -0.91 -0.04

NET_LUI -0.94 -0.08 -0.90 0.07
LOC LUI -0.94 0.23 -0.67 0.55

Eigenvalue 10.38 2.61 8.41 3.07
Variance explained (%) 51.92 13.06 42.04 15.34
Cumulative variance (%) - 64.99 - 57.38
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2. Changes in the instream habitat

Table A2.5. Performance of random forest (RF) models showing the percentage of variation 

of the instream habitat response variables explained (pseudo-R2) by each predictor variable 

(partial contribution) considering models that included anthropogenic and natural variables.

Predictor variables Total
Instream

habitat
Natural Anthropogenic variance

explained
CAT ARE CAT_SLO CAT FOR LOC FOR CAT MAG LOC_FCP UPS RCS (%)

TEMP 1.3 4.3 5.5

OD 0.2 0.7 0.8 1.7

COND 0.7 0.8 0.1 0.1 0.6 2.3
FNGR 2.4 0.5 1.1 0.2 0.6 0.3 1.5 6.6

Dgm 2.3 4.2 0.5 3.1 1.6 2.8 14.6

£ WOOD 11.0 1.4 12.5
'CU

ro WDDP 15.1 1.3 1.3 1.1 0.3 4.5 7.5 31.0
crom

DPTH

BKWD

10.7

1.1

0.8 1.0 7.4 2.4

2.5

0.7 5.6

1.4

28.6

5.1

RP100 18.8 3.7 4.5 1.7 2.1 6.5 37.2

SLOP 13.7 9.1 2.3 3.4 1.6 1.7 4.1 35.8

DSCH 20.4 1.2 5.9 4.9 1.5 9.5 5.8 49.2

LDMB 1.3 1.7 2.8 2.1 1.4 9.2

SHAD 4.0 3.8 0.6 5.6 4.3 0.4 18.8

TEMP 20.0 7.6 7.1 34.7

COND 3.2 1.7 0.8 1.1 6.8

FINE 3.2 1.1 2.4 6.6

SAFN 7.6 5.0 0.3 0.6 13.5

WOOD 4.5 1.6 4.6 1.0 11.7

inro DPTH 5.9 1.0 2.0 0.7 0.3 9.7
c
'£o

BKAN 0.5 1.1 4.2 0.7 6.7
boro
ro BKWD 6.5 8.9 2.0 10.6 27.9

c l WDDP 1.6 1.6 3.2

RP100 0.9 0.1 0.7 0.3 0.1 2.1

FAST 0.3 2.1 2.3 3.4 8.1

DSCH 0.5 0.3 3.0 3.8

LDMB 0.4 1.6 0.8 2.8

SHAD 10.4 20.2 3.1 33.7
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2. Changes in th e  instream  h ab ita t

Distance Categories
•  Sampled stream Near

 Drainage Intermediate

I Catchment Distant

 Drainage

I Catchment 

100m buffer (network) 

5 3  100m buffer (local)

Figure A2.1. Schematic o f the spatial scales (a) and hydrological distances (b) considered to 

obtain the landscape predictor variables o f instream habitat o f Amazonian stream sites.
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Site-scale Design

Human
Disturbance

Water
Flow

Transects (11)

Thalweg Profile 
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Figure A2.2. Schematic o f the sampling design o f the instream habitat o f Amazonian stream 

sites.
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Chapter 3. A large-scale assessment of fish 
diversity in small streams across human-modified 
Amazonian landscapes

3.1 Abstract

The Amazon basin encompasses an extremely diverse freshwater fish fauna which is 

threatened by mounting impacts from land use change (LUC). Yet there is hardly any 

information on the patterns of stream fish diversity in areas of the basin that have already 

been modified by human activity. We sampled fish in 94 low-order stream sites across five 

river basins and two large regions including a wide range of land uses to investigate the 

effects of anthropogenic activities on the richness, abundance and composition offish 

assemblages. To examine the proximate drivers of fish diversity in varyingly disturbed 

streams we sampled differences in both instream habitat (water quality and physical habitat 

such as substrate, channel morphology etc), and LUC at multiple scales in the surrounding 

landscape (e.g. forest cover, riverscape fragmentation, mechanized agriculture) as well as 

natural stream features (e.g. catchment slope and size). We sampled a total of 25,526 fish 

specimens belonging to 143 species, 27 families and seven orders. Our findings highlight an 

exceptionally high beta diversity between stream sites (helping to explain more than 70% of 

the total diversity in each of the river basins) and between river basins, showing that these 

low-order streams are very heterogeneous in their vertebrate biota. Alpha diversity was 

comparable to what had already been reported for relatively undisturbed stream sites in 

other Amazonian systems. Fish assemblage structure and composition were influenced by a 

broad set o f environmental variables related to both natural features as well as differences 

in the disturbance of the local instream habitat and the surrounding landscape, with 

relationships varying markedly between different river basins. We use these findings to 

discuss conservation and management challenges and recommendations for Amazonian
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stream systems in human-modified landscapes. In particular we emphasize the need for 

collective-action management approaches at both landscape and regional levels to address 

the high levels of heterogeneity and species-environment relationships between basins and 

regions.

Keywords: land use change, species turnover, deforestation, watershed management, 

freshwater ecology, tropics, ichthyofauna

3.2 Introduction

The Neotropical region hosts the most diversified freshwater fish fauna in the world, 

representing some 10% of all vertebrate species (Lundberg et al 1998; Vari and Malabarba 

1998; Leveque et al 2008). There are currently 5,600 known Neotropical freshwater fish 

species (Albert et al 2011a) and estimates of up to 8,000 (Vari and Malabarba 1998) indicate 

that many species have yet to  be discovered. The Amazon basin, the largest in area and 

discharge in the world (Junk 1983), accounts for a significant part of this number by hosting 

an unparalleled richness of 2,200 species (Reis et al 2003). The conservation of such an 

important portion of the world's fish diversity presents significant challenges (Thieme et al 

2007), w ith threats from rapid and intensive agricultural and infrastructure development 

affecting much of the Amazon (Davidson et al 2012; Castello et al 2013; Ferreira et al 2014). 

These challenges are further confounded by a lack of knowledge about the distribution and 

diversity o f freshwater fish in the region, hindering the development of appropriate 

management strategies and conservation planning.

Most existing research on Amazonian fish has focussed on species and populations 

within the Amazon River itself, or its main tributaries (e.g. Fernandes et al. 2004). These 

waters host most of the species of commercial interest (e.g. Ribeiro & Petrere Junior 1990; 

Barthem et al. 1991; Batista &. Petrere Jr. 2003; Ardura et al. 2010) and are increasingly
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affected by hydropower plants (Ferreira et al 2014; Tundisi et al 2014). However, the 7 

million km2 of drainage area of the Amazon basin encompasses an immense and complex 

network of low-order streams (1st to 3rd order streams represent up to 90% of the total river 

length; Mcclain & Elsenbeer 2001), that connects terrestrial and aquatic ecosystems across 

the region (Junk 1983). Unlike some of the main river channels that originate in the Andes, 

such streams are typically nutrient poor, and depend on the adjacent forest for the input of 

nutrients, organic material flow  and regulations of sediment input (Lowe-McConnell 1987).

Although small streams are recognized as marking an important contribution to fish 

diversity in the Amazon basin, the fish fauna that inhabit these systems remains very poorly 

documented (Albert et al 2011b; Albert et al 2011c). The majority of research to date has 

been carried out in a small number of well-studied regions in undisturbed stream systems, 

with small-scale studies focussing on population dynamics, habitat use, reproductive 

strategies, feeding habits or other aspects of species natural history (Sabino and Zuanon 

1998; Buhrnheim and Fernandes 2003; Zuanon et al 2006; Espfrito-Santo et al 2009; 

Rodrigues et al 2012; Espfrito-Santo et al 2013). Whilst useful, there are two main reasons 

why these small-scale studies in relatively undisturbed regions are limited in their ability to 

inform freshwater conservation challenges in the Amazon. First, low-order streams are 

naturally highly heterogeneous in substrate cover, channel morphology, water physico­

chemical properties, and water flow. These differences result in a high level of natural 

environmental heterogeneity of micro and meso habitats for fish (Junk 1983; Carvalho et al 

2007), w ith a resultant high level o f species turnover between adjacent streams and river 

basins (Mendon^a et al 2005; Albert et al 2011a; Albert et al 2011b; Barros et al 2013). 

Second, in contrast to studies on terrestrial systems (Gardner et al 2009; Malhi et al 2014) 

there is very little  information on patterns of fish diversity from frontier regions of the 

Amazon, where the integrity o f stream systems is impacted by pervasive land use change 

and forest degradation. These anthropogenic disturbances have resulted in dramatic
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changes to instream habitat o f low-order streams in human-modified landscapes (Chapter 

2), but the effects on fish assemblages remain very poorly documented and understood (but 

see Bojsen & Barriga 2002; Dias et al. 2010).

The present study aims to address this knowledge gap by presenting the first 

assessment of patterns in fish diversity for low-order streams across multiple landscapes and 

land use systems that are typical of the agricultural-forest frontier region of the Brazilian 

Amazon. We sampled 94 low order streams across five major river basins and two large 

regions that are characterized by a heterogeneous mosaic of land uses and history of human 

occupation. This comprehensive sample provided us a unique opportunity to  investigate (i) 

what are the patterns offish diversity across a very broad range of human-modified 

Amazonian streams, including differences in species richness, abundance, composition and 

the partitioning of diversity into alpha and beta components, and (ii) how these diversity 

metrics are influenced by environmental variables related to human disturbance, such as 

land use change and cover, instream habitat characteristics and natural features. We draw 

on these findings to discuss the status of low-order streams in Amazon frontier regions and 

identify priorities for conservation management strategies of stream systems.

3.3 Methods

3.3.1 Study region

We studied two regions in the eastern Brazilian Amazon state of Para: Santarem (composed 

by the municipalities of Santarem, Belterra and Mojui dos Campos) (hereinafter 'STM'), 

located southeast of the Amazonas and Tapajos Rivers confluence; and Paragominas ('PGM'), 

in the lower Amazon basin. The study regions belong to two of the 426 Freshwater 

Ecoregions o f the World (FEOW) proposed as biogeographic units to assist global freshwater 

biodiversity conservation planning (Abell et al 2008), STM in 'Amazonas Lowlands' and PGM 

in 'Amazonas Estuary and Coastal Drainages'. Our sampling design included five main river
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basins and 44 stream sites in STM and 50 in PGM (all 1st to  3rd Strahler order on a digital 

1:100,000 scale map). In STM, 33 streams belong to  the Curua-Una River basin, five flow  

directly to  the Amazonas River and six to  the Tapajos River; PGM stream sites encompass the 

Gurupi (24) and Capim (26) River basins (Figure 3.1).

90000 130000 170000 210000 250000 290000 330000

Paragominas

90000 130000 170000 210000 250000 290000 330000
540000 580000 620000 660000 700000 740000 780000 820000 860000

Santarem

S-

Figure 3.1. Location o f stream site catchments in Paragominas (ca. 1.9 m illion ha) and 

Santarem (ca. 1 m illion ha) regions, Para state, eastern Brazilian Amazon.

The tw o  regions have distinct histories o f human land use and occupation. STM (ca. 1 

m illion ha) has been occupied by Europeans since 1661, whereas PGM (ca. 1.9 m illion ha) 

was form ally established in 1959. However, there are also many sim ilarities; both regions are 

bisected by federal highways, mechanized agriculture arrived in the last tw o  decades, and 

deforestation o f primary forest has started to  decrease since 2005. Today they are both 

characterized by a diverse patchwork o f well-established mechanized agriculture, extensive
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and intensive cattle pastures, silviculture (mostly Eucalyptus spp. and Schizolobium 

amazonicum, especially in Paragominas), densely populated small-holder colonies and 

agrarian reform settlements, as well as large expanses of undisturbed and disturbed primary 

forests and regenerating secondary forests (Gardner et al 2013).

3.3.2 Data sampling

3.3.2.1 Environmental predictor variables

We measured a broad set of environmental predictor variables including both landscape- 

scale and instream habitat descriptors. Landscape predictor variables encompassed 

anthropogenic and natural characteristics of the stream sites at different spatial scales. 

Instream habitat predictor variables comprised differences in water quality and physical 

habitat characteristics that can be influenced by both anthropogenic and natural 

characteristics.

3.3 .2.1 .1  Landscape-scale

We conducted land use assessments at three different spatial scales (Figure A3.la): 1) the 

whole catchment upstream from the stream site ('catchment'), 2) the 100 m buffer along the 

entire drainage network upstream from the stream site ('riparian network'), and 3) a 100 m 

riparian buffer at the stream site ('local riparian'). Catchment boundaries, mean elevation, 

and slope were obtained through use of digital elevation models for Santarem (SRTM images 

with 90 m resolution; NASA - National Aeronautics and Space Administration) and for 

Paragominas (TopoData with 30 m resolution; INPE - National Institute for Space Research). 

The drainage network was constructed using the hydrological model ArcSWAT (Soil and 

Water Assessment Tool extension for ArcGis) for both regions.

Percentage of forest cover in each of the three spatial scales was obtained from a 

land use map (Landsat TM and ETM+ images, 30 m resolution, year 2010; Gardner et al.
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2013); Table 1 for a summary of landscape predictor variables). Forest included primary 

forest (whether undisturbed or showing signs of disturbance from fire or logging), and 

secondary forest older than 10 years (considered sufficiently developed to provide significant 

hydrological services). To calculate forest cover at different hydrological distances from the 

stream site, we first standardized the distances by the maximum distance in each catchment 

to account for differences in catchment sizes. Then we assigned all pixels in each catchment 

into near, intermediate or distant categories and then calculated the percent forest cover in 

each of the distance categories (Paula et al 2013; Figure A3.lb ).

The history of mechanized agriculture was calculated from annual MODIS data from 

2001 to 2010 (see details in Gardner et al. 2013). Two historical land use indicators were 

calculated for catchments using a time-series of land use maps for the last two decades 

(following Ferraz et al 2009): forest change curvature profile (FCCP; the deforestation profile 

curvature) and land use intensity index (LUI; the mean time since deforestation). FCCP is the 

maximum deviation of the forest change curve relative to the linear model between initial 

and final forest amount over time. These indicators were calculated using Land Use Change 

Analysis Tools (LUCAT), an open source ArcGIS extension (Ferraz et al 2011; Ferraz et al

2012 ).

We visually estimated the presence and proximity of 11 categories of human 

activities in the local riparian zone (i.e., annual crops, pastures, dams and revetments, 

buildings, pavements, roadways, pipes, landfill/trash, parks/lawns, logging and mining); and 

calculated an index of proximity of anthropogenic impact denoted by W1_HALL (see Peck et 

al. 2006; Hughes & Peck 2008).

We estimated riverscape fragmentation using the number of upstream and 

downstream road crossings within a 5 km circular buffer from the stream site. The road 

crossings in the drainage network were identified by photo interpretation using 

georeferenced colour Rapideye images (2010 for STM and 2011 for PGM, 5 m resolution) for
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the study regions. To map these crossings, we identified features in the images related to the 

road crossings (linear lines crossing the drainage network; Jensen 2000). A subset of about 

half o f these identified crossings were validated using Google Earth images. Hydrological 

distance between each stream site and the main river downstream (4th order reaches) were 

calculated using Landsat images. All landscape analyses were conducted in ArcGis 9.3© 

(Environmental Systems Research Institute, Redlands, CA, USA).

3.3.2 .1 .2  Instream habitat

We sampled measures of stream physical habitat and water quality during the Amazonian dry 

season in STM (July-August 2010) and PGM (June-August 2011). Each 150 m long stream site 

was subdivided into 10 continuous sections, each 15 m long, by 11 cross-sectional transects 

(Figure A3.2). We measured dissolved oxygen, conductivity, pH, and temperature with a digital 

portable meter placed below the water surface in the centre of the stream site before taking 

measurements inside the channel to  prevent disturbance.

We measured physical habitat at the stream sites following Peck et al (2006) and 

Hughes and Peck (2008). For each section we took 10 longitudinal equidistant measurements 

of thalweg depth; visual quantification of bars, backwaters, side channels, and channel type 

(pool, glide, riffle, rapid, cascade, waterfall or dry channel); channel slope (measured with a 

flexible, water-filled plastic tube); and sinuosity (measured with compass bearings). We also 

recorded the presence of large wood of different size classes in or above the bankfull 

channel of the stream site.

For each of the 11 cross-sectional transects we measured depth and visually 

estimated cover of substrate type (bedrock, concrete, boulder, cobble, coarse gravel, fine 

gravel, sand, silt and clay, hardpan, fine litter, coarse litter, wood, roots, macrophyte, and 

algae) along five equidistant points transverse to the long axis of the stream. Transect 

characterization also included bankfull width and depth, mean wetted width and depth,
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incision height, undercut bank distance, and bank angle. We assessed habitat complexity at 

each transect in 10 m plots inside the stream channel, using visual estimates of the areal 

cover o f filamentous algae, aquatic macrophytes, leaf packs, roots, large wood >30cm 

diameter, brush and small wood, overhanging vegetation <1 m above the water surface, 

undercut banks, boulders, and artificial structures. We measured vegetation canopy cover 

above the channel with a densiometer at the centre of each transect by facing upstream, 

downstream, left and right, as well as by facing both banks near the banks. We calculated 

discharge from mean current velocity (estimated from the travel time of a floating object 

along three known distances) and mean cross-sectional area (measured as mean depth times 

mean width of the three known distances) of the stream site.

These measurements were used to calculate an initial set o f 171 instream habitat 

predictor variables from the field data based on Kaufmann et al (1999), including 25 channel 

morphology, 16 channel unit, 5 channel sinuosity and slope, 28 substrate size and 

composition, 33 habitat complexity, 60 large wood, and 4 stream canopy cover variables. 

Geometric mean substrate diameter and relative bed stability were calculated as described 

by Kaufmann et al. (2008).

3.3.2.2  Fish

Following the instream habitat assessment, three people sampled fish in the entire area of 

the stream site for 120 min (12 min per section). During this procedure, each 15 m section 

was isolated by block nets. Fish were sampled using seines (6 x 1.5 m, 5 mm stretched mesh 

size) and semi-circular hand nets (0.8 m in diameter, 2 mm stretched mesh size). The use of 

different equipment and collection techniques was applied to  encompass all kinds of meso 

and microhabitats (e.g., riffles, pools, undercut banks, open waters, wood debris, leaf packs, 

sand, marginal vegetation), and consequently fish groups. All catches were made during 

daylight hours. Specimens were killed in an anesthetic solution of Eugenol and then fixed in
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10% formalin. In the laboratory, all sampled fishes were transferred to 70% alcohol and 

identified to species level. Voucher specimens are deposited at INPA (Instituto Nacional de 

Pesquisas da Amazonia) and UFLA (Universidade Federal de Lavras) fish collections, Manaus 

and Lavras respectively, Brazil.

3.3.3 Data analysis

3.3.3.1 Selection of environmental predictor variables

The initial set o f 20 landscape and 171 instream habitat predictor variables was reduced to 

nove and 23 respectively (Table 3.1; and see Chapter 2). In sampling the instream habitat 

predictor variables we adopted a protocol that allows for a standardized, replicable and 

comprehensive assessment of the physical and chemical characteristics of wadeable 

streams. The resulting dataset enables the calculation of several variables representing key 

aspects of instream habitat such as stream size, stream gradient, substrate size and stability, 

instream cover complexity, and stream-floodplain connectivity. To reduce the complete list 

of variables to a smaller set of the most representative and weakly correlated environmental 

predictors we followed the procedure outlined in Chapter 2, w ith the only distinction being 

the use of riparian network forest cover (NET_FOR) instead o f catchment forest (CAT_FOR) 

as the first has more relevance for freshwater conservation in the context of the Brazilian 

Forest Code.

Table 3.1. Environmental predictor variables (landscape-scale and instream habitat) used to 

predict fish diversity and composition from Amazonian stream sites.

Environmental 
predictor variables

Definition

Landscape
-  CAT_ARE Catchment area -  ha

5 CAT SLO o — Catchment slope

^  DST_RIV Distance to large river (> 4th Strahler order)
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Table 3.1. Continued.

Environmental 
predictor variables

Definition

Landscape
NET_FOR % network riparian forest

LOC_FOR % local riaprian forest
.u
£<uo>o

W1_HAL Proximity weighted tally of riparian/stream side disturbances (W1_HALL; 
Kaufmann et al., 1999) - dimensionless

cl
8-c

CAT_MAG % mechanized agriculture
■Utc LOC_FCP Forest change curvature profile index (FCCP; Ferraz et al., 2009)

nFN Rr^ Number of road crossings within a 5 km circular buffer upstream andULIX |\W
downstream the stream site divided by catchment area

Instream habitat

£ TEMP Water temperature -  °C
~3
3o- DO Dissolved oxygen -  mg/L
k.cu
,o PH pH

COND Electrical conductivity -  pS/cm

Substrate

FINE Streambed surficial fines < 0.6 mm diameter -  % areal cover

SAFN Streambed surficial sand + fines < 2 mm diameter -  % areal cover

FNGR Streambed surficial fine gravel 2 to 16 mm diameter -  % areal cover

BIGR
Streambed surficial substrate coarse gravel and larger (> 16 mm
diameter) -  % areal cover

Cover and wood

AMCV In-channel algae and macrophytes -  % areal cover

o

o
NTCV

In-channel natural cover (wood, live trees and roots, leaf packs, 
overhanging vegetation, undercut banks, boulders) -  % areal cover

-c
~5o WOOD Wood volume -  m3/m2 wetted channel area

s.-c Channel morphology

WDDP Mean (wetted width x thalweg depth) -  m2

DPTH Standard deviation of thalweg depth -  cm

THDP Thalweg depth ratio at bankfull/low flow -  dimensionless

BKAN Standard deviation of bank angle -  %

BKWD Ratio: Bankfull width to bankfull thalweg depth -  dimensionless

RP100 Mean residual depth at thalweg -  (m2/m)/cm

SINU Channel sinuosity-dimensionless
FAST Channel fast water (% riffle + rapid + cascade + waterfall)
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Table 3.1. Continued.

Environmental predictor 
variables

Definition

4wo

Other

DSCH Low flow season discharge measured in the field -  m3/s

LRBS Logio of relative bed stability estimated at bankfull flow conditions
-c
"5

(Kaufmann et al. 2008, 2009)

-c LDMB Logioof critical substrate diameter (maximum mobile diameter) at
a. bankfull flow conditions (Kaufmann et al. 2008, 2009)

SHAD Canopy density (shading) measured at mid-channel -  %

3.3.3.2  Analyzing fish assemblage diversity patterns

We assessed the representativeness of our sampling design through species-based 

accumulation curves constructed using the analytical formula implemented in Estimates v.9 

(Colwell 2013). Next we obtained the sample coverage index (C) that calculates the total 

probability of occurrence of all observed species, wherein 1-C indicates the probability that 

some species were not sampled (Marcon and Herault 2014). Sample coverage was obtained 

using 'Chao' estimator in 'Coverage' function from R 'entropart' library (R Core Team 2013).

To analyze the spatial distribution offish diversity into multiple spatial scales we 

used multiplicative diversity partitioning of the Hill numbers (so-called 'effective number of 

species'), a mathematically unified family of diversity indices that consider both abundance 

and species richness and differ by the order q (Jost 2007; Chao et al 2012; Chao et al 2014). 

Diversity is calculated considering:

where pi is the abundance of the /-th species in the community, 5 is the total number of 

species, and q, referred as the order of the index. The parameter q is related to the 

sensitivity to  species relative abundance. When q = 0 abundance is not taken into account 

and the index give more weight to rare species, therefore diversity simply represents species 

richness. When q = 1 diversity consider each species relative abundance and is equivalent to
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the exponential of Shannon's entropy index, that is rare or dominant species are equally 

weighted (so-called a measure of the "typical" species). Lastly, when q = 2 dominant species 

are favoured being the index equivalent to the inverse of Simpson diversity.

Multiplicative diversity partitioning considered the following decompositions: pbasm = 

Yregion/otbasin and Psite = Ybasin/cisite wherein site refers to the stream sites, basin refers to  the 

river basin and region to STM and PGM. The analysis was performed using 'm ultipart' 

function from R 'vegan' library considering 1,000 simulations (Oksanen et al 2011; Oksanen 

et al 2013; R Core Team 2013). To investigate the magnitude of variation in beta diversity in 

different spatial scales Obasm and pSite) we calculated the relative compositional dissimilarity 

(qDp) between communities using the transformation of beta proposed by Jost (2006).

Next we decomposed the beta components of psite diversity to investigate whether 

variation is species composition across stream sites in each river basin is due to turnover 

(species replacement) or nestedness (species loss or gain), using Sprensen (P sor) and 

Simpson (P s im ) indices (Baselga and Orme 2012). P sor accounts for both turnover and 

nestedness, whereas Psim considers only turnover. Therefore the difference between both 

indices gives a representation of the nestedness component (P nes): P nes =  P sor-  P s im . We ran 

beta decomposition for richness (Hill's number of order 0) using 'beta.multi' function in R 

'betapart' library (Baselga and Orme 2012; R Core Team 2013).

We used nonmetric multidimentional scaling (MDS) followed by the analysis of 

similarities (ANOSIM) to test fo r significant differences in multivariate assemblage structure 

and composition between the five river basins. For ordination analyses on abundance data 

we applied Hellinger transformation followed by Bray-Curtis index (Legendre and Gallagher 

2001); and for qualitative data we used Sprenson index. Both analyses were performed in 

the Primer v.6 software (Clarke and Gorley 2006).

The influence of continuous environmental variables, standardized by maximum 

values, on the fish assemblage structure was analyzed by the 'envfit' function within the R
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library 'vegan' considering 1,000 permutations (Oksanen et al 2013; R Core Team 2013). This 

method fits environmental vectors onto ordination plots based on their Pearson correlation 

with the ordination axes (Oksanen et al 2013). For this approach we considered Curua-Una, 

Capim and Gurupi basins separately, and discarded the Amazonas and Tapajos river basins as 

each were represented by very few stream sites.

To evaluate how environmental predictor variables influence fish assemblages we 

modelled species richness and abundance as functions of the environmental predictor 

variables. We used random forest (RF; from Breiman 2001) models, which allow complex 

interactive and non-linear response-predictor relationships, and have excellent predictive 

performance (Prasad et al 2006; Smith et al 2011). Random forests produce an ensemble of 

regression trees, where each tree is fitted to a bootstrap sample of the data, and each 

partition w ithin a tree is split on a random subset of the predictor variables (Ellis et al 2012). 

The data not used to build a tree in each bootstrap sample, called out-of-bag (OOB) sample, 

is used to calculate cross-validation performance statistics and measures of variable 

importance (Ellis et al 2012). We calculated a pseudo-r2 value as 1- MSE/Var(y), where MSE is 

the mean squared error o f the out of bag predictions (Ellis et al 2012). This value estimates 

the proportion of variation that can be reliably predicted by the ensemble model. The 

relative importance (Rl) of individual variables was calculated as the mean percentage 

increase in MSE when a variable was randomly permuted, using the conditional permutation 

method in 'randomForest' function in the R 'extendedForest' library (Smith et al 2011; R 

Core Team 2013), which reduces bias when predictors are correlated. Conditional Rl values 

were computed from the conditional permutation distribution of each variable, permuted 

within 3 partitions of correlated (rpearson > 0.5) variables (see Ellis et al. 2012). All models 

were fitted w ith 10000 trees, w ith one third o f variables randomly sampled as candidates at 

each split (1 variable selected if total variables < 3). Variables with negative relative 

importance values were excluded from final models.
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3.4 Results

We collected a total of 25,526 fish specimens belonging to 143 species, 27 families and seven 

orders (Table A3.1). In STM region, 5,846 individuals and 60 species were recorded in 33 

stream sites in the Curua-Una River basin, 596 individuals and 15 species in six stream sites in 

the Tapajos River basin and 510 specimens and 19 species in the five Amazonas River basin 

stream sites. In PGM, the Capim River basin (26 stream sites) was represented by 7,421 

individuals and 83 species, and the Gurupi basin (24 stream sites) produced 11,153 

specimens and 83 species. The mean species richness per stream site was 12 (ranging from 3 

to 20) for the Curua-Una, 20 (6-45) for the Capim and 24 (9-43) for the Gurupi. The 

Amazonas and Tapajos River basin stream sites had much lower richness values 7 (4-9) and 7 

(4-11), probably reflecting the fact that they were connected to fewer small streams and 

belonged to small catchments draining independently to the Amazonas and Tapajos rivers. 

Nevertheless seven species in Amazonas (Ancistrus sp.l, Astyanax maculisquamis, Copella 

sp., Creagrutus ignotus, Crenicichla inpa, Hemigrammus stictus, Pyrrhulina zigzag) and two in 

Tapajos (Hemigrammus vorderwinkleri and Iguanodectes variatus) were exclusive of these 

river basins, which represented 6% of the total richness. Furthermore Curua-Una, Capim and 

Gurupi presented 19 (31.7% of the total richness of this river basin), 20 (24.2%) and 25 

(30.1%) exclusive species respectively (Figure 3.2). In sum species restricted to a single river 

basin represented 52% of the total registered for both regions, STM and PGM.
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|  R estricted to one river basin  
Shared d is tribu tion

g  60

© 40 ■

75.9%
69.9%

68.3%
13.3%

36.8%

86.7%63.2%

Santarem

Curua-UnaTapajos

Paragominas 

Capim Gurupi

Amazonas

Figure 3.2. Fish species d istribution in Amazonas (AM), Tapajos (TP), Curua-Una (CU), Capim 

(CA) and Gurupi (GU) showing the percentage o f species restricted or shared w ith  o ther river 

basins and the number o f species shared by river basins w ith in  each region (Venn diagrams).

Each assemblage was dominated by a few  abundant and widespread species (Figure 

3.3). In the Curua-Una, Moenkhausia cf. co lle ttii and Hyphessobrycon sp. each accounted fo r
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about 20% of the to ta l abundance and were collected in 91% and 70% of the stream sites 

respectively. Together w ith  the next three most abundant species they accounted fo r 70% of 

the to ta l abundance o f this river basin. In the Capim and Gurupi we found sim ilar patterns o f 

dominance, w ith  the most abundant species (Hyphessobrycon heterorhabdus in the fo rm er 

and Hemigrammus rodwayi in the latter) accounting fo r 25% of the abundance in each basin. 

All the remaining species represented 7% or less o f the to ta l number o f individuals, while the 

ten most abundant species represent 70% of the number o f individuals.

A 21
Capim 

H .het (2 8 % )  
H.rod (7% )
H.bel (7 % )
I.rac (6% )  

P .aff.bre (4 % )

Curua-Una
H yp.sp (2 1 % )  
M .cf.col (2 0 % )  

» K .sav (1 6 % )

Doubletons
Singletons

35
Curua-Una

M .cf.col
H yp.sp
H .m al
K.sav
H .oce

3 0 Capim
P .aff.bre

l.rac
H .het
A .tet

H .m ar

Gurupi
M .oli

A .cae
H.rod

P im .sp2
H .guy

2 5

20

15
Duplicates  
' Un iques10

5
,13 spp. 8  spp. 6  spp.

15 spp. 18 spp. 19 spp.0

Species rank

Figure 3.3. Rank o f relative species abundance (A) and occurrence in stream sites (B) in 

Curua-Una, Capim and Gurupi river basins. Together the indicated species represent 50% o f 

the to ta l abundance in each basin (A) and the five better d istributed species (B). In each 

graph doubletons, singletons, duplicates and uniques are indicated.

Although the species accumulation curves began to level off, they did not reach the ir 

asymptote, suggesting we sampled most but not all o f the richness in each basin (Figure 3.4).
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Nevertheless the probability o f occurrence of those missed species was less than 1% in each 

river basin as indicated by the sample coverage indicator for Curua-Una (C= 0.999), Capim 

(C= 0.9996) and Gurupi (C= 0.9984). The Capim and Gurupi curves were visually very similar, 

and indicate a higher level of species richness than in the Curua-Una basin.

100

9 0

CO
CO
d)c
.co

20

7  1 0  1 3  1 6  1 9  2 2  2 5  2 8  3 1  3 41 4

Stream sites

Figure 3.4. Stream site-based rarefaction curves for stream fish from Curua-Una, Capim, and 

Gurupi River basins.

Alpha and gamma diversities were consistently higher when considering rare species 

(3-diversity among stream site was consistently higher when considering rare species 

compared to the typical (q= 1) and dominant (q= 2) species (Figure 3.5A and B). The same 

pattern was observed for beta diversity between stream sites (Figure 3.5C), the contribution 

of beta diversity to the compositional dissimilarity between assemblages was ca. 60% higher 

comparing the scenario where rare species receive more weight (°Dp= 0.83, 0.78,0.74 for 

Curua-Una, Capim and Gurupi respectively) with the scenario where dominant species are 

more important (2Dp= 0.51, 0.47, 0.50). However beta diversity between river basins were 

less sensitive to  changes in the order q (Figure 3.5C). All values were significantly different
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from those expected by chance obtained from 1000 permutations (p<0.001). The 

contribution of turnover to the pSite component was much higher that nestedness in all river 

basins (92.5% in Gurupi, 93.3% in Capim and 95.2% in Curua-Una; Figure 3.5D).
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Figure 3.5. Multiplicative diversity partitioning showing the following components: ow , (A), 

Vregion and Vbasin (B), p site and p basin (C) and the contribution of turnover to p site (D). River basins: 

Curua-Una (CU), Capim (CA) and Gurupi (GU). Regions: Santarem (STM) and Paragominas 

(PGM).

The fish assemblages in different river basins differed in structure (Figure 3.6A) and 

species composition (Figure 3.6B) (both results significant: Global R= 0.726 and 0.731
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respectively; p< 0.001) and all pair wise river basin comparisons were highly significant (p< 

0 .002).
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Figure 3.6. Nonmetric multidim ensional scaling (MDS) o f the fish assemblages from  five river 

basins in the eastern Brazilian Amazon. Ordination analysis was based on quantita tive (Bray- 

Curtis, stress= 0.22; A) and qualitative (Sorensen, stress= 0.21; B) dissim ilarity matrices.

Fish assemblage structure was related to  a varying set o f instream habitat, 

anthropogenic and natural characteristics in each river basin (Table A3.2, Figure 3.7), w ithou t 

a congruent pattern o f more im portan t predictor variables among them.
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Considering the non-linear random forest models, the environm ental predictors 

together explained 34% o f variability in fish species richness and 4% of abundance in the 

Curua-Una, 43% and 27% of richness and abundance in the Capim, and 8% and 23% of 

richness and abundance in the Gurupi (Table 3.2). However, individual predictor variables 

contributed very little  to  the to ta l variation explained: only seven predictors had a partial 

e ffect o f more than 5%.
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Figure 3.7. Nonm etric multidim ensional scaling (MDS) o f the fish assemblages from  Curua- 

Una (A), Capim (B) and Gurupi (C) river basins. The MDS analysis was based on Bray-Curtis 

dissim ilarity index scores. Significant environmental vectors from  'envfit' represent instream

83



3. Fish assemblage responses

habitat (blue), anthropogenic (green), and natural (red) predictor variables. See Table 1 for 

the codes of the predictor variables

Table 3.2. Performance of random forest models showing the percentage o f variation of 

richness and abundance explained by environmental predictor variables in Curua-Una (CU), 

Capim (CA) and Gurupi (GU) River basins. Partial effect of single variables greater than 5% in 

bold.
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Table 3.2. Continued.

% Variance Explained
environmental

Richness Abundance

CU CA GU CU CA GU

Channel morphology

WDDP 5.6 0.6

DPTH 5.3 0.2 0.3 0.5

THDP 1.0 0.3

-to BKWD 0.4
o

BKAN 6.5 0.3 4.6
o-c RP100 3.1
ou SINU 3.9

■c
CL.

FAST

Other

DSCH 2.2 0.6 0.5 1.4

LRBS 0.8 1.8

LDMB 1.1

SHAD 3.3 0.4 0.4 0.8

Total 33.9 43.1 7.7 4.0 27.2 22.5

3.5 Discussion

Our findings illustrate that Amazonian human-modified landscapes host exceptionally high 

levels o ffish  diversity. For instance, working in preserved systems Mendonga (2010) found 

an average of 16 (range: 12-51) species per stream (131 stream sites across the main 

Amazon sub-basins in Brazil) whereas we found an average of 14 (range: 3-45; 94 1st to 3rd 

order stream sites). We also show that these low-order streams are environmentally very 

heterogeneous, as indicated by the high species turnover between both individual river 

basins as well as between stream sites within basins (helping to explain more than 70% of 

the total diversity in each of the river basins). Finally, we show that fish assemblage structure 

and composition are influenced by a broad set of environmental variables related to both 

natural features as well as differences in the disturbance of the local instream habitat and 

the surrounding landscape, w ith relationships varying between different river basins. We 

first discuss how these results influence our understanding o f the biogeography and diversity
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in Amazonian stream systems, before examining implications for their conservation and 

management.

3.5.1 Insights into the biogeography and diversity of Amazonian streams

Some of our findings on stream fish diversity across human-modified tropical forest 

landscapes are consistent with work in relatively undisturbed streams in the Central Amazon. 

In terms of general assemblage structure, a few dominant small sized (<20 cm of standard 

length) species were both widely distributed and abundant, most of them belonging to the 

Characidae family. We also found a high level of dominance by Characiformes and 

Siluriformes, which make up the majority of both species and individuals in more preserved 

streams and our samples from more human-modified areas (Lowe-McConnell 1987; Leveque 

et al 2008). Previous works have shown that small Amazonian streams host a distinct 

ichthyofauna, including rare and locally specialised fish species (Mendonga et al 2005;

Zuanon et al 2006; Carvalho et al 2007). Our study also supports this conclusion w ith a high 

number of rare species (singletons and doubletons accounted for up to 18% of Gurupi River 

basin total richness, 22% of Capim and 26% of Curua-Una) and a high level o f beta diversity 

between streams.

In terms of species richness, methodological discrepancies (e.g. number of sites, 

sampled length, different Strahler order of stream sites, and scale of study) and the lack of 

Amazon-wide models for stream fish richness hinder our ability to make a comprehensive 

comparison between previous studies and ours. For instance, in more preserved Amazonian 

systems, previous studies report 49 species in 38 low-order stream sites (Mendonga et al 

2005), 269 species in 131 sites (Mendonga 2010) and 78 species in 22 sites (Barros et al

2013). However those studies differ considerably from each other and ours in terms of 

spatial scale, which ranged from 10,000 ha in a single river basin to millions of hectares 

encompassing several basins. The only record of species richness from a human-modified
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system in the Amazon River basin reported 32 species from 44 stream sites from logging 

activity in ca. 120,000 ha (Dias et al 2010), but even these numbers remain difficult to 

compare to our study because of methodological differences (e.g. the referred study 

investigate effects of logging activity whereas we included other LUC activities).

Species turnover between river basins (STM and PGM; Figure 3.4A) and between sites 

inside river basins (Curua-Una, Capim and Gurupi; Figure 3.4B) accounted for most of the 

total diversity. On the other hand, alpha diversity at the level o f both stream sites and 

within-site sampling sections contributed very little to the total gamma diversity. Previous 

studies have indicated that Amazonian streams have a high species turnover (Biihrnheim and 

Fernandes 2003; Mendonga et al 2005; Albert et al 2011b), although ours is the first to 

compare across multiple streams for an entire region and to use diversity partitioning 

methods. Such differences in species composition between spatially close Amazonian 

streams and river basins might reflect dispersal limitations imposed by geographic barriers, 

as well as a high degree of species habitat specialization (Mendonga et al 2005; Albert et al 

2011b).

Finally, our findings illustrate how aquatic and terrestrial surveys can produce 

contrasting results, and conservation and management strategies motivated by terrestrial 

studies can be inappropriate or inadequate for freshwater ecosystems. For example, in 

terms of total and estimated species richness, Capim and Gurupi were both more diverse for 

fishes than the Curua-Una River basin, which is the opposite of what was found for terrestrial 

fauna (birds, dung beetles, ants and orchid bees) and flora (tree, liana and palm together) in 

the same study areas (see Gardner et al. 2013), and also runs counter to Amazon-wide 

models of tree species richness (Ter Steege et al 2003). The only other taxa with comparable 

patterns of richness were the Odonata, with PGM being more diverse than STM, although 

the opposite was found for Heteroptera and EPT (Ephemeroptera, Plecoptera and 

Trichoptera together; Gardner et al. 2013).



3. Fish assemblage responses

3.5.2 Natural and anthropogenic drivers of fish assemblage structure and 

composition

Fish assemblages in tropical forest landscapes are influenced by a broad range of spatial and 

temporal environmental factors (Winemiller et al 2006). Pervasive anthropogenic changes to 

forests across the tropics suggest that human impacts may be as important as natural drivers 

(Malhi et al 2014). Our results support this broad conclusion by clearly demonstrating how 

Amazonian fish assemblages are linked to a wide range of both natural and anthropogenic 

variables, which can covary between themselves in often complex ways that are distinct for 

different river basins. These complex response patterns highlight the difficulty of identifying 

dominant drivers, and may be explained by the multiple linkages between land use change 

and instream habitat condition (see Chapter 2), the many potential interactions between 

human-impacts and natural stream features, the masking of responses by scale-dependent 

effects, and the fact that some disturbances are only evident above a certain level of 

intensity or after a minimum period of time (Allan 2004).

In particular, our examination of species richness and total abundance showed mixed 

responses to  a wide set of environmental variables in different basins, with no clear 

association w ith particular predictor variables. This matches findings from other studies, that 

report equivocal effects of deforestation on total stream fish abundance; positive for 

Ecuadorian (Bojsen and Barriga 2002) and Mexican (Lyons et al 1995) streams or negative for 

African streams (Kamdem Toham and Teugels 1999). Although species richness is still often 

used to inform conservation strategies, our results provide additional evidence that it is a 

highly inadequate measure of disturbance given the mixed signals it can provide (see also 

Mackey & Currie 2001; Barlow et al. 2007; Mouillot et al. 2013).

The complex dynamics that connect aquatic and terrestrial systems mean that 

disturbances throughout the landscape can have manifold effects on stream systems 

themselves and the structure o ffish assemblages (Allan 2004). Changes in both riparian
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vegetation and land use in up and downstream areas can lead to instream habitat alteration 

and homogenization (Chapter 2; Casatti et al. 2009). We found that predictor variables 

reflecting anthropogenic disturbances at multiple scales can influence the fish assemblages 

o f small Amazonian streams, but we did not find a dominant pattern o f responses that was 

consistent across all river basins. For instance water quality predictor variables were only 

strongly associated with differences in Capim assemblages; substrate variables were found 

to be important in Curua-Una and Gurupi but in Capim; different measurements of wood and 

cover exhibited differing levels of importance in each of the three river basins; and channel 

morphology appeared to be important only in the Curua-Una and Capim basins (Table A3.3, 

Figure 3.6).

The lack of detailed information on the life history traits of Amazonian fish limits our 

understanding of assemblage-level responses. However examples from other tropical 

systems suggest that increasing human disturbances can drive species composition changes 

as well as taxonomic and functional homogenization. For instance in savannah streams from 

southeastern Brazil, disturbance-tolerant species replaced more sensitive and specialist 

species following changes in dissolved oxygen and substrate associated w ith agricultural 

development (Casatti et al 2012). Other studies have reported on shifts from specialized to 

opportunistic feeders in response to changes in stream substrate components and 

allochthonous input o f organic matter due to deforestation in Ecuadorian Amazon (Bojsen 

and Barriga 2002) and other stream systems in South and Central American (Lorion and 

Kennedy 2008; Zeni and Casatti 2014). Finally Wright & Flecker (2004) emphasize that 

instream large wood plays a crucial role in structuring fish assemblages in Venezuelan 

streams with increases in total abundance and presence of rare species.

89
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3.5.3 Challenges and opportunities for the conservation of stream fish 

assemblages in human-modified Amazonian landscapes

Our results demonstrate that Amazonian fish assemblages in low-order streams are both 

diverse and highly heterogeneous, with a high level o f species turnover (and therefore biotic 

uniqueness) between streams and different river basins (Figure 3.4). Such heterogeneity is a 

key component of freshwater biodiversity (Dudgeon et al 2006; Tedesco et al 2012) and 

highlights the importance o f biogeographic information that underpins most biodiversity 

conservation priority setting protocols (e.g. Brooks et al. 2006). A current approach for 

freshwater systems, Freshwater Ecoregions of the World, FEOW (Abell et al 2008) presents a 

first attempt to  categorize the Earth's freshwater systems based on fish species distribution 

and composition. While this is a valuable step forward for prioritizing worldwide 

conservation strategies, our results show that it is far too coarse to assist management 

strategies that take account o f low-order streams of the Amazon basin. For instance, 

Santarem and Paragominas represent a very small portion of two different FEOWs, yet the 

species composition o ffish assemblages varied markedly among individual streams in both 

regions. This indicates that conservation planning work needs to  start from smaller scales 

and be extrapolated to larger regions. Although diversity partitioning is usually not 

considered in management and conservation approaches (Olden et al 2010; Villeger et al

2014), we show how it can provide useful insights at the mesoscale.

The clearance and degradation o f primary forest are known to have resulted in 

significant losses to terrestrial biodiversity in the Amazon (Peres et al 2010), yet much less is 

known about freshwater systems which are thought to be amongst the most threatened in 

the world (Dudgeon et al 2006; Strayer and Dudgeon 2010; Vorosmarty et al 2010). 

Furthermore, most conservation prioritisation exercises are based on criteria related to 

irreplaceability and vulnerability o f terrestrial biota, such as the endemism or total diversity 

of birds or plants, and measures of past habitat loss and protection (Hoekstra et al 2005;
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Brooks et al 2006). This reliance on terrestrial biota is concerning, as freshwater systems 

have been widely neglected by conservation priority setting processes, and our results give 

further support to the expectation that priorities for terrestrial systems are unlikely to match 

priorities set fo r freshwater systems (Herbert et al 2010; Abraham and Kelkar 2012).

The high level of fish species turnover across multiple scales found in our study 

strongly supports the need to plan management and conservation strategies at landscape 

and regional levels. Moreover, our results indicate that there are no simple management 

actions that can guarantee the preservation of stream fish fauna given the complex 

interactions between environmental variables and species responses. For instance strategies 

cannot rely on isolated protected areas (PAs) designed for terrestrial diversity, which face a 

new suite of threats in the Brazilian Amazon (Ferreira et al 2014) following a global trend of 

downgrading, downsizing and degazettement (Mascia et al. 2014; Watson et al. 2014). 

Similarly, the regulation of Amazonian private lands by the federal environmental legislation 

Forest Code (Federal Law N° 12.651, May 25th 2012; Brasil 2012), do not properly account 

for stream environments. The Forest Code considers that the protection of streams and its 

aquatic biota is ensured by the presence of the riparian zone, whereas there is consistent 

evidence (e.g. Hughes et al. 2006; Wang et al. 2006), further supported by our work, that 

upstream forests elsewhere in the catchment as well as disturbances other than 

deforestation (e.g. mechanized agriculture and riverscape fragmentation from road 

crossings) are strongly linked to  changes in instream habitat condition (Chapter 2). Therefore 

we emphasize the importance o f collective conservation actions involving compliance across 

neighbouring landowners to ensure that the integrity and connectivity of stream systems are 

maintained across entire regions.
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3. Fish assem blage responses

Distance Categories
•  Sampled stream Near

 Drainage Intermediate

I Catchment m  Distant

 Drainage

I Catchment 

100m buffer (network) 

E l  100m buffer (local)

Figure A3.1. Schematic o f the spatial scales (A) and hydrological distances (B) considered to  

obtain the landscape predictor variables o f fish from  Amazonian stream sites. Riparian 

buffers are referred as netw ork and local.

Transect Detail
Fish Cover /

Canopy Density, • 
Substrate, 
Channel "7 

Dimensions
Site-scale Design

Human
Disturbance

Water
Flow

T ran s ec ts  (11 )

T h a lw e g  Profile  

(1 0 0  points to ta l)

Figure A3.2. Schematic o f the sampling design o f the instream habitat o f Amazonian stream 

sites.
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4 A large-scale assessment of local, riparian and 
catchment-level impacts on Amazonian stream

fish
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Chapter 4. A large-scale assessment of local, 
riparian and catchment-level impacts on 
Amazonian stream fish

4 . 1  A b s t r a c t

Agricultural expansion in the tropics is one of the main drivers of biodiversity loss worldwide. 

In addition to the conversion of native vegetation for crops and livestock there is wider set of 

human-induced disturbances that are often neglected by environmental legislation and 

conservation programs in tropical countries. The consequences of human-induced 

disturbances to  the ecological integrity of freshwater systems are far less studied than 

impacts on terrestrial ecosystems. Here we address this knowledge gap by investigating the 

relative importance of local (i.e. instream habitat), riparian and other landscape scales 

human impacts, as well as natural features on changes in the occupancy and abundance of 

stream fish in the eastern Amazon. We undertook a large and multi-scale assessment of 

stream environmental features from 83 sites in five river basins and two large regions 

distributed along a broad gradient o f different land uses in the eastern Amazonian forest- 

agriculture frontier. We found mixed responses by stream fish from different river basins 

(e.g. regarding the importance of natural stream features) but consistent associations with 

differences in instream habitat features. Species-specific responses were not associated with 

differences in trophic guild for any of the river basins. We use our findings to  discuss the 

effectiveness of the Brazilian environmental legislation which only explicitly account for a 

subset of human disturbances. In particular, the focus of existing legislation on the 

protection of riparian vegetation is insufficient to guarantee the conservation of stream 

environments. The focus of conservation efforts on riparian vegetation should not take away 

from the importance of conservation efforts at other scales (e.g. catchment and local
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instream habitat), and ultimately the need to shift towards the management of drainage 

networks if we are to effectively safeguard stream condition and fish biodiversity.

Keywords: land use change, tropics, watershed management, Brazilian Forest Code, trophic 

functional structure

4.2 In tro d u c tio n

Land use change in the tropics is one of the principal drivers of global biodiversity loss 

(Laurance et al 2014), and agricultural expansion in many countries can be expected to 

increase with population growth and shifts towards more diverse and protein-rich diets 

(Tilman et al 2011; Tilman and Clark 2014). The forested tropics, such as the Brazilian 

Amazon, hold many of the lands that could be available for agricultural expansion, which is 

being facilitated by new strain of crops, climatic change, and infrastructure development 

such as new and improved roads (Vera-Diaz et al 2008). In addition to deforestation, the 

remaining forests are often degraded by a suite of additional disturbances such as logging, 

fire and edge effects (Asner et al 2005; Broadbent et al 2008; Souza et al 2013). 

Understanding how these activities combine to affect biodiversity is vital fo r planning 

appropriate conservation strategies and helping countries meet their pledges to the 

Convention on Biological Diversity's Strategic Action plan and biodiversity-related Aichi 

Targets.

Freshwater biodiversity is considered to be more imperilled than terrestrial and 

marine biodiversity counterparts (Dudgeon et al 2006; Strayer and Dudgeon 2010), yet most 

of the scientific research addressing species responses to habitat change and degradation 

focus on the terrestrial fauna and flora. For instance, a recent review of 62 studies assessing 

faunal responses to land use change in Amazonia (Peres et al 2010) included only one that 

investigated fish (Dias et al 2010). Moreover, where fish responses to anthropogenic
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pressures have been studied in the Amazon, they have been largely restricted to studies of 

large channels, hydropower plants projects and commercially important species (e.g.

Barthem et al. 1991; Ardura et al. 2010; Fearnside 2014). In contrast, there are very few 

studies on how fish assemblages in low-order streams respond to human impact [see Dias et 

al. 2010 on impacts from selective logging and Bojsen and Barriga 2002 on effects of 

deforestation], even though they make up the vast majority of watercourses in the Amazon 

basin (1st to 3rd order streams make up ca. 90% of the total river length in some Amazonian 

sub-basins; Mcclain & Elsenbeer 2001) and permeate across almost all agricultural 

landscapes.

The conservation of fish in low-order streams requires integrated approaches that 

include the management of both the land and the stream systems themselves, at the scale of 

individual sites as well as entire catchments (Allan et al 1997; Revenga et al 2005; Wang et al 

2006a; Castello et al 2013). There are two key reasons why it is important to  disentangle the 

relative importance of drivers of change across different spatial scales. First, some 

environmental features are more amenable to  assessment and management than others, 

but are not necessarily key determinants of changes in aquatic condition. For instance, in 

streams from pasture-dominated landscapes in southeastern Brazilian savannahs Casatti et 

al. (2006) found fish assemblages to  respond to physical habitat changes but not to water 

quality. However Brazilian agencies that monitor streams conservation only take into 

account water quality properties related to human use. Second, it is important to evaluate 

the extent to which management of the riparian zone can be an effective tool in watershed 

management when compared to land management elsewhere in the catchment, especially 

as the latter is often neglected or considered less important (Allan et al 1997). Wang et al 

(2003) demonstrated the importance of considering both riparian and catchment level 

features: management practices in the riparian zone improved the physical habitat condition 

of Wisconsin streams in USA, but were not sufficient to restore fish fauna unless paired with
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upland management across catchments. At present, there is no clear consensus about 

whether disturbances at catchment (Roth et al 1996; Marzin et al 2013) or riparian scale 

(Nerbonne and Vondracek 2001; Saly et al 2011; Macedo et al 2014) are the most relevant 

drivers of change to aquatic biota. Moreover, existing studies are unlikely to predict patterns 

in the Neotropics that are naturally heterogeneous and are characterized by very high levels 

of fish diversity and species turnover between streams and river basins (Mendon?a et al. 

2005; Albert et al. 2011; chapter 3).

Understanding the relative importance of local and landscape scale drivers of 

Amazonian stream condition is particularly important in the context of the Brazilian Forest 

Code (Federal Law N° 12.651, May 25th 2012; Brasil 2012). It is the central piece of 

legislation governing environmental management of private lands in Brazil, and specifically 

regulates the extent o f riparian and non-riparian forest cover that need to be protected in 

different sized properties. Given most watercourses extend beyond protected areas, the 

Brazilian Forest Code is likely to  be critical for Amazonian low-order stream fish 

conservation, yet at present no studies evaluate the potential effectiveness of the 

regulations in this context.

Here we use data from a large-scale study linking species abundance with 

environmental features across 83 stream sites, sampled in a diverse mosaic of different land 

uses across two regions of the eastern Brazilian Amazon. In doing so, we provide the first 

assessment o f the relative effect o f multi-scale drivers on fish diversity in low-order 

Amazonian streams. The environmental predictor variables were divided into four groups. 

The first three groups were chosen to represent indicators of human disturbance that are 

amenable to  management and legislation in to  varying extents and at different spatial scales, 

and include 'instream habitat' which depicts local features, the 'riparian network' which links 

to  legislation aimed at maintaining forest cover in the riparian zone to protect watercourses 

and associated biota, and 'other landscape' which includes catchment level variables
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associated w ith forest cover across landscapes. We kept riparian network separated from 

the other landscape scales because it is clearly linked to governance requirements therefore 

being more amenable to management. In addition, we add a fourth group called 'natural' 

which includes features of streams that existed before human influences, or are not 

amenable to management (Figure 4.1). Because community responses of stream fish are 

weak (Chapter 3) and may mask important patterns, we focused on understanding species- 

specific responses. Specifically we ask (i) what are the shared and independent effects of 

environmental characteristics more amenable to  management (i.e. riparian and other 

landscape) on fish species abundance, and how do these compare with the effects of 

instream habitat and natural features of streams? (ii) Is there any evidence for associations 

between fish species with anthropogenic disturbance at the local or landscape levels? and 

(iii) Can species responses be associated with their trophic functional groups? We use 

insights from our findings to discuss the complexity of species-environment relationships and 

the adequacy of the current Brazilian environmental legislation for the conservation of 

Amazonian low-order stream fish.
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______________ Environmental predictor_______________
variables

Not amenable to management Amenable to management

Instream habitat
Water quality 

Physical habitat

Riparian
network

% network riparian

Natural
Catchment area 
Catchment slope 

Distance to large river

Instream-level

Natural features of 
stream sites

Landscape-level

Othar landscape
e.g. Land use intensity 

Road crossings 
Mechanized agricuiura

Indicators of anthropogenic disturbances

Figure 4.1. Schematic of the environmental predictor variables divided into four groups 

('natural', 'instream habitat', 'riparian network' and 'other landscape') used to investigate 

stream fish species-specific responses in the eastern Amazon.

4.3 M e thods

4 .3.1  S tudy reg ion

We studied two regions in the eastern Brazilian Amazon state o f Para. Santarem (hereinafter 

'STM') covers ca. 1 million ha and is composed of the municipalities of Santarem, Belterra 

and Mojui dos Campos. It is located southeast of the confluence of the Amazonas and 

Tapajos Rivers. Paragominas ('PGM') is a single 1.9 million ha municipality in the far east of 

the Amazon basin. The study regions belong to two of the Freshwater Ecoregions of the 

World (FEOW) proposed as biogeographic units to assist global freshwater biodiversity 

conservation planning (Abell et al 2008), STM in 'Amazonas Lowlands' and PGM in 

'Amazonas Estuary and Coastal Drainages'. Our study design included three main river basins 

across the two regions, and we sampled 33 stream sites in Curua-Una (STM), 26 in Capim 

(PGM) and 24 in Gurupi (PGM). All wadeable streams 1st to 3rdStrahler order on a digital 

1:100,000 scale map (Figure 4.2).
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Para

J

Figure 4. 2. Location o f stream site catchments in Paragominas (ca. 1.9 m illion ha) and 

Santarem (ca. 1 m illion ha) regions, Para state, eastern Brazilian Amazon.

The tw o  regions have distinct histories o f human land use and occupation. STM has 

been occupied by Europeans since 1661, whereas PGM was form ally established in 1959. 

Both regions exhibit decreasing rates o f primary vegetation deforestation since 2005 and 

have been bisected by federal highways, w ith  cascading influences on regional development. 

Native forests cover around tw o-th irds o f both regions, and include undisturbed and 

disturbed primary forests and regenerating secondary forests (Gardner et al 2013). 

Production areas encompass a diverse patchwork o f cattle ranches, well-established 

mechanized agriculture, densely populated small-holder colonies and agrarian reform 

settlem ents, silviculture (mostly Eucalyptus spp. and Schizolobium amazonicum, especially in 

Paragominas).
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4.3.2 Data sampling

4.3.2.1  Fish

Field work was carried out during the Amazonian dry season in STM (July-August 2010) and 

PGM (June-August 2011). Three people sampled fish in a 150 m segment of the stream site 

for 120 min (12 min per section). Each 150 m long stream site was subdivided into 10 

continuous sections (isolated by block nets), each 15 m long, by 11 cross-sectional transects 

(Figure A4.1). Fish were sampled using seines (6 x 1.5 m, 5 mm stretched mesh size) and 

semi-circular hand nets (0.8 m in diameter, 2 mm stretched mesh size). The use of different 

equipment and collection techniques was applied to encompass all kinds of meso and 

microhabitats (e.g., riffles, pools, undercut banks, open waters, wood, leaf packs, sand, 

marginal vegetation), and consequently fish groups. All catches were made during daylight 

hours. Specimens were killed in an anesthetic solution of Eugenol and then fixed in 10% 

formalin. In the laboratory, all sampled fishes were transferred to 70% alcohol and identified 

to species level.

In order to  determine trophic groups we analyzed the stomach content from five to 15 

specimens of each species. We combined information about frequency of occurrence 

(number of times that the item occurred relative to  the total number of stomachs with food) 

and relative volume (relative to the total volume of food) of the food items in the Alimentary 

Index (IA/') proposed by Kawakami & Vazzoler (1980). Species were classified in the following 

trophic groups when consumed > 60% of items: carnivore (animal with no predominance o f a 

specific group), detritivore (particulated organic matter w ith associated microorganisms and 

non-organic matter), insectivore allochthonous (terrestrial insects), insectivore 

autochthonous (aquatic insects), general insectivore (insects, no predominance in their 

origin), perifitivore (periphyton), piscivore (fish) and herbivore (organic matter). Species 

were classified as omnivore when there was no predominance of any specific item.
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4.3.2 .2  Environmental predictor variables

4 .3 .2 .2 .1  Instream habitat

We measured dissolved oxygen, conductivity, pH, and temperature with a digital portable 

meter placed below the water surface in the centre o f the stream site before taking 

measurements inside the channel to prevent disturbance.

We measured physical habitat at the stream sites following Peck et al (2006) and 

Hughes and Peck (2008). For each section we took 10 longitudinal equidistant measurements 

of thalweg depth; visual quantification of bars, backwaters, side channels, and channel type 

(pool, glide, riffle, rapid, cascade, waterfall or dry channel); channel slope (measured with a 

flexible, water-filled plastic tube); and sinuosity (measured with compass bearings). We also 

recorded the presence of large wood of different size classes in or above the bankfull 

channel o f the stream site.

For each of the 11 cross-sectional transects we measured depth and visually 

estimated cover of substrate type (bedrock, concrete, boulder, cobble, coarse gravel, fine 

gravel, sand, silt and clay, hardpan, fine litter, coarse litter, wood, roots, macrophyte, and 

algae) along five equidistant points transverse to the long axis of the stream. Transect 

characterization also included bankfull width and depth, mean wetted width and depth, 

incision height, undercut bank distance, and bank angle. We assessed habitat complexity at 

each transect in 10 m plots inside the stream channel, using visual estimates of the areal 

cover o f filamentous algae, aquatic macrophytes, leaf packs, roots, large wood >30cm 

diameter, brush and small wood, overhanging vegetation <1 m above the water surface, 

undercut banks, boulders, and artificial structures. We measured vegetation canopy cover 

above the channel w ith a densiometer at the centre of each transect by facing upstream, 

downstream, left and right, as well as by facing both banks near the banks. We calculated 

discharge from mean current velocity (estimated from the travel time of a floating object 

along three known distances) and mean cross-sectional area (measured as mean depth times
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mean width of the three known distances) of the stream site.

We calculated an initial set of 171 instream habitat predictor variables from the field 

data based on Kaufmann et al (1999), including 25 channel morphology, 16 channel unit, 5 

channel sinuosity and slope, 28 substrate size and composition, 33 habitat complexity, 60 

large wood, and 4 stream canopy cover variables. Geometric mean substrate diameter and 

relative bed stability were calculated as described by Kaufmann et al. (2008).

4 .3 .2 .2 .2  Riparian network

Riparian network ('riparian network') scale consisted of a 100 m buffer along the entire 

drainage network usptream from the stream site. We measured land use, hydrological 

distance to forest and indicators of historic land use at this scale as detailed below for the 

other landscape scales.

4.3.2 .2 .3  Other landscape

Besides riparian network scale we conducted land use assessments at the whole catchment 

upstream from the stream site ('catchment') and in a 100 m riparian buffer at the stream site 

('local riparian'; Figure A4.2A).

We measured land use with the percentage of forest cover in each spatial scale 

obtained from a land use map (Landsat TM and ETM+ images, 30 m resolution, year 2010; 

Gardner et al 2013; Table 1 for a summary of landscape predictor variables). Forest included 

primary forest (whether undisturbed or showing signs of disturbance from fire or logging), 

and secondary forest older than 10 years (considered sufficiently developed to provide 

significant hydrological services based on our expert assessments). The history of 

mechanized agriculture was calculated from annual MODIS data from 2001 to 2010 (see 

details in Gardner et al 2013).

To calculate forest cover at different hydrological distances from the stream site, we
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first standardized the distances by the maximum distance in each catchment to account for 

differences in catchment sizes. Then we assigned all pixels in each catchment into near, 

intermediate or distant categories and then calculated the percent forest cover in each of 

the distance categories (Paula et al 2013; Figure A4.2B).

Two historical land use indicators were calculated for catchments using a time-series 

of land use maps for the last two decades (following Ferraz et al 2009): forest change 

curvature profile (FCCP; the deforestation profile curvature) and land use intensity index 

(LUI; the mean time since deforestation). FCCP is the maximum deviation of the forest 

change curve relative to the linear model between initial and final forest amount over time. 

These indicators were calculated using Land Use Change Analysis Tools (LUCAT), an open 

source ArcGIS extension (Ferraz et al 2011; Ferraz et al 2012).

We visually estimated the presence and proximity of 11 categories o f human 

activities in the local riparian zone (i.e., row crops, pasture, dams and revetments, buildings, 

pavement, roadways, pipes, landfill/trash, parks/lawns, logging, and mining); and calculated 

an index of proximity of anthropogenic impact (W1_FIALL; Peck et al. 2006; Hughes & Peck 

2008).

We estimated stream riverscape fragmentation using the number o f upstream and 

downstream road crossings within a 5 km circular buffer from the stream site. The road 

crossings in the drainage network were identified by photo interpretation using 

georeferenced colour Rapideye images (2010 for STM and 2011 for PGM, 5 m resolution) for 

the study regions. To map these crossings, we identified features in the images related to the 

road crossings (linear lines crossing the drainage network; Jensen 2000). A subset of about 

half o f these identified crossings were validated using Google Earth images. All landscape 

analyses were conducted in ArcGis 9.3© (Environmental Systems Research Institute, 

Redlands, CA, USA).
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4.3.2 .2 .4  Natural

The drainage network was constructed using the hydrological model ArcSWAT (Soil and 

Water Assessment Tool extension for ArcGis) for both regions. Catchment boundaries, mean 

elevation, and slope were obtained through use of digital elevation models for Santarem 

(SRTM images with 90 m resolution; NASA - National Aeronautics and Space Administration) 

and for Paragominas (TopoData with 30 m resolution; INPE - National Institute for Space 

Research). Hydrological distance between each stream site and the main river downstream 

(4th order reaches) were calculated using Landsat images.

4.3.3  Data analysis

4 .3 .3 .1  Selection of the environmental predictor variables

The initial set o f 22 landscape and 171 instream habitat predictor variables was reduced to 

nine and 23 respectively in order to lim it redundancy and produce a smaller set of the most 

representative environmental predictor variables (Table 4.1). Given the hierarchical nature 

of the landscape variables (catchment scale encompasses riparian network scale which 

encompasses local riparian scale), we expected high levels of correlation among them.

Among the instream habitat predictor variables, the protocol used provides a 

standardized, replicable and complete assessment o f the physical and chemical 

characteristics of wadeable streams. The resulting dataset enables the calculation of several 

variables representing key aspects of instream habitat such as stream size, stream gradient, 

substrate size and stability, instream cover complexity, and stream-floodplain connectivity. 

However it is unlikely to include all 171 as predictor variables, for instance some of them are 

closely related features (e.g. the substrates % sand, % fine and % sand+fine; or wood 

considered as count or volume), or are redundant ( r Pearson > 0.7) and others were 

represented mostly by zeros in our study system. On the other hand, it can be difficult to 

select a priori variables to describe instream habitat and responses to  anthropogenic
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disturbance given the complex relationship between land use change, instream habitat and 

biotic responses, which result in variation in responses. Therefore our choice of instream 

habitat predictor variables aimed for considering informative and not redundant variables 

following the rationale outlined in Chapter 2.

Table 4.1. Environmental variables (landscape and instream habitat) used to predict fish 

species-specific abundances from Amazonian stream sites.

Environmental
predictor variables Definition

Group Code

Landscape: natural features

"53 CAT_ARE Catchment area -  ha
3**flj CAT_SLO Catchment slope
z DST_RIV Distance to large river (> 4th Strahler order)

Landscape: anthropogenic disturbances

R
ip

ar
ia

n
ne

tw
or

k

NET_FOR % riparian network forest

LOC_FOR % local riparian forest

reQ.reu
W1_HAL Proximity weighted tally of riparian/stream side disturbances (W1_HALL; 

Kaufmann et al., 1999)
v>-oc CAT_MAG % mechanized agriculture
_re
k_re-c4-*

LOC_FCP
Forest change curvature profile index (FCCP; Ferraz et al., 2009) - 
dimensionless

o
DEN_RCS

Number of road crossings within a 5 km circular buffer upstream and 
downstream the stream site divided by catchment area

Instream habitat: water quality

TEMP Water temperature -  °C

DO Dissolved oxygen -  mg/L
+4re+■»
lare

PH

COND
pH
Electrical conductivity -  pS/cm

re Instream habitat: physical habitat
reI.4-» Substrate
c FINE Streambed surficial fines < 0.6 mm diameter -  % areal cover

SAFN Streambed surficial sand + fines < 2 mm diameter -  % areal cover

FNGR Streambed surficial fine gravel 2 to 16 mm diameter -  % areal cover

BIGR
Streambed surficial substrate coarse gravel and larger (> 16 mm diameter) -  
% areal cover

115



4. Species-specific responses

Table 4.1 Continued.

Environm ental
predictor variables Definition

Group Code

Cover a n d  w o o d

A M  CV In-channel algae and m acrophytes -  %  areal cover

NTCV
In-channel natural cover (w ood, live trees and roots, lea f packs,
overhanging vegetation, undercut banks, boulders) -  %  areal cover

W O O D W ood volum e -  m 3 /m 2 w etted  channel area

C h a n n e l m o rp h o lo g y

W DDP M ean  (w e tte d  w id th  x thalw eg depth) -  m 2

DPTH Standard deviation o f thalw eg depth -  cm
4-»(0+£ THDP Thalweg depth ratio a t bankfu ll/low  flo w  -  dimensionless
jQ
(Q
-C BKAN Standard deviation o f bank angle -  %

E
red)

BKWD Ratio: Bankfull w id th  to  bankfull thalw eg depth -  dimensionless
w
i/i
C

RP100 M ean  residual depth at thalw eg -  (m 2/m )/c m

SINU Channel s inuo sity -d im en sio n less

FAST Channel fast w a te r (%  riffle + rapid + cascade + w aterfa ll)

O th e r

DSCH Low flo w  season discharge m easured in th e  field -  m 3/s

LRBS
Logio o f relative bed stability estim ated at bankfull flow  conditions
(Kaufm ann et al. 2008, 2009)

LDMB
Logio o f critical substrate d iam eter (m axim um  m obile d iam eter) at
bankfull flo w  conditions (Kaufm ann et al. 2008, 2009)

SHAD Canopy density (shading) m easured at m id-channel -  %

4.3.3 .2  Statistical analysis

For species-specific models, we retained species from each river basin that occurred in at 

least 25% of the stream sites and had a total number of individuals equal or larger than the 

number of stream sites (e.g. we sampled 33 stream sites in Curua-Una, so we considered 

species that had > 33 individuals and that occurred in > 8 sites). We used variance 

partitioning to evaluate the shared and independent effects of the predictor variable groups 

on species abundance (research question 1) and random forest models to investigate the 

partial effect o f single predictor variables on species-specific responses (research question

2). In both cases we analysed each species in each river basin separately.
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To estimate how much of the variation in species abundance is explained by the four 

environmental predictor variable groups we used variance partitioning analysis (Borcard et al 

1992). We used 'varpart' function of the R 'vegan' library that automatically calculates the 

adjusted redundancy analysis (R2a). The R2a correct for the number of predictor variables in 

each group and number of observations in the response variable, therefore is considered to 

produce unbiased estimates (Peres-Neto et al 2006). Even though prior to the variance 

partitioning analysis we performed a forward selection of the instream habitat group 

(originally w ith 23 predictor variables) to reduce the chance of overestimation. We used 

'forward.sel' function available in the R 'packfor' library (Blanchet et al 2008) considering 999 

Monte Carlo permutation tests and retaining variables with p < 0.10.

For the random forest models we included the same predictor variables retained by 

the forward selection and used in variance partitioning. We used random forest (RF; from 

Breiman 2001) models, which allow complex interactive and non-linear response-predictor 

relationships, and have excellent predictive performance (Prasad et al 2006; Smith et al 

2011). Random forests produce an ensemble of regression trees, where each tree is fitted to 

a bootstrap sample of the data, and each partition within a tree is split on a random subset 

o f the predictor variables (Ellis et al 2012). The data not used to build a tree in each 

bootstrap sample, called out-of-bag (OOB) sample, is used to calculate cross-validation 

performance statistics and measures of variable importance (Ellis et al 2012). We calculated 

a pseudo-r2 value as 1- MSE/Var(y), where MSE is the mean squared error of the out of bag 

predictions (Ellis et al 2012). This value estimates the proportion of variation that can be 

reliably predicted by the ensemble model. The relative importance (Rl) o f individual variables 

was calculated as the mean percentage increase in MSE when a variable was randomly 

permuted, using the conditional permutation method in 'randomForest' function in the R 

'extendedForest' library (Smith et al 2011), which reduces bias when predictors are 

correlated. Conditional Rl values were computed from the conditional permutation
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distribution of each variable, permuted within 3 partitions of correlated (rpearson > 0.5) 

variables (see Ellis et al. 2012). All models were fitted with 10000 trees, w ith one third of 

variables randomly sampled as candidates at each split (1 variable selected if total variables <

3). Variables w ith negative relative importance values were excluded from final models.

After modelling we looked at the partial effect of individual predictor variables that 

accounted for more of the explanation of a single species. Finally we selected models that 

resulted in > 10% of total explanation to run a cluster heat map using 'heatmap.2' function 

available in R 'gplots' library, considering Euclidean distance. With the heatmap we aimed to 

answer the third research question, that is, if species responses to the environmental 

predictor variables is associated with their trophic functional guilds.

All analyses were performed in R statistical environment (R Core Team 2013).

4.4 Results

In total we collected 25,526 fish specimens and 143 species, being 60 species (5,846 

specimens) in Curua-Una, 83 in Capim (7,421) and 83 in Gurupi (11,153) (Chapter 3). Many 

species existed as singletons (e.g. 12 species in Capim) or at very few sites (e.g. 50% of 

Curua-Una species occurred in three or less sites), and were too rare to model. The criteria 

to  select species for the analysis left a shorter list of 52 species that is 14 from Curua-Una, 28 

from Capim and 35 from Gurupi (Table 4.2).

For these 52 species, the four classes of predictor variables, instream habitat, 

riparian network, other landscape, and natural, accounted for some of the variation in the 

studied river basins, but a great part of it remained unexplained (Figure 4.3). In the Curua- 

Una River basin the predictors accounted for up to 58% (Aequidens epae and 

Hyphessobrycon sp.) whereas five species did not have any variation explained. In the Capim, 

Hemigrammus rodwayi had the highest percentage explained (74%) and seven species 

species did not have any variation explained. Twenty four species from the Gurupi River
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basin had some variance related to the predictors, Gymnotus coropinae was the best 

explained (47%), whereas 11 remained largely unexplained.

When partitioning out the relative importance of each of the four groups of 

predictor variables, instream habitat stood out as the most important for Curua-Una species 

(Figure 4.3A). In Capim and Gurupi, there was a less pronounced difference between the 

variance explained by the predictor groups (Figure 4.3B, C). However, in all river basins, 

forest cover in the riparian network represented the smallest portion of species-specific 

variation.
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4. Species-specific responses

A - Curu£-Una (STM)

Residuals Instream hab Riparian net Landscape Natural

B - Capim (PGM)

C - Gurupi (PGM)

Explained variance

Figure 4.3. Partitioning o f the variation in occupancy o f stream fish species in Curua-Una (A),

Capim (B) and Gurupi (C) River basins, showing the effects o f each group o f predictor 

variables when partition ing out the effects o f the other groups through redundancy analysis. 

Blue, light green, dark green and red represent respectively the fractions explained by 

instream habitat, riparian network, o ther landscape and natural alone; black represent all 

o ther fractions together.

Assessing the independent effects o f each predictor group indicated a sim ilar pattern 

o f responses. In the Curua-Una, o ther landscape, riparian, and natural made a small 

contribu tion  (maximum of 4% all together) to  the to ta l mean explanation (22%), whereas
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4. Species-specific responses

instream habitat accounted for most of the observed variability in species abundance (21% 

alone; Figure 4.4A). In the Capim, instream habitat was the most important group (15% 

alone), but landscape (12%), natural (10%), and riparian (8%) contributed more to the total 

(22%; Figure 4.4B). In contrast, natural characteristics made the greatest contribution in the 

Gurupi (10% alone), with instream habitat (9%), other landscape (7%) and riparian network 

(5%) also contributing to the total mean explanation (18%; Figure 4.4C).

Assessments of the partial effect of single predictor variables from random forest 

models revealed 19 associations where a species abundance increased with increasing 

disturbance (Figure 4.5A), and 10 where abundance decreased with disturbance (Figure 

4.5B). In both scenarios, instream habitat accounted for the majority of the associations (24). 

In addition, the analysis indicated eight partial effects where fish species abundance was 

linked w ith predictor variables that were not clearly related to stream condition (Figure 

4.5C).

Algae and macrophyte cover was an important predictor variable for seven species 

and helped explaining up to 28% (Microcharacidium weitzmani in the Capim drainage) in 

their abundance change (Figure 4.5A). Visual assessment of the partial plots suggests that 

the main changes occurred at 20 to 40% of algae and macrophyte cover above which the 

seven species increased in abundance. Hemigrammus ocelifer, Bryconops melanurus and 

Gymnotus carapo responded to  changes in mid-channel shading and decreased in 

abundance with more than 20 to 40% of shading (Figure 5A). Conductivity was clearly 

associated with a decrease in the abundance of two species (Gymnotus coropinae and M. 

weitzmani; Figure 4.5B). The other instream habitat predictor variables were responsible for 

one or two partial effects.

There were only five clear associations between landscape-level characteristics and 

the abundance of individual fish species (Figure 4.5). Bryconops melanurus abundance 

responded negatively to riparian network forest cover (12% partial effect) and Moenkhausia
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4. Species-specific responses

oligolepis to local riparian forest (10%). Moekhausia comma also increased in disturbed 

condition, showing a positive association with mechanized agriculture (15%). Gymnotus 

coropinae appeared sensitive to  forest cover, and was consistently related to stream sites 

with ca. 80% of local riparian and riparian network forest cover with each explaining 10 and 

12% respectively in its abundance increase.
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4. Species-specific responses

Single Shared 
by two

Shared by A|| 
three
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Figure 4.4. Isolated and shared effects of instream habitat (I), riparian network (R), other 

landscape (L), and natural (N) predictor variable groups on stream fish represented by mean 

and standard error (SE) for each river basin: Curua-Una (A), Capim (B) and Gurui (C).
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4. Species-specific responses

A - Abundance increase in disturbed condition
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Figure 4.5. Partial effect from  random forest models -  continues next page.
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4. Species-specific responses

B - Abundance decrease in disturbed condition
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4. Species-specific responses

Figure 4.5. Partial effect from random forest models (lines) of physical and chemical habitat, 

riparian network forest cover and other landscape predictors showing positive associations 

(dots) w ith disturbed (A) or better preserved condition (B). Other partial effects were not 

clearly attributed to sites condition as they can be representing size as well as anthropogenic 

disturbance (C).

Species clustering based on random forest results did not relate to trophic functional 

groups (Figure 4.6). The Curua-Una drainage was not included in this analysis because only 

six species had some variance explained by RF models. In the Capim, the analysis separated 

species w ith stronger partial effects responses to various predictor variables from those w ith 

lower partial responses (Figure 4.6A). In the Gurupi, species were grouped into two main 

clusters, according to whether they were associated with water quality and natural 

characteristics or wood and cover (Figure 4.6B).
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Figure 4.6. Cluster heat-map o f species based on random forest (RF) models results fo r 

Capim (A) and Gurupi (B) River basins. Each cell is coloured based on the percentage o f 

explanation values generated by RF. The cluster on the le ft side o f each heat-map groups 

species w ith  sim ilar response patterns according to  the ir relationship w ith  d iffe ren t predictor 

variables, based on Euclidean distance.

4.5 D iscussion

Human-modified Amazonian landscapes are complex, and are often comprised o f m ultip le

land uses operating heterogeneously across d ifferent spatial scales. We found tha t such

com plexity results in mixed responses from  stream fish species across d iffe ren t river basins,

making it d ifficu lt to  discern the relative importance o f d iffe ren t environm ental variables.

Nonetheless, we observed tha t changes in the instream habitat condition, underpinned by

gradients o f anthropogenic disturbance, were associated w ith  some changes in fish species
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4. Species-specific responses

abundance. Other environmental variables contributed less towards explaining overall 

variability in fish patterns, and their importance often varied across different river basins. 

Species-specific responses were not associated with trophic functional structure. Overall 

these results indicate that monitoring and conserving Amazonian stream fish requires a 

broad assessment of local and landscape-level disturbances and natural characteristics of 

streams, while the forest cover variables that form the basis of the protection for riparian 

habitat under the Forest Code (permanent protected area or APP in Portuguese) are often 

poor predictors of patterns of fish diversity. First, we focus on the scientific challenges of 

developing species-environment relationships in species-rich human-modified Amazonian 

landscapes. We then evaluate how our findings provide insights and recommendations for 

their management and conservation planning.

4.5.1 Understanding anthropogenic disturbances in megadiverse tropical 

systems

4.5.1 .1  Relative importance of environmental drivers

Overall we found that stream fish species can be linked to a wide range of natural and 

anthropogenic predictor variables acting through several spatial scales. Although species- 

specific responses varied across river basins the most consistent associations were with 

instream habitat condition. Although feeding habits do not appear to explain fish responses 

to disturbance, including other life history traits in the analysis could enhance our 

understanding of the consequences of land use change on stream biota. Our findings 

highlight the difficulties in disentangling the effects of anthropogenic disturbances in a 

naturally heterogeneous system (i.e high fish species diversity and turnover; Chapter 3) 

characterized by a diverse mosaic of land uses and natural characteristics as well as little 

previous research.
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4. Species-specific responses

On Chapter 2 we demonstrate that the linkages between landscape and instream 

habitat are complex and diverse. Here, we confirm how these complex linkages are 

underpinned by highly heterogeneous species-environment relationships. Anthropogenic 

disturbances at catchment, riparian or local scale can have varying effects depending, for 

example, on the preservation status of the river basin, biotic group under study, range of the 

disturbance gradient, and natural variability o f the systems (Kaufmann and Hughes 2006; 

Wang et al 2006b; Saly et al 2011; Marzin et al 2012; Macedo et al 2014). For instance in 

degraded systems from southeastern Brazilian savanna, catchment and riparian network 

vegetation showed a close link with fish assemblages (Casatti et al. 2009, 2012), whereas in 

preserved streams in the USA, instream habitat characteristics stood out when compared to 

other landscape drivers (Wang et al 2006b). This study highlights the major relevance of 

instream habitat for Amazonian fish species, which in turn is largely determined by multiple 

landscape factors (Chapter 2).

4.5 .1 .2  Challenges in understanding species-environment relationships in 

tropical streams

The intrinsic complexity of megadiverse systems is complicated by the natural hierarchical 

organization o f stream networks, where local conditions are under some level of regional 

influence (Allan et al 1997; Allan 2004). For instance we found a high-level o f multi- 

collinearity among natural and anthropogenic disturbances at several spatial scales hindering 

our ability to disentangle the relative importance of individual drivers of changes in the 

instream habitat condition (Chapter 2).

Despite measuring a broad set o f environmental predictors representing different 

scales of the landscape, we still found a high level of unexplained variance in our models 

predicting species abundance. An additional challenge involves investigating responses to 

disturbance by rare species, which are more difficult to model as they cannot be included in
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4. Species-specific responses

most statistical analysis. We excluded 58%, 62% and 73% of the species in Gurupi, Capim and 

Curua-Una respectively, as they were absent from less than 25% of the stream sites and 

occurred with few individuals. However, it seems plausible that many of these rare species 

could be the most sensitive to anthropogenic impacts, particularly if they are only present in 

the relatively small number of streams that were in undisturbed catchments. Excluding these 

from the assessment means that we could be overlooking an important component of the 

assemblage, and underestimating land use effects on stream fish. The fact that most 

associations between fish and disturbance were positive (i.e. abundance increased with 

disturbance) suggests that we could be failing to  model the full suite of species that decrease 

with disturbance (Figure 4.5).

Finally, working in a relatively preserved stream system meant that we did not 

account for the full gradient of anthropogenic disturbance. Both regions have retained a 

relatively high level o f catchment forest cover, 69% in Paragominas and 60% in Santarem, 

and we did not sample heavily disturbed catchments. Allan (2004) for instance describe that 

temperate streams can remain in good condition until a threshold of 30-50% of agriculture 

cover above which changes occur. Legacy effects may also take play resulting in disturbance 

effects only appearing long after the initial disturbance (Hylander and Ehrlen 2013).

Therefore many of the impacts of land use change in both regions are relatively recent, and 

the effects of which may take some time to be manifest (Chapter 2). Yet even under 

relatively small disturbance we showed that some dominant species were benefited and 

responded positively to anthropogenic impact.

4.5.2  Implications for management

We found that environmental predictor variables amenable to  management (insofar as they 

are legally enforceable) in the riparian zone, as well as landscape characteristics of the wider 

catchment play a relatively smaller role in determining changes in fish species abundance
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4. Species-specific responses

when compared to differences in instream habitat. However, in interpreting this scale- 

dependent effect it is important to remember that changes to instream habitat are 

themselves influenced by the combined effects of multiple landscape-scale drivers (Chapter

2). Therefore a key aspect to be considered in the conservation management of Amazonian 

streams is the need for interventions at multiple scales. The importance of the riparian 

network zone to stream health and aquatic biodiversity is largely recognised (e.g. Karr & 

Schlosser 1978; Nerbonne & Vondracek 2001; Pusey & Arthington 2003; Lorion & Kennedy 

2009) but activities and impacts elsewhere in the catchment cannot be neglected (Roth et al 

1996; Allan et al 1997; Castello et al 2013; Marzin et al 2013). If critical impacts of stream 

disturbance on fish assemblages occur mainly through changes in instream habitat, 

monitoring and assessment programs that only account for changes at riparian and 

catchment scales may underestimate impacts. Finally it is necessary to  consider that 

restoration of the riparian or catchment areas may only translate into changes in instream 

habitat over long (decadal) time-scales.

Brazilian legal instruments that could relate to fish fauna and stream condition 

include the Water Resources Regulation (Federal Law N° 9.433, January 8th 1997; Brasil 

1997) and the Fishery Code (Federal Law N° 11.959, June 29th 2009; Brasil 2009). However 

both are clearly focused on water quality and fish resources for human consumption 

therefore they do not account for a wide perspective of stream condition (Chapter 2). The 

paramount legislation concerning riverscapes is the Forest Code (Federal Law N° 12.651, May 

25th 2012; Brasil 2012), which has been recently revised and diminished protection of 

stream environments and associated riparian vegetation, APP (Garcia et al 2013; Soares- 

Filho et al 2014). For instance, depending on the property size, the revised Forest Code 

reduced the extent of riparian vegetation that is mandated to  be restored to 5 m for areas 

that have been declared for agricultural use.
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4. Species-specific responses

A major limitation of the Brazilian Forest Code, in the conservation of aquatic systems, 

is that it is focussed on the scale of individual private properties, whereas, as our results 

have shown (and see Chapter 2), interventions are also required at the catchment-level 

demanding collective strategies involving different landowners working together. The FC also 

focuses on imposing more restrictions to land use in the riparian zone in order to preserve 

areas o f important value for biodiversity and other ecosystem services (e.g. watercourses). 

This is certainly valuable if did not weakened the conservation efforts at non-riparian scale. 

For instance the legislation allows out-of-catchment compensation for deforestation which 

can result in catchments with low forest cover outside o f the riparian zone. This is 

particularly worrying when considering that even restrictions on deforestation within 

riparian zones have not been shown to be effective, with evidence from Paragominas 

suggesting that riparian areas may be being deforested faster than non-riparian lands (Nunes 

et al 2014).

Despite those inadequacies, the Forest Code has some critically important provisions 

regarding management and conservation o f the Amazon and other Brazilian environments 

that go far beyond those available in other tropical countries. However our results reveal 

two key limitations of the legislation in protecting low-order streams and fish fauna. A failure 

to adequately account for anthropogenic activities at the catchment scale and a failure to 

deal with instream habitat. Both appeared to be important in this study and in previous 

investigations in the same region (Chapters 2 and 3). This narrow interpretation of what 

constitutes the stream environment, and the way in which stream environments are 

connected to terrestrial environments, can serve to downplay the importance of 

conservation efforts at non-riparian scales which are highly relevant in determining the 

composition of local fish assemblages. Therefore our findings give further support to the 

strong need for legislation to  go beyond the protection o f only riparian forests addressing 

the management of entire drainage networks (Abell et al 2007; Castello et al 2013).
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4.6 Appendix Chapter 4 (A4)

The tables and figures presented here will be submitted as supplementary material to  the 

Chapter 4 manuscript.

Table A.4.1. Performance of random forest models showing the percentage of species- 

specific variation explained by the predictors in the Curua-Una River basin, Brazilian eastern 

Amazon. Values greater than 10% highlighted in bold; species codes are presented in Table

Predictor Species /  Curua-Una River basin
variables hyp.sp kno.sava hyp.hete bry.mela hyp.lept api.taen

CAT_MAG 7.0

TEMP 4.8

COND 8.3

FINE 2.6

BIGR 2.1

NTCV 8.5
WDDP 28.1 1.9
DPTH 3.1
THDP 0.3
BKAN 2.7
BKWD 12.1
RP100 2.4
SINU 1.5

DSCH 4.2 1.7

Total variance 
explained (%)

40.2 19.0 12.3 10.5 5.3 4.1
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4. Species-specific responses

Transect Detail
Fish Cover /
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Figure A4.1. Schematic o f the sampling design o f the instream habitat o f Amazonian stream 

sites.
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Figure A4.2. Schematic o f the spatial scales (A) and hydrological distances (B) considered to 

obtain the landscape predictor variables o ffish  from  Amazonian stream sites. Riparian 

buffers are referred as netw ork and local.
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5. Concluding remarks

Chapter 5. Concluding remarks

This thesis is the first comprehensive, quantitative, and multi-scale assessment of the 

consequences o f anthropogenic disturbances to both stream fish and instream habitat 

condition across the forest-agriculture frontier of the eastern Brazilian Amazon. As such, it is 

also one of the first studies of its kind of any area of tropical forest in the world. Earlier 

research on freshwater systems in the Amazon basin have focused on investigating 

hydrological and biogeochemical processes o f streams (Neill et al 2001; Davidson et al 2004; 

Neill et al 2006; Figueiredo et al 2010; Neill et al 2011; Macedo et al 2013; Neill et al 2013) or 

on the effects of a single land use such as logging (Dias et al 2010) or deforestation (Bojsen 

and Barriga 2002) on stream fish. The findings presented here demonstrate that multiple 

anthropogenic pressures can act in complex and cumulative ways, and across multi spatial 

scales. This thesis therefore marks an important advance on our current understanding of 

low-order stream systems in human-modified Amazonian forests and provides hitherto 

unavailable information to assist management and conservation planning at both site and 

landscape scales.

5.1 Synopsis of key findings

The main objective o f this thesis was to investigate how stream condition and fish 

assemblages respond to anthropogenic disturbances occurring at several spatial scales in 

multiple use Amazonian landscapes. Particular emphasis was given to disentangling the 

associations among drivers acting at different spatial scales on both the biotic and abiotic 

characteristics of streams.

The instream habitat provides the environmental habitat and resources for aquatic 

biota and is therefore critical in determining the provision of several ecosystem services (e.g.
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water for human and animal use; Karr & Schlosser, 1978; Osborne & Koviacic, 1993;

Peterjohn &  Correll, 1984). However, to date there has been no comprehensive study of 

changes in physical instream environment for human-modified Amazonian stream systems.

In Chapter 2 I address this gap by asking how water quality and physical habitat respond to 

landscape-scale anthropogenic disturbances. I found that disturbances at both riparian and 

catchment scales can drive marked changes in water characteristics, substrate type, in­

channel cover and wood volume, channel morphology as well as other key stream features, 

such as seasonal discharge. Working in two regions revealed how these responses can be 

highly context dependent on the natural characteristics and heterogeneity of the stream 

systems. There were few similarities in responses of instream habitat characteristics to 

landscape disturbances between the two independent study regions of Santarem and 

Paragominas and it was not possible to identify any single variable with an overriding effect. 

By encompassing a range of land-use change (LUC) variables other than differences in forest 

cover I was able to identify the critical role also played by other characteristics of human- 

modified landscapes in shaping instream habitat, such as the number of upstream and 

downstream road crossings and the extent o f upstream mechanized agriculture. The findings 

from Chapter 2 reinforce the need for a catchment-wide management strategy to protect 

the integrity of Amazonian stream ecosystems, in agreement with what is a general 

suggestion for freshwater systems (Abell et al 2007; Strayer and Dudgeon 2010; Castello et al 

2013; Macedo et al 2013).

Building on the results of Chapter 2 I then asked how anthropogenic disturbances at 

both local (i.e. instream habitat) and landscape (i.e. riparian and catchment) scales as well as 

natural stream features can influence both the makeup of entire fish assemblages (Chapter

3) and the distribution and abundance of individual species (Chapter 4). In Chapter 3 I first 

examined the general patterns of richness, abundance and composition o ffish  assemblages 

across the full set o f study sites and sought to  isolate the relative importance of different
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proximate drivers of change. The most important finding from this chapter is that low-order 

Amazonian streams are extraordinarily heterogeneous in their fish biota w ith exceptionally 

high-levels of beta diversity between stream sites and between river basins. Furthermore 

both assemblage structure and composition were influenced by a broad set of 

environmental variables, including both natural stream features and anthropogenic- 

disturbances that varied in importance depending on the river basins. This high level of 

biological uniqueness in stream assemblages and complexity of interactions with different 

drivers gives further support to the findings from Chapter 2; single and isolated conservation 

strategies, such as focusing only on riparian vegetation, are unlikely to effectively safeguard 

the diversity and integrity of stream fish assemblages.

Finally I analyzed species-specific responses to the same environmental predictor 

variables used in Chapter 3 but divided these variables into groups according to their spatial 

scale and the extent to which they are amenable to management and regulation (Chapter 4). 

Similarly to Chapters 2 and 3, the species-specific approach revealed mixed responses to 

environmental predictor variables across river basins, underlining the difficulties in 

discerning their relative importance of any single driver. Nonetheless differences in instream 

habitat contributed more towards explaining overall patterns of variability in fish species 

abundance across different river basins than other groups of predictor variables. I used the 

findings of this chapter to critically examine the effectiveness of the Brazilian environmental 

legislation for conserving low-order stream systems. Brazilian environmental legislation on 

private land, determined particularly by the Forest Code, gives a strong emphasis to the 

conservation of riparian vegetation. However this narrow interpretation of what constitutes 

the stream environment, and the way in which stream environments are connected to 

terrestrial environments, can serve to downplay the importance of conservation efforts at 

non-riparian scales (i.e. catchment and local instream habitat) that my work underscores as 

being highly relevant in determining the composition of local fish assemblages. These
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findings give further to support to Chapters 2 and 3 regarding the strong need for addressing 

the management of the entire drainage networks to protect stream condition and fish 

biodiversity.

Throughout all three chapters I examined the challenges involved in disentangling 

the relative effects of anthropogenic impacts and natural features on these heterogeneous 

Amazonian stream systems -  the combination of which probably contributed to the high 

level of unexplained variance in some of the models. Understanding the importance of 

specific variables was particularly cofounded by the fact that:

i. There are high levels of multi-collinearity between natural stream features and 

anthropogenic disturbances (Chapter 2) making it difficult to discern the effects of 

specific disturbance signals (Allan 2004);

ii. Human-induced changes are the result of cumulative effects of multiple drivers (Allan 

2004), meaning that even if specific predictor variables appear to be responsible for 

only a small part of the variability in responses they may still be critical in determining 

overall effects (Chapter 2);

iii. Working in relatively preserved stream systems meant that it was not possible to 

account for the full gradient of anthropogenic disturbance since in our study no 

severely degraded (e.g. completely deforested and semi-urban) catchments were 

sampled (Chapters 2, 3 and 4);

iv. The absence of strong signals associated with some disturbances and species does not 

mean that they are necessarily absent; they may just not yet be manifested. The 

ecological consequences of anthropogenic disturbances may take years to become 

fully apparent in ecosystems (Hylander and Ehrlen 2013), and both of our study 

regions, Santarem and Paragominas, have only experienced a relatively recent history 

of more intensive land use and widespread deforestation;
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v. Species life history traits can enhance the understanding of land use change on stream 

biota (Mouillot et al 2013). However there is hardly any comprehensive information 

for Amazonian fish that could be used to relate life-history traits to species responses 

(e.g. in the work of Chapter 4 as presented here);

vi. Investigating responses to disturbance by rare fish species presents a particular 

challenge as they cannot be included in most statistical analyses due to their low 

sample sizes. However these species may be the most sensitive to anthropogenic 

pressures and in megadiverse heterogeneous systems like the Amazon, they can 

represent up to 70% of the total diversity of a single river basin assemblage (Chapter

4). Not accounting for this important portion of the freshwater biota means that 

anthropogenic impacts on freshwater ecosystems can be easily underestimated.

5.2 Application of research findings: recommendations for the management 

and conservation of Amazonian riverscapes

The results from the three chapters combine to illustrate some important findings that can 

be used to assist the development of management strategies and conservation plans for 

Amazonian streams at multiple spatial scales. The most significant conclusion of this thesis is 

the need for conservation strategies to go beyond the protection of only riparian forests by 

addressing the management of entire drainage networks. This is particularly relevant in the 

context o f the Brazilian Forest Code (FC), which has a narrow interpretation of freshwater 

systems; it imposes more restrictions on land uses within a narrow riparian zone but has no 

explicit provision of the protection and management of upstream areas. Moreover the FC 

operates at the property scale (hundreds to thousands of hectares), whereas results of this 

thesis indicate that interventions are required at the catchment-level (thousands to tens or 

hundreds of thousands of hectares), demanding collective strategies that involve multiple 

landowners. These general conclusions are grounded by the following specific findings:
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i. Human-induced landscape disturbances can be closely associated w ith marked 

changes to instream habitat (e.g. higher water temperature in more deforested 

catchments and less wood volume in streams where local forest have been disturbed; 

Chapter 2) which in turn have cascading impacts on stream fish fauna (e.g. landscape 

and instream habitat features resulting in cumulative effects on the distribution and 

abundance of individual species; Chapters 3 and 4). As such a specific 

recommendation is that monitoring and management programs include indicators of 

instream habitat integrity to ensure that the impacts of human disturbance are not 

underestimated. And that those indicators are surveyed in a wide range of measures;

ii. Anthropogenic activities elsewhere in the catchment (e.g. road crossings and 

mechanized agriculture) are important drivers of change in stream biotic and abiotic 

condition (Chapters 2, 3 and 4);

iii. Disturbances other than changes in forest cover, such as the introduction of 

mechanized agriculture or an increase in the number of road crossings over streams, 

can have an important effect on instream habitat (Chapter 2);

iv. Streams are environmentally heterogeneous and biologically distinct in their fish 

composition, evidenced by the extremely high beta diversity between different stream 

sites and rivers basins. Such heterogeneity is a key facet of freshwater biodiversity and 

demonstrates that freshwater fish conservation cannot rely on isolated protected 

areas;

v. Differences in results from Santarem and Paragominas suggest that signals of human 

disturbance are underpinned by specific regional characteristics (e.g. natural 

heterogeneity in geophysical properties and history of land use).
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5.3 Future research priorities

In heterogeneous, megadiverse and poorly studied regions like Brazilian Amazon low-order 

stream networks it is challenging to outline research priorities whilst basic information on 

species distribution and natural history is lacking. Nevertheless further studies that expand 

our understanding of the relative and cumulative effects of multiscale anthropogenic 

disturbances on Amazonian stream system integrity are unquestionably needed. Future work 

should also address the specific design parameters of existing environmental legislation and 

current management and conservation strategies to identify and help improve potential 

inadequacies. Therefore, I suggest that future work seeks to account for both local as well as 

landscape-level patterns and processes, helping to underpin efforts to extrapolate to larger 

spatial scales and to draw more general conclusions. I particularly emphasize the importance 

of approaches that:

i. Include other land uses (e.g. urban areas) and indicators of forest degradation (e.g. 

effects o f fire, fragmentation and logging) in order to  account for the full disturbance 

gradient;

ii. Investigate responses from other aquatic organisms such as macroinvertebrates, to 

understand how different biotic groups may diverge in their responses to human 

pressures (Marzin et al 2012). Work is also needed that includes life history traits of 

fish species other than trophic guilds, which can help in understanding the patterns of 

observed responses (Mouillot et al 2013);

iii. Expand the similar kind of multi spatial scale approach presented here to other river 

basins systems, to further understand the effects of regional context. Understanding 

the factors that underpin this context specificity is a vital step in scaling up these 

results to  the rest of the Amazon and other tropical systems, and will assist with 

regional conservation planning;
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iv. Understanding forest condition -  how does the condition (as well as extent) of forests 

affect aquatic systems. This is particularly important with development of large-scale 

logging concessions, and threat of wildfires;

v. Monitoring work over time to investigate how time lags and shifting baselines in 

undisturbed forests may influence stream condition responses to anthropogenic 

disturbances.

5.4 Conclusions

The multiscale experimental approach presented here provides clear and multiple lines of 

evidence regarding the links between anthropogenic pressures and changes in stream 

condition, including both the fish fauna and instream physical habitat. Instead of highlighting 

the importance of a small number of human activities, this thesis demonstrates that most 

instream habitat features and fish species are affected by a broad set of disturbances that 

vary and interact across regions and river basins. In this sense, Amazonian streams have 

proven to be determined by multiple and complex interactions with natural and 

anthropogenic environmental variables that change across different spatial scales.

While this thesis has significantly expanded our understanding of tropical streams 

facing anthropogenic pressures, there are still many challenges to  tackle and avenues for 

future research. Nevertheless the lack of a more detailed understanding of these impacts 

cannot be used as an excuse to delay improved management and conservation strategies in 

light of rapid rates of biodiversity loss. Those strategies need to rely on the available 

information as they are being refined by specific studies that can help provide important 

information on regional context. For instance the findings presented by this research 

indicate a need for the Forest Code to determine that compensation for deforestation 

ensure minimum levels o f protection to upstream areas, and that regulations regarding 

roads crossing streams should be improved (e.g. increasing guidance regarding bridges and
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culverts). Nonetheless the precautionary principle should be followed when managing these 

poorly studied systems: stream conservation depend on a catchment-wide planning.
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Appendix: other outcomes

Gardner, T.A.; Ferreira, J., Barlow, J.; Lees, A.C.; Parry, L.; Vieira, I.C.I.G.; Berenguer, E.; 
Abramovay, R.; Aleixo, A.; Andretti, C.; Aragao, L.E.O.C.; Araujo, I., de Avila, W.S.; Bardgett,
R.D.; Batistella, M.; Begotti, R.A.; Beldini, T.; de Bias, D.E.; Braga, R.F.; Braga, D.L.; de Brito, J.G.; 
de Camargo, P.B.; dos Santos, F.C.; de Oliveira, V.C.; Cordeiro, A.C.N.; Cardoso, T.M.; de 
Carvalho, D.R.; Castelani, S.A.; Chaul, J.C.M.; Cerri, C.E.; Costa, F.A.; da Costa, C.D.F.; Coudel, E.; 
Coutinho, A.C.; Cunha, D.; D'Antona, A.; Dezincourt, J.; Dias-Silva, K.; Durigan, M.; Esquerdo, 

J.C.D.M.; Feres, J.; Ferraz, S.F.B.; Ferreira, A.E.M.; Fiorini, A.C.; da Silva, L.V.F.; Frazao, F.S.; 
Garrett, R.; Gomes, A.S.; Gonsalves, K.S.; Guerrero, J.B.; Hamada, N.; Hughes, R.M.; Igliori, D.C.; 
Jesus, E.C.; Juen, L.; Junior, M.; Junior, J.M.B.O.; Junior, R.C.O.; Junior, C.S.; Kaufmann, P.; 
Korasaki,V.; Leal, C.G. e ta l. (2013) A social and ecological assessment of tropical land uses at 
multiple scales: the Sustainable Amazon Network. Philosophical Transactions o f the Royal 

Society B: Biological Sciences, 368.

Abstract

Science has a critical role to play in guiding more sustainable development trajectories. Here, 

we present the Sustainable Amazon Network (Rede Amazonia Sustentavel, RAS): a 

multidisciplinary research initiative involving more than 30 partner organizations working to 

assess both social and ecological dimensions of land-use sustainability in eastern Brazilian 

Amazonia. The research approach adopted by RAS offers three advantages for addressing land- 

use sustainability problems: (i) the collection of synchronized and co-located ecological and 

socioeconomic data across broad gradients of past and present human use; (ii) a nested 

sampling design to aid comparison of ecological and socioeconomic conditions associated with 

different land uses across local, landscape and regional scales; and (iii) a strong engagement 

w ith a wide variety of actors and non-research institutions. Here, we elaborate on these key 

features, and identify the ways in which RAS can help in highlighting those problems in most 

urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia 

and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and 

realities faced during the development of the RAS initiative so far.
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Leitao, R.P.; Zuanon, J.; Leal, C.G.; Pompeu, P.S.; Gardner, T.A.; Barlow, J.; Hughes, R.M.; 
Kaufmann, P.R.; Kasper, D.; Ferreira, J.; de Paula, F.R.; Ferraz, S.; Villeger, S.; Mouillot, D. 
Disentangling the multiple effects of land use on the functional structure of fish assemblages in 
small Amazon streams. In preparation for Ecological Applications.

Abstract

Agricultural land use is a primary source of impact to small streams. However, the causal 

processes involved in this relationship are complex, operating through multiple pathways and 

spatial scales; and the taxonomic structure of stream assemblages often shows contrasting 

responses to land use changes. This scenario reflects the difficulty to established effective 

management of these ecosystems, and illustrates the need to examine complementary facets 

o f biodiversity under mechanistic causal pathway perspectives. In this study, we investigate how 

landscape fragmentation and deforestation, mediated by alterations in instream habitat, affect 

the functional structure of stream fish assemblages in two regions of the mid-eastern Amazon. 

We conducted standardized fish sampling in 94 headwater sites, and characterized local habitat 

conditions by several physical attributes such as substrate, channel morphology, bed complexity 

and stability. We also estimated the density of road crossings (i.e., landscape fragmentation) 

and the degree of deforestation at different spatial scales. Each of the 141 captured fish species 

was functionally characterized by 18 ecomorphological traits related to feeding, locomotion, and 

habitat. For each of the two regional species pools, we built a multidimensional space using 

these traits and then computed complementary indices to quantitatively describe the functional 

structure of the assemblages. By using Structural Equation Modelling we identified mechanistic 

causal pathways o f land use on these biodiversity indicators. For instance, local riparian 

deforestation increased macrophyte+grass cover with subsequent reductions of the functional 

evenness of assemblages (i.e., increased the dominance of few tra it combinations). Landscape 

fragmentation upstream from sample sites and deforestation at catchment and riparian scales 

altered the channel morphology and the structure of stream bottoms, changing the functional
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identity of assemblages (e.g., species that use the benthic compartment were negatively 

affected). Fragmentation downstream from the sites had remarkable negative effects on the 

functional richness (i.e., losing regional connectivity potentially reduces the range of niche 

occupation by assemblages), and on the functional evenness and divergence, suggesting a trend 

o f functional homogenization of local assemblages. We believe this study offers significant 

insights to fru itfu l future investigations concerning functional responses of stream fish 

assemblages to landscape alterations in the Amazon.
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