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A b st r a c t

The main focus of the research studies presented in this thesis centre on the 

application and development of data-based mechanistic (DBM) transfer function 

models for nonlinear environmental systems. The data-based mechanistic modelling 

approach exploits the available time series data, in statistical terms, to expose the 

model structure, generating dynamic stochastic models that are parsimonious in nature 

and can be interpreted in a physical manner.

For nonlinear systems, the DBM approach centres on the use of transfer function 

models whose parameters are free to vary over time. The presence of such time 

variable parameters may reflect either nonstationarity or nonlinearity; the latter arising 

if the variations are also shown to be state dependent. Statistical time series methods 

for estimating time varying parameters (TVP) and the use of these methods in state 

dependent parameter modelling (SDPM) are discussed and applied to the modelling of 

nonlinear ecological population dynamics and hydrological processes. Further, DBM



modelling techniques are applied to an oceanic ecosystem simulation model in order 

to investigate model uncertainty and over-parameterisation, set within the context of 

data assimilation.

In each application, the DBM methodology is shown to successfully identify the 

system nonlinearities, so providing additional physical insight and ensuring a good 

explanation of the data with the minimum of model parameters (parsimony). Further, 

the DBM approach provides an approach to both the evaluation and reduction in the 

complexity of highly parameterised simulation models.
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C h a p t e r  1: In t r o d u c t io n

Ch a pter  1

In t r o d u c t io n

Mathematical modelling spans a wide range of philosophies and methodological 

approaches. Models of environmental systems are predominantly deterministic in 

nature which, in line with current paradigm, favours models that provide a physically 

interpretable structure. An alternative systems approach, which has its origins in the 

field of engineering and statistics, provides models that are developed directly from 

time series data. Environmental modellers are beginning to embrace this data-based 

modelling approach, realising the value of the enhanced statistical model estimation 

tools and the parsimonious nature of data-based models.

Deterministic or mechanistic mathematical models are generally formulated to have a 

structure that closely resembles the physical, chemical or biological reality of the 

system as perceived by the modeller using classical dynamic conservation equations 

(mass, energy and momentum) and are, therefore, heavily reductionist in nature. As a 

consequence, these models are limited by the modeller’s experience and overall 

understanding of the system and often become extremely complex and nonlinear as 

they attempt to describe the physical system in some detail, reflecting the complexity

1



C h a p t e r  1: In t r o d u c t io n

that the modeller perceives in nature. Furthermore, as the parameters of deterministic 

models often have a perceived physical interpretation, the feasibility, cost and time in 

obtaining sufficiently informative data for their estimation, result in the models 

becoming extremely difficult to validate.

Conversely, purely data-based (black box or time series) models are generated without 

any prior assumptions regarding the systems internal behaviour. The model’s 

structure is identified and parameters estimated objectively from observational time 

series data using appropriate statistically-based methods. As such, data-based models 

are simple in structure and parsimonious; characterised by only the number of 

parameters that can be justified by the data. While such statistical models have the 

advantage of being data-based and stochastic, they are dependent upon the availability 

and quality of data and are, consequently, often unsuitable for simulation purposes. 

Furthermore, because they do not attempt to relate physically to the system they 

surmise, many scientists consider the overall value of these types of model as low and 

reject there utility on physical grounds.

The data-based mechanistic (DBM) modelling approach is a hybrid of these two 

modelling extremes. Rejecting the deterministic-reductionist philosophy, DBM 

models retain the statistical advantages and parsimony of the data-based modelling 

approach but address the desire for a physical interpretation of the model. In the 

majority of cases, the DBM methodology has been applied to linear systems, or where 

nonlinear systems have been approximated by linear models. In the main, this has 

been due to a restriction of computing capabilities, limiting the development of more 

complex nonlinear identification and estimation procedures. However, in this thesis,

2



C h a p t e r  1: In t r o d u c t io n

the DBM philosophy is invoked with a focus on the modelling of nonlinear systems 

using techniques that have been developed more recently (Young, 1984; 1988; 1993) 

and allow for the effective identification and estimation of nonlinear models.

This chapter introduces the DBM philosophy, with a particular emphasis placed on 

nonlinear systems, and presents the novel contributions of this thesis, where the DBM 

methodology and techniques are applied to model several different environmental 

systems.

1.1 Da t a -b a se d  m e c h a n ist ic  m o d e l l in g

The data-based mechanistic (DBM) modelling methodology is designed to be as 

objective as possible, exploiting the available time series in statistical terms to expose 

the model’s structure, rather than being based on prior assumptions, in order to 

generate dynamic stochastic models that are parsimonious in nature. DBM modelling 

is based around the simple input-output transfer function (TF) model, originally 

derived in the control engineering literature and later exploited in discrete-time terms 

in the statistical literature by Box and Jenkins (1970). Here, the TF model structure is 

identified and its parameters estimated directly from the data using statistical methods. 

This allows for any uncertainty associated with both the model and the noisy data; and 

it ensures that the DBM model reflects only the dominant modes of the system 

behaviour.

For nonlinear systems, the DBM modelling approach is centred around the utilisation 

of transfer function (TF) models whose parameters are free to vary over time and are

3
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estimated from the time series by a powerful recursive Fixed Interval Smoothing (FIS) 

algorithm (see e.g. Young, 1984; 1993). In this setting, any parameters that exhibit 

significant temporal variation over the observation interval will reflect either non- 

stationarity in the system (i.e. its characteristics change over time) or a nonlinearity in 

the system dynamics. The modelling proceeds to determine whether any identified 

time varying parameter can be related to any states of the system, so allowing for its 

direct parameterisation into the model. If the nonlinearity has been effectively 

identified and parameterised by the ‘State Dependent Parameter M odel’ (SDPM), then 

the resulting nonlinear TF model will usually have time invariant parameters. A final 

prerequisite of the DBM philosophy requires that, in addition to explaining the data 

well, the final identified DBM model is credible in physical terms; in other words, it is 

only accepted as a truly useful model of the system if its structure and parameters can 

be interpreted in a physical manner.

As the DBM methodology is truly generic in its approach, it has been utilised over a 

wide range of disciplines over the last 10 years, including the fields of engineering, 

economics, biology, and environmental science. As an example of the range of DBM 

applications: Lees et a l  (1994) developed an online DBM flood forecasting model, 

which utilises recursive time varying parameter estimation, for the River Nith in 

Dumfriesshire; while at the other extreme, Jarvis et al., (1998) employed the DBM 

modelling approach to investigate the dynamic response of plant stomatal conductance 

to the reduction in atmospheric humidity. However, most of these applications 

consider linear or near-linear systems. In this thesis, the same approach is directed 

towards the identification and estimation of nonlinear, stochastic dynamic systems.

4
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1.1.1 Transfer function (TF) models

Over the past 30 years, the extensive development of digital computing has 

increasingly encouraged the development of systems models and theories expressed in 

discrete-time terms, as opposed to continuous-time theories which tended to be 

associated with analogue computing. Discrete-time models are based upon sampled

data and are often presented in terms of either the forward shift, z l , or backward shift

z~l operators which are defined as,

where x (k ) is a signal at the kth sampling instant. The transfer function model, which 

derives from the use of such operators, is simple but effective in its approach, relating 

an input signal to an output signal which, in discrete-time, is normally assumed to be 

sampled regularly at a sampling interval of At time units. The discrete-time transfer 

function model of a single-input, single-output (SISO) system takes the form,

y (k ) = B—   ̂u{k -  A) (1.3)
A (C ‘)

where u(k) and y (k ) are the discretely sampled input and output signals, 

respectively, at the kth sampling instant (e.g. values sampled after kAt time units). 

Here, A(z_1) and B (z~l ) are the polynomials in the z~X operator, defined as follows.

z lx (k ) = x(k  + i) (1.1)

z lx(k)  = x ( k - i ) ( 1.2)

5



C h a p t e r  1: In t r o d u c t io n

A(z  1) = 1 + axz x +--‘ + anz n (1.4)

B(z~ ')  = b0 +bxz ~ ' + -  + bmz~m (1.5)

The integers n and m are the number of parameters in polynomials (1.4) and (1.5) 

respectively. No prior assumptions are made about the nature of the TF, which may 

be marginally stable, unstable or possess non-minimum phase characteristics. Any 

pure time delay in the system, which often characterises environmental systems, 

appears in equation (1.3) as the delay of A time intervals associated with the input 

u{k -  A ).

In this linear model (1.3), two physically meaningful properties can be derived from 

the transfer function model if its eigenvalues are real and the model is stable: the 

steady state gain and time constant. The steady state gain, G, defines the relationship 

between the equilibrium output value when a constant input is applied to the system.

G is calculated by setting the z 1 operator in equation (1.3) to unity such that, in the 

case of a first order TF,

G = - ^ -  (1.6)
1 + fl]

As a result, the steady state gain can be used to determine whether there has been any 

physical gains or losses to the system. The time constant or residence time Tc is the

time required for the system output to decay to e~x (-37% ) of its maximum value in 

response to a unit impulse and is defined as,

6
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t  = -------  —  (1.7)
log, ( - a ,)

Where the polynomials in equation (1.3) have multiple-order (e.g. third order), the TF 

model can sometimes be unambiguously decomposed into lower order (e.g. first or 

second order) TF elements connected in serial, parallel or feedback form. For 

example, a second order transfer function (m = 1 and n = 2 in (1.4) and (1.5) 

respectively) can be represented by two first-order TF models connected either in 

parallel or in feedback. As such, the decomposition of multi-order TF models can 

sometimes reveal useful information about the system’s internal behaviour that would 

otherwise remain unknown.

In its present form, the constant parameter TF model defined by equation (1.3) is 

suitable for modelling linear systems. As discussed in detail in Chapter 2, equation 

(1.3) can be conveniently redefined into an alternative time varying parameter (TVP) 

or state dependent parameter TF form, suitable for modelling systems that are either 

non-stationary or nonlinear.

The approach to identifying systems using time variable parameter estimation used in 

this thesis has its origins in the early 1970’s (e.g. Beck and Young, 1976), where the 

Extended Kalman Filter (EKF) was used to infer the structural nature of models for 

biochemical oxygen demand and dissolved oxygen in rivers. Since then, the use of 

the EKF in this role has been explored in detail by Beck in a number of papers and 

chapters in books e.g. Beck, (1985); Beck, (1987); Kleissen et al., (1990); Chen and 

Beck, (1993); and Eigbe et al., (1998). This approach has similarities, in a

7
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philosophical sense, with the alternative approach used in this thesis, although the 

methodology apart from the exploitation of recursive estimation, is quite different. 

Equation (1.8) below presents the general form of the time varying parameter TF 

model. The nonlinear relationship existing between the system input u(k) and output 

y (k ) is reflected by the time varying nature of the parameters.

m = u(k)  = h ' ( k ) + b , ( k ) z - ' + - + bm( t ) z - u(k)  (18)
A(k,z  ) 1 + ax(k)z +--- + an(k)z n

In the situation where the model parameters vary rapidly (i.e. at a rate consecutive 

with the variations in the states of the system itself), the behaviour of the time varying 

parameters of TF (1.8) may be characterised by potentially nonlinear functions of 

related variables that are present within a suitably defined nonminimum state space 

(NMSS) vector x ( k ) . The resulting general form of this state dependent parameter 

TF model is defined as,

B{{x{k)} , z  ) 
y{k)  = A({*(*)},z )

= M x m + b 1{ % ( k ) ) z - ' + - + b j X (k)}z-m 

l + allX(k))z-'+-- + aJXm z " ‘

where the NMSS vector x ( k )  is defined as,

(1.9)

X(k) = [y(/: -1), • • •, y(k -  n)u{k)T, • • •, u(k -  m)TU(k)T , - - , U ( k - q ) T J  (1. 10)

and the terms b0\x(k)} ,  bx{x(k)},  bm{x(k)},  ax\x{k)},  an\x (k )}  indicate that the 

parameters are nonlinear functions of this NMSS vector. Here, %(k) constitutes a

8
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vector of past values of the system output y ( k ) ;  present and past values of the 

deterministic input variables u{k) that are considered to be the principle inputs to the 

system; and vector the U(k) ,  which contains present and past values of additional 

input variables that may affect the system nonlinearly. The thesis will argue that this 

kind of ‘State Dependent Parameter Model’ (SDPM) can provide a generic model for 

the identification and estimation of a wide class of nonlinear systems within the 

environmental and ecological sciences.

1.2 Ge n e r a l  sc o pe  o f  th is  th esis

A summary of the overall aims of this thesis is given below.

□ This thesis emphasises the use of DBM methodology as a tool for modelling 

nonlinear environmental systems. The techniques of time varying parameter 

(TVP) estimation and state dependent parameter modelling (SDPM) which are 

fundamental to objective nonlinear model development, are applied throughout 

this thesis.

□ The DBM methodology is applied to environmental applications, specifically 

modelling of nonlinear ecological and hydrological systems.

□ The DBM modelling philosophy generally rejects the use of large deterministic 

models for systems where there is an abundant of quality observational data. 

However, the use of much larger simulation models, which reflect the current 

scientific paradigm, is also a crucial requirement for systems where little data

9
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are available. But we believe that such simulation models must acknowledge 

the uncertainty of the environmental system under consideration. 

Consequentially, the third aim of this thesis is to show how stochastically 

defined simulation models and data-based statistical methods can be used, in 

combination, for the analysis of environmental systems that are poorly defined. 

In this manner, it is possible to identify the strengths and limitations of the 

simulation model, investigate alternative modelling approaches, and provide 

more information about the system under consideration.

1.3 St r u c t u r e  o f  t h is  t h esis

The present chapter has briefly introduced the DBM methodology which will be used 

throughout this thesis in different modelling applications. Chapter 2 discusses the 

main statistical methods for the identification and estimation of linear and nonlinear 

discrete-time models that are used in these applications. In particular, the following 

two algorithms are described in detail: the Simplified Refined Instrumental Variable 

(SRIV) algorithm (Young, 1984); and the recursive Fixed Interval Smoothing (FIS) 

algorithm for time varying parameter estimation (see e.g. Young, 1984). Furthermore, 

deterministic and stochastic methods for optimising the parameters of the final 

nonlinear model are introduced, including the Maximum Likelihood method (see e.g. 

Harvey, 1989).

Chapter 3 describes how the DBM modelling methodology can be used to effectively 

model the nonlinear behaviour of the population dynamics in the data series of the 

well known Nicholson sheep blowfly experiments (Nicholson, 1950; 1954; 1957).

10
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In Chapter 4, the Lancaster DBM nonlinear rainfall-flow model (Young, 1993; Young 

and Beven, 1994) which incorporates an effective rainfall term as a physical indicator 

of catchment antecedent soil moisture conditions, is validated for the first time using 

groundwater table and soil moisture measurements. A comparison between the 

nonlinear components of the Lancaster DBM and IHACRES rainfall-flow models 

(Jakeman et al., 1990a) is made, with reference to field data collected by ETH, Zurich. 

These data justify the form of the nonlinear component in the Lancaster model, which 

is identified using DBM techniques and provides an alternative form of the model 

where such additional data are available.

Chapter 5 investigates how the DBM methodology has been be applied to the small 

upland catchment of Wyresdale Park, Lancashire, in order to extend contemporary 

time series of suspended sediment load. A discrete-time TF model for the rainfall- 

sediment relationship is identified and estimated from 2 years of field data. This 

model is used, together with historical rainfall series, to simulate suspended sediment 

load series over the past 100 years in order to generate a synthetic sediment flood 

sequence for the catchment reservoir.

Chapter 6 presents a critical evaluation of a deterministic oceanic ecosystem 

simulation model with the overall aim of incorporating it into a data assimilation 

(Robinson et al., 1999) framework. By considering the deterministic simulation 

equations of the system in stochastic form, statistical methods of Monte Carlo 

Simulation (MCS) (see e.g. Young et al., 1996) and Generalised Sensitivity Analysis 

(GSA) (Spear and Homberger, 1980) are used to expose the poorly identifiable 

parameters of the model. Further, a preliminary study is made, using a DBM

11
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combined statistical linearisation and model order reduction procedure, to determine 

whether a reduced, low order, model can be identified, which accurately describes the 

dynamics of the ecosystem.

The final chapter summaries the contributions of this thesis and suggests some 

possibilities for future research on the development and use of DBM modelling 

methods in environmental systems analysis.

12
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Ch a pter  2

Id e n t if ic a t io n  a n d  E s t im a t io n  o f  

L in e a r  a n d  N o n l in e a r  Sy st e m s

Over the last five decades much research has concentrated on developing methods for 

model identification and estimation of linear systems (see e.g. Jazwinski, 1970; 

Young, 1984). In contrast, because of the more complex nature of nonlinear systems, 

the associated techniques for system identification and estimation are in a relative 

stage of infancy. The main focus of the research studies presented in this chapter, 

centres on the development of data-based mechanistic (DBM) transfer function (TF) 

models for nonlinear systems and introduces the mathematical time series methods 

that have been utilised for their identification and estimation.

The first section of this chapter presents a brief overview of the general modelling 

procedure for both linear and nonlinear systems. Section 2.2 introduces the general 

concepts of parameter estimation. In Section 2.3 the Simplified Refined Instrumental 

Variable (SRIV) algorithm for parameter estimation and model identification for 

linear systems is discussed. Section 2.4 presents the DBM procedures for identifying
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and estimating models for nonlinear systems, specifically focussing on the recursive 

filtering and powerful Fixed Interval Smoothing (FIS) algorithms.

2.1 Gen e r a l  m o d e l l in g  pr o c e d u r e

There are four main stages in the process towards generating a DBM model of a linear 

or nonlinear environmental system. The first stage involves the collection of time 

series data that are sufficiently dynamic to enable the environmental system under 

consideration to be described by a TF model. For most environmental systems this 

stage will require the main input and output variables of the system to be identified 

and relevant monitoring equipment installed to record their behaviour. However, 

where possible, it is often extremely beneficial to perform carefully planned 

experiments, where the system input(s) are controlled, such that the system is 

perturbed over its full dynamic range.

Having obtained sufficiently informative time series data from the system, a ‘suite’ of 

model structures is selected from which the best model is chosen. The models may 

be: deterministic or stochastic; have a linear or nonlinear structure; have constant or 

time varying parameters; involve more than one input and output variable; and have 

different orders. The perception and experience of the modeller will determine what 

class of model is added to the ‘suite’ and will often involve additional detailed 

analysis of the time series data.

Having determined the ‘suite’ of models, the parameters of each model must be 

estimated. There are a great number of different algorithms for parameter estimation

14
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but perhaps the most well known is the least squares (LS) algorithm. LS forms the 

basis of a number of derivative algorithms including weighted least squares (WLS), 

extended least squares (ELS) and generalised least squares (GLS). The favoured 

parameter estimation approaches adopted in the research reported in this thesis are the 

Simplified Refined Instrumental Variable (SRIV) and the Maximum Likelihood (ML) 

methods which are discussed in following sections of this chapter. Further details of 

these and other techniques can be found in many texts on the subject, including 

Jazwinski (1970), Young (1984), Ljung (1987), and Soderstrom and Stoica (1989).

Finally, each of the models are evaluated by objective statistical identification criteria, 

in order to select the ‘best’ overall model. When making this choice, the intended 

purpose of the model should not be disregarded. In some cases, the mechanistic 

interpretation of the optimal model structure may challenge traditional perceptions of 

the systems internal behaviour and require further investigation.

2.2 Ge n e r a l  pa r a m e te r  e st im a t io n

This section introduces the general methodology underlying TF model parameter 

estimation. Most parameter estimation techniques are based upon the formulation of a 

cost function from the TF model equations which, when minimised, provides the 

optimal estimates of the model parameters. Consider the following generalised 

discrete-time, linear, TF model of a single-input-single-output (SISO) system,

>w=4rr:»(*-8) G-DM z  )
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where y(k)  and u(k ) are the system output and input respectively at the kth time

instant; 5 is the system pure time delay; and A(z_1) and B(z~l) are the TF

denominator and numerator polynomials respectively, defined as,

A(z_1) = l + alz~1 H— t-a z~n
1 " (2 .2)

B(z - l) = b0 +blz-l -h- + bmz-m

where z~l is the backward shift operator, that is z~'y(k) = y ( k - i ) ; and the integers n 

and m are the number of parameters in the respective polynomials. By rearranging 

equation (2.1) a simple cost function can be formulated from the difference between 

the observed system and estimated model output, which is described as the response 

error e(k ).

A  j

e(fc) = y (* )~  .  , u ( k -  5) (2.3)
A(z"‘)

However, this cost function is limited by its nonlinear parameterisation which can only 

be minimised by numerical methods (discussed in further detail in Section 2.5.5). An 

alternative arrangement of (2.1) yields the equation error (2.4) which is linear about 

its parameters and can be subsequently solved analytically, avoiding the necessity to 

utilise numerical techniques.

e(k) = [yC/OAU'1) -  B(z~‘ )u(k -  5)] (2.4)
A(z )

One possible method of obtaining the analytical solution to (2.4) is to utilise the 

'normal equation o f  linear least squares' (see e.g. Young, 1984 for its derivation) 

whereby the sum of the squared errors (equation error) are analytically minimised.
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The linear least squares algorithm provides good model parameter estimates, 

providing measured system data without any stochastic noise disturbance is obtained. 

However in practice, the observed data is usually corrupted by undesirable structured 

‘coloured’ noise. The linear least squares algorithm acts to amplify the effects of the 

noise during the estimation process, further contaminating the data sequence such that 

parameter estimates are biased (Young, 1984). As a result, the presence of any noise 

on the data will cause the parameter estimates to be asymptotically biased, and 

statistically inconsistent regardless of the length of time series data utilised in the 

procedure.

2.3 S im pl ifie d  Re fin e d  In st r u m e n t a l  Va r ia bl e

ESTIMATION AND MODEL IDENTIFICATION

To overcome this fundamental limitation of linear least squares estimation, a suite of 

instrumental variable (IV) algorithms has been developed (see e.g. Young, 1984) that 

provides consistent unbiased parameter estimates which require no a priori statistical 

information regarding the noise sequence. The Simplified Refined Instrumental 

Variable (SRIV) identification and estimation method is an extension of the original 

IV estimation procedure which was first introduced by Young (1970) and a 

simplification of the Refined Instrumental Variable (RIV) approach (see e.g. Young, 

1976; Young and Jakeman, 1979; Young, 1984). It was shown (Young, 1985), that 

under the assumption that the noise process is a serially uncorrelated series of white 

noise with Gaussian distribution, that the complex RIV estimation algorithm could be 

reduced to the SRIV form.

17



C h a p t e r  2  Id e n t if ic a t io n  a n d  e s t im a t io n

2.3.1 Parameter estimation using the SRIV method

The SRIV algorithm was first introduced in the discrete-time domain but has since 

been extended for modelling systems using the delta operator (Young, 1991; 

McKenna, 1998) and in the continuous-time domain (Young and Jakeman, 1980; 

Foster, 1995; Price, 1999).

For the purposes of estimation, the stochastic TF model (2.1) can be conveniently 

rewritten in alternative vector format,

)>(&) = z(*)Ta + riOt); k = l,2,—,N  (2.5)

where r|(/fc) = A ( z ' , )e(k)  and the vector z(k)  and parameter vector a are defined in 

the general case respectively as,

z(£) = [- yih - 1) -  y(k -  2), y(k -  n), u(k), u{k -1), • • •, u(k -  m)J  (2.6)

a = [al,a l,---,an,b0,bl,---bmJ  (2.7)

with dimensions determined by the polynomials of (2.1).

Instrumental Variable (IV) estimation involves the introduction of an instrumental 

variable (IV) vector \{k)  defined as follows,

x(&) = [- x(k - 1),- x(k -  2),—  x(k -  n), u(k), u(k - 1),- •• ,« (/:-  m )J  (2.8)
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Here, the instrumental variable x ( k ) , is defined as the 'noise free' estimate of the 

system output jc(£) and is assumed to be serially uncorrelated with the noise process 

r](&). It is generated from the j - h h  iteration of the following ‘adaptive auxiliary 

model’,

In contrast to the simple IV method (Young, 1984), in the case of SRIV estimation, 

x ( k ) and the associated variables are ‘pre-filtered’ utilising the y'-ith adaptive estimate

of the auxiliary model polynomial A(z~l) , in the following manner,

The adaptive pre-filter F. acts to remove any undesirable high frequency components

from the input signal, which would otherwise reduce the efficiency of the estimation 

results, whilst retaining those frequencies that are essential for system analysis.

For a given sample size N, the non-recursive optimal SRIV estimate a of the 

parameter vector a is then obtained from the solution of the following SRIV 

algorithm,

(2.9)

(2 . 10)

x ( k )  = Fj_xx{k)\ y \ k ) = Fj_xy{k)\ u (k) = Fj_xu{k) (2.11)
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_ * = i

where,

z*(k) = [- y \ k  - 1),- / ( k -  2),- • • y(k -  n)*, u ( k f , u  { k - \ ) r -,u ( k - m )f (2.13)

x*(k) = [—jc*(A:-1),—  x ( k - n ) ,  u*(k), u*(k - l) , - - -u*(k -m)J  (2.14)

In the first instance, to initiate the algorithm the a priori estimate of the IV vector 

x* (k ) can be obtained from the 'auxiliary model' using linear least squares parameter 

estimates. This preliminary IV vector is subsequently inserted into the SRIV 

algorithm to yield an initial estimate of the parameter vector a .  The statistical 

efficiency of a is further refined through subsequent iterations of this procedure, 

where at each iteration, the parameters of the adaptive pre-filter and auxiliary model 

are updated. It has been demonstrated, however (Young, 1976, 1985; Young and 

Jakeman, 1979), that optimum SRIV parameter estimates can be obtained following 

only three iteration steps.

Having determined the optimal parameter vector a from the final iteration step, the 

SRIV algorithm also generates the inverse o f  the instrumental product matrix (IPM) 

P ( N ) defined as,

-l

(2.15)

and the covariance matrix P*(N ),

P \ N )  = c ? P (N )  (2.16)

P(AD =
k=N

X m *(k)T
k= 1

k = N

x ( k ) y ( k )
k = 1

(2 . 12)
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where an estimate a 2 of the noise variance a 2 can be obtained from model residuals 

e (k ) where

e(k)  = y ( k ) - x ( k ) ;  and a 2 = —  ' S ' e ( k f  (2.17)
N  t?,

The covariance matrix P*(N)  provides essential information regarding the level of 

uncertainty associated with each parameter estimate. The leading diagonal elements 

of the matrix distinguish the variance of each parameter estimate whilst a measure of 

the parameter covariance is provided by the matrix off diagonal elements. In this 

regard, the covariance matrix can be utilised within the context of Monte Carlo 

uncertainty and sensitivity analyses (see Chapters 4 and 6).

2.3.2 Model Order Identification

Having estimated the parameters of a variety of different models, an optimal model 

structure must be selected. Model order identification, namely the process of 

identifying the most appropriate values of n, m and 5 in (2.1), is chiefly undertaken, 

although not exclusively, with the assistance of carefully selected objective statistical 

criteria. In combination, these objective methods should provide both a measure of 

how well the model output explains the data and indicate the presence of model over- 

parameterisation. In this study, model identification is based upon the coefficient of 

determination, R j ,  and Young’s Identification Criterion, YIC, (see e.g. Young, 1989). 

The coefficient of determination provides a statistical measure of how close the model 

output fits the observed system output and is defined as,
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where a 2 is the sample variance of the model residuals e(k) (2.3), and a 2 is the 

sample variance of the measured output y ( k ) about its mean value y . Clearly, a 

good model fit is obtained where the variance of the model residuals a 2 is low in 

comparison to the variance of the data a 2 and the R 2 approaches unity. Conversely,

a poor model has a residual variance a 2 that is close to the magnitude of the sample 

variance a 2 and the R 2 tends towards zero. It is important to differentiate R 2 from

the more conventionally adopted coefficient of determination R 2. The latter is based

upon the variance of the one-step ahead prediction errors, rather than the model 

response errors and, whilst this is a popular criterion for assessing the performance of 

forecasting models, it is less suited for TF model order identification. In particular, 

model one-step ahead prediction errors are relatively straightforward to minimise, as 

the predictions are based upon past values of the system output itself; in contrast, the 

model response errors are more difficult to minimise as the model output is 

formulated based on the system input only. In a hydrological context, R 2 is also 

commonly called the Nash and Sutcliffe efficiency criterion with unity power.

Although an excellent measure of model fit, the R 2 criterion should not generally be 

utilised independently to assess the merits of a model, since it does not consider the 

models relative complexity or the level of uncertainty associated with the parameter 

estimates.
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For this reason, an additional statistical measure, which incorporates both of these 

features, is utilised within the process of model identification. The heuristic Young’s 

Identification Criterion YIC , is defined as

r r 2 1 i=np fT 2 f)
YIC = log, —  + log, {ATEWV}; NEVN = —  Y  (2.19)

Gy np ,=1

where the variables of the leading term are defined as in equation (2.18); 

np = n + m + 1 is the number of parameters in the TF model (2.1) denominator (n) and 

numerator (m) polynomials; at is the ith element in the parameter vector a ( N ) ; pu is 

the ith diagonal element of the covariance matrix P(A ) (where N  is the total number 

of samples); such that a  p u is an estimate of the error variance associated with the ith 

element of the parameter vector a ( N ) after N  samples.

The first term of equation (2.19) is a normalised measure of how well the model fits 

the data; as the model fit improves, the ratio of decreases and the term

becomes more negative. The second term provides an indication of the relative 

uncertainty of each ith parameter estimate, normalised with respect to all the 

parameters in the npth order model; as the parameter error variance decreases, so the 

parameter is better defined and the second term becomes smaller. A model that fits 

the data well, but has a high order, with ill defined parameters, will have a 

correspondingly high YIC value because of the large magnitude of the second term. 

The YIC criterion, therefore, provides a compromise between model fit and over 

parameterisation. An optimal model, with a low YIC, should give a good fit to the 

data and have well defined parameters.
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In practice, the minimisation of the YIC will not necessarily identify the best overall 

model and should, therefore, be used in conjunction with the R j  criterion. This will 

ensure that the model selected will fit the data well, without compromising parametric 

efficiency and uncertainty. Additionally, it is important not to carry out the process of 

model order identification without due regard to the physical nature of the system 

under consideration. For example, if the system is known to have parallel or feedback 

processes operating within it, model structures that can describe these behaviours 

should be evaluated. Furthermore, the philosophy underpinning DBM modelling 

should not be disregarded during the identification stage; a model structure that has a 

clear physical interpretation may be favoured for selection over an alternative 

structured model with slightly superior identification statistics. An additional, tertiary 

model order identification criterion utilised in the research reported in this thesis was 

the AIC criterion (see Box and Jenkins, 1970).

2.4 DBM  IDENTIFICATION AND ESTIMATION OF NONLINEAR 

SYSTEMS

Many environmental systems are non-stationary and nonlinear in nature and as a 

consequence, alternative approaches to model identification and estimation need to be 

adopted in order to develop models that successfully characterise their behaviour, e.g. 

the EKF (Whitehead and Homberger, 1982; Chen and Beck, 1993). In this section a 

novel DBM approach to modelling nonlinear systems is presented which has been 

successfully applied in the areas of economics, ecology, biology, engineering and 

environmental science (Young, 1993; Young and Beven, 1994; Young and Pedregal,

24



C h a p t e r  2  Id e n t if ic a t io n  a n d  e s t im a t io n

1997; Young, 1998a). The DBM approach has the overall objective of identifying a 

nonlinear TF with time invariant parameters through a process of objective statistical 

inference applied to the time series data.

The preliminary stage of the DBM methodology is to determine that the system in 

consideration is in fact nonlinear. This can be ascertained in the first instance, by 

analysing the residuals of the best SRIV identified constant parameter linear TF 

model, using standard statistical tests (e.g. Billings and Voon, 1986). In the second 

instance, this may be achieved by allowing the parameters of a linear TF to vary over 

time. The powerful Fixed Interval Smoothing (FIS) method of recursive estimation 

(Young, 1993) can be used to obtain a non-parametric estimate of the model time 

varying parameters (TVP). Any parameter that is found to be significantly time 

variant over the observation interval, may reflect the non-stationary or nonlinear 

behaviour of the system. Analysis then proceeds to investigate whether the identified 

temporal parameter variations are state dependent and can be efficiently 

parameterised. In accordance with DBM philosophy, in addition to enhancing the 

model fit to the data, it is essential that the identified state has a clear mechanistic 

interpretation in relation to the system under consideration. Having identified the 

structure of the nonlinear dynamic model, the final stage of the DBM methodology is 

to re-estimate all the model parameters against the time series through nonlinear 

optimisation.
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2.4.1 Background

The following discussion assumes that the behaviour of a discrete-time, dynamic 

nonlinear and/or non-stationary environmental system can be represented by a general 

dynamic, stochastic model which can be expressed as;

y(*) = 3 {x (* ),n (* )}  (2.20)

where y(k)  is the measured output of the system under consideration and 3{ } can be 

regarded as a well behaved nonlinear function of the variables that are contained 

within the non minimum state space (NMSS) state vector %{k) ,

X(k) = \y(k - 1), ■• ■■ ■■, y (k -  n)u(k)T,■ ■■ •, u(k -  m f V  ( k f , • • • ,U (k -  q)T f  (2.21)

Here, %(k) constitutes a vector of past values of the system output y (k ) ; present and 

past values of the deterministic input variables u{k) that are considered to be the 

principle inputs to the system; and vector U(k) ,  which contains present and past 

values of additional input variables that may affect the system nonlinearly, which at 

this preliminary stage of the analysis, are yet to be determined. In addition, the 

unobserved, serially uncorrelated, zero mean white noise process p(&), introduces the 

stochasticity into the model and is assumed to be statistically independent to the input 

variables u(k)  and U(k).

For explanatory purposes, consider a nonlinear system with only one principle input 

variable. By adopting the theory of model linearisation (see e.g. Young, 1993), it is
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reasonable to assume that the nonlinear model (2.20) can, in most cases, be 

approximated by a linear TF with time varying parameters, which in the general form 

can be written as,

y ( t ) = ^ )  + M *)z ' +’" ' ' +b" W z ” U(k) + S(k)  (2.22)
1 + al(k)z +,-'-,+an(k)z

Here, the time variant nature of the parameters may reveal any non-stationary or 

nonlinear behaviour present in the system. The noise term C,(k) arises from stochastic 

disturbances in p (£ ) .

2.4.2 Time varying parameter (TVP) estimation using the Fixed Interval 

Smoothing (FIS) algorithm

Having presented the theoretical background to the DBM nonlinear modelling 

concept, the following section discusses how the time variable parameters (TVP) are 

estimated using a two pass recursive (forward filtering and backward smoothing) 

operation on the time series data.

Pass 1: ‘Forward filtering’

In vector format, equation (2.22) can be represented in the form,

y(k)  = z(k)Ta(.k) + r\(.k)Jc = 1,2 , - , N  (2.23)

where the state and parameter vectors are now defined as,
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z ( k ) = [- y(k  -1 ) ,-  y(k -  2),—  y(k -  n)jt (k) ji(k — 1),- " u ( k -  m j \  (2.24)

(2.25)

and where the noise process q(&) is assumed initially to be 'white' noise with variance

a 2. Having formulated model (2.21), it is necessary to characterise the temporal 

variation shown by the parameters in vector a ( k ) by some form of mathematical 

description. One method, that has been demonstrated by Young (1978, 1984, 1993) as 

capable of modelling these parameter variations, is the following Gauss-Markov 

stochastic process,

where x(k)  is a ‘state vector’ representing the parameters in a ( k ) as well as other 

elements that are necessary to characterise their complete temporal evolution. F ( k ) 

and G ( k ) are transition and input matrices respectively and q{k)  is a vector of 

serially uncorrelated, random noise with zero mean and covariance Q.  Here, the 

transition matrix F{k)  determines the relationship between successive parameter 

vectors, whilst the magnitude of parameter variation, introduced into the model by the 

stochastic disturbance q ( k ) , is regulated by the input matrix G(k)  and Q.  It is worth 

noting, that when F ( k ) and G{k)  are both identity matrices, equation (2.24) can be 

simplified to the well known random walk (RW) model,

x(k)  = F(*)x(* -1 ) + G(*)q(*) (2.26)

x(£) = x(£ - l )  + q(fc) (2.27)
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It follows that from (2.26) that the best a priori estimate of vector x(fc), at the 

previous time instant, is generated simply using,

x ( k \ k - l )  = F x ( k - l )  (2.28)

where the argument (k \ k - l ) represents the estimate of x at time k, conditional on 

the previous estimate at k-l. The a priori estimate of the covariance matrix associated 

with equation (2.28) is obtained from,

V(k  | k - 1) = F(k)P(k -  1)F(£)t  + G0fc)QrG (*)T (2.29)

It has been shown (Young, 1984) that for estimation purposes, the ratio of Q and a 2 

is important, rather than their explicit values. Therefore, the noise variance ratio 

(NVR) matrix Qr is introduced into the estimation procedure and is defined as

Qr = Q / o l (2.30)

If model (2.23) was defined in its alternative state space form where the state vector 

\ ( k )  = st(k) and the observation vector H (k) = z (k )T , a recursive, prediction- 

correction filtering algorithm for estimating the time varying parameters in model 

(2.23) can be formed by combining equations (2.28 - 2.29) with a recursive time 

variant form of the least squares parameter estimation algorithm. Thus, the ‘forward 

pass’ of the TVP estimation routine is defined and takes the following form,

Prediction

x { k \ k - \ )  = ¥ { k ) x ( k - \ )
(2 31)

P(* |* - 1 )  = ¥(k)P(k -  X)F(*)t  + G(k)Q rG ( k f
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Correction

\ ( k )  =  x(jfc - 1) +  P ( k  | k  -  l)H((fc)T

X [l +  H(*)P(* | k  -  1)H(*)T Y  [ y ( t )  -  H(*)x(* | k  - 1)] 

H k )  =  P ( k  | k - 1) -  P(yfc | k  -  1)H(£)t

x [l + H(fc)P(<t | k -  l)H(fc)T ]"‘ H(jfc)P(£ | k  -1 )

A priori predictions of the parameter vector are, therefore, based on past knowledge of 

the state (parameter) vector variation. As the algorithm continues to pass through the 

data, these a priori predictions are corrected by (2.32) to yield a posteriori estimates in 

a recursive fashion.

The recursive filtering algorithm (equations 2.31-2.32) is identical in form to the well 

known Kalman filter (Kalman, 1960). However, because the observation vector H(£) 

is composed of stochastic variables contaminated by measurement noise rather than by 

purely deterministic variables, as necessitated by the formal definition of the Kalman 

Filter, algorithm (2.31-2.32) is described here in a recursive least squares context.

NVR estimation

The NVR matrix Q r , which is normally chosen to be diagonal, with NVR elements 

qu ,i = 1,2, ---,m + n + 1, is crucial in the overall TVP estimation process as it controls 

the magnitude of model parameter variation. The NVR values in Q r may 

fundamentally affect the success of any subsequent state dependent analysis and, 

therefore, the overall ability to characterise any nonlinear behaviour in the data. If an 

NVR is chosen too large, the associated parameter estimate will change rapidly and
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the model will subsequently fit the data very well. However, this is unlikely to reveal 

any information regarding a physically meaningful trend in parameter variation. 

Alternatively, if a very small NVR is selected, the parameter estimates may vary too 

slowly to expose a trend that can be tested for state dependence.

Maximum Likelihood (ML) optimisation is an objective method, with a strong 

theoretical background, that can be utilised to estimate an optimal NVR, in order to 

reveal the best trend in the TVP's. Estimation of the NVR via ML was adopted in the 

analyses reported in this thesis. However, this method occasionally fails with some 

data series, due to the flat nature of the likelihood surface that is often synonymous 

with ML within the present setting. On these occasions, the NVR has been carefully 

selected manually such to provide parameter estimates that are visually acceptable in 

the present context. The theoretical background to ML will be discussed in Section 

2.5.2.

Pass 2: ‘Backward Smoothing’

The ‘forward pass’ of the TVP estimation procedure provides estimates of \ ( k )  based 

upon the known behaviour of the parameter variation up to, and including, the kth 

sampling instant, e.g. x(& | k ) . It is usual, when estimating off-line, that the complete 

data series are available for analysis. Under these normal circumstances, the initial 

estimate of the TVP vector \ (k )  can be re-estimated at the kxh sampling instant, 

conditional on the data series over the whole observational interval (e.g. 

k = 1,2, • • •, N ), to provide a refined or ‘smoothed’ estimate \ ( k  \ N ). This beneficial 

backward recursive pass of the data, ‘smoothes’ the estimate of the parameter vector
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and reduces the variance of the estimated model error. An additional advantage of this 

second step, is that it ensures that \ ( k  \ N ) does not suffer from ‘phase lag4 which is 

an intrinsic problem of the filtered estimate \ ( k  \ k ) (Young, 1993). There are several 

fixed interval smoothing algorithms available (see e.g. Norton, 1975), but the one 

utilised in the research reported in this thesis, takes the following form,

x(* | N)  = F(£)[x(fc + 1 1 N)  + G(k)Q rG(k)TL(k  -  1 ) J  (2.33)

where the recursive estimate of the ‘Lagrange multiplier’ vector L ( k ) is obtained 

from,

L (N )  = 0

L(* -1) = |l -  P(*)H(A)t H(£) I
l L J . (2.34)
xf'(jfc)TL(*) -  H(*)t  \y(k) -  H(Ar)F(£ -  l)x(* -1)]]

In theory, the vector H(£) should contain only pure deterministic variables. However, 

in low noise situations, this vector is replaced ‘sub-optimally’ to contain stochastic 

variables contaminated by low measurement noise. Recently, this restriction has been 

removed by the development of an IV smoothing algorithm (Young and McKenna, 

1999). However, this has not been employed in the present research studies.

An advantage of algorithm (2.33-2.34) over other fixed interval smoothing methods, 

(see e.g. Priestly, 1988) is that, under the assumption that the estimated model error 

f)(/:) (equation 2.23) is a sequence of serially uncorrelated random variables with zero

mean, the covariance matrix P*(k\N)  of the smoothed parameter estimates can be
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obtained directly (Young, 1993). The smoothed estimate of the covariance matrix is 

defined as,

In circumstances where the estimated model error r\(k) is not Gaussian white noise, 

the covariance matrix P*(k\N)  provides useful information about the uncertainty of 

each parameter estimate. Once again, the recently developed IV fixed interval 

smoothing algorithm efficiently removes the restriction of Gaussian white noise.

Having estimated x(k \ N ), the magnitude of each parameter variation can be 

quantified. If the TVP estimates appear relatively stationary over the observation 

interval, the system is principally linear and should be well approximated by a linear 

TF model. However, if any parameter exhibits significant temporal variation, further 

analyses to investigate possible state dependence should ensue. The preceding 

analyses should be performed utilising the simplest model that is capable of 

representing the system behaviour (for example a 1st order TF). Subsequent model 

identification at the final stage of the analyses will indicate whether it is necessary to 

increase the model order.

P \ k \ N )  = d 2P(k \N ) (2.35)

P(* | AO = P(*) + P(*)F(* + 1)T [P(* + 1 1 fc)]"1

x [P(* + 1 1 N) -  P(k + 1 1 *)IP(* + 1|*)]"1F(* + 1)P(k)
(2.36)
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2.4.3 State dependent parameter modelling

The preceding section has discussed a method for effectively linearising model (2.20) 

by obtaining a non-parametric estimate of the TVP vector a(k) (equation 2.23) 

through a two step recursive procedure. A forward ‘filtering’ pass of the time series 

provides an initial estimate of a{k\k)  which is then ‘smoothed’ through a backward 

pass of the data to obtain the final estimate a ( k \ N ) .

The analysis subsequently proceeds to investigate whether the identified temporal 

parameter variations, associated with the nonlinear behaviour of the system, can be 

explained by nonlinear functions of the other state variables present within the system 

NMSS vector %{k) which are yet to be incorporated into the model.

One possible approach to investigating state dependency is to assume that a ( k ) 

exhibits a linear relation to nonlinear functions of %{k) » such that,

a(k)  = M{x(.k)}a(.k) (2.37)

where M (k )  = M{x(&)} constitutes an n by m transformation matrix of nonlinear

functions, dependent on appropriately selected state variables from the NMSS vector 

%(k) and a (k)  is an m-dimensional parameter vector. In ideal circumstances, the 

appropriate choice of state variables and nonlinear functions will cause parameter 

vector a (k )  to be time invariant. However, some applications (e.g. adaptive control 

and forecasting) may actually require the parameter vector a ( k )  to be time variant. 

The state dependent parameter modelling (SDPM) presented in this thesis did not
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necessitate the elements in a (k )  to be temporally variant and therefore, specific 

methods of estimation in this context will not be discussed. However, for 

completeness, it is sufficient to say, that the temporal variation of a(&) can be 

modelled as a Gauss-Markov ‘random walk’ process, e.g.

where v (k )  is a serially uncorrelated vector of random variables with zero mean. The 

reader is encouraged to consult Young (1993) for further information on this subject.

The identification of appropriate nonlinear transformed state variables from M ( k ) is 

fundamental to the success of the SDPM process. Various methods can be utilised to 

assist in this selection process, such as scatter plots and correlation analysis in which 

the elements of M ( k ) are compared to the TVP vector a(/:| V ) . It is important that 

the uncertainty associated with the estimates of a(& |V ), the covariance matrix 

P*(k \N ) , is incorporated within the selection process. Moreover, it must be strongly 

emphasised, that in line with the DBM modelling philosophy, the state variables and 

nonlinear functions chosen, must have some realistic physical interpretation in relation 

to the nature of the system under consideration.

On the basis that a  has constant parameters, M (k)  can be determined in the 

following manner,

a (k )  = a ( k  -1 )  + v (k ) (2.38)

d(k \N )  = M ( k ) a  + e(k) (2.39)
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where a ( k \ N ) is derived from the FIS algorithm and the noise vector e(£) has 

covariance P*(k\N) .  Exploiting knowledge of the P*(k\N)  matrix, a  can be 

estimated by minimising the following weighted least squares (WLS) cost function,

k = N

J  = Y , W k \ N ) -  M(k)a]JW( k ) [ a ( k \ N) - M( k ) a]  (2.40)
*=1

where W( k)  = P*(k\N)~l is normally based on only the diagonal elements of 

P*(k\N) .  The introduction of P*(k\N)  into algorithm (2.40), ensures that in 

estimating a , a changing estimate of the uncertainty associated with the parameter 

vector o(£|A0 is incorporated. Alternative methods of estimation are discussed in 

Young (1998a).

It has been demonstrated that the process of state dependent parameter modelling can 

sometimes be enhanced by sorting the data in some non-temporal order (with respect 

to either the input or output series) prior to the estimation of model time varying 

parameters. In this manner, the rapid natural variations between the input and output 

time series are effectively eliminated in the ‘sorted’ data space such that the estimated 

time varying parameters are much smoother, exhibiting less rapid variations. The 

process of state dependent parameter modelling can then proceed, investigating the 

relationship between the ‘smoother’ estimated time varying parameters with 

appropriate variables taken from the NMSS vector (sorted in an identical manner). 

This procedure has led to the identification of better defined state dependent parameter 

relationships.
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2.4.4 Illustrative example: The logistic growth equation.

To demonstrate the efficacy of the DBM modelling approach to the identification of 

nonlinear systems, consider the following illustrative example. Equation (2.41) 

presents an example of the logistic growth equation; a simple model of population 

growth. Logistic growth is characterised by an initial exponential behaviour being 

limited by a ceiling or capacity.

(2.41)

Figure 2.1 presents the simulated response of the logistic growth equation which was 

initiated (&=1) with a value of 0.1. A small amount of measurement noise has been 

added to this data to make the example more realistic.
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Logistic growth example data : y (k )= 4xy (k -1) -  4 x y (k - l) J
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290 300 310 320 330 340270 280 350260250
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Figure 2.1 Response of the logistic growth equation.
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The FIS algorithm can be utilised to provide an estimate a(k \ N ) of the TVP a(k) 

which characterises the nonlinear behaviour between the input y(k - 1) and output 

y(&) series as shown by equation (2.42).

y(k) = a ( k ) y ( k - 1) (2.42)

Prior to estimation, the input data series y(k - 1) was sorted in ascending order of 

numerical magnitude (using the sort method in MATLAB) and the output series y(k)  

was reordered in the same manner. Figure 2.2 presents the FIS estimate a(° \ N ) of 

the TVP based on input and output data sorted in a non-temporal order.

FIS Estim ated TVP (sorted data)
6

5

4

LU
CO
<  3 
+

z

2

1

0
100 200 300 400 500 600 700 800 900 10000

Sam ple Number

Figure 2.2 FIS estimate a{° | N ) with standard errors shown as a dashed lines.
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In normal circumstances, where there is no prior knowledge of the system 

nonlinearity, the TVP would be compared against other variables from the NMSS 

vector. However, in this simulated example, the nature of the system nonlinearity is 

already known (a(k)  = 4 - 4 y ( k  -1 )) . If the TVP estimate a( ° \ N)  has managed to 

capture this nonlinear behaviour, a plot of <3(° | N)  versus y(k - 1) should yield a 

straight line with an intercept of 4 and a gradient of -4 . Figure 2.3 confirms the 

success of the TVP procedure: a(° \ N ) versus y(k - 1) is plotted as a full line with 

standard error bounds plotted as dashed lines. Equation 4 -  4 y(k - 1) is also plotted. 

The comparison between the lines is very good, with only a slight deviation observed 

at low values of y(k - 1).

FIS Estimated TVP (sorted data)

3.5

2.5

0.5

-0 .5
0.7 0.90.3 0.4 0.5

y (k -D
0.60.2

Figure 2.3 FIS estimate a(° | N ) versus y{k - 1) with standard errors (red line). 

Actual nonlinear relationship 4 -  4y(£ -1 ) (blue line).
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Whilst this example has been idealised by using simulated data, it has highlighted how 

effective the DBM techniques are at identifying the nonlinearity between related time 

series.

2.4.5 Final estimation of a nonlinear model

Having identified that the system under consideration is nonlinear, the FIS algorithm 

has provided an estimate of the time varying parameter vector a(£|iV) which 

characterises the system nonlinearity. The SDPM modelling procedure outlined above 

has identified the structure of the final nonlinear model, but it does not provide 

statistically efficient estimates of the model parameters. In the final stage of the 

analyses, all the parameters of the nonlinear model are re-estimated. Deterministic or 

stochastic methods of optimisation can be utilised to obtain the final model parameter 

estimates independently or in conjunction with the SRIV algorithm. A brief overview 

of additional numerical optimisation methods adopted for the research reported in this 

thesis, are given in Section 2.5. Figure 2.4 summarises, in schematic form, the 

complete DBM modelling procedures for nonlinear identification and estimation.
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[ Do residuals indicate nonlinearity? }

Formulate NMSS vector. Select 
simplest TF model structure.

GE)

Input /Output 
Data

Analysis indicates best 
model is linear.

Identify best linear constant 
parameter TF model using SRTV

Does TVP correlate with the state 
variable?

Select a variable from the NMSS 
vector

Re-estimate all nonlinear model 
parameters using SRIV/ML

Estimate TVP’s using FIS. Do any 
TVP’s show significant temporal 

variation?

Estimate the state dependent 
relationship using WLS. 

Check physical interpretation

Figure 2.4 A summary of the complete DBM modelling procedure
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2.5 S t o c h a s t i c  a n d  d e t e r m i n i s t i c  m e t h o d s  o f

PARAMETER ESTIMATION

This section briefly discusses two contrasting numerical approaches for estimating the 

parameters of nonlinear models. These techniques can be applied to nonlinear models 

(and indeed linear models) whose structures have been determined either through 

statistically objective identification procedures, e.g. DBM identification (Section 2.3), 

or by alternative deterministic approaches.

For nonlinear models, the estimation problem is two fold. Firstly, an appropriate cost 

function must be selected to provide a measure of the difference between the model 

and system outputs. This can either be defined deterministically, based upon the least 

squares method, or stochastically, based upon the more objective ML approach (see 

e.g. Harvey, 1989). In contrast to linear models, cost functions cannot be solved 

analytically to provide optimal model parameter estimates and so it is necessary to 

select a suitable numerical technique to optimise (minimise or maximise, as 

appropriate) the chosen cost function.

2.5.1 Deterministic parameter estimation: Nonlinear least squares

A straightforward method for nonlinear model parameter estimation is least squares, 

whereby the optimal parameter estimates minimise the ‘response error’ (2.3). This 

approach requires a numerical algorithm to iteratively supply the parameter estimates 

such that the cost function can be computed.
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2.5.2 Stochastic parameter estimation : Maximum likelihood

Maximum Likelihood is an objective procedure for model parameter estimation that 

does not suffer from the shortcomings of least squares methods. ML is a statistically 

rigorous, flexible technique that provides model parameter estimates that are 

asymptotically unbiased with minimum variance under the assumption that the model 

residuals are zero mean, Gaussian and uncorrelated. As a result, ML is a popular 

parameter estimation technique that has been adopted by many scientific disciplines.

Consider the generalised, discrete-time, state-space model representation of a 

nonlinear system,

X(k) = f  {*(* -1), u(k - 1), C(* -1)} (2.43)

y(k)  = h{x(k) ,e(k)}  (2.44)

where the discrete-time p  dimensional vector of observed output variables 

y W ^ y ^ k ) ,  y2(k) , - - ,  y p(k)] are a nonlinear function /,{} of state x(k)  and 

measurement noise e(k).  The n dimensional state vector,

x(&) = (A:), jc2(A:),• ■ •, (A:)] is a nonlinear function /{•} of the state jc(fc-l), input

w (£ -l)  and system noise £ { k - 1) vectors at the k-lth. time instant. Here, the m

dimensional input vector u(k)  is defined as u(k)  = [ul(k), u2( k ),•••, um(k)] and £(&) 

and e ( k ) are assumed as independent, normally distributed white noise, with zero 

mean and covariance Q and R  respectively.
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Let the matrices Y ( k ) and Y ( k ) contain the discrete measurements of the system and 

model output, up to and including time step k, where k = 0,1,2,  - , N .

Y(*) = [y(*), y (* - 1).....y(l), y(0)]T (2.45)

Y(k )  = [y(k) , y(k  - l) ,.. .,y ( l) ,y (0 )]r  (2.46)

The joint density function L(Q\Y(k)) can be considered as the probability of obtaining 

particular values of Y(k ) , based on the unknown parameters in the vector, 0 which 

includes the leading diagonals of both Q and R.  Furthermore, the function L(Q;Y(k)) 

can be considered as a method of assessing the merits of different estimates of the 

parameter vector 0 given observations in Y(k)  and can, therefore, be termed the 

likelihood function ,

L(Q-,Y(k)) = p ( Y ( k m  (2.47)

Under the assumption that the system £(k ) and measurement noise e(k ) are normally 

distributed, the conditional density is also normal. The conditional distribution is, 

therefore, characterised by the conditional mean, y ( k \ k - 1)and variance P ( k \ k - l ) \  

the model output one-step ahead prediction and variance respectively.

y ( * |* - l )  = 4 K * ) | r ( * - l ) , e J  (2.48)

P(k  | £ -1 ) = y[y(£) IY (* — l).oJ (2.49)
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The one-step ahead prediction error (or innovation) e(k)  can therefore be defined as

The likelihood function is defined as,

N
1 / 2

(2.51)

L(Q;Y(N»  = \ ln )~ m n  det P(k \ k - l )
1

xexp^--^-e(& )TP(k \ k - l ) -1e(&) 

or more conveniently, considered in the following form,

1 N
logL(0 , Y(N))  = [log(det P(k  | k - 1))

L j (2.52)

+ E(*)1> 0 t | * - i r 1e0t)]+ const

The Maximum Likelihood estimate is the parameter vector 0 that maximises the 

likelihood function defined in equation (2.51) or minimises the likelihood defined in 

equation (2.52). The ML function can be computed using the Kalman filter which 

calculates y(fc|fc-l) and P ( k \ k - l )  based upon estimates of the model parameter

vector 0 , which are passed directly from a numerical optimisation algorithm.

2.5.3 Linearised Kalman Filter

In order to form the likelihood, the one-step ahead prediction error and variance are 

required which can be calculated for discrete-time linear models using the discrete-
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time Kalman Filter (KF). Kalman (1960) discussed the recursive solution of the 

optimal state estimation (or filtering) and prediction problem for linear discrete-time 

systems. For nonlinear stochastic systems the Linearised Kalman Filter (LKF) can be 

derived for the optimal state estimation and prediction of nonlinear systems 

(Jazwinski, 1970).

The recursive prediction of y(&| k - 1) and P(k\ k - 1)) from model (2.43-2.44) in its 

current nonlinear form presents an estimation problem of some complexity. To 

simplify this process, the LKF makes linear approximations of the state and 

measurement equations by generating a perturbation around their current estimates at 

the kth time instant by calculating the partial derivatives (akin to the Taylor series). 

The LKF can then be defined in the following prediction-correction form:

P(k + \ \ k ) = A[ k  + \ , k - , x ( k \ k ) t y {k \ k ) A t [k + l,k\x< ,k\kj\+ Q (k + ]) (2.54)

Prediction

x(k  + 1 1 k)= f { x ( k  | fc),w(fc),} (2.53)

Correction

i ( *  + l |  * + l ) = i ( *  + l | * ) + * ( * + l ; i(*  + l | *))••• 
x  [y (yt + 1 )-  A(i(/t + 11 it), *: + 1)]

(2.55)

P(k  + 1 1 k +1) = [/ -  +1; x(k  + 1 1 k )}H(k +1; x(k  + 1 1 k))\..

P(t +111][/ -  AT {it +1; i ( t  +11 k)}H  (& + 1; £(/: +11

+ *(* + !;*(* + ! | k))R(k + l )KT(k + X;jc(it +11 *))

(2.56)
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Kalman Gain

K(k + l;i(* + 1| *))= P(k + 1\ k)H(k + l;i(* + 11 k))T

[f/(yfc + l;i(yfc + l|*:))P(<t + l|«:)i/T (2.57)

(* + l;i(* + l|* ))+«(*  + l)]'1

One-step ahead predictions of the measurement equation become:

y(k + l|Jt) = h(x(k + \\k),u(k + 1|*),0,* +1) (2.58)

The partial derivatives (or Jacobians) of the state and measurement equations are

defined by the matrices A and H , where for simplicity, the notation for the &th

discrete-time step is not included, even though they are different at each time step.

A,, =^-(x(k),u(k),e,k) (2.59)
dXj

H,: = —L(i(<r),u(*),0,/r) (2.60)
OXj

The complete stochastic ML parameter estimation procedure is summarised by the 

schematic given in Figure 2.5.
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No

Yes

Likelihood function calculated 
L(0,.; Y(AO)

Initial parameter estimates 0,

Linearised Kalman filter 
recursively calculates the one-step 

ahead predictions.

Likelihood function L(0f;Y(N)) 
minimised?

Optimal Maximum Likelihood 
estimates 0.

Parameter estimates 0 ( updated 

using numerical optimisation 
algorithm.

Figure 2.5 Summary of maximum likelihood estimation procedure

2.5.4 ML estimation of continuous-time nonlinear systems

ML parameter estimation of a continuous-time ecosystem model is discussed in 

Chapter 6. Due to time constraints, a ML parameter estimation software package in
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FORTRAN for continuous-time systems (Madsen and Melgaard, 1993) was utilised, 

rather than writing new software in MATLAB. The Continuous Time Linear 

Stochastic Modelling (CTLSM) software assumes that the model output observations 

are taken at discrete-time intervals and, therefore, discretises the continuous-time 

model state and covariance equations at each iteration for use in the discrete-time 

LKF. As a result, the calculations involved are computationally very demanding and 

any subsequent research would require the formulation of the complete ML routines 

directly in MATLAB, probably by expressing the LKF in continuous-discrete form. In 

this manner, discretisation would be avoided and the solution would be obtained more 

efficiently.

2.5.5 Numerical Optimisation Algorithms

Numerical optimisation algorithms provide the parameter estimates that minimise the 

‘objective functions’ of ML and nonlinear least squares. A numerical optimisation 

algorithm is a logical method that searches the response surface of the parameter 

hyperspace to locate the best set of parameters that optimises the specified objective 

function. There are many different numerical optimisation algorithms available (e.g. 

simulated annealing, genetic algorithms, quasi-Newton algorithms) and each uses a 

‘strategic’ mathematical method to obtain the estimates of the optimal parameters. 

Most methods work on the principle of creating an initial ‘guess’ to the optimal 

solution and then make iterative attempts to enhance this guess following logical 

procedures defined by the strategy employed. Each strategic method can be crudely 

categorised as either a local search or global search procedure. Algorithms of both 

types were utilised for parameter estimation in the studies reported in this thesis. 

Estimation by nonlinear least squares adopted both a global (genetic algorithm) and a
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local (e.g. quasi-Newton based algorithm) search procedure, whilst only a local search 

method was utilised with ML.

Local search methods utilise the mathematical properties of the response surface (e.g. 

the gradient) to control the direction and distance of the search from the current 

location ‘downhill’ towards the optimal function solution within the parameter 

hyperspace. Local search methods can be classified as either ‘direct search’ or 

‘gradient search’ methods. The MATLAB function FMINU is a ‘gradient search’ type 

strategy. Gradient methods utilise the difference in cost functional values and the 

gradient between two points to determine the direction and distance of the future 

search; and most methods are based on the following equations (Sorooshian and 

Gupta, 1995),

0 /+1= 0 , - p A V 0 ,  (2.61)

where 0 /+1 is the generated new point in the parameter hyperspace; 0 ; is the current 

point; V0, is the gradient matrix at the present point; p determines the step size and 

A is a specifically chosen square matrix. It can be shown mathematically, that if A 

is a positive definite matrix, then the vector from 0, to 0 /+1 will give a better cost 

functional value (Sorooshian and Gupta, 1995). In the case of quasi-Newton methods, 

A is defined using an approximation of the Hessian matrix. If the newly defined 

point in the parameter space provides a lower functional value than the previous point, 

then it replaces the previous point. If the new functional value is higher, the step size 

is reduced and a new point is evaluated. At the optimal point in the parameter 

hyperspace the gradient will be close to zero and the search is terminated. Local
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search methods are limited in cases where the parameter hyperspace has a complex 

and irregular ‘response surface’ such that they often terminate in local rather than 

global minima. For this reason, the success of local search methods is often dependent 

upon the location of the search initiation.

Global search methods avoid this sub-optimal, local optimisation by continually 

looking away from the local optima that the algorithm is working towards. A genetic 

algorithm (GA) (see e.g. Goldberg, 1989) is a stochastic global search method which 

uses the biological concepts of ‘natural evolution’ and the ‘survival of the fittest’ to 

obtain optimal parameter estimates. Genetic algorithm’s work with a collection of 

randomly selected populations of potential solutions rather than a single solution. 

Each population is comprised of a number of chromosomes containing genes, which 

represent each parameter to be estimated. Each individual is assessed within a defined 

objective function and assigned a ‘fitness value’ which in turn, determines whether it 

is selected for breeding. The fittest individuals are selected and a undergo a breeding 

process using crossover and mutation operators to generate a new population of 

chromosomes which are subsequently evaluated. The process of mutation randomly 

alters the configuration of the chromosome maintaining its genetic diversity in order to 

prevent premature convergence as a consequence of a local optimum. The GA 

evolves a population of chromosomes over many cycles or generations until a 

specified termination criterion is met.
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2.6 Co n c l u sio n

This chapter has introduced the DBM identification and estimation techniques that 

have been adopted in the research presented in this thesis to model linear and 

nonlinear systems. The parameters of linear TF’s are generated using the Simplified 

Refined Instrumental Variable (SRIV) algorithm which provides consistent, 

asymptotically unbiased estimates through adaptive pre-filtering of the IV vector. The 

best models are subsequently chosen using the R* and YIC identification criteria. The 

DBM approach to modelling nonlinear systems utilises objective non-parametric time 

varying parameter (TVP) estimation, based on the recursive Fixed Interval Smoothing 

(FIS) algorithm, to detect and identify any significant nonlinearities in the time series 

data. The identified nonlinearity is efficiently parameterised, so defining the structure 

of the nonlinear model, using a state dependent parameter modelling (SDPM) 

procedure. Final estimates of the nonlinear model parameters are generated using 

Maximum Likelihood, or least squares approaches.

Chapters 3, 4 and 5 utilise the DBM approach to identify and estimate stochastic 

nonlinear TF models of ecological and hydrological systems, whilst in Chapter 6, the 

parameters of a deterministic, continuous-time, ecological model are estimated, within 

a data assimilation framework, using least squares and Maximum Likelihood methods.
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Ch apter  3

D B M  MODELLING OF LUCILIA CUPRINA 

POPULATIONS

In Chapter 2, the data-based mechanistic (DBM) approach to modelling nonlinear 

systems has been introduced. This chapter demonstrates the efficacy of this approach 

by utilising these procedures in an ecological context, to model population data of the 

Australian sheep blowfly, Lucilia cuprina, that were collected by A.J. Nicholson.

3.1 N ic h o l so n 's Lu c il ia  c u pr ina  e x pe r im e n t s

Throughout the 1950’s the Australian entomologist A. J. Nicholson performed a 

comprehensive series of laboratory experiments to investigate the single-species 

population dynamics of the Lucilia cuprina, under various pre-determined conditions 

(Nicholson, 1950; 1954; 1957). The essential feature of these experiments was that 

the blowfly population were allowed to develop freely, regulated only by the rate of 

food supply (constant or fluctuating), to either the adults or larvae. As a result, the 

population experienced different forms of competition, e.g. for food or egg laying 

space. Nicholson's acclaimed experiments have caused a wide interest in population
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ecology and his data have appeared in numerous ecology texts as examples of 

oscillatory populations.

In what has probably become the most analysed of Nicholson’s experiments, a 

population of adult blowfly were fed a constant but limited daily supply of ground 

liver (0.5 g) whilst the larvae, isolated from the adult blowflies, had access to an 

unlimited supply of larval food. Measurements of the number of adult blowflies and 

the eggs laid per day were taken by Nicholson every two days for approximately one 

year. The oscillatory nature of the population dynamics are illustrated in Figure 3.1, 

exhibiting large changes in amplitude but maintaining an approximately constant 

period.

Nicholson (1954) attributes these oscillations to population density-related 

competition for food. The highest egg generation rate occurs when the adult 

population is very low. As the population increases so does the competition for food 

until it becomes sufficiently severe that all or some adults no longer lay eggs. Where 

natural mortality has caused the population to decrease to a level when competition for 

food is not as intense, some individuals can secure sufficient food to enable egg 

generation. After approximately two weeks, the eggs develop into mature adults and 

the population density rises and the cycle repeats itself once again. Nicholson also 

concludes that if the transformation of eggs to adults was instantaneous, the system 

would be non-oscillatory and the population would increase until an equilibrium 

density was reached.
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Unfortunately, Nicholson’s original data have been lost by his trustee, Professor Don 

McNeil and consequently the data used in this research and shown in Figure 3.1 were 

obtained from careful digitisation of a figure taken from Nicholson’s original 

manuscript (Figure 3, Nicholson, 1954).

B l o w f l y  P o p u l a t i o n
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Figure 3.1 Numbers of blowfly Lucilia cuprina in a population cage.

Adult blowfly (Top) and eggs laid per day (Bottom). Data sampling interval is 1 day.
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3.2 M o d e ll in g  N ic h o l so n ’s Bl o w fly

Since the publication of these data, numerous mathematicians and ecologists have 

analysed the time series concentrating mainly on capturing the dynamics o f the 

blowflies. This section briefly summaries the results of these earlier studies and 

comments upon their relative success.

May (1973) reported that the following, simple, time-delayed logistic growth equation 

was capable of generating the cyclic or quasi cyclic population fluctuations observed 

in the blowfly time series,

dN(t)
dt

= rN{t) 1 -
N { t - T D)

K
(3.1)

where the blowfly population N(t ) has a maximum growth rate r, and maximum 

sustainable population K , regulated by the time delay TD. Although an approximate 

fit to the adult population time series can be achieved using this model, its 

acceptability as an adequate representation of the system dynamics is undermined by 

two important factors.

The most severe objection to the model is due to the 9 day time delay TD estimated by 

May (1973), which he argued approximated to the delay observed in the time series. 

However, careful examination of the data show the real time delay to be in the region 

of 15 days; a significant discrepancy. Secondly, the delayed logistic growth equation 

is unable to reproduce the two periods of adult reproductive activity observed in each 

adult population cycle, characterised by the double peaks in the data. As a result, this
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model gives an inadequate representation of the food limited adult population 

dynamics.

Other attempts to model the blowfly data over the last 30 years include studies by 

Maynard Smith (1974), Poole (1978), Readshaw and Cuff (1980) and Brillinger et al., 

(1980). Although various advanced and relatively complex methodologies have been 

employed by these authors, no overall satisfactory fits to the time series data, or 

adequate explanations of the mechanisms underlying the blowfly population dynamics 

have been achieved.

The most recent research by Gurney et al., (1980; 1983) and Nisbet and Gurney (1982) 

has re-addressed the modelling issue. Recognising the limitations of earlier models, 

(e.g. May, 1973), Gurney et al., (1980) formulated a new deterministic model, which 

encompassed the complete egg-blowfly system by incorporating a component 

reflecting the reproductive activity of the blowflies, based on mass balance principles. 

The adult population N(t)  is determined by adult death D(t) and recruitment R(t) 

rate which, in turn, are both functions of the total adult population at any one time. 

Therefore, the adult population dynamics can be expressed in continuous-time, by the 

following differential equation.

= R(t) -  D(t) = R(t) -  8N(t)  (3.2)
dt

The recruitment rate function R(t) can incorporate age dependent terms to account for 

the different stages of egg-mature blowfly growth, but this added complexity can be 

avoided by following three basic assumptions:
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1. The rate of egg production is dependent on population size.

2. Td is the exact time taken for eggs to develop into mature adults.

3. The likelihood of an egg developing into a mature adult depends upon the number 

of competitors of the same size.

These assumptions lead to the redefinition of equation (3.2) to this form,

— ' j ^  = R ( N ( t - T D) ) - m ( l ) (3.3)
at

Whilst the death rate function N(t)  is controlled by a simple time and density 

independent value 8 , the parameterisation of the recruitment rate function R(t) is far 

more sophisticated. It was formulated with the aim of explaining the Nicholson 

blowfly data well and providing a model for generic use with a wider class of insect 

population models. The authors deduced, heuristically, the form of the function from 

the visual examination of the blowfly data, which is based on the following 

assumptions (Gurney et al., 1980).

1. The adult recruitment rate is directly proportion to the egg laying rate at time 

(t ~ T D).

2. Where food is limited to the adult blowflies, the total egg laying rate will be 

affected by the population density and adults will begin to compete for food. It is 

likely that at high population densities, the food intake per blowfly will be reduced 

to a level that is just sufficient to maintain their existence only, completely 

eliminating any possible egg production. These nonlinear effects can be clearly

58



C h a p t e r  3 M o d e l l in g  N ic h o l s o n ’s  B l o w fl ie s

observed in the time series data, as shown in Figure 3.1, where egg production

drops rapidly to zero when high adult populations exist and increase when the

population is small.

3. In light of this, a suitable recruitment rate function R(N),  must decline to zero at 

both low and high populations, but rise to a single maximum at an intermediate 

population size. Gurney et al., (1983) suggested that R( N ) could be simply 

represented by an exponential relationship, defining the complete dynamic model 

as,

R(N) = P N e x p ( - N  / N 0) (3.4)

^ 1  = P N ( t - T D) exp{- N ( t - T D) / N D}-8N( t )  (3.5)
at

where N 0 is the population size that produces the maximum reproduction rate and P 

is the maximum per capita egg generation rate.

This final deterministic model provides a good fit to the time series data, producing 

self-sustaining oscillations, and it has since been extended to incorporate age structure 

within the blowfly population (Nisbet and Gurney, 1982). Through quantitative tests, 

Gurney et al ,  (1980) were also able to identify that the population fluctuations were 

self-sustaining limit cycles rather than driven quasi-cycles.
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3.3 DBM  MODELLING OF NICHOLSON’S BLOWFLY

The preceding section has reviewed attempts to model Nicholson’s blowfly time series 

by adopting a deterministic approach. With the exception of Gurney’s heuristic 

model, the remaining models have failed to effectively characterise the insect 

population dynamics.

In this section, a novel analysis of the data is presented which utilises the statistical 

DBM modelling methodology, to objectively investigate the form of the complete egg- 

blowfly relationship directly from the time series. In particular, emphasis is placed on 

exploiting the DBM approach to identify the form of the feedback nonlinearity 

(blowfly-eggs) present in the data and to evaluate whether the resulting relationship 

has similarities to the function heuristically identified by Gurney et al., (1980). In 

fact, this paper was only consulted after the DBM analysis had successfully identified 

the state dependent form of the feedback nonlinearity.

The DBM analysis involves three main stages: firstly, a linear transfer function (TF) 

model of the forward path is identified between eggs laid per day and adult blowflies. 

Secondly, time varying parameter (TVP) and state dependent modelling (SDM) 

techniques (see Chapter 2) are utilised to identify the nonlinear feedback path. This 

separation of the forward and feedback path identification is possible, in this case, by 

the large time delay in the forward path which effectively isolates the characteristics in 

each path for the purpose of identification. However, at the third stage of the analysis, 

the parameters of the full model are optimised by taking both a deterministic
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approach, using least squares; and a stochastic approach based on Maximum 

Likelihood (ML).

3.3.1 Forward path linear TF model

The first stage of the analysis is to objectively identify a discrete-time linear TF model 

between eggs laid per day u(k) and the adult blowflies y(k). The best 6 linear TF 

models, identified and estimated using the Simplified Refined Instrumental Variable 

(SRIV) algorithm, are shown in Table 3.1 with their corresponding statistical fitting 

criterion.

Table 3.1 Best identified linear TF models listed in order of R\ 
The sampling interval of the data is one day

Den Num Delay YIC R 2t A IC

1 1 15 -8.722 0.877 13.376

1 1 14 -8.693 0.869 13.441

2 1 12 -7.266 0.858 13.526

2 1 11 -7.787 0.840 13.647

1 1 16 -7.954 0.838 13.651

1 1 13 -8.178 0.832 13.692

The model giving the best fit to the data (R2r =0.877), with the most negative YIC 

(and lowest AIC) is first order with a pure time delay of 15 days and is defined by the 

following TF in the backward shift operator,

m = , b°-— u ( k - l 5 )  + Uk)  (3.6)
1 + axz
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where £(k ) represents the complete unmodelled component. The SRIV algorithm 

estimates the parameters as ax = -0.7346(0.0097) b0 = 0.9706(0.033), where the

standard errors are given in parentheses. The R j -  0.877 shows that 87.7% of the 

blowfly time series is explained by the model,

y(k) = — 0,9706 , « (* -1 5 ) (3.7)
1 -0 .7 3 4 6 ? '

where it will be noted that the model output y{k) is computed from u(k) without any 

reference to the y(k) measurements. The coefficient of determination based upon the 

one-step-ahead predictions, i.e.

y p(k) = -0.7346y(& -1 ) + 0.9706w(fc -15 ) (3.8)

is much closer to unity at R 2 = 0.949. Given these high coefficients of determination, 

it is not surprising that the output of the simulation model (3.7) fits the data very well, 

as shown in Figure 3.2. Of course, the output of the prediction model (3.8) fits the 

data very well indeed.
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Figure 3.2 Linear TF model between eggs/day and blowflies:

Data (circles); Model (full line).

The initial parameter estimates of this linear model have a clear 

ecological/mechanistic interpretation. The denominator parameter ax and numerator 

parameter b0 characterise the daily survival rate of the adult blowflies and eggs 

respectively, indicating that on average 73% of the adult blowflies survive to the next 

day whilst 97% of the eggs survive to the 15th day. Freeman (1981) also adopted a TF 

approach to model the forward path of these data and achieved comparable results.
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The behaviour of this model can be evaluated more thoroughly by deterministic 

simulation; considering the model response to an impulse input of eggs. Figure 3.3 

presents the output of the model to an impulse of 100 eggs at k = 0 , where the initial 

adult blowfly population at this time instant is 100. As a result of the 15 day 

development period required for the eggs to mature into adults, the population fails to 

grow and decreases exponentially due to natural mortalities. However, after 15 days 

there is an instantaneous addition of new blowflies to the population, once the 

egg/larvae maturation period has been exceeded. Thereafter, the population declines 

again in an exponential manner.

§  40

m 30

Figure 3.3 Model response to an impulse of 100 eggs (block) assuming 

an initial blowfly population of 100 adults (line).
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Having identified a TF model that successfully reproduces the behaviour of the 

blowfly population in the forward path, the next stage of the analysis investigates the 

feedback relationship between blowflies and eggs. An initial investigation, assuming 

a linear feedback relationship, is unsuccessful in characterising the system dynamics 

and the blowfly population simply dies out. This behaviour is not surprising, as visual 

examination of the data and research by Gurney identifies the process to be nonlinear 

and, therefore, it requires an alternative formulation.

3.3.2 TVP/SDPM Identification of the feedback nonlinearity

The data clearly shows some form of nonlinear inverse relationship existing between 

the egg and blowfly series; maximum eggs are laid when the blowfly population is at 

its lowest. An objective, novel and interesting approach to investigate the form of this 

nonlinearity, is to adopt the time varying parameter (TVP) and state dependent 

parameter modelling (SDPM) methodology as outlined in the previous chapter.

The feedback relationship between the blowflies and eggs can be represented by the 

following TVP equation:

u(k) = a(k)y(k)  (3.9)

A non-parametric estimate a(k / N ) of a(k ) and the associated covariance matrix 

P(k  / N ) can be obtained from the Fixed Interval Smoothing (FIS) algorithm under 

the assumption of a random walk (RW) variation, with a noise variance ratio (NVR) 

numerically optimised by ML. State dependent analysis of the estimated TVP,
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indicates that an inverse cubic relationship exists between a(k  / N)  and y(k ) although 

this relationship is not particularly well defined. However, a much better defined state 

dependent relationship can be identified by sorting y(fc) in ascending numerical order, 

reordering u(k) in an identical manner, and re-estimating a(k / N ) . The new non- 

parametric estimate of a( ° /N)  and standard error bounds obtained using the 

optimised FIS algorithm is shown in Figure 3.4.

F I S  E s i m t a t e  o f  t h e  T V P

250200150100500
S o r t e d  D a y s

Figure 3.4 FIS estimate a( ° /N)  of TVP from sorted data (full line) 

and standard error bands (dashed line).
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The refined and improved state dependent relationship is identified by plotting 

a(°/  N ) y ( k ) , the non-parametric estimate of u(k) ,  based on y(k) ,  versus y(k) and 

this is illustrated in Figure 3.5.

Estimated Non linearity
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Figure 3.5 Estimated feedback nonlinearities: FIS non-parametric estimate of u(k) : 

a(°/  N)y(k)  versus y(k) (circles) with standard error bands (dashed); 

parameterised WLS estimate of non-parametric result (dot-dashed).

The relationship suggests that at low blowfly populations, the egg production rate is 

approximately proportional to the population. As the population increase, egg 

production decreases exponentially away from its maximum, until at high populations, 

the daily egg production rate almost drops to zero. It is significant that the form of the 

feedback nonlinearity, objectively and effectively identified from the data by following
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the DBM procedures, matches and confirms the function deduced by Gurney who 

adopted the more conventional ‘hypothetico deductive’ approach. There are different 

conceivable ways of parameterising the nonlinearity, but one possibility is clearly the 

parameterisation suggested by Gurney et al., (1980), which is presented below using 

alternative nomenclature,

Here the food per capita f b ( k ) , is defined as f b(k)  = y ( k ) /0.5, assuming equal 

division of the constant daily liver supply of 0.5 g; and M  is the population size that 

has the optimal reproductive rate. Under this assumption, the feedback nonlinearity 

can be defined as,

Initial estimates of the parameters in equation (3.12) can be obtained utilising WLS 

(see Chapter 2). A comparison of the resulting parametric model fit and the non- 

parametric estimate of the nonlinearity is shown in Figure 3.5, where the estimated 

parameters are; g = 4.91 and M  =1465. This confirms the validity of the suggested 

state dependent function, although other parameterisations that accommodate the non- 

parametric estimate of the nonlinearity are possible (see e.g. Young, 1999).

a(k /  N)  = gex\ (3.10)

u(k ) = a(k /  N).y(k) (3.11)

(3.12)
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Having identified the structure of the feedback nonlinearity, the parameters of the egg- 

blowfly closed loop nonlinear TF model, defined by equations (3.13-3.14), can be 

estimated. Notice that, with the addition of the feedback component of the model, the 

parameter b0 is unidentifiable within the whole model structure since it is effectively 

replaced by g, and is eliminated from the equation (3.14). The structure of the 

continuous-time version of this discrete-time model is presented in equation (3.15) 

and compares exactly with Gurney’s heuristically derived model (see equation 3.5).

The DBM concept to modelling has objectively identified a blowfly model from the 

time series data which, in this instance, has acted as an independent validation of the 

model suggested by Gurney.

At this stage in the DBM analysis, deterministic and stochastic methods of 

optimisation can be used to estimate the parameters in the complete TF model 

(equations 3.13-3.14) and the application of these procedures will be discussed in the 

next two sections.

u{k) = g.y(/:).expf—
0.5M ,

(3.13)

y (k ) = a^yfk - l )  + u(k -15) (3.14)

(3.15)
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3.4 O p t im is a t io n  o f  t h e  d e t e r m in is t ic  b l o w f l y  m o d e l

A deterministic method of estimating the parameters in equations (3.13-3.14) can be 

carried out by using the Least Squares (LS) criterion shown in equation (3.16); where 

the sum of the combined squared blowfly and egg residuals are minimised,

eu(k)2 terms in (3.16) but, since this deterministic approach is rejected later, it will

suffice to consider this simple LS criterion (3.16). Numerical optimisation of this 

function using the MALTAB (Mathsworks, 1992) nonlinear least squares algorithm 

provides the following parameter estimates and associated standard errors: 

ax =0.8177(0.002), g = 8.937(0.443) and M  = 824(30.45).

As shown in Figure 3.6, the optimised model provides a good fit to the blowfly and 

egg time series, with coefficient of determination values of R] = 0.774 and 

Rj  = 0.559 respectively.

(3.16)

where, ey (k) = y(k)~  y(k)  and eu(k) = u(k ) - u ( k ) .

Other related LS criteria could be used with different weighting on the ey (k)2 and
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Data-Based Mechanistic Model:Final Optimised Model Simulation
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Figure 3.6 The optimised deterministic nonlinear model output (full line) compared 

with the noisy measured data (circles).

The efficacy of the estimated model can be evaluated further by comparing the 

feedback nonlinearity predicted from the deterministic optimised model, directly with 

the non-parametric FIS estimate, as shown in Figure 3.7. At low blowfly populations, 

the deterministic optimised nonlinearity gives a reasonable match to the FIS estimated 

number of eggs laid per day. However, as the population size increases, the number of 

eggs laid per day predicted by the deterministic nonlinearity, drops well below the FIS 

non-parametric standard error bounds. This discrepancy throws some doubt on the 

deterministic results and this is discussed in subsequent sections of this chapter.
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Figure 3.7. Estimated feedback nonlinearities: FIS estimate (circles) with standard 

error bands (dot dashed) and the deterministic, optimised model output (full).

The residuals of the optimised model offer additional information to assess model 

efficacy. If the errors of the model are not a sequence of serially, uncorrelated, 

random white noise, this may indicate that either the estimated parameters are 

deficient, which may be directly attributable to the estimation process, or that the 

model structure is not a good representation of the system. The model errors can be 

analysed by using the autocorrelation (AC) and partial autocorrelation (PAC) 

functions (see e.g. Box and Jenkins, 1976) to evaluate whether the series is either a 

serially uncorrelated sequence of white noise, or a sequence of coloured noise with 

definite structure.
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Figure 3.8 Model errors (top). The autocorrelation and partial autocorrelation 

functions for the least squares optimised model are shown in the bottom left and 

bottom right figures respectively. An instance above the dashed line in these figures, 

indicates the model errors are correlated.

Figure 3.8 presents the AC and PAC functions of the model residuals and reveals that 

the series is, indeed, autocorrelated with a ‘coloured’ temporal pattern. This 

emphasises that the model is limited in its present state and indicates that alternative 

parameterisation or model structures should be investigated.
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3.5 Sto c h a stic  o ptim isa tio n  o f  t h e  d e t e r m in ist ic

BLOWFLY MODEL

A more statistically rigorous method of parameter estimation, can be achieved by 

stochastic optimisation based on Maximum Likelihood (ML) theory (see Chapter 2). 

By converting the TF model into stochastic state space form (equations 3.17-3.19), the 

model parameters can be estimated by numerical optimisation, minimising the 

Gaussian conditional density function (likelihood) generated by prediction error 

decomposition.

For nonlinear models, the conventional procedure for generating the one-step ahead 

predictions required for ML estimation, would be to utilise the Linearised Kalman 

Filter (LKF). As outlined in Chapter 2, a software package is commercially available 

for estimating parameters of continuous-time nonlinear state space models (CTLSM), 

including time varying parameters, based on ML. As the discrete-time nonlinear TF 

(equations 3.13-3.14) can be easily converted into continuous-time, (see e.g. Young, 

1993) the CTLSM software would, therefore, appear to be a convenient method for 

estimating the parameters of the blowfly model. Unfortunately, because the CTLSM 

software does not have the facility to deal with pure time delays in the state, it is an 

unsuitable method for estimating the parameters of the blowfly model.

To overcome this problem, a novel parameter estimation procedure based on ML has 

been developed utilising the ordinary discrete-time linear Kalman Filter with state 

dependent parameters. At each recursive time step, the nonlinear component of the 

stochastic state space model j{k)  (equation 3.19 below) is computed before state
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prediction and correction is undertaken using the current estimates of the unknown 

parameters. In this manner, the nonlinear model is treated as a linear, time varying 

parameter model which is able to exploit the fact that the Kalman filter is formulated 

in such a time variable form. Of course, this time variation in the parameters is in fact 

caused by a state dependency but this causes no problem in this case.

The 15th order stochastic state space model used in this manner takes the form,

x (* )= F jc (* -1 )  + 5(*) 
y(k)  = Hx(k)  + e(k)

(3.17)

where the state vector is defined as,

x ( k ) = [y(&), y(k -1), y(k -  2), y(k -  3 ) , y(k  -13), y(k -  14)]r (3.18)

the time varying parameter is given by,

(3.19)

the 1 5 x 1 5  state transition matrix F  and the observation matrix H  are,
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- a  0 0

1 0 0
0 1 0

0 0 j ( k )

0 0 0
0 0 0
0 0 0F =  0 0 1

0 0 0 
0 0 0

1 0 0 

0 1 0

= [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f

and the system £(fc) and measurement noise e(k)  processes are characterised by the

A quasi-Newton optimisation algorithm (MATLAB’s FMINU function) was utilised 

to generate the estimates of the four parameters to be optimised ( ax,g,M  and £),), 

needed to minimise the Gaussian likelihood function (see equation 2.52). Figure 3.9 

presents the one-step ahead predictions that are obtained from the optimised model, 

shown in equations (3.20-3.22), and the resulting limit cycle. The one-step ahead 

predictions closely match the data and the limit cycle characterises both the amplitude 

and period of the data, with each adult population cycle showing two periods of 

reproduction. Note that the optimised parameter values are not very different to those 

obtained from the deterministic optimisation in Section 3.4.

a;
noise variance ratio (NVR) matrix Qx = — .

2

a

w(£) = 9.958;t(£).exp -
x(k)

(3.20)
0.5x849.163

x(k) = 0.8203*(* -1 ) + u(k -15 ) + § (k) (3.21)

y (k) = x(k) + e(k) Qx =0.0049 (3.22)
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Figure 3.9 (a) ML optimised stochastic one-step ahead predictions (fine line) versus 

measured blowfly data (circles), (b) Prediction Errors.

As in the deterministic case, the model one-step ahead prediction errors can be 

analysed using the autocorrelation (AC) and partial autocorrelation (PAC) functions to 

evaluate whether the series is either a serially uncorrelated sequence of white noise or 

a sequence of coloured noise with definite structure. Figure 3.10 presents the AC and 

PAC functions of the model residuals and indicates that the series is, indeed, 

autocorrelated with a ‘coloured’ temporal pattern.
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Figure 3.10 One step-ahead prediction errors (top), autocorrelation (bottom left) and 

partial autocorrelation (bottom right) functions for the stochastic model optimised by

ML.

Theoretically, the Kalman Filter can be used for state estimation when the system and 

measurement noise of the stochastic state space model are independent, zero mean, 

Gaussian white noise processes. As the residuals of the blowfly state space model in 

its present form are ‘coloured’, the state estimates from the Kalman Filter may not be 

truly optimal and are probably biased from these optimal values.
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Moreover, when the optimisation routine is initiated with a high NVR value, 

convergence occurs at a different location in the parameter hyper-space. In this 

situation, although the model produces much smaller one-step ahead prediction errors, 

the limit cycle is greatly inferior and, therefore, has both a very poor long-term 

predictive capability and unacceptable physical meaning. This suggests that a local 

minimum was initially located to give the parameter values shown in equation (3.20- 

3.22) and the global minimum is found when the optimisation is started with this 

higher NVR value. However, this global minimum is clearly unsatisfactory and it 

suggests that the model (3.17-3.19) needs to be modified to account for the 

stochasticity in the data in order to accommodate smaller one-step ahead prediction 

errors and, at the same time, an acceptable limit cycle that will produce good long 

term predictions.

3.6 E x t en sio n  o f th e  Sto c h a stic  Bl o w fly  M o del

Model (3.17-3.19) can be extended by introducing additional stochastic state variables 

to characterise the ‘coloured’ one-step ahead prediction errors observed to be present 

in Figure 3.10, which suggest a second order stochastic process. By modelling the 

‘coloured’ noise as a second order auto-regressive (AR) process, the model (3.17-3.19) 

can be extended to form a 17th order stochastic state space model. With this 

modification, the state, measurement and time varying parameter equations remain 

unchanged, (equations 3.17 and 3.19) but the state vector x ( k ), the 17x17 state

transition matrix F , the observation matrix H  and the noise term £(k ) need to be

redefined as,
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x ( k )  = [y(k)  y ( k - l ) ... y(k  - 13) y(k  - 14) £(*) %{k -  l)]r (3.23)

- a 0 0 0 0 m -C\ - c 2
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

t f  = [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] r

zjtk) = -Cj (k)^(k  - 1) -  c2 (*)5(jfc -  2) + e(*) (3.24)

where e(&) is a serially uncorrelated sequence of white noise with zero mean. An 

additional NVR  term Q2 is introduced, characterising the variance of the system noise. 

Now, seven parameters in total require optimisation: ax, g M  ,C\,c2,Q\zndQ 2- The 

parameter estimates are again obtained by minimising the likelihood function, 

adopting the same method discussed in the previous section. The final optimised 

model obtained in this manner, takes the following form:

u (k ) = 4.6383*(&).exp
x (k )

0.5x1352.4
(3.25)

x(k)  = 0.8232*(* -1 ) + u(k - 15) + §(*) (3.26)

£(*) = 1.1128£(* -1 ) -0 .4589S  (* -  2) + e(k)  (3.27)

y(k)  = x(k)  + e(k) e(k) = N{  0, <T2} (3.28)
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where e(£) is TV{0,45.69a2}.

The one-step ahead predictions from the model (3.25-3.28) fit the data exceptionally

well, as shown in Figure 3.11, explaining 97% of the data ( R 2 = 0 .969). As a direct 

result of the model reformulation, the AC and PAC functions confirm that the one- 

step ahead prediction errors are serially uncorrelated, white noise. The error series 

does exhibit heteroscedastic behaviour, which theoretically should be eliminated. 

However, for present purposes, the model is certainly adequate.

One Step Ahead Predictions and Prediction Errors
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Figure 3.11 (a) One-step ahead predictions (fine line) from the final optimised 

stochastic model and blowfly time series data (circles) (b) One-step-ahead prediction

error series.
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As expected, the output from the deterministic component of this model, as shown in 

Figure 3.12, does not fit the time series data as well as the deterministic model 

optimised by least squares. There is a simple explanation for this: the stochastic 

model explains the time series through a combination of the deterministic output and 

the stochastic output. Therefore, the model parameters are optimised by ML based 

upon this combined model output. In contrast, by optimising the deterministic model 

by least squares, the model explains some of the stochastic portion of the time series 

directly, with the parameters optimised to do this. This is the reason why, the least 

squares parameter estimates are likely to be biased.

F in a l  D B M  O p t i m i s e d  M o d e l
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F igure 3.12 The output of the deterministic component of the final stochastic model.

(a) Simulated blowflies (fine line) and data (circles)

(b) Simulated Eggs/Day (fine line) and data (circles).
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The stochastic model has two major advantages. Firstly, the predictive ability of the 

model is far superior. Having formulated the stochastic model in a framework which 

incorporates the KF, the state and error covariance equations {prediction equations) 

are repeatedly solved to give a priori estimates of the blowfly and egg population. 

Moreover, if additional data should become available, the correction equations of the 

KF can be utilised to correct the predictions and produce a posterior estimate of the 

blowfly and egg population. Likewise, the a priori estimate of the error covariance 

matrix is updated and subsequently the standard error bounds of the predicted blowfly 

population decrease in width. Figure 3.13 presents the multi-step-ahead predictions 

initiated at the 15 Ith  time step. The phase and period of the predicted population limit 

cycle closely matches the time series. More importantly, the data are mostly 

encompassed by the standard errors of the stochastic predictions, in contrast to the 

results outlined in Sections 3.4 and 3.5.
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Blowflies: Single and Multi-Step Forecasts
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F igure 3.13 Multi-step ahead predictions (fine line), standard errors (dashed line) and

blowfly population data (circles).

Secondly, the estimated feedback nonlinearity has an improved, closer fit to the FIS 

non-parametric estimate, since it now resides well within the standard error bounds, as 

illustrated in Figure 3.14. In all ways, therefore, the optimised stochastic model (3.25- 

3.28) satisfies the DBM and statistical requirements of our modelling exercise.
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Estimated Non-Linearities
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F igure 3.14. Estimated feedback nonlinearities: Non-parametric FIS estimate

(circles)

with standard error bands (dashed line), the final stochastically optimised model 

output (full line) and the deterministic optimised model output (dot dashed line).

Finally, we need to consider model validation. Nominally, this should involve a 

separate set of experimental data obtained under identical experimental conditions, but 

this was not possible in this case. Fortunately, Nicholson himself provides one 

validation possibility. Discussing his experimental results, Nicholson stresses (p 22, 

1954) that the blowfly
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...’culture was supplied with 0.5 g o f ground liver per day and the average density o f  

adults was found  to be 2520. In another culture in which all conditions were precisely 

the same, except only 0.1 g o f liver was provided per day fo r  adults, the average 

density o f  adults was 5272

The final estimated stochastic nonlinear model can be utilised to make a direct 

comparison to the average blowfly population observed by Nicholson under the two 

different environmental conditions. Table 3.2 summaries the average blowfly 

population predicted from the model (3.25-3.28) and that observed by Nicholson. It is 

clear that the model comes very close to predicting the observed average blowfly 

population under both environmental conditions, especially when considering the 

presence of noise on the measured data. In view of the similarity of these population 

sizes, the above statement by Nicholson can be considered as an additional, 

independent, validation of the stochastic model.

Table 3.2 Average blowfly population density deduced by Nicholson (1954) and 

obtained from the stochastic DBM model

0.1 g Liver 0.5 g Liver

Nicholson 527 2520

Stochastic DBM Model 594 2353
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3.7 C o n c l u s io n

This chapter has outlined a data based mechanistic (DBM) approach to modelling 

Nicholson’s blowfly data. Objective, statistically rigorous procedures have been used 

to identify and estimate the model structure and parameters directly from the time 

series data. The forward path of the model (eggs-flies) is characterised by a first order 

TF but a linear TF fails to describe the relationship between flies and eggs. By 

adopting a state dependent parameter approach, a non-parametric estimate of the 

feedback relationship has been identified using the Fixed Interval Smoothing 

algorithm. If the DBM model obtained in this manner is formulated in continuous­

time, its structure resembles the blowfly model heuristically derived by Gurney et al., 

(1980). Gurney correctly deduced the form of the nonlinear function by visual 

examination of the data. However, it is very unlikely that modelling, following this 

‘hypothetico-deductive’ approach would necessarily yield a ‘correct’ model structure 

in other instances since it depends so much upon the insight of the modeller, which 

may not always be a good as that of Gurney. In more general terms, the advantages of 

following a DBM approach to modelling are clearly apparent.

We have found that optimising the model using least squares criteria in a conventional 

manner fails to produce a satisfactory result: the estimated model is unable to provide 

acceptable forecasts, the model residuals are ‘coloured’ and the parameter estimates 

are likely to exhibit bias. Reformulating the model into a stochastic state space form, 

allows the model to be optimised in a stochastic manner utilising Maximum  

Likelihood. The resulting one-step-ahead predictions of the optimal model explain the 

data extremely well and the coloured system noise is successfully modelled by an
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additional auto-regressive component. Moreover, the predictive ability of the model 

is superior and the comparison of the ML estimates of the nonlinearity with the non- 

parametric estimate is much improved.

One clear advantage of the DBM model obtained in this way is that the parameters in 

the model (3.25-3.28) have a clear ecological interpretation. The parameter a 

characterises the average daily survival rate of the blowflies; g defines the optimal 

maximum per capita egg generation rate and N  is the population size that produces the 

maximum reproduction rate. The final model is successfully validated by 

observations made by Nicholson (1954).

This chapter has also introduced a novel procedure, based on ML, for estimating states 

in nonlinear models using the Kalman Filter. The nonlinear element of the model is 

solved and replaced by a time variable (state dependent) parameter at each recursive 

step before state prediction and correction is undertaken and this allows the Kalman 

filter to be utilised directly in a ‘linear’ form. It would appear that this methodology 

can be applied widely for estimating nonlinear models and this is being investigated in 

subsequent research studies at Lancaster.
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C h a p t e r  4

V a l id a t io n  o f  a  d a t a  b a s e d  m e c h a n is t ic  

NONLINEAR RAINFALL FLOW MODEL

The previous chapter demonstrated how effectively the data-based mechanistic (DBM) 

modelling approach can be utilised to identify nonlinearities in ecological systems. In 

this chapter, the DBM methodology is applied to modelling the nonlinear rainfall-flow 

process (see e.g. Young, 1993). In the absence of extensive field data, rainfall-flow 

models utilise a surrogate soil moisture series to describe catchment antecedent 

conditions, the key nonlinearity in the hydrological system. A rainfall-flow model 

developed at Lancaster (Young, 1993; Young and Beven, 1994) identifies a surrogate 

soil moisture series directly from the data following the DBM procedures. In contrast, 

the hybrid data-based conceptual IHACRES rainfall-flow model, applies a conceptual 

approach to generate the soil moisture surrogate, which is less objective than the DBM 

methodology (Whitehead and Young, 1975; Jakeman et a l., 1990a; Jakeman and 

Homberger, 1993). To date, the literature presenting the Lancaster DBM and 

IHACRES rainfall-flow models has not examined how efficiently the respective 

surrogate soil moisture component captures the dynamics of the actual antecedent
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conditions of the catchment. For this reason, this chapter evaluates both models in 

this regard for the first time, utilising data collected from a Swiss catchment by the 

Soil Physics Group, ETH, Zurich.

At the catchment scale, hydrological systems are inherently nonlinear, in the sense that 

the antecedent moisture conditions in the catchment prior to a rainfall event 

fundamentally affect the resultant stream response. Due to economic and time 

constraints associated with field data collection, measured hydrological time series are 

often limited to stream discharge and rainfall; any additional information providing 

direct measures of soil moisture are the exception rather than the rule. However, for a 

rainfall-flow model to characterise the nonlinear catchment dynamics well, it is 

essential that some measure of the antecedent soil moisture condition is incorporated 

into the model. Typically, therefore, such models account for the antecedent 

conditions by determining the effective rainfall or rainfall excess (the total rainfall that 

directly contributes to the storm runoff) based on a suitable surrogate for soil moisture 

content. If this approach is successful, then the resulting relationship between 

effective rainfall and storm runoff is approximately linear and can be modelled in 

linear transfer function terms.

There are four key modelling objectives in this chapter. Firstly, to introduce the 

Lancaster DBM and IHACRES rainfall-flow models and to compare their relative 

performance using two data series obtained from the Swiss experimental catchment. 

Secondly, to evaluate the effectiveness of the soil moisture surrogates used in the 

Lancaster DBM and IHACRES models by comparing them directly to field 

measurements of the actual antecedent soil conditions obtained from the Swiss
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catchment. Thirdly, to present an extra modification to the time varying parameter 

(TVP) estimation procedure used by the Lancaster DBM model, which enhances the 

description of the soil moisture nonlinearity identified from the rainfall-flow time 

series. And finally, to modify the existing Lancaster DBM model by replacing the soil 

moisture surrogate with variables representing the actual catchment antecedent soil 

moisture conditions and comparing the new model performance with that of the 

standard model (c.f. Young, 1993 and Young and Beven, 1994).

4.1 R a in f a l l -Fl o w  M o d e l l in g

Over past decades, key hydrological research has focused on investigating the 

fundamental relationship between rainfall and river flow and has in turn produced a 

wide variety of catchment rainfall-flow models. Continual improvements to these 

models by hydrologists are motivated by the need for increasingly accurate estimates 

of river flows required for many water resources applications e.g. real time flood 

forecasting (Lees et al., 1994), water quality analysis (Whitehead and Young, 1975), 

hydrological impact assessments, and climate change studies. Rainfall-flow modelling 

techniques can be broadly classified under four major headings: unit hydro graph’, 

conceptual’, physically based and transfer function models. Each technique is 

described briefly in the following sections.

4.1.1 Unit hydrograph theory

The concept of unit hydrograph theory (Sherman, 1932) is well known and has been 

described extensively in the literature (e.g. Shaw, 1984; W heater et a l ,  1993). The
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unit hydrograph is defined as the stream flow response resulting from a unit input of 

effective rainfall falling over a catchment in a specified unit of time (the ‘unit impulse 

response’ in systems terms). Traditional unit hydrograph estimation involves the 

subtraction of baseflow (or slowflow) from the stream flow and calculation of 

effective rainfall, which is then assumed to be linearly related to residual 'quickflow'. 

In its traditional derivation, the unit hydrograph method has many limitations, such as 

the arbitrary methods used for base flow separation (see for example Reed, 1984; 

Shaw, 1984 and Littlewood and Jakeman, 1994), which reduce its practical utility as a 

rainfall-flow modelling technique.

4.1.2 Conceptual models

The development of powerful computers has enabled hydrologists to design complex 

rainfall-flow models based on a conceptual representation of the hydrological system. 

The structure of conceptual models are formulated from simplified representations of 

the stores and processes that are perceived as important components of the catchment 

system e.g. evapotranspiration, snow melt, interception storage and groundwater 

storage. Each component is described by a linear or nonlinear empirical equation and 

the model is calibrated by optimising the model parameters so that the model output 

fits the observed data in some optimal (e.g. least squares) sense. Many different 

conceptual rainfall-flow models have been developed over the last three decades 

including the well known Stanford Watershed Model (see e.g. Fleming, 1975) and 

DISPRIN (see e.g. Jamieson and Wilkinson, 1972).
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4.1.3 Physically based models

Physically based models are spatially distributed, with the catchment divided into a 

network of sub-areas or grids. Classical mathematical-physics equations, based on 

continuum mechanics, are utilised to represent the component processes within the 

hydrological system for each grid element and are solved through numerical solution 

using finite element or finite difference methods. Recent examples of physically 

based models include the Systeme Hydrologique Europeen (SHE) model (Jonach- 

Clausen, 1979) and the Institute of Hydrology Distributed model (IHDM) (Beven, 

1987).

One major disadvantage of conceptual and physically based models is that they often 

become highly parameterised as a result of representing the physical complexities of 

the hydrological system. Furthermore, the statistical problems associated with over 

parameterisation can seriously prejudice the useful application of these models. 

Recently, researchers (see e.g. Loague and Freeze, 1985; Homberger et al ,  1985; van 

Gunuchten, 1991; Jakeman and Homberger, 1993) have recognised that the 

information present within stream flow and precipitation records does not necessarily 

warrant the complex parameterisation of these models. Beven (1989, p. 159) reports 

that 7f appears that 3 to 5 parameters should be sufficient to reproduce most o f  the 

information in a hydrological record’. This compares to the 21 parameters required 

for the DISPRIN model. For these reasons, some researchers are becoming 

increasingly interested in developing and applying more parametrically efficient 

models.
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4.1.4 Transfer Function (TF) models

A simpler and more objective approach to rainfall-flow modelling exploits the systems 

identification and estimation procedures outlined in Chapter 2, where the model 

structure, including the nature of the soil moisture nonlinearity, is directly inferred 

from the time series data.

The statistical data-based approach first presented by Box and Jenkins (1970) has been 

criticised because the subsequent model structure is perceived as having no obvious 

physical relationship to the system: i.e. it is considered to be a ‘black box’ model. 

However, the DBM modelling approach builds on statistical data-based modelling and 

extends this intrinsically parsimonious approach so that the model parameters and 

structure are also interpreted in physically meaningful or ‘mechanistic’ terms. In this 

regard, it is interesting to note that a rainfall-flow model can be directly related to unit 

hydrograph (UH) theory. The TF model response to an impulse of effective rainfall 

can be considered as the underlying UH for the total stream flow. The derivation of a 

UH for total stream flow from the TF model has advantages over traditional 

procedures (Section 4.1.1): the UH is identified directly from the data and is 

parameterised in an efficient manner. In addition, as baseflow separation is avoided 

the integrity of the UH for total stream flow is only compromised by errors introduced 

in making assumptions regarding effective rainfall estimation rather than the 

combination of these errors and those introduced from baseflow separation.

Furthermore, depending on the order of the TF numerator or denominator 

polynomials, the TF can be decomposed unambiguously into a series and/or parallel 

connection of subsystems (Young, 1992; Littlewood and Jakeman, 1994). In a
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hydrological context these subsystems can be regarded as linear stores or single unit 

hydrographs, controlling the dynamic partitioning of effective rainfall through to 

stream flow. The parameters of these subsystems can also be interpreted in physical 

terms and will be discussed in more detail in Sections 4.3.3-4.3.4.

The DBM  modelling approach was used to develop the Lancaster rainfall-flow model 

(see e.g. Young, 1993; Young and Beven, 1994), whereby the information within the 

rainfall and flow data, is used to determine the model structure. The model utilises a 

constant parameter, Single-Input-Single-Output (SISO), linear discrete-time TF model 

(although the model could be alternatively derived in either continuous time or by 

using the delta operator) to describe the transformation of effective rainfall ue(k ) into

an estimate x(k)  of the flow y (k ). The general rainfall-flow model comprises two 

components: the nonlinear effective rainfall term (equation 4.1) and a second linear 

component relating effective rainfall to flow (equation 4.2), which are defined as 

follows,

where r (k ) is measured rainfall; s (k ) is a suitably defined soil moisture surrogate; 5 

is the pure time delay, £(k ) is a general noise term included to account for stochastic

4.2 TF RAINFALL-FLOW MODELS

ue (k ) = r(k)s(k) (4.1)

(4.2)

y(k)  = x(k)  + C,(k) (4.3)
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disturbances and unmeasured inputs to the system. The polynomials A (z ~l) and 

B(z~l) are defined as,

A(z_1) = l + a lz~l+...+a „z_";
i (4.4)

B (z -1) = b0 +blz - 1+...+bmz -m.

Here, z~l is the backward shift operator where y{k)z~l = y ( k - i ) ; while the integers n 

and m are the number of parameters in the model (denoted by the triad [n,m,8]) which 

is defined by a method of statistical model order identification.

The hybrid conceptual data-based IHACRES rainfall-flow model also utilises a TF to 

describe the transformation of effective rainfall to flow and also exploits system 

identification techniques to determine its structure and parameterisation. Both models 

have provided very good results in a variety of different conditions, including 

catchments in the UK, Australia and the USA (Jakeman et al. 1993; Young and 

Beven, 1994; Young et a l ,  1998). The key difference between the Lancaster DBM 

and IHACRES rainfall-flow models is in the formulation and estimation of the 

nonlinear effective rainfall input.

4.2.1 Lancaster DBM Rainfall-Flow Model

In adopting the DBM philosophy, no prior assumptions about the possible nature of 

the soil moisture nonlinearity are made in the rainfall-flow model of Young (1993). 

Rather, this nonlinearity is objectively identified from the measured rainfall-flow
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series using time varying parameter (TVP) estimation based on Fixed Interval 

Smoothing (FIS), discussed in Chapter 2.

As the rainfall-flow system is inherently nonlinear, a linear model will not normally 

explain the data well, except for isolated storms and during extremely wet conditions. 

In more general situations, statistical tests on the residuals of a linear model indicate 

the presence of a nonlinearity due to the soil moisture effects. The only way in which 

the model can adequately explain the data, is either to explicitly include nonlinear 

terms (e.g. IHACRES conceptual nonlinear loss module discussed in Section 4.2.2) or 

to allow the model parameters to vary over time, so reflecting the changing dynamics 

induced by the nonlinearity.

A TVP version of the linear TF model (equation. 4.1-4.3) can be written in the 

following vector form:

y (k )  = z ( k ) Ta(k)  + r\(k)-, (4.5)

where,

z ( k ) T = [ - y ( k - 1 ) - . . . - y ( k - n ) r ( k ) . . . r ( k - m ) ] ,  

a(k)  = [ax(k)  a2( k ) . . .  an(k)b0(k)...  bm(k)]T,

and ri(&) is a stochastic white noise term. The FIS method of recursive estimation 

described in Chapter 2 can be used to obtain an off-line, non-parametric estimate 

d ( k \N )  of the parameter vector a(k)  in this model, where N  is the total sample size. 

Any parameter that is found to be significantly time variant over the interval N  can be
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investigated more thoroughly by holding all other parameters constant during FIS 

estimation.

In rainfall-flow systems, the cause of the time variability is likely to be due to either of 

the following reasons: slow variations which reflect the changing nature of the 

catchment due to natural or anthropogenic changes e.g. natural or enforced changes in 

land use; or more rapid variations caused by nonlinear behaviour. In this latter case, it 

is likely that the temporal changes are actually caused by some underlying state 

dependency e.g. due to evapotranspiration and antecedent soil moisture effects.

If any significant parameter variations exhibit state dependence, then it is often 

possible to establish a relationship between the TVP vector a (k \N )  and one or more 

state variables of the system. In the case of rainfall-flow systems, the TVP estimate 

a (k \N )  might logically be expected to be a function of variables such as soil moisture

and evapotranspiration, i.e.,

a (k \N )  = a M ( k )  + z(k)  (4.7)

where,

M ( k )  = /(evaporation, soil moisture content etc) (4.8)

By exploiting the covariance matrix P * (k \N ) , derived from the FIS algorithm, a  can

be estimated by minimising the weighted least squares (WLS) cost function as defined

previously (equation. 2.38).
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Experience with rainfall-flow data has shown that the parameters of the A (z-1) 

denominator polynomial are normally time invariant, while those of the B ( z ~l ) 

numerator polynomial tend to show significant variation over the sampling period, 

suggesting the presence of an input nonlinearity. Thus, in the simplest of cases where 

n and m  in equation (4.5) are both unity, only one single TVP, b0( k \ N ) needs to be

estimated. Furthermore, it has been established that the TVP b0( k \ N ) , relates well to 

a function of delayed flow y(k  -  8 ) ,  (Young, 1993). Both, two-stage-linear and power 

law relationships between b0{k \N ) and y ( £ - 8 )  have been reported (Young, 1993).

A power law relationship describing catchment antecedent conditions is in common 

with other research of a more physical nature, (Lynch et al ,  1979; Myrabo, 1986). 

Moreover, since a catchment can be seen as a low pass filter, continually smoothing 

the intense fluctuating rainfall to generate stream flow, it also seems reasonable that 

stream flow in turn, will reflect the antecedent rainfall and hence soil moisture 

conditions of the catchment. For example, when the flow is high it suggests the 

antecedent conditions were wet and the soil water deficit is low. Subsequent effects of 

rainfall on stream flow will, therefore, be large as more runoff is generated. An 

effective rainfall series ue(k ) can be generated from the product of the state 

dependent relationship and the measured rainfall (equations 4.9-4.10), where the 

scaling parameter vector a  has been eliminated since it can be absorbed into the TF 

model.

ue {k) = r(k)s(k) (4.9)

s(k) = y(k)P (4.10)
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4.2.2 IHACRES rainfall flow model

In contrast to the Lancaster DBM model, the IHACRES model (see e.g. Jakeman and 

Homberger 1993) utilises a conceptually formulated nonlinear module, which exploits 

a catchment wetness index derived from past rainfall and where appropriate, 

temperature data, to obtain effective rainfall. The IHACRES model is a slightly 

modified version of the rainfall-flow model first developed by Young and Whitehead 

from studies modelling the Bedford-Ouse River (Young, 1974; W hitehead and Young, 

1975; Whitehead et a l ,  1979; and Young 1984). Young and Whitehead introduced a 

conceptual ‘rain filter’ to derive effective rainfall which incorporates the effects of soil 

moisture and temperature dependent evapotranspiration, encapsulating the theory that 

rainfall, falling on a wet catchment, will generate a larger flow than if the catchment is 

dry. The ‘rain filter’ first adjusts rainfall r ( k ) to account for evapotranspiration losses

using a temperature dependent factor. The adjusted rainfall series r*(k ) is then 

multiplied by a running catchment wetness index s (k ) ,  which itself, is derived from 

past rainfall (and temperature) data. Although data from a number of catchments have 

been successfully modelled utilising this ‘rain filter’ (see e.g. Jakeman et al., 1990a; 

1993), it does, however, have a conceptual weakness: in the absence of rainfall, the 

‘rain-filter’ does not directly allow for any evapotranspiration losses from the 

catchment. This shortcoming has led to the derivation of a number of more 

conceptually acceptable rain-filters. The basic IHACRES nonlinear loss module 

calculates effective rainfall ue( k ) by multiplying the catchment wetness index s(k)  by 

the measured rainfall r (k ) as defined by equations (4.11-4.14),

ue(k)  = s (k ) r (k )  (4-11)

100



C h a p t e r  4  N o n l in e a r  r a in f a l l -f l o w  m o d e l l in g

s(k) = cr{k ) + (1 -  1 / Tw) s(k -  1) (4 .1 2 )

The catchment wetness index (i.e. soil moisture content) s ( k ) is obtained at each time 

step k (k = 1 ,2 ,...,TV) from an exponentially decaying weight of rainfall r ( k ) at 

previous time instants. The decreasing influence of past rainfall episodes on s ( k ) can 

be clearly shown in the full expansion of equation (4.12), where the term (1 -T W-1) N 

gets smaller with time,

s(k)  = c\r(k)  + ( \ - T ~ 1) r ( k - \ )  + ( l - T ~ ' ) 1r { k - 2 )  + — \ - ( I - T ~ ' ) Nr(k -  W)] (4.13)

Parameter Tw is a time constant representing the decay rate of the catchment wetness 

(or soil moisture) in the absence of rainfall. The soil properties of the catchment are 

controlled by this parameter; the lower the value of Tw the faster the catchment 

responds to the processes of wetting and drying and vice versa. Furthermore, in 

climates where evapotranspiration rates significantly influence the catchment wetness 

dynamics, the coefficient Tw, can be assumed to vary as a function of temperature

Tw(t(k)) is, therefore, inversely related to the decline rate of the catchment wetness at 

20° C , modulated by parameter / .  The values of parameters Tw and /  are obtained 

through objective optimisation, but the value of parameter c is selected such that the 

total volume of effective rainfall is equal to the total volume of discharge over the 

calibration period. For short time series, where changes in temperature are not of

m .

T„ (t(*)) -  Tw exP[20 -  *(*)/] (4.14)
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sufficient magnitude to cause any significant evapotranspiration effects, this extra term 

Tw (t (k )) can be held constant.

Additional conceptualised versions of this nonlinear loss module have been designed 

to include additional complexities, for example, to account for interception of incident 

precipitation by tree cover (Jakeman et a l  1994; Chen et a l ,  1995). However, the 

module described by equations (4.11-4.14) is adequate for the purposes of the present 

study.

4.3  M o d e l  C a l ib r a t io n  a n d  v a l id a t io n

In the research to date, the efficiency of the effective rainfall measure ue( k ) in both 

the Lancaster DBM and the IHACRES models has only been evaluated in relation to 

the performance of the models as a whole. In this section, this aspect of the model is 

evaluated more directly by comparing the surrogate soil moisture measures with the 

actual antecedent dynamics measured at the Swiss catchment.

4.3.1 The Data

The data used in this research has been collected from the narrow Erienbach 

catchment situated in the Swiss pre-Alps by the Soil Physics Group at ETH, Zurich, as 

part of the on going NITREX project studying the effects of nitrogen addition to small 

catchments (Wright et a l ,  1995). Erienbach is situated at 1200m a.s.l with a total area 

of 0.7km2 of which approximately 40% is forested and 60% is wetland and has an 

average total yearly precipitation of 2300mm.
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T w o data series (Data Series 1 and 2) have been collected from a muck humus soil plot 

with an approximate area o f 15m2, representing one o f  two soil types which 

characterise the catchment. The input and state variables measured at the plot scale 

are, rainfall r {k ) ; flow y { k ) \  percentage soil water content pwc(k) \  and ground 

water table depth gw{k).  Where p w c(k ) and gw{k)  were derived from 

measurements made by sixteen soil moisture probes (TDR) and three piezometers 

respectively. A photograph o f the soil moisture probes in situ is shown in Figure 4.1. 

The sampling interval for each state was 10 minutes although average hourly readings 

have been used in the analyses reported in this chapter.

F igure 4.1 Soil moisture probes in situ at the Erienbach catchment
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Figure 4.2 shows the input and state variables from Data Series 1. The immediate 

response to rainfall inputs can be observed in both soil water measurements pw c(k ) 

and gw(&). Similar responses are observed in Data Series 2 as shown in Figure 4.3.
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Figure 4.2. Measured Variables, Data Series 1.
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Figure 4.3. Measured Variables, Data Series 2.

104



C h a p t e r  4  N o n l in e a r  r a in f a l l - f l o w  m o d e l l in g

There is, however, some doubt over the quality of the soil moisture content data in 

Data Series 2. The timing and the dynamics of this time series do not appear 

consistent with rainfall, flow and depth to groundwater table data. Episodes of rainfall 

result in a decrease in soil moisture content which clearly, makes no physical sense. 

Consultation with H. Feyen (pers. com.) from the Soil Physics Group, ETH, 

highlighted that the soil moisture content monitoring equipment had malfunctioned 

during this time period. Consequently, this percentage soil moisture content time 

series (Data Series 2) was disregarded for use within the modelling study. The next 

two sections utilise the Erienbach catchment data to identify and estimate both the 

Lancaster DBM and IHACRES nonlinear rainfall-flow models. The identified 

surrogate soil moisture series is then compared to the percentage soil moisture content 

pwc(k)  and depth to groundwater table gw(Jc) variables.

4.3.2 Linear transfer function model

Visual examination of Data Series 1 clearly shows nonlinear behaviour existing 

between the rainfall and flow: similar sized rainfall events produce different flow 

effects depending upon the prevailing antecedent conditions. The SRIV algorithm 

identifies the best linear, constant parameter  TF model between measured rainfall 

r(k)  and flow y ( k ) as a first order [1,1,0] structure, with model statistics of

R j  = 0.845 and YIC  = -8 .049. Figure 4.4 shows how the linear model is unable to

capture the dynamics of the flow, particularly during the receding limb of the 

hydrograph. The following two sections demonstrate how this model can be improved 

by incorporating a nonlinear effective rainfall term.
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Figure 4.4 Best constant parameter linear TF model between rainfall and flow. 

Model (line) and measured data (dots).

4.3.3 Lancaster DBM model results

On examination, the residuals of the first order linear TF model identified in the 

previous section are, as expected, heavily structured and confirm that the data are 

being affected by a nonlinearity. TVP estimates from the FIS algorithm (following 

NVR optimisation) suggest that only b0(k \N )  is varying significantly with substantial 

temporal variation, as shown in Figure 4.5.
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Figure 4.5. FIS estimate of TVP 4(^1 N )  (bold line) 

and standard error bands (fine line), Data Series 1.

The similarity between b0(k \N )  and the flow y ( k ) (Figures 4.2 and 4.5) is visually 

apparent and suggests that the temporal variation in the parameter can be explained by 

a state dependent relationship. This nonlinear relationship was identified by the 

procedure outlined in Section 4.2.1 and the following estimate of the power law 

function is obtained by WLS estimation and shown in Figure 4.6. In the WLS 

estimation process, those elements of the normalised weighting matrix that have a 

value lower than 0.2 are set to zero.

b0(.k\N) = 0.12y(k)<>; p = 0.43 (4.15)
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F igure 4.6 The most significant estimates of b0( k \ N ) , shown as circles versus flow 

and the WLS estimate of the power law relationship.

However, this initial estimate of the power law parameter beta, is obtained from the 

non-parametric FIS estimate of b0(k \N )  and is intended only to identify the nature of 

the nonlinearity. Consistent estimates of the power law relationship are obtained by an 

iterative optimisation procedure using the SRJV algorithm. The best five nonlinear TF 

models identified are shown in Table 4.1.

T able 4.1 Best 5 DBM nonlinear TF models ordered in terms of YIC

Den N um Delay Beta YIC R l A IC

1 1 0 0.36 -10.585 0.954 -2.068

2 2 0 0.35 -7.479- 0.959 -2.1511

1 m u 0 0.36 -6.822 -2.337

1 2 0 0.32 -6.301 0.957 -2.111

2 3 0 0.35 -6.153 0.972 -2.509
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After careful consideration, the results suggest that the nonlinear model with a [1,3,0] 

structure gives the best compromise between fit to the data and parametric efficiency.
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Figure 4.7 The [1,3,0] Lancaster DBM model (full line),

[1,2,0] IHACRES model (dashed line) and the observed data (dots).

On the basis of the YIC criteria only, the best nonlinear model has a [1,1,0] structure. 

However, the YIC criteria often favours low order models and as the Rj  value of the 

[1,1,0] model is low, it can be rejected since it does not adequately explain the data. 

The model with the next most negative YIC has a [2,2,0] structure. However, the 

eigenvalues of the denominator polynomial are complex and so, within the context of 

the DBM  modelling philosophy, the model can be rejected as there is no logical 

physical explanation of this behaviour. The [1,2,0] model can also be disregarded, as
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the associated YIC, Rj  and A1C values are inferior to those of the [1,3,0] model. 

Finally, although the [2,3,0] model has a slightly higher Rj  than the [1,3,0] model, 

from visual inspection of the model output, it is apparent that the [2,3,0] model 

consistently fails to characterise the recessions of the hydrograph. For this reason and 

the additionally higher YIC value, the [2,3,0] model can also be rejected. The SRIV 

estimated parameters and associated standard errors of the favoured [1,3,0] model are 

as follows:

ax = -0.812(0.010) b0 = 0.210(0.019) bx = 0.322(0.036)

b2 = -0.256(0.019) P = 0.358(0.007)

The excellent [1,3,0] model fit to the data is shown in Figure 4.7. Moreover, the linear 

TF of the [1,3,0] model can be decomposed into three parallel processes, which have 

clear physical interpretations. The partitioning of the effective rainfall at the plot scale 

is shown in Figure 4.8 and takes the following form: an ‘instantaneous’ component 

transferring 14.9% of the flow; a ‘quick’ one hour delayed instantaneous component 

transferring 34.1% of the flow; and finally, a ‘slow’ pathway accounting for the 

remaining 51% of the flow.
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F igure  4.8 Parallel partitioning of flow processes. Where SSG denotes the steady 

state gain and TC the time constant or residence time.

This physical interpretation is in good agreement with observations and other 

modelling studies of flow processes at both the soil plot and catchment scale at 

Erienbach (Feyen et al., 1994). At the plot scale, surface runoff and subsurface flow 

are measured at three soil depths (5, 30 and 60 cm). The modelling results 

approximate to the proportion of the total flow and residence times observed at each of 

the three depths (Feyen, Pers. Comm.).
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4.3.4 IHACRES model results

To investigate whether a better model fit could be achieved using the nonlinear 

IHACRES model, an iterative routine, incorporating the SRIV algorithm, was 

designed to optimise both the parameters in the nonlinear (equations 4.11-4.14) and 

linear components of the model (equations 4.1-4.4). The parameter Tw(t(k)) is held

constant as evapotranspiration affects are assumed to be negligible over the short 

duration of the time series. The best five models and their respective diagnostic fitting 

criterion are shown in Table 4.2. It is immediately apparent that the IHACRES model 

gives a reduced model fit when compared with the Lancaster DBM model.

Table 4.2 Best five IHACRES nonlinear TF models ordered in terms of YIC

Den Num Delay Tw c YIC R j AIC
1 1 0 15.061 0.123 -9.189 0.919 -1.480

1 2 I I I  f p l j 16.418 0.118 -6.111 0.929 -1.613

2 1 0 16.736 0.117 -5.931 0.926 -1.568

3 1 0 15.607 0.121 -5.557 0.930 -1.619

2 3 0 14.277 0.086 -3.145 0.932 -1.645

Discarding the inferior [1,1,0] model, the fitting criterian show that there is little to 

distinguish between the remaining models. Although the [3,1,0] and [2,3,0] models 

do have a slightly better fit (R j )  to the data, it is so marginal that, in terms of 

parametric efficiency, the [1,2,0] model is chosen as the best overall model (see Figure 

4.7). The parameters for this model and their standard errors are as follows:

b0 = 0.182(0.283 x lO -3) bx = 0.157(0.548 x lO '3) ax = -0 .639(0 .232 x 10“3)

Tw =16.418(0.377) c = 0.118
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The linear component of the [1,2,0] model has real eigenvalues and by partial fraction 

decomposition, can be represented by two flow processes connected in parallel, as 

shown in Figure 4.9. Of the total effective rainfall, 80.6% is transferred through the 

plot by means of a ‘slow’ pathway with a time constant of 2.23 hours with the 

remaining 19.4% of the effective rainfall travelling through the plot instantaneously.

0.273

80.6%

ue( k -  6) mSSG = 0.151 TC = 2.231

19.4%
0.182

SSG = 0.182 rc  = o

F igure 4.9 Parallel partitioning of the flow process. Where SSG denotes the steady 

state gain and TC the time constant or residence time.
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4.3.5 M onte-C arlo  Analysis (MCA)

W hilst the rainfall-flow models identified in Sections 4.3.3-4.3.4 provide good 

evidence for parallel flow processes, it is important to consider the calculated values 

of the partitioning coefficients and any associated physical deductions with caution, 

until some form of model uncertainty analysis is undertaken, such as Monte-Carlo 

analysis (see e.g. Whitehead and Young, 1979) and further experimentation at the 

catchment is completed. The estimated parameter variance and covariance associated 

with the stochastic TF model, can be utilised within the context of Monte-Carlo 

analysis, to highlight the sensitivity of the parallel partitioning to parametric 

uncertainty. Monte-Carlo analysis will be discussed in detail in Chapter 6; however, it 

is sufficient to say that the rainfall-flow model can be simulated repeatedly with 

parameters taken from probability distribution functions (p d fs) which are defined 

utilising the parameter covariance matrix obtained from the initial SRIV estimation.
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Figure 4.10 Parallel partitioning histogram.
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Figure 4.10 presents histograms of the partitioning coefficients, obtained from 3000 

simulations of the Lancaster DBM rainfall-flow model identified in Section 4.3.3. 

The histograms show that each partitioning coefficient is very well defined with mean 

values for the instantaneous, slow, and fast components calculated as 14.85%(1.40), 

34.13%(1.67) and 51.02%(1.10) respectively, with standard errors given in parenthesis. 

W hilst these results indicate that the partitioning of flow is well defined, in other 

studies, Monte-Carlo analysis has identified quite the opposite (Young, 1992). In this 

regard, through the provision of additional information which would otherwise remain 

unknown, Monte-Carlo analysis should be viewed as a valuable, complimentary tool 

to modelling and the analysis of environmental systems.

4.4  C o m p a r is o n  o f  t h e  m e a s u r e d  s o il  m o is t u r e

VARIABLES WITH GENERATED SURROGATE SOIL MOISTURE 

SERIES

Following on from the identification and estimation of the IHACRES and Lancaster 

DBM nonlinear TF models (Sections 4.3.3 and 4.3.4), this section is specifically 

concerned with the comparison between the estimated soil moisture surrogates, 

ihsm(k) and lsm(k) generated from the two models respectively, and the measured 

soil moisture variables pwc(Jc) and gw(k).

115



C h a p t e r  4  n o n l in e a r  r a in f a l l - f l o w  m o d e l l in g

4.4.1 Comparison of the measured soil water variables with the Lancaster DBM 

soil moisture surrogate

The identified Lancaster DBM model defines a soil moisture surrogate lsm(k) as:

lsm(k) = y(k)^

-yor* ( 4 - 1 6 )

and from the IHACRES model, the soil moisture surrogate ihsm(k) is defined as

ihsm(k) = s (k )

= 0.118r(*) + ( 1 -1 /  16A18)ihsm(k - 1) 7)

Figure 4.11 presents the soil moisture surrogate lsm(k),  percentage soil moisture 

content pw c (k ) and normalised/in versed depth to groundwater table gw(k)  for Data 

Series 1. The close association between lsm(k) and both measured soil water 

variables, pwc(k)  andgw (£), is clear and highlights how effective the TVP and 

power law technique is at identifying and estimating the soil moisture non-linearity. It 

will be noted that the greatest correlation exists between gw (k ) and lsm(k),  in 

particular, the characteristic double-peaked storm responses seen in gw(&) are clearly 

represented in lsm(k).  In general, the peak responses of gw(k)  and lsm(k)  are 

proportional and the recessions also have similar shapes. Although lsm(k) does not 

show as high a correlation to the percentage soil moisture content time series pw c(k ) , 

the overall dynamics are similar.
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F igure 4.11. (a) Surrogate soil moisture content lsm{k) (b) percentage soil moisture 

content pwc(k)  and (c) normalised inverse depth to groundwater table, 

Lancaster DBM model gw(k ) , Data Series 1.

A comparison of lsm(k) versus pwc(k)  and gw(k)  is presented in Figure 4.12. This 

straightforward regression suggests the soil moisture variables pwc(k)  and gw(&) are 

directly related to lsm(k) in an approximately linear way. Simple least squares (LS) 

could be adopted at this stage of the analysis to obtain a quantitative estimate of these 

relationships. However, a relationship estimated in this manner could be significantly 

biased due to the presence of measurement noise on the data. An alternative and 

interesting approach is to investigate the nature of the relationships between lsm(k) 

and both gw(k)  and pw c(k ) by adopting, once again, a time varying parameter (TVP) 

approach (see Section 4.2.1).
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F igure 4.12 Simple regression of lms(k) versus gw (k ) and pwc(k)

Consider equation 4.18, where lsm(k) is multiplied by a simple gain parameter at 

each sampling instant such that the product equals gw (£ ).

gw(k) = f  (k) lsm(k) (4.18)

An estimate f ( k \ N )  of the TVP f  (k)  can be obtained over the complete sampling 

interval from the FIS algorithm and f ( k  \ N)-lsm(k),  an estimate of gw(k) ,  can 

subsequently be generated. The nature of the relationship between f ( k  | N)-lsm(k)  

and gw(k)  can now be investigated and a variety of functions estimated using 

weighted least squares (WLS). The covariance matrix P (k \N ) ,  generated from the 

FIS algorithm, is incorporated within WLS and specifies the time intervals over which
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the TVP f ( k \ N )  is badly defined. The corresponding data points at these time 

intervals can then be assigned a low weighting. The resulting functions estimated 

from WLS will, therefore, be based on the data points with a higher weighting and 

hence strong affinity for one other. Once a function has been found that satisfactorily 

describes the relationship between f ( k \ N ) - l s m ( k )  and gw(k ),  it can be tested by 

applying it directly to lsm(k).

As discussed previously in Section 2.4.2, a noise variance ratio (NVR) must be 

introduced into the FIS algorithm. If a large NVR is chosen, f ( k \ N ) will change 

rapidly and the product f ( k  \ N) ' lsm(k)  will exactly match gw(k ) . However, the 

associated covariance matrix will be badly defined over the complete sampling 

interval and any function estimated using WLS will be no more discriminatory than 

simple LS. Moreover, when this function is tested by applying it directly on lsm(k),  

the resulting time series is likely to give a poor fit to gw (£). An optimal value for the 

NVR must, therefore, be estimated for use in this analysis and can be obtained from 

prediction error decomposition (see Section 2.5.2).

Following the procedures described above, an investigation was undertaken to 

establish the best function describing the relationship between lsm(k) and gw(k ) , and

lsm(k) and pw c(k ) respectively. Having estimated f ( k \ N ) ,  a scatter plot of 

f ( k  | N)-lsm(k)  versus gw(£) was generated which visually revealed a much closer 

defined relationship between the two series than is presented in Figure 4.12. From 

these two series, both a linear function and a variety of nonlinear functions were
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estimated. This whole process was repeated using the percentage soil moisture series 

p w c(k ) and a further set of linear and nonlinear functions estimated.

The best linear and nonlinear functions describing the relationship between the soil 

moisture surrogate lsm{k) and soil water variables gw(k)  and p w c(k ) are defined in 

equations (4.16-4.19) and presented in Figures 4.13-4.14.

gw(k) = -6 .69 lsm{k) + 19.68 (4.19)

gw(k)  = -10.80/s/n(fc)“°49 (4.20)

pw c(k)  = 0.0&llsm(k) + 0.399 (4.21)

pw c(k)  = 0.50 Ism 11 (4.22)

The output from these four functions are plotted (y axis) opposite their respective soil 

water variable (x axis) on the scatter plots shown in Figure 4.13. Note that the straight 

line on each plot indicates the ideal solution which the estimated functions are 

emulating. Taking into account the scale differences, the scatter of data shown in 

Figures 4.13a and 4.13b has a lower variance and resides closest to the ‘perfect line’ in 

comparison with the data presented in Figures 4.13c and 4.13d for pw c(k) .  

Particularly, the nonlinear power function (equation 4.20, Figure 4.13b) generates the 

best explanation of the relationship between lsm(k) and gw (k),  where the scatter of 

data closely follows the ‘perfect line’. In contrast, the linear function (equation 4.19 

and Figure 4.13c) gives the best explanation of the relationship between lsm(k) and 

p w c (k ) . Overall, the scatter plots show the soil moisture surrogate lsm(k) exhibiting 

the greatest correlation to gw{k) .
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Figure 4.13. Estimated and measured groundwater table depth gw(k)  (a: Top Left b: 

Top Right) and soil moisture content pw c(k ) (c: Bottom Left d: Bottom Right) from 

linear and nonlinear relationships, Lancaster DBM model, Data Series 1.

The ability of each of the four estimated functions (equations 4.19-4.22) to replicate 

the dynamics of the soil water variables gw(k)  and pwc(k)  can, perhaps, be more 

clearly represented in Figure 4.14. Here, the time series generated from each of the 

four functions are plotted alongside gw(k)  and pwc(k)  respectively. As expected, 

the time series generated from the nonlinear function (equation 4.20) shows a much 

closer fit to gw(&) over the complete range of depths, than the linear function (see 

Figure 4.14a). Likewise, the dynamics of pw c(k ) (see Figure 4.14b) are better 

replicated by the time series generated from the linear function (equation 4.21).

121



C h a p t e r  4  n o n l in e a r  r a in f a l l - f l o w  m o d e l l in g

Groundwater Table Depth

0 5 0 100 1 5 0 200 2 5 0 3 0 0

Percentage Soil Moisture Content
0 .5 5

0 .4
5 0 100 1 5 0 200 2 5 0 3 0 0u

Hourly Samples

Figure 4.14 Estimates of (a: top) depth to groundwater table and (b: bottom) soil 

moisture content from linear and nonlinear, WLS relationships, Lancaster DBM 

model, Data Series 1. Data (Dots); Linear relat. (Bold line); Nonlinear relat. (Fine

line).

Figures 4.13 and 4.14 indicate that the time series generated from the four functions 

show the strongest correlation to the measured soil water variables gw(k)  and

pw c{k ) during wet conditions. Not surprisingly the TVP estimate f ( k \ N )  is better 

defined statistically when more information is contained in the data which, in this 

case, occurs when rainfall is exciting the system. The precipitation series used to 

generate lsm(k) includes periods where there is no rainfall. Over these periods, the

TVP estimate f ( k \ N )  is badly defined, as reflected in the weighting matrix used in 

the WLS estimation. This accounts for the poorer coincidence between the generated
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and measured series during these drier conditions. Since the behaviour of water in the 

soil system becomes more complex and nonstationary during low flow conditions, it 

was felt initially, that the relationships could be improved by disregarding these 

periods of comparative inactivity and exploring the relationship only where the runoff 

was above a defined threshold. However, this yielded no substantial improvement.

4.4.2 Comparison of the measured soil water variables with the IHACRES soil 

moisture surrogate

The IHACRES soil moisture surrogate ihsm(k) is shown plotted with the soil water 

variables pwc(k)  and gw(k)  in Figure 4.15.

S u r r o g a t e  S o i l  M o i s t u r e
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Figure 4.15. (a) Surrogate soil moisture content ihsm{k) ,  (b) percentage soil moisture 

content pw c(k ) , (c) normalised inverse depth to groundwater table gw (k ) , Data

Series 1.
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The ihsm{k) dynamics show similarity to both soil water variables, but it is evident, 

once again, that ihsm(k) exhibits greater correlation to g w( k ) . The soil moisture 

surrogate ihsm(k) does show evidence of the double peaks which are present within 

the groundwater table series gw{k). However, the magnitude of the estimated storm 

peaks do not match the data well. This is particularly evident at the 200 hour time 

interval, where the ihsm{k) peak well exceeds the remaining series. This 

characteristic is not present within the gw(k)  time series. Note also, in comparison to 

gw(k)  that the recessions of ihsm(k) fall in a much smoother, exponential manner.

Simple scatter plots of ihsm{k) versus the soil water variables gw(k)  and pw c(k ) do 

not reveal relationships that are as well defined as for the Lancaster surrogate lsm(k). 

Having estimated the TVP f ( k l N ) ,  a number of linear and nonlinear functions

describing the relationship between f ( k l N )  -ihsm(k) and both gw(k)  and pwc(k)  

were estimated using WLS. The best linear and nonlinear functions describing this 

relationship are defined in equations (4.23-4.26) and presented in Figure 4.16.

gw(k) = - 336ihsm(k) + 18.16 

gw(k)  = -3.\0ihsm(k)~°21 

pwc(k)  = 0.03ihsm(k) + 0.45 

pw c(k)  = OA6ihsm(k)006

(4.23)

(4.24)

(4.25)

(4.26)
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Figure 4.16 emphasises how each of these four functions are unable to characterise the 

relationship between ihsm{k) and the soil water variables; importantly, each scatter 

plot appears to show the data deviating more significantly from the ‘ideal line’ than is 

the case of the Lancaster soil moisture surrogate lsm(k) (see Figure 4.13). Overall, 

the analysis indicates that ihsm(k) shows the greatest correlation to pxvc(k) with a 

linear function explaining this relationship.
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4 0

£  20

-  10

5 10 1 5 20
gw(k)

pwc(k) by Linear WLS
0 .5 5

0 .4

pwc(k)

0 .5 5

S  0 .5
E</)jo

^ "0.45

0 .4

4 0

£  20

-  10

5 10 1 5 20
gw(k)

pwc(k) by Nonlinear WLS

jr  * •

f
0 .4 2  0 .4 4  0 .4 6  0 .4 8  0 .5  0 .5 2

pwc(k)

Figure 4.16 Estimate and measured depth to groundwater table and soil moisture 

content from linear and nonlinear relationships, IHACRES model, Data Series 1.
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4.4.3 Data Series 2

Having identified and estimated both rainfall-flow models for Data Series 1 (Section

4.3.3 and 4.3.4) and analysed their respective surrogate soil moisture series (Sections

4.4.1 and 4.4.2), the whole procedure was repeated for Data Series 2.

From an initial investigation it is evident, in the case of the Lancaster DBM model, 

that the non parametric FIS estimate of b ^ k  \ N ) can be related to flow by a nonlinear 

power law. Optimisation of the power law (p  = 0.206) results in the best identified 

nonlinear model as first order [1,2,0] with Rj = 0 .6 9 2 , YIC = -4 .116 , and 

AIC = -1.743. The SRIV algorithm identifies the best nonlinear IHACRES TF model 

as first order [1,2,0] with model statistics R ^=  0.779, YIC = -5 .744, and 

AIC = -2 .069 , where the nonlinear module parameters are iteratively optimised to 

Tw = 34.513 and c = 0.042. These statistics demonstrate that both models are unable 

to provide as good a fit to the flow series as was the case with Data Series 1. 

Noticeably, the IHACRES model gives a superior fit to the flow series than the 

Lancaster DBM model. This is primarily because the soil moisture surrogate 

generated by IHACRES model is able to characterise the extremely complex and 

nonlinear dynamics of the storm event occurring at 300-350 hours (Figure 4.3) in a 

more successful manner than the Lancaster DBM model.

4.4.4 Comparisons between Data Series 1 and Data Series 2

There is a significant difference in the Lancaster DBM TF (excluding the nonlinear 

module) between the model parameters estimated from Data Series 1 and those
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estimated from Data Series 2; hence, a model estimated from Data Series 1 could not 

be validated successfully on Data Series 2 and vice versa. Similarly, the parameters of 

the two IHACRES TF models (including the nonlinear module) have significant 

disparity. Ideally, one model could be estimated to describe a range of data series. It 

is possible however, that if a longer time series were available, encompassing a greater 

range of the catchment antecedent conditions, it would be more likely that a generic 

model could be estimated.

Comparison of the newly defined soil moisture surrogate lsm(k) generated from Data 

Series 2 by the Lancaster DBM model, with the groundwater table depth gw (k) 

shows, once again, the best defined relationship is a nonlinear one. Significantly, this 

relationship closely resembles that found for Data Series 1, as shown in equation 

(4.27).

gw(k) = -10 .80 lsm (k)J,M Data Series 1

gw(k) = -1235lsm(k)~056 Data Series 2

These nonlinear relationships based, as they are, on quite separate data sets, suggest 

that it may be possible to define a generic nonlinear module for the model if additional 

time series data can be obtained and analysed.

A simple linear model defines the best relationship between the IHACRES soil 

moisture surrogate ihsm{k) and gw(k) for Data Series 2, as was found to be the case 

with Data Series 1. The resulting new series, generated from this linear law, 

characterises the groundwater dynamics well during wet conditions, however, it does
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cause a significant overestimation of the groundwater depth during dry periods. The 

two linear relationships defined for Data Series 1 and 2, show no real approximation 

to one another (see equation. 4.28)

gw(k) = - 336ihsm(k) +18.16 Data Series 1
(4 28)

gw(k) = -13.51 ihsm(k) + 28.27 Data Series 2

4.4.5 Summary for nonlinear modelling for Data Series 1 and 2

From analyses of both Data Series 1 and 2 it is clear that the dynamics of the surrogate 

soil moisture series generated from both the Lancaster DBM and IHACRES models 

exhibit similar trends to the soil water variables gw(k)  and p w c(k ). In particular, the 

Lancaster DBM soil moisture surrogate lsm(k) shows a closer resemblance to gw(&) 

and p w c(k ) than series ihsm(k) generated from the IHACRES model. In both cases, 

however, the best correlation was achieved with both gw (k ) series which may be due, 

in part, to greater certainty regarding the measurement of groundwater table data. In 

particular, the interaction of water with soil is dependent on the soil properties: quite 

large variations of soil moisture content can be expected from point measurements 

made at plot scale, even within a homogenous soil, because of localised differences in 

the soil properties. However, spatial variations in ground water level at the same scale 

are far less significant because of the infinite number of contributing sources 

smoothing out the localised variations.

It has been assumed so far that the FIS algorithm has been able to correctly identify the 

complete nonlinearity in the rainfall-flow system from the time series. Under the 

assumption that gw(k) reflects an accurate representation of the antecedent conditions
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of the plot, the fact that the soil moisture surrogate lsm(k) can be related to gw (k ) by 

a nonlinear function, may suggest that the TVP/SDP analysis, undertaken in Section 

4.3.3, may not have quite revealed the complete rainfall-flow nonlinearity. However, 

if an enhanced model fit is not obtained from inserting gw(k)  directly into the 

Lancaster DBM model, this might indicate that the soil moisture surrogate lsm(k) 

does, in fact, reflect a more representative estimate of the complete rainfall-flow 

nonlinearity (e.g. including water losses to groundwater). This will be investigated in 

following sections of this chapter.

4.5  Fu r t h e r  T V P  A n a l y s is

As discussed in Section 3.3.2, more recent nonlinear research has shown that sorting 

the data prior to the estimation of the TVP can significantly improve the identification 

of a nonlinearity present in the time series. In light of this development and following 

the results discussed in the Section 4.3.3, it was considered prudent to repeat the TVP 

estimation stage of the DBM modelling procedure for the Lancaster model, so as to 

either reinforce the state dependent relationships already identified or to highlight any 

new ensuing relationships. All previous applications of this new methodology have 

sorted the data in terms of the input (see e.g. Section 3.3.2 or Young (1999)). 

However, in the case of rainfall-flow data, this method of estimation does not help to 

improve the identification of a state dependent relationship. In contrast, if the data are 

sorted in terms of the output, a notably enhanced state dependent relationship can be 

observed.
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F igure  4.17 The most significant estimates of b0 (o | N ) versus flow and the WLS

estimate of two stage function comprising of a linear and nonlinear relationship, 

Lancaster DBM model, Data Series 1

The relationship identified for Data Series 1 is presented in Figures 4.17 which 

strongly suggests that a two stage function (equation 4.29) may describe the

relationship between the TVP b0 (° | AO and y (k ) .

£ (o | N )  = 0.045 + y ( k f 282 for y(k)  > 1.51

Although a two stage relationship of this kind has previously been identified from 

rainfall-flow time series (Young, 1993), it is only through sorting the data, that it has 

revealed such a well defined state dependent relationship. As a result, only the

130



C h a p t e r  4  n o n l in e a r  r a in f a l l - f l o w  m o d e l l in g

statistically well estimated TVP’s determine the shape of the state dependent 

relationship.

In physical terms it is considered that the first component of the relationship 

determines the flow response when the catchment is extremely dry. Rainfall will be 

readily taken up by the soil to reduce the large soil moisture deficit and as a result has 

a minimal affect on the stream flow response. With continued rainfall, the soil 

moisture deficit rapidly decreases and the flow response to rainfall increases in a linear 

manner up to a threshold, determined by the specific physical properties of the soil. 

Beyond this threshold (the second component of the relationship), when the soil 

moisture status of the soil is higher, the deficit is reduced much more gradually until 

the soil reaches saturation.

A more clearly defined state dependent relationship (see equation 4.30) is also 

identified by re-estimating the TVP for Data Series 2 utilising sorted data.

4 ( °  | N )  = 0.293y(&)0276 Data Series 2 (4.30)

However, on this occasion, this approach proves to clarify further the state dependent 

relationship identified in Section 4.4.3, rather than revealing a new alternative 

relationship, as determined with Data Series 1.
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4.5.1 Model fits with sorted data

Although the re-evaluated nonlinear state dependent relationships are more clearly 

defined, they do not drastically enhance the model fit. For example, utilising the two 

stage relationship rather than the single power law for Data Series 1, a model with 

only a slightly superior fit is identified with the following statistics: 

Rj  = 0 .974, YIC = -6 .124 , and AIC = -2 .615. Similarly, this re-evaluated nonlinear 

relationship does not improve the correlation between the resulting newly defined soil 

moisture surrogate lsm(k) (see equation 4.31) and the soil water variables gw(£) and 

pw c(k) .

An initial visual comparison of lsm(k) and the soil water variables gw(k)  and 

pw c(k)  shown in Figure 4.18, indicates that the level of correlation existing between

these series is not, as originally expected, higher than that found from the previous 

analysis (Section 4.4.1). The shape of the recessions show the most dissimilarity; 

lsm(k) has much shorter recessions than both gw(k)  and pw c(k ). Note also from 

Figure 4.18 that the recessions of lsm(k) are much shorter than the soil moisture 

surrogate series previously defined in Section 4.4.1. These shorter recessions are 

caused by the first component of the two stage function (equation 4.31) reducing the 

value lsm{k) far more than the power law defined by equation (4.16).

lsm (k) = 0.747y(&) 

lsm(k) = 0.045 + y(&)°282

for y(k)  < 1.51 

for y(&) > 1.51
(4.31)
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Figure 4.18 (a) Soil moisture surrogate lsm(k) , (b) percentage soil moisture content 

pw c(k)  and (c) normalised inverse depth to groundwater table gw (k ), 

Lancaster DBM model, Data Series 1.

4 .6  L a n c a s t e r  DBM m o d e l  m o d i f i c a t io n

As previously discussed, hydrological monitoring programs rarely collect detailed soil 

water time-series. Consequently, the Swiss plot-scale data offers an excellent 

opportunity to establish whether the soil water variables gw(k)  and pw c(k)  can be 

incorporated directly into the Lancaster DBM rainfall-flow model to replace the soil 

moisture surrogate. It was demonstrated in Sections 4.3.1 and 4.4.3 that the rainfall- 

flow TF model parameter b0(k \N )  exhibits significant temporal variation. On this
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occasion, rather than relating the temporal variation of b0( k \N ) to y ( k ) (c.f. Young, 

1993), the TVP is compared directly to the soil water variables gw(k)  and pw c(k) .  

Well defined nonlinear relationships are identified between £0(£ |N ) and both soil 

water variables from Data Series 1, but only gw (k ) from Data Series 2. A typical 

example is given in Figure 4.19 for Data Series 1, which shows the most significant 

estimates of b0(k \N ) plotted against pw c(k ) with the WLS estimate of this 

relationship.
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o
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0.460.44

F igure  4.19 The most significant estimates of versus pwc(k)

and the WLS estimate of the power law relationship.

Having identified the nature of the nonlinearity and hence the structure of the 

nonlinear model, statistically efficient estimates of the model parameters are obtained 

through a process of iterative optimisation incorporating the SRIV algorithm. Tables
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4.3 and 4.4 present the statistical diagnostic criteria for the best nonlinear models 

estimated for Data Series 1 and 2 respectively.

Table 4.3. Nonlinear Lancaster DBM models, Data Series 1.

Nonlin. Structure Power Law YIC R 2 AIC
y(k) [1,3,0] 0.358 (0.007) -6.822 0.966 -2.337

gw (k ) [1,3,0] -1.146 (0.069) -6.119 0.951 -1.977

pw c(k ) [1,2,1] 12.061 (0.739) -6.142 0.948 -1.923

Table 4.4. Nonlinear Lancaster DBM models, Data Series 2.

Nonlin. Structure Power Law YIC R 2 AIC
y(k) [1,2,0] 0.206 (0.012) -4.116 0.692 -1.743

gw(k) [1,3,0] -1.898 (0.075) -5.948 0.863 -2.546

Table 4.3 highlights that the two models incorporating the soil water variables provide 

a very good fit to Data Series 1, although the nonlinear model incorporating gw(k)  

gives a slightly better fit. These initial results indicate, that for modelling purposes, 

the generated soil moisture surrogate (y(&)0'358) provides, in this instance, a better 

indication of the overall antecedent conditions of the plot than the actual soil moisture 

measurements gw(k)  and pw c(k ) .  However, the modelling results from Data Series 

2, provide a contrasting view (see Table 4.4), as on this occasion, the inclusion of 

gw (k ) directly into the model, significantly enhances the model fit (see Figure 4.20). 

There is a need for more research into this alternative modelling approach, but the 

results do indicate that when available, the inclusion of the soil water variables 

directly into the model could enhance the model performance and enhance the 

physical interpretation of the model.
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F igure 4.20 Best nonlinear Lancaster DBM TF models , Data Series 2.

Model utilising gw(k) (bold line), utilising y(£) (fine line), and measured data (dots).

4.7 C o n c l u s io n

This chapter has critically evaluated how efficiently the surrogate for soil moisture 

conditions, in both the 1HACRES and Lancaster DBM rainfall-flow models, captures 

the actual antecedent soil moisture conditions as defined by the field data collected at 

the plot scale in the Swiss pre-Alps.

The theoretical background to both models has been described and models have been 

identified and estimated from two independent data series. The surrogate soil 

moisture series generated by both models capture the dominant dynamics of the 

measured soil moisture variables. However, overall, the soil moisture surrogate
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generated by the Lancaster DBM model (Young, 1993) exhibits the highest correlation 

to the measured soil moisture variables for both Data Series 1 and Data Series 2, 

particularly to the groundwater table time series (see also Fawcett et al., 1997).

This analysis validates the assumptions made by the Lancaster DBM model that flow 

can be used to define an efficient surrogate for catchment antecedent conditions with 

the resulting bilinear TF models explaining the rainfall-flow behaviour very well. As 

a result, it is considered that the DBM rainfall-flow model, which relies only on 

rainfall and flow records, can be applied with confidence to catchments where the 

more extensive soil moisture and depth to groundwater table time series are 

unavailable. However, the research also suggests that when these additional measures 

are available, the direct use of the ground water depth series may improve the model 

performance and its physical interpretation.

An improved method for identifying the nonlinearity in rainfall-flow series has also 

been introduced. A much better defined state dependent relationship between flow 

and b0(k \ N ) is identified if the data are sorted in ascending order with respect to flow 

rather than rainfall, before estimating the TVP.

Conclusions drawn from the research at the plot scale can only be cautiously related to 

catchment scale processes. The Swiss data collected at the plot scale offers the first 

opportunity to critically evaluate the soil moisture surrogates generated from the two 

rainfall-flow models. Positive conclusions drawn from this research should act as a 

further impetus to consider work investigating the issues of upscaling.
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Ch a p t e r  5

M o d e l l in g  f l o w , s u s p e n d e d  s e d im e n t

LOAD AND RESERVOIR SEDIMENTATION USING 

A DATA-BASED MECHANISTIC (D B M )

a p p r o a c h ; W y r e s d a l e  P a r k  C a t c h m e n t , 

L a n c a s h ir e , U K

Suspended sediment has a highly detrimental impact on hydraulic structures and 

ecological systems and as a result, there is a basic requirement to be able to accurately 

describe and predict sediment load at key sites within a catchment. In particular, 

suspended sediment is an important consideration in the design life and operation of 

reservoirs as it affects both water quality and storage capability. It is therefore 

necessary, where possible, to generate accurate predictions of suspended sediment and 

understand the relationship between catchment practises and sediment yield. The 

previous chapter has introduced the data-based mechanistic (DBM) methodology and
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how it can be utilised to effectively identify and estimate the nonlinearity in the 

hydrological rainfall-flow model. This chapter discusses a novel application of the 

objective DBM  approach to identify a nonlinear, low-order lumped-parameter model 

relating rainfall to stream suspended sediment load (SSL) at Wyresdale Park reservoir 

inflow with the overall aim of modelling historical reservoir sedimentation.

Sediment delivery through the catchment comprises a mesh of complex nonlinear 

processes. It is therefore difficult, where data is in short supply, to develop a 

physically based or highly mechanistic model which requires extensive field work to 

validate. Reservoir sedimentation provides an important record of sediment yield. At 

Wyresdale there exist data sets of rainfall, sediment concentration and discharge time 

series and bathymetric surveys of the lake. Such data is ideal for a DBM study and 

unlike other reservoir based studies of historical reservoir sedimentation, (e.g. Labadz 

et al.y 1991; Curr, 1985; Foster et al., 1986) the DBM approach can provide temporal 

data on annual or seasonal scales. In contrast to physically based models and previous 

reservoir studies, the DBM modelling methodology discussed in this chapter is well 

suited to complex systems where the input-output behaviour is of prime importance. 

This approach naturally results in parametrically efficient, robust, low-order models 

which are inherently stochastic, and so can account for model uncertainty, sampling 

and measurement errors.

In order to model the SSL series at Wyresdale, a model must address the key 

nonlinearities of the system. Flow fundamentally affects the transport of sediment 

within the catchment and it is vital, to be able to characterise the nonlinear stream 

response to rainfall, which is heavily dependent on the antecedent conditions of the
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catchment. Further, there is an additional nonlinear relationship between flow and 

SSL whereby, flow magnitude and duration governs the capacity of the flow to convey 

sediment of a particular calibre to the basin outlet. The previous chapter has discussed 

the Lancaster DBM rainfall-flow model which will be applied here to evaluate and 

characterise the rainfall-flow dynamics of the Wyresdale catchment. Working from 

this initial analysis, a rainfall-sediment model is developed where this nonlinearity is 

characterised in a similar manner to the rainfall-flow model of Young (1993). The 

rainfall-sediment model forms the key component of a DBM modelling study of 

historical reservoir sedimentation at Wyresdale Park.

The overall Wyresdale model, comprises the rainfall-sediment model coupled to a 

nonlinear model, which relates the SSL at the reservoir inflow to SSL at the reservoir 

spillway. The combined model, is then simulated, using a historical rainfall-series as 

an input, to reconstruct daily deposition rates at the reservoir between 1911-1996. 

This synthetic sediment accretion sequence is compared with the variations in sand 

content within sediment cores collected from the reservoir.

5.1 W y r e s d a l e  P a r k  c a t c h m e n t  a n d  d a t a .

Wyresdale Park catchment is situated at the edge of the Forest of Bowland, 10km 

south of Lancaster, Lancashire (SD512294) and covers an area of 3 km2. Situated 

within the catchment is Wyresdale Park Reservoir (Plate 5.1) which is shallow and 

unregulated, with a surface area of only 0.08 km2 and mean depth of c.1.5 m. The 

reservoir was constructed in 1895 and as shown in Figure 5.1 is fed by Tythe Bam 

Brook, the principle stream that drains Wyresdale catchment. A small tarn, situated
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on Nicky Nook at the head of the catchment (215 m aod) feeds Tythe Bam Brook, 

which is joined by four minor tributaries before entering the reservoir. As the 

catchment has remained relatively undisturbed by land management practises it has 

been the centre of ongoing research projects investigating the temporal and spatial 

patterns of the supply and deposition of sediment in reservoired catchments 

(Goodwill, 1998). Tythe Bam Brook was instrumented with continuously logging 

turbidity meters and stage recorders at the inflow and outflow of the reservoir 

producing a time series of measurements taken at 15 minute intervals over a two year 

monitoring period, 1st March 1994 - 28th February 1996 (Goodwill, 1998). Following 

calibration, this data can be utilised to determine discharge, suspended sediment 

concentration and suspended sediment load. Further, a continuously logging tipping 

bucket rain gauge is situated at the head of the catchment on Nicky Nook Fell. A 

bathymetric survey conducted in 1994 estimated that the storage capacity of the 

reservoir has been depleted from its original 148 000 m to an estimated 126 000 m 

with non-uniform sediment deposition patterns (c.f. Goodwill et al., 1995).
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Plate 5.1 Wyresdale Park Reservoir, looking north west from the dam wall.
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Figure 5.1 Location map o f Wyresdale catchment and reservoir
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Wyresdale Park catchment was initially considered approximately watertight, with 

relatively small losses through groundwater to adjacent catchments and moderate 

evapotranspiration, concurrent with other upland catchments. However, the total 

rainfall to total flow ratio, calculated from the two years of data, indicate otherwise. 

The ratios for the two years are 0.17 (1994) and 0.09 (1995), indicating that 83% and 

91% of the total catchment precipitation input is lost to either groundwater and/or by 

evaporation and transpiration. These latter figures were initially thought to be 

particularly high. However, detailed additional checks utilising the meteorological 

office rainfall and evaporation calculating system (MORECS) and rainfall and flow 

data, by Goodwill (1998), supported these ratios.

Historical rainfall records are not available at Wyresdale. Therefore, in order to be 

able to hindcast suspended sediment transport and reconstruct reservoir sediment 

deposition, the series of rainfall totals recorded in the catchment headwater were 

correlated with the daily precipitation totals from the neighbouring Bamacre 

catchment. W hilst acknowledging the inherent errors of rainfall measurement, the 

long uninterrupted Bamacre series (1911-1996) was considered to be a very good 

historical surrogate for the Wyresdale catchment. It is therefore necessary, for the 

purposes of this modelling study, to average the SSL and discharge series to give the 

mean daily flow (m3/s) and mean daily suspended sediment load (SSL kg/s), which is 

presented in Figure 5.2. All the data for this modelling scheme were mean daily 

averaged between 0900:0900h, following the standard practice of daily precipitation 

totals.
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F igure 5.2 Wyresdale Park catchment data. Rainfall measured at Nicky Nook, flow 

and suspended sediment load measured at the Wyresdale reservoir inflow, 15th May

1994 -  1st February 1996.

5.2  R a in f a l l - F l o w  M o d e l

One of the limitations of developing a hindcasting model for Wyresdale is that the 

model form is necessarily restricted by the availability of the rainfall data, which is 

only measured on a daily basis. It follows that any investigation of the nonlinearities 

in the system must be based on daily averaged data. A further restriction on the model 

development, is that only two years of data are available, where, obviously for 

hindcasting purposes, the greatest length of data possible will minimise uncertainties 

in the model structure. Moreover, the two years of Wyresdale data are extremes, in 

the sense that 1995 is one of the driest recorded in 40 years at the nearby Hazelrigg
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weather station and 1994 is much wetter than average. The majority of large events 

occur during September-December with 60% of the flow occurring in 7% of the time. 

Visual inspection of the time series shown in Figure 5.2 supports this information 

showing predominant seasonal variability in the sediment delivery. Since the two 

years of data encompass a great range of rainfall and flow conditions, one way of 

developing a rainfall-flow model is to use the TVP analysis to investigate any 

underlying seasonal trends in the data using the parameters of the estimated TF 

models.

5.2.1 Rainfall-flow models on a seasonal scale

In order to look for any seasonal behaviour, the two year record was divided into 

seven sections according to a ‘season’ of approximately 90 days in length. The DBM 

method of time varying parameter (TVP) estimation and state dependent parameter 

modelling (SDPM), was utilised to identify and characterise the key nonlinearity 

existing between the rainfall and flow series for each seasonal period of the Wyresdale 

data set. In each case, the identified nonlinearity can be effectively represented 

utilising flow within a power law relationship (acting as a surrogate for the antecedent 

soil moisture conditions of the catchment). The general rainfall-flow model is 

identified as having the following structure,

ue(k) = u ( k ) y ( k f (5.1)

? ' =  ~ 7 ~ I 7  U e (fc -  8 )  +  C(fc)
M z  )

(5.2)
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where equation (5.1) is the effective rainfall term required to characterise the 

nonlinearity in the rainfall-flow system. Here, u( k ) is daily rainfall in mm; ue( k - 5) 

is the effective rainfall term with pure time delay 5 ; P is a constant coefficient; y(£) 

is the mean daily flow (m3s e c 1) at the reservoir inflow; £(&) is a general noise term 

included to account for stochastic disturbances and unmeasured inputs to the system. 

The polynomials A{z ~l) and B{z~x) are defined as,

A(z~l ) = l + alz~l+...+anz~n\ B(z~l ) = b0 +blz~l+--.+bmz~m (5 3)

where z -1 is the backward shift operator and the integers n and m  are the number of 

parameters in the polynomials.

Table 5.1 presents the best models identified for each seasonal period, and shows that 

individual models achieve a good fit to their respective calibration data. The effect of 

daily averaging, combined with the known rapid response of the Wyresdale catchment, 

reduces the dynamic content of the data which is reflected in the first order model 

structure identified for each time period.
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T able 5.1 Best identified nonlinear rainfall-flow models and the statistical fitting
criterion for each seasonal period.

Period Model
Order

Power Law 
Coefficient

YIC A IC Total Rainfall 
(mm)

Summer 1994
1/6/94-31/8/95

[1,1,0] 0.68 0.718 -6.524 -15.274 270.9

Autumn 1994
1/10/94-30/11/94

[1,1,0] 0.69 0.910 -6.695 -10.672 356.8

Winter 1994
1/12/94-28/2/95

[1,1,0] 0.65 0.958 -6.694 -10.390 467.6

Spring 1995
1/3/95-31/5/95

[1,1,0] 1 0.920 -6.081 -12.699 156.4

Summer 1995
1/6/95-31/8/95

[1,1,0] 0.6 0.819 -5.124 -17.367 125.2

Autumn 1995
1/10/95-30/11/95

[1,1,0] 1.0 0.785 -6.411 -13.837 163.6

Winter 1995
1/12/95-29/1/95

[1,2,0] 1.00 0.728 -5.378 -15.560 60.40

The identified models were examined to determine whether there are any relationships 

between any of the estimated model parameters, associated physical descriptors and 

rainfall totals over the seasonal periods. The pure time delay 8 corresponds to the 

overall lag time between an input of rainfall and the catchment’s response. In each 

model case 8 has a value of zero indicating a response time of 0-1 days. This value is 

small and indicates that the catchment responds very quickly to precipitation, a 

consequence primarily due to the catchments small areal size, steep slopes and thin 

soils. The wetter periods of Summer, Autumn and W inter 1994 have lower power 

function values (-0.67); whilst with the exception of Summer 1995, the unusually dry 

periods of Spring, Autumn and W inter 1995 have power function values of 1.
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Consequently, it could be suggested that the power function values show some time 

varying behaviour at the seasonal scale, which could be incorporated into a single 

rainfall-flow model with time varying parameters. Further, a general trend in the 

values of the denominator (and therefore time constant) and numerator coefficients is 

apparent; increasing in value, the wetter the period. W hilst these relationships have 

been identified, additional time series data (e.g. at least 10 years) would be required to 

be more certain of this time variant behaviour, such that data availability is the limit 

on further model development.

In a study by Jakeman et al., (1993), TF models for consecutive annual sequences 

were cross validated in order to evaluate whether one generic model was capable of 

adequately simulating the response of the catchment over many years. Following a 

similar procedure with the seasonal TF models, the results shown in Table 5.2 indicate 

that no one model, estimated from a single seasonal period, is able to adequately 

simulate the flow characteristic of the catchment over the complete two years of 

record. The Rj  of the models are highlighted along the leading diagonals of the table 

and the simulation results from passing data from other periods through the models are 

reported on the off diagonals. For example, when the model calibrated from Autumn 

1994 data (R% =0.911) is simulated using rainfall data from W inter 1995, the 

simulated flow series explains 0.689% (Rj  = 0.689) of the observed flow series.
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T able 5.2 The performance of calibrated models (horizontal) simulated using data 

from other seasonal periods (vertical). For example, when the model, calibrated on 

the data of Summer 1995 (R = 0.819), is simulated using the W inter 1995 rainfall 

data, the subsequent simulated flow series compares to the observed flow series with

an Rj  = 0.483 .

Summer 
1994 M

A utum n 
1994 M

Winter 
1994 M

Spring 
1995 M

Summer 
1995 M

Autumn 
1995 M

W inter 
1995 M

Summer
1994

0.716 -1.121 -4.036 -3.100 0.561 -3.322 -7.894

Autumn
1994

0.480 0.911 0.814 -6.155 0.604 -6.553 -16.761

W inter
1994

0.390 0.929 0.976 -9.008 0.518 -9.442 -21.703

Spring
1995

0.208 0.412 0.467 0.796 0.198 0.811 0.799

Summer
1995

0.573 0.297 -1.233 -0.010 0.819 -0.135 -2.078

Autumn
1995

0.392 0.637 0.594 0.781 0.403 0.785 0.481

W inter
1995

0.461 0.689 0.647 0.752 0.483 0.760 0.728

The only models that maintain a positive year round are calibrated from Summer 

1994 and Summer 1995 data. However, both models completely underestimate the 

discharge during the wetter periods of Autumn 1994, W inter 1994 and Spring 1995. 

A seasonal component in the rainfall-flow model structure would be an ideal solution 

for characterising different seasonal behaviours observed in the time series. However, 

in view of the diverse climatic conditions reflected in the 2 years of data and the 

limited temporal extent of this time series, the uncertainties associated with the 

inference of any seasonal relationships would be too great to warrant adding this extra
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complexity into the model. This would suggest, therefore, that the best way to ensure 

that a reliable model is obtained for the catchment, is to identify a nonlinear TF model 

based upon the complete 2 year data series.

5.2.2 Rainfall-Flow Model for the 2 year time-series

In order to obtain a single rainfall-flow model for the whole two year time series, the 

TVP/SDPM  procedure was applied once again to identify the key nonlinearity 

between the rainfall and flow data. Having confirmed that the identified nonlinearity 

can be characterised by a power function, an optimisation routine incorporating the 

SRIV algorithm identifies the best model to be first order 

(YIC = -7 .974, Rj -  0.944, AIC  = -11.172) and estimates the model parameters to be 

ax = -0 .1 2 2 (9.46e-3) , b0 = 0.0189 (6.32e-5) and p =0.46(0.001) respectively, where

the parameter standard errors are given in parentheses. The model fits the data during 

both storm peaks and low flows over the majority of the two year series, a section of 

which is presented in Figure 5.3.

150



C h a p t e r  5  M o d e l l in g  r e s e r v o i r  s e d im e n t a t io n

0.3

 Data
—  M odel

0.25

0.2

3 0.15

0.05

250 255 260 265 270 275 280 285 290 295 300
Days

Figure 5.3 A section of the observed two year flow series (fine line) and the nonlinear

DBM model, (full line).

5.2.3 Rainfall-Flow Modelling and Evapotranspiration

The effects of evapotranspiration on the rainfall-flow system have so far been regarded 

as inconsequential at Wyresdale and have been implicitly accounted for within the 

structure of the model by the nonlinear effective rainfall component. The water 

balance derivation clearly indicates, however, that evapotranspiration is significant 

along with groundwater losses at Wyresdale, suggesting that evapotranspiration may 

need to be explicitly accounted for within the model.
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Research from the Coweeta catchment, USA, by Young and Beven (1994) and Young 

et al., (1997) demonstrated that the residuals of the rainfall-flow model show high 

correlation with the mean daily temperature series, which in turn may be used as an 

indicator of actual evapotranspiration. Consequently, an improved model fit can be 

achieved by developing a multi-input-single-output (MISO) form of the rainfall-flow 

model, where the mean daily temperature series is introduced as an input to an 

additional linear TF.

In a similar manner, the residuals of the estimated rainfall-flow model were examined 

and are presented in Figure 5.4a. The daily temperature series, measured at Lancaster 

University Hazelrigg weather station (7 km from Wyresdale), corresponding to the 

two year time period of measured data are presented in Figure 5.4b. Visual inspection 

of both series indicates that no obvious correlation is evident between them, which has 

been confirmed from numerical correlation analysis. This indicates that further 

development of the Wyresdale model to include a temperature component is not 

required; clearly in this temperate upland catchment the temperature forcing on 

evapotranspiration is not sufficiently strong to exert a strong influence on the overall 

catchment dynamic. W hilst this prevents the model from being developed in this 

regard, the data have, in fact, been thoroughly and objectively analysed and the 

information utilised to its practical limits to produce the best rainfall-flow model from 

the available but rather limited data.

152



C h a p t e r  5 M o d e l l in g  r e s e r v o i r  s e d im e n t a t i o n

SRIV Estimated Model Error
0.03

0.02

£
n 0 
S  -0 .0 1

- 0.02

-0.03 0 100 200 300 400 500 600

Scaled and Inverted Temperature

S-0 .5

-1.5 0 100 200 300 400 500 600
Days

Figure 5.4 (a) SRIV estimated model residuals 15/05/1994 -  01/02/1996, (b) Daily 

temperature (instantaneous measurement at 0900h), measured at the Lancaster 

University Hazelrigg weather station for the corresponding time period.

5.3  Su s p e n d e d  Se d im e n t  L o a d  M o d e l l in g

The key component underpinning the DBM modelling study of reservoir 

sedimentation at Wyresdale, is the identification of a model relating rainfall to stream 

SSL at the reservoir inflow. Whilst a great deal of research has been directed at 

modelling the rainfall-flow process, research into modelling fluvial suspended 

sediment transport is still in a stage of comparative infancy. This is in part due to the 

difficulties in obtaining rainfall, flow and SSL data of sufficient quality, but also due 

to the underlying complexity of the many nonlinear processes that combine to control 

catchment sediment delivery. For example, the supply of sediment available for
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transport is dependent upon the action of catchment hillslope processes, such as rill 

and gully development and mass movements (Selby, 1993). Further, the sediment 

transport capacity of a stream is strongly flow dependent, which in turn is an 

inherently nonlinear process. It follows, therefore, that a model must account for these 

nonlinearities to successfully characterise catchment sediment transport.

Current methods of prediction fall into two main categories. Firstly, deterministic 

models such as CREAMS (Knisel, 1980) and ANSWERS (Beasley et a l ,  1980) that 

aim to capture the physical complexity of sediment supply and delivery processes. 

These deterministic models are often over-parameterised and require substantial field 

data for calibration. Secondly, simple nonlinear regression models between flow and 

SSL are often unable to adequately reproduce the dynamic nature of fluvial systems 

and are, therefore, really inappropriate for modelling suspended sediment (Walling, 

1977). The short-comings of both techniques can be addressed, to some extent, by 

using transfer functions which are both dynamic and parsimonious in nature. Sharma 

et al., (1979), Sharma and Dickinson, (1980), Lemke (1990; 1991) and Wang et al ,  

(1991), for example, successfully utilise linear transfer functions for modelling 

suspended sediment load where flow is used as the model input.

Using data obtained from 5 catchments situated within the Loess Plateau of China, 

Wang et a l ,  (1991) successfully adopted linear TF’s to model suspended sediment 

load. Due to the particular physiographic characteristics of the Loess Plateau, 

sediment yield in this region is strongly transport dependent. The majority of rainfall 

in this region, derived from high magnitude short duration storms occurring in the 

summer months, is converted directly into runoff, with little lost to groundwater. As a
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result, the relationship between runoff and sediment yield is very strong and a linear 

TF is sufficient to characterise the dynamic. Sharma et al., (1979), Sharma and 

Dickinson (1980) and Lemke (1990; 1991) both identified a linear TF model between 

log transformed runoff and log transformed SSL time series. As a consequence of log 

transforming the data, they found that the nonlinear relationship existing between the 

two series had been partially linearised, to the extent that a linear TF was satisfactory 

to explain the behaviour within their study catchments.

The Wyresdale catchment is particularly flashy and the rainfall-flow and flow-SSL 

relationships are inherently nonlinear. Although a linear model is able to approximate 

the rainfall-SSL relationship during wet conditions, it is unable to fit the data well 

during periods of low flow. Consequently, for the purposes of reconstructing the 

catchments SSL series, a hindcasting model with a nonlinear structure is required.

5.3.1 Wyresdale Rainfall-Sediment model

Following the DBM approach outlined previously, the relationship between the 

Wyresdale 1994-1996 rainfall and SSL was investigated using a time varying 

parameter approach. Non-parametric estimation, utilising the FIS algorithm, indicates

that the numerator parameter b0(k\ N )  exhibits significant temporal variation. On

inspection, the TVP showed a satisfactory dependence on flow and rainfall, but state 

dependent parameter modelling (SDPM) was unable to identify a sufficiently clear and 

reliable state dependent relationship. Nevertheless, a satisfactory relationship that is 

able to approximate the key nonlinearity of the rainfall-sediment system, generating a 

transformed rainfall series (u se), is presented in equation (5.4) and forms the first
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component of the model. The general rainfall-sediment model was identified as 

having the following structure,

where, si (k ) is the mean daily instantaneous SSL at the reservoir inflow (kgs'1); u(k) 

is daily rainfall (mm); use( k - S ) is the transformed rainfall with pure time delay <5; 

y(k) mean daily instantaneous flow at the reservoir inflow (m3s e c 1); a , /3 and H  are 

constant coefficients; and f(£ ) and e{k) are general noise terms included to account 

for stochastic disturbances and unmeasured inputs to the system.

The Wyresdale rainfall-sediment model is similar in principle to the rainfall-flow 

model of Young & Beven (1994), but with the rainfall term, u(k ) raised to a power, 

which is included to enhance intense rainfall events as a proxy indicator of greater 

erosive capability. The second part of equation (5.4) ( y ( k )p) acts as a measure of the 

catchment’s antecedent soil moisture conditions, characterising the nonlinear rainfall- 

flow effect. Overall, the two combined nonlinear components of the transformed 

rainfall equation (5.4) can be interpreted as a low pass filter, smoothing the fluctuating 

rainfall and producing a measure of the rainfall that is said to contribute to the 

movement of sediment through the catchment. Essentially, this term aims to 

characterise the complete nonlinear behaviour of the system in the same manner as the 

effective rainfall term of rainfall-flow models.

use(k) = u ( k r y ( k f + C >(k) (5.4)

s i (k) = H u „ ( k - S )  + e(k) (5.5)
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For the Wyresdale data series, the effect of daily averaging, combined with the known 

rapid response of the catchment, reduces the dynamic content of the data. Therefore, 

for equation (5.5), only a simple linear model with a gain parameter H  is required, 

between the transformed rainfall ( use) and the suspended sediment load (s . )  at the

reservoir inflow. In circumstances where the available data is more frequently 

sampled and/or the dynamic content of the SSL series is greater, the simple gain 

parameter H  would normally be replaced by a TF. The model parameters in 

equations (5.4) and (5.5) are estimated utilising an iterative nonlinear least squares 

optimisation routine, incorporating the SRIV estimation algorithm. The structure of 

the optimisation algorithm is shown in Figure 5.5. The best rainfall-sediment model 

identified in this manner for the 1994-1996 Wyresdale series is first order, which 

explains 91% of the data (YIC = -7.687, = 0.912, AIC = -10 .718). The

parameters estimated are ax = -0.171(0.024), />0 = 0.0021(5.495e-5 ),

a  = 0.40(0.01) and /3 = 0.75(0.01), where standard errors are given in parentheses.
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Figure 5.5 Schematic of the parameter optimisation procedure.

The rainfall-sediment model (equations 5.4-5.5) accurately fits all of the major storm 

peaks of the reservoir inflow SSL series and also manages to fit the majority of the 

lower SSL conditions, as shown in Figure 5.6. In a similar manner to the rainfall-flow 

model identified in Sections 5.2.2, storm events following prolonged periods of warm 

dry weather or associated with convective precipitation, are not modelled as well as all 

other conditions. Overall, the respectable performance of the model, indicates that its 

structure is suitable for modelling the rainfall-sediment system.
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Figure 5.6 Nonlinear TF sediment model. Data (fine line) and model (bold line).

5.3.2 Wyresdale rainfall-sediment model for hindcasting

W hilst the rainfall-sediment model presented in equations (5.4) and (5.5) is suited for 

general modelling and forecasting applications, its structure is inappropriate for 

generating a synthetic sediment series by hindcasting. As only historical rainfall data 

are available for Wyresdale, the transformed rainfall equation (5.4) is modified to the 

following structure,

use(k) = u(k)a y(k)P + ?  (k); y ( k ) = „ 1 u(k)
M z  )

(5.6)

where, u{k) is daily rainfall (mm); use( k - 8 )  is the transformed rainfall with pure 

time delay 8 ; a  and /? are constant coefficients; and £(k)  is a general noise term. 

The daily mean flow term y(£) in equation (5.4) has been replaced by a linear TF
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where the polynomial A(z_1) is defined as A(z_1) = l + a ,z_1 +... + anz~n. The second

nonlinear term accounts for the catchment antecedent soil moisture conditions in a 

similar manner to the antecedent precipitation index (API) (Shaw, 1988). The second 

component of the rainfall-sediment model remains unchanged, as presented in 

equation (5.5). Through an iterative procedure, the polynomial A(z_1) was identified 

as first order and the parameters in equations (5.5) and (5.6) were estimated using the 

optimisation routine as before. The best estimated model parameters are as follows, 

H  = 0.0013, ax = -0 .971(0 .024), = 1.78(0.082) and a  = 1.312(0.115) where the

parameters standard errors are given in parentheses. The rainfall-sediment model fit 

now explains 84% of the data (R j =  0.84). This good fit, as may be seen in Figure 5.7, 

indicates that the model can be used with some confidence, as a simulation model for 

hindcasting sediment loads into the reservoir.
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0 .0 8
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0 . 0 6
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Figure 5.7 Model fit of the hindcasting model: data (fine line) model (bold line)
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5.3.3 Reservoir sediment transmission model

Having identified a model to predict the input of SSL into the reservoir, the second 

component in this DBM modelling scheme is a very simple nonlinear TF model, 

estimated between the mean daily SSL flux (kgs'1) at the reservoir inflow (s .) and the

mean daily SSL (kgs'1) at the reservoir outflow (s0) .  Utilising the SRIV algorithm,

the best model for the transmission of the sediment through the reservoir was 

identified as having the following structure with standard errors given in parentheses,

*„(*)= L952(0-025) s . ( k ) 'm +Z(k)  (5.7)
1-0.149(0.011)

where s0(k ) is mean daily sediment flux at the outflow; s((k) is mean daily sediment 

flux at the inflow; and £(k)  is an additional general noise term. This model explains 

92% of the data with a coefficient of determination, R l  = 0.918.

5.4  G e n e r a t in g  H is t o r ic a l  Se r ie s

The combined rainfall-SSL model (equations 5.5-5.7) calibrated over 2 years of data, 

may now be used to extend the sediment records at the reservoir inflow and outflow 

by running the available rainfall sequence from 1911-1996 through the complete 

model. At the commencement of the simulation, the model is initiated without any 

prior ‘knowledge‘ of the catchment soil moisture conditions. Consequently, a ‘run in 

period’ is required to ensure that the transformed linear TF, which describes the 

antecedent condition component of the model, is stable (see equation 5.6). With each 

subsequent kth time step of the simulation, a picture of the soil moisture conditions is
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built up which gradually becomes stable. The time period required to ensure such 

stability is dependent upon the time constant of the linear TF and the P coefficient, 

which, in this instance, is 150 days.

Simulating the complete model in this manner, produces the 86 year, daily flow and 

sediment sequences presented in Figure 5.8. Further validation of the model can be 

achieved by comparing the last period of the synthetic SSL outflow series for 1994- 

1996 with the observed field data for the same period. The overall fit remains very 

high with a coefficient of determination Rj  over this period of 0.91. The effects of 

the different antecedent conditions are clearly evident in Figure 5.8: for example, the 

propagation of two equal magnitude rainfall events through the model can result in 

highly contrasting SSL outputs. When comparing the complete 86 year rainfall and 

simulated SSL output, it is clear that the model has preserved the catchments SSL 

dynamics, limiting the majority of SSL transport to a small number of low frequency 

high magnitude events. Additionally, the significance of low recurrence, high 

magnitude events can be evaluated by this approach: the SSL load for each event can 

be estimated from the series and evaluated in relation to the estimated annual inflow 

load. For example, the 3 storms 27-28th October and 15th, 20th November 1980 are 

estimated, from the model, to collectively contribute 31% of the simulated sediment 

input for that year.
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Figure 5.8 86 year (a) rainfall series, (b) simulated SSL into the reservoir and 

(c) simulated SSL out of the reservoir.

From the simulated series the total deposited suspended sediment load in 86 years was 

estimated to be 3096 tonnes which, when after an approximate bedload component is 

added (c.f Goodwill, 1998), gives an average deposition of 57 tonnes y '1. Although
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this is higher than the 50.1 tonnes y 1 estimated from the bathymetric survey, the two 

figures are encouragingly close, considering the uncertainties involved in generating 

both the modelled series and conducting the bathymetric survey.

5.4.1 Monte Carlo uncertainty analysis

Since the overall model, represented by equations (5.5-5.7), is calibrated from only 

two years of experimental data, a measure of uncertainty should be assimilated. 

Fortunately, the stochastic nature of the DBM methodology and SRIV estimation 

procedure enables the uncertainty associated with the parameters to be incorporated 

within a Monte Carlo (MC) framework (e.g. Whitehead & Young, 1979).

The cumulative sediment load graph for the 1994-1996 Wyresdale data is presented in 

Figure 5.9. It is shown that 85% of the outflow SSL is transported in only 2% of the 

time, which is indicative of a flashy catchment. As a means of assessing the model 

uncertainty, a series of 3000 MC simulations were run using the historical 86 year 

rainfall series as the model input. The model cumulative sediment load curve for the 

1994-1996 two year period, extracted from the synthetic series, with standard error 

bounds calculated from the ensemble of MC simulations, are also plotted on Figure 

5.9. The shape of the synthetic curve is similar to that of the measured series, which 

resides within the model standard errors. Moreover, the curves shown in Figure 5.9 

provide further evidence that the model is capturing the overall dynamic of the 

catchment sediment response reasonably well.
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Figure 5.9 Cumulative sediment load curve for the 2 year (1994-1996) measured 

outflow series (full line) and cumulative sediment load curve for the same two year 

period from the historical 86 year outflow sequence (dashed) with standard error bands 

calculated from the 3000 MC simulations (dot-dashed).

5.5 V a l id a t io n  o f  t h e  m o d e l

Through the DBM modelling process outlined in the previous section, a synthetic 86 

year inflow and outflow SSL sequence has been generated. The similarity between the 

2 year measured field data and the corresponding section of the synthetic sequence, 

suggests that the 86 year inflow and outflow series can be used to provide a reasonable 

estimate of sedimentary deposition in the reservoir. In an attempt to validate this 

assertion, sediment cores were extracted from Wyresdale reservoir to compare directly 

with the reconstructed synthetic sediment accretion sequence.
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5.5.1 Synthetic sediment accretion reconstruction

An estimate of the daily sediment deposition rate in the reservoir between 1911-1996 

may be obtained by subtracting the outflow sequence from the inflow sequence. The 

series of daily sediment load (kgs'1) settling in the lake can then be converted into a 

synthetic sediment accretion sequence by distributing this load throughout the main (c. 

27 000 m ) depositional basin on the reservoir bed. A proxy indicator of spatially 

averaged sediment accretion can then be obtained by dividing this sediment sequence 

by the average bulk density of the Wyresdale sediments (0.242g cm 3). In this manner, 

the sediment load over the 86 years is converted into an estimated sediment depth of 

48 cm, which is equivalent to an average annual accumulation rate of -0 .55 cm y '1. 

The resulting synthetic sediment accretion sequence, shown in Figure 5.10, shows a 

number of high yearly deposition rates, which should correspond to discrete deposition 

horizons in the reservoir if the model is representing the sedimentary depositional 

characteristics reasonably.
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Figure 5.10 Simulated sediment core profile (48cm deep in total) Depth of sediment 

deposited each year in millimetres comprises a separate band in the profile(each year

is identified by a different colour).

5.5.2 L ake sedim ent cores

Reservoir sedimentation rates typically exhibit spatial and temporal variations, with 

additional complexities associated with sediment fining, re-suspension and sediment
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focusing (Foster et al., 1986). Consequently, the interpretation of particle size profiles 

requires caution because flood events of different magnitudes result in sediment 

accumulation at variable rates (Curr, 1985). Nevertheless, it has been demonstrated at 

Wyresdale that the sand component ( > 6 3 /Am) of suspended sediment is strongly flow 

dependent (Goodwill, 1998). As such, it can be inferred that the sand content of the 

reservoir deposits should represent an important proxy record of flood frequency and 

magnitude over the study period. The lake sediments are undisturbed at Wyresdale 

and so, using a combination of sediment analysis and correlation techniques, the cores 

can provide valuable information for model validation.

5.5.3 Core extraction and analyses

A series of seven cores were extracted from the reservoir at locations along the 

original main channel and in the vicinity of the dam wall. Studies have shown (Price, 

1999) that there is minimal dispersive mixing of the sediment laden storm water 

entering the reservoir, suggesting the main zones for coarser sediment deposition 

remain along the original stream channel (before reservoir construction) and behind 

the reservoir dam. Cores were extracted in the reservoir from a platform of inflatable 

boats, as shown in Plate 5.2a, following a technique developed by Mackereth (1969) 

which enables an in situ, undisturbed record of sediment to be collected. The 

apparatus comprises of an open ended plastic cylindrical core that is forced into the 

basal sediment by compressed air. Of the seven sediment cores extracted, cores 1 and 

5 were considered to show significant signs of disturbance and were excluded from 

further analysis.
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Plate 5.2 (a) Platform o f boats and coring equipment at Wyresdale reservoir (left) and

(b) the extracted sediment cores (right).

When selecting a single core (Plate 5.2b) for detailed particle size and radioceasium 

analysis, it is important to ensure that it is representative o f  the sediment depositional 

characteristics o f  the reservoir. Magnetic susceptibility assesses the degree to which a 

material can be magnetised (Foster et al., 1986), expressed per unit volume o f  the 

sample ( k ) ,  which is directly related to the concentration o f ferromagnetic grains within 

the materials composition. In the laboratory, the in situ volumetric magnetic 

susceptibility o f each sediment core was determined using a Barlington MS2C 

magnetic susceptibility loop and the Multius software. The magnetic susceptibility 

profiles for four o f  the sediment cores are presented in Figure 5.11. The similarity 

between the shape o f the profiles indicate that representative cores have been extruded 

from the reservoir. Core 2 was selected for further analysis because on close 

examination, the colour and size o f the sediment at the base o f  the core suggested that 

the pre-inundation surface had been captured, indicating that a complete record o f  

depositional sediment had been acquired.
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F igure  5.11 Magnetic susceptibility of four sediment cores extracted from Wyresdale

reservoir.

The particle size distribution of 0.6 cm increments of the core were measured using 

the Coulter LS-230 laser particle sizer. The equipment consists of three components: 

a fluid unit used to introduce the sediment into the equipment for analysis; the laser 

particle sizer; and a PC which runs the software controlling the operation. The 

particle size distribution of the sediment sample is determined by measuring the laser 

diffraction patterns of sediment particles over a size range of 0.04-2,000 pm. Prior to 

analysis, 10cm3 of 0.4% Calgon was added to the sediment to induce dispersal without 

peroxide digestion of organic material (Duck, 1996) and each sample was placed on a 

shaker overnight.
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The profiles presented in Figure 5.12 show the relative proportions of sand, silt and 

clay throughout the length of the core. Figure 5.13 presents the vertical profiles of the 

core mean wet and dry bulk density. The clay fraction remains approximately constant 

at a low percentage throughout the length of the core, whilst the sand fraction 

increases and silt fraction decreases towards the base. Sharp increases in the 

percentage sand fraction and the dry bulk density can be noted at a number of discrete 

intervals along the core length. As the sand component of the SSL at Wyresdale has 

been found to be flow dependent (Goodwill, 1998), these isolated, denser horizons are 

indicative of high magnitude storm events. At a depth of below 54 cm, there is a 

marked increase in the sand content. Microscopic examination of this coarse sandy 

material showed it to be well-sorted, consistent with sediment deposited in a fluvial 

environment, i.e. a pre-inundation environment (Dr. J. Rowan pers. com.).

40

 Silt
 Clay
  Sand

Percentage of Core

Figure  5.12 Percentage content of clay (left profile), sand (middle profile) and silt

(right profile) in Core 2.
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F igure  5.13 Wet bulk density (right profile) and dry bulk density (left profile) of Core

2 .

5.5.4 C ore validation

In order to assist a comparison of both profiles, the core was independently analysed 

for 137Cs using gamma spectrometry to generate an absolute dating chronology. A 

sharp peak in 137Cs level is observed at a depth of 8-10 cm, which is considered to be 

attributable to the 1986 Chernobyl disaster. A broader peak is located at a depth of 

18-20cm which is caused by above ground atomic weapon tests which occurred 

between 1959-1963 (c.f. Rowan et al., 1995). No further 137Cs was detected below 

this depth. The resultant chronology from this analysis is shown in Figure 5.14, at the 

corresponding depth of sediment.
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Figure 5.14 Percentage sand content of Core 2 with 137Cs dating chronology.

It is not possible to quantitatively compare the synthetic sediment accretion sequence, 

which is expressed in daily deposition load, with the sand fraction profile of the 

extracted sediment core. However, it has been demonstrated at Wyresdale that the 

sand component of the SSL is strongly flow dependent. As a result, a qualitative 

comparison of the sediment core and synthetic profile can be made by plotting the two 

sequences adjacently and matching peaks and troughs assisted by the 137Cs dates. As 

shown in Figure 5.15 the two profiles show good visual agreement.
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F igure 5.15 Simulated and observed accretion sequence

Of particular interest are the high rates of sediment deposition simulated by the model 

during the winters of 1916/1917, 1927, 1954, 1963 and 1980/81. There appears to be 

corresponding evidence of significant deposition horizons in the lake at these time 

points, reflected by the increased percentage sand fractions in the core. The 

significance of the larger storms predicted from the model are additionally confirmed 

from independent evidence corroborated from local newspaper records. For example, 

on 28th October 1980 the model estimated that 6.5 tonnes of sediment was deposited 

in the reservoir. On 31st October 1980 the Garstang Guardian headlined with ‘Water 

up to 4ft in places’; ’M6 closed for several hours’, including making specific 

references to Scorton village. The model estimated that 6.45 tonnes of sediment were 

deposited on 17th September 1957 and subsequently on 20th September 1957 the
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Lancaster Guardian reported high flood water levels with the headline: ‘Wye 

overflow’; ‘Scorton road to A6 closed’. The analogous trends identified between the 

two profiles in Figure 5.15 indicate that the DBM models utilised in this analysis have 

to some degree captured the dominant sediment dynamics of the catchment-reservoir 

system and an encouraging reconstruction of the historical sediment accretion in the 

reservoir has been possible.

5.6 C o n c l u d in g  r e m a r k s

This chapter has discussed the application of the DBM methodology to model 

historical sedimentation sequences at Wyresdale Park catchment. A novel nonlinear 

sediment model has been used to simulate suspended sediment loads from rainfall 

records alone, providing information on sediment transport dynamics over much 

longer periods than are currently available in most monitoring programmes.

Initially, an investigation of the rainfall-flow dynamics at the Wyresdale catchment 

was made to help in the development of a rainfall-sediment model. Rainfall-flow 

modelling at the seasonal scale showed evidence of some time varying behaviour 

within the model parameters such that a single model with seasonally adjusting 

parameters could potentially be estimated. However, as these relationships were not 

clearly defined, a model of this complexity was deemed to add unnecessary 

uncertainty. As a result, the rainfall-flow and rainfall-sediment processes at 

Wyresdale, were modelled based upon the complete two years of time series data. The 

identified rainfall-sediment model is similar in principle to the rainfall-flow model. It 

is comprised of a nonlinear and linear element: the nonlinear component provides a
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measure of the rainfall and flow that contributes to the transport of the sediment 

through the catchment system; and a second linear TF which relates this transformed 

rainfall to suspended sediment load.

This preliminary study has demonstrated the potential of the DBM  methodology for 

producing historical time series. This is increasingly important where SSL data is 

unavailable in sufficient quantities and where it is expensive to collect. These 

historical data can be used to explore magnitude-frequency relationships and their 

implications for event horizon preservation within sediment profiles. The TF model 

used to generate the synthetic sediment sequence assumes that the dynamics of the 

contemporary catchment are stationary and can be extended over historical time- 

scales. However, the sand fraction of the sediment core and the average dry bulk 

density increase below a depth of 20 cm as shown in Figures 5.13 and 5.15, which 

may suggest the system is actually time variant. The preliminary results of this study 

indicate that the modelling scheme is able to reproduce the calibration data in the 

sense that the model has been able to predict the location of a number of discrete flood 

horizons. However, the increasing trend in the sand fraction and bulk density of the 

sediments can not be explained by the model. The deviation of the observed data from 

the stationary model predictions, particularly in the lower portion of the profile, 

suggests that the behavioural response of the catchment system may have changed, 

possibly due to land use or land management modifications. Although the results 

obtained in this study are not conclusive, it represents the first such exercise of its 

type, and in this regard, the results are very encouraging.
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The original premise of the experimental programme at Wyresdale was not intended to 

produce data for rainfall-flow or rainfall-sediment modelling. Nevertheless, the DBM 

approach has demonstrated for the first time that even with limited data it is possible 

to model the nonlinear rainfall-sediment relationship. It is hoped that this DBM 

approach could be developed further for other better suited catchments for use as an 

additional design tool for water resources management. Ideally, to explore the full 

potential of this DBM approach, it would require a catchment with extended time 

series which exhibit greater dynamics, i.e. sampled more frequently e.g. every 15 

minutes, or choosing a larger catchment where daily sampling would be adequate.

The work summarised in this chapter highlights how the DBM modelling 

methodology can be applied to the identification and estimation of nonlinear 

hydrological models. Future work aims to look more closely at the nonlinear 

transformed rainfall term which lumps the sediment production processes through 

FIS/SDPM  analysis. The study also provides a good platform for other research 

initiatives, such as evaluating the effects of model uncertainty and the implementation 

of Kalman filter-based forecasting models for both discharge and sediment 

transmission.
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Ch apter  6

O c e a n ic  E c o s y s t e m  M o d e l l in g

Plankton play an important role in oceanic-atmospheric dynamics at different spatial 

and temporal scales through many biophysical processes (Fasham, 1993). As a 

consequence of increases in anthroprogenic gases emitted into the atmosphere, 

particularly CO2, there is increasing concern that the earth may experience global 

climate change within the next century. The oceanic carbon cycle is a key component 

of global carbon cycling and it is becoming ever more important to quantify both the 

uptake and effects of anthroprogenic CO2 in the ocean. Marine biota play a significant 

role in carbon cycling, but it is assumed that these biota will not be affected directly 

through uptake of anthroprogenic CO2 (Sarmiento et al., 1992). However, global 

climate induced changes to the physical processes affecting the marine biota may have 

a significant impact on the ecosystem. Understanding the oceanic ecosystem, 

particularly how the key elements of phytoplankton, zooplankton and nutrients 

interact, is vital, especially as phytoplankton and zooplankton play fundamental roles 

in the marine food web supporting a diverse range of terrestrial and marine life. It is 

essential that mathematical models are used as an effective tool to help fully 

understand the plankton population dynamics and the interaction of the physical
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processes which drive the dynamics of this system (i.e. mixed layer depth, water 

temperature, total radiance), particularly as these dynamics may alter as a result of 

global climate change. The ability to accurately quantify how the ecosystem may react 

to climate modifications is essential, as changes in total biomass or its spatial and 

temporal distribution in the ocean could have disastrous effects on human life 

(SECOR (1990).

6.1 Ch a p t e r  A im s  a n d  Ob je c t iv e s

The oceanic ecosystem, as with most environmental systems, is governed by 

extremely complex dynamic processes which are inherently nonlinear. Also, even 

after extensive scientific investigations over the past 20 years, significant uncertainty 

still remains about its general nature and structure.

This chapter presents an evaluation of a nonlinear, deterministic ecosystem model in 

two main components. Firstly, parameter optimisation and the effects of parametric 

uncertainty propagating through the model are investigated. Then genetic algorithm 

and nonlinear least squares parameter optimisation techniques are applied to the 

ecosystem model. In these studies, the results of exploring the parameter hyper-space 

provide initial estimates of parameter sensitivity that can be utilised in a more 

thorough evaluation of model uncertainty following the data-based mechanistic DBM 

modelling philosophy. The deterministic simulation equations of the system are 

considered in stochastic form by assuming that the associated parameters of the model 

are uncertain. Monte Carlo Simulation (MCS) (see e.g. W hitehead and Young, 1979; 

Young et al., 1996) and the associated Generalised Sensitivity Analysis (GSA) (Spear
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and Homberger, 1980) are utilised to explore this uncertainty, with the aim of 

identifying the parameters in the stochastic model that are most important in 

representing the dominant dynamic behaviour.

The second component of this chapter considers the Kalman filter (Kalman, 1960) and 

associated Maximum Likelihood (ML) method (see e.g. Harvey, 1989) as a further 

optimisation tool that can also be considered as a prelude to the development of a 

basic data assimilation method. Finally, by utilising the stochastic simulation model 

as a suitable surrogate for the actual system, a preliminary study based on combined 

statistical linearisation and model order reduction is undertaken, to identify whether a 

reduced, low order model can describe accurately the dynamic behaviour of the higher 

order system.

6.1.1 Data assimilation

The oceanographic system is extremely complex and it can be extremely expensive, 

difficult and sometimes impossible to obtain direct accurate measurements of 

oceanographic variables on a substantial and sustained basis for scientific and 

management purposes. Data assimilation refers to the melding of observational data 

with a model that characterises the dynamic principles governing the system at run 

time. In this regard, data assimilation is a powerful tool that can be used to help 

alleviate such problems of data acquisition by providing efficient, accurate and 

realistic estimations of important variables that often can not be feasibly measured, 

based upon the available observational data and the dynamic model. Data assimilation 

takes its roots in meteorology and engineering, but has more recently entered the field

180



C h a p t e r  6: O c e a n i c  E c o s y s t e m  M o d e l l in g

of oceanography where it is expected to provide rapid advancements in basic ocean 

science and marine technology. The data assimilation framework consists of three 

components: observations, a dynamic model and an assimilation or melding scheme. 

The available observations and the dynamic model are assimilated via the melding 

scheme to provide estimates of the states or ‘fields’ of interest.

Data assimilation has wide application but has proved particularly useful in the 

following areas (Robinson et al., 1999). Firstly, data assimilation can be used to 

minimise the predictability error of a model by continually updating the model’s 

parameters/structure as new data becomes available so that reliable and accurate 

forecasts are maintained. Secondly, where the dynamic model is deficient, data 

assimilation can be used as a tool to continually adjust the model using the available 

data, such that it provides reasonable quantitative estimates of the state variables of 

interest. Thirdly, it can be used for state reconstruction: data can be assimilated into 

the model such to provide estimates of states that can be directly measured. Fourthly, 

to gain a better understanding of the dynamic processes of the system under 

consideration. Finally, the dynamic model and simulated high resolution data can be 

used to determine where key experimental networks should to be located such to 

increase the efficiency of the estimates required.

Data assimilation is ultimately an estimation problem and the methods that are 

generally applied originate from either estimation or control theory. Methods include 

sequential estimation using the Kalman filter, stochastic estimation using Maximum 

Likelihood, and direct minimisation methods such as genetic algorithms and simulated 

annealing. Details of these methods have been introduced in Chapter 2 but for more
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specific information, the reader is referred to texts on data assimilation (e.g. Robinson, 

et a l ,  1999; Brasseur, 1995).

6.2 M a r in e  E c o sy st e m  M o d e l l in g

Scientists have attempted to model marine ecosystems since the late 1940’s (e.g. 

Riley, 1946) and many models addressing different areas of marine ecosystems have 

been published. In the last two-three decades, there has been a significant revival of 

interest in these models as scientists wish to quantify the fluxes of the key growth 

limiting elements, carbon and nitrogen, at different scales, (Steele and Henderson, 

1992). Models incorporating the increased knowledge of ecosystem components and 

the flows between them, have been recently developed (e.g. Pace et a l ,  1984; Fasham 

1985). These models are generally formulated to run over specific short time periods, 

such as over a spring bloom, and can be very sensitive to initial conditions. One 

further limitation of these models is their failure to produce realistic results when they 

are simulated for longer then the event timescale. As a result, a seasonal approach to 

modelling the nitrate-phytoplankton-zooplankton (NPZ) dynamics of the mixed layer 

was introduced by the seminal paper of Evans and Parslow (1985), where the annual 

cycle of the atmosphere and physical conditions in the sea drive the population cycle. 

Recent models have followed this approach (Matear, 1995; Fasham et a l, 1990). For 

a more detailed historical summary the reader is referred to Fasham, (1993) and 

references therein.

Although a stochastic approach to modelling ecosystems has been taken in the past 

(e.g. Jemigan and Tsokos, 1980; Kremer, 1983), the deterministic method is generally
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favoured. The models are comprised of equations describing the dominant processes 

of the biological compartments, (deemed by the modeller to account for the main 

dynamics of the system), linked to a physical model governing the external 

environmental forcings of the system (e.g. climate variables and the depth of the 

mixed layer etc). This structure will tend to depend upon the motivation of the 

individual modeller, for example, according to whether the objective is to model 

individual species of zooplankton or zooplankton en masse.

The most recent models can be placed into two categories: firstly, complex models 

that strive to describe the complicated bio-geochemical processes within the 

ecosystem using coupled nonlinear differential equations, (e.g. Fasham et al., 1990; 

Sarmiento et a l ,  1993); secondly, simpler models that aim to expose the main 

dynamic features of the ecosystem and the effects of the external forcings on the 

system in a more qualitative manner (e.g. Evans and Parslow, 1985; Steele and 

Henderson, 1981). These deterministic models are highly parameterised: for example, 

the complex seven component model of Fasham et al., (1990) and the simple model of 

Evans and Parslow (1985) have 26 and 15 parameters, respectively. Evidence in the 

recent literature suggests that there has been little critical evaluation of ecosystem 

model complexity in the marine sciences. Possible over-parameterisation and the 

resulting model uncertainty, derived from the difficulty in estimating parameters in 

over-parameterised models from limited data has not generally been investigated.
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6.2.1 Selection of ecosystem model for analysis

Recent studies (Young et al., 1996; Parkinson and Young, 1998) have demonstrated 

that complex nonlinear simulation models can be over-parameterised and that 

linearised, reduced order models can be identified that still retain the dominant 

dynamics of the system. For example, Parkinson and Young (1998) were able to 

identify a fourth order linear transfer function model that was capable of modelling 

atmospheric carbon dioxide to almost the same degree of accuracy as a 26th order 

nonlinear simulation model. It is possible, therefore, that the deterministic ecosystem 

model, outlined in Section 6.3, may be over-parameterised and can be reconstructed 

with reduced order. However, since these models are not particularly high order, 

major simplifications such as those achieved by the above researchers in connection 

with global climate models are unlikely.

Nevertheless, as a preliminary investigation, it is sensible to evaluate a simple lower 

order ecosystem model in order to determine whether over-parameterisation exists and 

model reduction is possible. In the present study, the three component model of 

M atear (1995) has been chosen for this kind of preliminary analysis. An assessment 

of the uncertainty in a relatively simple ecosystem model such as this, is essential, 

before investigating more complex models which it is hoped will form the basis of 

future research.

6.2.2 Mixed layer dynamics

The annual cycle of plankton populations are forced by the annual cycles of the 

physical conditions at sea: solar radiation; water temperature; nitrate concentration
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below the mixed layer; day length; and the depth of the mixed layer. The most 

important controlling factors affecting plankton populations are the depth of the mixed 

layer and solar radiation. The mixed layer is defined as the water trapped above the 

thermocline. Below the mixed layer, the temperature of the water decreases rapidly 

and the thermocline describes the depth at which the greatest temperature change 

occurs. In the summer, the surface temperatures increase and the mixed layer depth 

reduces due to the development of a ‘seasonal’ thermocline. In the winter, there is a 

net loss of heat energy and perpetual wind mixing erodes away the seasonal 

thermocline; water temperatures are low and the mixed layer is deep. As the mixed 

layer deepens, nutrients are entrained from below, which fuels primary production; 

when the mixed layer reduces in the spring time, material is lost to the underlying 

layer. The phytoplankton that remain are subjected to increased daily irradiance which 

enhances their growth rate. It is traditionally assumed that rapid shallowing of the 

mixed layer causes a sudden increase in phytoplankton growth, resulting in the 

formation of a spring bloom (Gran and Baarud, 1935). An alternative theory is 

proposed by Evans and Parslow (1985), who, through the use of a deterministic 

model, found that sudden changes in the mixed layer depth were not the controlling 

factor triggering spring blooms. Their research suggests that the nature of the 

midwinter phytoplankton growth rate is the key to spring bloom development.

6.3 T h r e e  c o m p o n e n t  NPZ e c o s y s t e m  m o d e l

The three component nitrate-phytoplankton-zooplankton, ecosystem model (Matear, 

1995) (hereafter referred to as the TCE model) describes the exchange of nitrogen 

between three different biological compartments within the upper mixed layer of the
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ocean. It describes the seasonal evolution of phytoplankton (P), whose growth rate is 

determined by photosynthesis and limited by essential nutrients (N). Phytoplankton 

are in turn grazed by herbivorous zooplankton (Z). The model assumes that the ocean 

is divided into two separate compartments. The mixed layer is biologically active, 

containing both plankton and nutrients with a uniform depth concentration. Nutrients, 

but no plankton are present in the biologically inactive layer below the mixed layer.

Following Evans and Parslow, (1985) the mixed layer dynamics of the ocean are not 

directly modelled. The rate of change of the observed mixed layer depth f  (t)

—  = C(0 (6.1)
dt

is used to modify the model in following asymmetrical manner. Deepening of the 

mixed layer (£ (f)> 0 ) causes a change in concentration of non-motile components 

(components not capable of motion): water introduced from the inactive zone mixes 

with the surface water, diluting the concentration of phytoplankton, and causes mixing 

of surface and deep water nitrate. As no new water is introduced when the mixed 

layer shallows (£(f) < 0 ), the concentration of non-motile phytoplankton and nitrate 

remain constant and the concentration of motile zooplankton increases. This 

asymmetry is introduced into the model by defining £+(0  = max(£(r), 0 ).

Following Matear, the coupled ordinary differential equations governing the temporal 

evolution of nitrate, phytoplankton and zooplankton concentrations take the following 

form:
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dN  , . . .
—— = -(uptake + respiration) + mixing + Z excretion + Z predation (6.2)
at

dP ,  • ■ x—  = (uptake - respiration) - grazing by Z - sinking (6.3)
dt

dZ  ,
—  = growth - mortality - sinking (6.4)
dt

with the specific functional form:

^ =-[«(?, m ) a  -  mi ]p + m+i +(t} w 0 -n )
d t M

o ( p - p  )z 
+ d ■- V2 )r5 + a - r 4 )y5z

dP
dt L '  7 J K 3 + P -P „  M

dt K3 + P -P „  M

(6.5)

(6.6)

d z _ y 28( P - P J z _ ^ z _ 0 ! l z  ( 6 ? )

where (2i, the non dimensional nutrient limitation term is defined as,

( 6 - 8 )

The photosynthetic growth rate of phytoplankton a ( t ,M ) is averaged over the depth 

of the mixed layer and is obtained by integrating over one day/night cycle, i.e.,
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T  M

dt (6.9)

The Smith (1936) function, G (7 ) , determines the phytoplankton growth rate as a 

function of light, and 2 t  defines the day length. The descriptive parameters of the 

TCE model are defined with their a priori values in Table 6.1.

Table 6.1 Ecosystem model parameters and suggested a priori values (Matear, 1995)

Definition Symbol A priori 
value

Units

Phytoplankton Parameters

Half Saturation Constant of N  uptake Kj 1.0±1.0 p M

Specific Mortality Rate Pi 0.024±0.05 d 1

Light attenuation by P Kc 0.06

Light attenuation by water Kw 0.04 m

Initial slope of the P-I curve a 0.025±0.01 (W m 2d y ‘

Phytosynthetically active radiation PAR 0.5 -

Zooplankton Parameters

Assimilation efficiency of Z 72 0.5±0.1 -

Detrial fraction of Z mortality 74 0.33±0.1 -

Fraction of Z excreted as N  
metabolites

75 0.6±0.05 -

Specific mortality of Z P5 0.07±0.02 d 1

Maximum growth rate of Z 8 1.0db0.2 d 1

Half saturation for ingestion of Z k 3 0.5±0.3 p M

Grazing threshold of Z Po 0.05±0.05 p M

Physical Mixing Parameters

Diffusion Rate m 3.0±0.5 m d 1
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6.3.1 SIMULINK representation of the ecosystem model

Previously, ecosystem models have mainly been simulated after extensive 

programming in FORTRAN or other similar computer languages (Fasham et al., 

1990). In this study, a more novel approach has been used and the ecosystem model 

has been constructed using SIMULINK, an ‘iconographic’ dynamic simulation 

computer package and an extension of the numerical and visualisation package 

MATLAB. Complex nonlinear models are easily simulated utilising SIMULINK: 

using the iconographic libraries, linear and nonlinear icon blocks can be selected and 

connected together graphically using mouse driven commands to quickly construct a 

model. Utilising the whole block diagram, the model equations are collated and 

solved using a user-specified integration algorithm. This novel approach has the 

advantage that models can be formulated and analysed using a single software 

environment. Other key benefits of using SIMULINK comprise: an enhanced 

visualisation of the model; greater interaction with the model allowing adjustments to 

be made easily as the research dictates; change of parameter values during simulation; 

and lastly the availability of output data to MATLAB for extended numerical analysis. 

The top layer of the SIMULINK iconographic ecosystem model is shown in Figure 

6.1. Here the blocks ‘PHYTOPLANKTON’,’NITRATE’, and ‘ZOOPLANKTON’ 

contain the model equations in block form and these are shown in Figures 6.2-6.8.
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Figure 6.1 Sim ulink iconographic representation of the TCE Model
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Figure 6.2 Sim ulink iconographic representation of the Phytoplankton System
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Figure 6.3 Sim ulink iconographic representation of the Nutrient System
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Figure 6.4 Sim ulink iconographic representation of the Zooplankton System
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Figure 6.5 Sim ulink iconographic representation of the mixed layer depth equations.
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Figure 6.7 Sim ulink iconographic representation of the mixing terms.
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Figure 6.8 Repeated term.

6.3.2 Biological data.

The data used for this analysis originate from observations taken at the Ocean Weather 

Station P (50°N, 145°W), in the Gulf of Alaska. The data can be separated into three 

categories. Firstly, the data that are required to drive/force the model dynamics. 

Secondly, observations of the model outputs used to constrain the model parameters 

during optimisation; and thirdly, suggested a priori values for the model parameters.

The ecosystem model is driven by five forcing terms that show characteristic annual 

cycles: mixed layer depth, solar radiation, day length, temperature of the mixed layer 

and nutrient concentration immediately below the mixed layer and are shown in Figure 

6.9. These data are based on average measurements taken at Station P.
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Figure 6.9 Physical forcing terms of the ecosystem model

Nitrate (N), phytoplankton (P), net phytoplankton productivity (NPP) and limited 

zooplankton (Z) observational data, taken at Station P, are available to optimise the 

model parameters, as shown in Figure 6.10. NPP is defined as the net uptake of CO2 

by phytoplankton for photosynthesis, less the C 0 2 respired. The phytoplankton 

concentration at Station P has little seasonal variation, which is common throughout 

the open subarctic Pacific (Frost, 1991). This contrasts with the seasonal variations at 

shelf and inland subarctic Pacific waters and in other oceans (e.g. sub-arctic north 

Atlantic) where pronounced seasonal blooms are observed (see e.g. Landry et a l., 

1989; Kanda et a l., 1990; Parson and Lalli, 1988). The phytoplankton stock remain 

reasonably constant despite the strong seasonal variations in the properties of physical
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forcings that significantly affect the growth rate as presented in Figure 6.10. Different 

theories accounting for this atypical behaviour are discussed by Frost (1991). From 

Figure 6.10, we see that the nitrate concentration is maintained throughout most of the 

summer months whereas in the entire open sub-arctic Pacific, nitrate is depleted. A 

summer peak of zooplankton biomass is observed.
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Figure  6.10 Smoothed observed nitrate, phytoplankton, NPP and zooplankton 

concentration with ± one standard deviation uncertainty

Full detailed descriptions of all the data and their relative uncertainty can be found in 

M atear (1995) and references therein. For convenience, the data used in this study 

have been carefully digitised from figures featured in Matear (1995).
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6.3.3 Data for parameters and calibration

Assigning values to the parameters that specify the ecological interactions in a model 

can be difficult, especially as biological parameters, unlike most physical and chemical 

parameters, cannot be strictly considered as constant. W hilst some parameters can be 

measured experimentally at sea, others are either impossible to measure or they can 

not be measured accurately. Traditionally, one approach around this problem has been 

to assign values to those parameters, where experimentally determined data are 

available and to simply adjust the remaining parameters until a good fit to the data is 

achieved. Following this ad hoc constrained optimisation procedure, it is often 

difficult to obtain a good fit to the observation data and to determine whether this is 

due to inadequacies in the model structure, or whether the appropriate parameter space 

has been considered.

6.4  R e v ie w  o f  o p t im isa t io n  m e t h o d s

Three different nonlinear optimisation techniques applied to oceanic ecosystem 

models have been presented recently in the literature: conjugate direction, Markov 

Chain Monte Carlo (MCMC) and simulated annealing methods are outlined by 

Fasham and Evans, (1995), Harmon and Challenor, (1997) and Matear, (1995) 

respectively. Several key points can be deduced from the applications of these 

optimisation methods.

Firstly, it is not always possible to obtain unique parameter sets that give an optimal fit 

to the data (Matear, 1995; Fasham and Evans, 1995). Despite (or perhaps because of) 

the complexity of the ecosystem model and the large number of parameters required, 

Fasham and Evans (1995) were unable to find a unique parameter set that was able to
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give a good fit to all the data simultaneously. Two different optimal sets of 

parameters were discovered, one gave a good fit to primary production but a bad fit to 

zooplankton; and the other produced the converse results. Secondly, high parameter 

cross correlation was often observed at the optimisation termination, suggesting 

possible over-parameterisation of the model. Simulating the results of parameter 

estimation using simulated annealing (Matear; 1995) revealed that for several different 

models, only 10 independent parameters could be estimated from the data. Thirdly, 

the Markov Chain Monte Carlo (MCMC) method adopted by Harmon and Challoner 

(1997) also exemplified this point, as it became impractical to estimate more than 10 

parameters from a total of 28.

6.5 D e t e r m in is t ic  p a r a m e t e r  o p t im is a t io n

Initial simulation of the TCE model with different parameter sets indicated how 

sensitive the model was both to initial conditions of the three states (N , P, Z) and to 

the parameter values. Inappropriate choice of the parameter values caused the model 

either to go highly unstable or yield unrealistic results. Furthermore, the quasi- 

Newton and nonlinear least squares optimisation routines, FMINS, FMINU and 

T FASTSO (MathsWorks, 1992), were unable to converge unless they were initialised 

with parameter values close to those at the global minima in the hyper-space. In 

contrast, initiation problems were not encountered through optimising the model 

parameters using a genetic algorithm (GA), a stochastic global search method (see 

Chapter 2). G A ’s utilise a ‘population’ of potential solutions (parameter sets) to avoid 

getting stuck in local, rather than the global minima in the parameter hyper-space. For 

these reasons, a two stage process of optimisation was carried out. Firstly, the genetic
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algorithm was used to locate the approximate area within the parameter space which 

contained the true minima. Secondly, the parameter estimates were refined using a 

nonlinear least squares algorithm which additionally generates a parameter covariance 

matrix, providing estimates of the precision and the sensitivity of the model to each 

parameter.

Model parameter optimisation was carried out twice using two different multi­

objective cost functions. The first, equation (6.10) was simply used to minimise the 

data misfit only. The second, equation (6.11) included data misfit, steady state and a 

priori parameter penalty terms. Using two separate cost functions in the optimisation 

analysis allowed, firstly, to obtain the set of parameters that gave the best model fit to 

the data and secondly, the set of parameter values that gave both the best model fit 

when restricted by initial a priori parameter limits. The model was simulated for three 

years during each optimisation iteration so that the model had reached a steady 

operating state, and the output from the final year was utilised within the cost function. 

For simplicity, parameters K w, K c and PAR  were held constant during each

optimisation iteration,

' = i £ ( y f -y , )2 (6.io)
z 1=1

1 n 1 1 m

3 = ~ E(y< -y<) 2 +-|>-z)2 <611)
l ,=i z  z i=i

where matrix y defines the observed concentrations of N, P, Z and NPP 

(y = \N iPiNPPiZ i ]); and the matrix y defines the simulated outputs at day i of the
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total n days of the simulation period. The second term in equation (6.11) forces the 

model to have a steady state output over the seasonal cycle. The final term in equation 

(6.11) is incorporated to force the m  model parameters z to maintain a close 

approximation to their expected a priori values z .

Repeated optimisation highlighted the complex nature of the parameter hyperspace 

and even with the inclusion of the GA, local minima were not always avoided. Each 

separate iteration converged on completely different sets of parameters, with only 

slightly different values of the cost function. Many successive iterations of the 

optimisation procedure were required, therefore, to ensure that the full parameter 

hyperspace was sampled. Maximum and minimum values for each parameter were 

user-specified within the GA routine. These boundaries were often reached as the GA 

attempted to converge, especially when the first cost function (6.10) was used. The 

resulting parameter estimates in such cases were then already biased. In light of this 

evidence, the parameter value boundaries were relaxed to allow the GA to move in an 

unrestricted manner around the parameter space. However, regardless of the boundary 

width they were often reached. These results could suggest parameter collinearity 

associated with possible model over-parameterisation.

The parameter sets that minimised the two cost functions are shown in Table 6.2 as 

Set 1 and 2 respectively. The outputs from simulating the model using these 

parameter sets are compared to the observational data in Figure 6.11.
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Table 6.2 Optimal model parameters with standard errors given in parenthesis.

Parameter Set 1 Set 2
K , 3.0001 (4.0651) 0.1385 (1.6623)

Pi 0.0034(0.0043) 0.0006 (0.0127)

Po 0.1835 (0.0435) 0.0830 (0.0219)

k 3 1.9234 (20.5315) 0.4388 (2.4308)

g 1.9309(19.4843) 1.9962 (9.2978)

Y2 0.3717 (0.0806) 0.5809 (0.7005)

P’S 0.0074 (0.0016) 0.0630 (0.0190)

m 1.5308 (0.4489) 2.1875 (0.7180)

Ys 0.0001 (1.1608) 0.5858 (12.9320)

Y4 0.0007 (2.7910) 0.3210(9.3211)

a 0.0219 (0.0075) 0 .0500(0 .0159)

Cost Function 1 0.264 0.686

Cost Function 2 7.170 0.4131
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Figure 6.11 Observation data (thin line) and simulation response to optimised 

parameter set 1 (bold line) and 2 (dotted line ). Units of concentrations are \xM N m 3
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Parameter Set 1 successfully generates a sustained limit cycle for all outputs and 

reproduces the observed phytoplankton, nitrate, and NPP concentrations well within 

the uncertainty limits (one standard deviation) of the data (Figure 6.10). However, the 

simulated zooplankton concentration is much higher than the observed data, a problem 

that was consistently observed throughout most optimisation iterations. The failure of 

the simulation to capture the zooplankton dynamics, highlights either a limitation of 

the model structure and/or inappropriate model parameter values. It should be noted, 

however, that the measured zooplankton data series has the greatest uncertainty and 

this may account for these problems.

The observed nitrate, NPP  and zooplankton concentrations are successfully 

reproduced using the parameter Set 2. The close model fit to the observed 

zooplankton concentration is almost unique to these parameter values: no other set of 

parameters from all the optimisation solutions showed this behaviour. However, the 

phytoplankton concentration is significantly lower in comparison to the concentration 

obtained with parameter Set 1. The model generates a weak spring phytoplankton 

bloom but, for the majority of the remaining annual cycle, the phytoplankton 

concentration drops just below the uncertainty limits of the data. The spring bloom is 

the result of a disparity between the growth of phytoplankton and their grazing by 

zooplankton. This, in turn, is caused because of the existence of a zooplankton 

feeding threshold within the model. Subsequent to the phytoplankton concentration 

exceeding this threshold, grazing by zooplankton reduces the phytoplankton 

concentration to a steady level.
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The above results are not surprising as Matear (1995) was unable to obtain a 

parameter set that gave a model output that simultaneously fitted all four observed 

series from Station P, without imposing an artificial constraint on the model. 

Consequently, the ability to capture the dynamics of the annual zooplankton 

concentration with only a small effect on the phytoplankton, by using parameter Set 2 

can be regarded as an achievement of the present optimisation.

The best model fit to the data (in cost function terms) was produced using parameter 

Set 1, which was obtained giving the optimisation algorithms unrestricted access to 

the parameter space. However, a large disparity exists between the optimised and a 

priori parameter values; only three parameters, p 15 y 2, and a  have values within the 

‘a  priori’ range. Note also that the parameter penalty component, incorporated within 

cost function 2 did not restrict parameters a ,  m, and g from Set 1 to be within the a 

priori range.

If the optimised values are so unrealistic in physical terms the whole parameter set 

could be completely rejected. In this manner, the model structure could be regarded as 

an unrealistic representation of the ecosystem at Station P. The outcome of such a 

debate will depend largely upon the goals of the modelling exercise and the perception 

of the modeller i.e. whether to produce a model that will achieve the best fit to the 

data, or to produce a model that must retain the greatest relationship to physical reality 

as currently perceived, so compromising model fit.

It is important to consider the high standard errors, associated with each parameter 

estimate, presented in Table 6.2. Both models are badly defined; only five out of the
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eleven parameters in Set 1 and three parameters in Set 2 have standard errors smaller 

in magnitude than their respective parameter value. The covariance matrix of each 

parameter set can be utilised to investigate this uncertainty. The covariance and 

associated correlation matrices indicate that a number of parameters are closely 

correlated. Table 6.3 presents the correlation matrix of parameter Set 1. Six pairs of 

parameters have an absolute correlation coefficient greater than 0.75 (highlighted in 

bold), indicating that only five parameters out of eleven can be independently 

identified. The results from repeated optimisation iterations, indicated that three pairs 

of parameters, K3: g , Y4:Ys and cc:jLij, consistently showed the highest correlation. 

The correlation matrix of parameter Set 2 exhibits similar characteristics.

T able 6.3 Correlation coefficients of the parameters in Set 1

Kx Hi Po k 3 g Y2 Hs m Ys Y4 a

Kj 1.000 0.736 0.745 -0.757 -0.753 -0.312 -0.729 0.055 0.009 -0.050 0.751

Hi 0.736 1.000 0.225 -0.635 -0.627 -0.429 -0.650 0.056 0.058 0.017 0.931

Po 0.745 0.225 1.000 -0.650 -0.650 0.048 -0.376 0.047 -0.019 -0.030 0.141

k 3 -0.757 -0.635 -0.650 1.000 1.000 0.280 0.597 -0.010 -0.068 -0.012 -0.582

g -0.753 -0.627 -0.650 1.000 1.000 0.267 0.594 -0.004 -0.063 -0.008 -0.575

Yl -0.312 -0.429 0.048 0.280 0.267 1.000 0.443 0.139 0.086 0.180 -0.502

Hj -0.729 -0.650 -0.376 0.597 0.594 0.443 1.000 -0.450 -0.163 -0.183 -0.741

m 0.055 0.056 0.047 -0.010 -0.004 0.139 -0.450 1.000 0.490 0.627 0.109

Ys 0.009 0.058 -0.019 -0.068 -0.063 0.086 -0.163 0.490 1.000 0.836 0.086

Y4 -0.050 0.017 -0.030 -0.012 -0.008 0.180 -0.183 0.627 0.836 1.000 0.032

a 0.751 0.931 0.141 -0.582 -0.575 -0.502 -0.741 0.109 0.086 0.032 1.000

M atear (1995) also observed parameter cross correlation of this type when optimising 

the TCE model using simulated annealing. However, the correlated parameter pairs 

(A^iUp K^.Q, K{.a, jLiji©, m :a , 0 :a )  he identified are not all identical to those 

identified above. In particular, the optimisation results above and M atear’s indicate 

different parameter pairs exhibit cross-correlation in different regions of the parameter
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hyper-space. This unusual behaviour may be a direct result of the model nonlinearity 

operating in a contrasting manner depending on the region of the parameter hyper 

space. To illustrate parameter collinearity, an optimisation iteration was performed 

where only K3 and g were free to vary. As expected, the optimisation algorithms were 

unable to converge and a trace of the two parameter values during the optimisation 

showed the parameter values changing in order to maintain a fixed ratio with each 

other. It is likely that multi-parameter correlation exists, which cannot be so easily 

evaluated.

Table 6.4. Re-optimisation of Solution 1 parameters. Parameters marked with an

asterix are held constant.

Parameter Value Standard Error
K , 3.0018 2.7092

Hi * 0.0034 -

Po 0.2189 0.0456

k 3* 1.9234 -

8 1.9296 0.4385

72 0.3490 0.0770

Hs 0.0066 0.0013

m 1.5305 0.3961

Ys 0.0001 0.7070

Y4* 0.0007 -

a 0.0177 0.0025

It is clear that uncertainty can be propagated through the model as a result of this high 

parameter correlation. Table 6.4 presents the results of holding one parameter from 

each of the three identified pairs of highly correlated parameters constant ( K3: g ,
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Y4:y5 and a :m ) . The parameter uncertainty has been reduced: the standard errors of 

the 8 estimated parameters are much lower than their original values (see Table 6.2).

Having defined the correlated parameters, examination of the model structure clearly 

shows there is indeed a direct relationship between the effects of the correlated 

parameters (Equation 6.5-6.7). For example, phytoplankton mortality rate Pj and a ,  

the initial slope of the P-I curve, both fundamentally control the growth rate of 

phytoplankton and consequently a change in Pj can be compensated by a  to maintain 

an output level and vice versa. Again parameters g and K 3 (maximum growth rate

and half saturation for ingestion of zooplankton, respectively) both determine the 

growth of zooplankton. Mathematically, the two parameters form a ratio which makes 

their correlation understandable.

6.6 M o d e l  u n c e r t a in t y  a n d  s e n sit iv it y  a n a l y s is .

All environmental models are approximations of reality and are, therefore, subject to 

uncertainty at many different levels. A broad distinction between the sources of 

uncertainty can be made (Beck, 1993). Firstly, uncertainty arising from the internal 

description of the model: spatial, temporal and ecological aggregation; model structure 

(Beck, 1985); a priori values of model parameters and states; and numerical errors in 

the solution. Secondly, uncertainty arising from the external description of the system: 

measurement errors associated with system inputs and outputs; and unobserved system 

disturbances. Many formal procedures of assessing the effects of uncertainty have 

been proposed (see e.g. Beck, 1987). However, the qualitative assessment of all 

uncertainty sources presents a large temporal burden. Model structure or the
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deterministic equations governing the model, are usually viewed as hypotheses which 

can be revised in light of evidence derived from other uncertainty and sensitivity 

analysis as discussed by Kremer, (1983).

Sensitivity analysis is used to assess and quantify the effects of model uncertainty and 

methods of analyses can be broadly classified into two main categories.

1. Deterministic: Classical analytical analysis of the model.

2. Stochastic: Analysing the model in probabilistic terms.

Both methods have the overriding aim of quantifying the impact of changes to the 

different model components on the overall model output; and large impacts imply that 

the component is important in controlling model behaviour. Traditional analytical 

methods (see review by Thornton, 1993; Tomovic, 1963) such as using partial 

derivatives of the output with respect to the parameters have been used extensively. 

However, models that are complex and incorporate nonlinearities are more difficult to 

study in analytic terms, particularly where there is a possibility of strong parameter 

interactions. Stochastic approaches to sensitivity analyses (e.g. Kremer, 1983; Rose, 

1993; Homberger and Spear, 1980; Young et al., 1996) are more powerful and have 

been applied to wide range of disciplines.

The uncertainty of lake ecosystem models has been evaluated quite extensively (Fedra 

et a l ,  1981, Scavia, 1981; 1993; van Straten, 1980; 1983) but only limited parameter 

sensitivity analysis of ecosystem models has been reported in the literature (Fasham et 

a l ,  1990 and Jambart; 1979). However, their research evaluated the sensitivity of a
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model to each parameter individually, disregarding the effects of parameter 

interactions.

The sensitivity analysis approach adopted in the present study is based on Monte Carlo 

simulation (MCS) and associated Generalised Sensitivity Analysis (GSA) (Spear and 

Homberger, 1980), which comprehensively accounts for parameter interdependence.

6.6.1 Stochastic simulation modelling

In general, a deterministic nonlinear simulation model can be defined in probabilistic 

terms by a set of lumped parameter, vector differential equations taking the following 

form:

^  = f (!(/),u(r),fW ,tf) (6.12)
dt

y{t) = h (x (t) ,u (t) ,£ (t) ,& )  (6.13)

in which x(f) = [jq x2...Jcm]Tis an m-dimensional vector of state variables that 

characterise the system; u(f) = [ux u2...un]Tis an ^-dimensional vector of measured

inputs or exogenous disturbances to the system; 5 (0  = [fi C2•••£,] is a P~ 

dimensional vector of unobserved stochastic inputs (the system noise)’, 

& = is an ^-dimensional vector of model parameters within the defined

nonlinear structure f ; y(t) = [yl y2---yr]T is an r-dimensional vector of observations
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of the system output; and B,{t) = is an s-dimensional vector of

observational or measurement noise, defined in stochastic terms.

Utilising the model formulated by equations (6.12-6.13) two sources of uncertainty 

can be defined: uncertainties in the measured and stochastic inputs, u (t) ,£ (t), and 

uncertainty in the parameters, . In the probabilistic uncertainty and sensitivity 

analysis, an ensemble of model outputs, generated through repeated MCS, can be 

assessed in order to examine and quantify the propagation of uncertainly through the 

model. For each random MCS realisation, each parameter is defined by randomly 

sampling from its predefined parent probability density function (pdf). The model is 

simulated using these constant parameters, perturbed by either stochastic or 

deterministic inputs (or both).

6.6.2 Generalised sensitivity analysis

Generalised Sensitivity Analysis (GSA), an extension of MCS, is an objective 

procedure for evaluating the relative significance of a parameter and its effect on a 

specific mode of model behaviour over a simulation period. GSA was first developed 

by Spear and Homberger, (Spear and Homberger, 1980; Homberger and Spear, 1980) 

and has had many applications, including different environmental investigations e.g. 

water quality, (Whitehead and Young, 1979; Whitehead and Homberger, 1984; Beck, 

1987; Jakeman et al, 1990b), climate (Parkinson and Young, 1998), ecology (Scavia, 

1993), control engineering (Spear, 1970) and micro economics (Young et. al, 1973).
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Prior to the GSA analysis, a range of responses for each output of the model, deemed 

to be representative and unrepresentative of the observed system behaviour, are 

defined. Repeated simulations, using randomly selected parameter sets from 

predefined pdf’s are then performed and each randomly chosen parameter set is 

classified as either producing a behavioural (B ) or non-behavioural model response

(B ) .  For each model parameter the Kolmogorov Smirnov (KS) two sample test can 

be used to identify whether there is any significant statistical difference between the 

values in the B  and B sets obtained in the MCS analysis. The cumulative 

probabilistic distribution of each parameter from both n behavioural and m  non- 

behavioural sets can be formed and the maximum vertical distance dm>n between them 

derived. The distance dmn can be subsequently checked with the KS statistic to 

confirm its relative significance.

The covariance matrix, derived from the original optimisation shown in Table 6.3, can 

be used as an objective tool for constructing the pdf for each parameter. The 

parameter values for each stochastic realisation are drawn at random from these pdf’s, 

so that the collinear or interdependent relationship between parameters is maintained 

in the MCS analysis. Note, however, that the differentiation between behavioural and 

non behavioural class is extremely subjective and this is exacerbated in this case by 

the existence of the multiple outputs from the model.
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6.6.3 Uncertainty Analysis of the TCE Model using GSA

For this study parametric uncertainty was considered paramount and, therefore, model 

inputs were considered as either measured or deterministic rather than stochastic. 

Following the MCS/GSA procedure, the main aims of the GSA analysis were to:

1. examine how uncertainty in the parameters is propagated through the model;

2. identify which parameters were the most significant in affecting model responses;

3. compare results of (2) in light of conclusions drawn from the initial model 

optimisation and discussed in Section 6.5;

4. on the basis of (2) and (3), identify the subset of significant model parameters for 

future optimisation research.

For the purpose of the present GSA, a simulation was classed as B  if any of the 

model outputs had a concentration that was greater or less than the observed series 

plus/minus 1.5 standard deviations. However, classification was limited to the 

phytoplankton, NPP and nitrate concentration outputs, since the uncertainty associated 

with the zooplankton data and the model’s failure to reproduce these data make it 

impossible to consider the zooplankton sensibly.

The initial model optimisation results discussed in Section 6.5 have shown that most 

parameters were badly estimated as a direct result of inter-parameter correlation. 

Consequently, pdf’s formulated have very wide distributions. Randomly selecting 

parameter values from such pdf’s inevitably leads to values being chosen with large 

deviations from their respective means. As a result, it might be assumed that the 

model would be sensitive to such shifts and produce an output unrepresentative of the 

system. However, by virtue of the parameter collinearity retained by the selection
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procedure, the pair ratio value remains approximately consistent and the model output 

is still representative of the system. As a result, it proved necessary to scale the 

covariance matrix to extend the range of each parameter pdf, in order to allow a 

proportionate number of B and B  simulations thus enabling proper use of the KS 

statistics. In particular, the model was separately simulated with parameters randomly 

sampled from pdf’s defined from the mean parameter Sets 1 and 2 and their 

covariance matrices, scaled by 10 and 1, respectively. Using this approach the pdf’s of 

some parameters extended below zero, which would give parameters with values that 

are physically speaking unfeasible. In these circumstances, whereever a randomly 

selected set of parameters contained a value below zero the whole set was disregarded. 

Consequently, a skewed rather than a Gaussian parameter distribution was randomly 

sampled, which could, therefore, be regarded as a limitation of the technique. Typical 

B and B responses for both parameter sets are shown in Figure 6.12.
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Figure 6.12 Typical examples of a behavioural (dotted line) and non-behavioural 

(bold line) model response for nitrate and phytoplankton. Observed data (thin line).

The results of the GSA analysis for both parameter sets are shown in Table 6.5. The 

value of the KS statistic that defines 95% statistical significance is 0.0451 and 0.0493 

for Sets 1 and 2 respectively. KS statistics give a value between 0-1, the higher the 

value the more significant the parameter. Insignificant parameters of the TCE model 

are highlighted by an asterix. However, as we see, all the parameters show statistical 

significance with the exception of K x from Set 2. This implies that all the parameters 

are required by the model, in order to generate a behavioural response.
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Table 6.5 Significant parameters of the TCE model determined by GSA.

Parameter Set 1: K-S Result Set 2: K-S Result
Ki 0.1300 0.0472*

Vi 0.1057 0.1050

Po 0.2799 0.1129

k 3 0.0947 0.1732

8 0.1101 0.0735

Y2 0.0881 0.4383

Ps 0.1872 0.0525

m 0.2225 0.1102

Ys 0.2555 0.3333

Y4 0.0969 0.2595

a 0.1410 0.1207

For illustration, cumulative frequency distributions (cfd’s) for parameters m  (Set 1) 

and K l (Set 2), are presented in Figures 6.13 and 6.14 respectively. The horizontal 

dashed line signifies the KS statistic. The dotted line indicates the magnitude of 

difference between the two responses. Figure 6.13 shows behavioural ( B ) and non- 

behavioural ( B ) responses that are ‘significantly different’. Figure 6.14 shows 

behavioural B and B  responses that are ‘not significantly different’.
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Figure 6.13 Significantly different B  and B responses observed for parameter Set 1
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Figure 6.14 Significantly similar B and B  model responses observed for parameter

Set 2, parameter K x.
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These results indicate that individually the parameters are all required to generate a 

behavioural model response. However, because optimisation has revealed parameter 

correlation exists, it is probable that the values of parameters individually is 

unimportant, and that the combination of individual parameters is paramount.

The probability of a parameter value producing a B  or B  model response can be 

obtained by differencing each cumulative distribution. The two histograms that are 

generated can be subsequently contrasted and compared with the estimated optimal 

parameters. Understandably, the most significant parameters (highest K-S statistic) 

have the most contrasting probabilistic histograms as illustrated in Figure 6.15. Where 

a KS statistic is low, (e.g. p 5: Set 2) the histograms are less distinguishable. These

relationships become more defined as the number of model simulations increases.
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Figure 6.15 Dissimilarity between B  and B probabilistic histograms, 

for parameter y 2 (Set 2).
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Except for a  and m , the histograms and cdf’s of correlated parameters generally have 

very wide distributions. Generally, the optimal parameter values from Set 2 all have 

the highest frequency of estimation. However, this was not the case for parameter Set

1. In addition, the results often indicate that the optimal estimated parameter value has 

an equal probability of generating a B and B  model response.

From these results, we can see that GSA has been unable to provide a definitive 

message in this example. It seems that, in order to obtain a greater understanding of 

the nonlinear parameter interactions that occur within complex models, such as the 

TCE model, further research is required in the domain of multivariate statistics.

It must be concluded, therefore, that GSA, based on the estimated covariance matrix 

of the model parameters, has not been able to identify any individual sections or 

parameters of the model that are particularly responsible for the observed uncertainty 

in the model output responses. Consequently, the results cannot help to further refine 

the optimisation of the model. It has also highlighted the fact that simpler 

deterministic approaches to sensitivity analysis will probably give misleading and 

inappropriate indications of parameter significance, since they do not take into account 

the parameter collinearity.
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6 .7  P a r a m e t e r  e s t i m a t i o n  b y  m a x i m u m  l i k e l i h o o d

Further TCE model parameter estimation was carried out using the Maximum 

Likelihood (ML) method outlined in Chapter 2. M L is based on one-step ahead 

predictions, calculated for nonlinear models using the Linearised Kalman Filter (LKF). 

The LKF, in its prediction-correction form, recursively estimates the state vector of the 

system and corrects this estimate as new data becomes available. In other words, it 

can be seen as a basic data assimilation tool.

The TCE model parameters were estimated by ML using the CTLSM software 

package (see Chapter 2). The CTLSM software required the following components to 

be specified:

1. The system and measurement equations /  and/i (e.g. equations 6.12-6.13);

2. the partial derivatives (Jacobians) of the state and measurement equations;

3. the inputs into the model;

4. the states to be estimated;

5. the parameters to be estimated and their maximum and minimum values.

Calculating the required partial derivatives of / ,  with respect to the parameters, 

involved an extremely complex procedure, even for the relatively simple TCE model 

differential equations. If parameters of a more complex model were to be estimated 

(e.g. Fasham, 1990), calculation of the partial derivatives could become a distinct 

problem.
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Experience using the CTLSM software has showed that the initiating conditions for 

the model are crucial for the estimation routine to converge. The quasi-Newton 

algorithm used to generate the preliminary parameter estimates is gradient based and, 

therefore, it is susceptible to local rather than global convergence.

In light of optimisation difficulties encountered in the Section 6.5, simulated  rather 

than observed data were used to evaluate the ML method of optimisation. Nitrate, 

phytoplankton, zooplankton and NPP output series were generated by simulating the 

TCE model with parameter values defined in Table 6.6. The M L optimisation was 

initiated using parameter values close to those used to generate the simulated series. 

To facilitate a valid evaluation of the ML optimisation procedure, the model was also 

optimised using simulated data by the nonlinear least squares method.

6.7.1 ML estimation results

The CTLSM estimation routine converged, finally, but only after 36 hours of CPU 

time on a Sun SPARC ULTRA workstation. This excessive convergence time seems 

to be a fundamental limitation of this estimation procedure and, in its present 

configuration, is highly unsuitable for on-line data assimilation purposes. This time 

would also increase significantly if the parameters of the model were to be estimated 

as time variable, which is a likely consideration in practical applications. The final 

M L parameter estimates are presented in Table 6.6 and as shown in Figure 6.16, the 

estimated model output series are identical to the simulated model output.
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Table 6.6 Parameters estimated using the M L method.

Parameter Simulated ML Estimated Std Error
Ki 0.1385 0.0391 0.0154

Hi 0.006 0.00263 1.935e-4

Po 0.0827 0.0828 4.2368e-5

k 3 0.4388 0.429 4.0542-3

g 1.9962 2.0113 0.01677

Y2 0.5809 0.5644 1.1834e-3

Hs 0.0630 0.06277 1.0262e-4

m 2.1875 2.1112 3.5892e-3

Ys 0.5859 0.5320 0.02582

Y4 0.3210 0.2379 0.0186

a 0.05 0.05107 2.144e-4
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Figure 6.16 Simulated and ML estimated model output
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The ML estimated parameter values are generally very similar to those used to 

generate the simulated model output, (columns two and three in Table 6.6), although 

there are marked exceptions: Kj, [Ai, Ys, and y#. Table 6.7 presents the cross 

correlation matrix of the ML estimated parameters and indicates that significant 

correlation exists between the parameter pairs, Kj./xiand  Ys- Y4 ■ This correlation 

accounts for why the estimated values of these parameters deviate from the values 

used to simulate the model, although an identical model output is maintained.

T able 6.7 Cross correlation matrix of ML estimated parameters

K1 ul Po K3 8 Y2 U5 m Y5 Y4 a
K1 1 0.7 0.44 -0.09 -0.02 -0.33 -0.46 -0.23 0.01 0.02 0.82
III 0.7 1 0.38 -0.19 -0.08 -0.49 -0.37 -0.3 -0.03 -0.03 0.89
Po 0.44 0.38 1 -0.48 -0.3 -0.7 -0.82 0.02 -0.03 -0.06 0.44
K3 -0.09 -0.19 -0.48 1 0.98 0.07 0.08 0.09 0.03 0.02 -0.1
g -0.02 -0.08 -0.3 0.98 1 -0.14 -0.1 0.09 0.03 0.01 0.04
y2 -0.33 -0.49 -0.7 0.07 -0.14 1 0.88 -0.04 0.01 0.07 -0.6
H-5 -0.46 -0.37 -0.82 0.08 -0.1 0.88 1 -0.07 0.01 0.06 -0.49
m -0.23 -0.3 0.02 0.09 0.09 -0.04 -0.07 1 0.12 0.03 -0.1
Y5 0.01 -0.03 -0.03 0.03 0.03 0.01 0.01 0.12 1 0.98 0.01
y4 0.02 -0.03 -0.06 0.02 0.01 0.07 0.06 0.03 0.98 1 -0.01
a 0.82 0.89 0.44 -0.1 0.04 -0.6 -0.49 -0.1 0.01 -0.01 1

In contrast, nonlinear least squares was unable to optimise the model. Although, 

initiating the optimisation procedure in an identical manner to the ML approach, when 

the algorithm converged, the values of the model parameters were substantially 

different from those used in the simulation and the model output series were far from 

identical to the simulated series.

W hilst these results highlight the superior parameter estimation qualities of ML, 

additional analysis revealed further limitations of the CTLSM M L procedure. The 

poor robustness of this parameter estimation approach becomes clear when the routine

220



C h a p t e r  6: O c e a n ic  E c o s y s t e m  M o d e l l in g

is initialised with the parameter values that are not close to the known optima and 

when the model is optimised based on measured, rather than simulated data. The ML 

procedure (in the CTLSM format) failed badly in both situations. Due to the nature of 

the gradient based (see Chapter 2) quasi-Newton algorithm, used to generate 

parameter estimates within the CTLSM software, if inappropriate initial parameter 

values are specified (i.e. causing the model to go unstable) the estimation routine 

cannot easily track towards a minima. An algorithm that generates parameters 

incorporating a random component, (i.e. genetic algorithm) would help alleviate this 

problem. Modifications of the CTLSM or alternative M L procedures to include such 

methods could form a suitable topic for future research.

The CTLSM software would not converge when applied to the measured  data and 

crashed completely midway (after 18 hours) through the estimation procedure. 

Repeated attempts to achieve convergence by defining different initial conditions 

failed and, in the end, had to be abandoned due to time constraints. An alternative, 

computationally effective method would be to use the continuous-discrete Kalman 

filter mechanisations. The differential equations would form the system equation (as 

with the LKF) and integration would yield the one step ahead predictions. The use of 

the continuous-discrete Kalman filter would also mean that irregular sampled data 

could be utilised, so enhancing the practical utility of this approach to ML estimation 

and data assimilation. The results from this ML estimation analysis indicate that such 

modifications would be essential to optimise models with a larger and more complex 

structure.
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6.8  M o d e l  l in e a r is a t io n  a n d  r e d u c t io n

With the continued evolution of modem super computers, there is a tendency for more 

detailed processes to be included in deterministic models, increasing still further their 

complexity and associated uncertainty. Some researchers, however, are recognising 

that model complexity is often unnecessary and detrimental to the aims of the project. 

Complex environmental models can be effectively simplified, using various 

techniques, whereby the dominant behavioural modes of the dynamic system can be 

identified and represented by a series of simple reduced order linear models. Most 

topically, the complexity of global climate models have been successfully addressed in 

recent research by Young et a l , (1996), Hasselmann et al, (1997), Hasselmann (1997) 

and Joos et al, (1996). Such simplification of complex nonlinear oceanic ecosystem 

models, retaining the dominant modes of the system, would be particularly 

advantageous for use in data assimilation frameworks, particularly in view of the 

problems identified in Section 6.7.1.

Simplification of nonlinear models can be achieved by model linearisation and 

reduction using a number of techniques. These include traditional Taylor series 

linearisation and state space model reduction, as well as data-based 

identification/estimation methods that linearise and reduce the model in one step. This 

latter data-based approach is particularly advantageous for use with complex high 

order models, where traditional linearisation approaches tend to fail. Both 

methodologies are based upon Lyapunov’s proof, that there is a region around an 

equilibrium point, however small, that can be described by a linear model. There is, of 

course, the possibility that the region of linear behaviour may be very small indeed and
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so the large number of linear models are required to characterise the whole operating 

range of the model, would make linearisation an unsuitable option. However, 

practical experience suggests that this is not normally encountered and a ‘piece-wise 

linear’ model quite often provides a good approximation to many nonlinear models. 

Previous experience (Young et al., 1996; Lees, 1996) has found that linear models can 

often successfully characterise the nonlinear dynamics over a wide operating range of 

the model. Where a constant parameter linear model may fail to approximate the 

nonlinear model behaviour, it is probable that a time varying parameter or piece-wise 

linear model can be successfully utilised. Furthermore, any system nonlinearity 

revealed in the parameter estimates may exhibit state dependence which can be 

subsequently identified following DBM techniques as demonstrated in Chapters 3, 4 

and 5.

6.8.1 Classical linearisation and model reduction

Nonlinear models characterised by differential equations can be linearised by the 

technique of calculating the first term of the Taylor series expansion for a small 

deviation in the inputs and states around a steady state operating point. A linear model 

is therefore formed by calculating the rate of change of the state derivatives 

(Jacobians) and the rate of change of the outputs with respect to the inputs at a 

specified steady state operating point. The resulting continuous-time model can be 

written in state space format:

x  = A x  + Bu

y = Cx + Du

(6.14)

(6.15)
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For any reasonably defined nonlinear model, equations (6.14-6.15) can be calculated 

using the Linmod function available in M atlab/S imulink, where the nonlinear model 

is written either as an s-function or as a Simulink block diagram (MathsWorks, 1992). 

Subsequent to linearisation, it is sometimes desirable to reduce the order of the model 

in order to simplify the model function. Such model reduction can be achieved by 

removing those states from the model which are perceived as not significant in their 

effect on the dominant mode of model behaviour and solving the state space equations 

when these derivatives are set to zero.

6.8.2 Data based approach to model order reduction and linearisation

The data based approach to model linearisation and reduction developed by Young et 

a l ,  (1996) consists of two stages. Firstly, the steady state condition or equilibrium 

point for constant inputs of the simulation model are defined. This can be achieved 

either by simulating the model until steady state conditions are reached, or using the 

M atlab/S imulink constrained optimisation function Trim . Secondly, each model 

input variable is then individually perturbed around its constant value using a signal 

that will sufficiently or persistently excite the system, i.e. a Pseudo-Random Binary 

Signal (PRBS) or some alternative, depending on the example. Based on this input- 

output data series, a reduced order multi-variate linear transfer function model is 

identified and estimated using the advanced statistical SRIV routine.
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The complete reduced order model obtained in this manner takes the form of a m input 

and p  output multi-input multi-output (MIMO) model where each individual input- 

output element takes the following single-input single-output (SISO) form:

B, (z“‘)
y j(k )=  _1 U,(k) (6.16)

A/(z )

Here, w((£)and yy(fc) are the ith input and jth  output variables, respectively, 

characterised by the polynomials _1) and 5 y(z”‘) of order nij and mij in the 

backward shift operator. If a pure time delay, 8 ,  effects the system, this is 

accommodated by setting the 8  leading coefficients of to zero. The model is

identified and parameters estimated using the SRIV algorithm. The resulting 

parsimonious model should capture the dominant dynamics of the system.

6.8.3 Results of classical and DBM model linearisation

The TCE model has five exogenous inputs each effecting the model response to 

different extents. The magnitude of each input changes quite considerably over its 

annual cycle, effectively equating to an infinite number of model operating points. 

The mixed layer depth (Af) has the most significant effect on the model output and to 

evaluate whether linearisation of the TCE model is possible at this preliminary stage, 

the model was linearised with respect to M  only. All other input variables were set 

constant at their respective mean annual values as shown in Table 6.8.
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Table 6.8 Values of input variables for model linearisation and order reduction

Input Variable Constant Input
Total Irradience (/) 55.70 Wrri2

Mixed Layer Temperature (mt) 8.14° C

Day Length (2x) 0.25

Nitrate Cone. Below the Mixed Layer (N 0) 13.00

Table 6.9 Steady state conditions (SSC) calculated by continuous simulation of the 

TCE model and by constrained optimisation, M atlab/S imulink Trim function.

Constant 
Input M

SSC calculated by continuous simulation of the 
TC E Model and by constrained optimisation 

(Trim function).

N P Z

20 12.639 0.2035 0.963

30 12.571 0.2035 0.921

40 12.530 0.2035 0.814

50 12.508 0.2035 0.707

60 12.495 0.2035 0.616

70 12.489 0.2035 0.538

80 12.486 0.2035 0.474

90 12.486 0.2035 0.422

100 12.487 0.2035 0.379

It is necessary to linearise the TCE model over the annual variation of input M, which 

ranges from ~ 18- 100m. Both linearisation methods require the steady state conditions 

(SSC) to be determined at different operating points of the model (i.e. over the range 

of input M). For comparative purposes, the SSC of the TCE simulation model were 

calculated using the two contrasting methods outlined in Section 6.8.3. As expected, 

both methods gave exactly the same value for the steady state conditions at each 

constant input (M) operating point, as shown in Table 6.9.
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The results from utilising the LINMOD MATLAB function to linearise the TCE 

model were disappointing. At each operating point and for each model state, the 

LINMOD function determined a linear state space model. However, examination of 

each of these state space models highlighted (unexpectedly) the fact that each model 

failed to replicate the behaviour of the nonlinear TCE model. Thorough investigation 

could not determine why LINMOD was unable to linearise the TCE model and 

consequently, this method of linearisation was abandoned.

The data-based approach to linearisation was carried out using a mixed-layer depth 

input (M) covering the complete 18-100m operating range. To this effect, the TCE 

model was simulated using the measured mixed layer depth series to generate P, Z  and 

N  outputs. The SRIV algorithm was subsequently utilised to identify and estimate 3 

linear TF models based upon this single input (M) and 3 output data series. The 

results of the model identification/estimation are presented in Table 6.10. The model 

identification criteria clearly demonstrate that the individually estimated linear models 

are parsimonious and provide a very good fit to the data over the complete operating 

range, which is additionally shown visually in Figure 6.17. W hilst the exact dynamics 

of the nonlinear simulation model are not replicated by the linear model, for data 

assimilation purposes (e.g. the Kalman filter), the benefits of the simplified model 

structure far outweigh the resulting slight compromise in model fit. Furthermore, it 

was discovered that by decreasing the magnitude of the mixed layer depth M  input into 

the nonlinear simulation model by 30%, linear models could be identified which gave 

an almost identical fit to the simulation model outputs. This highlights the true 

operating range of the linear models.
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T able 6.10 Best linear TF models identified between input series M  and nonlinear

simulation model output series N, Z, and P.

State M odel O rd er YIC r ; A IC
N [2,2,4] -10.710 0.964 -8.686

P [2,2,0] -8.337 0.946 -13.645

Z [2,2,4] -10.373 0.960 -5.036
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F igure 6.17 Linearised (dotted line) and nonlinear (full line) models of N, P, Z

Moreover, linear models were identified at each operating point, for P, Z, and N. For 

each separate output, the best identified TF models showed a consistent structure over 

the complete range of M, which enables the models to be combined, to form a piece- 

wise linear time varying parameter TF model. W hilst a slightly enhanced model fit 

was obtained by adopting this approach, the magnitude of this increase was not such to
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outweigh the disadvantages of identifying a model with greater structural complexity 

and associated uncertainty. As a result, the piece-wise linear TF modelling approach 

was rejected.

The encouraging results from this preliminary analysis indicate that the nonlinear 

simulation model could be fully linearised with respect to all the model inputs forming 

a MIMO TF model of the form introduced in equation (6.16). Additional analysis also 

suggests that two of the inputs (mt and x) have such a minimal effect on the model 

output that they could be eliminated from the fully linearised MIMO TF model. 

Although these changes may not be significant for this relatively simple ecosystem 

model, for larger higher-order models, it should prove very worthwhile going through 

this procedure. For example, a high dimensional model reduction achieved in this 

manner by Young et a l ,  (1996) of the Enting and Lassey global carbon cycle model 

suggests that a high-order oceanic model could be reduced considerably by combined 

linearisation and reduction by data-based methods.

6.9 C o n c l u s io n

This chapter has presented the results of a preliminary study investigating the nature of 

a deterministic nonlinear oceanic ecosystem model. Oceanic ecosystem models have 

been developed as tools to help understand plankton population dynamics and to 

assess how the ecosystem may react to global climate change. The models can often 

be complex and over-parameterised, which can lead to the model outputs and the 

resulting interpretation of these outputs, to be highly uncertain. As a prelude to a 

detailed assessment of a complex higher-order ecosystem model, a three component
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nitrate-phytoplankton-zooplankton ecosystem model (Matear, 1995) has been 

evaluated.

Model parameter optimisation was carried out using nonlinear least squares and a 

genetic algorithm. The outputs generated from the optimised model provide a much 

better fit to the data than has been previously obtained (c.f. Matear, 1995). The 

optimised parameter covariance matrix shows evidence of significant model parameter 

cross-correlation or collinearity, indicating that parameters could possibly be 

eliminated from the model. Generalised Sensitivity Analysis was used to determine 

this eventuality, identifying whether any of the model parameters have an insignificant 

affect on the model responses. The results indicated that all the TCE model 

parameters were required to generate behavioural responses. However, the analysis 

highlighted that the individual parameter values were not significant, rather, the 

resulting value of the parameters in combination.

Further optimisation of the model was carried out using the stochastic Maximum 

Likelihood (ML) approach. Parameters are estimated using ML based upon one step 

ahead predictions calculated, in this instance, using the Linearised Kalman filter 

(LKF). If the model parameters were updated in this manner online, this procedure 

could be classed as data assimilation. ML estimation of the TCE model was 

undertaken using the CTLSM software which incorporates the discrete-time LKF. 

W hilst CTLSM provided good ML estimates of the model parameters (superior to 

those obtained using nonlinear least squares) based upon simulated  data it proved to 

be unable to optimise the model using the observed data series. Furthermore, the 

computation times involved in the estimation procedure prohibit it from being used as
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a data assimilation tool. Consequentially, if the advantages of model parameter 

estimation by ML are required in the future, the estimation routine would have to be 

rewritten (probably using MATLAB) using the continuous-discrete LKF. In this 

alternative form, the computational time needed for estimation would be significantly 

decreased and it would additionally avoid the necessity for incoming data 

measurements to be equally spaced, which has immediate advantages for data 

assimilation purposes.

The nonlinear TCE model was effectively linearised using the DBM  approach to 

model linearisation with respect to the mixed layer depth, the most significant input 

into the model. For nitrate, phytoplankton and zooplankton, 2nd order linear TF 

models were identified which characterised the dominant nonlinear dynamics of the 

TCE model. These initial results suggest that the nonlinear model could be fully 

linearised to form a multiple-input-multiple-output TF model. W hilst the linear model 

may not have significant advantages over the TCE model, linearisation of a more 

complex higher order ecosystem model would have distinct benefits for data 

assimilation.
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Ch a p t e r  7

C o n c l u s io n s  a n d  r e c o m m e n d a t a io n s  

FOR FUTURE RESEARCH

The chapter is structured into two sections: the first section draws together the main 

contributions of the thesis; and the second section discusses future research 

possibilities involving the development and use of the DBM  methodology in 

environmental systems.

7.1 DATA BASED MECHANISTIC MODELLING

Throughout this thesis, the DBM modelling approach has provided the underlying 

philosophy for modelling nonlinear environmental systems. Despite the difficulties of 

modelling complex nonlinear systems, the DBM approach, which exploits the 

advantages of transfer function models, has proven to be an excellent means of 

characterising the dominant behavioural modes of the systems, from only limited time 

series data. Further, the nonlinear aspects of the observed system behaviour have been 

identified in an objective manner, ensuring that the modeller’s pre-conceptions of the 

system nonlinearity are not over-emphasised in the identification of the models
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structure. This relative objectivity in modelling terms has been made possible by the 

collective application of the Fixed Interval Smoothing (FIS), Simplified Refined 

Instrumental Variable (SRIV) algorithms, and the use of the M aximum Likelihood 

(ML) method in final model estimation.

7.2  A p p l ic a t io n s  o f  D B M  m o d e l l in g

W hilst the results of Nicholson’s famous sheep blowfly experiments (1950; 1954; 

1957) have been extensively studied by many scientists, the complete egg-blowfly 

population dynamics have never been satisfactorily modelled. This has provided the 

impetus for the application of the objective DBM  modelling methodology to the 

analysis of the complete egg-blowfly system.

The nature of the egg-blowfly feedback nonlinearity is particularly crucial in the 

development of a successful model and its form has been investigated using 

statistically rigorous methods applied directly to the time series data with a minimum 

of prior assumptions. Time varying parameter estimation has yielded a characteristic 

nonlinear relationship, which exhibits clear state dependence. The resulting fully 

parameterised ‘state dependent parameter’ model provides a very good explanation of 

the egg and adult blowfly data. Unknown to the author until after the modelling study 

was completed, previous researchers (Gurney et al., 1980; 1983) have deduced the 

same form of the feedback nonlinearity through a heuristic approach, by visual 

inference from the data but without any statistical identification and verification. 

However, in most modelling applications, this ‘hypothetico-deductive’ approach 

would not be as successful, since the average modeller’s insight about the system is
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unlikely to be as effective as that of Gurney’s. As such, this ecological example 

clearly demonstrates the true potential and efficacy of the DBM  methodology for 

modelling nonlinear systems.

It is well known within the field of hydrology that the rainfall-flow relationship is 

inherently nonlinear and fundamentally affected by catchment antecedent soil moisture 

conditions. Effective rainfall-flow models must address this nonlinearity but, since 

time series data quantifying soil moisture conditions are rarely available, modellers 

have generally tackled this problem by generating a ‘soil moisture surrogate’ in either 

a conceptual or deterministic manner. In the case of the Lancaster DBM  rainfall-flow 

model, the form of the soil moisture nonlinearity is objectively identified and 

parameterised from the rainfall and flow time series directly, using time varying 

parameter and state dependent parameter estimation techniques. The availability of 

time series measurements of the soil moisture status from a Swiss mountain catchment 

has enabled the effectiveness of the Lancaster soil moisture surrogate to be determined 

for the first time. From two independent data series, the soil moisture surrogate 

generated by the Lancaster DBM model has been shown to capture the dominant 

dynamics of the measured soil moisture variables and exhibit greater correlation than 

an alternative conceptualised soil moisture surrogate generated by the IHACRES 

model (see e.g. Jakeman et al., 1990a).

These results highlight the efficacy of the Lancaster DBM rainfall-flow model and 

indicate that the model can be applied with confidence to catchments where extensive 

soil moisture time series are unavailable. The research has also shown that, where 

additional descriptive soil moisture data are available, it can be incorporated directly

234



C h a p t e r  7: C o n c l u s io n

within the rainfall-flow model, not only to improve the explanation of the data, but 

also to enhance the model’s physical interpretation.

Continuing with the hydrological theme, the DBM  approach has been used in Chapter 

5 as an exploratory tool to investigate historical reservoir sedimentation at Wyresdale 

Park catchment, Lancashire. The rainfall-sediment load relationship is extremely 

complex and nonlinear and, as yet, it has not been modelled effectively in a 

parsimonious manner. Two years of field data were available to investigate the 

rainfall-sediment relationship at Wyresdale and, whilst the identified system 

nonlinearity was not fully characterised in state dependent terms, the resulting 

identified nonlinear model provides a sufficiently good explanation of the time series 

data for hindcasting purposes. Coupled with a nonlinear TF model for sediment 

transmission across Wyresdale reservoir, the total DBM model has been shown to 

provide an effective means of reconstructing historical sediment yields and key 

sediment profiles within the lake deposits.

In this application, it should be stressed that the full potential of the analysis has also 

been restricted by the frequency and length of time series data available for model 

calibration and for hindcasting. Despite the limitations of this particular study, 

Chapter 5 has introduced a methodology that is able to utilise short periods of time 

series data to determine more information about historical catchment sediment yields 

than would otherwise be available from the contemporary records alone.

The deterministic oceanic ecosystem simulation model of M atear (1995) has provided 

a platform for a preliminary study investigating model order reduction, due to over-
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parameterisation, with the overall goal of incorporating the model within a data 

assimilation framework. By considering the model in stochastic form, statistical DBM 

techniques have been utilised to expose any poorly identifiable parameters of the 

model. In its present study, the model parameters have been successfully optimised 

based upon one-step ahead predictions, generated using the linearised Kalman filter. 

The online utilisation of this approach can lead to the development of data 

assimilation methods based on linearised but time variable parameter models. The 

research has demonstrated the initial feasibility of this approach but its further 

development is a topic for future research.

7.3 F u r t h e r  Re s e a r c h

This thesis has highlighted many promising areas for future nonlinear DBM research, 

both in terms of applying the DBM philosophy to other nonlinear systems and also 

developing the nonlinear DBM methodology further.

W hilst the rainfall-sediment model adequately describes the rainfall-sediment 

relationship, future research should aim to examine the specific form of the nonlinear 

transformed rainfall component of the model in more detail. It is hoped that further 

analysis of the rainfall-sediment nonlinearity using time-varying and state dependent 

parameter analysis will reveal a more definitive state dependent relationship which 

will not only increase the model fit to the data but also enhance the m odel’s physical 

interpretation. Additional data from the Wyresdale and other catchments would assist 

in this aim. The time varying/state dependent parameter approach to identifying 

system nonlinearities could also be utilised readily in other hydrological systems, e.g.
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in the identification and estimation of the nonlinear relationship between flow and 

stage, which would have the advantage of providing standard errors on the rating 

curve. Additionally, this methodology could be used in the field of hydrometry; for 

example, in instrumentation calibration.

It has been concluded that the DBM approach to modelling historical sediment loads 

shows great potential, although it would be more ideally suited to catchments where 

the dynamics are more distinct in daily sampled data. For this reason, it is hoped that, 

in the future this methodology will be applied to much larger catchments. Further, 

larger catchments may make the validation of a hindcasted synthetic sediment 

sequence simpler and more reliable. Sediments in reservoirs draining a larger area 

may contain more distinctive sediment horizons, which may be more easily 

identifiable in core analysis, especially when using new methods for core sequencing 

such as x-ray densiometry (Cooper and O ’Sullivan, 1998).

The encouraging results from Chapter 6 highlight, therefore, that even in a simple 

oceanic ecosystem model, there is some evidence for model over parameterisation. 

Further, it has been shown that the nonlinear model can be efficiently linearised using 

the DBM  approach. The opportunity arises therefore, to investigate parameter 

identifiability, combined statistical linearisation, and model order reduction in more 

complex, higher order, oceanic ecosystem models where it is likely that model over- 

parameterisation is more significant. It is expected that the benefits of model order 

reduction for forecasting and data assimilation will be far more consequential for these 

larger more complex models.
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In Chapter 6 the stochastic ML method of parameter estimation has been utilised to 

optimise the oceanic ecosystem model based upon all the available time series data, 

i.e. in an off-line manner. Future work should aim to implement an on-line version of 

the ecosystem model and, therefore, achieve data assimilation in its true form. To 

facilitate this implementation, a new ML estimation routine would be need to be 

developed, using MATLAB, which incorporates state estimation based on the 

continuous-discrete linearised Kalman filter. As such, the ecosystem model can 

remain defined in its continuous form but it will have the advantage of being updated 

based upon discretely measured data that does not have to be sampled equally in time.

Further impetus for general algorithm development has come from research in Chapter 

3. Here, a novel method of estimating states in nonlinear models based on state 

dependent parameter estimation has been introduced, again based on M L estimation. 

The identified state dependent time varying parameters, which characterise the system 

nonlinearity, can be solved at each recursion prior to state prediction and correction 

being undertaken. In this manner, the linear form of Kalman filter can be utilised 

rather than the computationally more intensive linearised  Kalman filter, providing a 

more efficient means of optimisation. Future research should aim to develop a generic 

algorithm that would allow any state dependent parameter definition to be 

incorporated within the Kalman filter as part of a M L based nonlinear model 

parameter estimation routine.

The results presented in this thesis have shown how the DBM modelling methodology 

can be used to effectively represent nonlinear environmental systems. The DBM 

approach and associated mathematical algorithms are truly generic and are capable of
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providing simple models that are physically interpretable. It is hoped that, in the 

future, the full potential and benefits of the DBM approach to modelling are realised 

by other researchers and are applied to a wide range of nonlinear systems.
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