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Abstract: The traditional activity of model selection aims at discovering a single model superior to other

candidate models. In the presence of pronounced noise, however, multiple models are often found to

explain the same data equally well. To resolve this model selection ambiguity, we introduce the general

approach of model selection confidence sets (MSCSs) based on likelihood ratio testing. A MSCS is

defined as a list of models statistically indistinguishable from the true model at a user-specified level of

confidence, which extends the familiar notion of confidence intervals to the model-selection framework.

Our approach guarantees asymptotically correct coverage probability of the true model when both

sample size and model dimension increase. We derive conditions under which the MSCS contains all

the relevant information about the true model structure. In addition, we propose natural statistics

based on the MSCS to measure importance of variables in a principled way that accounts for the

overall model uncertainty. When the space of feasible models is large, MSCS is implemented by an

adaptive stochastic search algorithm which samples MSCS models with high probability. The MSCS

methodology is illustrated through numerical experiments on synthetic data and real data examples.

Key words and phrases: Adaptive sampling; Likelihood ratio test; Model selection confidence set;

Optimal detectability condition

1 Introduction

Likelihood inference is a centerpiece of statistical theory and plays an important role in many

research fields. Numerous methods relying on likelihood objective functions have been de-



veloped in the literature of model selection, ranging from classic information criteria to more

recent sparsity-inducing penalization methods; see McQuarrie and Tsai (1998), Claeskens

and Hjort (2008) and Buhlmann and van de Geer (2011) for book-length expositions. In the

presence of noise in data, however, it is typically difficult to declare a single model signifi-

cantly superior to all possible competitors, due to the prevailing effect of the model selection

uncertainty. In this situation, multiple or even a large number of models may be equally

supported by data, so that any selection procedure is likely to pick at random a single model

from a large set of more or less equivalent models. Clearly, this implies tossing away valuable

information; for example, in regression analysis, alternative combinations of predictors may

be discarded, whilst such combinations may contain scientifically valid explanations of the

phenomenon under examination.

Motivated by the above issues, there has been a growing interest in developing statistical

measures of model selection uncertainty. The approach followed in this paper proposes to

construct a model selection confidence set (MSCS), defined as a set of models indistinguish-

able from the true model at a user-defined confidence level. Simply put, the MSCS extends

the familiar frequentist notion of confidence intervals to the model-selection framework. Fer-

rari and Yang (2015) first introduced confidence sets for variable selection in the context

of linear models by F-testing. They achieve the exact coverage probability for the globally

optimal model from the model space. Thus, this is the first work introducing confidence sets

in the frequantist sense for variable selection. Moreover, in their framework the number of

predictors can grow with the sample size, so that the number of potentially useful models is

allowed to be large.

Different from the MSCS of Ferrari and Yang (2015), Hansen, Lunde and Nason (2011)
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studied the methodology of model confidence sets. Their approach builds on classic step-

down procedures for multiple hypothesis testing (Lehmann and Romano, 2005; Romano

and Wold, 2005). Starting from a fixed user-defined set of models, which has limited sizes,

they carry out step-wise equivalence testing under a user-defined loss function, followed by

an elimination rule to drop the worst performing models. Previously, Shimodaira (1998)

constructed confidence sets containing models with AIC values near the smallest among

the candidate models. We refer to the Section 6 of Ferrari and Yang (2015) for a detailed

discussion.

In this paper, we introduce a general methodology to construct model selection confi-

dence sets via likelihood inference. We begin by considering a full model with p variables

to form a reference model or full model, where p is required to be less than n. This pre-

liminary step can be achieved by any over-consistent model screening method, which selects

the relevant variables plus a few other variables. We then test candidate sub-models against

the full model, by a likelihood ratio test (LRT) at the significance level 0 < α < 1. The

MSCS is formed by all the candidate models that survive the LRT screening. This way of

construction guarantees that the globally optimal model is included in the MSCS with prob-

ability at least 1− α as the sample size increases (under appropriate regularity conditions).

From a theoretical viewpoint, we investigate the condition for the MSCS to contain all the

relevant information about the model structure when both p and n diverge. Since in practice

the MSCS cannot be computed by exhaustive search unless p is very small, when the model

space is moderate or large, we propose a stochastic algorithm (MSCS-AS) which samples

MSCS models with high probability.

The proposed MSCS methodology can be used for various tasks in support of the model
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selection activity. First, given a model selected from some rule, one can immediately use the

MSCS to check if such a model is too parsimonious in terms of missing important variables.

Second, the frequency of variables in the MSCS can be used to rank their usefulness in a

principled way that accounts for the model selection uncertainty. Third, the MSCS and the

associated importance measures may be used to narrow down the list of candidate models

by considering the most important variables.

The rest of the paper is organized as follows. In Section 2, we describe the main MSCS

methodology and study the condition needed to learn the true underlying model structure.

In the same section, we propose a measure of importance for the individual variables. In

Section 3, we give an adaptive sampling algorithm that implements the MSCS methodology.

In Section 4, we study the finite sample properties of MSCS by Monte Carlo simulations for

various models. In Section 5, we illustrate the MSCS procedure using the European E.coli

outbreak data and the Australian breast cancer family study data. In Section 6, we conclude

and give final remarks. Technical proofs are deferred to the Appendix.

2 Model selection confidence sets

Consider independent observations, Y1, . . . ,Yn, from a family of models indexed by the

parameter θ = (θ1, . . . , θp)
T ∈ Θ, with corresponding log-likelihood function `n(y,θ). Each

parameter element θj ∈ θ describes a possibly relevant part of the overall model structure.

We suppose that only a subset of θ is useful for describing the data, while the others are

regarded as unnecessary. A generic model index γ is defined as a subset of indexes in

{1, . . . , p} and we write the correspondent parameter space as Θγ . Denote θγ ∈ Θγ as

a parameter with the model γ, and let pγ = card(γ) denotes the cardinality (number of
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elements) of γ. The true parameter vector and the true model is denoted by θ∗ and γ∗,

repectively, while the full model with p parameters is denoted by γf . The space of feasible

candidate models is Γ which contains the true model γ∗. The cardinality of Γ may be as

large as 2p; however it also may be restricted in some special problems.

In the rest of the paper, we assume p < n, but p is allowed to slowly grow with n,

reflecting the notion that with more observations available, the statistician is tempted to

introduce additional variables into the model. For simplicity, we omit the sub-index n when

it is clear from the context. In what follows, we use “.” to denote that the left hand side

is bounded by the right hand side up to some positive constant independent of n. We write

a & b if b . a.

2.1 Construction by likelihood ratio testing

A MSCS is constructed from the known models space, Γ, and a criterion to assess models

in Γ empirically. To screen out implausible models in the context of maximum likelihood

estimation, it is natural to use the likelihood ratio test. Given a candidate model γ, we

consider testing the null hypothesis H0 : θ∗ ∈ Θγ against the alternative hypothesis H1 :

θ∗ /∈ Θγ . Then model γ is rejected if

Λγ ≡ 2
{
`n(θ̂γf )− `n(θ̂γ)

}
≥ q(α; p− pγ), (2.1)

where: θ̂γ and θ̂γf denote, respectively, the MLEs for the candidate and full models; `n(·)

is the log-likelihood function; q(α; d) is the upper α-quantile for the central chi-squared

distribution with d degree of freedom. The (1 − α)100%–MSCS is defined by the set of all
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models surviving the LRT screening:

Γ̂α ≡ {γ ∈ Γ : Λγ ≤ q(α; p− pγ)} . (2.2)

The LRT procedure is applied to all models γ ∈ Γ: If a model is rejected, then we have

evidence that it is too parsimonious in the sense that it is likely to miss at least one important

variable. By default, the full model γf is included in Γ̂α.

When p is fixed, and γ∗ is a proper subset of γ, the limiting null distribution of the LRT

statistics Λγ is a central chi-square distribution, which follows directly from Wilks theorem

(e.g., see van der Vaart (2000)). By construction, this implies that the true model is in the

MSCS with probability approximately 1−α in large samples. Specifically, if the true model

is not the full model (γ∗ 6= γf ), we have:

lim
n→∞

P (γ∗ ∈ Γ̂α) = 1− α. (2.3)

If γ∗ = γf , then P (γ∗ ∈ Γ̂α) = 1.

When p increases with n, similar Wilks-type results are given by Portnoy (1988), Mur-

phy (1993), Fan and Peng (2004) and Fan and Zhou (2016) for exponential family models,

Cox regression, penalized likelihood and goodness of spurious fit for GLMs. These results

yield asymptotic coverage probability as in (2.3). Spokoiny (2012, 2013) establish Wilks-

type behaviours for rather general families of models, which quantify and explicitly describe

the error term in the approximation of the likelihood ratio statistics under mild regularity

conditions on the parametric family.

We remark that although the MSCS includes γ∗ with at least probability 1 − α, one
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cannot simply conclude that a variable is important just because it appears in some of the

models in Γ̂α. Actually, unimportant variables tend to appear with a respectable frequency

in the MSCS models since larger models containing the true model plus other irrelevant

variables is likely to survive the LRT screening.

2.2 Asymptotic detectability

In this section, we study the conditions under which the variables in the true model appear

with large frequency in MSCS. The results presented in this section extend the analysis given

by Ferrari and Yang (2015) for linear models.

Definition 1 (Asymptotic detectability). The MSCS (Γ̂α) is said to asymptotically detect

all the true variables, if all the variables in the true model γ∗ are included in each of the

models in Γ̂α, with probability going to 1.

The concept of detectability is closely related to the power of the LRT. In the fixed

p scenario when a candidate model γ misses at least one important variable, under ap-

propriate regularity conditions ensuring asymptotic normality of the MLE, the Λγ con-

verges in distribution to a non-central chi-square random variable with degree of freedom

dγ = p−pγ . Let θ∗γ denote the parameter value in the model γ that minimizes the Kullback-

Leibler divergence from the true density (hence providing the best approximation to the

true density). Then the non-centrality parameter of the asymptotic chi-square distribution

is δγ = (θ∗γ − θ∗)TF (θ∗)(θ∗γ − θ∗), where the F (θ) = −E [∂2`n(θ)/∂θ2] is the Fisher infor-

mation matrix. In the normal regression case as in Ferrari and Yang (2015), the asymptotic

distribution is exact. Clearly, when applying LRT to a model γ, a large value of δγ makes

it easier to reject γ.
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In the following theorem, we show that the limiting non-central chi-square alternative

distribution is still valid under certain conditions for an exponential model where Y1, . . . ,Yn

are i.i.d. observations from the pdf

f(y;θ) = exp
[
θTy − A(θ)

]
. (2.4)

with respect to a sigma-finite dominating measure. For this model, the true model γ∗

is defined as the indexes of non-zero component of θ. Appropriate generalizations of the

following result may be derived for other models but they are not pursued in this paper.

Theorem 1. Assume conditions (A1)–(A3) given in the Appendix. Let γ be a model missing

at least one variable in the true model γ∗ and dγ → ∞ as n grows. Moverover, assume

‖θ∗ − θ∗γ‖ &
√
p/n and p = o(n2/3). Then for model (2.4) we have

Λγ − (dγ + δγ)√
2dγ + 4δγ

D→ N1(0, 1), as n→∞. (2.5)

Denote Xδ,d as a chi-square random variable with degree of freedom d and non-centrality

parameter δ. Recall that (Xδ,d − d − δ)/
√

2(d+ 2δ) converges to a standard normal dis-

tribution N1(0, 1), when d → ∞. This means that in view of (2.5), Λγ is approximately

non-central chi-square variable with degree of freedom dγ and non-centrality parameter δγ .

The non-centrality parameter δγ may be interpreted a the discrepancy measure due to

missing important variables in the true model. From this viewpoint, the relative magnitude

of δγ provides us with some insight on how informative is the data in relation to the feasibility

of the model selection task. Let Kn(s) = s log(p/s). With p → ∞, it is typically the case

that the true model dimension is bounded away significantly from p. In the rest of the paper,
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we assume that dγ increases to∞ (however slowly) uniformly for the candidate models. The

following result gives explicit sufficient conditions involving δγ for detectability in the general

parametric setting, which includes model (2.4) described in Theorem 2.2.

Theorem 2. Let Γu denote the set of models missing at least one of the true variables.

Suppose that it holds that for all γ ∈ Γu, we have

|P (Λγ ≤ q(α; k))− P
(
Xδγ ,k ≤ q(α; k)

)
| ≤ c1 exp [−c2Kn(k)] , (2.6)

where c1 and c2 are positive constants. A sufficient condition for asymptotic detectability is

min
γ∈Γu

δγ
Kn(dγ)

> B, (2.7)

for some large enough positive constant B.

The additional assumption above requires an exponential probability bound for the chi-

square approximation of LRT statistics with model misspecification. We refer to Theorem

3.10 and Proposition B.1 in Spokoiny (2013), for the chi-square approximation, where a

similar bound can be achieved for certain i.i.d and regression models. Moreover, consider

normal linear regression as in Ferrari and Yang (2015),
(
RSSγ −RSSγf

)
/dγ , the numerator

of their F -test, follows an exactly non-central chi-square distribution where the assumption

is trivially satisfied.
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2.3 Sharpness of the sufficient condition for detectability

The above detectability condition theorem is a general extension of Theorem 2.3 in Ferrari

and Yang (2015), where in the context of normal linear regression, a sufficient condition

for detectbility is given as minγ∈Γu δγ/
{
ξn +

√
Kn(dγ)

}
is greater than some large enough

constant, where ξn →∞ is any arbitrarily slowly growing sequence. It turns out the condition

is in fact not sufficient and a error occurred in their derivation. A correct sufficient condition

is that minγ∈Γu δγ/Kn(dγ) is larger than some constant, which matches (2.7) in this paper.

In this subsection, we show the new sufficient condition cannot be generally improved. Due

to space limitation and the need to correct Theorem 2.3 of Ferrari and Yang (2015), we focus

on the normal regression case here. A generalization to other models, e.g. GLMs, can be

done similarly with additional technical developments.

Clearly the detectability condition relates to the size of the coefficients. For the following

results, we assume the sparse Riesz condition (SRC) (Zhang, 2010) holds and consider 0 <

α < 1/2.

Let r∗ ≤ p/2 be a positive integer as the number of non-zero coefficients in the true model.

Write fβ(X) = XTβ =
∑p

j=1 βjXj and let B = {β : ‖β‖0 = r∗ and ‖fβ‖2
n ≤ cKn(r∗)} for

some small constant c > 0, where ‖·‖0 denotes the `0-norm, and ‖fβ‖2
n =

∑n
i=1 f

2
β(Xi) with

Xi being the covariate vector for the i-th observation. It represents all linear regression

models γ with only r∗ non-zero coefficients.

Theorem 3. Let D denote the event that all the variables in γ∗ are included in each of the

models in the MSCS. Then when c is small enough, we must have

lim sup
n→∞

inf
β∈B

Pβ(D) < 1.
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From the theorem, for the true models of dimension r∗ with ‖fβ‖2
n ≤ cKn(r∗), detection

of the true terms is impossible in a proper minimax sense. Note that, for instance, for the

model γ that contains all the wrong variables and none of the true variables, it results in

dγ = r∗ and the noncentrality parameter is of order Kn(dγ). This matches the lower bound

requirement (2.7) in Theorem 2 in order. So from this aspect, the sufficient condition (2.7)

for detectability cannot be generally weakened in order.

2.4 Inclusion importance

Under the detectability conditions in Theorem 2, the MSCS includes all the relevant infor-

mation concerning the model selection variability. Thus, a natural measure for ranking the

importance of each parameter element θk ∈ θ is its relative frequency over all the MSCS

models. This suggests the following definition.

Definition 2 (Inclusion Importance). The inclusion importance (II) for any θk ∈ θ is

defined as

IIk =
∑
γ∈Γ̂α

I(k ∈ γ)/card(Γ̂α). (2.8)

When θk appears in all MSCS models, its importance is IIk = 1, meaning that θk is

most likely part of the true model.

As already mentioned, however, we note that a variable cannot be declared relevant just

because it has a non-zero importance index. Actually, unimportant variable of θ tend to

appear in the MSCS with frequency near 1/2. The reason is that when a small model is

included in Γ̂α, also larger models containing the same variables plus some others tend to

be included via the LRT by construction. The following theorem describes an asymptotic

behavior for the inclusion importance.
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Theorem 4. If the asymptotic detectability conditions in Theorem 2 are satisfied, we have:

(i) limn→∞ P (IIk = 1) = 1, for all k ∈ γ∗;

(ii) limn→∞ P

(
IIk >

1

2
+ ∆

)
≤ α(1 + 2∆)

4∆
, for all k /∈ γ∗, where 0 < ∆ <

1

2
.

If we have sufficient information to learn all the the relevant variables of the true model,

we expect that their importance to be close to 1, while the unimportant variables are not

likely exceeding by much the value 0.5. The upper bound in Theorem 4 can be used as a

guidance to control the error probability of over selection. For example, one can set the error

probability ε = α(1 + 2∆)/(4∆) to be some small number and then find the corresponding

∆ so as to use II for an understanding if a variable is really important. For example, if the

significance level is α = 0.05, setting ∆ = 1/6 implies ε ≤ 0.1.

2.5 The multivariate normal location model

In this section we consider the special case of the multivariate normal distribution with

unknown location. Let Y follows the p-variate normal distribution Np(µ, Ip). Then the pdf

with form (2.4) can be obtained by setting the parameter vector as θ = µ and the cumulant

generating function is A(θ) = θTθ/2 + p log(2π)/2. Assume the true parameter θ∗ is sparse

with pγ∗ = o(p) . The model space Γ is then with cardinality 2p.

For a misspecified model γ ∈ Γu, the corresponding non-centrality parameter is δγ =

n
∑

j∈γ∗ and j /∈γ θ
∗2
j . A large value of δγ enables us to detect inadequacy of such models. For

example, the asymptotic detectability conditions in (2.7) states that as long as the minimum

signal is large enough, min{|θi|, i ∈ γ∗} > B
√
p/n for a large enough positive constant

B, then all the models in MSCS are expected to contain all the nonzero parameters with
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probability going to 1 as n→∞. Otherwise if the size of some non-zero parameters in θ∗ is

too small, then the LRT has not enough power to screen some wrong models out.

3 Implementation by adaptive sampling

Testing all the models in Γ is computationally challenging unless p is small, since the cardi-

nality of the model space may grow exponentially in p. Thus, in order to find models in the

MSCS it seems natural to turn to sampling methods. Let U = (u1, . . . , up)
T ∼ p(u;ω) be

a random binary vector representing a model sampled from Γ (uj = 1 if the jth variable is

included in the model), and p(·;ω) is a user-defined pmf indexed by ω. Our main objective

is to choose a value of the parameter ω that maximizes the probability to sample MSCS

models

P (U ∈ Γ̂α) =
∑
u∈Γ

p(u;ω)I(u ∈ Γ̂α). (3.1)

Note one is unlikely to find models in Γ̂α just by sampling from some arbitrary pmf p(·;ω),

unless α is sufficiently small. Thus, given a target significance level α = α∗ (e.g. 0.05)

we propose to start from some small initial confidence level, say α(0), and then construct a

sequence of significance levels, 0 < α(0) ≤ α(1) ≤ · · · ≤ α∗, corresponding to sampling dis-

tributions p(·;ω(0)), p(·;ω(1)), . . . , p(·;ω(∗)) increasingly concentrated on the target subspace

Γ̂α∗ .

At each step t ≥ 0 of our algorithm, the parameter ω of the sampling distribution is

retrieved by the following weighted likelihood approach. We generate B models {u(t)
b , b =
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1, . . . , B} from p(·; ω̂(t−1)) and then compute

ω̂(t) = argmax
ω

B∑
b=1

I(u
(t)
b ∈ Γ̂α(t−1))p(u

(t)
b ;ω). (3.2)

This finds the pmf p(·; ω̂(t)) closest to the best subset of previously sampled models in terms

of their resemblance to MSCS models. As t increases and α(t) gradually gets closer to α∗,

p(·; ω̂(t)) tends to assign larger probability to models in Γ̂α.

Since this procedure is useful only when the indicator I(u
(t−1)
b ∈ Γ̂α(t−1)) = 1 for a suffi-

ciently large fraction of sampled models, u
(t−1)
1 , . . . ,u

(t−1)
B , we propose to increase adaptively

the significance level as α(t) = min{p-val(t)b(1−ζ)Bc, α∗}, 0 < ζ < 1, where p-valb(1−ζ)Bc is the

empirical (1− ζ)-quantile computed from the distribution of p-values. This ensures that the

event {γ(t)
b ∈ Γ̂α(t)} is not too rare and occurs with probability of approximately ζ. The pro-

posed approach is closely related to cross-entropy (CE) sampling. See Rubinstein and Kroese

(2004) for a book-length exposition on this topic and Costa, Jones and Kroese (2007) for con-

vergence analysis. In our practical implementation, we use p(u;ω) =
∏p

j=1 ω
uj
j (1− ωj)1−uj ,

which gives a closed-form solution to (3.2) and leads to a fast algorithm; all our numeri-

cal experiments showed reliable results with relatively fast convergence. Other choices for

p(u;ω) may enhance the performance of the algorithm, but they are not pursued here. The

following steps outline the stochastic procedure for MSCS construction.

First, note that Step 4 carries out smoothing at each iteration; if ξ = 1, the algorithm

avoids smoothing. In our simulations, we found that ξ < 1 performs better than the non-

smooth update with ξ = 1 since it prevents occurrences of too many zeros and ones in

situations where p is moderate or large. Smoothing avoids local optima where some model

variables do not have the chance to be selected, while others are always selected. In our
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Algorithm 1 : MSCS construction by adaptive sampling (MSCS-AS)

0. Initialize t = 0 (iteration counter) and ω̂(0) (parameter vector for pmf p(u,ω)).

1. Set t← t+1. Generate S(t) = {u(t)
1 , . . . ,u

(t)
B } from p(·; ω̂(t−1)), and compute the sorted

p-values, p-val(t)(1) ≤ · · · ≤ p-val(t)(B), by the LRT defined in (2.1).

2. Update α(t) = min{p-val(t)b(1−ζ)Bc, α∗}.

3. Use models sampled in Step 1, maximize the weighted likelihood as in(3.2) by com-
puting:

c
(t)
j =

∑B
b=1 I{p-val

(t)
(b) > α(t), θ̂j ∈ u

(t)
b }∑B

b=1 I{p-val
(t)
(b) > α(t)}

, j = 1, . . . , p,

where {θj ∈ u} denotes the event that the variable θj appears in model u.

4. Update ω̂(t)
j ← ξc

(t)
j + (1− ξ)ω̂(t−1)

j for some constant 0 < ξ < 1.

5. Repeat Steps 1–4 until α(t−d) = · · · = α(t) = α∗, for some d (e.g. d = 10). The final
MSCS is obtained by drawing B(T ) models from p(u; ω̂(T )), where T denotes the last
iteration.

experience, the MSCS-AS algorithm is robust to the choice of ξ, with ξ = 0.2 performing

well across all our numerical examples.

Second, the MSCS-AS algorithm requires setting the initial weights ω̂(0), and the number

of models sampled at each iteration B. We found that the procedure is quite robust to the

choices of such parameters. When no prior information on inclusion importance is available,

the initial probabilities ω̂(0) can be set as ω̂(0) = (0.5, · · · , 0.5). The performance of the

method, however, can be improved by assigning larger weights to variables that are known

to contain more information about the true model. The number of models B generated in

each iteration should be decided based on affordable computational resources. However, if

B is too small this will affect the accuracy of the weighted likelihood criterion (3.2). In all

our numerical examples we set B = 300.

Finally, the constant ζ prevents overly small p-values in the first few iterations; thus,
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it ensures a balanced growth of α(t) and guides the sampling process towards the MSCS

models. The parameter ζ governs the trade-off between exploration and exploitation of the

model space Γ and it should be also fixed based on the available computational resources. In

our simulations, ζ = 0.25 is found to work well and is compatible with choices of analogous

parameters often found in the CE literature.

4 Monte Carlo experiments

4.1 MSCS construction by exhaustive search

In this subsection, we study the finite sample properties of MSCSs constructed by exhaustive

search on the model space Γ. We generate samples from the following four models:

Model 1: p-variate normal with unknown location, Y = (Y1, . . . , Yp)
T ∼ Np(θ, I).

Model 2: p-variate normal Y = (Y1, . . . , Yp)
T ∼ Np(0,Σ), with unknown covariance

matrix Σ. Additionally we assume that (Y1, · · · , Yp) can be partitioned into

independent subvectors (Σi,j = 0 if Yi and Yj belong to different subvectors).

Model 3: Logistic regression: Y |x ∼ Bernoulli(π(x)), Logit(π(x)) = −xTθ, θ ∈ Rp.

Model 4: Poisson regression: Y |x ∼ Poisson(λ(x)), log(λ(x)) = −xTθ, θ ∈ Rp.

In Models 3 and 4, the vectors of covariates are sampled from multivariate normal

distribution Np(0, I) at each Monte Carlo run. For all the above models we consider the

following two scenarios describing the relative size of parameters.

Setting 1 (constant parameter size): The first p/2 parameters have the same size and

the others are equal to 0. Specifically, θj = ψ, j = 1, ..., p/2, and θj = 0,
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j = p/2 + 1, ..., p, where the parameters size ψ is set to be 1 for Models 1 and

3 and 0.2 for Models 4, respectively. For Model 2, (Y1, · · · , Yp) is partitioned

into p/2 + 1 groups as {Y1, · · · , Yp/2}, {Yp/2+1}, · · · , {Yp}. We set Σi,j = 1 if

i = j; Σi,j = 0.5, 1 ≤ i < j ≤ p/2, and Σi,j = 0 otherwise.

Setting 2 (decreasing parameter size): The first p/2 coefficients have decreasing size

and the others are equal to 0. Specifically, θj = ψ/j, j = 1, ..., p/2, and

θj = 0, j = p/2 + 1, ..., p, where ψ is set as 1, 2 and 0.4 for Models 1, 3 and

4, respectively. For Model 2, (Y1, · · · , Yp) is partitioned into p/2 + 1 groups as

{Y1, · · · , Yp/2}, {Yp/2+1}, · · · , {Yp}. We set Σi,j = 1 if i = j; Σi,j = 0.5/|i − j|

if 1 ≤ i < j ≤ p/2, and Σi,j = 0 otherwise.

The above settings are designed to achieve a small signal relative to the noise, so that the

resulting data are affected by model-selection uncertainty. The model space consists of 2p

models for Models 1, 3 and 4. For Model 2, the model space is equivalent to all the possible

partitions of the set {1, 2, · · · , p} and its cardinality can be given by the Bell number Bp. In

the following simulations, we use p = 6, 8 corresponding to B6 = 203 and B8 = 4140.

Tables 1 and 2 show Monte Carlo estimates for the coverage probability and cardinality

of MSCS corresponding to different sample sizes, n, number of predictors, p, at the 90,

95 and 99% confidence levels. As one expects, the cardinality of the MSCS grows as α

decreases, while it increases rapidly with p, especially when the sample size n is relatively

small. This reflects the situation where the data contain too much noise and the subsequent

model selection variability is pronounced. The cardinality of the MSCS drops quickly as n

increases.

In most cases, the true coverage probability is quite close to the nominal confidence level.
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Setting 1 Setting 2
n = 100 250 100 250

α Model 1
p = 8 12 8 12 8 12 8 12

Coverage (%) 0.10 91.2 90.0 89.8 90.2 91.2 89.4 91.0 88.6
0.05 94.4 95.8 94.4 96.2 94.8 95.4 95.0 94.4
0.01 98.4 99.8 99.2 98.4 99.4 98.8 99.0 99.4

Cardinality 0.10 14.5 58.1 14.4 58.3 22.7 241.3 15.5 101.3
0.05 15.3 61.0 15.2 61.2 27.2 319.0 16.8 126.5
0.01 15.8 63.5 15.9 63.4 37.1 497.8 19.4 184.6

Model 2
p = 6 8 6 8 6 8 6 8

Coverage (%) 0.10 89.2 88.4 89.2 91.0 89.0 87.6 88.4 88.8
0.05 94.6 94.8 94.2 94.4 94.4 93.2 94.4 94.4
0.01 98.4 97.8 98.8 99.4 98.4 99.0 98.6 99.2

Cardinality 0.10 13.5 47.1 13.5 47.0 13.8 57.1 13.4 46.4
0.05 14.3 50.7 14.2 47.3 15.1 72.7 14.2 49.2
0.01 15.6 57.9 14.8 46.9 18.8 126.6 14.8 51.5

Table 1: Monte Carlo estimates of MSCS coverage probability and cardinality by exhaustive
search for Model 1 and Model 2 under varying confidence level 1 − α, sample size n, and
number of variables p. Results based on 500 MC runs.

And will be improved in general as the sample szies increases. We note that the true coverage

probability tends to be more off from the nominal level when the size of the true parameters

is decreasing (Setting 2). Clearly, in such settings model selection is more challenging, which

leads to a increased cardinality of the MSCS but maintains the same coverage probability.

4.2 MSCS construction by stochastic search

In this subsection, we study the performance of the MSCS-AS algorithm described in Section

3. We generate data from Models 3 and 4 (Poisson and Logistic regression models) using a

setting similar to that in Fan and Lv (2011). For both models, we set θ =
(
θT1 , 0, 0, . . . , 0

)T ,
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Setting 1 Setting 2
n = 100 250 100 250
p = 8 12 8 12 8 12 8 12

α Model 3

Coverage(%) 0.10 86.6 80.0 86.6 87.0 86.6 83.6 87.4 89.2
0.05 92.4 89.6 94.6 91.2 93.0 91.8 93.3 94.6
0.01 97.6 97.4 99.2 99.0 96.6 97.6 98.6 98.6

Cardinality 0.10 17.5 97.3 14.3 56.8 35.4 459.5 18.2 195.3
0.05 20.8 147.8 15.2 60.9 43.6 612.6 21.5 252.4
0.01 32.4 257.0 15.9 67.0 62.0 941.4 29.2 383.6

Model 4

Coverage(%) 0.10 89.0 90.6 90.4 89.8 90.6 89.2 89.0 90.4
0.05 95.6 94.2 95.2 94.6 95.2 94.2 94.6 95.0
0.01 99.4 99.4 99.0 99.0 99.8 99.4 98.6 99.0

Cardinality 0.10 85.2 871.6 24.6 148.7 75.6 1269.3 47.9 597.8
0.05 109.6 1217.8 32.4 210.3 94.1 1633.6 51.0 796.7
0.01 157.9 1987.0 54.8 402.1 124.9 2177.4 71.3 1167.7

Table 2: Monte Carlo estimates of MSCS coverage probability and cardinality by exhaustive
search for Logistic regression (Model 3) and Poisson regression (Model 4) under varying
confidence level 1− α, sample size n, and number of variables p. Results based on 500 MC
runs.

where θ1 = (2.5,−1.9, 2.8,−2.2, 3)T in Model 3 and θ1 = (1.25,−0.95, 0.9,−1.1, 0.6)T in

Model 4. The vector of covariates are sampled from a multivariate normal distribution

Np(0,Σ) at each Monte Carlo run, where Σ has elements Σi,j = 0.5|i−j|, i, j = 1, 2, . . . , p. For

illustration of capability to handle large p, we show the results for (n, p) equal to (200, 100)

and (1000, 500). The initial weights for the MSCS-AS algorithm are ω̂(0) = (0.5, · · · , 0.5),

corresponding to lack of prior information about predictors’ importance. The remaining

tuning parameters are set as ζ = 0.25, α∗ = 0.05, and ξ = 0.2.

Figure 1 shows the trajectories for the importance weights {ωj}pj=1 during the first 50

iterations of the algorithm at the 95% confidence level. In all the considered cases, the
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Figure 1: Sampling weights in p(·;ω) for 50 iterations of the MSCS-AS algorithm at the 95%
confidence level. The vertical dashed line corresponds to iteration t such that α(t) = α∗. Left
and right panels correspond to Binomial and Poisson regression models described in Section
4. Settings for the algorithm: B = 300, ζ = 0.25, α∗ = 0.05, and ξ = 0.2.

trajectories corresponding to terms with non-zero coefficients are clearly distinguished from

the others after a few iterations. The inclusion importance for the relevant terms increases

to around 1, while the others only have importance weights near 0.5. The graphs show that

the MSCS-AS algorithm samples with probability progressively concentrating on the true

model terms, while unimportant terms are sampled quite randomly. This behaviour mimics

the structure of the true MSCS, Γ̂α, thus enabling us to detect MSCS models at a much

cheaper computational cost than exhaustive search on Γ.

As suggested in Section 3 (Step 5 of the algorithm), we stop updating the importance

weights shortly after the sequence of significance levels α(0), α(1), . . . reaches the target sig-
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nificance level α∗. However, after α(t) reaches α∗, the weights of the irrelevant predictors

eventually converge to 0 or 1 according to Kolmogorov’s zero-one law, thus one should stop

before that happens. For example, stopping shortly after α(t) = α∗ = 0.05 – say around 15

iterations – already enables us to detect useful predictors from the rest.

To illustrate that the MSCS-AS algorithm generates MSCS models with large probability,

we stop at iteration 15 and sample 106 models using p(·; ω̂(15)), where ω̂(15) is the importance

weight at the 15th iteration. For the binomial regression model with p = 100 predictors,

80.5% of the models generated are included in MSCS. For the Poisson regression model with

p = 100 predictors, 76.6% of the total models generated are in the MSCS. In comparison, if

we generate 106 models using the uninformative weights ω(T ) = (0.5, · · · , 0.5), the proportion

of MSCS models is basically 0, due to the largeness of the model space.

5 Real data examples

Example 1: European Escherichia coli(E.coli) O104:H4 outbreak data. In this

example, we apply the MSCS methodology to the E.coli data as described in Edwards,

Pope and Holt (2016). E.coli O104:H4 is a particularly aggressive pathogen and caused a

serious outbreak in northern Germany in 2011 (Rasko et al., 2011). Both during and after

the outbreak, scientists have examined the genome of E.coli to find genetic causes for the

severity of the outbreak. The data set used here consists of 56 outbreak isolates. For each

isolate, 10 genes (or hypothetical genes) in the O104:H4 pangenome (a full collection of genes

in a species of bacteria) that have been identified as might have been associated with the

outbreak are considered. The main goal of our analysis is to select a model which can explain

the most meaningful interaction effects between those genes.
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The presence of genes in E.coli is denoted by binary variables taking values 1 when the

correspondent gene is present and 0 otherwise. Let Y = (Y1, . . . , Y10) be a random variable

with 10 binary variables each denoting the activity of a particular gene. The pmf of Y is

modelled by the Ising Model,

P (Y = y;θ) = exp

( ∑
1≤j≤k≤10

θj,kyjyk + ψ(θ)

)
, (5.1)

where θ = (θj,k)1≤j≤k≤10 is the parameter of interest with p = 55 and ψ(θ) is the normalizing

constant. The variable θj,j is regarded as the main effect for gene j, whilst θj,k is interpreted

as an interaction effect between genes j and k. Here, we wish to choose θj,k 6= 0 if genes

j and k have interaction (in the same group) and θj,k = 0 otherwise. In our analysis, we

assume θj,j 6= 0 for 1 ≤ j ≤ 10, meaning that the main effects are always included. The total

number of possible models in Γ is B10 = 115975, corresponding to the 10-th Bell number,

which counts the number of different ways to partition a set containing 10 elements.

ECPA_00901

ECPA_00904

ECPA_00051

ECPA_05245

ECPA_03614

ECPA_01141

ECPA_04633

ECPA_04619

ECPA_00233

ECPA_06065

ECPA
_0

60
65

ECPA
_0

02
33

ECPA
_0

46
19

ECPA
_0

46
33

ECPA
_0

11
41

ECPA
_0

36
14

ECPA
_0

52
45

ECPA
_0

00
51

ECPA
_0

09
04

ECPA
_0

09
01

0.2

0.4

0.6

0.8

1.0
II value

Figure 2: Inclusion Importance (II) for θj,k in model (5.1). The II values are calculated
from the 95%-MSCS.
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Here we use the exhaustive search to construct the MSCS for θ. The MSCSs at the 90,

95 and 99% confidence levels contain 7, 12 and 38 models, respectively; these numbers are

small compared to the model space size, meaning that most of the models in Γ are rejected

by the LRT procedure and there is not too much model selection uncertainty here. The jk-th

element of the matrix in Figure 2 represents the inclusion importance (II) for the variable θj,k.

Note that certain gene pairs have high II values; for example, pairwise interactions among

genes 1141, 3614, 5245, 0051, 0904, 0901 are close to 1 in terms of II values, suggesting that

such genes form a synergetic network associated with the outbreak occurrence. Other genes,

such as 6065, 0233, 4619, 4633, show inclusion importance for interaction effects close or

smaller than 0.5, which suggests that the corresponding interactions are small or irrelevant.

Example 2: Australian breast cancer family study data. In the second example, we

apply the MSCS methodology to the ABCFS genotype data, consisting of 356 observations

(284 breast cancer patients and 72 controls). Cases are obtained from the Australian Breast

Cancer Family Study (ABCFS) (Dite et al., 2003), while controls are from the Australian

Mammographic Density Twins and Sisters Study by Odefrey et al. (2010). Patients are

genotyped using a Human610-Quad beadchip array. The response is the binary disease

status (presence/absence of breast cancer), while the predictors are 50 SNPs, measured at

different loci encoding a candidate susceptibility pathway (probe IDs are listed in Figure

3). To model the binary disease status, we use a logistic regression model. MSCS models

are sampled using the MSCS-AS algorithm described in Section 3 with tuning parameters

α∗ = 0.05, ζ = 0.25, B = 300 and B(T ) = 106.

Figure 3 (top) shows the models selected by forward step-wise AIC and BIC (F-AIC

and F-BIC), and penalized likelihood methods under Lasso (Tibshirani, 1996), SCAD (Fan
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Figure 3: Analysis of the ABCFS case-control genotype data. Top: model selection by
penalized likelihood methods with Lasso, SCAD and MCP penalties and step-wise forward
AIC and forward BIC. Colored cells denote selected variables. Bottom: Estimate of II by
MSCS-AS algorithm(red points) and the 95% bootstrap confidence intervals. The number
of bootstrap replicates is 50. Settings for the MSCS-AS algorithm parameters: B = 300,
B(T ) = 106, α∗ = 0.05, ζ = 0.25, ξ = 0.2.

.



25

and Li, 2001) and MCP (Zhang, 2010) penalties where tuning parameters are all chosen

by five-fold cross-validation. Figure 3 (bottom) shows Inclusion Importance, II values, for

each SNP. The vertical bars represent the 95% bootstrap confidence intervals for II values.

First note that SNPs with high II values show considerable overlap with those selected by

the other methods. Particularly, most of the SNPs reported as important by more than

one model selection method have large II values. Predictors with II values that are not

significantly larger than 0.5 may not necessarily be important, and need to be consider more

carefully.

The p-values of the F-test for the AIC, BIC, Lasso, SCAD and MCP models are 0.96,

0.09, 0.88, 0.86 and 0.80. respectively. Therefore, while the BIC model is included in

the MSCS at the 95% and 99% levels, it is not accepted at the 90% confidence level. This

sugggests that F-BIC model any misses some important SNP predictors and is not as reliable

as other models. Moreover, note that there are only 5 SNPs (rs0082248_A, rs12470143_T,

rs2754530_T, rs8192207_T, rs2257157_G) that have relatively large II values and confi-

dence interval significantly above 0.5. Many predictors chosen by some of the methods have

II confidence intervals covering 0.5. This suggests that the sample is not sufficiently infor-

mative to declare such terms relevant so they should be further studied with particular care.

To confirm this, we investigate the marginal significance of all the selected SNPs in each of

those models. At the 0.05 level, we have 8 (Lasso, SCAD and MCP ) to 12 (AIC) significant

coefficients, while the 5 SNPs with II interval not including 0.5 are significant in all cases.

Finally, we show the instability of common model selection methods for this dataset.

We consider the selected models as in Figure 3 (top). For each model we obtain the fitted

values {Ŷi}ni=1, which are equal to {p̂}ni=1, the estimated probability in the logistic regression.
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Lasso SCAD MCP F-AIC F-BIC

Size 21 16 15 15 5
AHD 14.74 11.132 10.44 11.58 5.59

Table 3: The number of SNPs in the original selected model and the average Hamming
distance between the 500 bootstrapped models and the original selected model.

Next, parametric bootstrap is used to generate bootstrap replicates {Xi, Y
∗
i }ni=1, and all the

methods are applied again to corresponding bootstrap samples. We repeat this step for

S = 500 times and compute the average hamming distances (AHD) of the S bootstrapped

Lasso, SCAD, MCP, F-AIC and F-BIC models to the the respective models obtained from the

original sample, see Table 3. The AHD is large compared the size of the models, which means

for each bootstrapped sample, those model selection methods will choose quite different

predictors.

6 Conclusion and final remarks

The MSCS methodology in this paper introduces new tools supporting the activity of model

selection in the context of likelihood-based inference. Since the MSCS is asymptotically guar-

anteed to contain the true model at a pre-specified confidence level, it represents a natural

extension of the familiar notion of confidence intervals to the model selection framework.

Furthermore, Theorem 4 suggests that important variables tend to appear in the MSCS

models with large probability as n → ∞, while unimportant terms appear randomly with

frequency not significantly larger than 0.5. By looking at the variables appearing frequently

in the MSCS one can also choose a single central model representing the entire MSCS by

taking predictors with inclusion importance significantly larger than 0.5. In the future, de-

veloping a theoretical understanding of the optimal way to combine MSCS models would be
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very valuable as it can potentially lead to improved model combining and model selection

strategies.

The main focus of the current MSCS approach is based on maximum likelihood esti-

mation. We have shown that in exponential family models this requires p = o(n2/3) and

correct model specification for the MSCS to be meaningful. In the future, however, higher-

dimensional problems may be pursued, by replacing the LRT statistics with other tools to

construct the MSCS, e.g., using penalized likelihood methods. Computational methods to

tackle the case where the model space and MSCS is large is also of great interest.

Appendix: Proofs

Notice that quantities such as p, θ, γ and Θ may depend on n, hence array asymptotics are

considered in this section.

Proof of Theorem 2.2. Since within the considered exponential family affine mappings

are preserved, without loss of generality we assume E(Yi) = A′(θ∗) = 0 and cov(Yi) =

A′′(θ∗) = Ip.

Denote Vθ = Yθ − E(Yθ), where Yθ ∼ f(y;θ). First, we need to assume following

regularity conditions for the exponential family model f(;θ):

(A1) EY 6
ij <∞, (j = 1, . . . , p);

(A2) sup
‖a‖=1

‖θ−θ∗‖2.p/n

∣∣E(aTVθ)
3
∣∣ .√n/p, and sup

‖a‖=1

∣∣E(aTVθ)
3
∣∣ = O(1);

(A3) sup
‖a‖=1

‖θ−θ∗‖2.p/n

E(aTVθ)
4 = O(1).

Suppose we have γ which is a model not containing all the elements in γ∗. Let Y =
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i=1 Yi/n and Yγ =

∑n
i=1 Yi,γ/n, where Yi,γ denote the vector with elements equal to Yi

for indexes in γ and zero otherwise.

Let G = θ∗ − θ∗γ satisfying ‖G‖ &
√
p/n and assume p = o(n2/3), where θ∗γ is the

pγ∗-variate vector with components equal to θ∗ at γ ∩ γ∗ and equal to zero otherwise. . To

proceed, we give following auxiliary lemmas .

Lemma 1. Suppose conditions (A2) and (A3) hold. Then, for the MLEs, θ̂γ, we have:

‖θ̂γ − θ∗γ‖ = Op

(√
pγ/n

)
, and ‖θ̂γ − θ∗γ −Yγ‖ = Op (pγ/n) .

Lemma 1 combines Theorems 2.1 and 3.1 in Portnoy (1988). The existence of MLE for

θγ in a L-2 neighbourhood of order
√
pγ/n is still valid by simply changing the true model

θ∗ with the partial model θ∗γ .

Lemma 2. Assume (A2) and (A3) hold, for model γ,
∣∣A(θ∗γ)− A(θ∗)

∣∣ = ‖θ∗γ − θ∗‖2/2 +

o(‖θ∗γ − θ∗‖2).

Proof. Note that from (A3), by Taylor expansion we have:

∣∣A(θ∗γ)− A(θ∗n)
∣∣ =

∣∣∣1
2
‖θ∗γ − θ∗‖2 +

1

6
E
[
(θ∗γ − θ∗n)TVθ∗

]3 ∣∣∣+O(‖θ∗γ − θ∗n‖4).

Applying (A2) gives E
[
(θ∗γ − θ∗)TVθ∗

]3
. ‖θ∗γ − θ∗‖3, which completes the proof.

Lemma 3. Suppose conditions (A1), (A2)and (A3) hold, when p− pγ →∞ we have

n
(
‖Y‖2 − ‖Yγ‖2

)
+ 2nGTY − (p− pγ)√

2(p− pγ + 2δn)

D→ N1(0, 1), (6.1)

where δn = n‖G‖2.
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Proof. Define Tk =
∑k

i=1 Yi, Tk,γ =
∑k

i=1 Yi,γ and Sk = ‖Tk‖2 − ‖Tk,γ‖2 + 2kGTTk −

k(p− pγ). It is easy to see that E(Sn) = 0 and var(Sn) = 2n2(p− pγ + 2n‖G‖2).

Let Dk = Sk − Sk−1, thus

Dk = 2YT
k Tk−1 + ‖Yk‖2 − 2YT

k,γTγ,k−1 − ‖Yk,γ‖2 + 2GTTk−1 + 2kGTYk − (p− pγ).

Next, define σ2
k = ED2

k and s2
k =

∑k
i=1 σ

2
i . Note that Yk and Tk−1 are independent. A

simple calculation shows that:

s2
n =

n∑
k=1

σ2
k . n2p+ n3‖G‖2, (6.2)

Next, let Fk = F(Y1, . . . ,Yk) denote the σ-field generated by Y1, . . . ,Yk. Then {Sk}

are martingales on {Fk}, and {Dk} are the martingale differences. From Chow and Teicher

(1978), by Martingale Central Limit Theorem , we have Sn/
(
n
√
p− pγ + δγ

) D→ N1(0, 1) if

n∑
k=1

E|Dk|3/s3
n → 0, and

∑n
k=1 E|E(D2

k|Fk−1)− σ2
k|/s2

n → 0. (6.3)

Since E(Y 6
ij) < ∞, by Proposition A.3 in Portnoy (1988), we have E(YT

k Tk−1)6 . k3p3

and therefore
∑n

k=1E|Dk|3 . n5/2p3/2 + n2p5/2 + n4‖G‖3,

Together with Equation (6.2) implies
∑n

k=1E|Dk|3/s3
n → 0.

Next, note that

n∑
k=1

E|E(D2
k|Fk−1)− σ2

k| ≤
{
E
[
E(D2

k|Fk−1)− σ2
k

]2}1/2

(6.4)

. n3/2p3/2 + n2p1/2 + n3/2‖G‖2 (6.5)
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Thus, we have
∑n

k=1 E|E(D2
k|Fi−1)− σ2

k|/s2
n → 0.

Now we are able to prove the main results.

Proof of Theorem 2.2. Under the alternatives, we have

Λγ = 2n(θ̂γf − θ̂γ)TY − 2n
[
A(θ̂γf )− A(θ̂γ)

]
= 2n

[
(θ̂γf − θ∗)− (θ̂γ − θ∗γ)T

]
Y − 2n

[
A(θ̂γf )− A(θ∗γ)− A(θ̂γ) + A(θ∗γ)

]
−2n

[
(θ∗γ − θ∗)TY − A(θ∗γ) + A(θ∗)

]
. (6.6)

The first two terms of the LRT statistic in (6.6) are approximately n
(
‖Y‖2 − ‖Yγ‖2

)
+

Op(p
2/n). Additionally, Lemma 2 implies that the third term in (6.6) is approximately

equals to −2n(θ∗γ−θ∗)Y +n‖θ∗γ−θ∗‖2. Hence, applying Lemma 3 completes the proof.

Proof of Theorem 2. We show that if the sufficient condition in Theorem 2 is satisfied,

we have

P

( ⋃
γ∈Γu

{Λγ ≤ q(α; dγ)}

)
→ 0, as n→∞.

An union bound of the above probability is:

P

( ⋃
γ∈Γu

{Λγ ≤ q(α; dγ)}

)
≤

p−1∑
k=1

∑
dγ=k
γ∈Γu

P
(
Λγ ≤ q(α; k)

)
(6.7)

≤
p−1∑
k=1

exp [Kn(k)] max
dγ=k
γ∈Γu

P (Λγ ≤ q(α; k)) . (6.8)

Note that we assume the exponential bound as in (2.6) . Thus, combining Lemma 8.1 in
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Birgé (2001) and Theorem A in Inglot (2010) gives the following probability upper bound:

max
dγ=k
γ∈Γu

P (Λγ(dγ , δγ) ≤ q(α; k)) ≤ max
dγ=k
γ∈Γu

P
(
Xδγ ,k ≤ q(α, k)

)
+ c1 exp [−c2Kn(k)]

≤ exp

−min
dγ=k
γ∈Γu

(
δγ + 2 log(α)− 2

√
−k log(α)

)2

2(k + 2δγ)


+c1 exp [−c2Kn(k)] (6.9)

where c1, c2 are positive constants. When min
dγ=k
γ∈Γu

δγ
Kn(k)

> B for some large enough positive

constant B, the first term in the last upper bound (6.9) will be small than exp[−(c3−1)Kn(k)]

for some c3 > 1. Therefore, we have

P

( ⋃
γ∈Γu

{Λγ ≤ q(α; dγ)}

)
.

p−1∑
k=1

exp[−min(c2, c3 − 1)Kn(k)]→ 0. (6.10)

Proof of Theorem 3 Let γ̂ be the largest model that are nested in all the models in

MSCS. It may be the intercept only model. Note that with probability at least 1 − α the

true model γ∗ is included in the MSCS, i.e., P
(
γ∗ ∈ Γ̂α

)
≥ 1− α. Therefore

sup
β∈B

Pβ (γ̂ 6= γ∗) ≤ sup
β∈B

Pβ

(
γ∗ /∈ Γ̂α

)
+ sup
β∈B

Pβ
(
DC
)

(6.11)

≤ α + 1− inf
β∈B

Pβ (D) . (6.12)

It follows that if infβ∈B Pβ (D)→ 1 for any subsequence of {nj} ⊂ {1, 2, · · · }, we must have

supβ∈B Pβ (γ̂ 6= γ∗) ≤ α′ for some α < α′ < 1/2 when nj is large enough in the subsequence.



32

Hence if we can actually show supβ∈B Pβ (γ̂ 6= γ∗) ≥ 1/2 for a small enough c > 0 in the

definition of B, the theorem is proved.

Note that this now becomes a traditional minimax framework where Fano’s inequality

can be applied. Without loss of generality, we assume σ2 = 1 for the error variance. Consider

a packing set Nεn in B = {β : ‖β‖0 = r∗ and ‖fβ‖2
n ≤ cKn(r∗)} with packing distance εn

being a small fraction of
√
cKn(r∗) under the ‖‖n norm. Let β be randomly chosen from

the uniform distribution on Nεn . Using similar arguments as in the proof of Theorem 11 in

Wang, et al. (2014), under the SRC, by choosing the constant c small enough, the mutual

information I(β; {Xi, Yi}ni=1) between the random β and the observations is upper bounded

by δ = cKn(r∗)/2, and the local packing εn-entropy log |Nεn| is lower bounded by 2δ+2 log 2.

Apply Fano’s inequality (see, e.g., Yang and Barron, 1999) to this linear regression model

gives:

sup
β∈B

Pβ (γ̂ 6= γ∗) ≥ 1− I(β; {Xi, Yi}ni=1) + log 2

log |Nεn|
≥ 1

2
, (6.13)

this completes the proof.

Proof of Theorem 4 (i) Let γ be a model missing at least one variable in γ∗. From

Theorem 2, P (γ ∈ Γ̂α) → 0, as n → ∞. Hence, for all θj in θ∗, limn→∞ P (IIj = 1) = 1.

This completes the first part of the theorem.

(ii) Let Γ̃ = {γ1,γ2, · · · ,γN} be the set of models larger than γ∗. The construction of

MSCS implies limn→∞ P (γi ∈ Γ̂α) ≥ 1−α for any 1 ≤ i ≤ N . Let Xi be the random variable

taking value 1 when γi ∈ Γ̂α and 0 otherwise. Note that when k /∈ γ∗ , there are N/2 models

in Γ̃ which contain θk. Without loss of generality, let γ1,γ2, · · · ,γN/2 be models containing

k. Let Y1 =
∑N/2

i=1 Xi, denoting the number of models in {γ1,γ2, · · · ,γN/2} that are included
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in Γ̂α. Similarly, let Y2 =
∑N

i=N/2+1Xi. Then Y1 ≤ N/2 and E(Y2) ≥ N(1− α)/2. The IIk

defined in Section 2.4 equals to Y1/(Y1 + Y2) with probability going to 1 as n → ∞. Note

that for any 0 < ∆ ≤ 1/2 we have

P

(
Y1

Y1 + Y2

≥ 1

2
+ ∆

)
≤ P

(
N/2

N/2 + Y2

≥ 1

2
+ ∆

)
= P

(
N/2− Y2 ≥

2∆N

1 + 2∆

)
≤ (N/2− E(Y2))(1 + 2∆)

2N∆

≤ α(1 + 2∆)

4∆
,

where the second inequality follows from Markov’s inequality, which completes the proof.
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