
Distributed Emergent Software: Assembling,
Perceiving and Learning Systems at Scale

Barry Porter and Roberto Rodrigues Filho
School of Computing and Communications

Lancaster University
Lancaster, UK

Email: {b.f.porter,r.rodriguesfilho}@lancaster.ac.uk

Abstract—Emergent software systems take a reward signal,
an environment signal, and a collection of possible behavioural
compositions implementing the system logic in a variety of ways,
to learn in real-time how best to assemble a system. This reduces
the burden of complexity in systems building by making human
programmers responsible only for developing potential building
blocks while the system determines how best to use them in its
deployment conditions – with no architectural models or training
regimes. In this paper we generalise the approach to distributed
systems, to demonstrate for the first time how a single reward
signal can form the basis of complex decision making about how
to compose the software running on each host machine, where
to place each sub-unit of software, and how many instances of
each sub-unit should be created. We provide an overview of
the necessary system mechanics to support this concept, and
discuss the key challenges in machine learning needed to realise
it. We present our current implementation in both datacentre and
pervasive computing environments, with experimental results for
a baseline learning approach.

I. INTRODUCTION

The complexity of distributed systems continues to rep-
resent a major source of software engineering effort across
design, optimisation and maintenance. These systems are both
complex to build in the first place, composed of millions
of lines of code, and are subjected to highly dynamic and
often unpredictable deployment conditions. This leads to a
well-worn path of design-deploy-analyse-redesign, in which a
system is designed and deployed, then manually and painstak-
ingly analysed to understand key performance shortfalls in
its real deployment environment, following by redesign and
redeployment – a cycle repeated regularly as user behaviour,
system features, and available hardware continually change.

We propose a paradigm of distributed emergent software
to effectively reduce the complexity of developing these sys-
tems. Using this approach, an engineer specifies an abstract
goal (such as a set of input/output examples describing how
the system should behave); a reward value for the system
to optimise at runtime (such as throughput); and a set of
environment measurements (such as request types, or memory
usage) likely to be useful in classifying discrete contexts.
Based on this information, a system is autonomously formed
by searching for valid combinations of fine-grained building
blocks of behaviour which match the abstract goal; the reward
signal guides real-time machine learning to drive initial system
assembly and real-time exploration of available behavioural

compositions – including the distribution and replication of
building blocks onto remote hosts. This simple approach drives
complex decision-making, from the composition of behaviour
on each node, to the placement of logic at a suitable host
within a distributed system, and the co-location of comple-
mentary behaviours at the same or nearby hosts. As a result,
we automate a large part of the design-deploy-analyse cycle
to reduce the cost of developing complex distributed systems.

We present an overview of the concept; discuss its key
challenges with a focus on machine learning; and present two
real-world examples of emergent distributed systems in high-
scale web-serving datacentres and heterogeneous pervasive
systems. Our specific contributions are:

1) We present distributed emergent software, in which a
system is autonomously formed from a large pool of
potential fine-grained building blocks, then learns to
distribute itself throughout an infrastructure to optimise
a given reward signal. To minimise human involvement,
our approach relies only on a generalised adaptive com-
ponent model, combined with offline and online learning
to locate valid and high-performing compositions.

2) We discuss the key challenges in building this kind of
system, based on our varied experience over multiple
domains, focusing in particular on the machine learn-
ing challenges involved in driving surprisingly complex
decision-making from a very simple action-reward core.

3) We present two real-world case studies of our approach,
one in high-performance datacentres to guide the com-
position of load balancers, web servers, databases etc. in
changing workload conditions; and one in a pervasive
computing environment in which a user’s device can
offload computation to surrounding compute resources.

Our work shows that the behavioural composition, and
complex distribution decisions, of very different systems can
be guided by the same simple action-reward core, representing
a generalised system-building approach which reduces the
complexity of distributed systems development. All of our
source code is made available, along with instructions to repeat
all of the experiments reported in this paper [1].

In the remainder of this paper we first survey related work
in Sec. II, present our approach and its challenges in Sec III,
and evaluate our implementation in Sec. IV.

II. RELATED WORK

We consider two main strands of related work: distributed
autonomous control and learning theory; and approaches to
complexity management in distributed systems.

A. Distributed Autonomous Control

Autonomous control in distributed systems has typically
been considered as a way to coordinate the behaviour of
well-defined agents to achieve a collective task. Our focus
is on autonomously assembling the distributed system from a
pool of a-priori unknown component building blocks, casting
distributed autonomous decision making as a continuous au-
tonomous assembly problem in which different behaviours can
be selected and new behaviours can arrive at any time.

Jiang et al. [2] examine the use of explore/exploit reinforce-
ment learning mechanics in quality-of-experience tuning for
video streaming, in which CDN routing decisions are deferred
to a learning-based process. This work is complementary, but
we use reinforcement learning to make much more funda-
mental decisions about the design of a running system –
by changing how individual sub-behaviours are implemented,
where they are located in a network, and to what extent they
are scaled out, requiring more complex learning coordination.

Pilgerstorfer and Pournaras consider the problem of decen-
tralised combinatorial optimisation for energy management
and bike sharing [3], taking a hierarchical approach with
forward and backward error propagation to reduce a cost
function in a statically-defined tree of agents. The problem
domain that we explore can be seen as a generalisation of
this, but one in which the topology between agents is part of
the learning problem (as we learn how to distribute code) in
a self-assembling system. This creates unique challenges in
learning at runtime, starting from no information, how actions
relate to one another both horizontally and vertically.

Golpayegani et al. report on a demand-response problem
in smart energy grids, which can be viewed as a distributed
optimisation problem with conflict resolution [4]. This models
each agent as having a well-defined set of (mutually equiva-
lent) actions and a communication topology, with an approach
that uses globally synchronised knowledge sharing to control
the flow of learning and decision making among agents. While
this offers certainty over the outcome of the algorithm, and is
one possible approach that we cover in our analysis of the
learning design space, it is less practical as systems scale up.

The theory of distributed coordination and optimisation is
studied in depth by the multi-agent systems community. Of
particular relevance are Distributed Constraint Optimisation
Problems [5], for problems that have formal constraints that
must be mutually upheld in a distributed system, and Parallel
implementations of a Monte-Carlo Tree Search [6] or Upper
Confidence Bound (Tree) algorithms [7] to learn which actions
offer the best reward. However, we are not aware of any
specific solutions to high-scale distributed learning for the
system model that we present in this paper; as such we discuss
the particular challenges of learning in this context and an
initial baseline solution for evaluation.

Finally, recent work by Diaconescu et al. [8] surveyed the
general theme of authority for self-integrating systems and
how authority might be composed, exploring how control
can flow through a system to result in effective decision
making. Our work is complementary to this, focusing on how
a distributed system can be assembled and continually re-
assembled at a behavioural and topological level under the
control of real-time reinforcement learning.

B. Distributed Systems Complexity

The complexity of building distributed systems has attracted
a wide range of research effort to try to simplify the de-
velopment process. Typical approaches have been to develop
new programming abstractions which hide the distributed
interaction complexity, presenting a specialised programming
paradigm to developers, or using layers of middleware to offer
domain-specific interaction models.

In the former category, approaches such as Protelis [9]
or TinyDB [10] present novel programming models which
are sufficiently removed from the details of distribution that
a runtime engine can fill in all of the complex low-level
elements; these paradigms can be very powerful but also tend
to be highly domain-specific.

By comparison, middleware solutions such as CORBA [11]
or LIME [12] offer the ability to write code in a general-
purpose language but sandbox the distributed elements of the
program under a clean API – again allowing the complexities
for distribution to be automated. These solutions have become
a staple of modern software development, but their rigid
layering increasingly causes significant challenges in end-to-
end tuning of complex multi-tiered systems [13].

Moving away from layered designs, as more heterogeneous
hosting resources become available – from cloud to edge
computing and IoT devices – researchers are beginning to
study how different parts of a distributed system may best
be located in this spectrum. Recent work by Mehta and Elm-
roth [14] has explored this question analytically and offered
recommendations of possible algorithms for decision-making.
Our approach to emergent software is able to encompass the
issue of placement decision-marking, and offers a real-time
learned solution. We demonstrate this through one of our case
studies which learns to opportunistically offload computation
to nearby compute nodes when available.

At the extreme end of resource heterogeneity, researchers
have started to explore the idea of disaggregated hardware
[15] and how software systems might map onto this concept,
with LegoOS being a prominent approach to offering a Unix-
like API [16]. Our research takes a different direction to
seamless distribution in which we leverage a strong component
model, coupled with our concept of autonomous assembly
driven by real-time machine learning, to offer total continuity
between local and distributed systems. Our systems can begin
as entirely local ones and then expand when they come into
contact with available resources, learning how to migrate and
replicate code to maximise utility for an given objective.

III. APPROACH

In this section we first briefly introduce the component
model on which our approach depends for autonomous system
assembly and adaptation; we then describe our approach to
distributed emergent systems and identify the key challenges
of implementing this approach. We conclude the section by
describing two case study systems we have implemented and
the specific learning approach we use for evaluation.

A. Background
Our approach assumes that we have a runtime component

model which provides the self-describing code mechanics for
autonomous system assembly and seamless, cheap runtime re-
assembly for online learning. Components are self-describing
in terms of their provided and required interfaces, where an
interface is a typed collection of function prototypes, so that
we can programmatically reason over which interfaces from
different components can be interconnected to form a system.

The wirings between required and provided interfaces can
be seamlessly adapted at runtime using dynamic interposition,
in which in-flight function calls are temporarily held while a
hot-swap takes place. This ensures that adaptations represent
zero observable disruption to the running system. Lastly, as
well as available function prototypes, interfaces can define
transfer state which describes any state which should persist
across adaptations of the component currently chosen to
provide that interface via wiring decisions.

For this paper we use the Dana programming language [17]
to implement our systems. Dana provides a very lightweight
implementation of the above paradigm with fast adaptation
(taking a few microseconds) so that runtime exploration of
different behavioural compositions is very cheap – a system
can be in near-constant flux without impacting the user ex-
perience. Dana also offers a fully generalised implementation
of the component-oriented concept so that every element of a
system – from TCP sockets up to graphical elements – can be
expressed in the same paradigm. Coupled with our distributed
emergent system approach, this provides a powerful general
theory of fully learned system compositions and distributions.

B. Distributed Emergent Systems
Our overall approach is illustrated in Fig. 1, in which

we consider two main phases in the overall lifecycle of a
Distributed Emergent System: offline and online.

In the offline phase, a functional goal is defined using
a high-level abstraction (such as input/output examples, or
natural language descriptions), and a search process locates
all compositions of behaviour which meet this goal. This
process may use both existing component building blocks,
from generic library behaviours, and may also require the
generation of new behaviours to fill in gaps for this specific
goal. We assume that the generation of new behaviours can
either be done by human engineers or by an automated
synthesis process. We do not focus on the details of the offline
phase in this paper, simply assuming that a set of functionally
correct compositions of behaviour is made available. We
assume that building blocks are fine-grained, at the level of a

Pool of
components

Search
and synthesis

Functional
system goal

List of
compositional
distributions

Real-time
learning over
compositions

Reward
function

Available
host devices

A B

C !B
E G

v >> P

A

194.60.12.28
30.201.9.120
....

Host
devices

perception assembly

learning

Fig. 1. Our overall approach, which uses a pool of behavioural potential
implemented as components, together with a chosen reward function, to derive
a set of learning actions for both local and distributed decision making.

hash-table or sorting implementation, facial feature recogniser,
data format parser, etc. By injecting behavioural variations
into a repository of fine-grained building blocks – such as
alternative sorting algorithms – we gain a rich behavioural
landscape over which to search and learn at runtime.

In the online phase, a real-time learning process searches
over the set of available compositions to locate the most
suitable one for each set of deployment conditions in which the
system finds itself. This process is supported by an assembly
module, perception module, and learning module, resident on
each host, and requires three major elements: a reward signal,
an environment signal, and a set of actions.

The reward signal is fed by live metrics from the deployed
system, which report aspects of its health in real-time – such
as its response time or relative quality of service. The system
administrator decides how to combine multiple possible met-
rics into a single reward signal for learning. The environment
signal is fed by a set of events from the deployed system which
report aspects of the deployment environment such as the
amount of energy remaining on a host, or the request pattern to
which the system is currently being subjected. These events are
fed into a classifier to quantise the deployment environment,
which each classified environment then having a separate in-
stance of machine learning state which learns how to maximise
rewards in the respective environment. Metrics and events are
both collected by our per-host perception module, which then
offers aggregate data querying to a learning module.

The set of actions to accompany this runtime data is pro-
vided automatically by our assembly module which searches
over possible behavioural building blocks and offers a list of
valid system compositions – each with a unique identifier. Our
framework first derives a set of local compositions, then a set
of distributed deployment options, as follows.

For the local element, our assembly module starts from
a ‘main’ component for the target system and extracts its
required interfaces. Each such interface may have more than
one available implementing component – providing the same
interface but in a different way. Each implementing component
is enumerated, with the required interfaces of those compo-
nents then examined to recursively build a set of compositions
which represent a diverse set of behavioural choices. Each
behavioural choice (i.e., each full system composition) is
represented by a unique identifier with the format:
{comA,comB,comC|ndxA:intfType:ndxB, ...}

This describes the entire component graph for one com-
position, starting with the specific list of implementation
components, followed by the list of wirings between those
components expressed as the indices of two components in
the list and the interface type which wires them together.

We then augment the set of available local composition
choices with a set of automatically-generated distributed ac-
tions. These actions are made available for every interface used
in a system, allowing a locally-designed system to seamlessly
become distributed. Our core distribution actions are relocate
and replicate. To relocate a component, we generate a proxy
of its provided interface with a client/server remoting pair; the
proxy forwards all function calls over a network connection
to a remote host, which hosts the server side of the proxy pair
and forwards received function calls to the local component
that is now resident at that host. To replicate a component,
we generate a similar proxy but include a load-balancer (and
potentially a state manager for stateful components) which
decides to which of a set of possible remote copies each
function call should go. Replication can also be used to imple-
ment sharding for stateful components. By using a generalised
underlying component model, and keeping the granularity of
our components relatively small, we can use this technique
to generate a large search space of distribution actions. The
complete action list for learning is thus generated by scanning
for available remote hosts, and generating a relocation and
replication proxy for each host so that these proxies appear as
regular components implementing a given provided interface.
Our composition identifiers are then expanded into the form:

{A,BX{hostIP},C|ndxA:intfType:ndxB, ...}
Where BX represents a proxy component to a remote host,

the specific IP address of which is included in the composition.
A learning module on any host can examine the list of

composition identifiers and select one to try; our system
then calculates a difference between the currently in-use
composition and the selected one, and triggers a sequence
of individual adaptations (component hot-swaps, achieved by
loading a new component and re-wiring a required interface
to connect to it) to reach that composition. When we take
an action (composition choice) which distributes part of our
system to a remote host, that newly-included remote host
itself gains its own local set of compositional options, rooted
at the particular provided interface that has been distributed,
over which to perform its own learning process as a set
of actions for alternative compositions – which may include
further distributing sub-elements of the local system.

The result of this is a rich decision-making process (for local
compositions, and how and where to distribute code, including
what to colocate) rooted in a simple flat list of actions and
their observable rewards. Because all learning (and decision
making) takes place in a live production environment, we learn
based on actual experience of deployment conditions and how
they really effect the system; this avoids issues in trying to
predict deployment environments and also allows the system
to respond effectively to the unexpected.

Action Reward

1: {A,B,C,D|0:iq:1,1:ir:3,…}

2: {A,Q,F,N|0:iq:1,1:ir:3,…}

3: {A,Q,F,R,V,P|0:iq:1,1:ir:3,…}

4: {A,Q,FX{192.20.50.1},P,M|0:iq:1,1:ir:3,…}

5: {A,Q,FX{192.20.50.5},P,M|0:iq:1,1:ir:3,…}

6: {A,Q,FX{192.20.50.5;192.31.3.1},P,M|0:iq:1,1:ir:3,…}

7: {A,Q,X,FX{192.20.50.1; 192.20.50.5},P,M|0:iq:1,1:ir:3,…}

Fig. 2. A learning table with composition choices as actions, including
compositions with distributed elements. The reward column is populated at
runtime based on experience in the deployment environment.

C. Challenges
The set of general challenges in local emergent software

systems apply equally to the distributed case, including self-
referential fitness landscapes, relative rewards, and perception
errors [18]. Added to this is a significant set of challenges in
distributed real-time reinforcement learning, which push the
limits of the state of the art solutions in this domain.

There are two core challenges in learning: how we quickly
navigate a very large search space of behavioural potential
(which includes local variations and distribution choices) to be
able to respond quickly to new conditions that are detected;
and how we coordinate learning in a distributed system to con-
verge on a global (rather than local) objective while allowing
a system to scale up to thousands of nodes.

To aid in the discussion we consider the action list shown
in Fig 2. Here we have a set of local composition choices
representing a system, plus a set of distributions which take
particular interfaces and make them (and their sub-tree of
dependencies) remote or replicated at available remote hosts.
Each choice has an associated reward which is observed at
runtime by the particular learning agent with this action list.

1) Search space: Our first challenge is that the search space
for online learning may be very large, thanks to the combina-
tion of remote hosts on which to deploy each interface. In local
systems, the search space can already grow combinatorially
due to the permutations of component variants as a system
scales up – requiring novel thinking on how learning reasons
about each component [19]. When a set of additional hosts are
introduced, to which we can relocate or replicate any interface,
we add a second dimension of combinatorial growth.

As this search space grows larger, the number of permu-
tations for online learning can become intractable to search
over in real-time, reducing the responsiveness of the system
to newly detected environment conditions. While any response
speed may arguably still be faster than a human engineering
team manually analysing the system and developing corrective
behaviours, finding innovative solutions for the online learning
problem can have a major impact in search time. These may
include transfer learning [20], in which common elements of
hosts, components or deployment environment elements are
detected to avoid re-learning everything for an environment or
host that is very similar to one we have already experienced.
Much of the current research in transfer learning leaves the
human operator to analyse exactly what may be transferrable

Action Reward

1: {A,B,C,D|0:iq:1,1:ir:3,…}

2: {A,Q,F,N|0:iq:1,1:ir:3,…}

3: {A,Q,F,R,V,P|0:iq:1,1:ir:3,…}

4: {A,Q,FX{192.20.50.1},P,M|0:iq:1,1:ir:3,…}

5: {A,Q,FX{192.20.50.5},P,M|0:iq:1,1:ir:3,…}

6: {A,Q,FX{192.20.50.5;192.31.3.1},P,M|0:iq:1,…}

7: {A,Q,X,FX{192.20.50.1; 192.20.50.5},P,M|0:iq:1,…}

Action Reward

1: {F,N|0:ib:1,…}

2: {F,R,V|0:ib:1,1:in:3,…}

3: {F,M,K,Y|0:ib:1,1:iw:3,…}

4: {F,MX{192.21.3.4},K,Y|0:ib:1,1:iw:3,…}

5: {F,MX{192.21.50.9},K,Y|0:ib:1,1:iw:3,…}

HostA

HostB HostC

Action Reward

1: {F,N|0:ib:1,…}

2: {F,R,V|0:ib:1,1:in:3,…}

3: {F,M,K,Y|0:ib:1,1:iw:3,…}

4: {F,MX{192.21.3.4},K,Y|0:ib:1,1:iw:3,…}

5: {F,MX{192.21.50.9},K,Y|0:ib:1,1:iw:3,…}

Fig. 3. Distributed learning tables with respective composition choices.

under which conditions, however, and so fully automated
solutions to this problem are desirable for generality.

2) Coordination: Our second challenge is that coordination
may be needed to ensure that the distributed system as a whole
converges towards a global objective, avoiding cases in which
locally-good decisions are made which have a major negative
impact on the global picture when combined.

Consider the distribution of a set of learning tables shown in
Fig. 3, in which HostA has selected action 6 which causes one
interface (and the sub-tree of components from that interface)
to be replicated across two remote hosts such that those hosts
have their own set of composition choices.

Within this model we can have what we term ‘vertical’ and
‘horizontal’ interference in the learning process.

Vertical interference If we assume that each host has its
own learning agent, and there is no coordination between
them, then we can have a situation in which HostB is able
to select local action 4, which provides the highest locally-
observable reward, but overall provides a worse global reward
than if host HostB had chosen action 2 and host HostA
had chosen action 7. This phenomena is comparable to local
minima from classical machine learning theory.

To assure that we converge on a global objective under
these conditions we can take two different approaches: offline
analysis; or global sharing of either reward and/or actions. The
first and simplest is to use offline analysis to ensure that there
are no local minima. Formally, if we choose a distribution
action at host A, and that distribution action is globally the
best thing to do for at least one of the remote composition
choices at host B, then every remote composition choice must
be better than any other composition choice at A. This avoids
coordination messages between different learners and so has
excellent scalability; however, it can only be achieved by
statically removing all options at host B (using prior offline
analysis) that would make the distribution worse, leaving
only those that make it better. Unfortunately performing this
removal by static analysis may not always be possible in a way
that does not require a mock execution of the entire system in
every environment, which could be prohibitively expensive.

The second approach requires adding further information
sources for our learning agents: global reward knowledge,
and global action knowledge. Additionally, by introducing this
information, we also necessarily introduce some degree of
synchronisation in actions taken by distributed learners.

Considering the first information source, we can add a
‘global reward’ column to our learning tables to better un-
derstand how local choices affect the big picture. This reward
would need to be periodically disseminated to all nodes by
some entity with access to the overall objective of the system.
When making local choices, learning agents can then correlate
their local rewards against a global reward and so understand
that certain local-good actions are bad in the big picture.
While workable in some cases, this approach has two potential
problems: global reward might not arrive with predictable
timing and so it may be difficult to correlate against a specific
local action; and the globally-observed reward might appear
to change erratically even when the same local action is taken.
The latter scenario would indicate that there is a major source
of dependency on the actions that other agents are taking.

This leads to our second source of extra information, which
is adding a form of context to our learning tables to inform
us of which actions all other learning agents took during the
action that a local agent has just taken. This removes the noise
problem from a global reward signal, because it explains under
which exact global state a given global reward happened in
relation to a local action. The only remaining source of noise
is then typical natural variance in a reward signal. Again,
however, a higher level of synchronisation is needed between
learning agents in order to ensure that the global action context
supplied to a local learning agent is accurate in the timing with
which it took place relative to a local agent’s action.

Horizontal interference The second interference source
when making distributed decisions is ‘horizontal’. Rather than
being caused by direct dependencies between poor behavioural
choices, this variant is indirect and caused by colocation of
different parts of a system on the same host.

In this scenario, consider that the action lists at HostB
and HostC both have an option to distribute an interface
to a remote HostD. If either of B or C chooses this action,
the effect may locally be observed as positive; while if both
choose the action at the same time, the effect may locally
be perceived as negative. If B and C are not communicating
about their relative choices, this situation will be perceived as
inexplicable noise around this particular action and may need
information sharing (either global-reward or global-action) in
order to detect the explanation behind the noise; further to
this, it requires a negotiated decision between B and C as to
which of them is able to use the distribution action to D.

In all of these distributed learning challenges, the overall
objective is to minimise or eliminate coordination and mes-
saging between different learning agents in order to scale up
to system sizes that are possible without a learning element.
How this is achieved is an open question – and a generalised
one that we believe is critical for the community to address
for a large range of distributed autonomous systems.

App <interface>

Server

RequestHandler <interface>

RQHandler RQHandlerPT

HTTPHandler <interface>

HTTPHandler

HandlerCMP HandlerCHCMP HandlerCH

Compressor <intf>

GZip

Deflate

Cache <interface>

Cache

CacheLFU

CacheLRU

CacheFS

CacheMRU

CacheRR

Thread pool
implementation

Thread per client
implementation Implementation without

caching or compression

Implementation with
compression

Implementation with
caching

Main method: opens a server
socket and accepts client
connetions, each of which is
passed to a request handler.

Takes a client socket,
applies a concurrency
approach, and passes
the socket on to the
HTTP handler.

Takes a client
socket, parses
HTTP request
headers and
formulates a
response.

Implementation with
caching and compression

ServerScripting <intf>

PHP

MySQL <intf>

(database)

Memcache <intf>

(memcache)

Takes a client
socket, handles
dynamic server
scripting pages.

Fig. 4. The core components making up the web server element of our
architecture; the memcache and database interface represent external systems
that are similarly decomposed into building blocks and variations.

D. Case study systems

In this section we demonstrate how two very different sys-
tems benefit from the same approach to emergent distribution
and optimisation of behaviour – all driven from a single reward
signal and a real-time learning approach taking simple actions
that map on to complex compositional decisions.

1) Large-scale web-serving datacentres: The design, im-
plementation, deployment and ongoing maintenance of the
software within web-serving datacentres has become ex-
tremely complex, with a large number of interacting systems
exposed to continually changing conditions. As an example of
this, the backend systems supporting Facebook are such that
a single page request typically hits hundreds of cooperating
subsystems across a datacentre [21].

We implement an emergent version of a datacentre infras-
tructure using load balancing, web servers, memcache clusters,
and a database engine. A subset of the component building
blocks for these systems are shown in Fig. 4. As a reward
signal we use average response time, and as an environment
signal we use the request types that arrive at the system which
are classified into request patterns.

We deploy this system in a datacentre by starting all services
on a single host machine, which is the entry point of the
datacentre (the public IP address to which web requests for
a given site are directed). This entry-point host machine
measures the overall response time of each request, and also
monitors and classifies the current deployment environment.

The learning process on this server then begins to exper-
iment with different actions, which can map either to local
composition changes such as adapting the caching strategy, or
to distributed composition changes such as moving or repli-
cating a particular component across selected other servers. A
typical strategy here is to replicate the web serving elements

App <interface>

Server

RequestHandler <interface>

RQHandler

HTTPHandler <interface>

HTTPHandlerproxy

HTTPHandler <interface>

HTTPHandler

HandlerCMP HandlerCHCMP HandlerCH

Compressor <intf>Cache <interface> ServerScripting
.

HTTPHandler <interface>

HTTPHandler

HandlerCMP HandlerCHCMP HandlerCH

Compressor <intf>Cache <interface> ServerScripting
.

Fig. 5. A possible set of deployment decisions, reaching by selecting
particular local and distribution actions from a composition list; there the
HTTPHandler interface has been chosen for replication, and deployed
(along with the rest of the sub-tree) to two additional host devices.

of the system (represented by the HTTPHandler interface)
across other servers and then load-balance requests across
these replicas. Relocating the database to its own host may also
improve performance, as can tuning where the memcached
service is deployed and how many replicas are in use. Some
of these possible decision points are represented in Fig. 5.

Each decision is derived from simple runtime machine
learning actions, and can be measured as good or bad in terms
of a single reward signal. Whenever a new host is included
into the system, a new local learning process is started on
that host to learn how best to optimise the sub-composition of
components given to that host, including both local decisions
and further distribution choices. Because all decision making
is performed in the real deployment context, based on how
the system actually responds to its deployment conditions,
we remove the need for manual human analysis and offline
redesign, as is common practice today.

2) Heterogeneous pervasive systems: With increasing re-
search into smart cities, and IoT platforms in general, along-
side edge computing services and mobile devices, there is
ever-more pervasive computation capability in the built envi-
ronment. With this capability comes the challenge of making
effective use of these devices, which in many cases can be
summarised as making a tradeoff between locality (latency)
and computation power (execution time) – all while the relative
demands placed on each available device are in constant flux
as users move and usage patterns change.

We explore one point in this design space in the context of
mobile phone usage with image analysis. The image recog-
nition capabilities of modern smartphones are increasingly
advanced, with real-time translation and augmented reality
assistants. We have built an emergent version of this type of
system, with the basic elements shown in Fig. 6. As a reward
signal here we use average processing time for image frames,

App <interface>

LiveAugApp

ImageCapture <interface>

Camera

Main method: handles user
input events and orchestrates
user interface rendering.

ImageAnalysis <interface>

AnalysisFusion

TextTranslate <interface>

OCRTranslate

ObjectInfoAug <interface>

ObjectMapper

ObjectRecogniser <interface>

ObjectModel

Localisation <interface>

GPSMapper

GraphicsPanel <interface>

UIPanel

. . .

Fig. 6. The core components of a camera-based augmented reality app on
a smart phone, including live text translation in a scene and annotations on
objects such as buildings.

and as an environment signal we use the number of hosts
available and their current free resources.

When moving through an environment, the user may come
into contact with edge computing devices to which computa-
tion can be opportunistically offloaded, if there is a benefit to
doing so in terms of the transmission cost of data versus the
relative gain in compute speed and battery life.

This can be modelled in almost the same way as our
datacentre example, using real-time learning over a set of
compositional choices. In this case, however, the edge comput-
ing devices are transiently available and so the pool of host
machines is more frequently updated. Even so, the problem
is the same: given a set of available host machines, and
the set of building blocks available from which to construct
our system, can we learn which composition is best in each
environment that we encounter – including which distributions
of components work best for our objective.

E. Learning approach

Considering the challenges discussed in Sec. III-C, in this
paper we explore one of the simplest approaches to real-time
machine learning in distributed emergent systems. This can be
used as a benchmark for more focused studies of learning.

Our approach is based on a multi-armed bandit [22], which
is the most well-studied theory on how to optimally govern the
explore/exploit tradeoff in a reinforcement learning problem
to maximise long-term reward. In particular we adopt a
version of the Upper Confidence Bound (UCB1) algorithm,
which models reward and confidence for each action, using a
logarithmic model to describe confidence. The specific UCB
equation that we use is shown below:√

lnn

nk
· 1
4

(
2 lnn

nk

)

Where n is the total number of actions taken, and nk is
the number of times the particular action k has been taken.
This equation describes the confidence level of action k, and
the result of the equation is divided by an exploration constant
ce; the resulting value is then added to the average reward seen
for action k. When asked for the next action, UCB returns the
action with the highest resulting value for this final addition.
A learning algorithm following this equation tends to try every
action once, and then begins to increasingly focus on the high-
scoring actions as confidence in those choices grows.

In addition to the learning algorithm itself we also use a
real-time classifier to quantise the deployment environment in
which the emergent system is currently operating. Our clas-
sifier takes any event stream and derives distinct environment
classes from it by using a grouped threshold approach: the
set of labeled value points (such as ‘memory: 150’) seen
in an event stream are compared against all other classified
environments to see if any environment has the same set of
value labels, and if so has an equivalent set of values to within
a given threshold. If it does, we consider the environment to
be the same, otherwise we create a new environment for this
set of data points. We integrate this with UCB by instantiating
a new copy of UCB, with its own learning table of actions /
rewards, for each new environment detected by our classifier.

Connecting everything together, we represent every compo-
sitional choice in our emergent system as an action for UCB,
and define a fixed-size observation window after which we
collect the environment class and the average reward (e.g.,
response time) seen by the system. We use the environment
class to decide which instance of UCB to select (including
creating a new one for a newly detected environment). We
then push our collected reward into this UCB instance for the
action (composition) the system took during this time and ask
the same instance of UCB which action to take next. We adapt
the running system to that action/composition and then wait
for the end of the next observation window.

When an action correlates with a composition which dis-
tributes an interface implementation to a remote host, we send
to that host (if needed) the set of components ST which can
be used to implement the interface being distributed, plus all
components that are potential dependencies of ST . We then
start a new learning process on the remote host to learn how
best to compose the delegated sub-tree of the system.

When more than one host is in use by the system, we model
the distributed learning problem such that every host is given
the same observation window size, and we do not share any
information between different learning processes so that our
coordination overhead is zero. To deal with vertical interfer-
ence without coordination, as discussed in Sec. III-C, we make
the simplifying assumption that local minima conditions do not
exist. We enforce this by performing targeted offline testing
between each pair of components to detect and remove reward
conflicts during the selection of a particular distribution action.

To deal with horizontal interference we avoid ‘hidden
colocation’ of components on the same host, where two hosts
B and C can both decide to distribute one of their sub-

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Time (s)

local

Dist B – 2 servers

Dist B – 3 servers

Dist B – 4 servers

Dist A – 2 servers

Dist A – 3 servers

Dist A – 4 servers

Fig. 7. Response time measured across three different environments, using
increasing amounts of parallelism in the request pattern and requests that take
increasingly long to serve in server-side processing scripts.

interfaces to a third host D. We again prevent this by using
static analysis of the system composition graph to detect the
particular learning actions which may provoke them and then
disallow these distribution choices at runtime.

IV. EVALUATION

A. Datacentre scenario

For this example, we deploy our emergent web serving
infrastructure into a real datacentre and issue a varied series of
user request workloads to observe their effects. Our rackmount
servers each have Intel Xeon Quad Core 3.60 GHz CPUs and
16 GB of RAM, running Ubuntu Server 18.04. All of our
servers were located in the same rack, with a shared rack
head switch. Similar-spec machines were used as clients to
generate workloads, with the client machines located on a
different subnet (in a different building) to the servers.

We first conduct a series of experiments to locate a ground
truth. Here we issue each of our workload request patterns and
try each possible composition in turn, recording the average
response time. This tells us which composition is really best
for each workload. The results are shown in Fig. 7, which
focuses on seven different compositions: everything-local; and
two distribution points of the system (Dist A and Dist B)
distributed to an increasing number of remote servers.

Here we see three different request patterns over time, with
the average response time of each composition in each of the
three phases. For the first workload (time 0 to 100), the all-
local composition has the best overall response time; here all
parts of the system, from the web server to the script engine
and database, are located on a single server at the entry-point
to the datacentre. This is best because the first workload has
a dominant request proportion for static content, which does
not benefit from application-level load balancing (of the type
offered by our framework) since the latency of passing the
content between the web server and load balancer outweighs
the time taken to load the content from disk.

In the second workload, the best composition uses three
servers, with the server-side script logic distributed and load
balanced. This is selected because our second workload has a

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600 1800

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Time (s)

Learning

Optimal

Fig. 8. Response time under real-time learning measured across three different
environments, compared against the known ground-truth optimal for each case.

higher proportion of dynamic content requests, where server-
side scripts are executed and communicate with a database
to construct the page content. This kind of content serving
is more CPU-intensive, and so the relative gain of extra
CPUs on remote hosts tends to outweigh the cost of sending
the data between a load balancer and replicated web server
entity. The final workload shows a very close case where two
compositions (using 3 or 4 servers) are almost equally good,
with borderline gain from the 4th server.

We next use our learning algorithm, starting with no infor-
mation, and begin to issue a set of requests to the system.
The results of this are shown in Fig. 8, using the same three
workloads. Here we show two data series: the known ground-
truth optimal from the first experiments, and the current
response time of the emergent system as it explores and learns
about itself in its current environment.

The first workload, in which the everything-local com-
position was best, shows a very clear behaviour from the
learning algorithm: we begin with a period of exploration, then
reach a very high level of certainty that the local composition
represents the best choice, such that no other compositions are
re-explored after the initial exploration stage. In the second
workload we see more varied behaviour, representing a lower
degree of certainty about the ideal choice; this follows the
ground truth data showing tight groups of composition choices
in this workload. The initial exploration phase is therefore
followed by slightly more regular re-explorations of less ideal
compositions, shown as spikes in the response time – this
indicates that the learning algorithm’s certainty model sees a
higher level of variance in the data and less distinction between
available actions. Despite this, for the vast majority of the time
it maintains a profile that sits on the known optimal response
time. Finally, the third workload shows a noisier signal for
the optimal response time itself, due to the closeness of the
best two compositional choices shown in the ground truth. The
learned emergent version shows a similar level of noise, but
after an initial level of higher uncertainty it remains very close
to the ground truth optimal throughout the experiment.

These results demonstrate that we can successfully learn
how best to distribute a composition across the servers in a
datacentre, depending on the current request pattern, using a

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 100

P
ro

ce
ss

 t
im

e
 (

m
s)

Time (s)

local

tr[hb]

tr[lb]

oi[hb]

tr[hb]_oi[hb]

tr[lb]_oi[hb]

oi[lb]

tr[hb]_oi[lb]

tr[lb]_oi[lb]

Fig. 9. Processing time measured across three different environments, with
only the local host available; with a high-bandwidth in range; and with both
a high-bandwidth and low-bandwidth in range.

highly generalised approach to making complex distribution
decisions driven by a simple reward signal. The way in which
we use UCB1 means that the actual time taken to converge
is linearly proportional to the number of composition choices,
which will scale poorly to very high numbers of options; we
leave this as an open challenge for future work.

B. Pervasive systems scenario

We use this example to study the distributed emergent
systems problem in a more theoretical way. We can model the
basic design space here in terms of the data volume passed to
each function in the system and the computational intensity of
that function. In general, function calls with a low data volume
and high computational intensity are worth distributing. Each
interface is a collection of such functions, and the overall value
of distributing an interface to a remote host is a result of the
ratio of function calls on that interface. If, for example, an
interface has one function Fx with a high volume of data and
a low computational intensity, and another function Fy with
a low volume of data and a high computational intensity, the
ratio with which these two functions are used by the system
will determine whether or not it is valuable to opportunistically
offload the interface to a nearby higher-power edge device. An
average ratio of 1:500 for Fx:Fy may make this worthwhile,
while a ratio of 1:1 may make it a poor choice.

In a real system, this choice is modified by the current
environment in terms of the bandwidth available between the
host device and an edge device (which impacts the speed and
cost with which data is transferred for function calls); and
by the actual portion of CPU power currently available on
the local and edge device, which represent the relative gain
in the computational intensity element. This environmental
dependency converts the decision from one that could be
modeled statically into one that needs runtime data. In these
experiments we model the end-user device as a Raspberry Pi,
and the edge device as one of our rackmount servers.

We again run a ground truth experiment first, in which we
simulate three different environments: one with no available
edge devices; one with a high-bandwidth edge device in range;
and one with both a high-bandwidth and a low-bandwidth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700

R
ew

ar
d

 (
0

.0
-1

.0
)

Time (s)

Fig. 10. Real-time learning across three different environments, showing how
reward converges over time following the confidence model of UCB.

edge device in range. In these experiments the workload of
the system itself is constant, with the environmental changes
being the number of available devices onto which components
can potentially be distributed. The results are shown in Fig. 9,
which focuses on compositions in which either or both of
the TextTranslate (tr) and ObjectInfoAug (oi) interface are
distributed to an edge device and whether that device currently
has high or low bandwidth (hb or lb) available. Here we see
quite different choices in the three environments; in the first
with no edge devices, the composition with all components
on the end-user device is obviously the best. For the second
environment, with a single high-bandwidth edge device, there
are several compositional choices which represent different
distributions of components onto the edge device versus the
end-user device; the clear ideal choice is ‘tr[hb] oi[hb]’. In
the third environment we have a larger number of compo-
sition choices with three devices available; again the ideal
is ‘tr[hb] oi[hb]’ but there are far more mid-way options
including a distribution choice which is worse than all-local.

We next use our distributed emergent systems framework to
try to learn this composition, using only data about processing
time, the current environment (defined as devices in range with
their CPU potential and available bandwidth), and the set of
compositions available (which is this case transiently includes
distributions of components to edge devices when available).
The results of online learning are shown in Fig. 10, again
divided into the same three environment cases explored in the
ground truth experiments

In this graph we show the reward level, rather than the
processing time, to give more insight into the internal view
of the learning algorithm. This reward is gained by first
normalising the reported processing time into a value between
0.0 and 1.0, then inverting the processing time (which is really
a ‘cost’) into a reward. A higher value here is therefore better,
and in each phase the highest reward level corresponds to the
optimal choice seen in Fig. 9.

For the first phase we see the environment in which only
the user device exists, where the reward signal shows natu-
ral variation as computation speed fluctuates. In the second
environment we spend a short period of time exploring poor

options and so have a very low reward level, then quickly
reach a high level of certainty about the best action and
so see a major and sustained increase in reward. In the
third environment we see a similar initial exploration period,
followed by a slower rise in the reward level and occasional
reward drops. The latter two effects are caused by the higher
number of close compositional choices. Again, however, the
overall reward level is high and sustained for the majority of
the experiment, despite natural variations in the reward signal.

V. CONCLUSION

We have presented a novel approach to constructing a
distributed system in an emergent way, in which both the
choices about local behavioural choices on each host, and on
which hosts to deploy each available sub-compositional graph,
are unified under a simple action-reward model.

This paves the way towards a significant reduction in the
complexity of distributed systems design and deployment by
allowing a machine learning algorithm to orchestrate, in a live
deployment setting, the location, replication factor, and per-
host design, of an entire distributed system.

We have also presented the main challenges in achieving
this, focused on the difficulty of distributed learning. In
particular, the twin problems of locating a global optimal
solution while minimising message passing and coordination
for high-scale systems represents a very challenging design
space – and one which is highly relevant to a large class of
autonomous systems, yet is relatively under-explored.

We have implemented our approach in two real-world
demonstration systems, covering a datacentre web-serving
infrastructure and a pervasive systems environment. These
examples demonstrate the potential generality of the concept
in everyday settings that experience continuous environmental
changes, and so benefit from continuous learning of the
assembly of behaviours used to compose a system. Our imple-
mentation uses one point in the space of possible distributed
learning solutions, as a baseline against which to understand
potentially more advanced future approaches, which shows the
initial costs of constructing confidence models followed by
good convergence in both example systems.

ACKNOWLEDGEMENTS
This work was partly supported by the UK Leverhulme Trust
via the Self-Aware Datacentre project, grant RPG-2017-166.

REFERENCES

[1] Source code from this paper with instructions:
http://research.projectdana.com/saso2019porter.

[2] J. Jiang, S. Sun, V. Sekar, and H. Zhang, “Pytheas: Enabling data-
driven quality of experience optimization using group-based exploration-
exploitation,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). Boston, MA: USENIX Association,
2017, pp. 393–406.

[3] P. Pilgerstorfer and E. Pournaras, “Self-adaptive learning in decen-
tralized combinatorial optimization - a design paradigm for sharing
economies,” in 2017 IEEE/ACM 12th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS),
May 2017, pp. 54–64.

[4] F. Golpayegani, I. Dusparic, A. Taylor, and S. Clarke, “Multi-agent
collaboration for conflict management in residential demand response,”
Computer Communications, vol. 96, pp. 63 – 72, 2016.

[5] F. Fioretto, E. Pontelli, and W. Yeoh, “Distributed constraint optimiza-
tion problems and applications: A survey,” J. Artif. Int. Res., vol. 61,
no. 1, pp. 623–698, Jan. 2018.

[6] G. M. J. B. Chaslot, M. H. M. Winands, and H. J. van den Herik,
“Parallel monte-carlo tree search,” in Computers and Games, H. J.
van den Herik, X. Xu, Z. Ma, and M. H. M. Winands, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 60–71.

[7] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
in Machine Learning: ECML 2006, J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 282–293.

[8] A. Diaconescu, B. Porter, R. Rodrigues Filho, and E. Pournaras, “Hierar-
chical self-awareness and authority for scalable self-integrating systems,”
in International Workshop on Self-Improving System Integration. IEEE,
September 2018, pp. 1–8.

[9] D. Pianini, M. Viroli, and J. Beal, “Protelis: Practical aggregate
programming,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing, ser. SAC ’15. New York,
NY, USA: ACM, 2015, pp. 1846–1853. [Online]. Available:
http://doi.acm.org/10.1145/2695664.2695913

[10] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
An acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, Mar. 2005.

[11] T. Bennani, L. Blain, L. Courtes, J.-C. Fabre, M.-O. Killijian, E. Mars-
den, and F. Taiani, “Implementing simple replication protocols using
corba portable interceptors and java serialization,” in Proceedings of the
2004 International Conference on Dependable Systems and Networks,
ser. DSN ’04. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 549–.

[12] A. L. Murphy, G. P. Picco, and G. . Roman, “Lime: a middleware
for physical and logical mobility,” in Proceedings 21st International
Conference on Distributed Computing Systems, April 2001, pp. 524–
533.

[13] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mys-
tery machine: End-to-end performance analysis of large-scale internet
services,” in 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). Broomfield, CO: USENIX Association,
2014, pp. 217–231.

[14] A. Mehta and E. Elmroth, “Distributed cost-optimized placement for
latency-critical applications in heterogeneous environments,” in 2018
IEEE International Conference on Autonomic Computing (ICAC), Sep.
2018, pp. 121–130.

[15] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, 2016, pp. 249–264.

[16] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A disseminated,
distributed OS for hardware resource disaggregation,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). Carlsbad, CA: USENIX Association, 2018, pp. 69–87.

[17] B. Porter, “Runtime modularity in complex structures: A component
model for fine grained runtime adaptation,” in Component-Based Soft-
ware Engineering. ACM, June 2014, pp. 26–32.

[18] R. Rodrigues Filho and B. Porter, “Defining emergent software using
continuous self-assembly, perception, and learning,” Transactions on
Autonomous and Adaptive Systems, vol. 12, no. 3, pp. 1–25, September
2017.

[19] B. Porter, M. Grieves, R. Rodrigues Filho, and D. Leslie, “Rex: A de-
velopment platform and online learning approach for runtime emergent
software systems,” in Symposium on Operating Systems Design and
Implementation. USENIX, November 2016, pp. 333–348.

[20] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, Oct 2010.

[21] K. Veeraraghavan, J. Meza, D. Chou, W. Kim, S. Margulis, S. Michelson,
R. Nishtala, D. Obenshain, D. Perelman, and Y. J. Song, “Kraken:
Leveraging live traffic tests to identify and resolve resource utilization
bottlenecks in large scale web services.” in OSDI. USENIX, 2016, pp.
635–651.

[22] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends in
Machine Learning, vol. 5, no. 1, pp. 1–122, 2012. [Online]. Available:
http://dx.doi.org/10.1561/2200000024

