

Accepted Manuscript

ROUTER: Fog Enabled Cloud based Intelligent Resource
Management Approach for Smart Home IoT Devices

Sukhpal Singh Gill , Peter Garraghan , Rajkumar Buyya

PII: S0164-1212(19)30098-6
DOI: https://doi.org/10.1016/j.jss.2019.04.058
Reference: JSS 10346

To appear in: The Journal of Systems & Software

Received date: 10 December 2018
Revised date: 21 March 2019
Accepted date: 23 April 2019

Please cite this article as: Sukhpal Singh Gill , Peter Garraghan , Rajkumar Buyya , ROUTER: Fog
Enabled Cloud based Intelligent Resource Management Approach for Smart Home IoT Devices, The
Journal of Systems & Software (2019), doi: https://doi.org/10.1016/j.jss.2019.04.058

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jss.2019.04.058
https://doi.org/10.1016/j.jss.2019.04.058

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1

Highlights

 Designed a request handler mechanism to manage job requests of IoT devices

 Proposed PSO based resource scheduling technique for fog-assisted cloud environment

 Validated with the help of a case study of IoT based smart home automation

 Optimized QoS parameters such as response time, bandwidth, energy and latency

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2

ROUTER: Fog Enabled Cloud based Intelligent Resource Management

Approach for Smart Home IoT Devices

Sukhpal Singh Gill
1 2

, Peter Garraghan
1
 and Rajkumar Buyya

2

a
s.s.gill1@lancaster.ac.uk,

b
p.garraghan@lancaster.ac.uk,

c
rbuyya@unimelb.edu.au

1School of Computing and Communications

Lancaster University, UK

2Cloud Computing and Distributed Systems (CLOUDS) Laboratory

School of Computing and Information Systems

The University of Melbourne, Australia

Abstract

There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision

latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog

computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data,

computation, storage, and networking services between Cloud datacenters and end users. A key element within such

Fog computing environments is resource management. While there are existing resource manager in Fog computing,

they only focus on a subset of parameters important to Fog resource management encompassing system response

time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers

these parameters simultaneously for decision making, which in the context of smart homes will become increasingly

key. In this paper, we propose a novel resource management technique for fog-enabled Cloud computing

environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated

within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical

models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12%

network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption.

Keywords: Fog Computing, Cloud Computing, Internet of Things, Smart Home, Resource Management, Edge

Computing

1. Introduction

Emerging Big Data and Internet of Things (IoT) applications such as smart cities and healthcare services have risen

in societal prominence, demonstrated by an increase of data velocity of 250MB per minute globally [3]. Therefore,

such applications require substantial data and computational capability to provision service [1], possible via

deployment within Cloud datacenters. However, such applications when deployed within Cloud datacenters

encounter potentially high latency and response times due to large geographical distance and data bandwidth

requirements between clients and the datacenter. [2]. Fog computing has been envisioned as a means to reduce the

latency, via extending Cloud datacenters to integrate with the network edge [4] [5]. Thus, IoT environments can

leverage fog-assisted Cloud computing to execute latency-sensitive applications.

Resource management – the process of scheduling and allocating resources to applications – is a fundamental

concept within distributed systems [16] in order to adhere to specified Quality of Service (QoS) constraints whilst

minimizing overheads pertaining to performance, and energy waste [16]. While there exist a wide plethora of

existing schedulers for distributed systems such as MESOS, YARN and BORG in cloud, which have been created to

operate within centralized computing infrastructure [25]. Specifically, these schedulers are not designed to operate

within an environment including highly mobile edge devices [20], latency-sensitive applications, nor wide

geographical areas intrinsic to Fog computing environments. Resource management within Fog computing

predominantly focuses on managing the compute and storage service between edge devices and the Cloud

datacenters to process user tasks with minimum latency and response time [5] [6] [7] [8]. Existing IoT and Fog

computing resource managers focus on a singular or specific sub-set of metrics including application response time,

latency, energy, and network bandwidth [11] [12] [13] [14], Capturing all these parameters within a Fog computing

resource management is particularly important within the context of smart homes, which are positioned to process

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3

increasingly larger quantities of data from smart devices and appliances connected to IoT systems, whilst

simultaneously ensuring high QoS and reduced energy consumption to reduce electricity bills for home dwellers

[24]. Due to the complexity of multi-objective optimization of parameters for trade-off decision making in resource

management (which has led to existing Fog resource management algorithms implementing FIFO or round-robin

based approaches [11] [12]), we believe that exploring nature or bio-inspired algorithms is a promising approach to

address this problem for resource management [16] [19].

In this paper, we propose a Fog-enabled Cloud computing resource management framework for smart homes. Our

approach, ResOUrce managemenT tEchnique for smaRt homes (ROUTER) has been designed to consider and

optimize multiple parameters simultaneously including response time, network bandwidth, energy consumption and

latency simultaneously via use of a Particle Swarm Optimization algorithm (PSO). Stochastic nature of the particle

increases due to this property of PSO and touches rapidly to global minima with a realistic noble solution [26]. PSO

has become prevalent due to its easiness and its usefulness in extensive range of application with little cost of

computation [23] [26]. ROUTER has been validated through empirical findings via a case study of IoT based smart

home automation which are then integrated into iFogSim for evaluation. The main contributions of this research

work are as follows: (i) a detailed requirement and design of an Fog-assisted Cloud architecture to perform effective

resource management for various IoT edge devices; (ii) a request handler mechanism for Fog computing jobs, and a

multi-objective PSO based resource management technique; (iii) a small-scale empirical study of an IoT smart home

environment that leverages a Fog-assisted Cloud computing environment, analyzing the performance of various QoS

parameters within different operational contexts.

The rest of the paper is organized as follows. Section 2 presents related work of existing techniques. The proposed

technique is presented in Section 3. Section 4 describes the experimental setup and case study. Section 5 describes

the results of the evaluation. Section 6 presents conclusions and future work.

2. Related Work

Research into IoT applications within Fog computing is growing research field, with various unsolved research

challenges [18]. This section presents the current research on resource management within Fog computing.

Deng et al. [8] formulated a workload allocation problem to study the tradeoff between energy consumption and

delay within a Cloud-Fog computing system. Furthermore, the primary problem is decomposed into three sub-

problems to solve independently, and demonstrated that Fog computing is efficient in reducing transmission latency

and communication bandwidth, however does not consider system network bandwidth and energy consumption.

Cuong et al. [9] proposed a proximal algorithm for joint resource allocation in the geo-distributed environment and

reducing carbon footprint. Moreover, authors demonstrated that their proposed solution can reduce system carbon

footprints whilst offering video streaming as a cloud service. Lin et al. [10] proposed a cost-efficient resource

management technique integrated within a medical Cyber-physical System in which virtual machine placement, task

distribution and base station association are investigated. Results demonstrated that the proposed solution performs

more effectively in comparison to a greedy algorithm in terms of energy consumption.

Wangbong et al. [11] proposed a Gateway-based Fog Computing (GFC) architecture for wireless sensors and

actuator networks predominantly consisting of master and slave nodes, managing virtual gateway functions, flows,

and resources. Experimental results show that GFC performs more effectively in terms of response time. Yu et al.

[12] proposed a Virtualization based Resource Provisioning (VRP) algorithm for Fog computing and designed an

architecture using the concept of parallel and distributed load balancing. Furthermore, the algorithm is evaluated

within Cloud-Analyst simulator that finds the proposed solution decreases the system energy cost. Stojkoska et al.

[13] proposed a conceptual model for smart homes using IoT for fog computing, and suggests that energy

consumption can be reduced via integration of geographically distributed renewable energy sources. Zhang et al.

[14] proposed a three-layer hierarchical game framework for resource management in Fog computing to solve the

challenges pertaining to fast data processing and minimum response time. This research work reported that Fog

devices are more capable to reduce latency as compared to the cloud by experiencing a minor increase in energy

consumption. Therefore, the trade-off between latency and power consumption is required to provide more efficient

services.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4

From the literature it is observable that under-provisioning and over-provisioning of resources in existing Fog

computing and IoT resource management techniques [11] [12]. Fog devices have additional compute and storage

power, however it is not feasible for such devices to provide resource capacity equivalent to that of Cloud

datacenters, therefore efficient resource management is required to process user requests in a timely manner. To

solve this problem, the resource requirement for execution of user tasks should be predicted accurately in advance to

utilize resources efficiently. The comparison of existing resource management techniques with the proposed

technique (ROUTER) is described in Table 1.

Table 1: Comparison of Existing Techniques with Proposed Technique (ROUTER)

Authors

Applicable

Network
Fog Nodes

Nodal

collaboration

Focus

Performance Parameters (QoS)

Response

Time
Energy Latency

Network

Bandwidth

Deng et al. [8]
Mobile

Network
Servers Master slave

Application

management
✖ ✔ ✔ ✖

Cuong et al.

[9]

Vehicular

Network
Servers Peer to Peer

Application

management
✖ ✔ ✖ ✖

Lin et al. [10]
Mobile

Network

Base

Stations
Peer to Peer Network Management ✖ ✔ ✖ ✖

Wangbong et

al. [11]
IoT Network Devices Peer to Peer Resource Management ✔ ✖ ✖ ✖

Yu et al. [12] IoT Network Devices Peer to Peer Resource Management ✖ ✔ ✖ ✖

Stojkoska et
al. [13]

Mobile
Network

Base
Stations

Cluster
Application
management

✖ ✔ ✖ ✖

Zhang et al.

[14]

Vehicular

Network
Servers Master slave Network Management ✔ ✖ ✖ ✖

ROUTER

(Proposed)
IoT

Network

Devices and

Servers

Peer to Peer

Application, Network

and Resource

Management
✔ ✔ ✔ ✔

3. Fog-assisted Cloud based Resource management for IoT and Big Data analytics

This section presents the proposed resource management technique for Fog-assisted Cloud resource management for

smart homes. The architecture of ROUTER is shown in the Figure 1.

Based on their functionality, the architecture is composed of three layers, the components of the proposed

architecture are discussed below:

Internet of Things (IoT): Edge devices comprising gateways, fog devices, smart home appliances, sensors etc.

A user may interact with the Fog computing environment via IoT applications or sensors. The functionality of

this layer is enhanced by installing intelligent and applications within end devices.

Fog Computing: Collects data generated by bottom layer (IoT) and establishes communication between edge

devices and the Cloud datacenter. The functionality of the intermediate layer is divided into two sublayers: a)

Field Area Network (end devices interacting with each other via 3G/4G/Wi-Fi) and b) Internet Protocol/Multi-

Protocol Label Switching (used to transfer the data from end devices to centralized cloud system).

Cloud and Big Data: Manages the services which enable the management of resources and processing of big

data and IoT tasks. Furthermore, this layer provides QoS to Fog computing applications and the Cloud

computing operational management. Applications such as Big Data processing is performed at this layer to

handle the large data coming from different IoT applications and process through different stages such as

preprocessing, classification and prediction [18].

Cloud computing contains a wide variety of services that can enhance application operation to minimize latency

of executing tasks on Fog devices whilst decreasing Cloud economic costs. There exist different types of

services, which operate in tandem comprise:

 Monitoring: Monitoring of service/application status and performance.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5

 Knowledge Base: Stores historical information pertaining to resource and application demand to improve

decision-making processes in future IoT-based applications.

Figure 1: ROUTER Architecture

 Job Placement: Processes information provided by Monitoring services that contain available Cloud

resource status at a particular period of time. This information is leveraged to discover the best machines to

schedule jobs (tasks) for execution. This is further interconnected with Resource Provisioning to find

allocation requirements of new resources for existing tasks.

 Big Data Analytics: Collects data from different IoT devices to perform different data processing operations

spanning data pre-processing, classification, and prediction [18]. This module assists in determining

threshold values for performance parameters for resource scheduling decision making.

 Resource Information: Obtains information from Monitoring and Knowledge Base to profile applications

and resources.

 Security: Provides authorization and authentication to applications and services to manage user credentials.

Gateway

Sensors, Edge,

Devices,

Gateways and

IoT
Applications

Knowledge

Base

Cloud Data

Center and Big

Data

Processing

Performance

Prediction

Network

Management

Big Data

Analytics
Job

Placement

Monitoring
Resource

Information

C

L

O

U

D

&

B

I

G

D

A

T

A

Resource

Provisioning
Security

 Fog Data Server

Fog Server Manager

 Big Data Processing

Pre-

processing

 Storage

Classification

Prediction

F

O

G

C

O

M

P

U

T

I

N

G

Intranet Server

Smart Things Network

IP/MPLS

Core

I
o
T

Field Area

Network

3G/4G/Wi-Fi

Distributed

Intelligence: FOG

IoT Sensors

Cloud

Resource

Management

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6

 Resource Provisioning: Control and provides resource allocation to various network, Fog and Cloud

resources. Due to changing the number of applications and requirements of applications with the entire

system, resources are allocating dynamically in response to QoS and operational constraints.

 Performance Prediction: Performance of free cloud resources is visualized by utilizing the information of

Knowledge Base service and this information is further forwarded to the Resource Provisioning service to

determine application resource requirements.

3.1 Request Handler Mechanism

Figure 2 shows the interaction of Fog Data Server (FDS) with IoT devices and Cloud Data Server (CDS) in terms of

the design model. IoT layer contains end devices such as gateways and sensors to retrieve information from the end

user. It then forwards the user information to FDS for further processing. The fog layer contains multiple FDSs. The

FDS comprises one Fog Server Manager (FSM), which manages all FDS resources required for job execution.

Further, the request can be forwarded to cloud layer for execution in case of unavailability of resources at the FDS

level. The cloud layer has a number of CDS. Figure 3 describes the interaction of cloud layer, fog layer and IoT

layer to handle a typical job request.

Figure 2: Functional Components

 There are two types of job processing requests. First, at the FDS (denoted by and another at the CDS (denoted

by , which is requested by FDS in the case of unavailability of resources at the Fog layer. Initially, the IoT layer

submits a job request (to the closest FDS (say intended to accelerate job execution. The FSM checks

whether the resource demand of that particular request is satisfied or not at . If the satisfies the resource

demand of request (then the FSM starts its execution and tracks its execution status.

Step 1. The FDS checks local resource availability and has the ability to manage system resources for request
execution.

Step 2. The IoT layer forwards the user request to FDS, which enqueues request.

Step 3. The FDS handles the user request with following conditions:

i) if required resources are available at the FDS level, then the FSM processes the request on the FDS and
submits an acknowledgement to the IoT layer regarding execution status.

ii) if a portion of required resources are available at the FDS level, then the job request needs to wait for a
particular time period (Threshold value for each request), otherwise Goto (v).

iii) if the FDS is already executing other requests, which are close to completion, then the new job request
needs to wait for a particular time period (Threshold value for each request), otherwise Goto (v).

iv) if one of the resources executing a particular request fails at the FDS level, then, the request management
behaviour will follow the behaviour as in (ii) condition.

v) if no resources are available in the FDS, then the job request is forwarded to the CDS.

Step 4. CDS executes the job request and sends an acknowledgement to FSM.

Figure 3: Request Handler Mechanism

If the partially satisfies the demand of the job request (then the FSM has to wait for Minimum Constraint

Time (), otherwise the job request is forwarded to the CDS. If all the resources are occupied at but

is in its initial release state, then the job request (must wait for Minimum Constraint Time () to release the

resources and then commence execution. If all the resources are busy executing other yet some requests are

failing during execution, then the FSM will discover another to offload requests. If all the resources are

unavailable in all of the FDS within the Fog cluster, then job request (are propagated to the CDS over

appropriate communication network and now this request is denoted as (and user will receive a message “Wait

for processing” and then must wait for maximum allocated time () to release the resources at CDS. FSM then

Cloud Data

Server
Communication Network IoT

Layer

Fog Data Server

Request

Response

FSM

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7

sends the job request (to closest CDS for further processing. The CDS provides resources for execution of job

requests with minimum response time and latency, and then sends an acknowledgement to the FDS. The latency and

response time values are predefined via analysis and modelling of historical system data and both the parameter

have some fixed value for a certain interval (we have considered one-hour duration for intervals). Based on the

performance of resources (execution time and energy consumption), the value of latency and response time is

redefined at every interval. The next section describes the working of Fog server manager for scheduling of

resources.

3.2 Fog Server Manager

This section describes the Fog server manager for scheduling resources to execute job requests.

3.2.1 Objective function

The main objective of the fitness function is to optimize the performance parameters energy consumption

(), network bandwidth (), latency () and the response time () to facilitate

requests originating at the IoT layer. This fitness function (Equation (1)) effectively compromises the following

performance parameters

 (1)

where , , and denotes weights to prioritize components of the

fitness function. The Network Bandwidth is defined as the number of bits transferred/received in one second. The
Latency is defined as the delay before the transfer of job request for processing. The Response Time is defined as the

length of time taken for a system to react to a job request first time. The Energy Consumption is the sum of energy

consumed by the processors, the switching equipment, the storage devices, the network devices and other

components such as fans or conversion losses [2].

3.2.2 Particle Swarm Optimization based Resource Scheduling Algorithm

Particle Swarm Optimization (PSO) is motivated by the social activities of species such as group of birds seeking

food sources [23] and works based on a global search method. The PSO algorithm denotes the number of particles

as a population, which are first initialized randomly. The PSO improves the fitness value (as calculated using Eq. 1)

of a particle in every generation. In the PSO algorithm, the particle’s position is denoted as: a) global optimal state

(GlobalOptimalState): best particle among group based on fitness value of all the particles b) and local optimal state

(LocalOptimalState): it is best fitness value of a particular particle. Further, [Eq. 1] is used to update particle’s velocity

and position in every generation. Every particle regulates its position based on the value of GlobalOptimalState and

LocalOptimalState in every generation. The PSO can be used to solve resource scheduling problems due to (i) usefulness

and easiness with less computation cost and (ii) achieving global minima relatively quickly [23]. Deteailed

terminology of PSO used in this research work is presented in Table 2.

Table 2: PSO Terminology

PSO Terminology Description

Particle

Denoted as an independent instance in a search space and its position is affected by the value of LocalOptimalState
and GlobalOptimalState. Further, the performance of a particle is measured by its fitness value. A request is

considered as a particle for this research work.

Population Size It is a set of number of job requests, which are coming from IoT/edge devices.

Initial Random Velocity

The movement of every particle is dependent on 1) preliminary random velocity and 2) two randomly weighted

effects: a) the affinity to reach neighborhood’s best earlier position and b) the affinity to reach best earlier
position of a particle. Resources are mapped to requests based on these two affinities. Request will be processed

on that resource which has higher value of fitness.

Particle Velocity The probability distribution for the particle determines the value of particle velocity.

Particle Position
Present state of the particle (request), which can be completion state, execution state, ready state, waiting state or

submission state.

Global Best Position

(GlobalOptimalState)
Best position of particle (job request) attains among the total group of particles (job request list).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8

Local Best Position

(LocalOptimalState)
Best position of particle (job request) as particle attains

There is a partial solution in genome for every particle, which is considered as a resource identifier. The main

motivation for the PSO-based scheduling is to identify the best resource identifier, which creates the best solution

for the particular optimization problem such as resource scheduling. The selection process of non-PSO based

resource identifier stops after a pre-defined number of iterations. We set a fixed number of iterations to keep the

computation time low. In the PSO-based method, a new solution would be rejected if its fitness value is less than the

current solution. Figure 4 presents the pseudo code of PSO based resource scheduling algorithm.

Algorithm 1: PSO Based Resource Scheduling Algorithm

1. Input Value: No. of job requests and No. of resources

2. Outcome: Resource scheduling for an execution of Job Requests

3. Begin

4. Initialize variables: Resource list, Job Request List, Randomly Allocating Input Value

5. PopulationSize = Size of Population

6. InitialRandomVelocity = Initial Random Velocity
7. ParticleVelocity = Velocity of Particle

8. ParticlePosition = Position of Particle

9. RP = Random Position
10. InitialPopulationSize = Initial Population Size

11. GlobalOptimalState = Global Optimal State

12. LocalOptimalState = Local Optimal State
13. MIC = Maximum Iteration Count

14. Counter = 1

15. while (counter ≥ 0)

16. counter ++

17. if (counter ≥ PopulationSize)

18. break

19. ParticleVelocity ← InitialRandomVelocity

20. ParticlePosition ← RP (PopulationSize)

21. LocalOptimalState ← ParticlePosition

22. ∀ ParticlePosition ∈ InitialPopulationSize, Compute Fitness Function [Eq. 1]

23. if Fitness Value (GlobalOptimalState) ≥ Fitness Value (LocalOptimalState then

24. GlobalOptimalState ← LocalOptimalState

25. Counter = 1

26. while (counter < MIC) do

27. counter ++

28. for ParticlePosition ∈ InitialPopulationSize do

29. ParticleVelocity ← Update_Particle_Velocity (ParticleVelocity, GlobalOptimalState, LocalOptimalState)

30. ParticlePosition ← Update_Particle_Position (ParticlePosition, ParticleVelocity)

31. if Fitness Value (ParticlePosition) ≤ Fitness Value (LocalOptimalState)

32. then

33. LocalOptimalState ← ParticlePosition

34. GlobalOptimalState ← LocalOptimalState if Fitness Value (LocalOptimalState) ≤ Fitness Value (GlobalOptimalState) else GlobalOptimalState

35. return (GlobalOptimalState)

36. while queue is not empty do

37. ∀ resource ∈ resource list do

38. Job request = dequeue from unprocessed job request queue

39. schedule job request (based on fitness value [Eq. 1])

40. if all the job requests not executed then Goto 15

41. Finish

Figure 4: PSO Based Resource Scheduling Algorithm

4. Performance Evaluation

To demonstrate the feasibility of the proposed approach, we have developed the framework and scenario into a Fog

computing based environment using CloudSim [15] and iFogSim [17]. In this research work, event simulation

functionalities of CloudSim have been used to implementing functionalities of iFogSim architecture. CloudSim

entities such as datacenters and communication amongst datacenters through message sending operations are

included. Therefore, the core CloudSim layer is responsible for handling events between fog computing components

in iFogSim [17]. iFogSim implementation is established by simulated services and entities. The proposed technique

has been validated via deployment of a smart home automation experiment case study. The application model of

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9

IoT-based smart home automation is built into iFogSim in order to validate the proposed technique through real-

time application (in other words, data from the experiment is directly fed into the simulator to provide edge-device

operational behavior for the resource manager).

4.1 Case Study: IoT based Smart Home Automation

In order to demonstrate an example smart home case study, we interconnected multiple IoT devices wirelessly

controllable by using a smartphone. The scenario we have created consists of a home consisting of three rooms

(Garage, Lobby, and Bedroom), that are capable of manipulating various devices and appliances within each room

to which consist of AC, fan, bulb and doors. Figure 5 depicts the front view of smart home, whilst Figure 6 describes

an interaction of smart home components with mobile app using Arduino IDE.

Figure 5: Front View of Smart Home

Figure 6: Interaction of Smart Home Components with Mobile App using Arduino IDE

Figure 7 and 8 depicts the interaction of devices in the smart home application, and integration of different

components, respectively. The smart home contains an Arduino board and different home appliances such as AC,

fan, bulb and doors. The components are interacting with each other via the following sequence:

 Android to ESP8266: Initially, an Android device generates a signal to fetch required information from the

smart home. This signal is transferred to the ESP8266 module wirelessly using the server created by the ESP

over the local hotspot. This connection uses a connection id between ESP and Android device, where ESP sends

the HTTP packet to initiate the connection. This data is then further processed at the ESP8266 module.
 Intranet Server: The Arduino based hardware is designed to provide an interface between the android

application and appliances. This is used to retrieve incoming data from sensors and converts into digital and

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10

send it to android application over Internet using Intranet server. This is also used to generate the signal for a

specific appliance selected by the user.

Figure 7: Interaction of Arduino IDE and Arduino UNO

 ESP8266 to Arduino: ESP receives the signal/data from the server created at the specific static IP address. The

Arduino then matches the header with the prescribed header format and then further breaks down the signal and

uses the resultant data to enable or disable the desired pins.

Figure 8: Interaction of Different Components

 Controlling Device States: The Arduino directs the pins received in the signal to turn ON/OFF home appliances

as per user requirements. The device status is then updated within the Android application.

 Intrusion/Breach Detections: When the security feature in the Smart Home App is turned ON, the Passive Infra-

Red (PIR) sensor [27] will be turned ON to detect the heat signals and motion inside the room. If any movement

is detected, it will activate a buzzer and an SMS of the detected intrusion is sent to the owner’s phone.

Similarly, when the door is opened, the signal breaks and the owner is alerted with a message of breach from

the door.

 Live Video Feed: The device actives an IP camera connected to the Wi-Fi hotspot to create a live view in the

application. Therefore, when the server is started to project the video, its IP address is be used inside Smart

Home App to create the image.

Figure 9 shows the interface of the smart home. The user can control basic operations such as device selection, turn

on/off home appliances, change light colors, fan speed, acquire sensor details, add/view event, and watch live feed

camera. The home screen shows the live view of various rooms as shown in Figure 9(g), and sensor information

such as temperature sensor, humidity sensor, number of devices connected to smart home and consumption of

electricity. A user can further create a new event if required by using the “Add Task” shown in Figure 9(e).

Smart Phone
Intranet

Server Esp8266 Arduino
Home

Appliances

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11

(a) Login Screen

(b) Home Screen

(c) Info bar

(d) Room Appliances

(e) New Event (Add Task)

(f) Receiving Data

(g) Live Feed

Figure 9: Different Operations of Smart Home App

The use case diagram of smart home automation shown in Figure 10 describes the interaction of different actors

user, app database and sensors. Figure 11 shows the class diagram of smart home automation to describe the

interaction of different classes with their different functions. Alert class describes the important aspects of real-time

applications such as latency, response time and deadline. User will be alerted if response time is more than threshold

value. Further, alert can be generated if deadline of a particular request is missing. Moreover, user can be intimated

when latency is more than its threshold value.

4.2 Implementation of Proposed Technique in iFogSim

Figure 12 describes the component mapping for smart home automation within a simulation environment using the.

iFogSim toolkit. Different sensors are used to control different activities such as voltage, light, motor speed

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12

(motion), room temperature and security of smart home. PIR sensor detects the movement of objects even beyond

the boundaries of the smart home and detects heat signature from the light. IP camera is used as an edge device.
ATmega328P based Arduino board is connected to every appliance of the smart home. Smart Home App is

communicating with Fog device using the HTTP communication protocols (ESP8266 module).

Figure 10: Use Case Diagram of Smart Home Automation

The following classes within iFogSim are modified to implement IoT based smart home application within the

greater Fog environment:

FogDevice: Describes the hardware features of Fog devices and their relations with sensors and other Fog devices.

We have extended PowerDatacenter class of CloudSim [15] to allow the main attributes of the FogDevice class to

access downlink and uplink bandwidths (specifying the communication capacity of Fog devices), storage size,

processor and memory. Functions of this class specify the scheduling of resources among application modules

executing on it and their deployment and release after execution. Moreover, we have developed a Listener module,

which receives the data from different sensors as shown in Figure 12.

Sensor: In the iFogSim toolkit, IoT sensors are represented by instances of the Sensor class. Features of a sensor,

extending from its connectivity to output aspects, are represented by attributes of this class. The class holds a

reference attribute to the gateway Fog device to which the sensors are attached. We used reference attributes of

Sensor class to simulate the behavior of different sensors, which are gathering different types of information at IoT

layer as shown in Figure 11.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

13

Figure 11: Class Diagram of Smart Home Automation

Actuator: Defines a method to perform an action on arrival of a tuple from an application module to perform

different operations of smart home automation as described in Table 3. When user preforms any operation, this class

override the defined method to execute corresponding operation. The latency of different devices is defined using

attributes of this class as shown in Table 4.

Communication Network: The physical topology (tree topology) of the smart home automation is modeled in

iFogSim via FogDevice, Sensor and Actuator classes as described in Figure 12.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14

iFogSim Toolkit Components

 Sensors Fog Device Communication Network Controller Edge Device

 IoT Layer Fog Layer ESP8266 Smart Phone IP Camera

Components of IoT based Smart Home

Figure 12: The Mapping of the Components of Smart Home Automation with iFogSim Toolkit

Controller: The Controller object launches the AppModules on their assigned Fog devices following the placement

information provided by Module Mapping object and periodically manages the resources of Fog devices as shown in

Figure 12. When the simulation is terminated, the Controller object gather results of cost, network usage and energy

consumption during the simulation period from the Fog devices.

Tuple: Central unit of communication amongst Fog entities. The sensors in iFogSim generate tuples that can be

referred as tasks in Cloud computing. The creation of tuples (tasks) is event driven and the interval between

generating two tuples is set following deterministic distribution while creating the sensors. The instances of Tuple

class in iFogSim [17] are represented as tuples, which are inherited from the Cloudlet class of CloudSim [15].

Categorization of tuples is done with its type and destination and source application modules and it is described in

Table 3. The length of data encapsulated in the tuple and processing requirements (defined as Million Instructions

(MI)) are specified by the attributes of the class.

Application: The smart home application is modeled as a directed acyclic graph (DAG), the vertices of the graph

representing modules that perform processing on incoming data and edges denoting data dependencies between

modules as shown in Figure 12. These entities are realized using the following classes.

 AppModule: Instances of AppModule class represent processing elements of fog applications and realize the

vertices of DAG. AppModule is implemented by extending the class PowerVm in CloudSim. For each incoming

tuple, an AppModule instance processes it and generates output tuples that are sent to next modules in the DAG.

The application modules of SHA are Admin, Owner, System, Appliances, Events, Database and Sensors/IP

Camera as shown in Figure 13 and the description of above-mentioned application modules is given in Section

4.2.1.

 AppEdge: An AppEdge instance denotes the data dependency between a pair of application modules and

represents a directed edge. Each edge is characterized by the type of tuple it carries, which is captured by the

tupleType attribute of AppEdge class along with the processing requirements and length of data encapsulated in

these tuples. The edges between the application modules in the smart home application are described in Table 3.

 AppLoop: AppLoop is an additional class, used for specifying the process-control loops of interest to the user.

In iFogSim, the developer can specify the control loops to measure the end-to-end latency. An AppLoop instance

Fog Data Server

Fog Server Manager

Resource Provisioning

Intranet Server

Light Sensor

Motion

Sensor

PIR Sensor

Temperature

Sensor

Humidity

Sensor

Arduino UNO Board

Resources

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15

is fundamentally a list of modules starting from the origin of the loop to the module where the loop terminates.

There are two loops “monitor() and update()” in SHA as shown in Figure 13.

 Monitoring Service: Fog server manager is used to monitor the resource utilization statistics during scheduling

of resources.

 Resource Management Service: We have used edge-ward placement strategy for the deployment of

application modules close to the edge of the network and customized resource scheduling policy by overriding

the method updateAllocatedMips inside the class FogDevice (as discussed in Section 3). Proposed resource

scheduling policy schedules the fog devices for execution of different application modules to perform various

operations of smart home application. The pseudo code for resource scheduling policy is given in Figure 4.

The detailed description to model and simulate Fog computing environment in iFogSim for different applications

can be found in [17].

4.2.1 Application Model: Smart Home Automation

Figure 13 shows the application model of the Smart Home Automation (SHA), which describes the sequence of

operations of an application and their type of tuples.

Figure 13: Application Model of the Smart Home Automation

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16

The application modules are modeled in iFogSim using the AppModule class. As depicted in Figure 13, there are

data dependencies between modules, and these dependences are modeled using AppEdge class in iFogSim. The

control loop of interest for SHA application is modeled in iFogSim using AppLoop class. The application receives

signals by different sensors and an actuator DISPLAY displays the current status of smart home to the user through

preconfigured mobile device. SHA application consists of different major modules as shown in Figure 13. The

functions of these modules are as follows:

1. Admin: An administrator can add/remove or configure new smart devices to the Smart Home environment.

The other functions of an administrator are: 1) to create, configure or delete user settings via the

administration user interface and 2) to reset all settings to defaults or a saved configuration.

2. Owner: The Owner of SHA enabled mobile device can select appliances, turn/on off devices, select

attributes and receive SMS of an intrusion detection.

3. System: The system module automatically choose device if user is connected to home network and notifies

the current status of home to user.

4. Appliances: The user can control the basic functionalities of their home appliances. For instances, turn

on/off, changing the color of lights, speed of fans, etc.

5. Events: SHA application provides the functionality of reminding the current occurring events to the user.

The user has to add an event in SHA application with the option of reminding or not. If not, application will

not remind for event, but the user can have look of event going to occur.

6. Database: The SHA application communicates with a database module to send, receive and store sensor

information. This module provides encrypted back-end database.

7. Sensors/IP Camera: SHA application monitors the data coming from the sensors. For instances, check

home temperature and humidity using temperature and humidity sensor, check current power consumption

by the house using kWh measuring sensor, etc. SHA application monitors the outside activities of home

using live feed camera and intruder detection system. Intruder detection system contains PIR sensors all

around the house to detect any proximity to the house and alert the owner of that house.

The properties of tuples (modeled using Tuple class) carried by edges between the modules in the smart home

application are described in Table 3.

Table 3: The description of Intermodule Edges in the Smart Home Application

Operation Name Tuple Type Description
CPU Length

(MIPS)

Network

Length (Bytes)

Register New Mobile
Phone/Device

Add User Add new user to Smart Home Application 2000 48

Get Status of Event Return Status Returns the status of every event after its occurrence 2200 60

Update Information of

User
Update User Update the user details 2800 63

Unregister Mobile

Phone/Device
Delete User Delete user form SHA database 2000 50

Sign Up Login
User performs login to application in order to get access to

device
3500 57

Verification of

Registered Device
Verify Verify the details of user for authentication 2200 45

Choose Home

Appliance
Select Appliance

Select the appliance, which can be AC, microwave, fan,

light, washing machine etc.
2000 52

Get Status Check Status Check the status of the security of home 2200 54

Show Status Display Status Display the checked status on mobile display 3100 50

Fog Device Selection Choose Device Enable authorized user to choose a communicating device 2200 50

Choose Variables Select Attributes Select attributes for Set Value Function 3500 55

Assign Value to
Variables

Set Value
Enable user to adjust values according to the appliances and
device capacities using open adjustment panel.

3000 50

Change Appliance

Details
Update Update the appliance information 2000 50

Turn ON-OFF Electric
Appliance

Turn On/Off Enable the user to turn on/off the chosen appliance 2200 66

Display Task View Event Enable the user to add the selected task 3100 65

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17

Create Task Add Event
Enable the user to add the new tasks and also reminds you

about their occurrence.
2700 66

Delete Task Remove Event Enable the user to remove the particular task 2300 65

Get Information about

Home
Notify User Notify the current status of home to user 3600 50

Get Sensor

Information
Return Signals

Enable the user to learn info about the device from the

sensors
3450 55

Watch Live Feed
Camera

Sensing/ Monitor
Enable the user to watch live view of outside his house
through IP camera.

3500 55

The latency of different devices from source to destination is described in Table 4.

Table 4: Latency of different Devices

Source Destination Latency (secs)

IP Camera Smartphone 6

Smartphone Wi-Fi Gateway 2

Wi-Fi Gateway ISP Gateway 4

ISP Gateway Cloud Data Server (CDS) 100

The configuration (CPU GHz, RAM size and Power) of different fog devices is described in Table 5.

Table 5: Configuration of different Fog Devices

Device Type CPU GHz RAM (GB) Power (W)

VM 3.0 4 107.339

Wi-Fi Gateway 3.0 4 107.339

Smartphone 1.6 1 87.53

ISP Gateway 3.0 4 107.339

5 Evaluation

The experiments have been performed with different QoS parameters, such as response time, latency, energy

consumption and network bandwidth.

5.1 Benchmark Techniques

To evaluate the performance of the resource management technique ROUTER, we selected compared it against two

similar techniques from the literature: Gateway-based Fog Computing (GFC) technique [11] and Virtualization

based Resource Provisioning (VRP) technique [12] discussed in Section 2. We further detail precise functionality

and differences with our approach below:

 GFC [11] is a gateway-based fog computing architecture for wireless sensors and actuator networks which

consists of master and slave nodes, and manages virtual gateway functions, flows, and resources. In GFC,

gateway and master node are connected by Ethernet interface, and master node controls the virtual path among

slave nodes. Further, slave node performs the resource management for scheduling of resources to process job

requests. GFC uses First Come First Serve (FCFS) based resource scheduling algorithm to schedule the

resources to optimize response time. The GFC is implemented using CloudSim toolkit by extending new class,

which contains the implementation of three fog nodes. Authors have done without using ifogsim by adding new

class, which extends the resource scheduling class of CloudSim. They focused only on single performance

parameter (response time) with limited fog nodes and problem the starvation can occur in case of larger job

request, which further leads delay the execution of pending deadline-oriented jobs.

 VRP algorithm uses the concept of parallel and distributed load balancing to develop virtualization based

resource scheduling algorithm. VPR uses round robin based scheduling algorithm to process the job requests,

which gives fixed time quantum to every job request, which can behave same as FCFS if time quantum is too

large. If time quantum is too short much of time is spent in process switching and hence latency and response

time increases. Further, the algorithm is tested on Cloud-Analyst simulator that finds proposed solution

performs better in terms of energy cost of only processor.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

18

ROUTER operates by using PSO based resource scheduling technique, which uses multi-objective fitness function

to optimize the four different QoS parameters simultaneously. ROUTER forwards the job request to CDS if the FDS

is not able to process within threshold time. Furthermore, ROUTER is validated via integration with a lab-controlled

smart home automation case study described in Section 4, which is further integrated into an application model built

within the iFogSim application layer. Both VRP and GFC use dummy jobs to evaluate their performance while

ROUTER uses real-time traffic generated from smart home application. In order to evaluate the performance of

ROUTER, GFC and VRP effectively, we used the identical simulation environment described in Section 4.

5.2 Analysis Results

Network Bandwidth: Figure 14 (a) shows the average network bandwidth of 1789.6 B/s, 2714.45 B/s and 2830.25

B/s for all resource managers ROUTER, GFC, and VRP. It is observable that both GFC and VRP have a similar

network bandwidth of 2770 B/s, ROUTER on average uses 1790 B/s, which is 12.36% and 14.43% less than GFC

and VRP, respectively. This is because, ROUTER processes data of IoT devices effectively while fulfilling the QoS

requirements at runtime. Another reason of better performance is that PSO achieves global minima quickly, which

distributes load effectively during scheduling of resources.

Latency: We analyzed the latency of each resource management technique (i.e the delay before transfer of user

requests for job processing). With increasing the number of operations, the value of latency increases as shown in

Figure 14(b). It is observable that ROUTER has a lower latency in contrast to both GFC and VRP (as operations

increase). The average value of latency in ROUTER technique is 10.14% and 14.44% less than GFC and VRP

respectively. The reason is because ROUTER executes job requests at Fog Data Server (FDS) instead of sending job

requests to Cloud Data Server (CDS) which would result in a larger communication delay.

 (a) (b)

 (c) (d)

Figure 14. Evaluation results for resource managers ROUTER, GFC, and VRP: (a) Network Bandwidth, (b) Latency,

(c) Response Time, (d) Energy Consumption.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19

Response Time: Figure 14(c) shoes the time taken for a system to react to a user request. With increasing the

number of operations, response time increases. The average value of response time in ROUTER technique is

14.03% and 15.65% less than GFC and VRP respectively. The reason for reduced response time is due to the request

handling mechanism provisioning resources for job requests before actual scheduling of resources. Furthermore,

ROUTER tracks the state of all resources at each point of time, enables it to take an optimal decision than GFC and

VRP.

Energy Consumption: It is the sum of energy consumed by the processor, switching equipment, storage device,

network device and other components such as fans, conversion losses [2]. With increasing the number of operations,

the value of energy consumption increases as shown in Figure 14(d). The average value of energy consumption in

ROUTER technique is 12.35% and 13.45% less than GFC and VRP respectively. An effective scheduling of

resources using PSO reduces significant amount of network traffic, which leads to reducing the number of idle

resources (processor, switching equipment, storage device, network device) that reduces the wastage of energy.

6. Conclusions and Future Work

In this research paper, QoS-aware resource management technique is proposed using fog-assisted cloud computing

environment, which manages IoT devices efficiently. Furthermore, we designed a case study of IoT based smart

home automation to validate the proposed technique. The performance of the proposed technique has been

evaluated in Fog computing environment using iFogSim toolkit. Experimental results demonstrate that the proposed

technique reduces the network bandwidth by 12.36%, response time by 10.14%, latency by 14.03% and energy

consumption by 12.35% and it detects intrusions to provide security.

In future, the proposed technique can be enhanced to work with some other parameters such as scalability, cost,

reliability and availability. In fog computing system, trade-off between delay and power consumption is an open

research area. Further, the proposed technique will be verified in a real fog environment for the practical realization.

In future, ROUTER architecture can be generalized to other fog computing applications such as agriculture,

healthcare, weather forecasting, traffic management and smart city.

Acknowledgements

This research work is supported by the Engineering and Physical Sciences Research Council (EPSRC) -

(EP/P031617/1), Melbourne-Chindia Cloud Computing (MC3) Research Network and Australian Research Council

(DP160102414). We thank Redowan Mahmud, Shashikant Ilager, Sara Kardani, Shreshth Tuli, and Damian

Borowiec for their useful suggestions.

References

[1] Perera, Charith, Yongrui Qin, Julio C. Estrella, Stephan Reiff-Marganiec, and Athanasios V. Vasilakos. "Fog computing for sustainable

smart cities: A survey." ACM Computing Surveys (CSUR) 50, no. 3 (2017): 32.

[2] Al-Fuqaha, Ala, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa Ayyash. "Internet of things: A survey on
enabling technologies, protocols, and applications." IEEE Communications Surveys & Tutorials 17, no. 4 (2015): 2347-2376.

[3] Chen, CL Philip, and Chun-Yang Zhang. "Data-intensive applications, challenges, techniques and technologies: A survey on Big Data."

Information Sciences 275 (2014): 314-347.
[4] White, Gary, Vivek Nallur, and Siobhán Clarke. "Quality of service approaches in IoT: A systematic mapping." Journal of Systems and

Software 132 (2017): 186-203.

[5] Sukhpal Singh Gill, Inderveer Chana, Maninder Singh, and Rajkumar Buyya. "CHOPPER: An Intelligent QoS-aware Autonomic Resource

Management Approach for Cloud Computing " Cluster Computing, Volume 21, Number 2, Pages: 1203-1241, 2018

[6] Sukhpal Singh, Inderveer Chana, Maninder Singh, and Rajkumar Buyya. "SOCCER: self-optimization of energy-efficient cloud resources."
Cluster Computing 19, no. 4 (2016): 1787-1800.

[7] Atzori, Luigi, Antonio Iera, and Giacomo Morabito. "The internet of things: A survey." Computer networks 54, no. 15 (2010): 2787-2805.

[8] Deng, Ruilong, Rongxing Lu, Chengzhe Lai, and Tom H. Luan. "Towards power consumption-delay tradeoff by workload allocation in
cloud-fog computing." In 2015 IEEE International Conference on Communications (ICC), pp. 3909-3914. IEEE, 2015.

[9] Do, Cuong T., Nguyen H. Tran, Chuan Pham, Md Golam Rabiul Alam, Jae Hyeok Son, and Choong Seon Hong. "A proximal algorithm for

joint resource allocation and minimizing carbon footprint in geo-distributed fog computing." In 2015 International Conference on
Information Networking (ICOIN), pp. 324-329. IEEE, 2015.

[10] L. Gu; D. Zeng; S. Guo; A. Barnawi; Y. Xiang, "Cost-Efficient Resource Management in Fog Computing Supported Medical CPS," in

IEEE Transactions on Emerging Topics in Computing , pp.1-12, 2015
[11] Lee, Wangbong, Kidong Nam, Hak-Gyun Roh, and Sang-Ha Kim. "A gateway based fog computing architecture for wireless sensors and

actuator networks." In 2016 18th International Conference on Advanced Communication Technology (ICACT), pp. 210-213. IEEE, 2016.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20

[12] Yu, Liang, Tao Jiang, and Yulong Zou. "Fog-assisted operational cost reduction for cloud data centers." IEEE Access 5 (2017): 13578-

13586.
[13] Stojkoska, Biljana Risteska, and Kire Trivodaliev. Enabling internet of things for smart homes through fog computing," 2017 25th

Telecommunication Forum (TELFOR), Belgrade, 2017, pp. 1-4.

[14] Zhang, Huaqing, Yanru Zhang, Yunan Gu, Dusit Niyato, and Zhu Han. "A Hierarchical Game Framework for Resource Management in
Fog Computing." IEEE Communications Magazine 55, no. 8 (2017): 52-57.

[15] Calheiros, Rodrigo N., Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar Buyya. "CloudSim: a toolkit for modeling and

simulation of cloud computing environments and evaluation of resource provisioning algorithms." Software: Practice and Experience 41,
no. 1 (2011): 23-50.

[16] Sukhpal Singh and Inderveer Chana. "A survey on resource scheduling in cloud computing: Issues and challenges." Journal of grid

computing 14, no. 2 (2016): 217-264.
[17] Gupta, Harshit, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya. "iFogSim: A toolkit for modeling and simulation of

resource management techniques in the Internet of Things, Edge and Fog computing environments." Software: Practice and Experience 47,

no. 9 (2017): 1275-1296.
[18] Sukhpal Singh Gill, Rajesh Chand Arya, Gurpreet Singh Wander, and Rajkumar Buyya. "Fog-based Smart Healthcare as a Big Data and

Cloud Service for Heart Patients using IoT." In International Conference on Intelligent Data Communication Technologies and Internet of

Things, pp. 1376-1383. Springer, Cham, 2018.

[19] Kaur, A., Singh, V.P. and Gill, S.S., 2018, August. The Future of Cloud Computing: Opportunities, Challenges and Research Trends. In

2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) I-SMAC (IoT in Social, Mobile,

Analytics and Cloud)(I-SMAC), 2018 2nd International Conference on (pp. 213-219). IEEE.

[20] Son, Jungmin, and Rajkumar Buyya. "Latency-aware Virtualized Network Function Provisioning for Distributed Edge Clouds." Journal of
Systems and Software (2019).

[21] Chang, Che-Wei, Chun-Yi Liu, and Chuan-Yue Yang. "Energy-efficient heterogeneous resource management for wireless monitoring

systems." Journal of Systems and Software 131 (2017): 168-180.
[22] Taherizadeh, Salman, Andrew C. Jones, Ian Taylor, Zhiming Zhao, and Vlado Stankovski. "Monitoring self-adaptive applications within

edge computing frameworks: A state-of-the-art review." Journal of Systems and Software 136 (2018): 19-38.

[23] Chen, G., Yu, J.: Particle swarm optimization algorithm. Inf. Control-Shenyang 34(3), 318 (2005).
[24] Garraghan, Peter, Renyu Yang, Zhenyu Wen, Alexander Romanovsky, Jie Xu, Rajkumar Buyya, and Rajiv Ranjan. "Emergent Failures:

Rethinking Cloud Reliability at Scale." IEEE Cloud Computing 5, no. 5 (2018): 12-21.

[25] Rodriguez, Maria A., and Rajkumar Buyya. "Container‐based cluster orchestration systems: A taxonomy and future directions." Software:
Practice and Experience (2018).

[26] Hassan, Rania, Babak Cohanim, Olivier De Weck, and Gerhard Venter. "A comparison of particle swarm optimization and the genetic

algorithm." In 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, p. 1897. 2005.

[27] Sahoo, Khirod Chandra, and Umesh Chandra Pati. "IoT based intrusion detection system using PIR sensor." In Recent Trends in
Electronics, Information & Communication Technology (RTEICT), 2017 2nd IEEE International Conference on, pp. 1641-1645. IEEE,

2017.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

21

Author’s Biography

Dr. Sukhpal Singh Gill is currently working as a Research Associate at School of Computing and Communications,

Lancaster University, UK. Dr. Gill was a Postdoctoral Research Fellow at Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia. He has

published more than 45 papers in highly cited journals and conferences with H-index 16. His research interests include

Software Engineering, Cloud Computing, Internet of Things, Big Data and Fog Computing. For further information on Dr.
Gill, please visit: www.ssgill.in

Dr. Peter Garraghan is a Lecturer in the School of Computing & Communications, Lancaster University. He has industrial

experience building large-scale systems and his research interests include distributed systems, Cloud datacenters,

dependability, and energy-efficient computing.

Dr. Rajkumar Buyya is a Redmond Barry Distinguished Professor and Director of the Cloud Computing and Distributed

Systems (CLOUDS) Laboratory at the University of Melbourne, Australia. He is also serving as the founding CEO of
Manjrasoft, a spin-off company of the University, commercializing its innovations in Cloud Computing. He served as a

Future Fellow of the Australian Research Council during 2012-2016. He has authored over 625 publications and seven text

books including “Mastering Cloud Computing" published by McGraw Hill, China Machine Press, and Morgan Kaufmann for
Indian, Chinese and international markets respectively. He also edited several books including "Cloud Computing: Principles

and Paradigms" (Wiley Press, USA, Feb 2011). He is one of the highly cited authors in computer science and software

engineering worldwide (h-index=124+, g-index=281, 80000+ citations). Microsoft Academic Search Index ranked Dr.
Buyya as #1 author in the world (2005-2016) for both field rating and citations evaluations in the area of Distributed and

Parallel Computing. "A Scientometric Analysis of Cloud Computing Literature" by German scientists ranked Dr. Buyya as

the World's Top-Cited (#1) Author and the World's Most-Productive (#1) Author in Cloud Computing. Recently, Dr. Buyya
is recognized as a "Web of Science Highly Cited Researcher" in both 2016 and 2017 by Thomson Reuters, a Fellow of IEEE,

and Scopus Researcher of the Year 2017 with Excellence in Innovative Research Award by Elsevier for his outstanding

contributions to Cloud computing. He served as the founding Editor-in-Chief of the IEEE Transactions on Cloud Computing.
He is currently serving as Editor-in-Chief of Journal of Software: Practice and Experience, which was established over 45

years ago. For further information on Dr. Buyya, please visit his cyberhome: www.buyya.com

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

22

Graphical Abstract

Gateway

Sensors, Edge,

Devices,

Gateways and

IoT
Applications

Knowledge

Base

Cloud Data

Center and Big

Data

Processing

Performance

Prediction

Network

Management

Big Data

Analytics
Job

Placement

Monitoring
Resource

Information

C

L

O

U

D

&

B

I

G

D

A

T

A

Resource

Provisioning
Security

 Fog Data Server

Fog Server Manager

 Big Data Processing

Pre-

processing

 Storage

Classification

Prediction

F

O

G

C

O

M

P

U

T

I

N

G

Intranet Server

Smart Things Network

IP/MPLS

Core

I
o
T

Field Area

Network

3G/4G/Wi-Fi

Distributed

Intelligence: FOG

IoT Sensors

Cloud

Resource

Management

