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Highlights 

 Designed a request handler mechanism to manage job requests of IoT devices 

 Proposed PSO based resource scheduling technique for fog-assisted cloud environment 

 Validated with the help of a case study of IoT based smart home automation 

 Optimized QoS parameters such as response time, bandwidth, energy and latency 
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Abstract 

There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision 

latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog 

computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, 

computation, storage, and networking services between Cloud datacenters and end users.  A key element within such 

Fog computing environments is resource management. While there are existing resource manager in Fog computing, 

they only focus on a subset of parameters important to Fog resource management encompassing system response 

time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers 

these parameters simultaneously for decision making, which in the context of smart homes will become increasingly 

key. In this paper, we propose a novel resource management technique for fog-enabled Cloud computing 

environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated 

within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical 

models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% 

network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. 

Keywords: Fog Computing, Cloud Computing, Internet of Things, Smart Home, Resource Management, Edge 

Computing  

1. Introduction 

Emerging Big Data and Internet of Things (IoT) applications such as smart cities and healthcare services have risen 

in societal prominence, demonstrated by an increase of data velocity of 250MB per minute globally [3]. Therefore, 

such applications require substantial data and computational capability to provision service [1], possible via 

deployment within Cloud datacenters. However, such applications when deployed within Cloud datacenters 

encounter potentially high latency and response times due to large geographical distance and data bandwidth 

requirements between clients and the datacenter. [2]. Fog computing has been envisioned as a means to reduce the 

latency, via extending Cloud datacenters to integrate with the network edge [4] [5]. Thus, IoT environments can 

leverage fog-assisted Cloud computing to execute latency-sensitive applications.  

Resource management – the process of scheduling and allocating resources to applications – is a fundamental 

concept within distributed systems [16] in order to adhere to specified Quality of Service (QoS) constraints whilst 

minimizing overheads pertaining to performance, and energy waste [16]. While there exist a wide plethora of 

existing schedulers for distributed systems such as MESOS, YARN and BORG in cloud, which have been created to 

operate within centralized computing infrastructure [25]. Specifically, these schedulers are not designed to operate 

within an environment including highly mobile edge devices [20], latency-sensitive applications, nor wide 

geographical areas intrinsic to Fog computing environments. Resource management within Fog computing  

predominantly focuses on managing the compute and storage service between edge devices and the Cloud 

datacenters to process user tasks with minimum latency and response time [5] [6] [7] [8]. Existing IoT and Fog 

computing resource managers focus on a singular or specific sub-set of metrics including application response time, 

latency, energy, and network bandwidth [11] [12] [13] [14], Capturing all these parameters within a Fog computing 

resource management is particularly important within the context of smart homes, which are positioned to process 
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increasingly larger quantities of  data from smart devices and appliances connected to IoT systems, whilst 

simultaneously ensuring high QoS and reduced energy consumption to reduce electricity bills for home dwellers 

[24]. Due to the complexity of multi-objective optimization of parameters for trade-off decision making in resource 

management (which has led to existing Fog resource management algorithms implementing FIFO or round-robin 

based approaches [11] [12]), we believe that exploring nature or bio-inspired algorithms is a promising approach to 

address this problem for resource management [16] [19].    

In this paper, we propose a Fog-enabled Cloud computing resource management framework for smart homes. Our 

approach, ResOUrce managemenT tEchnique for smaRt homes (ROUTER) has been designed to consider and 

optimize multiple parameters simultaneously including response time, network bandwidth, energy consumption and 

latency simultaneously via use of a Particle Swarm Optimization algorithm (PSO). Stochastic nature of the particle 

increases due to this property of PSO and touches rapidly to global minima with a realistic noble solution [26]. PSO 

has become prevalent due to its easiness and its usefulness in extensive range of application with little cost of 

computation [23] [26]. ROUTER has been validated through empirical findings via a case study of IoT based smart 

home automation which are then integrated into iFogSim for evaluation. The main contributions of this research 

work are as follows: (i) a detailed requirement and design of an Fog-assisted Cloud architecture to perform effective 

resource management for various IoT edge devices; (ii) a request handler mechanism for Fog computing jobs, and a 

multi-objective PSO based resource management technique; (iii) a small-scale empirical study of an IoT smart home 

environment that leverages a Fog-assisted Cloud computing environment, analyzing the performance of various QoS 

parameters within different operational contexts. 

The rest of the paper is organized as follows. Section 2 presents related work of existing techniques. The proposed 

technique is presented in Section 3. Section 4 describes the experimental setup and case study. Section 5 describes 

the results of the evaluation. Section 6 presents conclusions and future work.  

2. Related Work 

Research into IoT applications within Fog computing is growing research field, with various unsolved research 

challenges [18]. This section presents the current research on resource management within Fog computing.  

Deng et al. [8] formulated a workload allocation problem to study the tradeoff between energy consumption and 

delay within a Cloud-Fog computing system. Furthermore, the primary problem is decomposed into three sub-

problems to solve independently, and demonstrated that Fog computing is efficient in reducing transmission latency 

and communication bandwidth, however does not consider system network bandwidth and energy consumption. 

Cuong et al. [9] proposed a proximal algorithm for joint resource allocation in the geo-distributed environment and 

reducing carbon footprint. Moreover, authors demonstrated that their proposed solution can reduce system carbon 

footprints whilst offering video streaming as a cloud service. Lin et al. [10] proposed a cost-efficient resource 

management technique integrated within a medical Cyber-physical System in which virtual machine placement, task 

distribution and base station association are investigated. Results demonstrated that the proposed solution performs 

more effectively in comparison to a greedy algorithm in terms of energy consumption.  

Wangbong et al. [11] proposed a Gateway-based Fog Computing (GFC) architecture for wireless sensors and 

actuator networks predominantly consisting of master and slave nodes, managing virtual gateway functions, flows, 

and resources. Experimental results show that GFC performs more effectively in terms of response time. Yu et al. 

[12] proposed a Virtualization based Resource Provisioning (VRP) algorithm for Fog computing and designed an 

architecture using the concept of parallel and distributed load balancing. Furthermore, the algorithm is evaluated 

within Cloud-Analyst simulator that finds the proposed solution decreases the system energy cost. Stojkoska et al. 

[13] proposed a conceptual model for smart homes using IoT for fog computing, and suggests that energy 

consumption can be reduced via integration of geographically distributed renewable energy sources. Zhang et al. 

[14] proposed a three-layer hierarchical game framework for resource management in Fog computing to solve the 

challenges pertaining to fast data processing and minimum response time. This research work reported that Fog 

devices are more capable to reduce latency as compared to the cloud by experiencing a minor increase in energy 

consumption. Therefore, the trade-off between latency and power consumption is required to provide more efficient 

services.  
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From the literature it is observable that under-provisioning and over-provisioning of resources in existing Fog 

computing and IoT resource management techniques [11] [12]. Fog devices have additional compute and storage 

power, however it is not feasible for such devices to provide resource capacity equivalent to that of Cloud 

datacenters, therefore efficient resource management is required to process user requests in a timely manner. To 

solve this problem, the resource requirement for execution of user tasks should be predicted accurately in advance to 

utilize resources efficiently. The comparison of existing resource management techniques with the proposed 

technique (ROUTER) is described in Table 1.  

Table 1: Comparison of Existing Techniques with Proposed Technique (ROUTER) 

 

Authors 

Applicable 

Network 
Fog Nodes 

Nodal 

collaboration 

 

Focus 

Performance Parameters (QoS) 

Response 

Time 
Energy Latency 

Network 

Bandwidth 

Deng et al. [8] 
Mobile 

Network 
Servers Master slave 

Application 

management 
✖ ✔ ✔ ✖ 

Cuong et al. 

[9] 

Vehicular 

Network 
Servers Peer to Peer 

Application 

management 
✖ ✔ ✖ ✖ 

Lin et al. [10] 
Mobile 

Network 

Base 

Stations 
Peer to Peer Network Management ✖ ✔ ✖ ✖ 

Wangbong et 

al. [11] 
IoT Network Devices Peer to Peer Resource Management ✔ ✖ ✖ ✖ 

Yu et al. [12] IoT Network Devices Peer to Peer Resource Management ✖ ✔ ✖ ✖ 

Stojkoska et 
al. [13] 

Mobile 
Network 

Base 
Stations 

Cluster 
Application 
management 

✖ ✔ ✖ ✖ 

Zhang et al. 

[14] 

Vehicular 

Network 
Servers Master slave Network Management ✔ ✖ ✖ ✖ 

ROUTER 

(Proposed) 
IoT 

Network 

Devices and 

Servers 

Peer to Peer 

Application, Network 

and Resource 

Management 
✔ ✔ ✔ ✔ 

 

3. Fog-assisted Cloud based Resource management for IoT and Big Data analytics  

 

This section presents the proposed resource management technique for Fog-assisted Cloud resource management for 

smart homes. The architecture of ROUTER is shown in the Figure 1.  

 

Based on their functionality, the architecture is composed of three layers, the components of the proposed 

architecture are discussed below:  

 

Internet of Things (IoT): Edge devices comprising gateways, fog devices, smart home appliances, sensors etc. 

A user may interact with the Fog computing environment via IoT applications or sensors. The functionality of 

this layer is enhanced by installing intelligent and applications within end devices.  

Fog Computing: Collects data generated by bottom layer (IoT) and establishes communication between edge 

devices and the Cloud datacenter. The functionality of the intermediate layer is divided into two sublayers: a) 

Field Area Network (end devices interacting with each other via 3G/4G/Wi-Fi) and b) Internet Protocol/Multi-

Protocol Label Switching (used to transfer the data from end devices to centralized cloud system).  

Cloud and Big Data: Manages the services which enable the management of resources and processing of big 

data and IoT tasks. Furthermore, this layer provides QoS to Fog computing applications and the Cloud 

computing operational management. Applications such as Big Data processing is performed at this layer to 

handle the large data coming from different IoT applications and process through different stages such as 

preprocessing, classification and prediction [18].  

 

Cloud computing contains a wide variety of services that can enhance application operation to minimize latency 

of executing tasks on Fog devices whilst decreasing Cloud economic costs. There exist different types of 

services, which operate in tandem comprise:  

 

  Monitoring: Monitoring of service/application status and performance.   
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  Knowledge Base: Stores historical information pertaining to resource and application demand to improve 

decision-making processes in future IoT-based applications.  

 

Figure 1: ROUTER Architecture 

 

  Job Placement: Processes information provided by Monitoring services that contain available Cloud 

resource status at a particular period of time. This information is leveraged to discover the best machines to 

schedule jobs (tasks) for execution. This is further interconnected with Resource Provisioning to find 

allocation requirements of new resources for existing tasks. 

  Big Data Analytics: Collects data from different IoT devices to perform different data processing operations 

spanning data pre-processing, classification, and prediction [18]. This module assists in determining 

threshold values for performance parameters for resource scheduling decision making.  

  Resource Information: Obtains information from Monitoring and Knowledge Base to profile applications 

and resources.  

  Security: Provides authorization and authentication to applications and services to manage user credentials.  
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  Resource Provisioning: Control and provides resource allocation to various network, Fog and Cloud 

resources. Due to changing the number of applications and requirements of applications with the entire 

system, resources are allocating dynamically in response to QoS and operational constraints.  

  Performance Prediction: Performance of free cloud resources is visualized by utilizing the information of 

Knowledge Base service and this information is further forwarded to the Resource Provisioning service to 

determine application resource requirements.  

3.1 Request Handler Mechanism   

Figure 2 shows the interaction of Fog Data Server (FDS) with IoT devices and Cloud Data Server (CDS) in terms of 

the design model. IoT layer contains end devices such as gateways and sensors to retrieve information from the end 

user. It then forwards the user information to FDS for further processing. The fog layer contains multiple FDSs. The 

FDS comprises one Fog Server Manager (FSM), which manages all FDS resources required for job execution. 

Further, the request can be forwarded to cloud layer for execution in case of unavailability of resources at the FDS 

level. The cloud layer has a number of CDS. Figure 3 describes the interaction of cloud layer, fog layer and IoT 

layer to handle a typical job request. 

 

Figure 2: Functional Components 

 

 There are two types of job processing requests. First, at the FDS (denoted by     and another at the CDS (denoted 

by    , which is requested by FDS in the case of unavailability of resources at the Fog layer. Initially, the IoT layer 

submits a job request (    to the closest FDS (say       intended to accelerate job execution. The FSM checks 

whether the resource demand of that particular request is satisfied or not at     . If the      satisfies the resource 

demand of request (    then the FSM starts its execution and tracks its execution status. 

 

Step 1. The FDS checks local resource availability and has the ability to manage system resources for request 
execution.  

Step 2. The IoT layer forwards the user request to FDS, which enqueues request. 

Step 3. The FDS  handles the user request with following conditions:  

i) if required resources are available at the FDS level, then the FSM processes the request on the FDS and 
submits an acknowledgement to the IoT layer regarding execution status.   

ii) if a portion of required resources are available at the FDS level, then the job request needs to wait for a 
particular time period (Threshold value for each request   ), otherwise Goto (v).   

iii) if the FDS is already executing other requests, which are close to completion, then the new job request 
needs to wait for a particular time period (Threshold value for each request   ), otherwise Goto (v).   

iv) if one of the resources executing a particular request fails at the FDS level, then, the request management 
behaviour will follow the behaviour as in (ii) condition.  

v) if no resources are available in the FDS, then the job request is forwarded to the CDS.  
 

Step 4. CDS executes the job request and sends an acknowledgement to FSM. 

 
Figure 3: Request Handler Mechanism 

 

If the      partially satisfies the demand of the job request (    then the FSM has to wait for Minimum Constraint 

Time (   ), otherwise the job request is forwarded to the CDS.  If all the resources are occupied at          but 

is in its initial release state, then the job request (    must wait for Minimum Constraint Time (   ) to release the 

resources and then commence execution. If all the resources are busy executing other      yet some requests are 

failing during execution, then the FSM will discover another      to offload requests. If all the resources are 

unavailable in all of the FDS within the Fog cluster, then job request (    are propagated to the CDS over 

appropriate communication network and now this request is denoted as (    and user will receive a message “Wait 

for processing” and then must wait for maximum allocated time (     ) to release the resources at CDS. FSM then 
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sends the job request (    to closest CDS for further processing. The CDS provides resources for execution of job 

requests with minimum response time and latency, and then sends an acknowledgement to the FDS. The latency and 

response time values are predefined via analysis and modelling of historical system data and both the parameter 

have some fixed value for a certain interval (we have considered one-hour duration for intervals). Based on the 

performance of resources (execution time and energy consumption), the value of latency and response time is 

redefined at every interval. The next section describes the working of Fog server manager for scheduling of 

resources.  

3.2 Fog Server Manager 

This section describes the Fog server manager for scheduling resources to execute job requests.   

3.2.1 Objective function 

The main objective of the fitness function is to optimize the performance parameters energy consumption 

(            ), network bandwidth (          ), latency (       ) and the response time (     ) to facilitate 

requests originating at the IoT layer. This fitness function (Equation (1)) effectively compromises the following 

performance parameters  

                                                                              (1) 

where           ,          ,           and         denotes weights to prioritize components of the 

fitness function. The Network Bandwidth is defined as the number of bits transferred/received in one second. The 
Latency is defined as the delay before the transfer of job request for processing. The Response Time is defined as the 

length of time taken for a system to react to a job request first time. The Energy Consumption is the sum of energy 

consumed by the processors, the switching equipment, the storage devices, the network devices and other 

components such as fans or conversion losses [2]. 

3.2.2 Particle Swarm Optimization based Resource Scheduling Algorithm  

Particle Swarm Optimization (PSO) is motivated by the social activities of species such as group of birds seeking 

food sources [23] and works based on a global search method. The PSO algorithm denotes the number of particles 

as a population, which are first initialized randomly. The PSO improves the fitness value (as calculated using Eq. 1) 

of a particle in every generation. In the PSO algorithm, the particle’s position is denoted as: a) global optimal state 

(GlobalOptimalState): best particle among group based on fitness value of all the particles b) and local optimal state 

(LocalOptimalState): it is best fitness value of a particular particle. Further, [Eq. 1] is used to update particle’s velocity 

and position in every generation. Every particle regulates its position based on the value of GlobalOptimalState and 

LocalOptimalState in every generation. The PSO can be used to solve resource scheduling problems due to (i) usefulness 

and easiness with less computation cost and (ii) achieving global minima relatively quickly [23]. Deteailed 

terminology of PSO used in this research work is presented in Table 2.  

Table 2: PSO Terminology  

  

PSO Terminology Description 

 

Particle 

Denoted as an independent instance in a search space and its position is affected by the value of LocalOptimalState 
and GlobalOptimalState. Further, the performance of a particle is measured by its fitness value. A request is 

considered as a particle for this research work. 

Population Size It is a set of number of job requests, which are coming from IoT/edge devices.  

 
Initial Random Velocity 

The movement of every particle is dependent on 1) preliminary random velocity and 2) two randomly weighted 

effects: a) the affinity to reach neighborhood’s best earlier position and b) the affinity to reach best earlier 
position of a particle. Resources are mapped to requests based on these two affinities. Request will be processed 

on that resource which has higher value of fitness. 

Particle Velocity The probability distribution for the particle determines the value of particle velocity. 

Particle Position 
Present state of the particle (request), which can be completion state, execution state, ready state, waiting state or 

submission state. 

Global Best Position 

(GlobalOptimalState) 
Best position of particle (job request) attains among the total group of particles (job request list). 
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Local Best Position 

(LocalOptimalState) 
Best position of particle (job request) as particle attains 

There is a partial solution in genome for every particle, which is considered as a resource identifier. The main 

motivation for the PSO-based scheduling is to identify the best resource identifier, which creates the best solution 

for the particular optimization problem such as resource scheduling. The selection process of non-PSO based 

resource identifier stops after a pre-defined number of iterations. We set a fixed number of iterations to keep the 

computation time low. In the PSO-based method, a new solution would be rejected if its fitness value is less than the 

current solution. Figure 4 presents the pseudo code of PSO based resource scheduling algorithm. 

 
Algorithm 1: PSO Based Resource Scheduling Algorithm 

1. Input Value: No. of job requests and No. of resources 

2. Outcome: Resource scheduling for an execution of Job Requests  

3. Begin  

4.      Initialize variables: Resource list, Job Request List, Randomly Allocating Input Value 

5.      PopulationSize = Size of Population 

6.      InitialRandomVelocity = Initial Random Velocity 
7.      ParticleVelocity = Velocity of Particle 

8.      ParticlePosition = Position of Particle 

9.      RP = Random Position 
10.      InitialPopulationSize = Initial Population Size 

11.      GlobalOptimalState = Global Optimal State 

12.      LocalOptimalState = Local Optimal State 
13.      MIC = Maximum Iteration Count  

14.      Counter = 1 

15.      while (counter ≥ 0)  

16.                counter ++  

17.                if (counter ≥ PopulationSize)  

18.                     break 

19.                ParticleVelocity  ← InitialRandomVelocity 

20.                ParticlePosition  ← RP (PopulationSize) 

21.                LocalOptimalState ←  ParticlePosition 

22.                  ∀ ParticlePosition ∈ InitialPopulationSize, Compute Fitness Function [Eq. 1]  

23.                if Fitness Value (GlobalOptimalState) ≥ Fitness Value (LocalOptimalState  then 

24.                     GlobalOptimalState ← LocalOptimalState 

25.      Counter = 1 

26.      while (counter < MIC) do 

27.                 counter ++ 

28.                 for ParticlePosition ∈  InitialPopulationSize do 

29.                 ParticleVelocity ← Update_Particle_Velocity (ParticleVelocity, GlobalOptimalState, LocalOptimalState)  

30.                 ParticlePosition  ← Update_Particle_Position (ParticlePosition, ParticleVelocity) 

31.                 if Fitness Value (ParticlePosition) ≤ Fitness Value (LocalOptimalState) 

32.                 then   

33.                      LocalOptimalState ← ParticlePosition   

34.                      GlobalOptimalState ← LocalOptimalState if Fitness Value (LocalOptimalState) ≤ Fitness Value (GlobalOptimalState) else GlobalOptimalState 

35.      return (GlobalOptimalState) 

36.      while queue is not empty do 

37.             ∀ resource ∈ resource list do 

38.                   Job request = dequeue from unprocessed job request queue 

39.                   schedule job request (based on fitness value [Eq. 1])  

40.      if all the job requests not executed then Goto 15 

41. Finish  

Figure 4: PSO Based Resource Scheduling Algorithm 

4. Performance Evaluation 

To demonstrate the feasibility of the proposed approach, we have developed the framework and scenario into a Fog 

computing based environment using CloudSim [15] and iFogSim [17]. In this research work, event simulation 

functionalities of CloudSim have been used to implementing functionalities of iFogSim architecture. CloudSim 

entities such as datacenters and communication amongst datacenters through message sending operations are 

included. Therefore, the core CloudSim layer is responsible for handling events between fog computing components 

in iFogSim [17]. iFogSim implementation is established by simulated services and entities. The proposed technique 

has been validated via deployment of a smart home automation experiment case study. The application model of 
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IoT-based smart home automation is built into iFogSim in order to validate the proposed technique through real-

time application (in other words, data from the experiment is directly fed into the simulator to provide edge-device 

operational behavior for the resource manager). 

 

4.1 Case Study: IoT based Smart Home Automation  

In order to demonstrate an example smart home case study, we interconnected multiple IoT devices wirelessly 

controllable by using a smartphone. The scenario we have created consists of a home consisting of three rooms 

(Garage, Lobby, and Bedroom), that are capable of manipulating various devices and appliances within each room 

to which consist of AC, fan, bulb and doors. Figure 5 depicts the front view of smart home, whilst Figure 6 describes 

an interaction of smart home components with mobile app using Arduino IDE.  

 

Figure 5: Front View of Smart Home 

 

Figure 6: Interaction of Smart Home Components with Mobile App using Arduino IDE 

Figure 7 and 8 depicts the interaction of devices in the smart home application, and integration of different 

components, respectively. The smart home contains an Arduino board and different home appliances such as AC, 

fan, bulb and doors.  The components are interacting with each other via the following sequence: 

 Android to ESP8266: Initially, an Android device generates a signal to fetch required information from the 

smart home. This signal is transferred to the ESP8266 module wirelessly using the server created by the ESP 

over the local hotspot. This connection uses a connection id between ESP and Android device, where ESP sends 

the HTTP packet to initiate the connection. This data is then further processed at the ESP8266 module.  
 Intranet Server: The Arduino based hardware is designed to provide an interface between the android 

application and appliances. This is used to retrieve incoming data from sensors and converts into digital and 
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send it to android application over Internet using Intranet server. This is also used to generate the signal for a 

specific appliance selected by the user. 

 

Figure 7: Interaction of Arduino IDE and Arduino UNO 

 ESP8266 to Arduino:  ESP receives the signal/data from the server created at the specific static IP address. The 

Arduino then matches the header with the prescribed header format and then further breaks down the signal and 

uses the resultant data to enable or disable the desired pins.  

 

Figure 8: Interaction of Different Components 

 Controlling Device States: The Arduino directs the pins received in the signal to turn ON/OFF home appliances 

as per user requirements. The device status is then updated within the Android application. 

 Intrusion/Breach Detections: When the security feature in the Smart Home App is turned ON, the Passive Infra-

Red (PIR) sensor [27] will be turned ON to detect the heat signals and motion inside the room. If any movement 

is detected, it will activate a buzzer and an SMS of the detected intrusion is sent to the owner’s phone. 

Similarly, when the door is opened, the signal breaks and the owner is alerted with a message of breach from 

the door. 

 Live Video Feed: The device actives an IP camera connected to the Wi-Fi hotspot to create a live view in the 

application. Therefore, when the server is started to project the video, its IP address is be used inside Smart 

Home App to create the image. 

Figure 9 shows the interface of the smart home. The user can control basic operations such as device selection, turn 

on/off home appliances, change light colors, fan speed, acquire sensor details, add/view event, and watch live feed 

camera.  The home screen shows the live view of various rooms as shown in Figure 9(g), and sensor information 

such as temperature sensor, humidity sensor, number of devices connected to smart home and consumption of 

electricity. A user can further create a new event if required by using the “Add Task” shown in Figure 9(e).  

Smart Phone 
Intranet 

Server Esp8266 Arduino 
Home 

Appliances 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11 

 

 
(a) Login Screen 

 
(b) Home Screen 

 
(c) Info bar 

 

 
(d) Room Appliances 

 
(e) New Event (Add Task) 

 
(f) Receiving Data 

 
(g) Live Feed 

 

Figure 9: Different Operations of Smart Home App 

The use case diagram of smart home automation shown in Figure 10 describes the interaction of different actors 

user, app database and sensors. Figure 11 shows the class diagram of smart home automation to describe the 

interaction of different classes with their different functions. Alert class describes the important aspects of real-time 

applications such as latency, response time and deadline. User will be alerted if response time is more than threshold 

value. Further, alert can be generated if deadline of a particular request is missing. Moreover, user can be intimated 

when latency is more than its threshold value. 

4.2 Implementation of Proposed Technique in iFogSim  

Figure 12 describes the component mapping for smart home automation within a simulation environment using the. 

iFogSim toolkit. Different sensors are used to control different activities such as voltage, light, motor speed 
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(motion), room temperature and security of smart home. PIR sensor detects the movement of objects even beyond 

the boundaries of the smart home and detects heat signature from the light. IP camera is used as an edge device. 
ATmega328P based Arduino board is connected to every appliance of the smart home. Smart Home App is 

communicating with Fog device using the HTTP communication protocols (ESP8266 module).  

 

Figure 10: Use Case Diagram of Smart Home Automation 

The following classes within iFogSim are modified to implement IoT based smart home application within the 

greater Fog environment: 

FogDevice: Describes the hardware features of Fog devices and their relations with sensors and other Fog devices. 

We have extended PowerDatacenter class of CloudSim [15] to allow the main attributes of the FogDevice class to 

access downlink and uplink bandwidths (specifying the communication capacity of Fog devices), storage size, 

processor and memory. Functions of this class specify the scheduling of resources among application modules 

executing on it and their deployment and release after execution. Moreover, we have developed a Listener module, 

which receives the data from different sensors as shown in Figure 12.  

Sensor: In the iFogSim toolkit, IoT sensors are represented by instances of the Sensor class. Features of a sensor, 

extending from its connectivity to output aspects, are represented by attributes of this class. The class holds a 

reference attribute to the gateway Fog device to which the sensors are attached. We used reference attributes of 

Sensor class to simulate the behavior of different sensors, which are gathering different types of information at IoT 

layer as shown in Figure 11.  
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Figure 11: Class Diagram of Smart Home Automation 

Actuator: Defines a method to perform an action on arrival of a tuple from an application module to perform 

different operations of smart home automation as described in Table 3. When user preforms any operation, this class 

override the defined method to execute corresponding operation. The latency of different devices is defined using 

attributes of this class as shown in Table 4.  

Communication Network: The physical topology (tree topology) of the smart home automation is modeled in 

iFogSim via FogDevice, Sensor and Actuator classes as described in Figure 12.  
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iFogSim Toolkit Components 

        Sensors                                                    Fog Device                                               Communication Network         Controller              Edge Device 

 

 

 

   

 

 

 

 

     IoT Layer                                                         Fog Layer                                                        ESP8266                      Smart Phone         IP Camera 

Components of IoT based Smart Home 

Figure 12: The Mapping of the Components of Smart Home Automation with iFogSim Toolkit 

Controller: The Controller object launches the AppModules on their assigned Fog devices following the placement 

information provided by Module Mapping object and periodically manages the resources of Fog devices as shown in 

Figure 12. When the simulation is terminated, the Controller object gather results of cost, network usage and energy 

consumption during the simulation period from the Fog devices. 

Tuple: Central unit of communication amongst Fog entities. The sensors in iFogSim generate tuples that can be 

referred as tasks in Cloud computing. The creation of tuples (tasks) is event driven and the interval between 

generating two tuples is set following deterministic distribution while creating the sensors. The instances of Tuple 

class in iFogSim [17] are represented as tuples, which are inherited from the Cloudlet class of CloudSim [15]. 

Categorization of tuples is done with its type and destination and source application modules and it is described in 

Table 3. The length of data encapsulated in the tuple and processing requirements (defined as Million Instructions 

(MI)) are specified by the attributes of the class.  

Application: The smart home application is modeled as a directed acyclic graph (DAG), the vertices of the graph 

representing modules that perform processing on incoming data and edges denoting data dependencies between 

modules as shown in Figure 12. These entities are realized using the following classes. 

  AppModule: Instances of AppModule class represent processing elements of fog applications and realize the 

vertices of DAG. AppModule is implemented by extending the class PowerVm in CloudSim. For each incoming 

tuple, an AppModule instance processes it and generates output tuples that are sent to next modules in the DAG. 

The application modules of SHA are Admin, Owner, System, Appliances, Events, Database and Sensors/IP 

Camera as shown in Figure 13 and the description of above-mentioned application modules is given in Section 

4.2.1.  

  AppEdge: An AppEdge instance denotes the data dependency between a pair of application modules and 

represents a directed edge. Each edge is characterized by the type of tuple it carries, which is captured by the 

tupleType attribute of AppEdge class along with the processing requirements and length of data encapsulated in 

these tuples. The edges between the application modules in the smart home application are described in Table 3. 

  AppLoop: AppLoop is an additional class, used for specifying the process-control loops of interest to the user. 

In iFogSim, the developer can specify the control loops to measure the end-to-end latency. An AppLoop instance 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Fog Data Server 

 

 

Fog Server Manager 

 

Resource Provisioning 

 

Intranet Server 

 

Light Sensor 

Motion 

Sensor 

PIR Sensor 

Temperature 

Sensor 

Humidity 

Sensor 

Arduino UNO Board 

Resources 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15 

 

is fundamentally a list of modules starting from the origin of the loop to the module where the loop terminates. 

There are two loops “monitor() and update()” in SHA as shown in Figure 13.  

 Monitoring Service: Fog server manager is used to monitor the resource utilization statistics during scheduling 

of resources.   

 Resource Management Service: We have used edge-ward placement strategy for the deployment of 

application modules close to the edge of the network and customized resource scheduling policy by overriding 

the method updateAllocatedMips inside the class FogDevice (as discussed in Section 3).  Proposed resource 

scheduling policy schedules the fog devices for execution of different application modules to perform various 

operations of smart home application.  The pseudo code for resource scheduling policy is given in Figure 4. 

The detailed description to model and simulate Fog computing environment in iFogSim for different applications 

can be found in [17]. 

4.2.1 Application Model: Smart Home Automation  

Figure 13 shows the application model of the Smart Home Automation (SHA), which describes the sequence of 

operations of an application and their type of tuples.  

 

Figure 13: Application Model of the Smart Home Automation 
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The application modules are modeled in iFogSim using the AppModule class. As depicted in Figure 13, there are 

data dependencies between modules, and these dependences are modeled using AppEdge class in iFogSim. The 

control loop of interest for SHA application is modeled in iFogSim using AppLoop class. The application receives 

signals by different sensors and an actuator DISPLAY displays the current status of smart home to the user through 

preconfigured mobile device. SHA application consists of different major modules as shown in Figure 13. The 

functions of these modules are as follows: 

1. Admin: An administrator can add/remove or configure new smart devices to the Smart Home environment. 

The other functions of an administrator are: 1) to create, configure or delete user settings via the 

administration user interface and 2) to reset all settings to defaults or a saved configuration. 

2. Owner: The Owner of SHA enabled mobile device can select appliances, turn/on off devices, select 

attributes and receive SMS of an intrusion detection.  

3. System: The system module automatically choose device if user is connected to home network and notifies 

the current status of home to user. 

4. Appliances: The user can control the basic functionalities of their home appliances. For instances, turn 

on/off, changing the color of lights, speed of fans, etc. 

5. Events: SHA application provides the functionality of reminding the current occurring events to the user. 

The user has to add an event in SHA application with the option of reminding or not. If not, application will 

not remind for event, but the user can have look of event going to occur.  

6. Database: The SHA application communicates with a database module to send, receive and store sensor 

information. This module provides encrypted back-end database.  

7. Sensors/IP Camera: SHA application monitors the data coming from the sensors. For instances, check 

home temperature and humidity using temperature and humidity sensor, check current power consumption 

by the house using kWh measuring sensor, etc. SHA application monitors the outside activities of home 

using live feed camera and intruder detection system. Intruder detection system contains PIR sensors all 

around the house to detect any proximity to the house and alert the owner of that house. 

The properties of tuples (modeled using Tuple class) carried by edges between the modules in the smart home 

application are described in Table 3. 

Table 3: The description of Intermodule Edges in the Smart Home Application 

Operation Name Tuple Type Description 
CPU Length 

(MIPS) 

Network 

Length (Bytes) 

Register New Mobile 
Phone/Device 

Add User Add new user to Smart Home Application 2000 48 

Get Status of Event Return Status Returns the status of every event after its occurrence 2200 60 

Update Information of 

User 
Update User Update the user details 2800 63 

Unregister Mobile 

Phone/Device 
Delete User Delete user form SHA database 2000 50 

Sign Up Login 
User performs login to application in order to get access to 

device 
3500 57 

Verification of 

Registered Device 
Verify Verify the details of user for authentication 2200 45 

Choose Home 

Appliance 
Select Appliance 

Select the appliance, which can be AC, microwave, fan, 

light, washing machine etc. 
2000 52 

Get Status Check Status Check the status of the security of home 2200 54 

Show Status Display Status Display the checked status on mobile display 3100 50 

Fog Device Selection Choose Device Enable authorized user to choose a communicating device 2200 50 

Choose Variables Select Attributes Select attributes for Set Value Function 3500 55 

Assign Value to 
Variables 

Set Value 
Enable user to adjust values according to the appliances and 
device capacities using open adjustment panel. 

3000 50 

Change Appliance 

Details 
Update Update the appliance information 2000 50 

Turn ON-OFF Electric 
Appliance 

Turn On/Off Enable the user to turn on/off the chosen appliance 2200 66 

Display Task View Event Enable the user to add the selected task 3100 65 
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Create Task Add Event 
Enable the user to add the new tasks and also reminds you 

about their occurrence. 
2700 66 

Delete Task Remove Event Enable the user to remove the particular task 2300 65 

Get Information about 

Home 
Notify User Notify the current status of home to user 3600 50 

Get Sensor 

Information 
Return Signals 

Enable the user to learn info about the device from the 

sensors 
3450 55 

Watch Live Feed 
Camera 

Sensing/ Monitor 
Enable the user to watch live view of outside his house 
through IP camera. 

3500 55 

The latency of different devices from source to destination is described in Table 4. 

Table 4: Latency of different Devices 

Source  Destination Latency (secs) 

IP Camera Smartphone  6 

Smartphone  Wi-Fi Gateway 2 

Wi-Fi Gateway ISP Gateway 4 

ISP Gateway Cloud Data Server (CDS) 100 

The configuration (CPU GHz, RAM size and Power) of different fog devices is described in Table 5. 

Table 5: Configuration of different Fog Devices 

Device Type CPU GHz RAM (GB) Power (W) 

VM 3.0 4 107.339 

Wi-Fi Gateway 3.0 4 107.339 

Smartphone 1.6 1 87.53 

ISP Gateway 3.0 4 107.339 

 

5 Evaluation  

The experiments have been performed with different QoS parameters, such as response time, latency, energy 

consumption and network bandwidth.  

5.1 Benchmark Techniques   

To evaluate the performance of the resource management technique ROUTER, we selected compared it against two 

similar techniques from the literature: Gateway-based Fog Computing (GFC) technique [11] and Virtualization 

based Resource Provisioning (VRP) technique [12] discussed in Section 2. We further detail precise functionality 

and differences with our approach below: 

 GFC [11] is a gateway-based fog computing architecture for wireless sensors and actuator networks which 

consists of master and slave nodes, and manages virtual gateway functions, flows, and resources. In GFC, 

gateway and master node are connected by Ethernet interface, and master node controls the virtual path among 

slave nodes. Further, slave node performs the resource management for scheduling of resources to process job 

requests. GFC uses First Come First Serve (FCFS) based resource scheduling algorithm to schedule the 

resources to optimize response time. The GFC is implemented using CloudSim toolkit by extending new class, 

which contains the implementation of three fog nodes. Authors have done without using ifogsim by adding new 

class, which extends the resource scheduling class of CloudSim. They focused only on single performance 

parameter (response time) with limited fog nodes and problem the starvation can occur in case of larger job 

request, which further leads delay the execution of pending deadline-oriented jobs.   

 

 VRP algorithm uses the concept of parallel and distributed load balancing to develop virtualization based 

resource scheduling algorithm. VPR uses round robin based scheduling algorithm to process the job requests, 

which gives fixed time quantum to every job request, which can behave same as FCFS if time quantum is too 

large. If time quantum is too short much of time is spent in process switching and hence latency and response 

time increases. Further, the algorithm is tested on Cloud-Analyst simulator that finds proposed solution 

performs better in terms of energy cost of only processor.  
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ROUTER operates by using PSO based resource scheduling technique, which uses multi-objective fitness function 

to optimize the four different QoS parameters simultaneously. ROUTER forwards the job request to CDS if the FDS 

is not able to process within threshold time. Furthermore, ROUTER is validated via integration with a lab-controlled 

smart home automation case study described in Section 4, which is further integrated into an application model built 

within the iFogSim application layer. Both VRP and GFC use dummy jobs to evaluate their performance while 

ROUTER uses real-time traffic generated from smart home application. In order to evaluate the performance of 

ROUTER, GFC and VRP effectively, we used the identical simulation environment described in Section 4.  

5.2 Analysis Results  

Network Bandwidth: Figure 14 (a) shows the average network bandwidth of 1789.6 B/s, 2714.45 B/s and 2830.25 

B/s for all resource managers ROUTER, GFC, and VRP.  It is observable that both GFC and VRP have a similar 

network bandwidth of 2770 B/s, ROUTER on average uses 1790 B/s, which is 12.36% and 14.43% less than GFC 

and VRP, respectively. This is because, ROUTER processes data of IoT devices effectively while fulfilling the QoS 

requirements at runtime. Another reason of better performance is that PSO achieves global minima quickly, which 

distributes load effectively during scheduling of resources.  
 

Latency: We analyzed the latency of each resource management technique (i.e the delay before transfer of user 

requests for job processing). With increasing the number of operations, the value of latency increases as shown in 

Figure 14(b). It is observable that ROUTER has a lower latency in contrast to both GFC and VRP (as operations 

increase). The average value of latency in ROUTER technique is 10.14% and 14.44% less than GFC and VRP 

respectively. The reason is because ROUTER executes job requests at Fog Data Server (FDS) instead of sending job 

requests to Cloud Data Server (CDS) which would result in a larger communication delay.   

 
                       (a)                    (b) 

 
                         (c)                    (d) 

Figure 14. Evaluation results for resource managers ROUTER, GFC, and VRP: (a) Network Bandwidth, (b) Latency,                

(c) Response Time, (d) Energy Consumption. 
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Response Time: Figure 14(c) shoes the time taken for a system to react to a user request. With increasing the 

number of operations, response time increases. The average value of response time in ROUTER technique is 

14.03% and 15.65% less than GFC and VRP respectively. The reason for reduced response time is due to the request 

handling mechanism provisioning resources for job requests before actual scheduling of resources. Furthermore, 

ROUTER tracks the state of all resources at each point of time, enables it to take an optimal decision than GFC and 

VRP.  

Energy Consumption: It is the sum of energy consumed by the processor, switching equipment, storage device, 

network device and other components such as fans, conversion losses [2]. With increasing the number of operations, 

the value of energy consumption increases as shown in Figure 14(d). The average value of energy consumption in 

ROUTER technique is 12.35% and 13.45% less than GFC and VRP respectively. An effective scheduling of 

resources using PSO reduces significant amount of network traffic, which leads to reducing the number of idle 

resources (processor, switching equipment, storage device, network device) that reduces the wastage of energy.  

 

6. Conclusions and Future Work 

In this research paper, QoS-aware resource management technique is proposed using fog-assisted cloud computing 

environment, which manages IoT devices efficiently. Furthermore, we designed a case study of IoT based smart 

home automation to validate the proposed technique.  The performance of the proposed technique has been 

evaluated in Fog computing environment using iFogSim toolkit. Experimental results demonstrate that the proposed 

technique reduces the network bandwidth by 12.36%, response time by 10.14%, latency by 14.03% and energy 

consumption by 12.35% and it detects intrusions to provide security.  

 

In future, the proposed technique can be enhanced to work with some other parameters such as scalability, cost, 

reliability and availability. In fog computing system, trade-off between delay and power consumption is an open 

research area. Further, the proposed technique will be verified in a real fog environment for the practical realization. 

In future, ROUTER architecture can be generalized to other fog computing applications such as agriculture, 

healthcare, weather forecasting, traffic management and smart city.  
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