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Abstract 

This paper provides an alternative general empirical method for the estimation of Total Factor 

Productivity (TFP). We use a decomposition which allows non-parametric estimation and at the 

same time addresses the issue of endogeneity of inputs. In this way, we also deal with the 

unavailability of input prices which is common in the TFP literature. We apply the new 

techniques to U.S four-digit manufacturing data using a novel Bayesian nonparametric model 

based on local likelihood. We use Markov Chain Monte Carlo (MCMC) techniques organized 

around the method of Girolami and Calderhead (2011). We compare and contrast the estimates 

from the proposed new method with standard parametric methods such as the translog, the 

Generalized Leontief and the Normalized Quadratic and we also propose novel diagnostic tests 

for correct specification and validity of instruments. We show that parametric methods lead to 

biased estimation of TFP growth. Our empirical findings show that the new model passes 

successfully a battery of robustness checks including diagnostic testing and tests for weak 

identification as well as weak instruments. Finally policy implications relating to the nature of 

TFP growth are also provided. 
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1. Introduction 

Since the seminal paper of Robert Solow dated back in 1957, which paved the way and delineated 

the origins of TFP, there are hundreds of academic papers estimating TFP using an aggregate 

production function.1 TFP growth also known as the Solow residual is the part of output growth 

that cannot be accounted for by the inputs. In other words, TFP growth is estimated as the 

residual from the production process after subtracting growth in inputs (labor, capital, energy, 

etc.) from output growth. Even though the topic might be considered narrow, the literature is 

quite broad in its relevance, being pertinent to theory and empirical scrutiny alike.   

One would expect that this volume of work would have led to some robust conclusions 

on the magnitude of TFP, and on what factors it depends on. Although a number of important 

contributions have been made, the basic question of how accurate are the relevant TFP estimates 

and associated procedures, has provided widely different answers. Part of the reason is that 

different methodologies provide very different TFP estimates (Biesebroeck, 2008). Additionally, 

part of the reason may simply come down to differences in the data structure (e.g. data frequency, 

spatial aggregation, factor prices, or to minor differences in specification such as lag structure).  

In addition, some empirical studies (see for example Ang and Kerstens, 2017; Diewert 

and Fox, 2017; Lansink et al, 2015; Genius et al, 2012; Epure et al, 2011; Rungsuriyawiboon and 

Stefanou, 2008; Ketteni et al, 2007; Mamuneas et al, 2006) use parametric and non-parametric 

techniques to estimate directly a production function. However, our concern is that in the absence 

of factor prices estimating directly a production function yields biased estimators when inputs are 

endogenous.2 There are some approaches to deal with endogeneity but they come with their own 

constraints. The alternative is to estimate directly a production function. Moreover, in such a 

situation, where input prices (like output prices) are typically unavailable, quantities of inputs are 

usually proxied by deflated values of inputs for capital and materials (De Loecker, 2007; Sharma 

et al, 2007; Kumbhakar and Lovell, 2000). 

The alternative is to estimate directly a production function. Moreover, in such a 

situation, where input prices (like output prices) are typically unavailable, quantities of inputs are 

usually proxied by deflated values of inputs for capital and materials (De Loecker, 2007; Sharma 

                                                           
1 For a complete survey see Beveren (2012); Syverson, (2011) and Bartelsman, and Doms (2000).  

2 When prices are available, one can use duality theory to estimate a cost function instead of a production 

function.  
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et al, 2007; Kumbhakar and Lovell, 2000).  However, there are at least three crucial shortcomings 

with this approach. First, the inputs are endogenous (also known as “simultaneity bias problem”) 

as is well known from previous studies (Tsionas and Izzeldin, 2018; De Loecker, 2007) because 

under a variety of behavioral assumptions, they are correlated with the productivity component. 

Second, the specification of the productivity component is difficult and the adoption of parametric 

assumptions may lead to misleading results. Third, the same is true for a parametric specification 

of the production function. 

To effectively tackle these problems, we propose a new approach to the estimation of 

TFP growth. This is based on a nonparametric specification of an appropriate equation, along 

with a novel Bayesian nonparametric local likelihood approach. We use methods of estimation 

and Bayesian inference based on MCMC to perform the computations. The advantage over 

estimating a production function can be mostly attributed to two factors. First and foremost, we 

have a generic decomposition of TFP growth into its five factor input elasticities (i.e. capital 

services, productive labor, and non-productive labor, energy and raw materials) rather than 

technological and efficiency change followed by the large body of literature (see among others 

Olley and Pakes, 1996; Foster et al, 2006; De Loecker and Konings, 2006). This decomposition, 

does not require functional form specification of a production function. Second, the only 

component that has to be specified is ( , ) /F X     which, however, is a much easier problem 

and can be dealt with in the context of nonparametric estimation. For example, one can assume 

that this partial derivative is independent of input levels, in which case it becomes solely a 

function of time; a problem that can be solved easily using nonparametric estimation. However, 

we prefer to avoid this assumption in the present study, assume instead that it depends on input 

levels, and that the functional form of the dependence is not known in advance. However, the 

problem of endogenous inputs remains. We address the problem by introducing a novel way 

amounting to specifying a novel nonparametric multivariate reduced form which relates input 

levels and input growth rates to a set of instruments. We couple our results with systematic 

diagnostic tests for correct specification and the validity of instruments. 

The paper contributes to the existing literature in many fronts. First and foremost, we use 

a decomposition which allows non-parametric estimation of TFP and at the same time addresses 

the issue of endogeneity of inputs, without requiring that input prices are available. Second, we 

utilize Bayesian techniques organized around Markov Chain Monte Carlo (MCMC). In this way 

we are able to compare and contrast the estimates from the new method with standard parametric 

approximations. Third, we propose diagnostic tests for correct specification and validity of 
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instruments. To the best of our knowledge, our study is the first that uses a Bayesian approach to 

the local maximum-likelihood estimator (LML) (see Kumbhakar et al., 2007) organized around 

the Girolami and Calderhead (2011) MCMC Riemannian Manifold Hamiltonian technique to 

obtain TFP growth rates estimates.3 Fourth, we apply the new techniques to the U.S 

manufacturing sector. The empirical findings are compared to traditional parametric methods, 

such as the Generalized Leontief, and Normalized Quadratic production functions, as well as the 

TFP growth rate calculated from the NBER-CES database. 

The rest of the paper is structured as follows. Section 2 describes the literature on the 

field. In Section 3 the theoretical model of TFP growth is presented, while Section 4 describes the 

econometric methodology. In Section 5 we present the data and the variables for this study. The 

empirical application is analyzed in Section 6, along with the necessary sensitivity analysis to 

check for the robustness of the empirical findings. Moreover, in this section, we provide some 

policy implications to government officials and market players drawn from the empirical findings 

of our study. Finally, Section 7 concludes the paper. 

 

2. Literature review  

There are two different strands in the productivity analysis literature, namely the standard 

approach and the frontier approach. The first one is based on standard neoclassical production 

function models as first developed by Solow (1956). However, the greatest weakness of using the 

Solow residual is that it does not decompose sources of TFP growth stemming from technological 

progress or from efficiency gains (Sharma et, al, 2007). The second approach (see for example 

Atkinson et al, 2003; Narasimham, et al, 1988) can be implemented by either mathematical 

programming techniques (Data Envelopment Analysis, DEA) or econometric modelling 

(Stochastic Frontier Analysis, SFA).  

TFP growth is often used by the researchers and practitioners to assess the impact of 

various micro and macro-economic policies such as the extent of foreign ownership (Javorcik, 

2004), trade openness (Pavcnik, 2002; Amiti and Konings, 2007; De Loecker, 2011), 

antidumping protection (Konings and Vandenbussche, 2008).  The decomposition of TFP growth 

has also received considerable interest in applied research (see for example Olley and Pakes, 

1996; Foster et al, 2006; De Loecker and Konings, 2006). Indeed, most of the parametric studies 

                                                           
3 For an application of the local linear maximum likelihood estimator to banking industry see Tsionas and 

Mamatzakis, (2017).   



5 

 

employ a translog functional form without any prior tests. However, this raises serious doubts 

about the validity of findings and policy implications as parametric models rely on strong 

assumptions of the functional form (Delis et, al, 2014; Polemis and Stengos, 2015; Tran and 

Tsionas, 2010).  

To overcome the simultaneity bias problem described above, Olley and Pakes (1996) 

developed a semi-parametric estimator by using the firm’s investment decision to proxy for 

unobserved TFP growth rate (see also Beveren, 2012). This approach has generated many 

interesting contributions in the field (see for example Ackerberg et al, 2015; Foster et al. 2008; 

Eslava et al, 2004; Mairesse and Jaumandreu, 2005). A major problem is that often investment is 

zero and the required invertibility conditions do not hold. 

 Levinsohn and Petrin (2003) follow a different approach in solving the endogeneity 

problem. In contrast to Olley and Pakes, they use intermediate inputs (materials) rather than 

investment as a proxy for unobserved productivity. Hence, intermediate inputs are expressed as a 

function of capital and productivity (Beveren, 2012). Moreover, this approach does not 

incorporate the survival probability in the second stage as Olley and Pakes (1996) do. However, 

both the Olley-Pakes and Levinsohn-Petrin approach can be used only along with a Cobb-

Douglas specification which, in empirical practice, is quite restrictive.  

Estimating and decomposing TFP for the US at a national or at a regional level (i.e. 

states) has been thoroughly examined by researchers within the last years. Specifically, Beeson 

and Husted (1989) examine manufacturing across U.S. states and what determines differences in 

this sector’s efficiency. Moreover, Puig-Junoy (2001) and Brock (2001) use SFA to measure 

efficiency differences across U.S. states. Similarly, Sharma et. al. (2007) employed SFA to 

decompose the sources of TFP growth rates among a sample of the 48 contiguous U.S. states over 

the period 1977–2000. They argue that technological progress comprises the majority of TFP 

growth, and that differences in efficiency change explain cross-state differences in TFP growth. 

Their findings reveal that the largest (smallest) states are associated with higher (lower) labor 

elasticities and lower (higher) capital elasticities.    

In another study İmrohoroğlu and Tüzel (2014) estimate firm-level productivity using the 

semiparametric method of Olley and Pakes (1996) and construct a panel of TFP levels for 

publicly traded firms in the US. They argue that low productivity firms have, on average, higher 

excess returns than high productivity firms. Cardarelli and Lusine, (2015) estimate state-level 

TFP growth using two different methodologies. First, they estimate parametrically a Cobb-

Douglas production function with time-varying and state-specific labor shares. Second, they 
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employ a SFA to decompose TFP growth rates into technological trends and technical efficiency 

at a state level. 

Based on the above, we conclude that estimating TFP has become of interest to 

economists in a number of playing fields which, along with the availability of data especially at 

the individual establishment level (firm), helped spawn a vast empirical literature and also a 

number of important theoretical contributions. This literature spans nearly fifty years, uses data at 

various level of aggregation, covers periods of a few years to longer than a decade, ranges in 

frequency, considers both parametric and non-parametric techniques ranging from simple 

estimators such as OLS fixed effects, instrumental variables and GMM to complicated semi-

parametric forms (see inter alia Olley and Pakes, 1996; Domazlicky and Weber, 1997; Levinsohn 

and Petrin, 2003) or even panel threshold techniques (Chen et al., 2018). Specifically, Grosskopf, 

et al., (1994); and Ray and Desli (1997) construct Malmquist productivity indexes for OECD 

countries using mathematical programming techniques. Domazlicky and Weber (1997) estimate 

TFP growth rates for a sample of 48 US contiguous states using the same techniques. In another 

study Van Biesebroeck (2007) compares the robustness of five commonly used techniques (index 

numbers, DEA, SFA, GMM and semi-parametric methodologies) to estimate TFP growth rates in 

the presence of measurement error and differences in production technology.  

  

3. The theoretical model 

Suppose we have a production function of the form: 

1( ,..., , )KQ F X X = , 

where Q  is output, 1,..., KX X are factors of production and   denotes time. If factor prices 

(relative to the price of output) are denoted by 1,..., KW W  then we have: 

 
1

,
K

k kk
Q W X

=
=   

as in Hsieh (1999) and Chen et al, (2018). Taking log derivatives with respect to time, after some 

algebra we obtain: 

1
,

K

kkkk
Q s W X
• • •

=

 
= + 
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where 
ks  is the cost share of the k th input: 

1

k k
k K

k kk

W X
s

W X =

=


 and, generically, 

lnd x
x

d

•

= . If 

we rearrange terms, we have the following expression:  
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K K

k kk kk k
Q s X s W
• • •

= =
− =                                                 (1) 

The left-hand-side of this equation provides TFPG, the rate of growth of total factor productivity 

(Acemoglu, 1999). If we take log derivatives of the production function with respect to time we 

obtain: 
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where 
ln ( , )

( , )
F X

X






=


 and ( )1,..., KX X X= .  

We start from equation (2) which we re-write here in the case of panel data: 

 ,
1

( , ), 1,..., , 1,..., ,
K

k itk it itit k
Q X X i n t T 
• •

=
= + = =                               (3) 

where it t =  , 
ln ( , )

( , ) it it
it it

it

F X
X







=


 and ( , )it itF X   is the production function. If we 

define 1, ,[ ,..., ]it it K itX X X
• • •

=  we can write this equation as: 

 ( , ), 1,..., , 1,..., ,it it itit
Q X X i n t T 
• •

= + = =                                    (4) 

where  1,..., K   =  . Provided we can estimate this equation, we can obtain an estimate of 

TFP growth (TFPG) as follows: 
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where E   is the elasticity of production, viz. 
( )

,1 1
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= =


= =


     

It is necessary to highlight that “when price information is not available to determine 

costs, the allocative efficiency component [the last term in Eq. 4] cannot be calculated 

empirically” (Sharma, et al, 2007). In this case, as proposed by Kumbhakar and Lovell (2000) we 

assume that the input’s share in production costs (input factor shares) equals the output elasticity 

of the ith input.   

Estimation of (4) does not make it necessary to specify a parametric specification of the 

production function. All that is involved is (nonparametric) specification of the productivity or 

technical change component ( , )it itX  , which is, admittedly, a much easier problem. In practice 

we approximate 
it

Q
•

 as: 
( )

, 1

1
2 , 1

it i t

it

it i t

Q Q
Q

Q Q

•
−

−

−
=

+
, and we follow the same practice for each ,k itX

•

 

( 1,...,k K= ). For the model: 

 ,,1
( , ) ,

K

k iti k it it itit k
Q X X v 
• •

=
= + +                                  (6) 

we approximate the unknown function ( , )it itX   with a linear function: 

 1 2 0( , ) ,it it o it it itX X W       = + +  +                              (7) 

where [ , ]it it itW X  = . The specification in (7) is a linear function of factor inputs and time. This 

suggests that technical change is disembodied, or Hicks neutral (see Blackorby et al, 1976).4 In 

other words, the passage of time affects variable inputs in the same way (Genious et, al, 2012). 

The Hicks-neutrality technical change hypothesis can be statistically tested (e.g. conventional 

likelihood ratio tests can be applied) by imposing the restriction = 0 . Although linearity in (7) 

                                                           
4 This corresponds to a situation where, with any given input proportions, the average and marginal 

products of all inputs increase in the same proportion (Varian, 1992). Thus if Y = F(K, L), and the 

function F(K, L) has constant returns to scale, output after Hicks-neutral technical progress is given by Y* 

= F(λK, λL) = λF(K, L) = λY. 
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is, apparently, highly restrictive it is quite helpful as we will make the coefficients arbitrary 

functions of 
itX  and 

it . Therefore, the model becomes: 

 
0 1 2( ) ( ) ,it i it it it it itit

Q X W X W v    
• •

 = + + + +                                  (8) 

where [ , ]it it itW X  = , and  
1( )itW  and 

2 ( )itW  are arbitrary functions of 
itW . The exact 

specification of these functions will be discussed in the next section. 

We model endogeneity using a reduced form: 

 ( )2 ,it

it K it it

it

X
I W V

X


• 
  =   +
  

                                   (9) 

where 
itV  is a vector random variable, 

itW  is a 1d   vector of instruments and    is a matrix of 

coefficients. We assume: 

 ( )2 1~ 0, .
it

K

it

v
N

V
+

 
 

 
                                           (10) 

Moreover, we assume C C =  where C is a lower triangular matrix. Although the reduced form 

is linear and has normally distributed error terms, we will use the local likelihood approach 

developed by Kumbhakar et al, (2007), to convert it to a full nonparametric model. The latter is 

fully described in the next section.  

4. Empirical framework  

4.1.  Local likelihood 

Before proceeding we need the likelihood function of the model expressed as follows: 

 ( ) ( ) ( ) ( ) 
/2(2 1) /2 11

2
; , , 2 exp , , ,

nTK nT

it it it itf Y W U U      
−− + −=  −            (11) 

where:   

 ( )
( )

1 2

2

, .
ito i it itit

it

it K it

Q X X
U

I W

    
 



• •  − − − =
 − 
 

                                 (12) 
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The parameters of the model are
1 2, ,o   , ,    (or equivalently C ) and  , 1,...,i i n = = .   

Due to the potentially large number of 
i s we assume they are fixed but different for different 

units in the cross-section. The vector of varying parameters is 

 1 2, , , ( ) , ( )o vec vech C        =   . In the local likelihood approach we assume that   is a 

function of w , the vector at which we want to estimate the unknown function (this vector 

contains ,it itX  ). Using a local linear estimator, we have: 
1( ) ( )o itw W w = + −  so that 

( ) ow =  when 
itw W= . 

The log likelihood function for a local linear model can be written as: 

 ( )1 11 1
log ( , , ; ) log ; ( ), , ( ),

n T

w o it o it it H iti t
L D f Y W w W K W w   

= =
 = + − −   (13) 

where 1,o   are 1k  and k d , H   is a bandwidth matrix and 
1 1( ) | | ( )HK u H K H u− −=   

where 11
( ) ( )

d

j
K z K z

=
=  for some univariate kernel 1( )K z . We denote the data by 

[ , ; 1,..., , 1,..., ]it itD Y W i n t T= = = . In this case we have: 

 ( )2

1 1 1 1( ) ( ) .duu K u du u K u du I =                                      (14) 

The local linear estimator is  

 ˆ ˆ( ) ( ),ow w =                                                          (15) 

where ˆ ( )o w  and 1
ˆ ( )w  maximize 1log ( , , ; )w oL D  . 

As in Kumbhakar et al, (2007), we choose 
1/5

WH hS n−=  where WS   is the vector of 

standard deviation of variables in itW  and h is a d-dimensional vector of bandwidths. Then, the 

product kernel becomes: ( )1

1 ,1

dd

j itj
h K h W− −

= . Therefore, the bandwidth parameter h is 

adjusted to account for different scales and sample sizes. We treat h as an unknown parameter and 

it is subjected to formal statistical inference, along with the remaining parameters, within our 

Bayesian framework. This replaces the need for cross – validation. We use 
, 1i tX −

, , 1i tX
•

− , and a 
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time trend as instruments. Squares and interactions of all these variables are included in the list 

of instruments. To capture the impact of market structure on TFP we use as instrument the level 

of concentration ratio of the four largest industries in each sector (CR4), its square and its 

interactions with 
itX , itX

•

, and the time trend. To estimate TFP growth we use the following: 

 ( ) ( )1
,

1
1 , ,

K

k itit i ik it itk
TFPG E X X 

•
−

=
= − +                                (16) 

where the elasticities 
ik  and the unknown function ( ),it itX   have been estimated through the 

local likelihood approach whose Bayesian variant is proposed next.  

4.2  Bayesian Local Likelihood 

As indicated above, the main contribution of this study is to provide a new method for the 

estimation of TFP. More specifically, to avoid making strong assumptions about the functional 

form, a non-parametric specification for the production function is estimated using MCMC 

methods, also accounting for endogeneity of factor inputs. The technique is applied to U.S. four-

digit manufacturing data over the period 1958-2007. Compared to traditional parametric methods, 

the new method results in a distribution of TFP growth rates that shows a relatively better fit 

when compared to the five-factor productivity measure calculated from the NBER-CES database. 

As the latter is assumed to be the “true” TFP (despite the assumption of constant returns to scale), 

we argue that the proposed method provides much better estimates of the TFP growth rate 

compared with GMM estimates from the translog parametric model.  

The local likelihood may exhibit multimodality which, in turn, may provide a local 

optimum instead of a global maximum. Moreover, the parameters may be highly correlated 

making difficult the use of standard optimization tools such as variants of Newton – Raphson. For 

this reason, we resort to a Bayesian approach in this paper.  

In the Bayesian approach we consider the posterior given by Bayes’ theorem: 

 1 1 1( , , , | ) ( , , ; ) ( , , , ),o w o op h D L D p h           
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where 
1( , , )op    denotes the prior. The bandwidth parameter ( h ) is included in the parameter 

vector. Our prior on all parameters 
1,o  is flat subject to the only restriction that the elasticities 

are in the interval (0,1) to take account of the economic restrictions of the model. For the 

bandwidth parameter we use an improper prior of the form: 

 
1 1( , , , ) ( , , | ) ( ),o op h p h p h        

 ( ) 1,p h h−   

to reflect prior ignorance about values of this parameter. Moreover 

 
( )

( )1 0,1
( , , ) ,Kop I      

where I  denotes the indicator function. Avoiding cross – validation to determine the 

bandwidth parameters is a significant advantage of the approach and results in computational 

savings of considerable magnitude at the cost of one extra parameter ( h ). 

We use the MCMC method of Girolami and Calderhead (2011) to obtain draws from the 

posterior. The technique uses first and second derivative information from the posterior and 

provides a thorough exploration of the likelihood / posterior. To estimate derivatives of the form 

,  1,..., ,it

kit

TFPG
k K

X


=


 which are of central interest in our analysis, we use the local coefficients 

obtained from (16) fixing all variables at their medians and evaluating the local coefficients at a 

grid of 100 points for kitX  running from its minimum to maximum value. For purposes of 

presentation and ease of comparisons, in our plots, we normalize this interval to [0,1]. These 

derivatives are of central interest as they allow a “decomposition” of TFP growth. Estimation 

details, organized around Bayesian techniques using MCMC, are provided in Appendix A.1. 

 

5. Data and variables  

Similarly to Chen et al. (2018), the sample consists of a data set of United States manufacturing 

industries at the four-digit level (N = 459) over the five-year period 1958-2007 (T=13), so giving 

an unbalanced panel of 4,361 observations. The sample period was strictly dictated by data 
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availability since most of the variables used in the empirical application was missing for the year 

2012. Similarly to other empirical studies (see for example Serpa and Krishnan, 2017), all 

variables are taken from the National Bureau of Economic Research (NBER) and especially from 

the Manufacturing Industry Database (NBER-CES) which contains annual data from the United 

States manufacturing sector for the period from 1958 to 2011.5 

Specifically, we use the total value of shipments per sector as a proxy for total output (Q). 

For variable inputs, we use: production worker hours (N); non-production worker hours (L); 

capital expenditure (K) as a proxy for capital services6; cost of electricity and fuels (E) that serves 

as a proxy for cost of energy and cost of non-energy materials (M-E) as a proxy for intermediate 

inputs. 7 The above variables are denominated in millions of nominal dollars, except for labor 

variables that are denominated in thousands of workers or millions of worker hours. To convert 

nominal dollars to real (“fixed-base”) dollars and calculate productivity factors, four different 

deflators are used (1997=100) accounting for value of shipments, material cost, energy and 

capital expenditure.      

As mentioned, we also include the concentration ratio of the four largest industries in 

each sector (CR4) as an instrument to account for the impact of market structure on the 

production process and allow for certain cyclical behavior (nonlinearities) in the effect of the 

covariates on the dependent variable (see Polemis and Stengos, 2015). Finally, the sample 

includes a five-factor productivity measure (TFP5) which is used as a benchmark in our empirical 

analysis. The latter comprises of capital (K), production worker hours (N), non-production worker 

hours (L), energy (E) and non-energy materials (M-E). The five-factor productivity measure 

drawn from the NBER-CES database is calculated as follows: 

                                                           
5 The data used for the construction of the database come from various sources, but chiefly from three 

government agencies: a) The U.S. Census Bureau, b) The Bureau of Economic Analysis (BEA), and c) The 

Bureau of Labor Statistics (BLS). 
6 Notably, the use of capital services (as opposed to capital stock) is quite uncommon in the literature, 

although it is, apparently, the correct way to proceed. 

7 In alignment with other studies (Polemis and Stengos, 2015; Becker et al, 2016; Chen et al, 2018) we used 

total value of shipments as a proxy for total manufacturing output. Moreover, we have also used the real 

capital expenditure (flow variable) as a proxy for capital (stock variable) due to data constraints on the 

capital stock variable (see also Polemis and Stengos, 2015, Serpa and Krishnan, 2017, Chen et al, 2018). 

The sample variable, includes “permanent additions and major alterations to the plant structures along 

with the new machinery and equipment. In other words it combines spending on structures and equipment 

and does not include used plant and equipment, land, or maintenance or repair expenses” (Bartelsman and 

Gray, 1996).   
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ˆ ˆ5 ,  , , , , ,i i

i

TFP Q a X i K N L E M= − =  

where Q  is real output,  
ia  is the average share (current and lagged year) of factor i relative to 

industry shipments, 
iX  is the real input of factor i, and ^ denotes the first difference of the 

logarithm (growth rate). The share of capital is computed as one minus the sum of the other factor 

shares (see Becker et al, 2016). Summary statistics for the data used in the empirical application 

are listed in Table 1.  

 

Table 1: Summary statistics  

     

Variables Mean Std. dev  Min Max 

     

TFP5 1.016 1.049 0.161 49.04 

Q  7,411 77,398 17.000 3,288,454 

N 444.9 898.8 4.100 14,794 

L 293.1 667.9 0.900 8,803 

K  2,437 5,971 3.700 79,776 

E  116.5 370.6 3.000 6,442 

M-E 2,882 8,219 4.000 177,247 

CR4 40.32 43.56 6.000 99.3 

     

Note: The table reports summary statistics for the actual data. TFP5, is the five factor Total Factor 

Productivity index (1997=1.000) as estimated by the NBER-CES. Q is the value of shipments expressed in 

real terms. N stands for the production worker hours, while L denotes the non-production worker hours. K 

stands for the real total capital expenditure. E is the real cost of electricity and fuels, while M-E denotes the 

real total cost of materials (energy excluded). Finally, CR4 denotes the sum of the market shares of the four 

largest firms in each of the sample sectors.   

6.  Results and discussion  

This section presents and discusses our main empirical findings. Moreover, we report and analyze 

the estimation results from the Bayesian local likelihood (“new model”) estimated by applying 

Bayesian techniques around MCMC approach. We also compare these results with the actual TFP 
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growth rates obtained by NBER and the standard parametric methods. We use  a translog model 

as well as the Normalized Quadratic and Generalized Leontief models. This section presents also 

the necessary diagnostic tests for correct specification and validity of instruments used from the 

MCMC procedure.  Our MCMC implementation of Girolami and Calderhead (2011) uses 

150,000 iterations the first 50,000 of which are discarded to mitigate the possible impact of start-

up effects. Convergence was found to occur during the transient or burn-in phase using Geweke’s 

(1992) diagnostics.  

 

6.1 Empirical findings  

We start our analysis by applying a baseline model to use it as our main point of 

reference (benchmark). Specifically, we use a flexible translog approximation which includes 

capital services, productive labor, non-productive labor, energy, materials (excluding energy), a 

time trend and their squares and interactions (cross-terms). We also consider alternative 

parametric forms for the production function, such as the log linear (Cobb-Douglas), the 

Generalized Leontief (GL) and the Normalized Quadratic (NQ). A common feature of these 

models is that they rely on strong assumptions of the functional form, usually without a prior 

analysis of the properties of the data (Delis et al., 2014). In any case, all parametric 

approximations may lead to erroneous estimation of TFP growth rates.8  

To deal with the endogeneity problem is essential because otherwise the translog model 

would have been just a convenient straw man. For this reason, the endogenous variables (i.e. the 

factors of production) are regressed on all instruments and their residuals are included in the 

estimated translog production function). This method described in Terza et al. (2008) is known as 

“two-stage residual inclusion” (2SRI) and it can be shown to be a parametric correction for 

endogeneity. Productivity growth can be measured, in turn, using the derivative of the translog 

production function with respect to the time trend. This partial derivative depends on time as well 

as the values of the factors of production. Moreover, the translog is a second-order approximation 

to an arbitrary production function (around the means of the logs of the data) and is widely used 

in applied production studies (see Christensen, et al, 1971; 1973). The simplest translog 

production function takes the following form: 

                                                           
8 The results from the Cobb-Douglas specification are available from the authors upon request. The results 

from the other parametric functional forms are presented in sub-section 6.3 
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Having discussed the primal problem, we begin our empirical analysis by estimating the 

above translog production function with the Generalised Method of Moments (GMM) to account 

for the endogeneity of inputs. Figure 1, reports the posterior marginal density or probability 

density function (PDF) of TFP estimates of the two models (new model vs translog) with the 

equivalent of the “true” TFP growth rate (actual data) obtained by the NBER-CES database. A 

careful inspection of Figure 1 provides some important points. Specifically, the sample 

distribution of TFP growth rate (actual data) is close to being symmetric although apparently non-

normal. Moreover, the results from the baseline parametric (translog) model illustrate that GMM 

generates TFP growth rate estimates that substantially deviate from “true” TFP to a larger degree 

than the non-parametric counterpart (new model).  

 

Figure 1. Sample density of TFP growth (Actual data vs new model and translog)  
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Source: Authors’ estimations. 

Although we present the baseline model, it is worthwhile to compare estimates of median 

TFP growth rates across industries and time, accounting for parametric (translog), non-parametric 

(new model) estimations with the actual NBER measure. In Figure 2, we present estimates of TFP 
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growth from the new model, a parametric translog specification which we use as a useful 

benchmark and also the five-factor productivity measure (TFP5) extracted by NBER (actual 

data). Some striking results emerge. First, there is significant variation between the translog 

model and the actual data (NBER). Specifically, the NBER data provide TFP growth rates are 

characterized by an upward trend throughout the sample period (1958-2007). 

 

This trend is interrupted in 1979 and 1997 due to the impact of exogenous shocks such as 

the second oil crisis (1979) and the financial crisis that hit many Asian markets (Hong Kong, 

Taiwan, Thailand, South Korea, etc) within the period 1997-1998 (Jerzmanowski, 2007; Sharma, 

et, al, 2007). Indeed, the translog model depicts a totally reversed pattern compared with the 

NBER estimates, showing that despite its flexibility and simplicity in its estimation it is not 

suitable for policy making. This outcome concurs with the above findings revealing that non-

parametric techniques in estimating TFP growth rates may be most suitable for researchers and 

government officials.      

Figure 2. Median TFP growth rates across industries over time (1958-2007)  
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Source: Authors’ estimations. 

A different situation presents itself when we examine TFP growth rates of the new model 

estimated at the median of the distribution across the whole sample (four-digit industries over the 

period 1958-2007). Specifically, the new model provides a good fit to the data, which may be 
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attributed to the fact that in contrast to the parametric models which rely on strong assumptions 

about functional forms, non-parametric techniques do not impose ex ante assumptions such as the 

type of technology used and the limits of the industry.  

Having estimated and contrasted the posterior distribution of TFP growth rate across the 

two models (new model vs translog) we carry on our analysis with the estimated factor 

elasticitites. In Figure 3 we present the marginal posterior distributions of factor elasticities from 

the two models (new model vs baseline parametric model). For the Bayesian nonparametric 

model, the factor elasticities are averaged across all MCMC draws to take into account parameter 

uncertainty. 

Based on the upper and bottom panels of Figure 3 some important differences can be 

seen. First, three (non-productive labor, energy, materials) out of five factor elasticities of the new 

model show a relatively low variation taking values around zero within the interval 0.0 - 0.2. In 

contrast, capital services’ elasticity (blue line) and productive labor elasticity (orange dotted line) 

exhibit a different pattern with wider distributions and larger values. Specifically, the former 

takes values from 0.1 to 0.3 while the latter ranges from 0.5 to 0.65. A different trend is evident 

when the baseline parametric model is put into scrutiny. Specifically, all the factor elasticities 

except for capital services, have a symmetric posterior distribution but with low estimated mean 

not exceeding 0.3 (non-productive labor elasticity). The latter (green dotted line) is somewhat 

skewed to the right, suggesting that for most four-digit sectors the factor elasticity shows slight 

asymmetry to the right. Similar findings hold in the case of capital services’ elasticity (blue line), 

where the relevant marginal posterior density is positively skewed ranging from 0.3 to 0.5, 

suggesting that for most manufacturing sectors the impact of factor substitution is moderate. 

Since the upper and lower panel are in the same scale, it is apparent that factor elasticities differ 

greatly in the two models. 
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Figure 3. Posterior distributions of factor elasticities (new model vs translog) 
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Source: Authors’ estimations. 

In Figures 4 and 5 we present the posterior mean marginal effects of each of the five 

factors (along with the time trend) on TFP growth rate provided by the non-parametric model. 

Marginal effects are computed using numerical derivatives of the non-parametric functional form 

averaged across MCMC draws (excluding the burn-in phase). In this way, we can draw inferences 

about the pattern of TFP in the US manufacturing industry over the sample period.  
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Figure 4. Marginal effects of factors on TFP growth 
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Source: Authors’ estimations. 

Figure 4 shows the decomposition of TFP growth by factor. As it is evident the marginal 

effects of the five input factors on TFP growth rate are nonlinear. Nearly all factor marginal 

effects (except for capital services) show an inverted “U-shape” form with a turning point 

(threshold) equal to the median (0.5) approximately. This means that the marginal effects of the 

four input factors on TFP growth are nonlinear. In contrast, the marginal effect of capital services 

on TFP growth rate has an “S-shape” form with two turning points around 0.3 and 0.65, 

respectively.   

It is noteworthy that the lion’s share of TFP growth in US manufacturing sectors is due to 

productive labor (i.e. white-collar workers) and capital services. The two factors contribute 

significantly to the decomposition of TFP growth compared with other sources of growth such as 

materials (energy excluded) and non-productive labor (i.e. blue-collar workers). These findings 

contradict some of the existing studies (see for example Mamuneas et al., 2007; Sharma et al., 

2007; Ketteni et al., 2011, and Cardarelli and Lusinyan, 2015) highlighting that TFP growth 

mainly stems from technological progress. This could be attributed to various reasons such as the 

different (parametric) methodologies applied along with the different dataset as well as the fact 

that all the previous reported studies do not address the impact of market structure on TFP growth 

rates.    
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In Figure 5 we report the MCMC – averaged effect of time on TFP, which is ( , )it itX   

as in (4). The marginal effect seems to be cyclical around the median (0.5). More specifically, for 

the values below the median, the marginal effect of time trend on TFP follows an upward trend 

until a certain point (nearly 0.4) where it switches to an abrupt downward trend. In contrast, for 

values above the median of the distribution, the marginal effect exhibits a sudden increase in the 

interval 0.5 – 0.9, approximately.        

Figure 5. Marginal effect of time trend on TFP growth 
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Source: Authors’ estimations. 

 

6.2  Sensitivity analysis  

We conduct a number of sensitivity analyses on the results to examine the robustness of 

our empirical findings. In particular, we obtain estimates of TFP growth by trimming 1% of 

outliers from both edges of the distribution of TFP. In this way, we test for the robustness of the 

non-parametric empirical findings since local regression may be sensitive to outliers (Delis et al, 

2014). Moreover, we include fixed effects and time effects among the regressors in the parametric 
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model (translog). The results are not significantly different from those reported in Section 5.1.9 In 

addition to the above, we test the validity of the assumption of time-invariant factor elasticities in 

our Bayesian context. Finally, we use a set of diagnostic procedures to ensure that we have a non-

parametric specification not rejected by the data. The relevant tests show that our nonparametric 

method (new model) to estimate TFP growth, performs well in terms of these diagnostic tests. 

 

6.2.1. Time-varying factor elasticities 

We turn attention into possible time-variation in factor elasticities and heterogeneity 

across industries and / or time. One may argue that a “one size fits all” nonparametric production 

function is, in fact, wrong as there may be considerable heterogeneity across different industries. 

To address this concern, we assume that we can classify the data into G groups, where G is 

unknown. Bayesian analysis can be performed using a simple extension of the MCMC procedure 

(for details, see Appendix A.1) for a fixed value of G. We select the number of groups, G, using 

the marginal likelihood criterion. The marginal likelihood is computed for each G in {1,2,…,7} 

and the optimal values was G=5 (see Table 2). Marginal likelihood10 is computed using the 

DiCiccio et al. (1997) approximation. The different values of marginal likelihood are shown in 

the following table. 

                                                           
9 Due to space limitations, the results are available upon request.   

10 Also known as Bayes factor, when the prior odds ratio for different values of G, is equal to one. 
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Table 2: Values of marginal likelihood for different values of G 

G marginal likelihood 

1 1.0000 

2 12.717 

3 17.332 

4 21.330 

5 53.445 

6 17.002 

7 9.3710 

Source: Authors’ estimations. The marginal likelihood for 1G =  is normalized to 1.000. 

The results are shown in Figures 6 and 7. From the posterior means reported in these 

figures, it turns out that time variation can be safely ignored and, therefore, our analysis based on 

time-invariant factor elasticities is supported by the data. One could possibly argue that it is 

feasible to compute input bias from technical change, using the estimation of a translog function 

either in its primal (production function) or its dual form (cost function). Indeed, Binswanger 

(1974) and Fuss and McFadden (1978) present the input bias from technical change using the 

estimation of a translog cost function. However, as mentioned above, we provide sufficient 

evidence that input elasticities (e.g. capital services, labor productive, labor non-productive, 

energy, materials) drawn from the decomposition of TFP growth, are not time varying. This 

means that we do not have factor biases. Therefore, as elasticities are practically constant over 

time, the Hicks neutrality hypothesis cannot be rejected showing that technical change is 

disembodied.  
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Figure 6. Factor elasticities over time from finite mixture of normals model 
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Source: Authors’ estimations. 

Figure 7. Factor elasticities over time from finite mixture of normal model (individual plots) 
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Source: Authors’ estimations. 
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6.2.2.  Diagnostic procedures for Bayesian analysis 

Given the use of the MCMC, it is essential to assess validity of the instruments used in the 

procedure and examine autocorrelation of MCMC draws. For these reasons, we use a battery of 

diagnostic tests to ensure, to an extent that is empirically possible, that we have a specification 

not rejected by the data. To our knowledge, these procedures are novel in the literature. 

Specifically, to test that our instruments are relevant we compute the minimum11 R2 

between the actual and fitted values, from the nonparametric reduced form, for each MCMC 

iteration. Therefore, there is an induced posterior distribution of the minimum R2. Figure 8 

presents the marginal posterior density of minimum R2 from nonparametric reduced form. As it is 

evident, the probability density function of the full model (blue line) deliver large values of R2. 

Additional we present posterior distributions of minimum R2 when lagged growth rates or lagged 

inputs are not included in the reduced form. In both cases the R2’s drop dramatically indicating 

that these variables should be present in the reduced form.  

Figure 8. Marginal posterior density of R-squared  
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Source: Authors’ estimations. 

                                                           
11 The minimum is taken across equations. In what follows, we maintain the assumption that G=5. 
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Similarly to other empirical studies (see for example Tsionas and Izzeldin, 2018), we 

compute autocorrelation functions (acf) for each parameter to examine autocorrelation of MCMC 

draws. In Figure 9, we report the maximal values of autocorrelation coefficients estimated at the 

median (50th percentile) and at the 10th and 90th percentile of w (the particular point at which we 

consider the local likelihood / posterior) for each lag from 1 to 50 (in absolute values but retaining 

the sign for plotting). The autocorrelation functions portrayed in Figure 9 shows that the 

Riemannian MCMC model (new model) performs well after the 10th lag where the acf drops 

down to 0.2 from 0.8 (2 lags). However, its performance is much improved after the 20th lag since 

the acf are practically zero or take negative values after about lag 30.  These results indicate good 

mixing properties and thorough exploration of the posterior using our MCMC procedure. The 

result is not very surprising as the Girolami and Calderhead (2011) MCMC update relies on first 

and second derivative information from the local log posterior. 

Figure 9: Autocorrelation functions 
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Source: Authors’ estimations. 

Finally, for each MCMC iteration we compute minimum p-values of F-tests for each 

residual series accounting for: a) autocorrelation of order 4, b) heteroscedasticity of type I (where 
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squared residuals are regressed on all instruments without squares and / or interactions, c) 

heteroscedasticity of type II (where squared residuals are regressed on all instruments including 

squares and interactions, d) a RESET test where residuals are regressed on second, third and 

fourth powers of the fitted values of the growth equation and the reduced form and finally e) a 

normality test. In this procedure, there is an induced posterior distribution of p-values of F-tests. 

The minimum is taken across equations. 

The relevant marginal posterior densities of minimum p-values for the five diagnostic 

tests are presented in Figure 10. The new model does not suffer from autocorrelation or 

heteroskedasticity since the posterior distributions of p-values (blue, orange and green line) are 

greater than the 0.10 threshold (10% level of significance in sampling – theory approach) 

implying that standard specification problems are absent from the specification.12  

Figure 10. Marginal posterior densities of p-values for diagnostic tests 
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Source: Authors’ estimations. 

                                                           
12 No doubt, a “more Bayesian” approach would be to consider Bayes factors or marginal likelihoods 

relative to the hypothesis that autocorrelation, heteroskedasticity and functional form problems are absent 

(the “null hypothesis”). Although p-values are problematic (to say the least) in a purely Bayesian approach, 

they can nevertheless be used here to illustrate the extent to which the “null hypothesis” is supported by the 

data. 



28 

 

According to the shape of the marginal posterior density of RESET - test distribution 

(purple dotted line), the non-parametric model does not appear to be misspecified so it is an 

acceptable econometric representation.13 If non-linear combinations should have any additional 

power in explaining the response variable, the model would have been misspecified which does 

not appear to be the case here. Specifically, we find that the new model passes the Ramsey (1969) 

test for neglected nonlinearity in the choice of functional form as the sizable probability content 

of the posterior exceeds the conventional threshold p-values of 5% or 10%. Therefore, we do not 

have any serious evidence against the suitability of our specification. Finally, the normality 

minimum p-values show that the model’s errors are nearly normally distributed since the 

posterior density places large probability in excess of the 10% frequentist critical threshold.  

6.2.3  GMM and weak identification testing   

As we analyzed before, we have developed a Bayesian test for valid instruments using the 

minimum R2 from the reduced form as in Figure 9. In this section, we illustrate a different 

identification test which is fully described in Appendix A.2. Specifically, the marginal posterior 

densities of the p-values for both the non-parametric and the translog model are reported in Figure 

11. Regarding the translog model we observe that the marginal posterior density of p-values has 

considerable mass in the neighborhood of zero, which means that over-identifying restrictions are 

rejected. This implies that either the instruments are not proper or the moment conditions are 

incorrect. In contrast, the new model behaves well implying that over-identifying restrictions 

cannot be rejected since the relevant p-values fall within the interval 0.1-0.6.       

 

 

 

 

 

 

 

 

                                                           
13 Most previous studies do not test for the suitability of the functional forms adopted.  
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Figure 11. GMM marginal posterior densities of p-values (New model vs translog)  
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Source: Authors’ estimations. 

We carry on our sensitivity analysis regarding weak identification testing. According to 

Stock et al. (2000) tools for investigating identification are rather limited in nonlinear models. For 

this reason, we develop an alternative test based on three steps. In the first step, we use the two-

step GMM criterion in place of the CUE-GMM criterion in (19), evaluated at all MCMC draws 

and examine whether the marginal posterior distributions of their p-values are substantially 

different.14 In the next step, we remove instruments at random and we repeat the same procedure. 

Specifically, we remove at random I instruments at a time. We set I=1,…,10. In turn, we evaluate 

the GMM criterion across all values of R and all MCMC draws. In the last step, we remove 

observations at random and we repeat the same procedure. Specifically, we remove at random τo 

observations at a time. We set τo=1,…,50. In turn, we evaluate the GMM criterion across all 

values of τo and all MCMC draws.  

Our results are reported in Figure 12 for the non-parametric model (upper panel) and the 

translog (lower panel). Evidently, the marginal posteriors of p-values are very close to the 

                                                           
14 The latter is implemented as follows. First, we set  = , the identity matrix, at the MCMC draw. 

Second, we take one iteration of the Gauss-Newton method away from the draw, evaluate   at the new 

iterate as in (19) and third, we re-compute the GMM criterion. 
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original model but this is not the case for the translog model. This finding suggests weak 

identification problems and / or other misspecifications errors in the parametric model.  

Therefore, the new model for the estimation of TFP growth represents a significant 

improvement over conventional parametric estimation methods (translog). The same is also true 

relative to the GL and NQ functional forms. The diagnostic tests presented are quite informative 

in that inferences based on the nonparametric model can be carried out with some confidence. 

This means that if one researcher or market player does not have information on factor prices and 

needs factor elasticity estimates to calculate TFP growth, then the estimates from the new method 

are likely to be more reliable than conventional parametric functional forms. Of course, further 

validation in other data sets is required before this general issue is settled. 

Figure 12. Marginal posteriors of p-values (New model vs translog)  
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Source: Authors’ estimations. 



31 

 

6.3  Robustness checks15  

In this subsection, we perform several checks to examine the robustness of our results. 

Specifically, we experiment with other parametric functional forms such as the Generalized 

Leontief (GL) and Normalized Quadratic (NQ) along with the translog production function to 

further testing the validity of the TFP growth rates estimated by the nonparametric model.  

 

6.3.1  The GL and NQ parametric models      

 Since all second-order specifications such as the translog or the CES cost function can be 

viewed as approximations to an arbitrary production function (see Fuss, et al, 1978), we first rely 

on the GL specification, which acknowledges that there may be limited substitution among inputs 

but considerable substitution among materials in the production process (Diewert, 1971). 

Specifically, the non-homothetic Leontief production function suggested by Lau and Tamura 

(1972) is the most general production function characterized by zero elasticities of substitution 

between all pairs of inputs allowing at the same time differential returns-to-scale and technical 

progress to inputs (Lau and Tamura, 1972; Genius et al, 2012). In such a case input demand 

functions may differ across factors of production. The GL production function (Diewert, 1971) is 

given by what Diewert called the “generalized linear” form which is the equivalent of his 3.1 in 

4.2 and is given by: 

1/2 1/2 1/2

0 '1 1 1

K K K

k k kk k kk k k
Y a a X a X X = = =
= + +                    (24) 

 We supplement our analysis with the NQ functional form (Lau, 1978) which is given by 

the following equation: 

0 1 1 1
,

K K K

k k kk k kk k k
Y a a X a X X = = =
= + +               (25) 

We do not impose normalization to have homogeneity of degree one in inputs (viz. 

constant returns to scale). Therefore, this is a quadratic production function in our context.  

Additionally, both GL and NQ production functions are estimated using our reduced form 

in (9) to avoid endogeneity problems so that the comparison with the new model is fair. In the 

case of cost functions, we divide all prices by the first input price to impose homogeneity of 

                                                           
15 We thank an anonymous reviewer for suggesting to compare our results with the GL and NQ 

specifications.  
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degree one. Moreover, we impose monotonicity at 10 random points in the support. Matrices 

'[ ]kka  are symmetric and negative semi-definite (the latter constraint is imposed by exploiting the 

Cholesky representation of '[ ]kka ). 

6.3.2  Empirical results  

In Figure 13, we present the median TFP growth rates drawn from the new model 

(nonparametric MCMC) and the other three parametric models (translog, GL and NQ) along with 

the actual data for comparison purposes. As it is evident, the significant variation between the 

parametric models and the NBER data still persists even in the case of GL and NQ, while on the 

other hand the new model illustrates almost a perfect fit to the actual data. This suggests that the 

results are robust. More related findings are presented in the Figures provided in Appendix A.3 

(see Figures A.1-A.3).   

 

Figure 13. Median TFP growth rates across industries over time (New model vs parametric 

models)   

 

Source: Authors’ estimations. 

We carry on our analysis with the presentation of marginal posterior densities of the p-values for 

diagnostic tests in all functional forms (non-parametric vs parametric models) as illustrated in 

Figure 14. We observe that, overall, the new model behaves well since it does not suffer from 
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autocorrelation or heteroskedasticity and the normality test indicates that the model’s errors are 

likely to follow normal distributions. Moreover, based on the RESET test the nonparametric 

model does not appear to be misspecified. However, the same findings do not apply for GL and 

NQ.  

Figure 14. Marginal posterior densities of p-values for diagnostic checks (New model vs 

parametric models)  

 

Source: Authors’ estimations. 

The aforementioned findings are fully confirmed in terms of weak identification testing 

(see Figure 15). The marginal posteriors of p-values provide support in favor of the presence of a 

weak identification problem and the existence of serious misspecifications errors which are 

evident in all three parametric functional forms. On the other hand, the nonparametric model 

seems to behave much better in terms of specification.    
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Figure 15. Marginal posteriors of p-values (New model vs parametric models)  

 

Source: Authors’ estimations. 

Finally, we conclude our robustness checks with the presentation of factor elasticities 

estimated from all empirical models (see Figure 16). Factor elasticities differ greatly between the 

new model and the other three parametric functional forms, showing that model choice is quite 

important and factor elasticities are sensitive to this choice.   
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Figure 16. Sample distributions of factor elasticities (New model vs parametric models)  

 

Source: Authors’ estimations. 

6.4.   Policy implications  

To draw sharp policy implications, we derive results for key functions of interest without re-

estimating the nonparametric model but by examining results based on splitting the whole sample 

into five distinct sub-samples including capital (K/Y), productive and non-productive labor (L/Y), 

energy (E/Y) and material (M/Y) intensive sectors. For this reason, we have delineated the 

sectors’ competitive conditions as ‘concentrated’ or less competitive and “less concentrated” or 

competitive.16  

 

 

                                                           
16 This was performed by simple splitting the sample of manufacturing industries bellow (competitive) and 

above the mean (concentrated) of the CR4.     
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In Figure 17, we show the effect of K/Y (also productive and non-productive L/Y and 

CR4) on TFP growth by percentile of these variables. For example the effect of K/Y (which is 

capital-output ratio) is negative bellow the median (approximately up to the 40% quantile), and 

increases becomes positive at, approximately, above the 60% quantile. The effect is S-shaped like 

the effect of productive labor L/Y, while the non-productive labor L/Y has a U-shape having a 

negative effect on TFP growth up to, the 60% quantile approximately. The effect of CR4 on TFP 

growth is negative but not statistically important below the 20% quantile, approximately, and 

increases at a decreasing rate (inverted U-shape) reaching a maximum of 
32 10− . In contrast, the 

quantitative effects of K/Y, productive L/Y and non-productive L/Y are approximately 1%, 1% 

and 0.02% around the median but, roughly, 2% near the 90% quantiles, showing that their effect 

on TFP growth is quantitatively important.   

Figure 17. Posterior mean marginal effects of factor ratios to TFP growth by quantile 

 

Notes: The grey area corresponds to confidence bands. 

Source: Authors’ estimations. 
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In Figure 18 we focus exclusively on marginal effects of CR4 on TFP growth by 

quantiles of all different factor-output ratios. As it is evident, CR4 contributes differently to TFP 

growth across the distribution of inputs. All the effects are, however, close to slightly above zero 

near the median and reach a maximum of, approximately, a factor of 
310−
. The marginal effects 

are nonlinear as a function of factor output quantiles, and statistically important. For example, the 

marginal effect of CR4 is increasing as we move to higher quantiles of K/Y, non-productive L/Y, 

E/Y and M/Y. So for these inputs the CR4 effect on TFP is larger for more factor-intensive 

industries. Productive L/Y is an exception as there is a maximum marginal effect of CR4 around 

the 70% quantile of productive L/Y and then decreases as we move to the right of the distribution 

of this input.       

Figure 18. Posterior mean marginal effects of CR4 on TFP growth by quantile of factor ratios to 

output. 

 

Notes: The grey area corresponds to confidence bands. 

Source: Authors’ estimations. 
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Moreover, it is worth emphasizing that industries with very large K/Y (high capitalization 

relative to output) seem to contribute, nearly, 0.004 to TFP growth (i.e nearly 0.4 percentage 

points to TFP growth). Productive L/Y contributes, almost, 0.2%, non-productive L/Y 0.5%, and 

the same is true for high E/Y and high M/Y industries. Therefore, these effects of CR4, across the 

distribution of factor-output ratios are statistically and economically important. Along with the 

evidence in Figure 17, industries near the upper end of the factor-output distribution contribute 

almost two percentage points to TFP growth. Industries at the upper end of the CR4 distribution 

contribute much less (approximately 0.15 percentage points). Therefore, it seems that factor 

intensity (for capital and the two types of labor) is quite important for TFP growth. CR4 is also 

important and contributes almost half a percentage point to TFP growth, nearly across the entire 

distribution of factor-output ratios.  

From Figure 17 it is evident that both K/Y and the two types of L/Y contribute 

significantly to TFP growth, for those industries that exceed the median of the distribution of 

factor-output ratios. A “Schumpeterian view” is confirmed in that higher concentration implies 

more TFP growth (lower right panel of Fig. 17) but this effect is much lower compared to factor-

output effects on TFP growth (e.g. 0.1 percentage point versus two percentage points for factor-

output ratios). So, although a “Schumpeterian view” is correct its quantitative importance, 

although significant, is lesser compared to the role of inputs in TFP growth. This evidence is not, 

of course, inconsistent with our previous finding that TFP growth is, practically, disembodied. 

The reason is that this statement refers to the intertemporal role of factors in technical change, 

while our analysis here focuses on movements along the distribution of factor-output ratios.  

 From the policy point of view, our empirical results imply that higher concentration is not 

really harmful in terms of TFP growth, and its effect can be taken as approximately constant 

across the distribution of factor-output ratios. As we mentioned, near the upper end of the 

distribution of factor-output ratios is, nearly, half percentage points (Figure 18). From the same 

figure, we see that at the bottom end of the distribution the effect of higher CR4 on TFP growth is 

not important and, in most cases, “bottom end”, practically means less than the median. From 

Figure 17 it is evident that factor ratios have an important effect on TFP growth but this effect is 

positive only above the median of the distribution. So a combination of higher CR4 as well as 

higher factor usage relative to output is quite important for firms to achieve higher levels of TFP 

growth.  
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 Based on the above, we argue that policy makers and practitioners have to stimulate 

investment activity in highly concentrated value-added sectors (for example oil drilling and 

refining, automobile industry, iron and steel industry, etc) to enhance their productivity levels. 

Moreover, the empirical findings of this study allow us to conclude that the positive effects on 

TFP growth of the more four factor-output intensive sectors (K/Y, non-productive L/Y, E/Y and 

M/Y) can be achieved through increased market concentration.  

 In such a case, we argue that oligopolies might be a proper type of market structure in 

spreading TFP growth among the manufacturing sectors. This incurs important policy 

implications toward the increased productivity of the US manufacturing sector. For instance, 

government officials should facilitate the process of technology adoption through the innovation 

channel (i.e. R&D activity, patents and licenses, etc) by fine-tuning institutional and regulatory 

framework so as to boost productivity spillovers along with the encouragement of higher factor 

usage (capital, productive labor, energy, material) relative to output.  

 On the other hand, the empirical findings postulate that in less four-factor intensive 

industries (e.g. bakery products, beverages, apparels and other finished products, etc), the effect 

of CR4 on TFP growth is almost negligible. In such a case, the government should pursue 

policies including inter alia human capital programs, energy saving strategies, product and raw 

material innovation, that facilitate investment in the specific production inputs (capital, non-

productive labor, energy and raw materials) to boost productivity.  

 

7.  Conclusions and future research 

This paper revisits the issue of the estimation and decomposition of TFP growth without 

when input prices are unavailable and shows how to derive robust estimates using a novel 

Bayesian local likelihood approach. To perform the computations, we use techniques organized 

around Riemannian Manifold Hamiltonian MCMC.  

Our sample is an unbalanced panel of four-digit U.S manufacturing sectors over 1958 to 

2007. The advantage of our method over estimating parametrically a production function can be 

mostly attributed to the following. First and foremost, we have a generic decomposition of TFP 

growth which does not require functional form specification of a production function. In this way 

we avoid the imposition of specific functional form (translog, Cobb-Douglas, CES, etc.) Second, 

but equally important, we effectively deal with the common problem of the unavailability of input 

prices prevailing in the TFP literature. Third, we address input endogeneity by specifying a non-
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parametric reduced form for the endogenous input variables. Fourth, all specifications are 

scrutinized for various misspecification errors using extensive diagnostic testing. 

The empirical findings suggest that the marginal effects of the five factors on TFP growth 

rate are nonlinear. Specifically, the marginal effect of all inputs, except capital services, on TFP 

growth exhibit an upward (downward) trend for the values bellow (above) the median justifying 

an inverted “U-shaped” curve. The marginal effect of capital has an “S-shape” form with two 

turning points around 0.3 and 0.65 relative to the median.   

We compare and contrast the estimates from the proposed new method with a set of 

conventional parametric methods (i.e. flexible translog model, Generalized Leontief and 

Normalized Quadratic functional forms) estimated by applying GMM to tackle input endogeneity 

problems. In order to check for the validity of our findings we propose several diagnostic tests for 

correct specification of the new model. We show that an analysis based on parametric methods 

can lead to TFP growth estimates that are considerably different among them and relative to the 

nonparametric model. In addition, the nonparametric model passes a battery of diagnostic tests 

(normality, functional form, absence of autocorrelation and heteroscedasticity, weak 

identification, and weak instruments) making it suitable for reliable policy making, at least in our 

data set. We argue that these findings call for a reconsideration of the literature that relies on TFP 

growth rate estimates with parametric assumptions. This is of special interest to economists and 

practitioners as it involves identification of industry conduct in the context of the new empirical 

industrial organization framework. Moreover, we argue that disentangling the drivers of TFP 

growth is not only important from an economic but also from a business perspective. Specifically, 

their identification allows a better and more coherent monitoring of the manufacturing sector, 

which may guide policy makers, regulators and government officials in their decisions.  

Finally, our empirical findings lend support to the argument that higher concentration in 

more factor-output intensive sectors (i.e. capital, non-productive labor, energy, material sectors) 

induces firms to innovate and thus stimulate TFP growth confirming the “Schumpeterian view”. 

This might be attributed to the size the firms, since larger firms which are mainly active on 

concentrated (oligopolistic) sectors are more prone to innovate and thus generate TFP growth due 

to their financial performance (e.g. increased liquidity, equity, borrowed funding, better access to 

finance, etc.) compared to smaller and medium sized ones (“scale effect”).  However, if we want 

to have a clear picture on this, we must balance these benefits (i.e. innovation activity, TFP 

growth) against the negative effects generated by the existence of significant market power (e.g. 
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abuse of dominant position, explicit or tacit collusion, etc.) in highly concentrated sectors. This 

assessment falls outside the scope of this paper and could be left open for future research.  
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