
 

 1  

 PProceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering 
OMAE2019 

June 9-14, 2019, Glasgow, Scotland 

 PREPRINT OMAE2019-95378 

IDENTIFYING HIGHER-ORDER INTERACTIONS IN WAVE TIME-SERIES 
 

 

Kevin Ewans 
MetOcean Research Ltd 

New Plymouth, New Zealand 

Marios Christou 
Imperial College 

London, UK 

Suzana Ilic 
Lancaster University, UK 

Philip Jonathan 
Shell Research Ltd, UK 
Lancaster University, UK 

 

 

ABSTRACT 
Reliable design and reanalysis of coastal and offshore 

structures requires, amongst other things, characterisation of 

extreme crest elevation corresponding to long return periods, and 

of the evolution of a wave in space and time conditional on an 

extreme crest.  

Extreme crests typically correspond to focussed wave 

events enhanced by wave-wave interactions of different orders. 

Higher-order spectral analysis can be used to identify wave-wave 

interactions in time-series of water surface elevation. 

The bispectrum and its normalised form (the bicoherence) 

have been reported by numerous authors as a means to 

characterise three-wave interactions in laboratory, field and 

simulation experiments. The bispectrum corresponds to a 

frequency-domain representation of the third order cumulant of 

the time-series, and can be thought of as an extension of the 

power spectrum (itself the frequency-domain representation of 

the second order cumulant). The power spectrum and bispectrum 

can both be expressed in terms of the Fourier transforms of the 

original time-series. The Fast Fourier transform (FFT) therefore 

provides an efficient means of estimation. However, there are a 

number of important practical considerations to ensuring 

reasonable estimation. 

To detect four-wave interactions, we need to consider the 

trispectrum and its normalised form (the tricoherence). The 

trispectrum corresponds to a frequency-domain (Fourier) 

representation of the fourth-order cumulant of the time-series. 

Four-wave interactions between Fourier components can involve 

interactions  of  the  type  where   f1 + f2 + f3 = f4  and   where 

f1 + f2 = f3 + f4, resulting in two definitions of the trispectrum, 

depending on which of the two interactions is of interest. We 

consider both definitions in this paper. Both definitions can be 

estimated using the FFT, but it's estimation is considerably more 

challenging than estimation of the bispectrum. Again, there are 

important practicalities to bear in mind. 

In this work, we consider the key practical steps required to 

correctly estimate the trispectrum and tricoherence. We 

demonstrate the usefulness of the trispectrum and tricoherence 

for identifying wave-wave interactions in synthetic (based on 

combinations of sinusoids and on the HOS model) and measured 

wave time-series. 

 
INTRODUCTION 

The power spectrum, based on Fourier analysis, has been 

widely used as a tool to study ocean wind waves by scientists 

and engineers alike, since its introduction for this purpose around 

1950. Barber and Ursell (1948) published the first wave spectra, 

and Pierson and Marks (1952) introduced power spectrum 

analysis to ocean wave data analysis, following techniques 

pioneered by Tukey (1949). The wave power spectrum provides 

a frequency representation of the surface elevation that can be 

used to identify the most energetic Fourier components for 

engineering applications, and it is fundamental in numerical 

wave prediction models. 

The power spectrum provides a complete description of the 

frequency content of the sea surface, if it consists of a linear 

superposition of statistically independent free waves. However, 

insight into higher order effects, such as those resulting from 

three and four wave interactions, require more sophisticated 

analyses techniques – viz. higher-order spectral analysis. 

Higher-order spectral analysis is formulated in a general 

way from the definition of cumulants (Brillinger, 1965). 

Accordingly, the power spectrum is the Fourier transform of the 

second-order cumulant, the bispectrum is the Fourier transform 

of the third-order cumulant, the trispectrum is the Fourier 

transform of the fourth-order cumulants, and in general, the kth-
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order polyspectrum is the Fourier transform of the (k+1)th-order 

cumulant. 

The bispectrum is a function of two frequencies and 

provides an estimate of the degree of coupling between wave 

components at the two frequencies and a third; it is therefore an 

appropriate tool to investigate triad interactions in a sea state. 

Hasselman et al. (1963) was the first to use the bispectrum to 

examine such 2nd order interactions in sea states; other examples 

include Elgar and Guza (1985), Cherneva and Guedes Soares 

(2007), and Toffoli et al. (2007). 

The trispectrum is a function of three frequencies and 

provides an estimate of the degree of coupling between wave 

components at the three frequencies and a fourth, thus being 

appropriate for investigating quadruplet interactions in a sea 

states. Examples of the use of the trispectrum to investigate 

quadruplet interactions in sea states include Chandran et al. 

(1994), Elgar et al. (1995), and Aubourg et al. (2017) 

Four-wave interactions between Fourier components can 

involve interactions of the type where f1 + f2 + f3 = f4 and 

where f1 + f2 = f3 + f4, resulting in two definitions of the 

trispectrum, depending on which of the two interactions is of 

interest. The first, appropriate for interactions of the type f1 +
f2 + f3 = f4, in a time series, x(t), is given by 

T(f1, f2, f3) = X(f1)X(f2)X(f3)X∗(f4) 

where f4 = f1 + f2 + f3, and for example, X(f) is the Fourier 

transform of x(t), X∗(f) is the complex conjugate of X(f). 

The second, appropriate for interactions of the type f1 + f2 =
f3 + f4, is given by 

V(f1, f2, f3) = X(f1)X(f2)X∗(f3)X∗(f4) 

where f4 = f1 + f2 − f3. 

It is useful to normalise the higher-order spectra, to enable 

the degree of nonlinear interaction to be quantified. Several 

normalisation definitions can be found in the literature. 

Chandran et al. (1994) defines two, both extensions of 

normalisations of bispectra - one based on that used by Haubrich 

(1965), and one based on that used by Kim and Powers (1979). 

Aubourg et al. (2017) used a normalisation based on power 

spectra. The squared magnitude of the bispectrum and 

trispectrum are often referred to as bicoherence and tricoherence 

respectively. Thus, for example, the tricoherence, for interactions 

of the type f1 + f2 + f3 = f4, based on the Kim and Powers 

(1979) normalisation is defined as 

t2(f1, f2, f3) = |𝒯(f1, f2, f3)|2 

where 

𝒯(f1, f2, f3) =
E[T(f1, f2, f3)]

√E[|X(f1)X(f2)X(f3)|2]E[|X(f4)|2]
 

where E[∙] is the expectation operator. 

It can be shown that 0 ≤ t2 ≤ 1 (Chandran et al., 1994), which 

permits the interpretation that the tricoherence is a measure of 

the fraction of the total product of powers at the frequency 

quartet, (f1, f2, f3, f4), that are phase-coupled. 

In terms of the second trispectrum definition, for interactions of 

the type f1 + f2 = f3 + f4 

v2(f1, f2, f3) = |𝒱(f1, f2, f3)|2 

where 

𝒱(f1, f2, f3) =
E[V(f1, f2, f3)]

√E[|X(f1)X(f2)X(f3)|2]E[|(f4)|2]
 

Hinich and Wolinsky (2005) favour a statistical definition 

for the normalisation and argue that the normalisation based on 

Kim and Powers (1979) can give misleading results for large 

sample sizes for which high spectral resolution is possible and 

used. Nevertheless, the Kim and Powers (1979) definition 

provides for a convenient interpretation, and records of ocean 

waves are typically not long enough to allow sufficient reliability 

in Fourier estimates at very high frequency resolution. 

In this paper we compute the t2 and v2 tricoherence, which 

we refer to as T- and V-tricoherence estimates for a number of 

signals. We begin with various combinations of sine waves, to 

gather evidence on how the tricoherence estimators might be 

interpreted in terms of four wave interactions. This experience is 

then used to evaluate the tricoherence estimates for numerical 

simulations using a nonlinear wave model, laboratory 

measurements of a steep sea state that would be expected to 

involve higher-order wave-wave interactions, and the field 

measurement recording that includes the famous Draupner wave 

that is believed to result from higher-order effects. The 

immediately following section provides a brief description of the 

spectral estimation technique. 

SPECTRAL ESTIMATION METHOD 
Spectral analysis of the digital time series signals, x(ti), are 

processed following the Welch (1967) method. That is, x(ti) is 

divided into L segments, each of length N, a power of 2. X(fi) for 

each segment are estimated using the FFT algorithm. The 

required quantities – e.g. X(fi)X(fj)X(fk), for X(f1)X(f2)X(f3) 

and X(fi)X(fj)X(fk)X∗(fl) for X(f1)X(f2)X(f3)X∗(f4) – are 

estimated for each segment and the expected values estimated 

from the average of each quantity over all L segments. 

Each segment is windowed with a Hanning window (e.g. 

Harris, 1978), and may be half-overlapped with adjacent 

segments, to improve the spectral reliability, or not, if it isn’t 

appropriate for the signal or spectral resolution is not an issue. 

Accordingly, we have half-overlapped segments in the case of 

the simulated HOS data and the measured data, to maximise 

reliability, but we have not overlapped the segments in the case 

of the sine waves for which reliability is not an issue. 

To mitigate spurious large estimates of tricoherence 

corresponding to occurrences of near-zero values of the 

denominator in the tricoherence expression, a regularisation 

parameter of size 0.01 times the numerator is added to the 
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denominator throughout. This introduces a bias of 1% at the peak 

tricoherence. 

TRICOHERENCE OF SINUSOIDS 
Insight into the behaviour of the trispectrum is obtained by 

examining the trispectrum of a signal y(t) consisting of four 

sinusoids immersed in a background of Gaussian noise. A 

theoretical outline for the observed results is given in the 

Appendix. 

y1(t) = ∑ ai sin(2πfit + ϕi)

5

i=1

 

y2(t) = N (0,var(y1(t))) 

y(t) = y1(t) + y2(t) 

Where a1 = a2 = a3 = 1; f1 = 0.0521 Hz, f2 = 0.1437 Hz, 

f3 = 0.0710 Hz; ϕ1 = 0, ϕ2 = π 16⁄ , ϕ3 = π 3⁄ . 

We vary the frequency and phase of the fourth and fifth 

sinusoids, a4, f4, ϕ4, a5, f5, and ϕ5, for a number of test case as 

tabulated in Table 1, but in each case f5 = f4. U(0,2π) in Table 

1, denotes the uniform distribution on the interval [0, 2π). 

Table 1 Fourth and Fifth sinusoid parameters for the five test 

cases 

Case 𝐚𝟒 𝐟𝟒 𝛟𝟒 𝐚𝟓 𝛟𝟓 

SIN1 1 f1 + f2 + f3 ϕ1 + ϕ2 + ϕ3 0 0 

SIN2 1 f1 + f2 + f3 U(0,2π) 0 0 

SIN3 0.5 f1 + f2 + f3 U(0,2π) 0.5 ϕ1 + ϕ2 + ϕ3 

SIN4 1 f1 + f2 − f3 ϕ1 + ϕ2 + ϕ3 0 0 

SIN5 1 f1 + f2 − f3 U(0,2π) 0 0 

Test Case SIN1 

In this case, the frequency of the fourth sinusoid is the sum 

of the frequencies of the other three sinusoids, and its phase is 

the sum of the phases of the other sinusoids. 

f4 = f1 + f2 + f3 = 0.2668 Hz 

ϕ4 = ϕ1 + ϕ2 + ϕ3 

This case therefore corresponds to four-wave interactions in 

which the fourth wave is forced by and phase-locked to the other 

three. 

The T-tricoherence is a function of three independent 

frequency variables and so difficult to display. Here, we take 

slices through the axis of one frequency variable to show results 

in 2D, and we label the axes as f1, f2, and f3. Accordingly, an 

image of the T-tricoherence, for the slice f3 = f1; i.e. 

T(f1, f2, f3 = f1), is given in Figure 1 on log10 scale. The 

vertical and horizontal dashed lines correspond to the four 

frequencies, both in the same order as the vertical lines are 

labelled. The image is symmetric about the diagonal dashed line. 

The dark blue corresponds to f4 being outside the positive 

frequency range (top right region of the plot) or when the 

tricoherence value is less than 0.001. Considering the region for 

f1 < f2 (below the diagonal dashed line), the maximum (circled) 

tricoherence of 0.688 occurs at the triplet f1 = f2, f2 = f3, f3 =
f1; i.e. the triplet (f2, f3, f1). The relatively large value of the 

tricoherence in this case reflects strong phase coupling at this 

combination of frequencies, as we might expect. Corresponding 

peaks at the other permutations of the f1, f2, and f3 triplet are also 

observed when similarly plotted. 

 

Figure 1 Image of T-tricoherence for f3 = 0.0508 Hz for Case 

SIN1. 

The corresponding V-tricoherence is given in Figure 2. The dark 

blue regions are as described for Figure 1. The maximum of 

0.877 can be seen to occur at the triplet (f1, f1, f1), and the vertical 

and horizontal ridge of high values (at f1 = f1, f2 = f1) 

correspond to cases satisfying f1 + f2 = f3 + f4. The 

tricoherence is higher at values of f1 and f2 equal to any of the 

frequencies of the four sinusoids; these are referred to as trivial 

cases for the V-tricoherence. 
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Figure 2 Image of V-tricoherence for f3 = 0.0508 Hz for Case 

SIN1. 

An overall picture of the tricoherence is achieved by 

computing the tricoherence maximum for a given value of f3 

(over all choices of f1 and f2) and plotting these maxima as a 

function of f3. Such f3 maxima slices for both definitions of the 

tricoherence are plotted in Figure 3. Both show maxima at the 

frequencies f1, f2, and f3, but the V-tricoherence shows an 

additional peak at f4, which is not present in the T-tricoherence. 

The V-tricoherence also shows a higher background level of 

noise, probably associated with fortuitous matching of the 

condition f1 + f2 = f3 + f4. 

 

 
Figure 3 𝐟𝟑 slice maxima for the T and V tricoherence 

estimates, for the phase-locked sinusoidal signal (SIN1). 

Test Case SIN2 

In this case, the signal is the same as for case SIN1, except 

that a random phase is assigned to the fourth sinusoid. This is 

achieved by selecting a different random phase for ϕ4 at the 

beginning of each segment. The phase for each segment is drawn 

from a uniform distribution over [0, 2π). 

The f3 axis slice maxima for the two tricoherence 

definitions are given in Figure 4. The V-tricoherence is 

essentially unchanged (from Figure 3) by the introduction of the 

random phase. The T-tricoherence is however now absent of the 

peaks evident in the phase-locked case. Apparently, the V-

tricoherence gives the same result, irrespective of whether or not 

the phases are locked or not. On the other hand, the T-

tricoherence requires that the phases are locked to be detected 

above the noise floor. 

Test Case SIN3 

We also examined the effect of a partially phase-coupled 

fourth component by adding a fifth sinusoid, such that f5 = f4, 

a5 = 0.5, ϕ5 = ϕ1 + ϕ2 + ϕ3, and setting a4 = 0.5, effectively 

involving a fourth component split equally between a phase-

coupled part and a random phase part. The f3 axis slice maxima 

for the two tricoherence definitions are given in Figure 5. The V-

tricoherence curve is unchanged from that in Figure 3. The T-

tricoherence curve is similar that in Figure 3 – the level of the 

background noise is the same, but the peaks are reduced to about 

half the level of those in Figure 3. This confirms that partially-

phase coupled components can be detected by the T-tricoherence 

and also that the amount of phase-coupling at a given 

combination of frequencies will be indicated. 

 
Figure 4  𝐟𝟑 slice maxima for the T and V tricoherence 

estimates, for the sinusoidal signal for which the fourth 

component is assigned a random phase for each segment 

(Case SIN2). 

Test Case SIN4 

In this case, the signal is the same as for Case SIN1, except 

for the definition of f4. This case corresponds to the four-wave 

interaction f1 + f2 = f3 + f4. with locked phase. 
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Figure 5 𝐟𝟑 slice maxima for the T and V tricoherence 

estimates, for the partially phase-locked sinusoidal signal 

(Case SIN3). 

The f3 axis slice maxima for the two tricoherence 

definitions are given in Figure 6. Apart from a shift in the 

location of fourth sinusoid in the V-tricoherence, the spectra in 

Figure 6 are the same as those in Figure 4. However, as the 

combination of sinusoids do not satisfy the condition f4 = f1 +
f2 + f3, none of the sinusoids is detected by the T-tricoherence 

definition. 

 

Figure 6  𝐟𝟑 slice maxima for the T and V tricoherence 

estimates, for the sinusoidal signal of Case SIN4. 

 
Figure 7 Image of V-tricoherence for f3 = 0.0508 Hz for Case 

SIN4. 

The image of the V-tricoherence, for the slice f3 = f1; i.e. 

V(f1, f2, f3 = f1), is given in Figure 7. The high levels associated 

with the trivial cases of the same type as those identified in 

Figure 2 are seen Figure 7, but a significant peak can be noted 

for the Fourier frequencies 0.0508 Hz (≈ f1), 0.0703 Hz (≈ f3), 

and 0.125 Hz (≈ f4), which is a triplet that satisfies the 

interaction condition for SIN4. This suggests that it is possible to 

identify four wave interactions of the SIN4 type with the V-

tricoherence, when the frequencies of the four interacting 

components are different. 

Test Case SIN5 

In this case, the signal is the same as for Case SIN4, except 

that a random phase is assigned to the fourth sinusoid, as for Case 

2. The results for this case are contrary to those for Case 3, 

showing that the V-tricoherence is sensitive to whether the 

phases of the components are phase-locked or not, for the case 

f1 + f2 = f3 + f4. The image of the V-tricoherence, for the 

slice f3 = f1; i.e. V(f1, f2, f3 = f1), is given in Figure 8. By 

comparison with Figure 7, it is notable that the peak at the 

Fourier frequencies 0.0508 Hz (≈ f1), 0.0703 Hz (≈ f3), and 

0.125 Hz (≈ f4) is not present in Figure 8, indicating a lack of 

capability of the V-tricoherence to detect four wave interactions 

of SIN5 type – i.e. where one of the components has random 

phase. 



 

 6  

 
Figure 8 Image of V-tricoherence for f3 = 0.0508 Hz for Case 

SIN5. 

HOS MODEL SIGNAL 
Numerical simulations were performed using the High-

order Spectral (HOS) model that was developed in the LHEEA 

Laboratory at Ecole Centrale Nantes, France. HOS is a 

computationally-efficient, open-source model that can 

accurately simulate the nonlinear behaviour of surface waves 

propagating in the ocean (Ducrozet, et al., 2012, Ducrozet, et al., 

2016). All simulations employed the HOS-ocean program to 

simulate unidirectional wave fields. The length of the 

computational domain Lx was set to 42λp (where λp is the wave 

length corresponding to the peak period Tp), the simulations 

were run for 235Tp with a Dommermuth initialisation of duration 

10Tp and n equal to 4. The HOS order was set to 5, and 10-7 was 

used for tolerance of the Runge-Kutta Cash–Karp time marching 

scheme. HOS runs of order 3 would have been sufficient to 

produce the effects that the trispectrum is expected to identify, 

but real sea states are not limited to order 3, and we expect HOS 

model runs to order 5 might better indicate the performance of 

the trispectrum in a real sea state. Table 2 illustrates the 

unidirectional sea-state conditions that were simulated using the 

HOS model 

Table 2: Key parameters for the HOS-ocean unidirectional 

simulations using the JONSWAP spectrum; 𝐇𝐬 is the 

significant wave height, 𝐓𝐩 is the peak period, 𝛄 is the peak 

enhancement factor, and 𝐝 is the water depth. 

Case 𝐇𝐬 [m] 𝐓𝐩 [s] 𝛄 𝐝 [m] 

HOS1 5.0 16 2.5 Infinite 

HOS2 10.0 16 2.5 Infinite 

HOS3 12.5 16 2.5 Infinite 

HOS4 15.0 16 2.5 Infinite 

HOS5 15.0 16 2.5 65 

HOS6 15.0 16 10.0 125 
 

The four simulations with infinite water depth progress from 

Hs = 5 m, through to Hs = 15 m, and so represent sea states of 

low to high steepness, in which the respective sea states are 

expected to be near linear to highly nonlinear. The finite depth 

simulations represent sea states that are expected to be highly 

nonlinear but being in shallow water (kpd ≈ 1 and 2 for the 

HOS5 and HOS6 cases respectively), a larger contribution of 

third-order bound terms are expected. We give focus in this paper 

to the analysis of the HOS4 and HOS5 records, which are 

expected to emphasise resonance and bound third–order 

interactions respectively. 

The f3 axis slice maxima for the two tricoherence 

definitions are given in Figure 9, for the HOS4 record. The plot 

shows high values of the V-tricoherence in the vicinity of the 

peak frequency, while the T-tricoherence does not show any 

significant values. This suggests that four wave interactions of 

the type f4 = f1 + f2 + f3 are not strong or not active, but those 

of the type f1 + f2 = f3 + f4 may be active - the latter point 

moderated in the light of our findings for the sine waves above 

and the fact that the maxima of the tricoherences were not found 

to be significantly different from those for the HOS1 record, 

which is expected to be substantially linear. 

 

 

 
Figure 9 𝐟𝟑 slice maxima for the T and V tricoherence 

estimates, for the HOS4 signal (Table 2). 

The trispectrum slices for f3 = fp for the T- and V- 

tricoherence estimates are given in Figure 10 and Figure 11 

respectively - fp is the peak frequency of the power spectrum and 

is the frequency about which the V-tricoherence attains its largest 

values. The T-tricoherence has increased levels around fp, but 

they are low (<0.1) and diffused over a relatively broad 

frequency range. In contrast to this, the V-tricoherence (Figure 
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11) has significant values around fp and is sharply focussed about 

fp. 

 

 
Figure 10 T-tricoherence slice at 𝐟𝟑 = 𝐟𝐩 for the HOS4 signal 

 

 
Figure 11 V-tricoherence slice at 𝐟𝟑 = 𝐟𝐩 for the HOS4 signal. 

The f3 axis slice maxima for the two tricoherence 

definitions for the HOS5 record are given in Figure 12. The 

tricoherence curves are very similar to those for the HOS4 signal 

(Figure 9), but with indications of slightly higher T-tricoherence 

values at low frequency (≈0.025 Hz), perhaps reflecting the 

presence of third-order difference frequency effects.  

 
Figure 12  𝐟𝟑 slice maxima for the T and V tricoherence 

estimates, for the HOS5 signal (Table 2). 

LABORATORY DATA 
The laboratory record considered here was taken from 

experiments carried out at the MARINTEK Ocean Basin in 

Trondheim, Norway. The Basin has a water surface area of 50 m 

by 70 m with a variable depth of up to 10 m. The Basin is capable 

of producing multi-directional waves up to 0.4 m high at periods 

above 0.6 s. The particular record presented here is a 

combination of two irregular waves one with a peak 

enhancement parameter of 6 and the other 3. The combined 

significant wave height is 0.058 m, and the peak period of both 

irregular waves is 1 s. The water depth was 3 m. 

The f3 axis slice maxima for the two tricoherence 

definitions are given in Figure 13. These curves are similar to 

those for the HOS spectra, with similar peak values, suggesting 

similar interpretation – i.e. possibly four wave interactions of the 

type where f1 + f2 = f3 + f4, but not of the type f4 = f1 + f2 +
f3 that are phase-locked. The peak in the V-tricoherence at 

approximately 3fp is notable, but with a peak value of around 

0.01, it must be considered insignificant. 

The f3 axis slice images are similar to those for the HOS 

spectra; that for the V-tricoherence at f3 ≈ fp is given in Figure 

14, for example. 



 

 8  

 
Figure 13  𝐟𝟑 slice maxima for the T and V tricoherence 

estimates, for the laboratory signal. 

 
Figure 14 V-tricoherence slice at 𝐟𝟑 = 𝐟𝐩 for the laboratory 

signal. 

DRAUPNER WAVE RECORD 
The final record that we consider is a field measurement 

recorded at the Draupner platform on 1 January 1995. This 

record includes the unusually high crest event (Haver and 

Andersen, 2000) that has received much attention. The Draupner 

location is in the North Sea where the water depth is 70 m. The 

wave measurements were made with a laser wave sensor. 

The f3 axis slice maxima for the two tricoherence 

definitions are given in Figure 15. These curves are similar to 

those for the HOS and laboratory spectra, with similar peak 

values, although the maximum T-tricoherence value is 

approximately twice those of the HOS and laboratory maxima 

but still remains effectively insignificant. Thus, a similar 

interpretation begs – i.e. there is evidence of four wave 

interactions of the type where f1 + f2 = f3 + f4, but not of the 

type f4 = f1 + f2 + f3 that are phase-locked. 

 
Figure 15 𝐟𝟑 slice maxima for the T and V tricoherence 

estimates, for the Draupner wave record signal. 

Although not materially different from the HOS and 

laboratory examples, we provide f3 axis slice images for the T-

tricoherence in Figure 16 and V-tricoherence in Figure 17 for 

f3 ≈ fp on account of the historical interest in the Draupner wave 

record and because we believe this is the first example of 

trispectral analysis of this record to be published. The images in 

these two figures have a lower resolution than the earlier 

examples, due to the lower sampling frequency of the Draupner 

measurements and our objective to reduce sampling variability 

in the estimates as far as practical. The images in Figure 16 and 

Figure 17 are qualitatively similar to the earlier examples, when 

consideration is given to the different resolutions involved. 

 

 
Figure 16 T-tricoherence slice at 𝐟𝟑 = 𝐟𝐩 for the Draupner 

wave record signal. 
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Figure 17 V-tricoherence slice at 𝐟𝟑 = 𝐟𝐩 for the Draupner 

wave record signal. 

DISCUSSION 
Bispectra and trispectra provide representations of higher-

order effects in sea states, in the Fourier sense. That is, analysis 

and interpretation is based on the record duration of the Fourier 

transform. Thus, short-term effects, such as localised nonlinear  

effects, are effectively averaged together with the rest of the 

record, which may be mostly linear. Accordingly, important 

highly nonlinear events will be watered down and may even be 

missed. Attempts to overcome this, at least in the case of 

bispectral analysis, by incorporating the analysis in wavelet 

analyses have been shown to have some success in identifying 

nonlinear events in water wave records (Ewans and Buchner, 

2008, Dong et al., 2008) and in other phenomena (van Milligen 

et al., 1995, Larsen and Hanssen, 2000, and Schulte, 2016, ). It 

remains to be seen whether a wavelet approach can be extended 

to the incorporation of trispectra in wavelet analysis, to produce 

additional insight. 

It might be expected that trispectra are limited to identifying 

only the class of four-wave interactions that are phase locked 

(see Appendix), thus providing no information on resonant 

interactions. However, the analysis reported here indicates that 

the application of both the T- and V-trispectral analyses may 

allow the possibility to assess whether or not four-wave 

interactions are phase-locked or not. This remains to be 

substantiated. For example, the Zakharov equation provides a 

Hamiltonian formulation for the evolution of the surface 

elevation. Using this formulation, it is possible to determine 

contributions at various orders of nonlinearity and from different 

sources, i.e. bound and resonant wave-wave interactions; this 

should provide an ideal testbed for trispectral analysis methods. 

By definition, the V-tricoherence will indicate large values 

whenever the condition f1 + f2 = f3 + f4 is satisfied. For 

example, high values of V-tricoherence will occur when f1 = f3 

and f2 = f4 (or f1 = f4 and f2 = f3) irrespective of whether four 

wave interactions are active or not; the case when f1 = f2 = f3 =

f4 = fp is a particularly relevant case in point, given the high V-

tricoherence values we observed in the vicinity of the peak 

frequency in our results. The “trivial” solutions result from 

interactions between two pairs of components but not necessarily 

all four components together. Apparently, the trivial solutions 

correspond to events where interactions between components 

can be divided into groups that are statistically independent of 

each other and can be avoided by considering the cumulant based 

trispectrum rather than the moment-based trispectrum 

(Kravtchenko-Berejnoi et al, 1995). Molle and Hinich (1995) 

provide a good description of the difference between cumulant-

based and moment-based trispectra. It is clear from the definition 

of the trispectrum that it strongly depends on the amplitudes of 

the Fourier components involved. Kravtchenko-Berejnoi et al. 

(1995) suggest using the normalisation of Brillinger (1965) to 

obtain explicit information about the contribution of wave-wave 

interaction to the power of a certain oscillation. We are currently 

investigating the Kravtchenko-Berejnoi et al. (1995) approach, 

and preliminary results of f3 slice maxima applied to the HOS5 

record (Table 2) and to the Draupner record are given in Figure 

18 and Figure 19 respectively. The f3 slice maxima 

corresponding to the Kravtchenko-Berejnoi et al. (1995) 

tricoherence definition is the yellow line (K) line in each plot, 

while those for the T- and V-tricoherences are the same as in 

Figure 12 and Figure 15. The plots show reduced K-tricoherence 

levels by comparison with the V-tricoherence levels in the 

vicinity of the spectral peak, substantially so in the case of the 

Draupner records, perhaps indicating removal of the contribution 

from the “trivial” solutions. The plots also show increased K-

tricoherence levels by comparison with the V-tricoherence levels 

in the region around 3fp, and also at higher frequencies in the 

case of the Draupner records. 

 
Figure 18  𝐟𝟑 slice maxima for the T and V tricoherence 

estimates, for the HOS5 signal (Table 2), as in Figure 12, plus 

those using the Kravtchenko-Berejnoi et al. (1995) 

tricoherence definition (K). 
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Figure 19 𝐟𝟑 slice maxima for the T and V tricoherence 

estimates, for the Draupner signal, as in Figure 15, plus those 

using the Kravtchenko-Berejnoi et al. (1995) tricoherence 

definition (K). 

We have yet to incorporate uncertainty statistics, such as 

bias and variance, of our estimates; but these are well 

documented in the literature (e.g. Chandran et al. 1994) and it is 

our intention to include these in the form of error bars or noise 

floor levels, as appropriate in the various graphical presentations. 

Similarly, we intend to improve the clarity of our frequency-slice 

images by removing the redundant subdomains of the 

tricoherence functions, such as the region where f2 > f1. 

Finally, we note the application of the nonlinear Fourier 

analysis (NLFA) method (Osborne 2010), which provides  

(perhaps a superior)  alternative to higher-order spectra that are 

based on conventional Fourier analysis, to investigate nonlinear 

effects in data sets. An example of the application of the NLFA 

on wave data is given by Osborne et al. (2018). Osborne et al. 

(2018) remark that distinguishing characteristic of the NLFA 

method is its ability to spectrally decompose a time series into 

its nonlinear coherent structures (Stokes waves and breathers) 

rather than just sine waves. This is done by the implementation 

of multidimensional, quasiperiodic Fourier series, rather than 

ordinary Fourier series. 

CONCLUSIONS 
The T-tricoherence provides the capability to detect phase-

locked four wave interactions of the form f4 = f1 + f2 + f3, that 

is where three waves interact to force a bound fourth component. 

However, our estimates of the T-tricoherence on nonlinear wave 

simulations, and measured laboratory and field (Draupner) 

records did not indicate significant four wave interactions of this 

type. While this result is expected for deep-water cases, we might 

have expected larger T-tricoherence values for the HOS5 (Table 

2) case, for which kpd ≈ 1. 

Estimates of V-tricoherence produce high values at 

frequency triplets that correspond to high Fourier amplitudes. It 

is not possible to conclude whether these indicate the occurrence 

of actual four wave interactions of the type f1 + f2 = f3 + f4, or 

whether they simply indicate combinations of independent pairs 

of Fourier components that happen to satisfy the frequency 

relationship. It is likely though that these four-wave interactions 

are present, in some of the sea states we investigated. We are 

currently investigating alternative tricoherence estimators to 

differentiate between these two possibilities or to exclude 

contributions from trivial combinations in the moment estimates. 
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APPENDIX 

Introduction 

Consider a time-series x(t) = ∑ cos(ωj
ot + ϕj

o)4
j=1 , for t ∈

(−∞, ∞), for real angular frequencies {ωj
o} and phases {ϕj

o}. 

The Fourier transform of exp (iωj
ot) is given by 2πδ(ω − ωj

o) 

for ω ∈ (−∞, ∞) . Then it is straightforward to calculate the 

Fourier transform of x(t) to be 

X(ω) = ∑ ∫ cos(ωj
ot + ϕj

o) e−iωtdt
∞

−∞

4

j=1

= π ∑ eiϕj
o

δ(ω − ωj
o) + e−iϕj

o

δ(ω + ωj
o)

4

j=1

. 

Using this result, it is relatively straightforward to calculate the 

values of different trispectral estimators in closed form. It is also 

possible to calculate the statistical properties of trispectrum and 

tricoherence estimators for more general Gaussian series (with 

random Gaussian coefficients), as discussed in the full paper 

accompanying this work. Here we restrict attention to the 

simplest useful cases to motivate thinking as clearly as possible. 

T-trispectrum 

For arbitrary angular frequencies {ωj}, we assume that 

T(ω1, ω2, ω3) = X(ω1)X(ω2)X(ω3)X∗(ω1 + ω2 + ω3). Now 

we set ω4
o = ω1

o + ω2
o + ω3

o for our time-series simulation 

above. We then see that 

T(ω1
o, ω2

o, ω3
o) = π4ei(ϕ1

o+ϕ2
o+ϕ3

o−ϕ4
o). 

Fixed phases: For fixed values of {ϕj
o}, it is obvious that the 

value of T(ω1
o, ω2

o, ω3
o) will be non-zero and complex. In 

particular, T(ω1
o, ω2

o, ω3
o) will be real only when ϕ1 + ϕ2 +

ϕ3 − ϕ4 = 2πn, for n = 0, ±1, ±2, … That is, when phases are 

coupled as specified, the trispectrum is real. 

Multiple realisations with random phases: If we assume that 

each ϕj is uniformly distributed on [0,2π), and that we have  

n occurrences {xk(t)} of x(t) corresponding to different random 

draws of the phases, and corresponding estimates  

  {Tk(ω1
o, ω2

o, ω3
o)}, then since ∫ eiϕdϕ

2π

0
= 0, we will have 

E[T(ω1
o, ω2

o, ω3
o)] = (

1

n
) ∑ Tk(ω1

o, ω2
o, ω3

o)k = 0. That is, for 

multiple intervals of time-series with random phases, the 

expected trispectrum is zero. Note however if we take the 

absolute values of trispectra, that E[|T(ω1
o, ω2

o, ω3
o)|] =

(
1

n
) ∑ |Tk(ω1

o, ω2
o, ω3

o)|k = π4. 

V-trispectrum 

Suppose now that we assume that V(ω1, ω2, ω3) =
X(ω1)X(ω2)X∗(ω3)X∗(ω1 + ω2 − ω3) , and that we set ω4

o =
ω1

o + ω2
o − ω3

o in the original time-series simulation, 

corresponding to the expected ocean wave 4-wave interaction. 

With this setting, we see that 

V(ω1
o, ω2

o, ω3
o) = π4ei(ϕ1

o+ϕ2
o−ϕ3

o−ϕ4
o). 
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In this situation, for fixed phases {ϕj
o}, V(ω1

o, ω2
o, ω3

o) will be 

complex unless ϕ1
o + ϕ2

o − ϕ3
o − ϕ4

o = 2πn, for n =
0, ±1, ±2, … for which V(ω1

o, ω2
o, ω3

o) = π4. For multiple 

realisations of time-series with random phases, the expected 

value E[V(ω1
o, ω2

o, ω3
o)] = 0; but again, as for the T-trispectrum, 

we note the effect of taking absolute values.  

In the Section entitled “Tricoherence of sinusoids” in the main 

text, we consider time-series of the form y(t) = x(t) + α(t) 

where α(t) is additive Gaussian (white) noise. The Fourier 

transform of α(t) is a constant at all frequencies by definition: 

A(ω) = κ . This means that numerous trivial combinations of 

frequencies will always yield non-zero values of V-trispectrum. 

For instance, for j = 1,2,3,4 and any ω2 

V(ωj
o, ω2, ωj

o) = |(X + A)(ωj
o)|

2
|(X + A)(ω2)|2 ≈ π2κ2 

if π ≫  κ > 0. This occurs regardless of phase specifications 

(since phase relationships are also trivially satisfied in such 

cases). These trivial combinations do not occur for the T-

trispectrum. 


