
Securely Storing and Sharing Memory Cues in
Memory Augmentation Systems:

A Practical Approach
Agon Bexheti∗, Marc Langheinrich∗, Ivan Elhart∗ and Nigel Davies†

∗Faculty of Informatics, Università della Svizzera italiana (USI), Lugano, Switzerland
†School of Computing and Communication, Lancaster University, Lancaster, United Kingdom

agon.bexheti@usi.ch∗, marc.langheinrich@usi.ch∗, ivan.elhart@usi.ch∗, nigel@comp.lancs.ac.uk†

Abstract—A plethora of sensors embedded in wearable, mobile,
and infrastructure devices allow us to seamlessly capture large
parts of our daily activities and experiences. It is not hard
to imagine that such data could be used to support human
memory in the form of automatically generated memory cues,
e.g., images, that help us remember past events. Such a vision of
pervasive “memory-augmentation systems”, however, comes with
significant privacy and security implications, chief among them
the threat of memory manipulation: without strong guarantees
about the provenance of captured data, attackers would be able
to manipulate our memories by deliberately injecting, removing,
or modifying captured data. This work introduces this novel
threat of human memory manipulation in memory augmentation
systems. We then present a practical approach that addresses key
memory manipulation threats by securing the captured memory
streams. Finally we report evaluation results on a prototypical
secure camera platform that we built.

Index Terms—lifelogging, memory augmentation, memory ma-
nipulation, wearable camera, privacy, trusted computing

I. INTRODUCTION

Pervasive computing allows us to digitally capture our daily
experiences in increasing numbers and quality – often as part
of a process also known as “lifelogging” [1], [2]. Such cap-
tured experiences can be used for a variety of purposes, most
commonly as part of fitness and health related applications
(e.g., the tracking of workouts or sleep), but they can also
support human memory [3]. Such systems are typically based
on a three-step process [4]: captured experience traces (step 1),
e.g., pictures, are used to generate a set of “memory cues” (step
2) – reminders of a past experience that, when being viewed
at a later time, trigger the recollection of the event. These
cues are repeatedly displayed back to users in an ambient
fashion (step 3), e.g., on a mobile phone’s lock screen or
as a laptop’s screen saver, in order to refresh and reinforce
existing memories. Ultimately, these memories can then be
recalled without the help of any tool.

We have built such a system for capturing visual lifelogs and
then using them as memory cues for recalling past memories.
An overview of our system and how we envision its use can
be found in our prior publications [4]–[8]. One important
feature of our system is that it allows users to share their
memories with other users [9]. While sharing our photos is
a process we are very familiar with in order to reminisce
together about an event, or show others what they missed

(e.g., looking at physical prints together, or sharing digital
photos on social media), sharing in our system is meant
to enrich memory cue generation by offering a richer set
of perspective for a given experience. Here, image sharing
happens between people that are experiencing a particular
moment together. The motivation for this stems from both
technical and psychological limitations. First, images taken
with a wearable camera (e.g., Sensecam, Narrative Clip) do
not always produce good memory cues, as camera lenses can
be obscured by hair or clothes, or simply face the wrong way
[10]. Second, first-person views from the devices of others
may offer a richer view than one’s own, due to the narrow
field of view of such cameras [11], e.g., a first-person camera
will not show who is next to us, while the view captured from
the person opposite from us would.

Undoubtedly, such memory-augmentation systems can offer
considerable benefits to their users [6]. However, a system
that can store all our experiences and influences what we
remember about them raises significant privacy and security
implications [6], [12]. Apart from the challenge of keeping
our memories safe from the prying eyes of others, the threat
of memory manipulation might be the most worrisome aspect
of this vision: if an attacker is able to remove, add, or change
the captured data, the resulting memory cues may implant
memories in our heads that never took place, or, in turn,
accelerate the loss of other moments by ensuring that no
memory cue will ever remind us of them.

There is significant evidence to support the notion that
such threats are real – human memory manipulation has been
subject to extensive experimental research in psychology, with
studies repeatedly demonstrating that human memory is easily
manipulated. In recent set of studies, Shaw [13] was able to
implant “full false memories” in 70% of her study participants.

Many sources of misinformation have the potential to mod-
ify and manipulate one’s memories of an event [13], e.g.,
viewing a set of photos, discussing with others, reading news
articles, or even simply reading what others are “tweeting”
about an event. In our work, we particularly focus on pho-
tographs, since they are easy to capture and make for rich
memory cues [4]. Several studies have demonstrated the role
of photographs in memory manipulation. Henkel et al. [14]
showed that even generic photos (i.e., from a stock catalog)

showing a particular task have the potential to trick participants
into thinking that they performed such a task (when in fact they
did not). Brown and Marsh [15] were able to use photos of
different places to manipulate participants’ autobiographical
experiences, making them believe that they had visited them
(while they had not). Wade et al. [16] were able to make
participants recall details of a previous hot air balloon ride
experience (which never happened) by inserting (“photoshop-
ping”) the participant into a photograph of a hot air balloon.
Lindsay et al. [17] could incite participants to reminisce about
a previous school-related event (which they did not attend)
by showing them pictures of the event obtained from their
classmates and claiming participants had taken them.

II. REQUIREMENTS AND ATTACK MODEL

The aforementioned studies on memory manipulation high-
light the fact that our memories can be manipulated with fake
image data. This introduces significant security implications
for memory augmentation systems. In designing a solution for
addressing the threat of memory manipulation, we consider the
following requirements [9]:
R1: Secure Personal Repositories. Memories (and, eventu-
ally, any memory cues generated from them) should be stored
in secure and user-controlled repositories. Note that, just like
subscribing to an email service or commercial cloud server,
not everyone will want (or be able to afford) to host their own
memory repository, but will instead subscribe to third-party
services able to host their captured memories.
R2: Ensure Integrity and Provenance. Memories captured
from personal devices, as well as those received from others,
should feature reliable provenance data, i.e., information on
the origin and context of capture, as well as information about
their integrity, i.e., what changes (if any) have been made
to them. This ensures that the captured data is an accurate
reflection of what occurred during that experience.

Failing to address these requirements makes a memory
augmentation system vulnerable to the following threats that
can potentially manipulate user’s memories:
T1: Repository Manipulation. An attacker that gains access
to a user’s memory repository can modify, add, or delete
its data. Specifically, an attacker can (1) manipulate existing
memories, (2) inject fake memories, or (3) delete a subset of
memories (without being noticed).
T2: Receiving Fake Memories. When exchanging memories
of an event with other co-located peers, or when obtaining
memories of an event that one was not present at, data
sharers (either peers with wearable sensors or an infrastruc-
ture provider sharing data from a fixed sensor) can behave
maliciously by providing intentionally altered data.

The envisioned adversary in these attacks can be (1) the
repository service provider; (2) a third-party that can compro-
mise a memory repository; or (3) a dishonest user or infras-
tructure service provider that shares fabricated experience data.

III. CONTRIBUTION

In this work we present a systematic and practical
solution for addressing the threats of memory manipulation
(i.e., T1 and T2) by ensuring the integrity and the provenance
of memories. Starting from a secure and trusted wearable cam-
era for manipulation-resistant experience capture (section V),
we propose 1) a storage protocol to create secure chains of
linked images (section VI) and 2) a zero-knowledge proto-
col for verifying shared but modified images (section VII).
By using off-the-shelf cryptographic primitives our protocols
can efficiently run on low-power wearable cameras, and thus
can protect memories from the moment they are captured by a
user’s device to the time that they are stored in repositories for
later review. We assess the protocols’ security and demonstrate
their practical feasibility (section VIII) using an implementa-
tion based on a prototype memory-capture camera.

IV. RELATED WORK

Our work intersects two principal research strands: protocols
for securely linking data and zero-knowledge protocols for
verifying shared but modified images.

A. Protocols for Securely Linking Captured Data

One way to detect data deletion attacks is to securely link
data elements together in a data-chain structure. Traditionally,
such schemes are realized using cryptographic hash chains
[18], [19] where the hash of an item i is calculated using
the item itself and the hash of the previous item i − 1.
Any subsequent data deletion or data modification attempt
would invalidate the structure. Prior research has employed
this concept for constructing an efficient data authentication
protocol suitable for low-power devices [20], [21] in order to
prevent fake data injection in broadcast networks.

Other works [22]–[24] have used hash-chain structures to
securely link elements together with strong guarantees of
their temporal order. They make use of trusted authorities to
produce signed timestamp tokens that also depend on tokens
issued for previous items. Once an item is timestamped and
added to the chain it is impossible to modify its token or
remove the item itself from the chain, even by the item owner
or the timestamping authority.

While such immutability is a desired property in some
contexts, it is a limitation for our envisioned application. We
instead propose a lightweight protocol for securely linking
captured data that allows authorized users to legitimately
remove a particular item from their memory repository without
invalidating the whole chain structure. However, any instance
of unauthorized data deletion will invalidate the structure and
thus will be detected.

B. Protocols for Verifying Shared but Modified Images

Designing protocols for verification of modified images is
an active field of research. In a recent work, Naveh and Tromer
propose PhotoProof [25], a protocol for verifying a set of
well-defined modifications performed in an original image.

Fig. 1. Our prototypical camera setup used for performance evaluation.

Their solution is based on digital signatures and the proof-
carrying-data (PCD) concept, a cryptographic primitive for se-
cure execution of distributed computation [26]. After capturing
a signed image with a trusted camera, users can sequentially
modify the image followed by the computation of a PCD proof
for each modification. One can then use the PCD algorithm
to verify any modification done on the image. However, while
verifying a proof takes less than half a second, generating a
PCD proof for even a relatively small image (128×128 pixels)
takes about 300 seconds on a relatively powerful1 machine.

Chabanne et al. [27] propose a similar scheme to verify
redacted (obfuscated) pixels of scanned documents. Their
solution relies on the extracted signature scheme [28], which
allows one to remove parts of a previously signed document
and re-sign it without the knowledge of the signer’s secret key.
The extracted signature can be still verified with the signer’s
public key and without having the removed parts from the
original document. While this solution is more efficient than
PhotoProof, partially because it supports only one type of
image modification (i.e., pixel obfuscation), it is still too com-
plex for low-power wearable cameras. Generating a redaction
proof of a gray-scale image with 1200 × 800 pixels takes
124.5 seconds and 39.7 seconds on a single-core and octa-
core system, respectively2.

We propose a less flexible but more efficient scheme that
uses cryptographic hash functions. Similar to the work of
Chabanne et al. [27], our protocol only supports the simple
“blinding” (i.e., blocking) of certain parts of the image, rather
than operations that apply to the whole image (e.g., cropping,
color adjustment). Both our own experience, as well as the sur-
vey paper from Bettini and Riboni [29], have shown that area
blinding is crucial for addressing privacy issues in pervasive
systems that capture and store visual data streams.

V. MANIPULATION-RESISTANT MEMORY CAPTURE

The root of trust in our system is a “secure”, i.e., trusted,
camera. Trusted cameras are a well-known concept in security
[30]–[32]. We have built a prototype wearable camera (shown
in Figure 1), that uses a Trusted Platform Module (TPM)3

1Benchmark computer: quad-core CPU at 3.4 GHz and 32 GB of RAM.
2Benchmark machines: 1) single-core CPU at 3.6 GHz with 4 GB of RAM;

2) octa-core CPU at 2.9 GHz with 16 GB of RAM.
3https://trustedcomputinggroup.org/resources/tpm main specification

to securely bootstrap the subsequent authentication and distri-
bution protocols described in sections VI and VII. The TPM
enables the camera to guarantee the integrity and provenance
of all captured images. In particular, for every captured im-
age I , the camera will log “provenance” data P , such as
time and location of capture, and a fingerprint (cryptographic
hash) of the captured image. It will then cryptographically
“seal” this provenance information by digitally signing a
hashed representation of P . The combined raw provenance
data and its signature are called the provenance certificate
ΠI = {P, SignPKpriv

(H(P))}. Using the camera’s public-
key, a third party would then be able to verify the integrity of
both the image as well as its provenance certificate at a later
time. Any attempt to add external images into users’ memory
repositories or modify existing images can be easily detected
since the suspicious image will lack a valid signature. The rest
of this section provides an overall system overview and briefly
describes the underlying trust bootstrapping process [33].

A. System Overview

Figure 2 depicts the event flow in our system. At the outset,
a user will take “ownership” of a camera (i.e., issue the
TPM_TakeOwnership command, which triggers the TPM
to create its set of root keys). For each captured image of
a user’s experience, the camera will then provide a signed
provenance certificate using its root keys. Later on, when
reviewing an experience, the camera owner can then verify
that those images have indeed been captured by their camera
and that they have not been maliciously modified in the
meantime. Moreover, using the file-chain protocol described
in section VI below, they can also check if any images have
been deliberately deleted, e.g., to reduce the memories of a
particular experience.

The camera can also be used to seamlessly share its cap-
tured images with similar cameras of co-located peers, using
a secure protocol that we described in previous work [9]. Our
existing system uses a tangible user interface (TUI) with in-
situ physical gestures to give users maximum control about
both the capture and sharing of experiences – a detailed
description of the overall system and its controls can be
found in [34]. Since a user might want to modify an image
prior to sharing it with co-located others (e.g., block those
parts of an image that show their computer screen during
a meeting), the camera supports signed image modification
proofs (described in section VII). A user that receives an image
from a co-located peer can use the provided proof information
to verify not only that the image has been captured by a trusted
camera during the event, but can also verify which parts of the
image have been changed (e.g., blurred) by the peer.

B. Trusting the Camera

In order to establish trustworthiness in our system, we rely
on a hardware-based approach for secure platform attestation
(ensuring firmware integrity) and secure storage of key mate-
rial (private keys are not disclosed to unauthorized parties).

1. Take a picture
and compute

provenance data

2. Authenticate image
to a secure file chain

(Protocol 1.B)

0. Initialize new file
chain structure
(Protocol 1.A)

3a. Compute image
modification token

(Protocol 2.A)

Bob

3b. Broadcast the
image token
(Protocol 2.A)

3c. Listen for
and collect

image tokens
5. Download image

from Alice’s repository

6. Verify image authenticity
and modifications

(Protocol 2.B)

Alice’s trusted camera

T2: Alice and Bob capture and share memories of their experience

Alice

5a. Send

im
age token

5b. Return a modified image

to protect Alice’s privacy

Bob’s trusted camera

Take camera ownership
(root of trust)

T3: Bob verifies integrity of memories shared by Alice

…

4. To Alice’s
memory repository

…

T1: Camera power-on

…

T0: Initial camera setup

Fig. 2. Overview of the event flow of using our system for securely capturing, storing, and sharing memories with co-located peers.

With the help of the included TPM module, our camera can
establish an implicit chain of trust. In this context, the camera
proves to its owner – but also to other users in case images
are being shared with others – that it is in a known-good state.
Traditional hardware-based platform attestation schemes [33]
allow a user to remotely verify the current state of a device at
arbitrary times. However, in our application, it is crucial for
a user to know that a camera was in a known-good state at
the moment when it captured a picture. Moreover, engaging
in a platform attestation protocol each time a new image is
captured might introduce significant overhead.

As a result, we modify the traditional interactive platform
attestation protocol to a non-interactive one as follows. Instead
of waiting for a verifier to initiate the protocol, the camera
automatically provides an attestation report (obtained from its
TPM) every time it captures a picture. In order to ensure that
the report is fresh (and not one from a previous time) the
camera uses a fingerprint of the currently captured image as
a nonce parameter when requesting a report from the TPM.
The fingerprint is computed right after the image is captured,
using a construction that supports also the verification of
modified images that the user may receive from co-located
peers (the construction is described in detail in section VII).
The fingerprint is shared with co-located peers in real-time by
means of a short-range wireless broadcast (again with a view
towards supporting the verification of images one receives).
Finally, the produced platform attestation report for an image
is embedded in the image’s provenance certificate ΠI .

To check the reported platform state of a camera that
captured an image I , in addition to verifying the reports
signature, a verifier should also check the report’s nonce
for freshness. If the image in question was captured by the
verifier’s own camera, they can then compute a new fingerprint
nonce n′ from the associated image I , and match it with the
nonce of the report (i.e., n′ = n). When receiving a modified
image from a co-located peer, one instead uses the fingerprint
that was collected wirelessly during co-location and compare
it with the report’s nonce.

C. Provisioning and Protecting Key Material

The TPM provides means for ensuring confidentiality and
integrity of key material. Every TPM module is provisioned

with an Endorsement Key-pair EK, which is stored in tamper-
resistant non-volatile memory inside the TPM. The EK is
embedded in the TPM as part of its manufacturing, a process
which is assumed to be carried out in a secure and trusted
environment. During the first-time activation of the camera
and its TPM, the EK is used to generate the Storage Root
Key SRK, which is also stored inside the TPM. We follow
the specifications from the Trusted Computing Group (TCG)
and use SRK to derive other application-specific keys. This
also happens during the activation of the camera.

D. Implementation

We built a prototype camera to evaluate the feasibility of
the proposed protocols (shown in Figure 1). Our camera is
powered by the “Raspberry Pi 3 Model B+”4 IoT platform
to which we added a CryptoShield5 with an “Atmel Trusted
Platform Module”6. For picture taking we use a serial camera
module7 that provides pre-compressed JPEG images with a
maximum resolution of 640 × 480 pixels. We implemented
all of our protocols in Java. Our implementation makes use
of jTSS [35], a Java library that implements the software
stack proposed by the Trusted Computing Group (TCG)8 for
managing the communication with the TPM.

VI. PROTOCOL 1: SECURELY LINKING CAPTURED DATA

Our secure camera prevents an adversary from injecting
or manipulating images in a user’s repository (i.e., threats
T1.1 and T1.2). Each image requires a valid signature that is
unique to the user’s camera, something an attacker should be
unable to produce. The TPM equally prevents an attacker from
modifying images directly on the camera, i.e., before even
uploading them to the user’s repository. However, threat T1.3
– image deletion – can not be prevented this way: an attacker
who gains unauthorized access to a user’s repository could
easily remove important images. Given the large number of
captured images and the fact that such data is mainly reviewed
a long time after it was captured, it is challenging for a user

4https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
5http://learn.sparkfun.com/tutorials/crypto-shield-hookup-guide
6https://www.microchip.com/wwwproducts/en/AT97SC3204
7https://www.adafruit.com/product/1386
8https://trustedcomputinggroup.org

TABLE I
LIST OF VARIABLES USED IN THIS WORK.

Variable Description

ΠI Signed provenance certificate for image I .
EKpub/priv TPM endorsement key.
SRKpub/priv TPM storage root key derived from EK.
PKpub/priv Key for signing/verifying ΠI .
Protocol 1
TK Symmetric key for computing authentica-

tion tokens.
PTKpub/priv Derived from SRK, used to encrypt TK.
S Camera’s unique serial number.
c Counter initialized to a current Unix time.
Protocol 2
κ Tile size for the image splitting procedure.
TI Collection of tile fingerprints for image I .
saltI Random number used when computing

tile fingerprints.
τI Hash-based fingerprint of TI .
SKpub/priv Derived from SRK, used to sign τI .
στI Signature over τI .
RATT Camera platform attestation encoded in a

TPM-signed report.
ΣI Sharing certificate for image I that en-

codes TI , saltI , στI and RATT .

to determine if any particular image is missing. While we may
not be able to prevent someone who already has unauthorized
access from performing any deletion, we want to be able to
detect such instances, i.e., we want to know if an image in a
series of captured images was removed, and whether it was
done by the users themselves or by an unauthorized party.

A. Protocol Description

We propose an efficient scheme to securely link images,
captured by users’ cameras, in their memory repositories.
Protocol 1 describes the underlying steps, Figure 3 provides
an overview of the scheme, while Table I itemizes the used
identifiers. In our scheme, data is ordered and linked using an
incremental counter “c”, represented as a hexadecimal number.
Two special (empty) files, “HEAD’’ and “TAIL”, mark the be-
ginning and end of the list, respectively. Removing an element
from within the linked list will require either a replacement file
to be inserted, or all subsequent elements to be renumbered.
Adding a file to the end requires updating the TAIL file. Both
operations will require secret key material (as described further
below) that is only available to authorized users.

To first get a feeling of how large the counter value can get,
consider the following estimation. Constantly recording one’s
life in pictures (with a frequency of 2 photos per minute) will
result in 2,880 pictures produced in a day, 1,051,200 pictures
in a year and about 73.5 million pictures during a lifetime of 70
years. In order to ensure that, after a camera reset, the list never
overlaps a prior one, we always initialize the counter with

Protocol 1 Securely Linking Captured Data
A. Initialize a secure file chain (on camera power-on)

1) c = UNIX timestamp //initialize counter
2) newFile(“′′, fHEAD = “HEAD′′||S||c)

//create HEAD empty anchor file with filename fHEAD
3) tokenHEAD = MAC(TK, fHEAD);

newFile(tokenHEAD, fCERT H = fHEAD||“.cert′′)
//authenticate HEAD and store its token in a separate
//certificate file with filename fCERT H

4) c = c+ 1 //increment counter
5) newFile(“′′, fTAIL = “TAIL′||S||c)

//create TAIL empty anchor file with filename fTAIL
6) tokenTAIL = MAC(TK, fTAIL);

newFile(tokenTAIL, fCERT T = fTAIL||“.cert′′)
//authenticate TAIL and store its token in a separate
//certificate file with filename fCERT T

B. Add an element to the secure chain
for each newly captured image I

7) c = c+ 1 //increment counter
8) fileRename(I, fI = “IMAGE′′||S||c||“.jpeg”)

//add c and S to the image’s I filename
9) tokenI = MAC(TK,H(I)||S||c)

newFile(tokenI , fΠI
= fI ||“.cert”)

//authenticate image and store its token in a separate
//provenance certificate file with filename fΠI

10) Update TAIL by executing steps 4-6
11) commitToBlockchain(fTAIL, fCERT T)

//upload TAIL and its token certificate file to an
//immutable blockchain ledger (optional)

a current timestamp (e.g., Unix epoch, seconds since 1970),
which is currently at ≈ 1.5 billion. A hexadecimal counter
value of 8 characters (168 ≈ 4 billion) would thus be more
than sufficient, with another 8-character serial number to
differentiate between cameras. The counter can be part of
the file’s header (e.g., EXIF tag in case of JPEG images) or
simply be part of the filename. In case of the latter, a counter
of length 16 should easily fit within the maximum length of
255 characters that most standard file systems support, such
as Microsoft’s NTFS, Apple’s HFS, or Linux’s ext.

In order to prevent an adversary from replacing or renaming
files, any operation on them must be authenticated by an au-
thorized user. For this we rely on the established cryptographic
primitive of a message authentication code (MAC) [36],

K
S

c+n+1

Key K
Camera’s Serial S

HEAD …

tokenHEAD

H

File 1

H

Counter c

DELETED File n TAIL

K
S

token1

c+1
MAC

K
S MAC

token2

c+2
MAC

K
S MAC

tokenn

c+n

tokenTAIL

MAC…

L O C K
C H A I N
B

Fig. 3. Each file is linked by a unique counter. The order is then authenticated
using a MAC token computed over the file’s content and its counter.

which allows one to authenticate a message M by computing
an authentication token using a secret key TK. The token can
be used later to verify the authenticity of the initial message.

We thus build our linked file structure as follows (also see
Protocol 1). At power-on, the camera initializes a counter c
(step 1) and creates two empty anchor files for the HEAD and
the TAIL. The anchor files are assigned with a counter value
of c and c + 1, respectively, and with the camera’s unique
serial number S, by simply writing these information to the
filename (steps 2, 5). This operation is then authenticated by
computing a MAC token over their filenames (steps 3, 6).

For each newly captured image I , the camera proceeds as
follows. At the outset, the next counter value c + 1 (step 7)
and the camera’s serial number S are assigned to the image by
writing them to the image’s filename (step 8). This operation
is authenticated by first hashing the image’s content9 and then
concatenating it with c and S before computing the MAC
token over this (step 9). The produced tokens are embedded
in the image’s provenance certificate ΠI (the provisioning of
these certificates was explained previously in section V) which
in turn is stored in a separate auxiliary file as explained in
step 9 of Protocol 1. Computing the token as a function of
the contents of the file and its counter value binds these two
together, meaning that an adversary cannot delete a data file
and then overwrite the counters of the subsequent files without
being noticed. Finally, the structure’s tail is updated (step 10).

In case that a legitimate user wants to delete a particular
image ID, and without renumbering all subsequent files from
the structure, she can simply use an empty replacement file.
After removing both the image file and the corresponding
auxiliary certificate file that contains the MAC token, the
user creates an empty file and assigns it the same counter
as that of the deleted file, by writing it in the filename: fID =
[“DELETED′′||S||c]. She authenticates this by computing a
MAC token in a similar way as for the empty anchor files:
tokenID = MAC(TK, fID), and again stores it in a separate
file with the same name: fCERT DELETED = [fID ||“.cert′′].
If the user wants to hide this deletion from a third party,
she alternatively can recompute the entire list by replacing
all counter values of subsequent images in the list and recom-
puting the corresponding authentication files.

B. Checking for Missing Images

To check a stream of images for potentially unauthorized
deletions, one proceeds as follows. For each image I that was
captured between time ti until time tj (e.g., all images from
the last work meeting): 1) read the filename and corresponding
MAC token; 2) using the obtained counter from step 1, re-
compute a new MAC token and compare it with the token
obtained from step 1; 3) check if this file is linked properly
with the subsequent file in the given range by verifying that
the counter of the previous and subsequent files equal c−1 and
c+1, respectively, and that all serial numbers match the serial

9We use a a one-way collision resistant hash function (such as SHA3-256).

number of the desired camera. If, for all files, the computed
token matches the token associated to it, one can conclude
that the tested data link is valid and intact. A broken link or
an unauthenticated one is an indication of a deliberate data
deletion attack.

C. Generating the MAC token key TK

TK is randomly generated by the TPM during the camera’s
first-time activation. It is then encrypted with an asymmetric
parent key PTK, which in turn is derived from the TPM’s
storage-root-key SRK. While generating PTK, the camera
owner is prompted to provide a password, which allows her
later on to obtain a decrypted copy of TK. Both TK and
PTK are securely kept inside the camera’s internal storage
encrypted with each other’s parent keys, i.e., PTK and
SRK, respectively.

Checking for missing images requires knowledge of the key
material TK, which is used to verify MAC tokens. Since this
process will be performed outside the camera, (e.g., on a user’s
personal computer) TK has to be shared with other potentially
untrusted computer devices. Managing the storage of TK is
outside the scope of this work. However, given a computer
with a TPM, a secure key-migration protocol as specified by
TCG [37] allows for the secure transfer of TK.

D. Security Analysis

An adversary that wants to delete an image file without
the victim noticing has three options: (1) renumber all subse-
quent files and then create new updated MAC tokens for each
of them; (2) create a replacement file ([“DELETED′′||S||c])
and compute a valid MAC token for it; or (3) reuse the MAC
token of another file that the victim deleted herself. The first
two options are prevented by virtue of the secret key TK
used to compute MAC tokens. Reusing tokens of other files
is not going to help due to the mismatching serial number S
and counter c.

An attacker with unauthorized access to the victim’s repos-
itory can, however, overwrite the whole directory with a
previously made backup. In practice, the attacker would “roll
back the time” to a much earlier, but valid state, thus making
the last n images disappear. To prevent this, the MAC token
of the current TAIL can be occasionally committed to an im-
mutable public ledger, i.e., a blockchain (Protocol 1, step 11).

VII. PROTOCOL 2: VERIFYING SHARED BUT
MODIFIED IMAGES

The secure camera and storage protocol described above
ensure that an attacker is unable to manipulate a user’s mem-
ory repository by inserting, modifying, or deleting individual
images. However, as we previously argued, being able to share
captured experiences with co-located peers can yield tangible
benefits for memory cue creation. For a recipient of such
shared images it is thus crucial to have some guarantee that
the image has not been maliciously (i.e., invisibly) altered.

Fig. 4. The process of “blinding” an image region before sharing. From left:
(1) the unmodified image I of size 900× 650 pixels; (2) the image divided
into 18 × 13 tiles, each made of 50 × 50 pixels; (3) blocking the tiles that
contain information which should not be disclosed; and (4) the final modified
image I′ which is ready to be shared.

While it is trivial to verify that the image has not been
altered (using the secure signature of the peer’s camera,
which the receiving user can verify), there are perfectly
legitimate reasons for a peer to share only a modified version
of their captured image. Oftentimes, our own captured images
will contain private information (e.g., a document, a phone or
laptop screen) that should not be shared with others.

The goal is hence to allow an image recipient to reliably
identify all modified parts of an image. The identification
of the modified and unmodified parts should obviously be
possible without revealing the original, unmodified image –
the verifier should only have access to the modified image.

A. Protocol Description

Our proposed protocol builds on the memory augmenta-
tion system we reported in [9], which enabled the seamless
sharing of lifelogs between co-located users. One element
of the sharing protocol we developed for this are tokens –
random identifiers that each user’s camera broadcasts in real-
time (using a short-range wireless technology), and which
are frequently (e.g., every 5-10 seconds) updated. All images
taken by a camera are indexed in a user’s repository with the
token that was active at the time. In this way, only those who
received the tokens are able to query the sharer’s memory
repository later to retrieve the image.

Our original protocol used random tokens. However, we can
also compute them as a function of the actual image content
that was just captured. This allows the data sharer to not only
regulate access to the image, but to also “commit” the image’s
content publicly without actually sharing the original image
itself. By furthermore signing tokens with the camera’s private-
key, we can ensure image authenticity. Such “custom” tokens
allow us to support the verification of modifications – e.g.,
obfuscations – to a certain unmodified (but not shared) image.
This process is described below (see also Protocol 2), while
Table I itemizes the used identifiers.

In order to compute a token τI for an image I , the image
is first chunked into “tiles” (step 1). A tile is defined as a
rectangular area of arbitrary dimensions, and is the smallest
area that can be modified (see Figure 4 for an overview). For
each such tile we then compute a hashed fingerprint following
the procedure as in step 3 of Protocol 2. The fingerprints of
all tiles are concatenated and hashed again to create the final
image token τI (step 4), which is immediately announced to
co-located peers (step 5) through a short-range BLE broadcast
(using a protocol from our previous work [9]).

Protocol 2 Verifying Shared But Modified Images
A. Generate and disseminate image sharing token
for each newly captured image I

1) tilesI = splitImage(I, κ)
//split image into rectangular tiles of size κ

2) TI = [] //empty set for storing tile fingerprints
3) for columns i in tilesI

for rows j in tilesI
a) hi,j = H(i||j||φ(tx,y)||saltI)

//where φ(tx,y) = p1||p2|| . . . pm∗n, a string
//serialization of all pixels that are in tile ti,j

b) TI .add(hi,j)

4) τI = H(φ(TI)) //where φ(TI) = h0,0||h0,1|| . . . ||hm,n
5) broadcastToken(τI) //broadcast τI to co-located peers

//via BLE using our protocol from [9]
6) στI = sign(τI , SK)

RATT = platformAttest(nonce = τI)
// sign τI and generate a fresh TPM signed camera
//platform attestation bound to image I

7) ΣI = {TI , saltI , στI , RAtt} //encode everything in a
//sharing certificate ΣI

8) uploadData(I,ΣI) //upload ΣI to user’s memory
//repository and link it with image I

B. Verify authenticity and modifications of a shared image
for a token τI that was received from a co-located peer

9) I ′,ΣI ← downloadImage(τI),
//obtain an image and its certificate using token τI

10) {TI , saltI , στI , RATT } ← ΣI // extract the certificate
11) if verifyP latform(RATT , nonce = τI)

if verify(στI , τI , SK) && if H(φ(TI)) == τI

a) Split the received image I ′ and compute a tile
set T ′I following steps 1-3 from above

b) for index i in range of length(T ′I)

if T ′I [i] 6= TI [i]

drawFrame(I ′, T ′I [i]) //draw a red
//frame in I ′ around the area of tile T ′I [i]

The set of tile fingerprints, a signature over the final token,
as well as the signed platform attestation report RAtt obtained
from the camera’s TPM (step 6), are encoded in a sharing
certificate ΣI (step 7). Note that RAtt is generated using token
τI as a nonce (see section V-B for certificate generation). The
final ΣI together with the captured image are then uploaded
to the user’s memory repository (step 8).

Before making the image accessible from their repository at
a later time, the data sharer can modify it by obfuscating any
tile that contains sensitive information (as shown in Figure 4).
Accessing the data sharer’s repository at the token address τI
will then yield the modified image I ′, the tile hash-set TI of the
unmodified image I and the corresponding saltI (steps 9, 10).

Following step 11 from Protocol 2, the data recipient can
now verify which tiles have seen modifications, and which
tiles come from the original unmodified image I . At the outset,
she will verify that the token τI used to access the image is

indeed a hash of the concatenated tile hash-set TI . Next, she
will chunk the received modified image I ′ (using the same tile
size used in the unmodified image I) and then inspect each tile
of I ′ individually using the following procedure. For each tile
t′i,j of I ′, she checks its integrity by computing the tile’s hash
h′i,j = H(i||j||φ(t′x,y)||saltI) and matching it with the value
given in the corresponding tile hash-set TI . Now, all modified
tiles (i.e., where the hashes do not match) can be marked, e.g.,
by drawing a red frame around them in the displayed image
I ′, allowing the receiving user to easily verify which tiles have
been obfuscated (or otherwise modified).

B. Security Analysis

In order for an attacker to change any tile’s content unno-
ticed, two options exist: (1) to manipulate the image before the
tile’s hash is computed, or (2) to manipulate it in such a fashion
that the tile’s hash does not change. The first option is ruled out
by virtue of the secure camera hardware. Here, the camera’s
firmware is attested by the its trusted computing platform
TPM, so changing the camera’s principal operations should
not be possible. The second approach requires the attacker
to perform a second pre-image attack on the underlying hash
function. Given a secure hash function (we use SHA3-256 in
our implementation) this should be equally infeasible.

We also need to ensure that the recipient cannot uncover the
original contents of a tile, based on the shared information.
In order to do this, a recipient would need to perform a pre-
image attack on the hashes of the obfuscated tiles: given the
hash h of a tile that is blocked in the modified image, find
a value t such that H(t) = h. Given that the hash function
concatenates the tile contents with both the tile indices i, j,
and a salt, even identical tiles in the original image should
hash to different values. A brute force attack is thwarted by
the large search space: a pixel is composed of three bytes, one
byte for each RGB color. Trying all pixel colors has a time
complexity of 2563 = 224 per pixel, hence iterating through
a single tile would take (224)mn time, where m × n are the
tile dimensions in pixels. Even the smallest tile size of 5 ×
5 pixels that we evaluated our system on (see section VIII)
would require (224)25 = 2600 ≈ 4 × 10180 operations for a
single tile. The salt value further eliminates the ability of an
attacker to employ so-called “rainbow tables” that trade off
time complexity for storage efficiency [38].

VIII. EVALUATION

We evaluated our proposed schemes with two different
images sizes: (1) a low-resolution image with 640×480 pixels
(the maximum resolution of the installed camera module) and
(2) a high-resolution image with 4096× 3072 pixels (a reso-
lution offered by most of today’s wearable camera devices).
Images are interpreted using an 8-bit RGB color model, where
each pixel is represented by three bytes.

We benchmarked four processes: (1) capturing and storing a
picture in the camera’s internal storage, (2) obtaining a TPM-
signed platform attestation report, (3) appending an image
to a secure link structure (following the process described

in section VI, Protocol 1); and (4) computing an image
modification proof (as described in section VII, Protocol 2).
For the modification proof protocol, we additionally mea-
sured the overhead of splitting the image into five differently
sized tiles. When selecting a tile size, we considered the
trade-off between obfuscation granularity and performance
efficiency. For the smaller image we started with a tile of
5 × 5 pixels and increased it up to 160 × 160 pixels. We
applied proportionally larger tiles to the larger image, from
32× 32 pixels up to 1024× 1024 pixels.

Tests were conducted with a TPM complying to version 1.2
of the standard. All cryptographic operations were carried out
with RSA keys of 2048 bits, while all hash operations were
computed using SHA3-256. Digital signatures were calculated
over a SHA1 hash representation of the data to be signed.10

Figure 5 summarizes both runtime and power consump-
tion results. Our proposed protocols work reasonably well
on low-power devices. A low-resolution image is captured
and processed in less than 25 seconds (3.5 s for taking the
photo, 7 s for Protocol 1 and 12 s for running Protocol 2
with the smallest tile size, i.e., 5 × 5 pixels). Less than 60
seconds are needed for a high resolution image (34 s for
taking the photo, 7 s for Protocol 1 and 16 s for Protocol 2
again with the smallest tile size, i.e., 32 × 32 pixels). The
tested camera module did not support such high resolution
capture, however, we estimated that it would take about 34
seconds to download a pre-compressed JPEG image of that
size with the module’s maximum supported transfer-rate of
115,200 bps. The runtime overhead for both generating a
platform attestation and appending an image to a secure data
structure is constant irrespective of the image size. Regarding
the tile size, there is no notable improvement in terms of
computational speed by increasing it beyond 20 × 20 pixels
(125× 125 pixels for the larger image). This is due to having
to hash fewer but larger tiles.

We also measured the energy consumption of the proposed
camera using the “Keweisi KWS-V20” USB power tester11.
The average power consumption for both low-res and high-res
images (with medium tile sizes of 20×20 and 125×125 pixels)
is 2.1 mAh and 5.6 mAh, respectively. Out of these values,
1.06 mAh and 3.60 mAh were consumed by the Raspberry
Pi 3 B+ module alone. Using these power measurements, we
estimated the camera operational time (see Figure 6) with a
small battery of 200 mAh (same as that of Narrative Clip 2)
and a bigger battery with 500 mAh. With a capture frequency
of one low-resolution photo per minute, the camera can be
operational from 40 hours (smaller battery) up to 100 hours
(bigger battery) on a single charge. As for high-resolution
photos, the camera can run between 30 hours and 75 hours.

In additional tests, we benchmarked the verification times
of our protocols. We ran the benchmarks using high-resolution
images (with 4096×3072 pixels) on a machine with a 2.3 GHz

10TPM provides support only for signing SHA1 hashes.
11The “Keweisi KWS-V20” USB power meter that we used for these

evaluation lists an accuracy error of up to 3%, as reported in [39].

-45-40-35-30-25-20-15-10-505101520253035404550

-50-45-40-35-30-25-20-15-10 -5 0 5 10 15 20 25 30 35 40 45

Low-res
High-res

Low-res
High-res

Low-res
High-res

Low-res
High-res

Low-res
High-res

T1
T2

T3
T4

T5

High-res
Low-res

(s)

(s)

Photo Capturing Platform Attestation
Protocol 1: Secure Linking Protocol 2: Modification Proof

-5-4-3-2-1012345

-5 -4 -3 -2 -1 0 1 2 3 4 5

Low-res
High-res

Low-res
High-res

Low-res
High-res

Low-res
High-res

Low-res
High-res

T1
T2

T3
T4

T5

High-res
Low-res

(mAh)

(mAh)

Photo Capturing Platform Attestation
Protocol 1: Secure Linking Protocol 2: Modification Proof

Fig. 5. Left: Implementation runtime overhead (in s); Right: average power consumption (in mAh). Protocols were benchmarked with low-resolution images
(640 × 480 pixels) and high-resolution images (4096 × 3072 pixels). In addition, Protocol 2 was evaluated with five different tile sizes. For the low-res
images we tested the following tile sizes in pixels (T1: 5 × 5; T2: 10 × 10; T3: 20 × 20; T4: 40 × 40; and T5: 160 × 160), and for the high-res images
(T1: 32× 32; T2: 64× 64; T3: 125× 125; T4: 256× 256; and T5: 1024× 1024).

0
20
40
60
80

100
120

Low-res High-res Low-res High-res

Battery of 200 mAh Battery of 500 mAh

(h
)

1 photo per 3 mins 1 photo per 2 mins 1 photo per min
2 photos per min 3 photos per min

Fig. 6. Estimated camera operational time when running our protocols with
various photo capturing frequencies and powered with a battery of 200 mAh
and 500 mAh, respectively. For Protocol 2 we used medium tile sizes (i.e., T3).

quad-core processor. Specifically, we evaluated only the stor-
age protocol for securely linking captured images (Protocol 1)
since the runtime of the other parts, i.e., verifying image
authenticity, platform attestation, and the zero-knowledge pro-
tocol for checking modified images (Protocol 2), is negligible
(i.e., < 3 seconds) compared to the link protocol. We ran the
verification procedure from section VI-B and observed how
long it took to verify file-chains of different lengths. We could
verify a stream of 2,880 images (one day worth of images
captured in 30 second intervals) in about 22 seconds; 20,000
images (approx. one week of images) in about 150 seconds;
and 86,000 images (approx. one month) in about 670 seconds.

Ultimately, our solution may be ported to the smaller
“Raspberry Pi Zero W” (which is about 2.5 times smaller than
the Pi 3 B+) in order to make it more portable and manageable
for real-life applications. While the slower Pi Zero will run
our solution less efficiently, our results will easily match the
performance of any next-generation Pi Zero boards.

IX. LIMITATIONS

Using a TPM-based camera as a root of trust has its own
security caveats, as discussed in [25]. With physical access to

the camera, an attacker may modify its picture-taking sensor,
thus feeding the camera’s software with already modified
image data. Possible remedies include modifying the sensor
to provide encrypted image data to the rest of the camera
components (proposed also by [25]), or authenticating the
sensor using pattern noise data that may serve as a unique
identifier [40]. All this would still be unable to prevent
staging attacks. A malicious user simply enacts a fake version
of an experience, more or less recording a “movie” with look-
alike actors. By “borrowing” the target user’s camera for a
day (e.g., swapping it with a fake device to hide the fact)
the attacker can simply record the fake experiences with the
target user’s own camera device. Other low-tech alternatives
are holding up images in front of the target’s camera device.

X. CONCLUSION AND FUTURE WORK

As pervasive data capturing becomes a reality, our daily
experiences may soon be easily and continuously captured
by wearable capture systems and infrastructure devices. By
automatically creating “memory cues” from these captured
experiences, which are then played back to us in an ambient
fashion (e.g., on our lock screens), we could train our memory
in order to better remember important events and experiences.

The idea of building such a memory augmentation system
entails high risk, however, as it makes our memories vulner-
able to attacks: malicious parties able to access our captured
experiences could surreptitiously change our memories by
inserting fictitious experiences, modify existing experiences,
or simply deleting recorded experiences. The secure camera
presented here addresses two of the most important direct
memory manipulation attacks: deleting stored memory cues
and sharing manipulated captured images. Our results show
that our scheme is practical even for low-powered devices.

A natural direction for forthcoming research is to account
for future attacks on the underlying cryptographic primitives
(i.e., hash functions and key lengths), as well as to allow
for a seamless transition to a different camera after a lost or
damaged hardware.

ACKNOWLEDGEMENT

The authors acknowledge the financial support of the Future
and Emerging Technologies (FET) programme within the
7th Framework Programme for Research of the European
Commission, under FET Grant Number: 612933 (RECALL).

REFERENCES

[1] J. Gemmell, G. Bell, and R. Lueder, “MyLifeBits: A Personal Database
for Everything,” Commun. ACM, vol. 49, no. 1, pp. 88–95, Jan. 2006.

[2] C. Gurrin, A. F. Smeaton, and A. R. Doherty, “LifeLogging: Personal
Big Data,” Found. Trends Inf. Retr., vol. 8, no. 1, pp. 1–125, Jun. 2014.

[3] M. Harvey, M. Langheinrich, and G. Ward, “Remembering through
lifelogging: A survey of human memory augmentation,” Pervasive and
Mobile Computing, vol. 27, pp. 14–26, 2016.

[4] T. Dingler, P. E. Agroudy, H. V. Le, A. Schmidt, E. Niforatos, A. Bex-
heti, and M. Langheinrich, “Multimedia Memory Cues for Augmenting
Human Memory,” IEEE MultiMedia, vol. 23, no. 2, pp. 4–11, Apr. 2016.

[5] A. Bexheti, E. Niforatos, S. A. Bahrainian, M. Langheinrich, and
F. Crestani, “Measuring the Effect of Cued Recall on Work Meetings,”
in Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct, ser. UbiComp ’16. New
York, NY, USA: ACM, 2016, pp. 1020–1026.

[6] N. Davies, A. Friday, S. Clinch, C. Sas, M. Langheinrich, G. Ward, and
A. Schmidt, “Security and Privacy Implications of Pervasive Memory
Augmentation,” IEEE Pervasive Computing, vol. 14, no. 1, pp. 44–53,
Jan. 2015.

[7] E. Niforatos, M. Laporte, A. Bexheti, and M. Langheinrich, “Aug-
menting Memory Recall in Work Meetings: Establishing a Quantifiable
Baseline,” in Proceedings of the 9th Augmented Human International
Conference, ser. AH ’18. New York, NY, USA: ACM, 2018, pp. 4:1–
4:7.

[8] K. Wolf, A. Schmidt, A. Bexheti, and M. Langheinrich, “Lifelogging:
You’re Wearing a Camera?” IEEE Pervasive Computing, vol. 13, no. 3,
pp. 8–12, Jul. 2014.

[9] A. Bexheti, M. Langheinrich, and S. Clinch, “Secure Personal Memory-
Sharing with Co-located People and Places,” in Proceedings of the 6th
International Conference on the Internet of Things, ser. IoT’16. New
York, NY, USA: ACM, 2016, pp. 73–81.

[10] S. Clinch, P. Metzger, and N. Davies, “Lifelogging for ’Observer’
View Memories: An Infrastructure Approach,” in Proceedings of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct Publication, ser. UbiComp’14 Adjunct. New York,
NY, USA: ACM, 2014, pp. 1397–1404.

[11] D. Byrne, A. Kelliher, and G. J. Jones, “Life Editing: Third-party Per-
spectives on Lifelog Content,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’11. New York,
NY, USA: ACM, 2011, pp. 1501–1510.

[12] N. Davies, N. Taft, M. Satyanarayanan, S. Clinch, and B. Amos, “Privacy
Mediators: Helping IoT Cross the Chasm,” in Proceedings of the 17th
International Workshop on Mobile Computing Systems and Applications,
ser. HotMobile ’16. New York, NY, USA: ACM, 2016, pp. 39–44.

[13] D. J. Shaw, The Memory Illusion: Remembering, Forgetting, and the
Science of False Memory. Random House, Jun. 2016.

[14] L. A. Henkel, “Photograph-induced memory errors: When photographs
make people claim they have done things they have not,” Applied
Cognitive Psychology, vol. 25, no. 1, pp. 78–86, Jan. 2011.

[15] A. S. Brown and E. J. Marsh, “Evoking false beliefs about autobio-
graphical experience,” Psychonomic Bulletin & Review, vol. 15, no. 1,
pp. 186–190, Feb. 2008.

[16] K. A. Wade, M. Garry, J. D. Read, and D. S. Lindsay, “A picture is
worth a thousand lies: Using false photographs to create false childhood
memories,” Psychonomic Bulletin & Review, vol. 9, no. 3, pp. 597–603,
Sep. 2002.

[17] D. S. Lindsay, L. Hagen, J. D. Read, K. A. Wade, and M. Garry, “True
Photographs and False Memories,” Psychological Science, vol. 15, no. 3,
pp. 149–154, Mar. 2004.

[18] K. Bicakci and N. Baykal, “Infinite length hash chains and their
applications,” in Proceedings. Eleventh IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises,
2002, pp. 57–61.

[19] Y.-C. Hu, M. Jakobsson, and A. Perrig, “Efficient Constructions for One-
Way Hash Chains,” in Applied Cryptography and Network Security, ser.
Lecture Notes in Computer Science, J. Ioannidis, A. Keromytis, and
M. Yung, Eds. Springer Berlin Heidelberg, 2005, pp. 423–441.

[20] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “The TESLA Broadcast
Authentication Protocol,” p. 11, 2002.

[21] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS:
Security Protocols for Sensor Networks,” Wireless Networks, vol. 8,
no. 5, pp. 521–534, Sep. 2002.

[22] D. Bayer, S. Haber, and W. S. Stornetta, “Improving the efficiency
and reliability of digital time-stamping,” Sequences II: Methods in
Communication, Security and Computer Science, pp. 329–334, 1993.

[23] S. Haber and W. S. Stornetta, “How to Time-Stamp a Digital Document,”
in Advances in Cryptology-CRYPT0’ 90, ser. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, Aug. 1990, pp. 437–455.

[24] P. Maniatis, T. J. Giuli, and M. Baker, “Enabling the Long-Term Archival
of Signed Documents through Time Stamping,” arXiv:cs/0106058, Jun.
2001.

[25] A. Naveh and E. Tromer, “PhotoProof: Cryptographic Image Authen-
tication for Any Set of Permissible Transformations,” in 2016 IEEE
Symposium on Security and Privacy (SP), May 2016, pp. 255–271.

[26] A. Chiesa and E. Tromer, “Proof-Carrying Data and Hearsay Arguments
from Signature Cards,” in Proceedings of the 1st Symposium on Inno-
vations in Computer Science, 2010, pp. 310–331.

[27] H. Chabanne, R. Hugel, and J. Keuffer, “Verifiable Document Redact-
ing,” in Computer Security – ESORICS 2017, S. N. Foley, D. Gollmann,
and E. Snekkenes, Eds. Cham: Springer International Publishing, 2017,
vol. 10492, pp. 334–351.

[28] R. Steinfeld, L. Bull, and Y. Zheng, “Content Extraction Signatures,” in
Information Security and Cryptology – ICISC 2001, ser. Lecture Notes
in Computer Science. Springer, Berlin, Heidelberg, Dec. 2001, pp.
285–304.

[29] C. Bettini and D. Riboni, “Privacy protection in pervasive systems: State
of the art and technical challenges,” Pervasive and Mobile Computing,
Oct. 2014.

[30] S. Saroiu and A. Wolman, “I Am a Sensor, and I Approve This Mes-
sage,” in Proceedings of the Eleventh Workshop on Mobile Computing
Systems & Applications, ser. HotMobile ’10. New York, NY, USA:
ACM, 2010, pp. 37–42.

[31] T. Winkler, A. Erdélyi, and B. Rinner, “TrustEYE.M4: Protecting the
sensor – Not the camera,” in 2014 11th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS), Aug. 2014,
pp. 159–164.

[32] T. Winkler and B. Rinner, “TrustCAM: Security and Privacy-Protection
for an Embedded Smart Camera Based on Trusted Computing,” in 2010
7th IEEE International Conference on Advanced Video and Signal Based
Surveillance, Aug. 2010, pp. 593–600.

[33] B. Parno, J. M. McCune, and A. Perrig, Bootstrapping Trust in Modern
Computers, ser. SpringerBriefs in Computer Science. New York, NY:
Springer New York, 2011, vol. 10.

[34] A. Bexheti, A. Fedosov, I. Elhart, and M. Langheinrich, “Memstone:
A Tangible Interface for Controlling Capture and Sharing of Personal
Memories,” in Proceedings of the 20th International Conference on
Human-Computer Interaction with Mobile Devices and Services, ser.
MobileHCI ’18. New York, NY, USA: ACM, 2018, pp. 20:1–20:13.

[35] K. Dietrich, M. Pirker, T. Vejda, R. Toegl, T. Winkler, and P. Lipp, “A
Practical Approach for Establishing Trust Relationships between Remote
Platforms Using Trusted Computing,” in Trustworthy Global Computing,
G. Barthe and C. Fournet, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, vol. 4912, pp. 156–168.

[36] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions for
Message Authentication,” in Advances in Cryptology – CRYPTO’96, ser.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Aug.
1996, pp. 1–15.

[37] T. Hardjono and G. Kazmierczak, “Overview of the TPM Key Manage-
ment Standard,” p. 15, 2008.

[38] P. Oechslin, “Making a Faster Cryptanalytic Time-Memory Trade-Off,”
in Advances in Cryptology - CRYPTO 2003, G. Goos, J. Hartmanis,
J. van Leeuwen, and D. Boneh, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, vol. 2729, pp. 617–630.

[39] Gough, Lui, “Review, Teardown: Keweisi KWS-V20 USB Tester,”
http://goughlui.com/2016/08/20/review-teardown-keweisi-kws-v20-usb-
tester/, Aug. 2016.

[40] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from
sensor pattern noise,” IEEE Transactions on Information Forensics and
Security, vol. 1, no. 2, pp. 205–214, Jun. 2006.

