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Abstract 

Nutrition is vital to health and the availability of resources has long been acknowledged as a key 

factor in the ability to fight off parasites, as investing in the immune system is costly. Resources have 

typically been considered as something of a “black box”, with the quantity of available food being 

used as a proxy for resource limitation. However, food is a complex mixture of macro- and 

micronutrients, the precise balance of which determines an animal’s fitness. Here we use a state-

space modelling approach, the Geometric Framework for Nutrition (GFN), to assess for the first 

time, how the balance and amount of nutrients affects an animal’s ability to mount an immune 

response to a pathogenic infection. 

Spodoptera littoralis caterpillars were assigned to one of 20 diets that varied in the ratio of 

macronutrients (protein and carbohydrate) and their calorie content to cover a large region of nutrient 

space. Caterpillars were then handled or injected with either live or dead Xenorhabdus nematophila 

bacterial cells. The expression of nine genes (5 immune, 4 non-immune) was measured 20 h post 

immune challenge. For two of the immune genes (PPO and Lysozyme) we also measured the 

relevant functional immune response in the haemolymph. Gene expression and functional immune 

responses were then mapped against nutritional intake. 

The expression of all immune genes was up-regulated by injection with dead bacteria, but only those 

in the IMD pathway (Moricin and Relish) were substantially up-regulated by both dead and live 

bacterial challenge. Functional immune responses increased with the protein content of the diet but 

the expression of immune genes was much less predictable.  

Our results indicate that diet does play an important role in the ability of an animal to mount an 

adequate immune response, with the availability of protein being the most important predictor of the 

functional (physiological) immune response. Importantly, however, immune gene expression 

responds quite differently to functional immunity and we would caution against using gene 

expression as a proxy for immune investment, as it is unlikely to be reliable indicator of the immune 

response, except under specific dietary conditions. 

Keywords: Nutritional ecology, host-pathogen interaction, immunity, Spodoptera, Xenorhabdus, 

diet, bacteria, resistance, tolerance, insect, Geometric Framework 

 



Introduction 

It has long been recognised the role that “good nutrition” plays in human health, with both under-

nutrition and obesity resulting in disease (Mokdad et al., 2001; Muller and Krawinkel, 2005; Samartin 

and Chandra, 2001). Poor nutrition can also impact the response to parasites, with evidence for both 

energy and protein deficits reducing the ability to fight infection (Kuvibidila et al., 1993) (Field et al., 

2002) (Cunningham-Rundles et al., 2005). Studies have shown that starvation can compromise 

immune capability across a broad range of host taxa. For example, laboratory mice were found to 

have fewer T cells in the spleen and thymus during starvation, with numbers recovering once feeding 

was reinstated (Wing et al., 1988).  Furthermore, injection with Listeria monocytogenes during 

starvation reduced the ability of the mice to develop antibodies against this bacterium (Wing et al., 

1988). Food restriction, rather than starvation can have similar effects. Food-restricted Yellow-legged 

gulls, Larus cachinnans, were found to have reduced cell-mediated immunity (Alonso-Alvarez and 

Tella, 2001)  and mice on a long-term calorie-restricted diet were found to die more rapidly from 

sepsis after gut puncture than those fed ad libitum (Alonso-Alvarez and Tella, 2001). Comparable 

responses have been shown in invertebrates; bumble bees died more rapidly during starvation if their 

immune systems were stimulated by artificial parasites, suggesting that mounting an immune response 

is energetically costly (Moret and Schmid-Hempel, 2000). Similarly, starved bumble bees were more 

likely to die from a gut parasite, Crithida bombi, than hosts with adequate nutrition (Brown et al., 

2000). 

However, nutrition is much more complex than simply a source of energy, being a vital mixture of 

macro- (carbohydrates, fats and proteins) and micro-nutrients (vitamins and minerals), the amount and 

balance of which determine an animal’s fitness (Simpson et al., 2004). Several studies have examined 

how shifting the balance of macronutrients in the diet affects immune responses and the outcome of 

infection, without restricting the availability of calories (Graham et al., 2014; Lee et al., 2006; Ponton 

et al., 2011; Povey et al., 2009; Povey et al., 2014) . For example, caterpillars of the armyworms, 

Spodoptera littoralis and Spodoptera exempta, show improved immune responses and markedly 

higher survival after viral infection (Lee et al., 2006; Povey et al., 2014) and bacterial infection 

(Povey et al., 2009) when their diet is heavily protein-biased. Furthermore, when given the 

opportunity, infected caterpillars will “self-medicate” with protein, significantly improving their 

chances of survival (Lee et al., 2006; Povey et al., 2009; Povey et al., 2014) . 

The studies above strongly suggest that it is the source of the energy in the diet that is key to the 

response to parasites, rather than the availability of energy per se. However, neither food restriction, 

nor the manipulation of macronutrient balance alone can determine the relative importance of either 

on host-parasite interactions. To address properly the role of nutrient availability on immunity, both 

the balance of nutrients in the diet and their quantity need to be simultaneously manipulated. The 

Geometric Framework for Nutrition (GFN) is a state-space model that allows the association of 

particular nutrient intakes with outcomes of interest (Simpson and Raubenheimer, 1995), for example, 

immunity (Ponton et al., 2011; Ponton et al., 2013). With the GFN, animals are restricted to diets in 

which both the balance and availability of nutrients are manipulated, forcing intakes over a wide 

region of nutrient space, encompassing both over- and under-nutrition, and thereby allowing the 

additive and interactive effects of specific nutrients on traits of interest to be modelled (Simpson and 

Raubenheimer, 1995). 

The GFN approach has highlighted that the fundamental life-history trade-off between fecundity and 

longevity is mediated by nutrients across taxa, with longevity generally peaking at low-protein, high-

carbohydrate ratios, whilst fecundity tends to peak at much higher relative protein intakes; as such, no 



diet can maximize both traits (Drosophila: (Lee et al., 2008); (Jensen et al., 2015); Field crickets: 

(Maklakov et al., 2008); Queensland Fruit fly; (Fanson et al., 2009); Mice: (Solon-Biet et al., 2015)). 

Similarly, using the GFN, it was found that different immune responses peak in different regions of 

nutrient space, thereby indicating a nutrient-mediated trade-off within the immune system, and, as for 

fecundity and longevity, no single diet could maximize multiple immune responses (Cotter et al., 

2011b). In a recent study, mice were restricted to one of 25 diets varying in their ratio of proteins, fats 

and carbohydrates and energy density, and their innate immune capacity was measured. It was shown 

that the balance of T cells indicative of healthy ageing was achieved on a low protein:NPE diet (non-

protein energy i.e. carbohydrate plus fat), irrespective of calorie intake (Le Couteur et al., 2015). 

However, this powerful approach has not yet been taken to assess an animal’s immune response to a 

pathogenic challenge. 

Insects have a comparatively simple yet effective immune system that has numerous parallels to the 

innate immune response of vertebrates Vilmos, 1998 #1473; Leulier, 2008 #47751; Wiesner, 2010 

#77972} . It comprises cellular and humoral components that work together to fight invading 

pathogens. Hemocytes show phagocytic activity against microparasites, much like vertebrate 

macrophages, and can respond to macroparasites by forming a multi-layered envelope around the 

invader, in a process called encapsulation, which is subsequently melanised via the action of the 

phenoloxidase (PO) enzyme (Gupta, 1991). Phenoloxidase is stored in hemocytes in the form of an 

inactive precursor, Pro-phenoloxidase (PPO), which is activated upon detection of non-self 

(Gonzalez-Santoyo and Cordoba-Aguilar, 2012).  This recognition occurs via the detection of 

pathogen-associated molecular patterns (PAMPs) such as the peptidoglycan or the lipopolysaccharide 

components of fungal and bacterial cell walls. Detection stimulates either the Toll (fungi and gram-

positive bacteria) or Imd pathways (Gram-negative bacteria), via host pattern recognition receptors 

(PRRs) that result in the bespoke production of antimicrobial peptides and the upregulation of 

constitutive lysozymes, which form the humoral component of the response (Ligoxygakis, 2013; 

Wiesner and Vilcinskas, 2010). 

The strength of the immune response can be measured using standard functional assays of 

antimicrobial activity or PPO activity in the haemolymph, and the strength of the encapsulation 

response or phagocytosis can be measured against synthetic parasites injected into the haemocoel (see 

(Wilson and Cotter, 2013) and references therein). These functional responses have been shown to be 

indicative of the ability of the animal to fight off parasites (e.g. (Lee et al., 2006; Paskewitz and 

Riehle, 1994; Povey et al., 2009) and so are arguably meaningful measures of immune investment. 

However, gene expression is also often used as a proxy for investment in specific traits, e.g. immunity 

(Freitak et al., 2007; Jackson et al., 2011; Woestmann et al., 2017), but few of these studies consider 

how well the expression of the gene of interest predicts the functional response under the conditions 

in which they are tested. 

There has been a great deal of research examining how well gene transcripts relate to protein 

abundance across individual genes, but with contradictory findings (Liu et al., 2016). This is not 

surprising as there are numerous steps between gene expression and the production of the protein, all 

of which can change the relationship between the two. In cell culture, under steady-state conditions, 

mRNA transcripts correlate well with protein abundance, typically explaining between 40 and 80% of 

the variation (Edfors et al., 2016; Jovanovic et al., 2015; Liu et al., 2016). However, multiple factors 

can affect this relationship. Upregulation of gene expression in response to a perturbation is expected 

to change the abundance of proteins concordantly, but there can be a delay in this process, such that 

there is a time lag between mRNA levels and protein abundance, the length of which may differ 

between genes (Gedeon and Bokes, 2012; Jovanovic et al., 2015). Some genes are constitutively 



transcribed and translation of the protein occurs only when the correct conditions are met, known as 

“translation on demand” (Hinnebusch and Natarajan, 2002), meaning that there is no correlation 

between mRNA and protein levels most of the time. The majority of ecological studies consider gene 

expression in whole animals, which are hugely more variable than cell cultures, and so we can expect 

the relationship between gene expression and protein abundance to be further weakened in natural 

systems.  One aspect of variation in whole animals is the availability of resources. Protein production 

is costly, consuming ~50% of the ATP in growing yeast cells (Warner, 1999), so we can expect the 

availability of energy and amino acids to affect the speed and efficacy of translation (Liu et al., 2016). 

This means that the relationship between the expression of a gene and its protein is likely to change 

with the resource levels of the animal. To our knowledge, there are no studies comparing how the 

mRNA-protein relationship changes across nutrient space. 

Here we address this gap using a model insect, Spodoptera littoralis, (Lepidoptera: Noctuidae), a 

generalist herbivore. We take a GFN approach, restricting caterpillars to diets that vary in their P:C 

ratio and energy content, thereby covering a large region of nutrient space. We then challenge the 

immune system by injecting caterpillars with live or dead bacteria, and measure the expression of 9 

genes (5 immune, 4 non-immune), and 3 functional immune responses, which are transcribed by two 

of the immune genes (PPO and lysozyme) in the hemolymph,  thus allowing us to associate gene 

expression and functional immune responses to nutrient intake, and importantly, to assess how well 

gene expression predicts the immune response specifically associated with those genes under different 

dietary conditions. 

  

Material and methods 

Host and pathogen cultures 

The Spodoptera littoralis culture was established from eggs collected near Alexandria in Egypt in 

2011. The colony was reared using single pair matings with around 150 pairs established each 

generation. Following mating of unrelated adult moths; eggs were laid within 2 days with larvae 

hatching after a further 3 days. Spodoptera littoralis spend approximately 2 weeks in the larval stage, 

about 7 days of which are spent in the 5th and 6th instars. Larvae were reared individually from the 

2nd instar on a semi-artificial wheat germ-based diet (Reeson et al., 1998) in 25 ml polypots until the 

final larval instar (6th), at which point they were used in the experiments as described below. Insects 

were maintained at 27°C under a 12:12 light: dark photo regime. 

Bacteria were originally supplied by the laboratory of Givaudan and colleagues (Montpellier 

University, France; Xenorhabdus nematophila F1D3 GFP labelled, see (Sicard et al., 2004)). Pure X. 

nematophila F1D3 stocks were stored at -20°C in Eppendorf tubes (500 μl of X. nematophila F1D3 in 

nutrient broth with 500 μl of glycerol). Vortexing ensured that all X. nematophila F1D3 cells were 

coated in glycerol. To revive the stocks for use, 100 μl was added to 10 ml nutrient broth, and 

incubated at 28°C for up to 48 h (generally stocks had grown sufficiently after 24 hrs). On the day of 

experimental bacterial challenge, a sub-culture of the stock was carried out, with 1 ml of the original 

stock added to 10 ml of nutrient broth and placed in a shaker-incubator for approximately 4 h. This 

ensured that the bacteria were in log phase prior to challenge. Following the sub-culture, a 1 ml 

sample was checked for purity under the microscope by looking for non-fluorescent cells, which 

would indicate contamination. The clean sample was then used to produce a serial dilution in nutrient 

broth from which the total cell count was determined with fluorescence microscopy, using a 

haemocytometer with improved Neubauer ruling.  The remaining culture was diluted with nutrient 



broth to the appropriate concentration required for the bacterial challenge. The heat-killed treatment 

group was established by autoclaving the bacteria for 30 min at 121oC. 

Diet manipulation 

The aim of the experiments was to tease apart the importance of relative and absolute nutrient effects 

on immune gene expression and immune protein activity. Therefore, larvae were fed on one of 20 

chemically-defined diets that varied in both the protein to carbohydrate (P:C) ratio and calorie density 

based on (Simpson and Abisgold, 1985) (Table 1). This comprised five P:C ratios (5:1, 2:1, 1:1, 1:2, 

1:5) and four calorie densities (326, 612, 756 and 1112 kJ/100g diet; the remainder of the diet 

comprising indigestible cellulose (See Table S1 for information about the specific ingredients for each 

diet). Thus, the 20 diets could be described with respect to the absolute amount of proteins or 

carbohydrates, by their sum (calorie density), by their ratio (P:C) or by their interaction (P*C). In 

addition, the absolute amounts of food eaten by the larvae on each diet were recorded so the absolute 

amount of protein or carbohydrate eaten as opposed to amounts offered could also be used. We were 

therefore able to define 30 alternative models for describing the relationship between the trait of 

interest (e.g. Toll expression), and host diet (Table 1). These were then compared using an 

information theoretic approach by comparing AICc values and other model metrics (Burnham and 

Anderson, 2003; Whittingham et al., 2006). 

Bacterial challenge 

Xenorhabdus nematophila is a highly pathogenic Gram-negative bacterium. In the wild, this species 

relies on the entomopathogenic nematode Steinernema carpocapsae, which vectors X. nematophila, to 

gain access to an insect host, where it rapidly multiplies, generally causing death within 24-48 hours 

(Georgis et al., 2006; Herbert and Goodrich-Blair, 2007). However, in the lab we can circumvent the 

requirement for the nematode by injecting X. nematophila directly into the insect haemocoel (Herbert 

and Goodrich-Blair, 2007). 

Experiment 1: Within 24 h of moulting to the 6th instar, 400 larvae were divided into 20 groups (n = 

20 per group), placed individually into 90 mm diameter Petri dishes and provided with ~1.5 g of one 

of the 20 chemically-defined diets (Table 1). Within each diet, 10 larvae were allocated to the control 

group and 10 were assigned to the bacteria-challenged group. Following 24 h feeding on the assigned 

diets (at time, t = 0), 200 larvae were handled then replaced on their diet (control) whilst 200 larvae 

were injected with 5 µl of a heat killed LD50 dose of X. nematophila (averaging 1272 X. nematophila 

cells per ml nutrient broth) using a microinjector (Pump 11 Elite Nanomite) fitted with a Hamilton 

syringe (gauge = 0.5mm). The syringe was sterilised in ethanol prior to use and the challenge was 

applied to the left anterior proleg. Every 24 h up to 72 h (i.e. 48 h post infection), larvae were 

transferred individually to clean 90 mm Petri dishes containing 1.5 - 1.8 g of their assigned 

chemically-defined diet. 96 h after moulting into L6, the larvae had either pupated or were placed on 

semi-artificial diet until death or pupation. The amount of food eaten each day was determined by 

weighing the wet mass of the chemically-defined diet provided each day to the caterpillars, as well as 

weighing uneaten control diets each day (3 control diets per diet). The uneaten diet and control diet 

were then dried to a constant mass (for approx. 72 h), allowing the consumption per larva to be 

estimated. 

Experiment 2: The set up for this experiment was identical to Experiment 1, except that each of the 

400 larvae was injected with 5 µl of either a heat-killed (control) or live LD50 dose of X. nematophila 

(averaging 1272 X. nematophila cells per ml nutrient broth).  

 



 

 

Table 1. Nutritional composition of the 20 chemically-defined diets 

Diet Protein Carbs Fats Cellulose Micro-

nutrients 

Energy  Ratio P:C 

  (g/100g 

diet) 

(g/100g 

diet) 

(g/100g 

diet) 

(g/100g 

diet) 

(g/100g 

diet) 

(kJ/100g 

diet) 

(%)   

1 10.5 52.5 1.1 33.0 3.0 1112 0.17 1:5 

2 7.0 35.0 1.1 54.0 3.0 756 0.17 1:5 

3 5.6 28.0 1.1 62.4 3.0 612 0.17 1:5 

4 2.8 14.0 1.1 79.2 3.0 326 0.17 1:5 

5 21.0 42.0 1.1 33.0 3.0 1112 0.33 1:2 

6 14.0 28.0 1.1 54.0 3.0 756 0.33 1:2 

7 11.2 22.4 1.1 62.4 3.0 612 0.33 1:2 

8 5.6 11.2 1.1 79.2 3.0 326 0.33 1:2 

9 31.5 31.5 1.1 33.0 3.0 1112 0.50 1:1 

10 21.0 21.0 1.1 54.0 3.0 756 0.50 1:1 

11 16.8 16.8 1.1 62.4 3.0 612 0.50 1:1 

12 8.4 8.4 1.1 79.2 3.0 326 0.50 1:1 

13 42.0 21.0 1.1 33.0 3.0 1112 0.67 2:1 

14 28.0 14.0 1.1 54.0 3.0 756 0.67 2:1 

15 22.4 11.2 1.1 62.4 3.0 612 0.67 2:1 

16 11.2 5.6 1.1 79.2 3.0 326 0.67 2:1 

17 52.5 10.5 1.1 33.0 3.0 1112 0.83 5:1 

18 35.0 7.0 1.1 54.0 3.0 756 0.83 5:1 

19 28.0 5.6 1.1 62.4 3.0 612 0.83 5:1 

20 14.0 2.8 1.1 79.2 3.0 326 0.83 5:1 

See Table S1 for information about the specific ingredients for each diet 

 

Hemolymph sampling 

Following challenge, hemolymph samples were obtained from all caterpillars at 20 h post infection. 

Hemolymph samples were obtained by piercing the cuticle next to the first proleg near the head with a 

sterile needle and allowing released hemolymph to bleed directly into an Eppendorf tube. 

Immediately following hemolymph sampling, 30 µl of fresh hemolymph was added to a sterile ice-

cooled Eppendorf containing 350 µl of lysis buffer (RLT + Beta mercaptoethanol – 100:1) for later 



RNA extraction and qPCR analysis (Expts 1 and 2). The remainder of the hemolymph extracted was 

stored in a separate Eppendorf for further immune assays (Expt 2 only). All hemolymph samples were 

stored at -80°C prior to processing. 

Gene expression (Expts 1 and 2) 

RNA was extracted from hemolymph samples using Qiagen RNeasy mini kit following the 

manufacturers instructions with a final elution volume of 40 µl. Extracts were quantified using the 

Nanodrop 2000 and diluted to 0.5 µg/µl for cDNA synthesis. Prior to cDNA synthesis a genomic 

DNA elimination step was carried out by combining 12 µl RNA (0.5 µg total RNA) plus 2 µl DNA 

wipeout solution and incubating at 42 °C for 2 min, cDNA synthesis was carried out using Qiagen 

Quantitect Reverse Transcription kit in a final reaction volume of 20 µl following the manufacturer’s 

instructions, cDNA synthesis was carried out for 30 min at 42 °C followed by 3 min incubation at 95 

°C and stored at -20 °C. cDNA was diluted 1:5 for use as a qPCR template. 

Primers and probes were synthesised by Primer Design and qPCR was performed in a reaction 

volume of 10 µl with 1x Taqman FAST Universal PCR Master mix (Thermo Fisher), 0.25 µM of each 

primer, 0.3 µM probe and 2 µl of  a 1:5 dilution of cDNA. qPCR was carried on the ABI 7500 FAST, 

cycling parameters included an initial denaturation at 95 °C for 20 sec followed by 40 cycles of 

denaturation at 95 °C, 3 sec and annealing at 60 °C for 30 sec. All PCRs were run in duplicate. 

We selected five immune genes, three from the Toll immune pathway: Toll, Prophenoloxidae (PPO), 

which is the precursor of the phenoloxidase enzyme (PO), responsible for production of melanin 

during the encapsulation response, and lysozyme, which produces the antimicrobial lysozyme 

enzyme, active against Gram positive bacteria. We also selected two genes from the IMD immune 

pathway, Moricin, which produces the AMP Moricin, active against Gram positive and negative 

bacteria, and Relish, which activates transcription of AMP genes (Ligoxygakis, 2013; Wiesner and 

Vilcinskas, 2010). We also selected three non-immune genes, Tubulin, a component of the 

cytoskeleton responsible for organelle and chromosomal movement. Armadillo (b-catenin), which 

facilitates protein-protein interactions and EF1, an elongation factor facilitates protein synthesis. 

These genes were selected, due to robust amplification, from a pool of potential endogenous controls 

that were tested in pilot studies. We also selected Arylphorin, which is primarily characterised as a 

storage protein (Telfer and Kunkel, 1991), however, it is up-regulated in response to bacterial 

infection and also in response to non-pathogenic bacteria in the diet of Trichoplusia ni caterpillars 

(Freitak et al., 2007) and so we did not have an a priori expectation as to its behaviour in this species. 

 

Lysozyme assays (Expt 2 only) 

Bacterial agar plates were used to determine lytic activity. These were made by mixing 1.5% water 

agar and 1.5% freeze-dried Micrococcus luteus (Merck: M3770) potassium phosphate buffer in a 2:1 

ratio. 10 ml plates of the resulting solution were poured and 2 mm diameter holes punched in each 

plate. Each hole filled with 1 ml of ethanol saturated with phenylthiourea (PTU), in order to prevent 

melanisation of the samples. The ethanol evaporates, leaving the PTU in the hole. Following 

defrosting and vortexing of the stored hemolymph, each well was the filled with 1µl of hemolymph, 

with two technical replicates per sample. The plates were incubated at 30°C for 24 h, and the clear 

zones around the samples were measured using digital callipers.  Lytic activity (mg/ml) was then 

calculated from a serial dilution of a hen egg white lysozyme (Merck: 62971; Standard series 0.01, 

0.05, 0.1, 0.5, 1 and 2 mg per ml in water). 

 



Table 2: Primer and probe sequences used for the qPCR analysis of immune gene expression 

Gene Primers (5′ - 3′) Probe (5′ - 3′) Amplicon 

sizes (bp) 

Efficiencies 

 

Toll FOR: 

AATGCTCGTGTTATCATGATC

AAA 

REV: 

CGTGATCGTAGCCAGCGTTT 

VIC-

CTGGACCACCACTA

ACGTCGTCGATTG-

TAMRA 

76 93.8% 

PPO FOR: 

GCTGTGTTGCCGCAGAATG 

REV: 

AAATCCGTGGCGGTGTAGTC 

VIC-

CCGCGTATCCCGATC

ATCATCCC-TAMRA 

67 97.4% 

 

Lysozyme FOR: 

TGTGCACAAATGCTGTTGGA 

REV:CGAACTTGTGACGTTTGT

AGATCTTC 

VIC-

ACATCACCCTAGCTT

CTCAGTGCGCC-

TAMRA 

76 96.6% 

 

Relish FOR: 

TCAACATAACAACACGGAGG

AA 

REV: 

ATCAGGTACTAGGCAACTCAT

ATC 

6FAM -

CCCACAAATTACTTG

AAGATGAACAGGAC

CC-TAMRA 

82 95.3% 

Moricin FOR: 

GGCGCAGCGATTGGTAAA 

REV:GGTTTGAAGAAGGAATA

GACATCATG 

VIC-

TCTCCGGGCGATTAA

CATAGCCAGC- 

TAMRA 

77 91.4% 

 

EF1 FOR: 

TCAAGAACATGATCACTGGAA

CCT 

REV: CCAGCGGCGACAATGAG 

6FAM -

CCAGGCCGATTGCG

CCGT-TAMRA 

94 94.0% 

 

Arylphorin FOR: 

CGTCAGATGCAGTCTTTAAGA

TCTTC 

REV: 

TGCACGAACCAGTCCAGTTC 

VIC-

AATACCACGCCAAT

GGCTATCCGGTT-

TAMRA 

112 96.7% 

Armadillo FOR: 

TGCACCAGCTGTCCAAGAAG 

REV: 

AAAGCGGCAACCATTTGC 

6FAM-

AAGCTTCTCGCCATG

CTATTATGAACTCGC

-TAMRA 

70 92.8% 

Tubulin FOR: 

CGTGGAGCCCTACAACTCTAT

CC 

REV: 

GCCTCGTTGTCGACCATGA 

6FAM-

ACCACCCACACCAC

CCTTGAGCAC-

TAMRA 

81 100% 

 

 

 

 



 

Phenoloxidase assays (Expt 2 only) 

Following defrosting of the hemolymph samples, 10 µl of hemolymph was added to 450 µl of NaCac 

buffer (1.6g NaCac and 0.556g CaCl2 l-1 sterile distilled water). The solution was then split into two 

Eppendorfs (each containing 225 µl), in order to carry out assays for both proPO and PO. To one 

Eppendorf, 25 µl of NaCac buffer was added (PO assay), and to the other, 25 µl of 20 mg per ml 

chymotrypsin in NaCac buffer was added (proPO activated). The samples were vortexed and 

incubated at 25 °C for 1 h. 90 µl of each solution was placed in a well of a 96-well microplate with 90 

µl of 10 mM dopamine as a substrate. Two technical replicates were carried out per sample. Readings 

were taken every 15 secs for 10 mins at 490 nm and 25 °C using a Tecan infinite m200pro plate 

reader with Magellan software (V7.2).  This range accounted for the linear stage of the reaction.  The 

maximum rate of reaction was then used as an approximation of PO and proPO level. While many 

researchers still use L-dopa as a substrate for PO reactions, for insect POs, dopamine is the preferred 

substrate over L-dopa. It is the natural substrate for insects, it is more soluble than L-dopa and unlike 

L-dopa, is not subject to spontaneous darkening (Sugumaran, 2002).  

Statistical analyses 

Gene expression 

All statistical analyses were conducted using the R statistical package version 3.2.2 (R Core Team, 

2018). Gene expression data were normalised using NORMA-Gene (Heckmann et al., 2011), a data 

driven approach that normalises gene expression relative to other genes in the dataset rather than to 

specifically identified reference genes. It is particularly suited to data sets with limited numbers of 

assayed genes. Normalised gene expression data were then standardized using the mean (µ) and 

standard deviation (σ) of each trait (Z = (X- µ) ⁄ σ) prior to analysis. The two experiments, run at 

different times, had only one treatment in common, (1 – handled vs heat-killed bacteria, 2- heat-killed 

vs live bacteria). For ease of interpretation, we wanted to analyse both experiments in a single model. 

To test the validity of this approach, we first compared the gene expression, physiological immune 

response data and the data for the total amount of food consumed across both experiments for the 

heat-killed treatment only. There was no significant difference between any of the measures across 

experiments, with the exception of the total amount of food eaten, and expression of the Moricin gene. 

Therefore, all data were analysed in a single model, with the exception of those two response 

variables, where data from the two experiments were analysed separately.  

Data were analysed for each gene separately using linear mixed-effects models in the packages lme4 

(Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017). For each gene, the plate that the samples 

were run on was included as a random effect.  A comparison was made of 90 candidate models for 

each gene, which comprised 30 models covering different combinations of dietary attributes (Table 

3), either alone, with bacterial treatments added or with bacterial treatment interacting with the dietary 

traits. AIC values were corrected for finite sample sizes (AICc) to establish the most parsimonious 

models including likely nutritional attributes driving the observed data. AICc values and Akaike 

weights were estimated using the MuMin package (Bartoń, 2018). The relative weight of evidence in 

favour of one model over another (evidence ratio) is determined by dividing the Akaike weight of one 

model by another (Burnham and Anderson, 2003). In each case, the residuals from the best model 

were visually inspected for deviations from normality. Gene expression for Lysozyme, Arylophorin, 

PPO, EF1 and Tubulin were Tukey transformed prior to reanalysis using the package rcompanion 

(Mangiafico, 2017). For visualisation of the effects of the immune challenge treatment and diet on 



gene expression (Figures 2-5), residuals from the null model, containing just the random plate effect 

(Model 1, Table 3), were plotted as thin plate splines using the package fields (Nychka et al., 2017). 

Food consumption data were analysed in the same way as the gene expression data, with experiment 

included as a random effect. 

 

Physiological immune responses 

The same approach was taken for the physiological immune measurements, lysozyme, PPO and PO 

activity, except for these variables, standard linear fixed effects models were run as data were 

collected in a single experiment. The same set of 90 models as described above were fitted, with the 

addition of 180 extra models that included the additive and interactive effects of the expression of the 

relevant gene, after correction for the plate to plate variation (residuals from the null model containing 

the random effect of plate only) – the lysozyme gene for lysozyme activity and the PPO gene for PPO 

and PO activity.  

Survival 

Time to death was analysed for experiment 2, where larvae were injected with dead or live bacteria 

only. Data were analysed using Cox’s proportional hazard models in the package (Therneau, 2015). 

The same sets of models as described above were fitted (Table 3), with the addition of 120 extra 

models that included the additive and interactive effects of Moricin gene expression, after correction 

for the plate to plate variation (residuals from the null model containing the random effect of plate 

only). For visualisation of the effects of the immune challenge treatment on survival (dead vs live 

bacteria), predicted curves for low and high levels of Moricin gene expression were generated using 

the package Survminer (Kassambara and Kosinski, 2018) using ggplot2 (Wickham, 2016.).  The 

effects of diet on time to death were plotted as thin plate splines using the package fields (Nychka et 

al., 2017). 

 

Results 

How does consumption vary across diets and bacterial challenge treatments? 

The total amount of food consumed varied across the diets. For experiment 1, comparing handled 

caterpillars versus those injected with heat-killed bacteria, the best model predicting consumption was 

model 30 (Pe*Ce+Pe2+Ce2), but this was indistinguishable from the same model that included the 

additive effects of treatment (Treatment+ Pe*Ce+Pe2+Ce2, delta=1.34). For experiment 2, comparing 

dead and live bacterial injections, the best model predicting consumption was model 20 

(Co*R+Co2+R2), but as for the handled versus dead treatments in experiment 1, this model was 

indistinguishable from the same model that included the additive effects of treatment 

(Treatment+Co*R+Co2+R2, delta=0.51).  

For all treatment groups, it can be seen that consumption tended to increase as the calorie density of 

the diet decreased (Figure 1a,b,d,e), suggesting that food dilution constrained caterpillars from being 

able to take in sufficient nutrients, as expected, and that on the more calorie-dense diets caterpillars 

over-consumed nutrients. However, this increase in total consumption was more extreme on the high-

protein than on the low-protein diets, suggesting that caterpillars were willing to overeat protein to 

gain limiting carbohydrates. Overall consumption tended to decrease with treatment - dead-bacteria 

treated caterpillars ate less than handled, and live-bacteria treated caterpillars ate less than dead-

bacteria treated (Figure 1a vs b and d vs e). However, inspection of the intake arrays (Figures 1c,e), 



suggests that consumption was most reduced in both the dead and live bacteria treatments on the 

highest protein diets. 

Table 3: Terms included in each of the basic models describing different attributes of the diet or 

the amount of protein or carbohydrate consumed. 

  Terms included in model 

Model P   C P2 C2 Co   R Co2 R2 Pe   Ce Pe2 Ce2 

1                               

2 X                             

3 X     X                       

4     X                         

5     X   X                     

6 X   X                         

7 X   X X                       

8 X   X   X                     

9 X   X X X                     

10 X * X                         

11 X * X X X                     

12           X                   

13           X     X             

14               X               

15               X   X           

16           X   X               

17           X   X X             

18           X   X   X           

19           X * X               

20           X * X X X           

21                     X         

22                     X     X   

23                         X     

24                         X   X 

25                     X     X   

26                     X     X X 

27                     X   X   X 

28                     X   X X X 

29                     X * X     

30                     X * X X X 

The table shows the terms included in each of the 30 basic models covering the different dietary 

attributes. These models were also run including treatment as an additive or interactive effect, giving 90 

models in total. P (protein) =grams of protein offered, C (carbohydrate) = grams of carbohydrate offered, 

Co (concentration) = percentage of the diet that comprises digestible nutrients (17%, 34%, 42%, 63%), R 

(ratio) = percentage of protein in the digestible component of the diet (17%, 50% or 83%); Pe (protein 

eaten) =grams of protein eaten, Ce (carbohydrate eaten) = grams of carbohydrate eaten. For Pe and Ce 

this was calculated over the first 48 hours. Asterisks indicate interactions between terms (e.g. Models 10 

and 11 include the interaction between protein and carbohydrate offered). Each of variables was also 

included as a squared term (e.g. P2). These 30 models were modified by including additive or interactive 

effects of treatment (base 90 models for all analyses). For the physiological traits and survival, the base 90 

models were modified with the additive or interactive effects of expression of the relevant genes (180 

models). 

 



 

How does immune gene expression vary across diets and bacterial challenge treatments? 

For the immune genes (Toll, PPO, Lysozyme, Moricin and Relish), injection with dead bacteria 

resulted in up-regulation of gene expression relative to handled caterpillars (Figure 2). In contrast, 

injection with live bacteria either did not up-regulate gene expression relative to controls (Toll, PPO 

and Lysozyme), or did not up-regulate it as strongly (Moricin and Relish) (Figure 2). For the non-

immune genes (Arylophorin, EF1, Armadillo and Tubulin), the variation in expression levels was 

lower; for Arylophorin, EF1 and Armadillo, live bacteria triggered the down-regulation of gene 

expression relative to handled caterpillars, whilst there was no effect for Tubulin (Figure 2). For 

Arylophorin, Armadillo and Tubulin, injection with dead bacteria up-regulated gene expression 

relative to handled caterpillars but there was no effect for EF1 (Figure 2). 

The best supported model for every gene tested was model 30, with the bacterial treatment interacting 

with the amount of protein and carbohydrate eaten (Treatment*(Pe*Ce+Pe2+Ce2)). However, 

although the fit of these models was generally good (r2 > 0.26-0.86), with the exception of Moricin, 

the amount of variation explained by the fixed part of the model was very low (r2 < 0.12; Table 4; 

Figures 3-5). This means that the majority of the variation in gene expression was caused by variation 

across plates. For Moricin, when comparing the handled and dead treatments, 74% of the variation 

Figure 1 – The total amount of food eaten by caterpillars that were either (a) handled or (b) injected 

with dead bacteria (Experiment 1) or (d) injected with dead bacteria versus (e) live bacteria 

(Experiment 2).  Blue colours indicate low consumption and red colours high consumption. Colours are 

standardised within each experiment and are not comparable across experiments. Numbers on the 

contour lines indicate z values for consumption. Intake arrays indicating total consumption across the 

diets are shown separately for (c) experiment 1 and (d) experiment 2.  

 



explained by the model was explained by the fixed terms due to the massive up-regulation of Moricin 

in the dead-bacteria injected larvae (Figures 2, 3a,b). The difference between the dead and live 

treatment groups was much smaller and comparable to the other immune genes (Table 4, Figures 

3c,d).  

Table 4: The best model selected by AICc to 

explain variation in gene expression across the 

diet and bacterial treatments. 

Variation in the expression of all of the genes was 

explained by main and interactive effects of the 

amount of protein and carbohydrate eaten, and in 

interaction with the bacterial treatment, suggesting 

that the response to diet for each gene differed 

across treatments. A visualisation of these 

response surfaces (Figures 3-5) shows that, for the 

immune genes, whilst there is general up-

regulation between handled and dead bacterial 

challenges, the response surfaces are fairly flat, 

i.e. diet does not explain much variation in gene 

expression. However, for the live challenge, 

expression tends to peak at moderate protein but 

high carbohydrate intake, which corresponds to 

the highest intakes on the 33% protein diet for 

Toll, PPO, Lysozyme and Relish, and on the 17%   

Gene Best Model R2 fixed R2 both 

Toll Treat*30 0.059 0.717 
PPO Treat*30 0.035 0.715 

Lysozyme  Treat*30 0.104 0.736 

Relish Treat*30 0.120 0.378 

Moricin (1) Treat*30 0.741 0.741 

Moricin (2) Treat*30 0.097 0.264  

Arylphorin Treat*30 0.089 0.275 

EF1 Treat*30 0.023 0.862 

Armadillo Treat*30 0.034 0.696 

Tubulin Treat*30 0.040 0.855 

Figure 2 – Mean gene 

expression (+/- SE) for each 

of the immune genes and 

non-immune genes in 

response to immune 

challenge treatment, relative 

to the ‘handled’ controls. 

Genes are grouped by 

immune pathway Toll (blue 

zone: Toll, PPO, Lysozyme 

and Moricin), IMD (pink 

zone: Moricin and Relish 

[11] [12] ) or classified as 

non-immune genes (grey 

zone; Arylophorin, EF1, 

Armadillo and Tubulin). 

The black dashed line 

represents gene expression 

in the handled group. 

Residuals from the model 

accounting for the random 

effects of ‘plate’ are plotted 

against treatment. All 

models were re-run on 

untransformed data for ease 

of visualisation. 

 



protein diet for Moricin (Figures 3,4). In contrast, the non-immune genes (Arylphorin, EF1, 

Armadillo and Tubulin), show a consistently weak response to the dietary manipulation, with much 

flatter surfaces on average than those shown by the immune genes (compare Figure 4 with Figure 5). 

 

Figure 3 – Variation in 

Moricin expression across 

diets in haemolymph of 

caterpillars subject to 

different immune challenge 

treatments, (a) handled 

only, (b) injected with dead 

bacteria (Expt 1), (c) 

injected with dead bacteria 

(Expt 2) and (d) injected 

with live bacteria. Blue 

colours indicate low gene 

expression and red colours 

high gene expression. 

Colours are standardised 

within each experiment and 

are not comparable across 

experiments. 

 

 

Does immune gene expression predict physiological immune responses? 

For the Lysozyme and PPO genes, we simultaneously measured functional lytic and PPO (and PO) 

activity in the hemolymph, allowing us to determine how well gene expression predicts the functional 

immune response. We had lytic and PO data only for Experiment 2, where larvae were challenged 

with live or dead bacteria. For PPO activity, AICc could not discriminate between several of the diet 

models, with seven being equally well supported (delta < 2; Table 5). Of these models, the top six 

contained protein and protein squared with additive or interactive effects of bacterial treatment or 

gene expression (Table 5). For the models that included treatment, the estimates show that PPO 

activity was increased with live bacterial infection. For PO activity, AICc could not discriminate 

between 11 different models (delta < 2; Table 6). However, the top three models were the same as for 

PPO, with protein plus protein squared with additive or interactive effects of PPO gene expression. 

Only two of the models contained treatment effects and both in interaction with diet components. For 

lytic activity in the hemolymph, three models were equally well supported, all of which contained 

Lysozyme gene expression interacting with dietary components, which were either protein and protein 

squared, as for PO and PPO, or the P:C ratio (Table 7); none of the models contained treatment, 

suggesting that lysozyme activity is up-regulated in response to the presence of bacteria and not 

whether they are alive or dead. As for gene expression, the overall explanatory power of the models 

was quite low, (r2< 0.12; Tables 5-7). For ease of comparison, all 3 physiological immune traits were 

plotted against the protein content of the diet, as this model was common to all three traits, and the 

expression of the relevant gene, which featured in the majority of the selected models (Tables 5-7). 



The effect of treatment was excluded as it did not feature in the majority of the models. For each trait, 

activity in the hemolymph tended to increase with gene expression, as we might expect, but this was 

strongly moderated by the protein content of the diet (Figure 6). For PO and PPO activity, on low 

protein diets enzyme activity was low and there was little correspondence between gene expression 

and the physiological response, but as the protein content of the diet increased, this relationship 

became more linear (Figure 6a,b). For lytic activity the pattern was different in that enzyme activity 

increased strongly with the protein and less strongly with lysozyme gene expression up to about 45% 

protein, thereafter there was consistently high lytic activity across all levels of gene expression 

(Figure 6c). 

 

Figure 4 – Variation in immune gene expression across diets in haemolymph of caterpillars subject to 

different immune challenge treatments, (a-c) Toll, (d-f) PPO, (g-i) Lysozyme and (j-l) Relish. All figures 

in the first column are for the handled treatment, column 2 includes those injected with dead bacteria 

and column 3, those injected with live bacteria. Blue colours indicate low gene expression and red 

colours high gene expression. 

 

 



Figure 5 – Variation in non-immune gene expression across diets in haemolymph of caterpillars subject 

to different immune challenge treatments, (a-c) Arylophorin, (d-f) EF1, (g-i) Armadillo and (j-l) 

Tubulin. All figures in the first column are for the handled treatment, column 2 includes those injected 

with dead bacteria and column 3, those injected with live bacteria. Blue colours indicate low gene 

expression and red colours high gene expression.  

 

Table 5: The best models selected by AICc to explain variation in PPO activity in the haemolymph. GE 

represents gene expression for the PPO gene. Treat represents the immune challenge treatment. 

Model df Log Likelihood AICc delta weight R2 

3  4 -432.120 872.4 0.00  0.078 0.093 
GE+3  5 -431.259 872.7 0.34 0.066 0.098 

GE*3   7 -429.321 873.0 0.64 0.057 0.109 

Treat+3  5 -431.737 873.7 1.30 0.041 0.095 

Treat+GE*3 8 -428.617 

 

873.7 1.34 0.040 0.113 

Treat+GE+3 6 -430.716 873.7 1.34 0.040 0.101 

7 5 -431.938 874.1 1.70 0.033 0.094 



Table 6: The best models selected by AICc to explain variation in PO activity in the haemolymph. GE 

represents gene expression for the PPO gene. Treat represents the immune challenge treatment. 

Model df Log Likelihood AICc delta weight R2 

GE*3 7 -425.954 866.3 0.00  0.062 0.092 
GE+3 5 -428.058 866.3 0.04  0.061 0.080 

3 4 -429.363 866.9 0.58 0.047 0.072 

GE+16 5 -428.350 866.9 0.62 0.046 0.078 

GE+9 7 -426.378 867.1 0.85 0.041 0.090 

16 4 -429.513 867.2 0.88 0.040 0.071 

GE+Treat*17 10 -423.239  867.2   0.93   0.035 0.108 

Treat*17 9 -424.471 867.5 1.26  0.033 0.100 

GE+17 6 -427.775 867.8 1.55 0.029 0.081 

GE+10 8 -425.777 868.0 1.75 0.026 0.093 

GE+19 6 -427.887 868.0 1.77 0.026 0.081 

  

Table 7: The best models selected by AICc to explain variation in lytic activity in the haemolymph. GE 

represents gene expression for the lysozyme gene. 

Model df Log Likelihood AICc delta weight R2 

GE*15   7 647.521 -1280.7 0.00  0.208 0.072 
GE*18 9 649.465 -1280.3 0.34 0.176 0.080 

GE*3 5 644.526 -1278.9 1.82 0.084 0.051 

  

 

 

Figure 6 – Physiological 

immune responses vary with 

the protein content of the diet 

and the expression of the 

relevant gene. (a) PPO and (b) 

PO activity in the 

haemolymph in response to 

PPO gene expression and (c) 

lysozyme activity in the 

haemolymph in response to 

lysozyme gene expression. 

Blue colours indicate low 

activity and red colours high 

activity. 

  

 

 

 



Does immune gene expression predict survival? 

Survival was reduced in the live bacterial treatment group relative to those injected with dead bacteria 

(Hazard ratios 1.25-1.31 for models without treatment interactions, Table 8), however, this effect was 

moderated by Moricin expression (Figure 7a,b). In the dead-bacteria treatment group, Moricin did not 

explain time to death, but in the live-bacteria treatment group, larvae with high levels of Moricin 

expression had an increased risk of death relative to those with low expression (Figure 7a,b; Hazard 

ratios 1.20-1.24 for models without GE interactions, Table 8). Of the top 5 models, 4 included the 

additive and interactive effects of protein and carbohydrate eaten as well as their squared terms (Table 

8). To visualise the effects of diet on survival we plotted thin-plate splines for time to death against 

the amount of protein and carbohydrate consumed. The patterns differ between dead and live bacterial 

treatments. Time to death is overall shorter in the live treatment (note the shift of colour towards 

orange and blue). However, whilst time to death is affected by both protein and carbohydrate 

consumption in the dead treatment, with peak survival on high protein/low carbohydrate and vice 

versa, in the live treatment, time to death appears to be solely explained by protein availability (note 

the near-vertical contours). Low-protein diets resulted in the most rapid deaths and high-protein diets 

extended the time to death. 

 

Table 8: The best models selected by AICc to explain variation in survival after bacterial (dead 

or live) injection. GE represents gene expression for the Moricin gene. 

Model df Log Likelihood AICc delta weight R2 

Treat+GE*30   12 -1662.917 

 

3350.8 0.00  0.139 0.127 
Treat*GE*30   23 -1650.823 

 

3351.1 

 

0.30 0.120 0.186 

Treat+GE+30   7 -1668.715 

 

3351.8 

 

0.99 0.085 0.098 

Treat+GE+20 7 -1668.864 

 

3352.1  

 

1.29 0.073 0.097 

GE*30 11 -1664.796 

 

3352.4 

 

1.61 0.062 0.118 

  

Discussion 

Previous work has shown that immune responses can be strongly affected by the amount and/or 

balance of nutrients in the diet e.g. (Fernandes et al., 1976; Ingram et al., 1995; Kristan, 2008; Le 

Couteur et al., 2015; Lee et al., 2006; Nayak et al., 2009; Povey et al., 2009; Ritz and Gardner, 2006; 

Wallace et al., 1999; White et al., 2017). However, most of these studies covered only a relatively 

small region of nutrient space (Fernandes et al., 1976; Ingram et al., 1995; Lee et al., 2006; Nayak et 

al., 2009; Povey et al., 2009; Ritz and Gardner, 2006; White et al., 2017) and/or only tested innate 

responses (e.g.(Fernandes et al., 1976; Ingram et al., 1995; Le Couteur et al., 2015; Lee et al., 2006; 

Nayak et al., 2009; Povey et al., 2009; White et al., 2017) or the response to an artificial pathogen or 

immune stimulant (Cotter et al., 2011b). Here we addressed this gap by looking at both gene 

expression, functional immune responses and survival after both dead and live pathogen challenges 

over a broad region of nutrient space. Our major findings are that whilst functional immune responses 

(PPO, PO and lytic activity in the hemolymph) change as expected in response to the dietary 

manipulation, showing a clear elevation as the protein content of the diet increases, gene expression is 

much less predictable (Figures 3,4). Despite this, expression of the PPO and Lysozyme genes did 

predict PPO/PO and Lysozyme activity in the hemolymph, but this relationship was strongly 

dependent on the amount of protein in the diet (Figure 6), suggesting that using immune gene 

expression as an indicator of the efficacy of the immune response may be reliable only under specific 



dietary conditions. Furthermore, expression of the most responsive gene to infection (Moricin) 

strongly modulated survival, with high levels of expression resulting in reduced survival after 

bacterial infection, suggesting that expression is a marker of bacterial load or ‘sickness’ as opposed to 

an indication of a robust immune response. 

Our dietary manipulation was successful in inducing caterpillars to consume over a large region of 

nutrient space, allowing us to independently assess the effects of macronutrient composition and the 

calorie content of the diet on immunity. There was evidence for compensatory feeding; caterpillars 

did not consume the same amount of every diet. As expected, caterpillars ate more as the calorie 

density of the food decreased (Figure 1), but this varied across diets, such that consumption was 

highest on the high protein diets, suggesting that caterpillars were willing to over-eat protein to gain 

limiting carbohydrates. However, as has been found in previous studies (Adamo, 1998; Adamo et al., 

2007; Exton, 1997; Lennie, 1999; Povey et al., 2014), we found some evidence for illness-induced 

anorexia. Caterpillars injected with live X. nematophila showed suppressed food consumption across 

all diets (Figure 1e – note the shift of colours towards oranges and blues). Interestingly, injection with 

dead X. nematophila did not induce this response, which suggests that it is not the triggering of an 

immune response that causes this change in consumption, but the presence of an actively replicating 

pathogen. This reduction in consumption was also consistent across diets, with infected caterpillars, 

on average, consuming just 77% of the food consumed by healthy caterpillars (Figure 1c). 

In insects, two major pathways are triggered in response to microbial infection; typically, genes in the 

Toll pathway respond to infection by fungi and Gram-positive bacteria, whilst genes in the IMD 

pathway respond to Gram-negative bacteria (Broderick et al., 2009). Moricin and Lysozyme are 

triggered by Toll in Lepidoptera (e.g. Zhong et al., 2016), but Moricin has also been shown to respond 

to Gram-negative bacteria and so may also be triggered by IMD (Hara and Yamakawa, 1995). Of the 

5 immune genes we tested, only the IMD genes, Moricin and Relish, were significantly up-regulated 

 

Figure 7 –Survival for 

larvae injected with either 

dead (a,c) or live (b,d) X. 

nematophila bacteria. 

Predicted survival curves 

(a,b) are plotted for model 

Treat*GE*30. Protein eaten 

and carbohydrate eaten 

were set at mean values for 

each coefficient and Moricin 

gene expression was set as 

either low (lower quartile) 

or high (upper quartile). To 

visualise the effects of diet 

on survival, time to death 

(c,d) is plotted as thin plate 

splines against the amount 

of protein and carbohydrate 

consumed. Blue colours 

indicate a short time to 

death and red colours a slow 

time to death.  



in response to infection with both dead and live bacteria. For the Toll genes (Toll, PPO and 

Lysozyme), gene expression was up-regulated by dead bacteria but not by live bacteria (Figure 2). 

However, even for Moricin and Relish, up-regulation was much stronger in response to dead than live 

bacteria. This may reflect a general down-regulation of gene expression during an active infection, as 

the non-immune genes typically show reduced gene expression in response to the live infection 

compared to the controls. This may be driven by the illness-induced anorexia, with reduced 

consumption resulting in lower metabolic activity and consequently lower gene expression. However, 

there is evidence that X. nematophila can inhibit Cecropin, Attacin and Lysozyme gene expression (Ji 

and Kim, 2004; Park et al., 2007). It may be that, rather than specifically inhibiting AMP gene 

expression, X. nematophila inhibits the expression of all genes. 

As Moricin was most strongly up-regulated in response to infection, we tested how its expression 

correlated with time to death in challenged caterpillars (dead vs live injection, Expt 2 only). Whilst 

Moricin expression had negligible effects on survival in the dead bacterial treatment, high levels of 

expression were indicative of an increased risk of death after live infection. Thus, high expression 

levels were not a good indicator of immune capacity, but rather signalled heavy bacterial loads or low 

tolerance. Distinguishing between these hypotheses would require data on bacterial loads at different 

time points after infection. Survival was also strongly affected by diet, with the longest survival times 

occurring on the highest protein diets after live-bacterial infection. High-protein diets have been 

implicated in increased survival after viral infection in this species (Lee et al., 2006) and after either 

bacterial or viral infection in the congener, Spodoptera exempta (Povey et al., 2009; Povey et al., 

2014). However, none of these diets are associated with the highest gene expression for any immune 

gene, suggesting that high-protein diets may reduce the burden of infection via mechanisms other than 

improving the immune response. 

X. nematophila is a Gram-negative bacterium, and is clearly triggering Moricin and Relish expression, 

but as Toll is only marginally up-regulated in response, it is probably the IMD pathway that is 

controlling this response. Another possible explanation for why live bacteria appear to trigger a down-

regulation of gene expression is that our sampling protocol (20 h post-challenge) did not allow us to 

catch peak expression levels (note that bacterial loads tend to peak in S. littoralis at around 24h). 

Expression of lysozyme and PPO in the Glanville fritillary butterfly was not up-regulated 24 h after 

injection with M. luteus cells (Woestmann et al., 2017) , whilst in the silkworm, up-regulation of 

lysozyme in response to fungal infection occurred in two peaks, from 9-18 h, and then between 30 and 

48 h (Hou et al., 2014) . This may be a fungal-specific response, or it might mean that we would have 

seen higher gene expression had we assayed over an extended time period. It is also possible that the 

timing of gene expression peaks earlier after live, rather than dead bacterial injection, further studies 

would be required to elucidate the time course of gene expression for the different genes to be certain 

of this. However, as non-immune genes also appear to follow the same pattern, reduced expression in 

response to live vs dead bacteria, the hypothesis that infection results in down-regulation of gene 

expression in general is a reasonable assumption. 

Arylphorin is primarily characterised as a storage protein (Telfer and Kunkel, 1991), however, it is 

up-regulated in response to bacterial infection and also in response to non-pathogenic bacteria in the 

diet of Trichoplusia ni caterpillars (Freitak et al., 2007). It has been shown to bind to fungal conidia in 

Galleria mellonella hemolymph, potentially working in coordination with antimicrobial peptides 

(Fallon et al., 2011). The lack of up-regulation here may be due to the use of a Gram-negative 

bacterial challenge; the up-regulation in T. ni was in response to a mixture of E. coli (G-ve) and 

Micrococcus luteus (G+ve), so it is not clear if both or just one of the bacteria caused the response. 

Another possibility is that Arylphorin levels are already expressed at maximal levels and cannot be 



further up-regulated. In T. ni caterpillars, Arylphorin is the most abundant protein in the hemolymph 

during the final instar (Kunkel et al. 1990). Its levels are known to increase throughout the final instar 

in Spodoptera litura (Yoshiga et al., 1997), and the point at which gene expression was measured here 

was 48-72 h into the final instar, which is shortly before pupation. The pattern of gene regulation for 

Arylphorin looks more like that shown by the non-immune genes, with little or no up-regulation in 

response to dead bacteria and down-regulation in response to live bacteria. Further studies would be 

required to assess the role of Arylphorin as a putative immune gene in this species. 

For two of the immune genes, PPO and Lysozyme, we were able to simultaneously measure the 

activity of the relevant protein in the hemolymph as a measure of the functional immune response. 

Thus, we were able to assess how well gene expression predicts functional immune activity and 

whether this relationship changes with the diet. Here, we found that for each functional immune 

response, PPO activity, PO activity and lysozyme activity, expression of the relevant gene does 

predict the response, but only at certain intakes of protein (Figure 6). For example, PPO and PO 

activity increase linearly with the expression of the PPO gene, but only above ~30% dietary protein 

(Figure 6). This suggests that the availability of dietary protein limits the translation of PPO mRNA 

into PPO protein, and the activation of PPO into PO. In contrast, the expression of the gene is not 

limited by protein availability, and so gene expression can be high when dietary protein is low, but it 

is ineffective as it does not result in a comparable functional immune response. The lytic response is 

also affected by dietary protein, however, in this case, the relationship between gene expression and 

lytic activity is consistently weak and above 45% protein maximal lytic activity is achieved at low 

gene expression, and increased expression does not improve the response. As for PPO, this suggests 

that protein limits the translation of lysozyme up to about 45% protein. 

These results are not surprising when you consider the costs associated with the production of protein. 

It is estimated that only 10% of the energetic costs of protein production are spent on transcription; 

translation is much more energetically expensive and relies on the availability of amino acids to build 

the relevant protein (Warner, 1999). It is likely, therefore, that whilst transcription of immune genes 

might still be up-regulated in response to infection under low protein conditions, the translation of the 

protein might be reduced, impairing the correlation between mRNA and protein abundance. It is also 

possible that gene expression would be a better predictor of the functional response at different time 

points, if there is a lag between gene expression and protein translation. Again, this would require 

further investigation. However, given the much stronger relationship between the physiological 

immune responses and protein availability, it still seems likely that the relationship between the two 

will differ across diets. Our results suggest that caution should be used when interpreting gene 

expression as a measure of “investment” into a particular trait, or as a measure of the strength of a 

particular immune response. It is surprisingly common in ecological studies for gene expression to be 

used in this way without any attempt to correlate the expression of a gene with the production of the 

functional protein (Zylberberg, 2019). If dietary protein levels are limiting, then gene expression may 

be a poor indicator of the immune capacity of an animal. Here we have tested this just with immune 

genes for which we have good functional assays of the active protein, but it seems likely that this 

would also be true of other classes of genes, for which gene expression is routinely used as an 

indicator of an organism’s investment. 

In summary, as expected, immune challenge with a live Gram-negative bacterium up-regulated 

immune genes in the IMD pathway, though all immune genes were up-regulated to a certain extent by 

the challenge with dead bacteria. While functional immune responses (PO, PPO and Lysozyme) 

typically improved with the protein content of the diet, gene expression varied non-linearly with diet 

composition. However, the expression of PPO and Lysozyme genes predicted PPO/PO and Lysozyme 



activity, but only when the availability of dietary protein was not limiting, suggesting that using gene 

expression as an indicator of investment in a trait is unlikely to be reliable, unless its relationship with 

diet is known. 
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Table S1 – diet ingredients of the 20 chemically-defined diets 

 

 

 

 

 

 

  

 

 

 

 

 

 

All values are in grams for 100g of each diet. Proteins are in brown, fats in yellow and carbohydrate in orange. Vitamins and minerals (blue) were adding at a 

constant level of 3g per 100. Fats were dissolved in chloroform before being added to the casein and cellulose component of the diet to ensure an even distribution 

throughout the diet. The chloroform was allowed to evaporate overnight in a fume cupboard before the addition of the remaining ingredients. The resulting dry 

powders were stored in the freezer until use. Prior to use the powder was diluted 1:6 in 1% agar and allowed to set. The cellulose, fats, proteins and ascorbate were 

purchased from Sigma, the Wessons salts and Vitamin mix were purchased from Bioserv and the sucrose was table top sugar. 

 

Diet Cellulose Casein Peptone Albumen Linoleic acid Cholesterol Sucrose Wessons salts Ascorbate Vitamin mix 

1 33 6.3 2.1 2.1 0.55 0.55 52.5 2.5 0.275 0.18 

2 54 4.2 1.4 1.4 0.55 0.55 35 2.5 0.275 0.18 

3 62.4 3.36 1.12 1.12 0.55 0.55 28 2.5 0.275 0.18 

4 79.2 1.68 0.56 0.56 0.55 0.55 14 2.5 0.275 0.18 

5 33 12.6 4.2 4.2 0.55 0.55 42 2.5 0.275 0.18 

6 54 8.4 2.8 2.8 0.55 0.55 28 2.5 0.275 0.18 

7 62.4 6.72 2.24 2.24 0.55 0.55 22.4 2.5 0.275 0.18 

8 79.2 3.36 1.12 1.12 0.55 0.55 11.2 2.5 0.275 0.18 

9 33 18.9 6.3 6.3 0.55 0.55 31.5 2.5 0.275 0.18 

10 54 12.6 4.2 4.2 0.55 0.55 21 2.5 0.275 0.18 

11 62.4 10.08 3.36 3.36 0.55 0.55 16.8 2.5 0.275 0.18 

12 79.2 5.04 1.68 1.68 0.55 0.55 8.4 2.5 0.275 0.18 

13 33 25.2 8.4 8.4 0.55 0.55 21 2.5 0.275 0.18 

14 54 16.8 5.6 5.6 0.55 0.55 14 2.5 0.275 0.18 

15 62.4 13.44 4.48 4.48 0.55 0.55 11.2 2.5 0.275 0.18 

16 79.2 6.72 2.24 2.24 0.55 0.55 5.6 2.5 0.275 0.18 

17 33 31.5 10.5 10.5 0.55 0.55 10.5 2.5 0.275 0.18 

18 54 21 7 7 0.55 0.55 7 2.5 0.275 0.18 

19 62.4 16.8 5.6 5.6 0.55 0.55 5.6 2.5 0.275 0.18 

20 79.2 8.4 2.8 2.8 0.55 0.55 2.8 2.5 0.275 0.18 

Order 

code 

C8002 

Sigma 

C7078 

Sigma 

70951 

Sigma 

A5253 

Sigma 

62240 

Sigma 

C8503 

Sigma 

 F8680 

Bioserv 

A596 

Sigma 

F8135 

Bioserv 


