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Abstract

Many philosophers have challenged the ideal of value-free science on the grounds that

social or moral values are relevant to inferential thresholds. But given this view, how

precisely and to what extent should scientists adjust their inferential thresholds in light

of non-epistemic values? We suggest that Signal Detection Theory (SDT) provides a

useful framework for addressing this question. Moreover, this approach opens up further

avenues for philosophical inquiry and has important implications for philosophical debates

concerning inductive risk. For example, the SDT framework entails that considerations of

inductive risk and inferential-threshold placement cannot be conducted in isolation from

base-rate information.
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1 Introduction

Inferential thresholds specify what evidence should be taken as sufficient for accepting,

asserting, or acting upon a claim in a context. An inferential threshold might be a level of

statistical significance, such as 0.05, or that a certain concentration of antibodies in a blood

sample should be taken to indicate that a person is HIV positive. Literature on inductive

risk has discussed the role of values of a social or ethical character in decisions about

where inferential thresholds should be placed, with particular attention being given to the

implications of this issue for the ideal of value-free science.1 However, this philosophical

debate has been mostly carried out in an informal manner. Those who argue that non-

epistemic values are relevant to scientific decisions about evidential thresholds have given

little attention to formal models capable of providing guidance on how precisely this ought

to be done.

To appreciate the significance of this lacuna, suppose that one were convinced of the

philosophical proposition that non-epistemic values should influence choices of inferential

thresholds in science and wanted to know how to apply it in practice. Then several

pressing questions immediately arise that cannot be addressed by informal discussions of

inductive risk and challenges it poses to the traditional ideal of value-free science. We

organize these into the following three groups: 1. Prospective: Where precisely should

an inferential threshold be placed in a given context and why? 2. Reverse Engineering:

What values are embedded in a given inferential threshold in a specific context? To

what extent can those values be “reverse engineered” from the choice of threshold and

details of the context, and how? 3. Conceptual Clarification: Can any of the ongoing

disputes surrounding inferential thresholds be partially or wholly resolved by substituting

a formal model for the prevailing informal modes of reasoning? Furthermore, are there

any aspects of the received view, as reached through informal reasoning, that are due

1See Churchman (1948), Rudner (1953), Jeffrey (1956), Levi (1962), Hempel (1965),

Douglas (2000, 2009), Wilholt (2009), Steel (2010), and Betz (2013).



some reconsideration in the light of the greater generality of a formal model? This paper

draws on concepts from Signal Detection Theory (SDT) to address these questions, and

illustrates this approach with several examples.

As explained in section 3, SDT provides a formal model in which questions about

optimal choices of inferential thresholds can be answered for classification and hypothesis-

testing problems. Therefore, it can provide answers to the three questions above. Given

inputs about probabilities and costs, it can provide a rationale for deciding where to set an

evidential threshold in a given context. Similarly, SDT can identify a range of assumptions

about probabilities and costs that would lead to a given choice of threshold, which entails

constraints on implicit valuations of costs if probabilities are known. Finally, the SDT

framework can clarify concepts and identify omissions that may occur in reasoning about

inferential thresholds, including some which have been discussed in literature on inductive

risk and others which have not.

The main body of this paper is organized as follows. In section 2, we briefly review

philosophical literature on inductive risk, with an eye toward exposing gaps that arise as

a result of the absence of a formal model. Section 3 presents the basic concepts of SDT

and illustrates them with a schematic example of a diagnostic test. The subsequent three

sections examine the three issues highlighted above. Section 4 discusses examples involv-

ing tuberculosis and lead poisoning to illustrate how evidential thresholds are determied

within SDT, taking the misclassification costs estimated in the medical literature as given.

In section 5, we examine the well-known 0.05 level of significance from the persepective

of reverse engineering values inherent in this inferential threshold. The potential for con-

ceptual clarification is explored in section 6, and is illustrated by base-rate neglect in the

context of inductive risk. Finally, section 7 concludes with a discussion of the relevance of

this framework for debates about inductive risk in the philosophy of science literature.

Before proceeding, we wish to emphasize two issues that we do not discuss here. First,

we do not attempt to justify or defend the claim that non-epistemic values should influence



scientists’ choice of inferential thresholds.2 Instead, our starting point is that if one accepts

this claim – as many philosophers of science do – then a formal framework such as SDT is

useful for mapping between values and inferential thresholds. Second, we do not attempt

to answer questions about which non-epistemic values should be reflected in assessments

of costs or how costs should be quantified. Although we give examples in which such

quantification has been carried out, we do not inquire here into the propriety of how this

was done.

2 The Argument from Inductive Risk (AIR)

The classic presentation of AIR is found in Rudner’s (1953) accessible and compelling

analysis. More recently, AIR has enjoyed a resurgence, in no small measure due to Heather

Douglas’ (2000, 2009) influential work. Rudner’s formulation of the argument begins with

the premise that accepting and rejecting hypotheses is part of the daily work of scientists.

Yet, the argument proceeds, scientific inferences from evidence to hypotheses are always

more or less uncertain. Consequently, accepting a hypothesis requires a value judgment

about how much uncertainty is tolerable in the situation. That value judgment, moreover,

is often ethical in nature, since it depends on how bad, from a moral perspective, it would

be to err in one direction or another. In Rudner’s example, a higher inferential threshold

would be required to accept that a toxic ingredient in a drug is not present at lethal

levels than to accept that a batch of belt buckles stamped by a machine are not defective.

Thus, according to Rudner, “How sure we need to be before we accept a hypothesis will

depend on how serious a mistake would be” (Rudner, 1953, 2). And value judgments

about the seriousness of mistakes will reflect the “moral standards” of those who make

them (Rudner, 1953, 2). Rudner took the above reasoning to show that “the scientist as

2An anonymous referee points out that a number of epistemologists have recently ar-

gued that numerical loss functions can encode purely epistemic concerns (Joyce, 1998;

Pettigrew, 2016).



scientist does make value judgments” (Rudner, 1953, 2).

Douglas (2000, 2009) modifies and extends AIR in several respects. For example, rather

than acceptance, Douglas speaks of asserting scientific claims, and rather than concluding

that scientists actually do make value judgments, Douglas insists that they have a moral

responsibility to do so (2009). In addition, Douglas (2000) extends AIR to encompass de-

cisions involved in generating evidence, including coding individual data points (e.g., as a

malignant tumor or not) as well as selecting assumptions (e.g., threshold versus linear dose

response) that underlie statistical models used in data analysis.3 However, despite these

differences a recognizable pattern is evident. In general, variants of AIR insist, first, that

inferences must be made from stochastic or otherwise uncertain evidence to one of a small

number of discrete options, such as accept/reject/suspend judgment or assert/deny/refrain

from commenting (see Steele, 2012). And second, it is claimed that value judgments of

an ethical or moral nature are relevant to deciding how to make such inferences. Classic

objections to AIR challenge one of these two steps. For example, Jeffrey (1956) challenges

the first by asserting that scientists should not accept or reject hypotheses, and should

instead limit themselves to reporting the probabilities of hypotheses given available evi-

dence. In contrast, Levi (1960, 1962) agrees that accepting and rejecting hypotheses is

a proper part of science, but argues that in a scientific context these decisions should be

driven exclusively by scientific values, such as explanatory scope and simplicity. A more

recent criticism of AIR due to Betz (2013) can also be construed as targeting the second

of the two steps just highlighted. That is, Betz claims that, if qualifications regarding

uncertainty are thoroughly incorporated into the claims in question, then it is possible to

avoid value judgments about how much certainty is enough.

In this paper, our purpose is to explore implications of a formalization of AIR, with a

focus on accepting or asserting hypotheses in light of statistical data. Consequently, we

3Some argue against expanding the scope of AIR in this manner (see Biddle and Kukla,

2016).



focus on aspects of the inductive risk literature that are relevant to the three questions

highlighted above under the labels prospective, reverse engineering, and conceptual clari-

fication. Since these questions all presume that one version or another of AIR is correct,

we will not further review objections to the soundness of that argument here. Instead, we

consider the somewhat less extensive subset of the inductive risk literature that is relevant

to these three questions.

Let us begin with the prospective category, that is, questions about where to set an

inferential threshold in a given context. As noted above, advocates of AIR propose no

formal normative model of how probabilities and values should lead to decisions about

inferential thresholds. Wald (1942) set out a general, abstract framework for determining

the “best” Statistical Decision Function (SDF) and its associated critical region, which

Churchman (1948) discusses in some detail. Although the post-Churchman AIR litera-

ture continues to acknowledge Wald, it has not, to our knowledge, developed any formal

model of how probabilities and non-epistemic values should jointly determine inferential

thresholds. As a result, it is unclear which inferential threshold should be chosen given

background knowledge and values – even for one who wishes to follow the argument from

inductive risk. Scarantino (2010), presenting an “illustration of one of the legitimate roles

non-epistemic values can play in science” (p. 422), argues that “...the degree of confirma-

tion required for accepting the HLA [Human Leucocyte Antigen] Hypothesis should be

very high...” (p. 429). But how high, exactly?

Turn then to the second type of question: reverse engineering. It is sometimes claimed

that influences of values are inherent or inevitable in choices of inferential thresholds

(Wilholt, 2009; Steele, 2012; Winsberg, 2012). However, several other philosophers have

noted that inferential thresholds may be chosen for reasons unrelated to ethical or social

values, such as convenience or inertia, and consequently that the motivations of a choice

cannot be inferred from its ethically or socially significant impacts (Parker, 2010; Morrison,

2014; Steel, 2016). In what sense, then, can values be said to be implicit in a choice

of inferential threshold? And how can one infer such implicit values from inferential



thresholds plus constraints of the case? Can specific instances of scientific inference be

‘reverse engineered’ to reveal the values implicit in the standard of evidence utilized?

We are not aware of any work in the inductive risk literature that provides a means for

answering such questions.

Our final question type is conceptual clarification. The absence of a formal model

can leave some important aspects of reasoning about inductive risk unclear. For example,

Douglas (2009) argues that scientists have a moral obligation to consider harms that might

result if claims they make are mistaken, but she does not similarly argue that they have

an obligation to consider benefits that accrue if their claims are correct. This has led some

to ask whether there is any reason to limit attention to harms of error in decisions about

inferential thresholds, or whether the benefits of getting it right should also be considered

(Elliott, 2011; Wilholt, 2016). As we explain below, the SDT framework provides a simple

and compelling answer to this question. In addition, discussions of inductive risk are

typically framed in terms of probabilities of false negatives and false positives – that is,

the chance of rejecting a claim when when it is true or of accepting it when it is false.

Such discussions make it easy to overlook the role of base rates in assessments of inductive

risk, and indeed this role has received very little, if any attention in the philosophical AIR

literature. Nevertheless, base rates play an essential role in decisions about inferential

thresholds in the SDT framework we describe.

3 Signal Detection Theory and Inductive Risk

In this section, we present the essential features of SDT and explain how it can be applied to

inductive-risk problems. SDT is not the only formal framework within which the determi-

nation of inferential thresholds may be studied. For instance Bayesian decision theory can

be employed to solve for the action that maximizes subjective expected utility, where the

‘action’ in question is adopting an inferential threshold (Berger, 1985). Similarly, it would

also be possible to follow an explicitly Bayesian reconstruction of reverse-engineering-mode



SDT (see Kadane et al., 1999). Nevertheless we elect to work within SDT – which can

be viewed as a special case of Bayesian decision theory4 – rather than full-blown Bayesian

decision theory because SDT is a simplified, practitioner-friendly framework that is spe-

cialized for the very purpose of determining optimal inferential thresholds and which has

been actively used for this purpose within the scientific community throughout the post-

WWII period.

Preliminaries SDT is a tractable and generic framework within which to analyze simple

classification and hypothesis-testing problems. Examples of SDT may be found in diverse

areas ranging from meteorology to medical diagnostics, as well as in quality control, credit

scoring, and fraud detection in industry.5 For concreteness, we will introduce and illustrate

the concepts of SDT in the context of simple two-state medical diagnosis, in which the

two health-state categories are ‘healthy’ (¬D) and ‘disease present’ (D). In the generic

language of hypothesis testing, these correspond to the null hypothesis and the alternative

hypothesis, respectively.

The diagnostic problem consists of inferring the patient’s disease state {¬D,D} through

observing the value of a score variable X ∈ R. SDT provides a method for determining

an optimal cutoff threshold x∗ ∈ R above which it is inferred that the patient’s health

state is D, and the patient is said to test ‘positive’ for the disease. It is important for

SDT that the score variable be real valued, as this is necessary for the construction of the

Receiver Operating Characteristics (ROC) curve, which we discuss below.

Some diagnostic tests are very simple, in that a patient’s score-variable value is obtained

from a single direct measurement – for instance from measurement of the blood-sample

concentration of a specific enzyme. In many diagnostic tests, however, the score-variable

value is obtained by combining the results from several different direct measurements (of

4We thank an anonymous referee for flagging these overlaps between SDT and Bayesian

decision theory.
5See e.g. Swets (2001) and Swets et al. (2000) for a sample of diverse applications.



biomarkers) through a specifically developed (and validated) formula.

Sampling distributions Using the best available method – in some cases implemented

through posthumous dissection – the true disease-D health state is determined for each

subject in an N -strong representative sample of the population. This establishes the base-

rate prevalence of the disease pD = nD/N . The information also allows the construction

of two sampling distributions, which we represent as the conditional distribution of score-

variable values among the healthy f(x|¬D) and among those with the disease f(x|D).

Among the healthy there is variation in the score-variable values, and thus the empirical

distribution has positive variance σ̂2

¬D > 0, which is a measure of the noise present in the

score variable. Similarly, there is variation in the score-variable values among those with

the disease σ̂2

D > 0. If there were no overlap between the densities f(x|¬D) and f(x|D),

diagnosis would be trivial and in principle, error free. The fact that the densities f(x|¬D)

and f(x|D) do overlap, almost invariably, sets the stage for explicitly striking a tradeoff

between errors of the first and second kind.

In practical diagnostic problems, SDT is applied directly to empirical sampling dis-

tributions. But for the purposes of developing the formal machinery of SDT, it is useful

to work with families of known probability distributions. In this presentation we will use

Gaussian sampling distributions, although in the literature one also finds applications of

the Chi-square, Poisson, Gamma, power-law (exponential), geometric (Egan, 1975), lo-

gistic, extreme-value (DeCarlo, 1998), triangular, and beta (Marzban, 2004) families of

distributions.

Under the Gaussian assumption, we may specify the sampling distribution among the

healthy as X¬D ∼ N(µ¬D, σ
2

¬D) and among those with the disease as XD ∼ N(µD, σ
2

D).

Crucially, diagnosis by applying a cutoff threshold can perform better than chance when

µ¬D < µD.
6 Any given cutoff threshold x′ simultaneously defines the True-Negative Rate

6The opposite case µ¬D > µD is not analyzed here, as it may be converted into the

case we consider through a simple transformation.



(TNRx′ = 1−αx′) and the False-Positive Rate (FPRx′ = αx′ i.e. Type-I error rate) as well

as the True-Positive Rate (TPRx′ = 1− βx′ i.e. statistical power) and the False-Negative

Rate (FNRx′ = βx′ i.e. Type-II error rate).

1− αx′ = P (X ≤ x′|¬D) =

∫ x′

−∞
f(x|¬D) dx (3.1a)

αx′ = P (X > x′|¬D) =

∫ ∞

x′

f(x|¬D) dx (3.1b)

βx′ = P (X ≤ x′|D) =

∫ x′

−∞
f(x|D) dx (3.2a)

1− βx′ = P (X > x′|D) =

∫ ∞

x′

f(x|D) dx (3.2b)

Figure 1: The TPR1 = 1 − β1 = 0.84 (in gray) and the FPR1 = α1 = 0.16 (in red)
generated by the cutoff threshold x′ = 1 when X¬D ∼ N(0, 1) and XD ∼ N(2, 1).
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Receiver Operating Characteristics curve The extent to which diagnosis by us-

ing the cutoff threshold x′ performs better than mere chance – i.e. in comparison with



diagnosis by flipping a coin – depends on the extent to which the True-Positive Rate

(TPRx′ = 1 − βx′) exceeds the False-Positive Rate (FPRx′ = αx′). This of course varies

parametrically with the cutoff threshold x′.

The Receiver Operating Characteristics (ROC) curve is the name given to this para-

metric plot of the locus of (αx′ , 1−βx′) pairs generated by allowing x′ to vary from −∞ to

∞ (see Figure 2b). In so doing, the ROC curve encodes the highest-attainable statistical

power 1−β for any given fixed Type-I error rate α, holding constant the parameters of the

sampling distributions.7 In other words, the ROC curve encodes the best-attainable com-

binations of TPR and FPR. Furthermore, because of the analytical ROC curve’s smooth,

differentiable form,8 it is particularly useful in capturing the entire range of possible trade-

offs that may be struck between the TPR and the FPR.

7The ROC curve permits the Neyman-Pearson lemma to be implemented directly by

‘reading off’ the greatest-attainable statistical power associated with a fixed Type-I error

rate (such as α = 0.05).
8unlike typical empirical ROC curves



Figure 2: ROC curve for sampling distributions X¬D ∼ N(0, 1) and XD ∼ N(2, 1).

(a) x′ = −0.5, FPR−.5 = 0.69
(in red), TPR−.5 = 0.99 (in
gray). See green marker.

−4 −2 x ′ 0 2 4 6

(b) ROC curve. Markers indicate the
(FPR,TPR) pairs associated with x′=2.5
(blue), x′ = 1 (magenta), and x′ = −0.5
(green).
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The ROC curve is a routinely and widely used general performance measure for evalu-

ating classifiers and diagnostic tests. The Area Under the Curve (AUC) of an ROC curve

is a summary measure of performance. ROC curves of uninformative diagnostic tests coin-

cide with the FPR=TPR diagonal, and are characterized by AUC= 0.5 and performance

no better than diagnosis by coin toss – regardless of the cutoff threshold. The ROC curve

of a perfect classifier – assuming one could be found – would rise to the top left-hand

corner where (FPR,TPR)=(1,1), whereby AUC=1. Diagnostic tests may be ranked by

their AUCs, which in general fall within the open interval (0.5,1).

As the ROC curve is a visualization of sampling-distribution integrals (see equations

(3.1b) (3.2b)), the AUC depends on the relationship between the sampling distributions.

In our example of unit-equal-variance Gaussian sampling distributions, the AUC is de-

termined uniquely by the normalized distance between the sampling distributions, which

is called the discriminability of the diagnostic test d′ = (µD − µ¬D)/σ. Let Φ(·) denote

the standard-normal Cumulative Distribution Function. The AUC in this example has a

particularly simple representation: AUC=Φ( d′√
2
). Thus in Figure 2b, AUC=Φ( 2√

2
) = 0.92,

which is a fairly high value, given that the AUC may, under certain assumptions, be inter-

preted as the probability that a randomly selected positive case i will have a score value

that is larger than a randomly selected negative case j (Green and Swets, 1966).9

(Mis-)classification costs In SDT, value judgments relating to outcomes are framed as

costs, which in applications are generally expressed in (ratio-scale) monetary units.10 But

9i.e. in the Figure 2b example P (xi > xj) = 0.92
10The monetary-equivalent values of non-market-traded amenities – such as Quality-

Adjusted Life Years (QALYs) – may be incorporated into the misclassification-cost ma-

trix using e.g. Contingent-Valuation methods, but this requires a separate, resource-

intensive, methodologically challenging extra-statistical investigation of its own (Bobinac

et al., 2014).



ultimately, it is the user of SDT who determines the units in which costs are denominated,

as well as the types of factors that are deemed to be relevant in the diagnostic problem.11

There clearly are technical, ethical, institutional and sometimes legal questions to be

confronted in determining the nature of the assay undertaken and the factors taken into

consideration when computing each of the misclassification-cost-matrix elements. These

considerations receive very little attention in the SDT literature, as determination of the

numerical values with which to populate the misclassification-cost matrix is considered to

be an extra-statistical, domain- and context-specific matter.

The misclassification-cost matrix comprises four elements, one for each State×Inference

combination. Each row in Table 1 represents a state of nature. The top row pertains to

the disease-present state (D). In this state, the patient’s score value is drawn from f(x|D)

and the diagnostic test delivers a True-Positive result with associated cost CTP when

x′ < x, else a False-Negative result with associated cost CFN. The bottom row pertains

to the disease-absent state (¬D). In this state, the patient’s score value is drawn from

f(x|¬D) and the diagnostic test delivers a False-Positive result with associated cost CFP

when x′ < x, else a True-Negative result with associated cost CTN.

Table 1: Misclassification-cost matrix.

Inference

D ¬D

State
D CTP CFN

¬D CFP CTN

Consider the misclassification-cost matrix in connection with an example involving

a diagnostic test, where an effective treatment for the disease in question exists and is

available to those tested. It is customary to set CTN = 0. Under these circumstances,

11Hagen (1995) for instance calculates misclassification costs in terms of changes to the

mortality rate, excluding “outcomes such as inconvenience, pain, or monetary cost (p.

230).”



CFN > CTP > 0. That is, it is best not to have the disease at all, but if you have it, it is

better to be correctly diagnosed and treated than not to be diagnosed. The costs in the

bottom row in Table 1 are those of not having the disease when the test result is positive

or negative, respectively. In this case, CFP > CTN, since the false-positive test leads to

harmful effects (e.g., anxiety, unnecessary medical procedures, etc.). Figure 3 provides a

numerical example of what a classification matrix might look like in a medical diagnostic

example such as this.

Note that the relationships among the misclassification costs will not always be as in

Figure 3. For example, false negatives are not always worse than false positives (i.e., it

is not always the case tht CFN > CFP). But we will assume in general that CFP > CTN

and similarly CFN > CTP. This assumption entails in effect that learning the truth about

the hypothesis is better than coming to a false conclusion about it. Yet it is conceivable

that this might not be the case and, for instance, that CTP could exceed CFN. This could

happen in instances of harmful knowledge, such as Kitcher’s example of, “the imaginary

discovery that vast quantities of energy could be released by mixing readily obtainable

ingredients in just the right proportions, a discovery whose widespread publication would

make our world an extraordinarily risky place” (Kitcher, 2001, 149). In this example,

falsely concluding that homemade weapons of mass destruction are not possible is better

(less costly) than correctly discovering how to make them. However, in such an example

the obvious implication is that the inquiry should not proceed, in which case questions

about appropriate inference thresholds would be moot.

Loss function In principle, the optimal cutoff threshold x∗ could be determined by opti-

mizing any one of a large number of different potential ‘loss functions’.12 With few notable

12In different fields, the losss function is also known as, inter alia, a ‘goal function’, a

‘reward function’, an ‘objective function’, or a ‘penalty function’.



exceptions,13 the loss function overwhelmingly employed in SDT is expected misclassifica-

tion cost.14 The mathematical expectation is taken with respect to the misclassification

costs, where the probability weights are compounds between base-rate prevalences pD,

p¬D and the conditional, x′-dependent probabilities 1 − αx′ , αx′ , βx′ , and 1 − βx′ . It is

customary to incorporate also the fixed cost of implementing the diagnostic test, C0. For

concreteness, we present the expected-misclassification-cost expression E(C) here in full:

E(C) = CTPP (TP) + CFNP (FN) + CTNP (TN) + CFPP (FP) + C0

= −[CFN − CTP] · pD · (1− βx′) + [CFP − CTN] · p¬D · αx′

+ CTN · p¬D + CFN · pD + C0 . (3.3)

Optimality condition The optimal cutoff threshold x∗ is obtained as the solution to

the constrained minimization problem in which expected misclassification cost (3.3) is

minimized subject to the constraint on (αx′ , 1−βx′) given by the ROC curve.

The slope of each iso-expected-cost contour15 – and therefore also the slope of the

cost-minimising iso-expected-cost line at the optimal operating point on the ROC curve –

13See Ulehla (1966) and Levi (1985) for non-risk-neutral expected utility, or, with ad-

ditional restrictions, Kaivanto (2014) for Cumulative Prospect Theory.
14In a Bayesian setting one minimizes the risk function, which is the expected value of

the loss function. Here we collapse terminology in the interest of simplicity, and refer to

the expected value of the misclassification costs as ‘the loss function’.
15The loss function (3.3) defines a plane in the third dimension above the unit-square

ROC space. This plane is canted down toward the top-left corner (0,1). A contour of this

plane – i.e. the set of all points in the plane that are at the same expected-cost ‘elevation’

C̄ – may be represented as a straight line within the two-dimensional ROC space. As all

(α, 1−β) points in this line are associated with the same expected misclassification cost

C̄, it is called an iso-expected-cost contour or an iso-expected-cost line.



is the ratio of expected incremental cost of misclassifying a healthy subject (¬D) to the

expected incremental cost of misclassifying a diseased subject (D).

Optimal Operating Point Condition:

p¬D
pD

[

CFP − CTN

CFN − CTP

]

=

(

dTPR

dFPR

)

C̄∗

. (3.4)

Recall that 1 − β = TPR is represented on the vertical axis of the ROC space, while

α = FPR is represented on the horizontal axis of the ROC space.16 The term on the

right-hand side of (3.4) is the slope of the tangent to the ROC curve at the expected-cost-

minimizing point (C̄∗). The term on the left-hand side is the above-mentioned ratio of

expected incremental cost of misclassifying a healthy subject to the expected incremental

cost of misclassifying a diseased subject. Since all of the terms on the left-hand side

are known, we also know the slope of the tangent to the ROC curve at the expected-cost-

minimizing point. The point along the ROC curve where equality (3.4) holds17 determines

the optimal test size and power (α∗, 1−β∗), and simultaneously, the optimal inferential

threshold in the score variable x∗. Hence the former may also be written as (αx∗ , 1−βx∗).

In Figure 3 we present a simple numerical illustration of how the Optimal Operat-

ing Point Condition (3.4) is implemented. The left-hand side presents (I) the base-rate

probabilities, (II) the misclassification costs, and (III) the calculated slope of the iso-

expected-cost line. On the right-hand side Subfigure 3b presents the tangency condition

graphically within the ROC space, which identifies the optimal test size and statistical

power as (α∗, 1−β∗) = (0.116, 0.423). It may be helpful to consider what sort of situa-

tion could correspond to this numerical example. Since CFN is by far the greates cost,

16The notation
(

dx
dy

)

z̄
denotes the derivative of x with respect to y at the point where

z = z̄ holds.
17which corresponds to a tangency condition between the cost-minimizing iso-expected-

cost line and the ROC curve



the disease is one that has very severe effects if left untreated. Moreover, note that in

the example CFP is almost equal to CTP. In other words, being incorrectly diagnosed as

having the disease is almost as bad as being diagnosed and actually having it. Such an

assessment of costs would be sensible in a case in which diagnosis leads directly to treat-

ment, for instance, without further, more accurate, diagnostic tests and the treatment is

very effective.

Figure 3: Illustration with sampling distributions X¬D ∼ N(0, 1) and XD ∼ N(1, 1).

(a) Parameters.

(I) p¬D = 0.9, pD = 0.1

(II)

Inference

D ¬D

State
D 2 10

¬D 1.78 0

(III)
0.9

0.1

[

1.78− 0

10− 2

]

= 2.00

(IV) α∗ = 0.116 , 1− β∗ = 0.423

(b) ROC curve with tangency condition.
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The larger the ratio in condition (3.4), (i) the farther to the left the optimal operating

point occurs on the ROC curve, (ii) the smaller the optimal test size α∗ and power 1−β∗,

and (iii) the larger the cutoff-threshold score x∗. These properties (i)–(iii) are general and

independent of the specific parametric form of the sampling distributions. In connection

with our disease example, this means that if the disease is very rare and if a mistaken

positive diagnosis is more harmful than a mistaken negative diagnosis, then a very strict



evidential threshold should be required for accepting that the disease is present (i.e., for

rejecting the null hypothesis ¬D). Conversely, a less strict threshold would be appropriate

if the disease is common or if mistakenly thinking the disease absent is much worse than

mistakenly thinking it is present. Our numerical example illustrates the latter situation.

That is, it is an example in which false negatives are much worse than false positives,

which is reflected in the optimal test size being larger than the conventional 0.05. The

optimal test size would be larger still but for the low prevalence rate of pD = 0.1. Note

that the difference between CFN and CTP is important for determining how harmful it is,

in expectation, to mistakenly conclude the disease is absent. For instance, if there is no

effective treatment for the disease, then little may be lost by not diagnosing it. In such

a case, CTP would be close to CFN, and consequently the denominator of (3.4) would be

small even if CFN were very high.

In the medical SDT literature, the square-bracketed term in condition (3.4) is com-

monly referred to as the Cost-Benefit (C/B) ratio. Since negative costs are benefits just as

negative benefits are costs – remember that SDT requires costs to be ratio-scale measures

– the medical SDT literature uses the following equivalent form of the square-bracketed

misclassification cost difference term

[

CFP − CTN

CFN − CTP

]

=

[

CFP − CTN

−(CTP − CFN)

]

=

[

CFP − CTN

BTP −BFN

]

. (3.5)

In what follows, we discuss how the SDT framework can usefully address the three

questions we highlighted in the introduction under the labels prospective, reverse engi-

neering, and conceptual clarification.

4 Prospective examples

Prospective questions have to do with exactly where to set an evidential threshold in a

specific context, given information about costs and probabilities. Although it is relatively

rare for scientists to use SDT for this purpose, some applications exist. For example,



Cantor et al. (1999) performed a structured survey of the medical literature between 1976

and 1997 inclusive. Their search identified 48 articles explicitly mentioning a C/B ratio or

an explicit method for determining the cutoff threshold. Altogether 14 articles included a

C/B ratio as part of the ROC analysis. In this section, we discuss two examples: tuber-

culosis and lead poisoning. In addition to illustrating how SDT can work in practice to

determine inferential thresholds, these two examples also illustrate philosophically signif-

icant themes about inductive risk that will be further elaborated in subsequent sections

of this article. The tuberculosis example illustrates the importance of base rates, while

the lead poisoning example illustrates misclassification-cost matrix operationalization and

the effect of improvements in scientific discriminability (d′ and AUC) on the inferential

threshold.

4.1 Tuberculosis

The 1/400=0.0025 C/B ratio reported by Lusted (1971) pertained to the US population

in 1971, and of course this would be different if one were to re-consider the costs specific

to particular sub-populations, whether they would be identified by demographic variables

or by geography. Lusted (1971) arrives at this C/B ratio by eliciting the physician’s at-

titudes concerning the relative value of true-positive vs. true-negative diagnoses, followed

by “questions about the relative cost of diagnostic errors compared with the value of cor-

rect diagnoses,” in each case disaggregating across numerous subjective-value categories18

and objective-value categories.19 Thus, Lusted’s (1971) misclassification costs reflect non-

epistemic values as this term is usually understood by philosophers (Douglas, 2009; Steel,

181. Value to my self-esteem of correct diagnosis; 2. Value to referring physiciancs of

correct diagnosis; 3. Value to my reputation with referring physicians; 4. Value to patient

of correct diagnosis; 5. Value to my reputation with patients; 6. Value to society of correct

diagnosis; 7. et cetera...
191. My professional fee; 2. et cetera...



2010). That is, the values in question are not focused on truth, explanatory power, or

other knowledge-seeking aims commonly associated with science, but instead concern the

human welfare and economic impacts of correct and incorrect diagnoses. Consequently,

while the sharpness of the distinction between epistemic and non-epistemic values may be

questioned, we take the tuberculosis example discussed in this section to illustrate AIR.

With a known C/B ratio, the slope of the iso-expected-cost line then depends on the

base-rate odds of the healthy relative to those with the disease p¬D

pD
. A prevalence of 0.0005

implies an iso-expected-cost line slope of 0.0025× 0.9995
0.0005

= 5.00. If, on the other hand, the

prevalence is 117.8
100,000

= 0.001178, as in Romania in 2006, then the slope of the threshold-

determining iso-expected-cost line is 0.0025× 0.9988
0.001178

= 2.12. The prevalence of 0.001178 is

of course an average that overstates the prevalence for most of the Romanian population,

as most cases of tuberculosis are concentrated within particular sub-populations. And if

the prevalence is 870

100,000
= 0.0087, as in Lusaka province of Zambia in 2009 (Ayles et al.,

2009), the slope of the iso-expected-cost line falls to 0.0025 × 0.9913
0.0087

= 0.28. Of course

these calculations presume that the C/B ratio applicable in Romania and Lusaka is the

same as that which applies in the USA – an assumption made here to retain comparability

between the optimality conditions as the base rate varies from one population to another.

The associated optimal operating points are illustrated in Figure 4, which assumes that

the diagnostic test has unit discriminability d′ = 1. The greater the iso-expected-cost

line’s slope, the smaller the α∗ and 1−β∗. The diagnostic test’s optimal operating point

is (0.0159, 0.1362) for the US population, (0.103, 0.4005) for the Romanian population,

and (0.78, 0.9637) for the Zambian population. The comparatively high prevalence of

tuberculosis in Zambia entails a liberal cutoff threshold, whereas the comparatively low

prevalence of tuberculosis in the US entails a more conservative cutoff threshold.



Figure 4: Illustration of optimal operating point determination for tuberculosis testing in
the US, Romania, and Zambia using sampling distributions X¬D ∼ N(0, 1) and XD ∼
N(1, 1) and C/B = 1/400.

(a) Parameters.

Country Base rate Slope α∗ 1−β∗

US 0.000500 5.00 0.0159 0.1362
Romania 0.001178 2.12 0.1030 0.4005
Zambia 0.008700 0.28 0.7800 0.9637

(b) ROC curve with tangency conditions.
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4.2 Lead poisoning

Note that the square-bracketed cost term in condition (3.4) may not be reduced to a single

number without explicitly identifying each of the costs (CTN, CFP, CTP, CFN) separately.

DeBaun and Sox (1991) trace the direct medical costs and the indirect human-capital-

based costs associated with each (mis-)classication category of lead poisoning. As in the

tuberculosis example just discussed, these monetary-value-denominated costs unambigu-

ously reflect non-epistemic values. Table 2 shows that the indirect costs, especially those



associated with False-Negative diagnoses, far exceed the other categories of misclassifica-

tion cost.

Table 2: Misclassification costs (US$) associated with lead-poisoning diagnosis (DeBaun
and Sox, 1991, p. 128).

Direct Indirect Total
Costs Costs

CTP 1,463 2,898 4,361
CTN 63 0 63
CFP 168 0 168
CFN 63 6,096 6,159

Combined with the 12% nationwide prevalence of lead poisoning at the time (DeBaun

and Sox, 1991, p. 127), the iso-expected-cost line’s slope is therefore

(

1− 0.12

0.12

)[

168− 63

6, 159− 4, 361

]

=

(

0.88

0.12

)[

105

1, 798

]

= (7.3̇)[0.0584] = 0.428 . (4.1)

The optimal operating point depends not only on the slope of the iso-expected-cost line

(4.1), but also on the Area Under the Curve (AUC), which in turn is increasing in the

normalized distance between the sampling distributions d′. Figure 5 shows the relationship

between the optimal false-positive rate α∗ obtained with the iso-expected-cost line slope

(4.1) as the AUC increases from 0.5 to 1. For very low-discriminability AUCs where the

ROC curve virtually coincides with the principal diagonal, (4.1) entails that the optimal

cutoff threshold x∗ is far in the left tail, and therefore α∗ =
∫∞
x∗

f(x|¬D)dx ≈ 1. As

discriminability and the AUC increase, the optimal cutoff threshold x∗ moves to the right

out of the left tail and α∗ begins to fall. However given that the iso-expected-cost line’s

slope is very shallow (0.428), α∗ begins to approach the conventional α = 0.05 level only

when the AUC approaches 1.



Figure 5: Lead-poisoning test’s α∗ computed for all possible values of AUC ∈ [0.5, 1],
holding misclassification costs and the base rate constant.
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5 Reverse-engineering example

In this section, we consider the relevance of SDT to the notion that social or ethical values

can be implicit in choices of inferential thresholds even when such values are not explicitly

invoked as reasons for the choice. We approach this question by considering the case of

the widespread convention of 0.05 as the cut-off for statistical significance. We suggest

that the notion of values implicit in a choice of inferential threshold be construed in a

rational-reconstruction sense rather than in a psychological sense. That is, implicit values

are those that, if accepted, would support a choice of inferential threshold, but which

are not necessarily the values that actually motivate practitioners to adopt it. Thus, we

consider what those values might be in the case of the α = 0.05 convention, bearing in

mind that according to SDT the answer to this question also depends on the base rate



and the area under the ROC curve.20

5.1 Embedded values in the α = 0.05 convention

Under Null Hypothesis Significance Testing (NHST), many fields have adopted an inferential-

threshold convention that is applied as de facto requirement for publication. Specifically,

many fields have adopted α = 0.05 as their inferential-threshold convention, although some

fields have opted for stricter thresholds.21 Insofar as a scientific field is characterized by

the application of a particular collection of empirical methods to study a particular collec-

tion of questions and hypotheses, it may in some sense be reasonable to assume ‘roughly

similar’ misclassification costs and ‘roughly similar’ base rates. However the mathematical

structure of SDT reveals that rigid application of a particular evidential threshold pre-

supposes a precise non-linear relationship between misclassification costs and base rates –

which furthermore varies with discriminability (i.e. AUC).

In order for α = 0.05 to be optimal, the product of the base-rate odds
(

p¬D

PD

)

with the

incremental-misclassification-cost ratio
[

CFP−CTN

CFN−CTP

]

=
[

ICFP

ICFN

]

must be equal to the slope of

the tangent to the ROC curve at α = 0.05.

(

p¬D
pD

)[

ICFP

ICFN

]

=

(

dFPR

dTPR

)

α=0.05

(5.1)

For our Gaussian sampling distributions, the slope of the tangent to the ROC curve

with d′ = 2.0 and AUC=0.92 at α = 0.05 is 3.63. Therefore only those combinations of

20Throughout this section we maintain the assumption that sampling distributions are

equal-variance Gaussian. Qualitatively similar results would be obtained with other sym-

metric, equal-variance sampling distributions.
21Particle physics employs a “5σ” (p < .0000003) threshold. This reflects standard

good statistical practice of adjusting the inferential-threshold downward whenever multiple

simultaneous hypothesis tests are performed.



(

p¬D

PD

)

and
[

ICFP

ICFN

]

whose product is 3.63 are consistent – in the expected misclassification-

cost minimizing sense – with α = 0.05. The red curve in Figure 6 represents all such

combinations. Meanwhile, the slope of the tangent to the ROC curve with d′ = 0.2 and

AUC=0.56 at α = 0.05 is 1.36. The blue curve in Figure 6 presents all those combination

of
(

p¬D

PD

)

and
[

ICFP

ICFN

]

whose product is equal to 1.36, and are therefore consistent with

α = 0.05 for d′ = 0.2 and AUC=0.56

When dicriminability is d′ = 2.0 and AUC=0.92, all hypotheses featuring base-rate

odds and incremental-misclassification-cost ratios that fall above the red curve receive

biased treatment in that the α = 0.05 inferential threshold is suboptimally liberal in the

sense of making it too easy to reject the null hypothesis. Conversely, all hypotheses whose

base-rate odds and incremental-misclassification-cost ratios fall below the red curve receive

biased treatment in that the α = 0.05 inferential threshold is suboptimally conservative in

the sense of making it too difficult to reject the null hypothesis.

Of course, given the costs and inherent epistemic difficulties involved in estimating

base-rate and incremental-misclassification-cost ratios, it would be unreasonable to de-

mand that every scientific hypothesis test be implemented with its own, individually op-

timized inferential threshold α∗. In addition to these general concerns, applying SDT

to scientific hypotheses raises special difficulties in assessing misclassification-cost ratios.

The practical applications of the hypothesis, if any, may be difficult for researchers to

anticipate, as may be its impact on science. Moreover, a hypothesis may be tested multi-

ple times, and misclassification costs might not be constant across the several tests. For

instance, one more experiment to test a hypothesis that has already been the subject of

extensive research may have less impact than a path-breaking study that tests a hypothe-

sis for the first time.22 Given such considerations, justifications of the α = 0.05 convention

– or indeed any other conventional cut-off – are best interpreted as attempts to show

22Note that the practice of fixed-level testing has been shown to be incoherent in the

Bayesian setting (see e.g. Schervish et al., 2002).



Figure 6: Schedules between base-rate odds and incremental misclassification-cost ratios
under which the optimal false-positive rate is held constant at α = 0.05.
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that the cut-off is a good-enough approximation in a particular field (Wilholt, 2009). Let

us assume, then, that the choice of α = 0.05 in a scientific field should be justified in

this manner. Then we can ask what sorts of general assumptions about base rates and

misclassification costs are presumed by such reasoning.

The pattern revealed in Figure 6 is that α = 0.05 entails either that ICFP greatly

exceeds ICFN or p¬D greatly exceeds pD – but not both as this would entail an even lower

α. For example in the d′ = 2.0 and AUC=0.92 line, if the base-rate odds are 2, then the

incremental misclassification cost ratio must be slightly less than 2. If the base-rate odds

were 2 while the incremental misclassification cost ratio were, say, 5, then α = 0.05 would

be suboptimal insofar as permitting too many Type-I errors. And if the base-rate odds

are 10, then α = 0.05 entails that the incremental misclassification cost ratio is less than 1

(i.e., ICFN is greater than ICFP). Conversely, if the incremental misclassification cost ratio



is 10, then the base-rate odds are below 1 (i.e., pD > p¬D). We consider the implications

of this pattern by examining two types of case in which the α = 0.05 convention might be

challenged.

Begin with what one might call a Popperian outlook on science, according to which

the vast majority of hypotheses are false and priority should be placed on avoiding false

positives. In other words, under this assumption, p¬D far exceeds pD (e.g., by a factor

of at least 6 to 1) while ICFP is significantly greater than ICFN (e.g., at least two times

greater). In this case, inspection of Figure 6 suggests the α = 0.05 convention is too

lenient, and that a smaller value of α, and hence a stricter standard for rejecting null

hypotheses, would be called for. Adopting the α = 0.05 convention in such a context,

then, would be problematic, since it might contribute an unacceptable rate of errors or

failures of replication. To adopt the α = 0.05 convention in a scientific field, then, is to

implicitly assume that the situation just described does not obtain there. In other words,

it is to assume that either the base rate of true hypotheses is reasonably high or that

false positives are not much worse than false negatives. It is unclear to what extent such

assumptions are correct in areas of science in which the α = 0.05 convention is prevalent.

However, SDT shows that any attempt to justify the α = 0.05 convention must take such

matters into consideration.

Next consider a case in which false negatives are assumed to be far worse than false

positives, say, by a factor of 10. Some philosophers have argued that, in such cases,

the α = 0.05 convention is unjustified and that a higher value of α should be chosen

instead (Cranor, 1993; Shrader-Frechette, 1991). However, the above analysis shows that

such arguments are crucially incomplete. Even if ICFN exceeds ICFP by a factor of 10,

α = 0.05 or an even lower setting of α may still be justified if the hypotheses tested in the

field are overwhelmingly false.

We draw the following conclusions from the discussion in this section. First, the SDT

framework can be used to identify sets of assumptions about base rates and incremental

misclassification costs that, given the ROC curve associated with a test, could be used to



rationalize an antecedently made choice of α. In this sense, SDT can be said to provide

a basis for reverse engineering values that are inherent or implicit in choices of evidential

thresholds in a context. Second, the SDT framework provides a basis for critically exam-

ining arguments made with respect to the α = 0.05 convention, either that it is supported

by a Popperian view of science or that it is inappropriate when false negatives are worse

than false positives. As such, we hope that the framework we propose here can usefully

contribute to discussions of when and where the α = 0.05 convention is – and is not –

reasonable.

6 Conceptual clarification

In this section, we discuss three conceptual clarifications that flow from the SDT frame-

work proposed here. The first of these, base-rate neglect, has already featured in several

examples discussed in preceding sections. The second concerns whether only harms result-

ing from errors should be considered in setting inferential thresholds, or whether benefits

ensuing from correct inferences should also be considered. Finally, we consider the idea

that, as scientific certainty increases, the relevance of values to choice of inferential thresh-

olds diminishes. The effect of base rates is a topic that has been largely neglected in the

AIR literature. The other two issues have been discussed in philosophical literature, but

the SDT framework nevertheless provides valuable clarifications and refinements.23

6.1 Base-rate neglect

The role of base rates has not featured prominently in the AIR literature. Bayesian

prior probabilites have not featured prominently either. For instance, Douglas’ work,

23Although these sections continue to rely on the equal-variance Gaussian sampling

distributions machinery, qualitatively comparable results would be obtained with other

symmetric, equal-variance sampling distributions.



Science, Policy, and the Value-Free Ideal, only mentions prior probabilities in a footnote

commenting upon Bayesian statistics, rather than in connection with the determination

of inferential thresholds.

...the Bayesian framework, has yet to be shown useful in real world contexts

where both likelihoods and priors are disputed. ... ...When both likelihoods

and priors are disputed, abundant evidence may still never produce a conver-

gence of probability. (Douglas, 2009, p. 183, fn 15)

It is clear that base rates feature in the Optimal Operating Point Condition (3.4). It is also

clear that in many types of real-world inferential problems – such as in diagnosing a disease,

or in detecting faulty products on a manufacturing line – base rates are indeed expressible

as ratios of frequencies. In the tuberculosis example we illustrated the large effect that

base rates can have on the location of the optimal inferential threshold. Increasing the

base rate from 0.0005 to 0.0087 shifted the optimal inferential threshold (α∗) by a factor of

49 from 0.0159 to 0.78. And in Section 5 we illustrated the three-way interaction between

base rates, incremental-misclassification costs, and discriminability (AUC). Hence it is

not possible to discuss difficulties related to a rigid application of the α = 0.05 criterion

without making an assumption about the base rate.

SDT shows that both base-rate odds and discriminability (i.e. AUC) are moderators

of the effect of changes in misclassification costs upon the optimal inferential threshold.

Nevertheless base-rate odds are a much more powerful ‘lever’ with which to influence the

optimal inferential threshold than misclassification costs. This finding has been noted

and replicated in empirical studies (Wolfe et al., 2005, 2007; Evans et al., 2013). But

the analytical structure of SDT also reveals why this is the case. On a basic level it is

partly due to the fact that any change in the base rate has two separate impacts upon

the prior odds term,24 whereas there is no comparable ‘double impact’ of changes in

24Any small increase in pD entails a corresponding decrease in p¬D = 1−pD. Hence the

ratio p¬D/pD decreases not only because the denominator pD increases, but also because



misclassification costs on the incremental misclassification-cost ratio. On a deeper level,

the SDT model reveals that the inferential threshold in the underlying score variable x∗

is highly sensitive to – indeed completely dominated by – small base rates, when they are

present. If either base rate becomes very small, the inferential threshold moves far into

the sampling distribution’s tail, accommodating the improbable state.25 For equal-unit-

variance Gaussian sampling distributions with µ¬D = 0, the optimal cutoff threshold in

the score variable may be obtained directly from

x∗ =
1

µD

(

ln(CFP − CTN)− ln(CFN − CTP) + ln(p¬D)− ln(pD) +
µ2

D

2

)

. (6.1)

Notice that as p¬D → 0, log(p¬D) → −∞, and thus x∗ → −∞. Alternatively if pD → 0,

then − log(pD) → ∞, and thus x∗ → ∞.

The necessity of incorporating base rates into the analysis of inferential thresholds is

among the key implications of our formal modelling approach. This is not to suggest that

existing analyses are rendered logically invalid. Abstracting from other factors, increasing

the cost of Type-I errors continues to suggest a more conservative inferential threshold,

while increasing the cost of Type-II errors continues to suggest a more liberal inferential

threshold. However, the base rate is an exceptionally strong modifier of the effect of error

costs on the inferential threshold. The effect of any finite change in error costs becomes

arbitrarily small if either base rate (p¬D or pD) is sufficiently small. This means that

under certain base-rate configurations, the impact of changes in error costs is rendered

inconsequential.

In addition, variation in base rates among subpopulations is often extremely important

for reverse engineering value judgments that are implicit in a choice of inferential thresh-

old. The prevalence of tuberculosis, for instance, is higher in identifiable sub-populations.

Fournet et al. (2006) report that in 2003 the incidence of tuberculosis within Rio de

of the corresponding decrease in the numerator p¬D.
25Below it is shown that when p¬D → 0, x∗ → −∞, while when pD → 0, x∗ → ∞.



Janeiro state prisons was 15 times higher than in the general state population. A more

recent study estimates the incidence rate among prisoners to be more than 20 times that

in the general Brazilian population (Carbone et al., 2015). In the U.S. prison population,

the prevalence of tuberculosis can be up to 17 times that in the general U.S. popula-

tion (Roberts et al., 2006). And in the low-incidence country of the Netherlands, 61%

of registered tuberculosis patients were born abroad, even though the foreign-born pop-

ulation comprises only 11% of the overall population (Kik et al., 2009). In each of these

cases, use of the general-population inferential threshold for the purpose of testing the

sub-population can be interpreted as placing a lower value on the lives of members of the

high-base-rate sub-population.

6.2 Further remarks

The SDT framework suggests solutions for an array of issues, including some that are cur-

rently being debated within philosophy. Here we briefly note two of these ongoing debates

along with the reframing suggested by SDT, deferring full and formal treatment to future

work.

Harms alone vs. harms and benefits: Among philosophers who accept the general premise

that scientists have a moral obligation to consider the potential non-epistemic conse-

quences of mistakenly accepting or rejecting a hypothesis, consensus is yet to crystallize

over whether only harms alone should influence the inferential threshold, or whether the

associated benefits should also be taken into account (Douglas, 2009; Elliott, 2011; Wilholt,

2016). For Douglas (2009) the very reason why scientists should incorporate non-epistemic

values into their reasoning about inferential thresholds is that scientists bear a moral re-

sponsibility for the unintended harms flowing from their actions due to recklessness or

negligence (68–71). Hence it is the potential harms flowing from errors in scientific infer-

ence that scientists are morally required to incorporate into the determination of inferential

thresholds. Some philosophers have asked whether “the potential benefits of accepting or



rejecting claims erroneously” should also be considered, or indeed whether also the bene-

fits and harms of correctly accepting or rejecting claims should also be considered (Elliott,

2011, 15). Torsten Wilholt (2016) argues that responsible epistemic risk management

cannot exclude the non-epistemic consequences (benefits and harms) of correct classifica-

tion, and that imposing an asymmetry between the consequences of erroneous and correct

classification cannot be justified.

SDT’s expected-misclassification-cost loss function places harms and benefits on an

equal footing. It also places the consequences ensuing from misclassification on an equal

footing with the consequences ensuing from correct classification. SDT does this not for

ethical reasons, but for mathematical reasons and for reasons inherent in the expected-

misclassification-cost loss function. Benefits are equivalent to negative costs, i.e. a benefit

is created by reducing cost. Costs are equivalent to negative benefits, i.e. a cost is

incurred when benefits are reduced. This relationship underpins the practice in the medical

SDT literature of referring to the ‘cost-benefit ratio’ as derived above in equation (3.5).

Furthermore, there is also a fundamental sense in which cost calculus inherently requires

both costs and benefits to be fully accounted for, in that the concept of ‘opportunity cost’

is defined as ‘foregone benefit’. Without accounting for benefits, it is not possible to define

opportunity costs.

Thus, in examples involving diagnosis, the harm of a false negative often depends on

an opportunity for effective treatment being missed. That is why it is sensible for the

denominator in (3.4), the Optimal Operating Point Condition, to include the difference

between CFN and CTP rather than CFN alone. When effective treatment exists and is

accessible, CTP is less than CFN, and hence harm is done by a missed diagnosis. The

relevance of both CFP and CTN for assessing the harms of false positives is somewhat less

apparent, given the tendency to treat true negatives as the default state. However, CTN

can also be viewed as conferring benefits, whose presence are relevant to extent to which

CFP exceeds CTN. For example, if the patient is deeply anxious prior to the test due

to believing that the disease is present, then a true negative result confers a substantial



emotional benefit. In such a case, a false positive is harmful in part because it entails

forgoing the benefit of correcting an anxiety-inducing false belief.

Do values become ‘less important’ as uncertainty decreases?: The answer turns on what

are meant respectively by ‘decrease in uncertainty’ and ‘become less important’. Within

the SDT framework it is natural to operationalize decreases in uncertainty as increases in

the resolving power of the scientific experiment – i.e. as increases in d′ and AUC. But as

we show below, decreases in such scientific uncertainty cause non-monotonic changes in

either α∗ or 1−β∗. In other words, values continue to drive non-obvious changes in α∗ and

1−β∗ as scientific uncertainty decreases. The sense in which values become ‘less important’

is more subtle, and is induced not by the mere change in d′ and AUC magnitude, but by

the associated increase in the curvature of the ROC curve as d′ and AUC increase. For

any given percentage change in
(

p¬D

pD

) [

ICFP

ICFN

]

, the relative response in (β∗/α∗) becomes

smaller as scientific uncertainty decreases. The sensitivity of (β∗/α∗) to changes in values

is attenuated as uncertainty decreases.

Consider these two points in turn. The ability of the experiment to distinguish between

H0 : ¬D and H1 : D is summarized by d′ = (µD − µ¬D)/σ. The larger d′, the larger the

AUC, and if the FPR = α is held constant, then the remaining uncertainy associated with

the inference – i.e. FNR = β – is necessarily smaller. However the premise within the AIR

literature is that fixed inferential thresholds such as α = 0.05 are inappropriate insofar

as they do not reflect error-cost considerations, nor, as we have shown, do they reflect

base-rate considerations. Taking these considerations seriously, we see that the inferential

threshold changes as d′ and the AUC increase. Figure 7 shows the paths traced out by

the optimal operating points within the ROC space as AUC varies within the interval

(0.5,1), for several iso-expected-cost-line slopes. These constant-slope loci are known as

isoclines. Figure 7 exhibits isoclines for five different iso-expected-cost-line slopes, two

of which are less than 1, and two of which are greater than 1. The
(

p¬D

pD

) [

ICFP

ICFN

]

= 1

case is straightforward and conforms with lay intution, in that both α∗ and β∗ decrease



Figure 7: Isoclines traced as AUC varies within the interval (0.5,1), for different fixed
slopes of the iso-expected-cost line.
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monotonically as AUC increases. However for all other slope values
(

p¬D

pD

) [

ICFP

ICFN

]

≷ 1 the

relationship is non-monotonic for either α∗ or β∗.

Thus as the resolving power of science improves, we cannot in general infer a monotonic

reduction in inferential-error probabilities when scientists are appropriately incorporating

non-epistemic consequences into their inferential thresholds. As the AUC increases from

very low levels, the likelihood of a Type-I error increases if the expected incremental

cost of misclassifying a negative exceeds the expected incremental cost of misclassifying

a positive. Conversely, if the expected incremental cost of a false positive exceed that of

false a negative, then the likelihood of a Type-II error rises as AUC increases from very

low levels. Value considerations – in the form of the slope of the iso-expected-cost line –

determine the critical level of AUC above which further increases in the AUC reduce the

likelihood of erroneous results (i.e. both Type-I and Type-II errors). But even above the

critical AUC level, value considerations continue to determine the location of the optimal



inferential threshold x∗, and thereby both α∗ and β∗ as well.

Turning to the second point, the importance of value considerations may be quanti-

fied as the relative change in the (β∗/α∗) ratio induced by a unit relative change in the
(

p¬D

pD

) [

ICFP

ICFN

]

slope. This is a measure of the sensitivity of the (β∗/α∗) ratio to changes

in the iso-expected-cost-line (i.e. values) slope. Here we formalize relative changes as per-

centage changes, which permit meaningful comparisons e.g. between different AUC levels.

Consider two AUC levels AUC′,AUC′′ ∈ [0.5, 1] such that AUC′′ > AUC′. The larger the

AUC becomes, the more ‘bowed’ the ROC curve. Consequently, for a one-percent increase

in
(

p¬D

pD

) [

ICFP

ICFN

]

the percentage increase in (β∗/α∗) is smaller when the resolving power

of science is AUC′′ rather than AUC′.

(

△β∗

α∗

)

/
(

β∗

α∗

)

(

△p¬DICFP

pDICFN

)

/
(

p¬DICFP

pDICFN

)

∣

∣

∣

∣

∣

AUC
′′

<

(

△β∗

α∗

)

/
(

β∗

α∗

)

(

△p¬DICFP

pDICFN

)

/
(

p¬DICFP

pDICFN

)

∣

∣

∣

∣

∣

AUC
′

(6.2)

The (β∗/α∗) ratio becomes less sensitive to changes in values
(

p¬D

PD

) [

ICFP

ICFN

]

as the resolving

power of science (i.e. AUC) increaseses.

7 Conclusions

We have aimed to show that SDT provides a tractable formal structure with which to

address questions about where inferential thresholds should be placed, ’reverse engineer-

ing’ values from choices of inferential thresholds, and for clarifying conceptual questions

regarding inductive risk.

Within SDT, optimal inferential thresholds necessarily reflect base-rate information.

Yet base rates have received little attention within the AIR literature. Thus, the fact that

base rates powerfully modify how much error costs matter for optimal inferential thresholds

suggests that this nexus should in future be addressed within the AIR literature. A near-

zero base rate in particular exerts an overwhelming, dominant influence on the location of

the optimal inferential threshold.



Furthermore, SDT’s formal structure carries implications for a number of ongoing

debates concerning inductive risk. In some cases SDT suggests a particular reframing,

while in others SDT suggests a particular resolution. As an example of the latter, the SDT-

based approach suggests that benefits accruing in each State×Inference category need to be

accounted for. The consequences of not doing so would include an inability to incorporate

opportunity costs, because these are defined as foregone benefits. As an example of the

former, the SDT-based approach suggests a way in which we can understand and quantify

the notion that values become ‘less important’ as scientific uncertainty decreases. It turns

out that erroneous-inference probabilities (α∗, β∗) generally do not decrease monotonically

with the resolving power of scientific experiments, and values continue to influence (α∗, β∗)

throughout. However, when framed in terms of sensitivity, indeed the responsiveness of

the (β∗/α∗) ratio to changes in values does diminish as the resolving power of scientific

experiments increase.

Underpinning these conceptual insights, SDT allows one to solve for the optimal in-

ferential threshold in the underlying score variable x∗, or equivalently in Type-I (α∗) and

Type-II (β∗) error probabilities. In this standard ‘prospective’ mode, SDT provides a pre-

cise answer to the question of where the inferential threshold should be placed, along with

an equally precise answer as to why. It is also straightforward to implement counterfactual

analyses, for instance to determine how much the ineferential threshold would shift if the

resolving power of experiments (d′) improved by a specified amount, such as e.g. 10%

or 20%. Equally, it is straightforward to determine the amount by which a particular

parameter, or collection of parameters, would have to change in order for the Type-I (or

alternatively the Type-II) error probability to fall to a specified target level.

SDT may also be employed retrospectively to ‘reverse engineer’ the values that ra-

tionalize the use of a particular inferential threshold in a specific context. Whereas

the inductive-risk literature has discussed the α = 0.05 inferential-threshold convention

used in many scientific disciplines, with SDT one may reverse engineer the incremental-

misclassification-cost ratio required to rationalize the α = 0.05 threshold given the base



rate and the experiment’s discriminability d′. Since both the base rate and discriminabil-

ity vary greatly from one hypothesis to another, both within a scientific field as well

as across scientific fields, rigid application of the α = 0.05 inferential threshold entails

that most hypotheses are tested using an inferential threshold that is, to a greater or

lesser extent, biased. By employing SDT in reverse-engineering mode, this bias may be

quantified, mapped, and studied. Moreover, in settings where inferential procedures are

performed on members of the public, SDT in reverse-engineering mode can reveal whose

interests are being superseded and whose interests are being accommodated. For instance,

does a medical diagnostic threshold reflect the misclassification costs of the patient, the

medical practitioner, the clinic or hospital, the health-insurance company, or the national

healthcare system? Armed with this information and the SDT formal framework, moral

philosophy can address the question of whose interests and misclassification costs should

be used in setting diagnostic inferential thresholds.
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