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PSEUDOHOLOMORPHIC TORI

IN THE KODAIRA-THURSTON MANIFOLD

JONATHAN DAVID EVANS AND JAREK KĘDRA

ABSTRACT. The Kodaira-Thurston manifold is a quotient of a nilpotent
Lie group by a cocompact lattice. We compute the family Gromov-Witten
invariants which count pseudoholomorphic tori in the Kodaira-Thurston
manifold. For a fixed symplectic form the Gromov-Witten invariant is
trivial so we consider the twistor family of left-invariant symplectic forms
which are orthogonal for some fixed metric on the Lie algebra. This fam-
ily defines a loop in the space of symplectic forms. This is the first exam-
ple of a genus one family Gromov-Witten computation for a non-Kähler
manifold.

1. INTRODUCTION

The enumerative geometry of complex curves in complex manifolds is an
old and venerable pursuit [12] which gained momentum in the last fifteen
years of the twentieth century for two main reasons. The first of these was
Gromov’s paper [9] which explained how to count persistent pseudoholo-
morphic curves in symplectic manifolds and gave many applications of
the existence of pseudoholomorphic curves to symplectic topology. The
second was Witten’s recasting [27] of Gromov’s theory in the language of
topological sigma models (Gromov-Witten theory, see [22, 23] for a math-
ematical approach) and the subsequent observation [5] of Candelas-de la
Ossa-Green-Parks that string dualities give concrete predictions in enumer-
ative geometry for rational (genus zero) curves in Calabi-Yau three-folds.
In the case of higher genus curves, predictions were made by Bershadksy,
Cecotti, Ooguri and Vafa [2]. In many places these predictions have been
confirmed by computations: see for example [28] in the genus one case.

The enumerative invariants which emerge have beautiful structural prop-
erties, for instance Bryan and Leung [3] computed the Gromov-Witten in-
variants for the hyper-Kähler sphere of K3 surfaces (a family Gromov-
Witten invariant, see Section 2.3 below) and showed that the generating
function for these numbers (the genus g Gromov-Witten potential) is

(

q
d

dq
G2(q)

)g

/∆(q)
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where G2(q) = − 1
24 +

∑

n≥1 σ1(n)q
n, σ1(n) =

∑

d|n d is the sum of divisors

of n and ∆(q) = q
∏

n≥1(1 − qn)24. These are the weight 2 Eisenstein series
quasimodular form and the discriminant modular form respectively.

The physical predictions make use of the special geometry of Calabi-Yau

manifolds, but Gromov’s philosophy1 is that integrability of an almost com-
plex structure is not necessary to have an intricate enumerative theory of
holomorphic curves. One might ask what physical predictions hold in the
world of non-Kähler symplectic manifolds and whether similarly beautiful
formulae can be found for their Gromov-Witten potentials. One large and
well-understood class of symplectic manifolds containing non-Kähler ex-
amples are the symplectic nilmanifolds: compact left-quotients of a nilpo-
tent Lie group equipped with a left-invariant symplectic form. Apart from
the higher-dimensional tori these are all non-Kähler [1]; the best known
is the four-dimensional Kodaira-Thurston manifold [25] which will be the
focus of this paper.

At the time of writing, mirror symmetry is not known for the Kodaira-
Thurston manifold. In particular, it is not clear to the authors what the
genus one partition function of the mirror B-model might be. It would be
interesting to compute this and compare with the Gromov-Witten invari-
ants we calculate here, as a first step towards understanding the conjectures
of [2] in a non-Kähler setting.

The Gromov-Witten invariants of a single symplectic nilmanifold are not
very interesting. In many cases (like the Kodaira-Thurston manifold) one
can connect a left-invariant symplectic form ω to −ω along a path of left-
invariant symplectic forms. Since Gromov-Witten invariants are invariant
under deformations of the symplectic form, if there is a non-zero homol-
ogy class A with a non-zero Gromov-Witten invariant then there is a J+-
holomorphic curve representing A (where J+ is ω-compatible) and a J−-
holomorphic curve representing A (where J− is −ω-compatible). Since
non-constant J-holomorphic curves have positive ω-area, it follows that
∫

A ω is both positive and negative, a contradiction.

However, if we allow families of symplectic manifolds and of almost com-
plex structures, and if we count holomorphic curves which are holomor-
phic for some J in the family, then we can still obtain non-zero invariants.
These family Gromov-Witten invariants have been defined and computed in
various places in the literature, for instance the Bryan-Leung computation
mentioned above; we recall the definition in Section 2.3. Moreover there
are certain natural families of left-invariant symplectic forms on nilmani-
folds (the twistor families). This paper provides techniques for computing

1“What fascinated me even more was the familiar web of algebraic curves in a surface
emerging in its full beauty in the softish environment of general (nonintegrable!) almost
complex structures. (Integrability had always made me feel claustrophobic.)” [10]
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the genus one family Gromov-Witten invariants for the twistor families of
symplectic nilmanifolds. We do the complete computation for the Kodaira-
Thurston manifold.

Definition 1.1 (Kodaira-Thurston manifold). Let Γ be the group of affine
transformations of R4 (with coordinates x, y, z, t) generated by three trans-
lations (in the y, z and t directions) and the map

x 7→ x+ 1, y 7→ y, z 7→ z + y, t 7→ t

The quotient Γ\R4 is the Kodaira-Thurston manifold, K . It is also a left-
quotient of a simply-connected nilpotent Lie group N by a cocompact lat-
tice Γ ⊂ N ; see Section 4.

The twistor family for K is the circle of symplectic forms

ωθ = dt ∧ aθ + (dz − xdy) ∧ bθ

where aθ = cos θ dx + sin θ dy and bθ = − sin θ dx + cos θ dy. The second
integral homology H2(K;Z) is of rank 4 and is generated by the homology
classes represented by the tori

Eij = [{(x1, x2, x3, x4) ∈ K | xi = xj = 0}]

where i ∈ {1, 2} and j ∈ {3, 4}. We also define Ei34 ∈ H3(K;Z), i ∈ {1, 2}
by

Ei34 = [{(x1, x2, x3, x4) ∈ K | xi = 0}].

See Section 4.3 for a complete description of the homology and cohomol-
ogy. We will write

[A13, A23, A14, A24]

for the homology class A =
∑

AijEij . By Lemma 4.13 we know that if A ∈
H2(K;Z) is a homology class represented by a torus thenA13A24 = A14A23.
It is helpful to remember that K is a T 2-bundle over T 2 in two ways:

• There is a projection (x, y, z, t) 7→ (x, y) whose fibres are Lagrangian
with respect to ωθ for all θ.

• There is a projection (x, y, z, t) 7→ (x, t) whose fibres are symplectic
for ω0.

Theorem 1.2. Let K denote the Kodaira-Thurston manifold and W the twistor
family of left-invariant symplectic structures onK . If A = [A13, A23, A14, A24] ∈
H2(K;Z) is a non-zero homology class andm = gcd(A13, A23), n = gcd(A14, A24)
then

GW1,1(W,A) =
(m2 + n2)σ2(gcd(m,n))

gcd(m,n)3
(A13E134 +A23E234) ∈ H3(K;Z)

where σ2(x) =
∑

d|x d
2.
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Note that, according to our definition (Equation (2.11)), family Gromov-
Witten invariants should really live in H∗(K ×W ;Z). In our situation they
all have the form C ⊗ [⋆] where [⋆] ∈ H0(W,Z) is the homology class of a
point. This is because each connected component of the moduli space of
tori which are Jθ-holomorphic for some θ ∈ W consists of tori which are
Jθ-holomorphic for a fixed θ.

We would like to stress that the moduli spaces of pseudoholomorphic tori
we consider are, unusually, odd-dimensional. This can be understood as
follows. The index of the Fredholm problem for counting (unmarked) tori
in a four-manifold with c1 = 0 is zero. In each space of ωθ-compatible
almost complex structures there is a codimension one ‘wall’ of almost com-
plex structures where the kernel of the Fredholm problem is one-dimensional
and there is a one-dimensional cokernel. For all the moduli spaces which
contribute to the Gromov-Witten invariant, our one-dimensional family Jθ
is transverse to that wall, and so the (one-dimensional) moduli space is
regular from the point of view of family Gromov-Witten theory.

Let us spell out the geometric content of this theorem for the specific fam-
ily Jθ . Since the Gromov-Witten class is in H3(K;Z) it detects holomorphic
curves intersecting a loop in K . Let L be a loop in K and let A ∈ H2(K;Z)
be as in the statement of the theorem. There is a unique almost complex
structure Jθ ∈ W (see Lemma 5.7) for which there are Jθ-holomorphic tori
representingA. For this Jθ the pseudoholomorphic tori intersect L at

m2 + n2

gcd(m,n)3
σ2(gcd(m,n))(A13E134 +A23E234) ∩ [L]

points (counted with multiplicity and signs). The complex structure on the
domain torus is allowed to vary but, when m 6= 0 it is actually constant
over each component of the moduli space (Lemma 5.7 again).

Two obvious classes containing holomorphic tori are E13 and E14.

Example 1.3. The class E14 is represented by the fibres of the projection

(x, y, z, t) 7→ (x, t).

These are J0-holomorphic tori and all J0-holomorphic tori have this form.
In this case m = 0 and the j-invariant of these fibres varies in a loop. In
fact, these tori are all irregular and do not contribute to the Gromov-Witten
invariant, see Lemma 7.6.

Example 1.4. The class E13 is represented by sections of the projection

(x, y, z, t) 7→ (x, t).

There is an S1-family of Jπ/2-holomorphic sections which intersect a loop
L in [L] ∩ [E134] points (with multiplicity). In fact, we will not deal with
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these sections explicitly because they do not correspond to reduced Lie alge-
bra homomorphisms (see Definition 4.16). Instead we will apply a diffeomor-
phism of K to move to the homology class E13 + E23 without affecting the
Gromov-Witten computation, using Lemma 4.14 and Equation (4.6). The
Jπ/2-holomorphic tori representing E13 become Jπ/4-holomorphic tori rep-
resenting E13 + E23.

Outline of proof of Theorem 1.2. Theorem 1.2 is proved by reducing the
problem to the enumeration of certain homomorphisms Z2 → π1(K). Let
u : T 2 → K be a J-holomorphic torus where J is a left-invariant almost
complex compatible with ω. We perform the following steps:

• Take a lift of u to the universal covers ũ : R2 → N and compare it
with the unique Lie group homomorphism H : R2 → N extending
the induced map π1(u) : Z

2 → π1(K) on fundamental groups.

• The map (p, q) 7→ H(p, q)−1ũ(p, q) is then bounded (Corollary 3.13)
and we are interested in its logarithm C : R2 → n where n is the Lie
algebra of N .

• The Cauchy-Riemann equations for C imply that C satisfies a sec-
ond order elliptic system of equations. In Proposition 4.1 we show
that this system separates into equations for which the Hopf maxi-
mum principle holds [8, Theorem 3.1]. We apply this to prove that
C is constant. Hence, for all left-invariant J which are compatible
with a left-invariant symplectic form, all J-holomorphic tori are of
the form veC , where v comes from a Lie algebra homomorphism
and C is a constant.

• Another maximum principle allows us to study the linearised prob-
lem. We prove that all moduli spaces are cut out cleanly by the
Cauchy-Riemann operator (Theorem 7.1). In Section 7.3 we de-
termine which tori are regular and, for non-regular tori, we write
down an explicit section of the obstruction bundle, proving that
these do not contribute to the Gromov-Witten invariant. In Section
7.4, we determine orientations on the moduli spaces.

• It remains to count the tori. By applying an automorphism of Γ we
reduce ourselves to considering only non-zero homology classes

[A13, A23, A14, A24]

where A13 = A23 and A14 = A24 (Lemma 4.14), for which we can
further assume that the homomorphism H has a particularly sim-
ple form (Lemma 4.17). This enables us to enumerate the tori and
to understand the homology classes represented by the evaluation
maps (Section 8).
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Generalisations. We carry out the full calculation only for the Kodaira-
Thurston manifold K but we formulate the problem for two-step symplec-
tic nilmanifolds in general. The universal cover ofK is the only nonabelian
symplectic two-step nilpotent Lie group in dimension four. For examples
in higher dimensions the main difference is that the Cauchy-Riemann equa-
tions are a more complicated elliptic system (with more serious nonlineari-
ties and coupling) and it becomes harder to apply the maximum principle.
Our methods can be extended to a limited range of homology classes in cer-
tain higher-dimensional examples - the ones constructed in [6]. For k-step
nilmanifolds with k ≥ 3 the equations are even harder to deal with.

Outline of the paper.

• In Section 2 we explain the classical computations of genus one
Gromov-Witten invariants for two-tori and for higher-dimensional
tori. We also define the family Gromov-Witten invariants.

• In Section 3 we introduce two-step nilpotent Lie groups and their
twistor families W of symplectic structures. We also write down the
Cauchy-Riemann equations for the logarithm of a J-holomorphic
torus (J compatible with some ω ∈W ).

• In Section 4 we review the Kodaira-Thurston manifold and its basic
properties. In particular we show that all tori are descended from
right-translates of Lie algebra homomorphisms (Proposition 4.1).

• In Section 5 we describe the moduli spaces of holomorphic tori.

• In Section 6 we compute the automorphism groups of the unmarked
holomorphic tori in the Kodaira-Thurston manifold.

• In Section 7 we study the linearised problem, including checking
regularity and computing obstruction bundles and orientations.

• In Section 8 we complete the proof of Theorem 1.2.

Notation. For brevity in our coordinate expressions we will sometimes use
the following convention to denote antisymmetrisation of indices:

A[ij] = Aij −Aji

for example:

∂[pXi∂q]Yj = ∂pXi∂qXj − ∂qXi∂pXj .

2. BACKGROUND

We begin by giving an overview of genus one Gromov-Witten theory for
the (twistor families of) complex tori, which are precisely the nilmanifolds
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arising from an abelian Lie group. In doing so we build up in embryonic
form many of the ideas we need for the nonabelian case.

2.1. The 2-torus. The space whose genus one Gromov-Witten invariants
are easiest to calculate is the two-torus, T 2. Let Λτ ∼= Z2 denote the Z-lattice
in C spanned by the vectors 1 and τ = τ1 + iτ2, τ2 > 0. Let Στ = Λτ\C
denote the corresponding complex torus.

Lemma 2.1. Any non-constant holomorphic map f : Στ ′ → Στ is a covering map
(unbranched).

This is clear because branching increases genus by the Riemann-Hurwitz
formula. Therefore counting holomorphic maps Στ ′ → Στ of degree ℓ ≥ 1
amounts to counting holomorphic covering spaces of Στ or, equivalently,
sublattices Λτ ′ ⊂ Λτ of index ℓ modulo the action of SL(2,Z) which repara-
metrises the domain.

Lemma 2.2. There are σ1(ℓ) =
∑

d|ℓ d sublattices of Λτ of index ℓ ≥ 1, modulo

the action of SL(2,Z).

Proof. This is standard and we reproduce the argument only for compari-
son later. A sublattice of index ℓ is specified by a homomorphism Z2 → Z2

whose image has index ℓ, that is a two-by-two integer matrix
(

a b
c d

)

with determinant ℓ. The SL(2,Z)-action is just right multiplication. Using
this right action one can perform the Euclidean algorithm on c and d to
ensure that c vanishes. Similarly one can ensure that 0 ≤ b < a. Now for
each d|ℓ there are d possible matrices up to the action of SL(2,Z)

(

d b
0 ℓ/d

)

, b = 0, . . . , d− 1.

�

We define the moduli space

M1,1(Στ , ℓ[Στ ])

to consist of equivalence classes of pairs (u, z) where u : Στ ′ → Στ is a holo-
morphic map of degree ℓ ≥ 1 and z ∈ Στ ′ is a point. The equivalence rela-
tion equates (u, z) with (u ◦ϕ−1, ϕ(z)) for any holomorphic automorphism
ϕ : Στ ′ → Στ ′ for which u ◦ ϕ−1 = u. This has an evaluation map

ev : M1,1(Στ , ℓ[Στ ]) → Στ , [u, z] 7→ u(z)

Lemma 2.3. The map ev has degree σ1(ℓ).
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Proof. We have seen that there are σ1(ℓ) tori in the moduli space and that
all of these are ℓ-fold covering spaces of Στ . Fix one such covering map.
If x ∈ Στ then the preimages of this point under this covering map are
all equivalent by the action of the deck group, which acts by holomorphic
automorphisms preserving the covering. Hence they represent the same el-
ement in the moduli space M1,1(Στ , ℓ[Στ ]), so the degree of the evaluation
map is just the number of covering spaces, σ1(ℓ). �

These curves are all regular in the sense of Gromov-Witten theory: the cok-
ernel of the linearisation is just the quotient of the Dolbeault cohomology
group H0,1(Στ ′ ;u

∗TΣτ ) by the image of H0,1(Στ ′ ;TΣτ ′) under pushfor-
ward du : TΣτ ′ → TΣτ (this quotient corresponds to allowing τ ′ to vary)

H0,1(Στ ′ ;u
∗TΣτ )/H

0,1(Στ ′ ;TΣτ ′) ∼= H0,1(Στ ′ ;TΣτ ′)/H
0,1(Στ ′ ;TΣτ ′) = 0

The 1-point Gromov-Witten class of degree ℓ ≥ 1, genus one curves through
a point of T 2 is the pushforward under ev of the fundamental class of the
moduli space and is therefore given by

GW1,1(T
2, ℓ[T 2]) = σ1(ℓ)[T

2].

2.2. The 2n-torus. The situation for the 2n-torus is similar but some of the
features it presents are new and will be developed in a more general con-
text later in the paper. For a start, a generic abelian variety contains no
closed holomorphic curves, so we know that the Gromov-Witten invari-
ants vanish. However, holomorphic curves persist if we take a family of
complex structures and look for curves which are holomorphic with re-
spect to one of the complex structures. This phenomenon, made precise in
Section 2.3, is familiar from the case of K3 surfaces [3], where an elliptically-
fibred K3 contains elliptic curves through every point which disappear if
one perturbs the complex structure, but which persist in families which are
deformations of the hyper-Kähler two-sphere of complex structures. The
Gromov-Witten invariants which count curves representing some second
homology classA 6= 0 which are J-holomorphic for some J in a fixed finite-
dimensional, compact, oriented family are called family Gromov-Witten in-
variants. Note that these J must all be tamed by symplectic forms in order
to achieve Gromov compactness, but that the taming form (and even its
cohomology class) might depend on J .

A natural generalisation of this hyper-Kähler sphere to examples which are
not hyper-Kähler is the following.

Definition 2.4 (Twistor family). Let g be an inner product on the vector
space R2n and let o be an orientation. The twistor family of complex struc-
tures is the space of o-positive orthogonal complex structures

W = {ψ ∈ GL+(R2n) | ψ2 = −Id, g(ψX,ψY ) = g(X,Y ) for all X,Y ∈ R2n}
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Note that W ∼= SO(2n)/U(n) since SO(2n) acts transitively on W with
stabiliser U(n). Each ψ ∈W gives rise to a two-form

ωψ(X,Y ) := −g(X,ψY )

and to a bi-invariant Kähler structure (Ωψ, Jψ) on the torus Z2n\R2n.

The genus one family Gromov-Witten invariants of the twistor family of 2n-
tori are easy to compute. Let us write GW1,k(W,A) ∈ H∗((T

2n)k ×W ;Z)
for the homology class of the evaluation pseudocycle for genus one curves
representing the homology classA 6= 0 which are Jψ-holomorphic for some
ψ ∈ W (see Section 2.3 for definitions).

Note first that if ϕ ∈ SL(2n,Z) is a matrix then ϕ∗W is the twistor family
of ϕ∗g. Since g and ϕ∗g can be connected by a path of inner products we
see that ϕ∗W and W are isotopic as families of complex structures. More
importantly, the families {ωψ}ψ∈W and {ωϕ∗ψ}ψ∈W of taming symplectic
forms are isotopic. The family Gromov-Witten invariants are equivariant
under diffeomorphisms ϕ, so that

ϕ∗ GW1,k(W,A) = GW((ϕ−1)∗(W ), ϕ∗A),

and also unchanged by deformations through tamed families, hence we see
that

GW1,k(W,ϕ∗A) = ϕ∗ GW1,k(W,A).

Homology classes represented by two-tori are specified by homomorphisms
ρ : Z2 → Z2n on the level of fundamental groups; we write [ρ] for the corre-
sponding homology class. Two such homomorphisms ρ and ρ′ define the
same homology class if and only if Λ2ρ = Λ2ρ′, that is if all two-by-two
minors of ρ and ρ′ agree. Acting on the left by an element of SL(2n,Z) one
can assume that

ρ =















ρ11 ρ12
ρ21 ρ22
0 0
...

...
0 0















The counting of such homomorphisms up to the reparametrisation action
of SL(2,Z) is again performed by the function σ1(ℓ) where ℓ is the only
nonvanishing two-by-two minor, so ℓ = ℓ([ρ]) is the divisibility of the ho-
mology class (the only invariant of the SL(2n,Z)-action).

Each homomorphism ρ : Z2 → Z2n actually defines a 2-plane Π(ρ) ⊂ R2n

which is Jψ-holomorphic for ψ in a subvariety W (ρ) ⊂ W . This subvariety
is diffeomorphic to SO(2n − 2)/U(n − 1). Each such 2-plane descends to a
Jψ-holomorphic genus one curve v : T 2 → T 2n in T 2n.

Lemma 2.5. All Jψ-holomorphic curves in the homology class [ρ] are affine trans-
lates of v.
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Proof. This is Liouville’s theorem. Let (a, b) be conformal coordinates on T 2

and let ũ : R2 → R2n denote the lift of an arbitrary Jψ-holomorphic curve
u in the homology class [ρ] to the universal cover. The Cauchy-Riemann
equations are linear and the complex structure is constant

∂bũ = ψ∂aũ

hence in each coordinate of R2n the Laplacian ∆ũi = ∂2aũi + ∂2b ũi = 0. We
also have ∆h = 0 where h is the inclusion of Π ⊂ R2n.

It is easy to see that u and v are homotopic and hence ũ−h is bounded and
harmonic. By the maximum principle it is constant which proves that the
two curves are affine translates of one another. �

This implies there is precisely one Jψ-holomorphic curve in the class [ρ] 6= 0
through each point for any ψ ∈W (ρ). Therefore the family Gromov-Witten
invariant is

GW1,1(W, [ρ]) = σ1(ℓ([ρ]))[T
2n]⊗ [W (ρ)] ∈ H∗(T

2n ×W ;Z).

2.3. Family Gromov-Witten invariants. Family Gromov-Witten invariants
have been defined, calculated and used in many places in the literature in-
cluding [4, 11, 13, 14, 15, 16, 17, 18, 19, 20, 24]. Below, we explain the special
cases we require. For more details see [21] and [23].

2.3.1. Setting. We first set up some notation and assumptions for the rest
of this section.

Assumption 2.6. Let X be a compact, connected, smooth, oriented mani-
fold. Let Ω denote the space of symplectic forms on X. Let B be a com-
pact, smooth, oriented manifold and ω be a family of symplectic structures
on X, that is a map ω : B → Ω. We will assume that (X,ω(b)) is a sym-
plectically aspherical symplectic manifold with c1 = 0. We will denote by
A ∈ H2(X;Z) a non-zero homology class.

Remark 2.7. Note that the Kodaira-Thurston manifold, which is our main
example, is a quotient of a nilpotent Lie group N by a cocompact discrete
subgroup equipped with a left-invariant symplectic form. All such exam-
ples are aspherical and satisfy c1 = 0. We will specify the family ω in Defi-
nition 3.4.

Let J denote the space of almost complex structures on X.

Definition 2.8. A family of ω-compatible almost complex structures J is a
map

J : B → J

such that J(b) is ω(b)-compatible for all b ∈ B. We will write J (B) for the
space of families of ω-compatible almost complex structures.
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2.3.2. Complex structures on the torus. Let (p, q) be coordinates on R2 and

jτ =

(

− τ1
τ2

−
(

τ2
1

τ2
+ τ2

)

1
τ2

τ1
τ2

)

be a complex structure, where τ = τ1 + iτ2 is an element of the upper half-
plane H ⊂ C. This descends to the quotient Z2\R2 and gives a complex
torus Στ . Equivalently we can consider coordinates (a, b) on R2 with the
complex structure

ji =

(

0 −1
1 0

)

and divide by the lattice Λτ = 〈1, τ〉, i.e.

Στ = (Z2\R2, jτ )
Φτ∼= (Λτ\R

2, ji)

where the diffeomorphism is

Φτ

(

p
q

)

=

(

1 τ1
0 τ2

)(

p
q

)

=

(

a
b

)

or

Φ−1
τ

(

a
b

)

=

(

1 − τ1
τ2

0 1
τ2

)(

a
b

)

=

(

p
q

)

.

2.3.3. Moduli space of pseudoholomorphic maps.

Definition 2.9. Given a non-zero homology class A ∈ H2(X;Z) and a fam-
ily of compatible almost complex structures J ∈ J (B), define the space

M1,1(A, J)

consisting of equivalence classes of quadruples (u, τ, z, b) where τ ∈ H,
b ∈ B, z ∈ Z2\R2 is a marked point and u is a (jτ , J(b))-holomorphic map

u : Z2\R2 → X, dzu(jτv) = J(b)dzu(v)

such that u∗([Z
2\R2]) = A. We say that two quadruples are equivalent

(u, τ, z, b) ∼ (u′, τ ′, z′, b′) if there exists a diffeomorphism ϕ : Z2\R2 →
Z2\R2 such that

b = b′, u′ = u ◦ ϕ−1, z′ = ϕ(z), jτ ′ = ϕ∗jτ .

Note that, since g = 1, c1 = 0 and there is one marked point, the expected
dimension of this moduli space is dim(B) + 2. There is also a well-defined
evaluation map

ev : M1,1(A, J) → X ×B, ev(u, z, τ, b) = (u(z), b).

Remark 2.10 (Compactness). To compactify the moduli space of genus one
curves with one marked point we consider the moduli space M1,1(A, J) of
genus one stable maps to X with one marked point. If X is symplectically

aspherical then the domain of a stable map in M1,1(A, J) is necessarily an
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irreducible smooth genus one curve, so the moduli space M1,1(A, J) is al-
ready compact. To see this, note that if the domain is nodal then there is a
sphere component with precisely two special points (that is points which
are either marked or nodal). By stability, this sphere component must be
non-constant, but since we are assuming X to be symplectically aspherical
a stable map can have no non-constant sphere components.

If J is regular (see Definition 2.13 below) then M1,1(A, J) is a smooth, com-
pact, oriented, (dimB + 2)-dimensional manifold and we can define the
Gromov-Witten invariant to be the homology class

(2.11) GW1,1(ω,A) = ev∗([M1,1(A, J)]) ∈ H∗(X ×B;Z)

which is equivariant under diffeomorphisms ϕ of X:

(2.12) ϕ∗ GW1,k(ω,A) = GW1,k((ϕ
−1)∗ω,ϕ∗A).

To define genus one Gromov-Witten invariants properly [23] one must study
moduli spaces of solutions to the perturbed Cauchy-Riemann equations for
a suitable perturbation ν depending on z ∈ Σ and jτ . We omit further dis-
cussion of the general definition because in all our examples, pseudoholo-
morphic curves are either regular or can be made regular by a perturbation
of J ∈ J (B).

2.3.4. Regularity and obstructions. Let B denote the W 1,p-completion of the
space of smooth maps u : Z2\R2 → X. There is a Banach bundle E over
B ×H× B whose fibre at (b, τ, u) is the Lp-completion

LpΩ0,1
jτ ,J(b)

(Σ, u∗TX).

There is a section ∂ : B ×H× B → E given by

∂(b, τ, u) = J(b)du− du ◦ jτ .

If (b, τ, u) ∈ ∂
−1

(0) then u is a (jτ , J(b))-holomorphic curve and the section
has a natural vertical linearisation

D(b,τ,u)∂ : TbB × TτH×W 1,p(Σ, u∗TX) → LpΩ0,1
jτ ,J(b)

(Σ, u∗TX)

called the linearised Cauchy-Riemann operator.

Definition 2.13 (Regularity). We say that a family J of ω-compatible almost

complex structures is regular if for every (b, τ, u) ∈ ∂
−1

(0) (with u simple

or multiply-covered) the linearised Cauchy-Riemann operator D(b,τ,u)∂ is

surjective. Equivalently, the section ∂ vanishes transversely.

If J is regular then we can define Gromov-Witten invariants by Equation
(2.11). More generally we can compute Gromov-Witten invariants using a

J which is not regular but for which ∂ vanishes cleanly.
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Definition 2.14 (Cleanliness). We say that a family J of ω-compatible al-

most complex structures is clean if, at every point (b, τ, u) ∈ ∂
−1

(0) (with u

simple or multiply-covered) the moduli space ∂
−1

(0) is a smooth manifold

with tangent space ker(D(b,τ,u)∂). Equivalently, ∂ vanishes cleanly. In this

case the cokernels coker(D∂) form a vector bundle over ∂
−1

(0) which we
call the obstruction bundle and denote O.

The following theorem can be proved by a simple modification of the proof
of [21, Proposition 7.2.3]. The key point is that, sinceX is symplectically as-
pherical, there are no nodal genus one stable maps with one marked point,
so M1,1(A, J) is compact (see Remark 2.10).

Theorem 2.15. Let (X,ω) be as in Assumption 2.6. If J is a clean family of
ω-compatible almost complex structures then the one-point Gromov-Witten in-
variant is given by

GW1,1(ω,A) = ev∗ PD(e(O))

where PD denotes Poincaré duality and e denotes the Euler class.

2.3.5. Orientations. To really make sense of the fundamental class of the
moduli space or of the Euler class of the obstruction bundle one needs ori-
entations. We therefore briefly recall how to orient our moduli spaces when

they are clean. Recall that D∂|W 1,p(Σ,u∗TX) splits as a sum of its (Fredholm)
complex linear and a (compact) complex antilinear parts. We abuse termi-
nology by calling

1

2

(

D∂(α, η, ξ) − ψD∂(α, η, ψξ)
)

the complex linear part of D∂ (it is only complex linear in ξ).

The linearised Cauchy-Riemann operator is homotopic through Fredholm
operators to its complex linear part. There is a determinant bundle over
the space of Fredholm operators whose fibre at D is the determinant line

Λdimker(D) ker(D) ⊗ Λdimcoker(D) coker(D). When the moduli space is reg-

ular (so that its tangent space at u is the kernel of D∂) an orientation of
the determinant line is precisely an orientation of the moduli space. Hav-
ing chosen an orientation on B, the determinant line of a complex linear
Cauchy-Riemann operator is canonically oriented and one can transport

this orientation along a linear homotopy of operators from D∂ to its com-
plex linear part.

When the moduli space is clean rather than regular an orientation of the
determinant line is still all that is needed to define the Euler class of the
obstruction bundle.
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3. TWO-STEP NILPOTENT LIE GROUPS

3.1. Generalities. A Lie group N is called k-step nilpotent if its lower cen-
tral series

N ⊃ [N,N ] ⊃ [N, [N,N ]] ⊃ · · ·

reaches the trivial group in k steps. In particular, all iterated Lie brackets
of k + 1 or more elements vanish. We are interested in two-step nilpotent
groups. The main advantage of this class is the simplicity of the Baker-
Campbell-Hausdorff formula

exp(X) exp(Y ) = exp

(

X + Y +
1

2
[X,Y ]

)

for the logarithm of a product.

Henceforth, N will denote a connected, simply-connected, two-step nilpo-
tent Lie group of even dimension with Lie algebra n. For computational
convenience we will implicitly embed N into a real linear group GL(V )
and n into gl(V ) so that we can write a + b ∈ GL(V ) for a, b ∈ N and
XY ∈ gl(V ) for X,Y ∈ n. Note that such an embedding exists by Engel’s
theorem and that the exponential map exp: n → N , which thanks to the
embedding in GL(V ) we can now write

exp(X) = 1 +X +
1

2
X2 + · · · ,

is a diffeomorphism. We denote its inverse by log.

Since n is a linear space there is a canonical isomorphism Tn ∼= n× n so we
will write (X,Y ) ∈ n × n and Y ∈ TXn to mean the same thing. There is a
canonical map πN : TN → n defined by

(3.1) πN (X) = L(s−1)∗X for X ∈ TsN

Here L(s) : N → N is the left-multiplication by s ∈ N . Precomposing with
d exp: Tn → TN we get a map πn : n× n → n, explicitly

(3.2) πn(X,Y ) = L(exp(−X))∗(dX exp)(Y ).

Lemma 3.3. We have

πn(X,Y ) = Y −
1

2
[X,Y ].

Proof. The Baker-Campbell-Hausdorff formula implies that

exp(−X) exp(X + tY ) = exp

(

t

(

Y −
1

2
[X,Y ]

))
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so

lim
t→0

exp(X + tY )− exp(X)

t
= lim

t→0

1

t
exp(X)

(

exp

(

t

(

Y −
1

2
[X,Y ]

))

− 1

)

= exp(X)

(

Y −
1

2
[X,Y ]

)

.

In GL(V ) we know that L(s)∗v = sv so the formula follows. �

3.2. The twistor family of almost Kähler structures. Fix a two-step nilpo-
tent Lie group N as before and endow it with

• an orientation o and

• a left-invariant metric g (coming from an inner product, also called
g, on n).

Moreover, let Γ be a cocompact lattice inN : these always exist if the algebra
is defined over Q.

Definition 3.4. The twistor family, denoted W , is the space of pairs (ωψ, ψ)
where

• ψ is a g-orthogonal o-positive complex structure on n,

• ωψ is the two-form on n associated to g andψ by g(v,w) = ωψ(v, ψw),

and such that

ωψ([X,Y ], Z) + ωψ([Y,Z],X) + ωψ([Z,X], Y ) = 0.

Any pair (ωψ, ψ) ∈W yields a left-invariant almost Kähler structure (Ωψ, Jψ)
on N . In particular if s ∈ N , v ∈ TsN and L(s)∗ denote the differential of
left-multiplication by s then

(3.5) Jψv = L(s)∗ψL(s
−1)∗v.

By left-invariance these all descend to give almost Kähler structures on
Γ\N . We will often abusively write ψ ∈ W or ωψ ∈ W or even Jψ ∈ W
or Ωψ ∈W .

This subsumes Definition 2.4 in the case when N is abelian. Notice that W
is a subvariety of SO(2n)/U(n), the space of positive orthogonal complex
structures on n, but may not be a smooth subvariety and it may be empty
(we will of course restrict attention to examples where it is nonempty!). If
it is not smooth we will restrict attention to some auspicious irreducible
component of W which is smooth.

Lemma 3.6. Let z denote the centre of n. For ψ ∈W ,

ψ[n, n] ⊂ z⊥
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If moreover z = [n, n]⊕ t for a one-dimensional subalgebra t then

ψz = z⊥.

Proof. The first assertion follows from the equation

g([X,Y ], ψZ) + g([Y,Z], ψX) + g([Z,X], ψY ) = 0.

When we take ψ[X,Y ] ∈ ψ[n, n] and Z ∈ z, the equation reduces to

g(ψ[X,Y ], Z) = 0

proving the first claim.

If t is one-dimensional then certainly ψt ⊂ t⊥. Moreover the first claim
implies ψt ⊂ [n, n]⊥. Hence ψz = z⊥. �

3.3. Pseudoholomorphic tori. We have set up out conventions for coordi-
nates (p, q) and complex structures jτ on the torus Z2\R2 in Section 2.3.2.
We will write ∆ for the Laplacian ∂2a + ∂2b . Notice that if f : R2 → R is a
differentiable function then

(3.7) ∂af = ∂pf, ∂bf =
∂qf − τ1∂pf

τ2

The Cauchy-Riemann equations. Fix a linear complex structure jτ on R2 and
let (a, b) be linear conformal coordinates (so jτ∂a = ∂b). Consider ψ ∈ W
and the associated left-invariant almost complex structure Jψ on N .

Definition 3.8. A (jτ , Jψ)-holomorphic torus in a nilmanifold Γ\N is a map
u : Z2\R2 → Γ\N such that

Jψ ◦ du = du ◦ jτ .

We will denote by π1(u) : Z
2 → Γ the induced map on fundamental groups.

Note that a (jτ , Jψ)-holomorphic torus in Γ\N lifts to a (jτ , Jψ)-holomorphic
map between the universal covers

ũ : R2 → N

in one of Γ/π1(u)(Z
2) possible ways. We will fix one such lift.

Lemma 3.9. If w = log ◦ũ : R2 → n then

(3.10) ψ

(

∂aw −
1

2
[w, ∂aw]

)

= ∂bw −
1

2
[w, ∂bw]

which implies

(3.11) ∆w −
1

2
[w,∆w] = ψ[∂aw, ∂bw]

where ∆ = ∂2a + ∂2b .
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Proof. The (jτ , Jψ)-holomorphic map equation

Jψ(ũ(a, b))dũ(∂a) = dũ(jτ∂b)

is equivalent to

L(ũ(a, b))∗ψL(ũ
−1(a, b))∗dũ(∂a) = dũ(∂b)

because of Equation (3.5). This implies that

ψ ◦ πN ◦ dũ(∂a) = πN ◦ dũ(∂b).

(see Equations (3.1) and (3.2) for the definition of πN and πn) Splitting

πN = πN ◦ d exp ◦d log

and using the fact that πN ◦ d exp = πn we get a sequence of equations

ψ ◦ πN ◦ d exp ◦d log ◦dũ(∂a) = πN ◦ d exp ◦d log ◦dũ(∂b)

ψ ◦ πn ◦ dw(∂a) = πn ◦ dw(∂b)

ψ ◦ πn(w, ∂aw) = πn(w, ∂bw)

and this yields (3.10) thanks to Lemma 3.3. The second order equation
follows by cross-differentiating and manipulating (3.10). �

3.4. Homomorphisms. Let u : Z2\R2 → Γ\N be a map. The induced map
π1(u) : Z

2 → Γ on fundamental groups extends uniquely to a homomor-
phism H : R2 → N . To see this take the images of two generators in Z2:
these commute and hence their logarithms commute in the Lie algebra.
This means that they span a two-dimensional abelian subalgebra R2. The
map H is just the exponential map restricted to this subalgebra. Since H
sends Z2 into Γ, it descends to a map v : Z2\R2 → Γ\N .

Lemma 3.12. The maps u and v are freely homotopic.

Proof. Let ⋆ be a basepoint of Z2\R2. Freely homotoping u using a path
γ joining u(⋆) to v(⋆) allows us to assume that u and v are maps based at
the same point u(⋆) = v(⋆). The maps π1(u) and π1(v) on fundamental
groups are conjugate by construction and this conjugation can be effected
by a further free homotopy of u where the base point traces out a loop
based at u(⋆). That is, after a free homotopy one can assume π1(u) = π1(v).
By a based homotopy one can ensure that the maps u and v agree on the 1-
skeleton of Z2\R2 (a wedge of loops). Since Γ\N is aspherical (in particular
π2(Γ\N) = 0) the homotopy can be extended to the 2-skeleton of Z2\R2.

�

Corollary 3.13. Any lift ũ : R2 → N of u differs from H by a bounded amount,
i.e. the function H−1ũ : R2 → N given by

(p, q) 7→ H(p, q)−1ũ(p, q)

is bounded.
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Proof. After perturbation of the projection u to a map u′ based at ⋆ and
based-homotopic to v, the map H−1ũ′ descends to a nullhomotopic map
Z2\R2 → Γ\N and hence factors as R2 → Z2\R2 → N . Boundedness of
the map upstairs follows from compactness of Z2\R2. The maps ũ and ũ′

differ by a bounded perturbation (an equivariant lift of a compact pertur-
bation in Γ\N ). �

4. THE KODAIRA-THURSTON MANIFOLD, K

4.1. Definition. Consider the two-step nilpotent group

N =























1 x z 0
0 1 y 0
0 0 1 0
0 0 0 t









: x, y, z, t ∈ R, t > 0















and the lattice Γ consisting of matrices with integer entries. The compact
quotient K = Γ\N is called the Kodaira-Thurston manifold. The Lie alge-
bra n consists of matrices









0 x z 0
0 0 y 0
0 0 0 0
0 0 0 t









and the exponential map is

exp









0 x z 0
0 0 y 0
0 0 0 0
0 0 0 t









=









1 x z + xy
2 0

0 1 y 0
0 0 1 0
0 0 0 et









The commutator subalgebra [n, n] consists of matrices with x = y = t = 0.
The centre splits as z = t⊕ [n, n] where t = {x = y = z = 0}. We pick a basis
for n:

n1 = ∂y n2 = ∂x

n3 = ∂t n4 = ∂z.

Let us denote by W the twistor family. If ψ ∈ W then by Lemma 3.6 we
know that ψ(z) ⊂ z⊥. The complex structure ψ is therefore specified by
an isometry Ψ: z → z⊥ which we will think of as a two-by-two special
orthogonal matrix (written with respect to the bases n3,n4 and n1,n2). It is
not hard to check that any matrix Ψ ∈ SO(2) gives an element ψ ∈ W . We
will write ψθ for the almost complex structure corresponding to the matrix

Ψθ =

(

cos θ − sin θ
sin θ cos θ

)
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The tangent space Tψθ
W consists of matrices of the form

α = r

(

− sin θ − cos θ
cos θ − sin θ

)

.

4.2. Pseudoholomorphic tori and homomorphisms. Given ψ ∈ W , sup-
pose that u : Z2\R2 → K is a (j, Jψ)-holomorphic curve for some linear
complex structure j on R2. Take (a, b) to be linear j-complex coordinates
on R2. Let π1(u) be the induced map on the fundamental group, let H be a
homomorphism R2 → N extending π1(u) and let ũ : R2 → N be a lift of u.
Denote the logarithms by w = log ◦ũ and h = log ◦H . We want to compare
ũ and H so consider C = log ◦(H−1ũ). By the Baker-Campbell-Hausdorff
formula

C = w − h−
1

2
[h,w]

Moreover since h is a homomorphism its logarithm is linear (a homomor-
phism of Lie algebras) and hence ∆h = 0.

Proposition 4.1. The logarithm C is constant and hence ũ = H exp(C) is a
right-translate in N of a homomorphism R2 → N . In particular

ũ = exp

(

h+ C +
1

2
[h,C]

)

Proof. We decompose the Lie algebra n as b⊕ [n, n]⊕ψ[n, n]. Note that both
p = [n, n] and q = ψ[n, n] are one-dimensional. We denote the correspond-
ing components of w as wb, wp, wq. We have

Cb = wb − hb

Cq = wq − hq

Cp = wp − hp −
1

2
[h,w]

Equation (3.11) breaks up into component equations

∆wb = 0(4.2)

∆wq = ψ[∂aw, ∂bw](4.3)

∆wp =
1

2
[w,∆w](4.4)

Equation (4.2) implies ∆Cb = ∆wb −∆hb = 0 and because Cb is bounded
the maximum principle tells us that Cb is constant. Hence ∂wb = ∂hb is
constant (where ∂ stands for either ∂a or ∂b).

Equation (4.3) implies

∆Cq = ∆wq −∆hq

= ψ[∂aw, ∂bw]
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We can expandw = wb+wp+wq in the bracket and ignore the p-components
since n is two-step nilpotent. Furthermore, the term [∂awq, ∂bwq] vanishes
because q is one-dimensional and hence abelian. The term [∂awb, ∂bwb] =
[∂ahb, ∂bhb] is constant. The remaining terms are [∂awq, ∂bhb] + [∂ahb, ∂bwq]
which are linear first order differential operators with constant coefficients
acting on the function wq = Cq + hq. Therefore

∆Cq = ψ ([∂a(Cq + hq), ∂bhb] + [∂ahb, ∂b(Cq + hq)] + [∂ahb, ∂bhb])

is a linear elliptic equation with constant coefficients for Cq. Boundedness
of Cq and the Hopf maximum principle [8, Theorem 3.1] implies that Cq

is constant. The crucial observation is that there are no nonlinearities or
couplings in Equation (4.3) because q is one-dimensional.

We now know that Cb⊕q = wb⊕q − hb⊕q is constant and, since h is linear
∆wb⊕q = 0. Equation (4.4) implies that

∆wp =
1

2
[w,∆w]

=
1

2
[wb⊕q,∆wb⊕q] = 0,

therefore

∆Cp = ∆wp −∆hp −
1

2
∆[h,w]

= −
1

2
∆[hb⊕q, wb⊕q]

= −
1

2
∆[hb⊕q, hb⊕q + Cb⊕q] = 0

because h is linear and [hb⊕q, hb⊕q] = 0. Again the maximum principle
implies that Cp is constant. We have now seen that all components of C are
constant. �

4.3. Cohomology and its automorphisms. Consider the left-invariant one-
forms

dy, dx, dt, γ = dz − xdy

The first three one-forms are closed and we denote their cohomology classes
by e1, e2, e3 respectively. They span H1(K;Z) ⊂ H1(K;R). The following
classes span H2(K;Z):

e13 = [dy ∧ dt] e23 = [dx ∧ dt]

e14 = [dy ∧ γ] e24 = [dx ∧ γ]

Finally, the following classes span H3(K;Z):

e134 = [dy ∧ dt ∧ γ], e234 = [dx ∧ dt ∧ γ], e124 = [dy ∧ dx ∧ γ]
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We define the dual bases Ei ∈ H1(K;Z), Eij ∈ H2(K;Z) and Eijk ∈
H3(K;Z) for homology, so for example

∫

Eijk

eℓmn = δiℓδjmδkn

and we write A =
∑

AijEij , or frequently

[A13, A23, A14, A24],

for the components of a homology class A.

Remark 4.5. The symplectic form ωθ corresponding to a rotation matrix Ψθ

is
ωθ = dt ∧ (cos θ dx+ sin θ dy) + γ ∧ (− sin θ dx+ cos θ dy)

so the ωθ-symplectic area of A is

− (cos θ (A23 +A14) + sin θ (A24 −A13)) .

Let ϕ : Γ → Γ be a lattice automorphism. Then by rigidity for nilpotent
Lie groups [26, Theorem 2.7] we know that ϕ extends uniquely to an au-
tomorphism of N . As we observed in the case of the 2n-torus, the left-
invariant metrics ϕ∗g and g are isotopic through left-invariant metrics and
hence the corresponding twistor families of symplectic forms are deforma-
tion equivalent. Deformation invariance of Gromov-Witten invariants ap-
plied to Equation (2.12) implies

(4.6) GW1,k(W,ϕ∗A) = ϕ∗ GW1,k(W,A)

for any ϕ ∈ Aut(Γ).

Lemma 4.7. There is a homomorphism SL(2,Z) → Aut(Γ) which projects to the
standard action of SL(2,Z) on Γ/Z(Γ) ∼= Z2.

Proof. The homomorphism is defined on generators by

σ1 : =

(

0 −1
1 0

)

7→ ϕ1, σ2 :=

(

1 1
0 1

)

7→ ϕ2

where

ϕ1









x
y
z
t









=









−y
x

z − xy
t









and

ϕ2









x
y
z
t









=









x+ y
y

z + y(y+1)
2

t









Since the projection Γ → Γ/Z(Γ) is given by (x, y, z, t) 7→ (x, y) we see that
the maps induced on the quotient are precisely σ1 and σ2. �
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The action of ϕi on second homology is:

(4.8) (ϕi)∗[A13, A23, A14, A24] = [σi(A12, A23), σi(A14, A24)].

4.4. The homology classes of tori. Let h : R2 → n be a Lie algebra homo-
morphism and write

h(p, q) =

4
∑

i=1

hi(p, q) ni

where hi(p, q) are its linear coordinate functions. Its exponential is

(4.9) H = exp(h) =









1 h2 h4 +
1
2h1h2 0

0 1 h1 0
0 0 1 0
0 0 0 eh3









Since R2 is an abelian Lie algebra,

(4.10) [∂ph, ∂qh] = ∂[ph2∂q]h1 = 0.

The map H : R2 → N will descend to a closed torus in K if

exp(h(1, 0)), exp(h(0, 1)) ∈ Γ.

Equivalently the derivatives ∂phi, ∂qhi for i = 1, 2, 3, ∂ph4 +
1
2∂ph1∂ph2 and

∂qh4 +
1
2∂qh1∂qh2 must be integers.

Definition 4.11. If H = exp(h) descends to a closed torus with homol-
ogy class A then we say h represents the homology class A and we write
[h] = A. Equivalently, if h = log ◦H where H : R2 → N is the unique ho-
momorphic extension of a lattice homomorphism ρ : Z2 → Γ then we can
write [ρ] := [h].

Lemma 4.12. Let h : R2 → n be a Lie algebra homomorphism such that H =
exp ◦h descends to a closed genus one curve in K . Then [h] = A where

Aij = ∂[phi∂q]hj .

Proof. By considering closed invariant two-forms on N we get an isomor-
phism [26, Corollary 4.7]

H2(K;R) ∼= H2
Lie(n).

Similarly we have an isomorphism H2(T 2;R) ∼= H2
Lie(R

2) ∼= R. In terms
of these isomorphisms the pullback map H2(K;R) → H2(T 2;R) is just
the pullback in Lie algebra cohomology induced by the homomorphism h.
This pullback is induced by the map

Λ2h∨ : Λ2n∨ → Λ2R2

which simply takes the two-by-two minors of the matrix representing h,
whose rows are (∂phi, ∂qhi).
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The subspace of Λ2n∨ spanned by eij consists of Lie cochains and projects
isomorphically to H2

Lie(n). The coefficients Aij of A are precisely the pull-
backs of these forms to H2

Lie(R) ∼= R and these are just the minors of the
transpose of the matrix whose columns are ∂ph and ∂qh.

Aij = h∗[eij] = ∂[phi∂q]hj .

�

Note that it is not immediately obvious why ∂[ph1∂q]h4 is an integer (though
it follows from the lemma).

Lemma 4.13. If A = [h] for some homomorphism h : R2 → n then

A13A24 = A14A23.

Proof. There is a commutative diagram of Plücker maps

R2 ×R2 ∧
−−−−→ Λ2R2 ∼= R

h×h





y





yΛ2h

n× n −−−−→
∧

Λ2n

The image of (∂p, ∂q) ∈ R2×R2 in Λ2n is the sextuple of two-by-two minors
Dij = ∂[phi∂q]hj of the matrix of h. This sits inside the Plücker quadric

D12D34 −D13D24 +D14D23 = 0

However, D12 = 0 because R2 is abelian and Lemma 4.12 implies that
Dij = Aij for i = 1, 2, j = 3, 4. �

Lemma 4.14. If h : R2 → n is a homomorphism with [h] = A then there is an
automorphism ϕ of Γ such that ϕ∗A = [m,m,n, n] where

m = gcd(A13, A23), n = gcd(A14, A24).

Defining a = A13/m, b = A23/m, we see from Lemma 4.13 that

a = A14/n, b = A24/n, and gcd(a, b) = 1.

Proof. By the action of SL(2,Z) ⊂ Aut(Γ) on H2(K;Z) described in Equa-
tion (4.8) we can move the pair (A13, A23) by some ϕ ∈ Aut(Γ) until it
coincides with (gcd(A13, A23), gcd(A13, A23)). Since A13A24 = A14A23, the
same ϕ will take (A14, A24) to (gcd(A14, A24), gcd(A14, A24)). �

We now consider linear reparametrisations of the torus, that is SL(2,Z)
acting on the (p, q)-plane. We have this freedom when counting pseudo-
holomorphic tori because we specified the complex structure jτ by giving
a point τ ∈ H in the upper-half plane: we are therefore over-counting each
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torus infinitely often, once for each point in H giving a diffeomorphic com-
plex structure. The SL(2,Z)-reparametrisation precisely removes this am-

biguity. The effect of Φ ∈ SL(2,Z) on
∑2

i=1 ∂phi ni and
∑2

i=1 ∂qhi ni is to
act on the right:

(

∂ph1 ∂qh1
∂ph2 ∂qh2

)

Φ.

Definition 4.15. We write [h]SL for the SL(2,Z)-equivalence class of Lie
algebra homomorphisms containing h. Note that the homology class [h]
depends only on h. The notion of SL(2,Z)-equivalence also makes sense
for lattice homomorphisms ρ : Z2 → Γ by extending them to Lie group ho-
momorphisms and taking the logarithm, and we write [ρ]SL for the equiv-
alence class.

Definition 4.16. We say a homomorphism h : R2 → n is reduced if ∂ph1 =
∂ph2 = 0. Equivalently the matrix of derivatives of h is









0 ∂qh1
0 ∂qh2

∂ph3 ∂qh3
∂ph4 ∂qh4









.

We say that h is fully reduced if moreover

0 ≤ ∂qh3 < ∂ph3.

The notion of reduced homomorphism also makes sense for lattice homo-
morphisms ρ : Z2 → Γ by extending them to Lie group homomorphisms
and taking the logarithm.

Lemma 4.17. For a homology class A 6= 0 with m = A13 = A23, n = A14 =
A24, any Lie algebra homomorphism h : R2 → n with [h] = A is SL(2,Z)-
equivalent to a reduced homomorphism with ∂qh1 = ∂qh2 6= 0. If moreover
m 6= 0 then h is SL(2,Z)-equivalent to a unique fully reduced homomorphism.

Proof. Since R2 is an abelian Lie algebra we have

0 = [∂ph, ∂qh] = ∂[ph2∂q]h1n1.

If h1 6≡ 0 this implies that the top two rows
(

∂ph1 ∂qh1
∂ph2 ∂qh2

)

of the homomorphism h are linearly dependent. Using the right SL(2,Z)-
action we can ensure that ∂ph1 = ∂ph2 = 0. Now we have

m = −∂qh1∂ph3 = −∂qh2∂ph3

n = −∂qh1∂ph4 = −∂qh2∂ph4

and since one of these two quantities is nonzero we know that ∂qh1 =
∂qh2 6= 0.
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We have a residual right SL(2,Z)-action by matrices of the form
(

±1 ⋆
0 ±1

)

since these preserve the condition ∂ph1 = ∂ph2 = 0. We know that ∂ph3 6= 0
becausem is assumed to be nonzero. Using the action of these matrices and
this fact we can attain ∂ph3 > 0 and implement the Euclidean algorithm on
∂qh3 to ensure that 0 ≤ ∂qh3 < ∂ph3. �

Note that for a reduced homomorphism, ∂qh1 = ∂qh2 divides the greatest
common divisor gcd(m,n). It is easy to check that the most general reduced
homomorphism giving the numbers m and n is

∂qh1 = ∂qh2 = −sgn(m)d

∂ph3 =
|m|

d

∂ph4 = −
n

sgn(m)d

for a positive divisor d of gcd(m,n), where sgn(m) denotes the sign of m.
In matrix form this looks like

(4.18)









0 −sgn(m)d
0 −sgn(m)d
|m|
d ∂qh3

− n
sgn(m)d ∂qh4









.

5. PSEUDOHOLOMORPHIC TORI IN K

We have seen (Proposition 4.1) that if ψ ∈ W then all (j, Jψ)-holomorphic
tori in K are quotients of maps R2 → N of the form

(5.1) exp

(

h+ C +
1

2
[h,C]

)

where h : R2 → n is a Lie algebra homomorphism and C ∈ n is a constant.
We know that if h descends to a closed genus one curve then the derivatives

∂phi, ∂qhi for i = 1, 2, 3, ∂ph4 +
1

2
∂ph1∂ph2, ∂qh4 +

1

2
∂qh1∂qh2

are integers. The problem is now to enumerate these tori modulo the repara-
metrisation action of SL(2,Z) on R2.

In light of Lemma 4.14 we will restrict attention to non-zero homology
classes with A13 = A23 and A14 = A24 without loss of generality and by
reparametrising as in Lemma 4.17 we can assume ∂ph1 = ∂ph2 = 0 (i.e. h is
reduced). Using the usual decomposition n = a ⊕ z of the Lie algebra into
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the centre z and its orthogonal complement, we can write this assumption
as

∂pha = 0.

By Equation (3.7) this is equivalent to

∂aha = 0.

The expected dimension of genus g curves in K which are Jψ-holomorphic
for some ψ ∈W is

4 · (1− g) + 6g − 6 + dimW

since c1(K) = 0. For tori (g = 1) the expected dimension is dimW = 1.
When a marked point is added we get

virdimM1,1(W,A) = 3.

Our task in this section is to write down the moduli space and compute its
dimension.

5.1. Defining moduli spaces. Let A = [m,m,n, n] ∈ H2(K,Z) be a non-
zero homology class and define the space of maps

M(W,A) =







(u, τ, ψ)

∣

∣

∣

∣

∣

∣

τ ∈ H, ψ ∈W,
u : T 2 → K is (jτ , Jψ)-holomorphic,
u∗[T

2] = A







Let ρ : Z2 → Γ be a homomorphism with [ρ] = A and let H : R2 → N its
unique homomorphic extension. Define

Mρ(W ) = {(HeC , τ, ψ) ∈ M(W,A) for some C ∈ n}

and note that
M(W,A) =

∐

[ρ]=A

Mρ(W )

We also define

Mred(W,A) =
∐

[ρ]=A, ρ reduced

Mρ(W )

Mful(W,A) =
∐

[ρ]=A, ρ fully reduced

Mρ(W ).

The one-point moduli space is given by

M1,1(W,A) = M(W,A) ×Aff(T 2) T
2

where Aff(T 2) = SL(2,Z) ⋉ T 2 is the group of affine reparametrisations
of T 2. Here ϕ ∈ Aff(T 2) acts by

ϕ(u, τ, ψ, z) = (u ◦ ϕ−1, ϕ(τ), ψ, ϕ(z))

where the action of SL(2,Z) on H is the standard one. We will also write

M1,1(W, [ρ]SL) := Mρ(W )×T 2 T 2.



PSEUDOHOLOMORPHIC TORI IN KODAIRA-THURSTON 27

Lemma 5.2. The action of Aff(T 2) on M(W,A) × T 2 is free.

Proof. Suppose (u, τ, ψ, z) is fixed by ϕ. Let v denote the simple curve un-
derlying u and π : Στ → Στ ′ denote the holomorphic covering space such
that u = v ◦ π. The curve v has an open set V ⊂ Στ ′ of injective points.
Let x ∈ V . An automorphism ϕ of u satisfies u(ϕx′) = u(x′) for any
x′ ∈ π−1(x). This implies that π ◦ ϕ = π on π−1(V ) and hence every-
where, so ϕ is a deck transformation (a translation). However ϕ(z) = z, so
ϕ = Id. �

We first divide out by translations. The space M(W,A) ×T 2 T 2 has a resid-
ual SL(2,Z)-action. The following lemma is immediate from Lemma 4.17.

Lemma 5.3. Every SL(2,Z)-orbit of M(W,A) ×T 2 T 2 contains a point of

Mred(W,A) ×T 2 T 2.

If m 6= 0 then every orbit contains a unique point of

Mful(W,A) ×T 2 T 2.

�

5.2. Describing Mρ(W,A).

Lemma 5.4. Suppose that h is a reduced Lie algebra homomorphism and C ∈ n

is a constant. The Cauchy-Riemann equations for

exp

(

h+ C +
1

2
[h,C]

)

become

∂bha = ψ∂ahz(5.5)

∂bhz = [Ca, ∂bha].(5.6)

Proof. By Lemma 3.6, ψ(a) = z. If w = h+ C + 1
2 [h, c] then we have

wa = ha + Ca

wz = hz + Cz +
1

2
[ha, Ca]

Taking the a-part of the Cauchy-Riemann equation (3.10) and using the fact
that ∂pha = ∂aha = 0 (h is reduced) gives Equation (5.5). Taking the z-part
of (3.10) gives

0 = ∂bhz +
1

2
[∂bha, Ca]−

1

2
[ha + Ca, ∂bha]

= ∂bhz + [∂bha, Ca].

This last step uses the fact that [ha, ∂bha] = 0 which follows because ha =
a∂aha + b∂bha = b∂bha. �
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Lemma 5.7. Fix a Lie algebra homomorphism h : R2 → n with h =
∑4

i=1 hini
such that ∂pha = 0 and exp(h(Z2)) ⊂ Γ. We will list all possibilities for C , τ and
ψ such that

h+ C +
1

2
[h,C]

is the logarithm of a Jψ-holomorphic torus:

• The constant Cz is arbitrary,

• The number τ2 satisfies

τ2 =
||∂qha||

||∂phz||

• The complex structure ψ is specified by the unique matrix Ψ ∈ SO(2)
which rotates

(5.8)

(

∂ph3
∂ph4

)

to
1

τ2

(

∂qh1
∂qh2

)

• The components of Ca satisfy

(5.9) C2∂qh1 − C1∂qh2 = ∂qh4 − τ1∂ph4,

Moreover,

• if ∂ph3 6= 0 we have

τ1 = ∂qh3/∂ph3

• if ∂ph3 = 0 then necessarily ∂qh3 = 0 and τ1 is arbitrary.

Proof. The constant Cz is arbitrary because it does not enter into Equations
(5.5) and (5.6). Taking the norm of Equation (5.5) gives

||∂bha|| = ||∂ahz||

because ψ is orthogonal. Using Equation (3.7) we have

||∂bha|| =

∣

∣

∣

∣

∣

∣

∣

∣

∂qha − τ1∂pha
τ2

∣

∣

∣

∣

∣

∣

∣

∣

=
||∂qha||

τ2

since ∂pha = ∂aha = 0. This gives the formula for τ2. Having fixed τ2,
Equation (5.5) becomes precisely the desired condition on ψ.

The equation for C1 and C2 is simply the n4-component of Equation (5.6).
Finally, the n3 component is

∂bh3 = 0

since n3 is orthogonal to the commutator subalgebra. Using the fact (3.7)
that

∂bh3 =
∂qh3 − τ1∂ph3

τ2
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we obtain the required dichotomy for τ1 when ∂ph3 is either zero or nonzero.
�

Note that, unlike Ca, the quantity C2∂qh1−C1∂qh2 is invariant under trans-
lations of the (p, q)-plane.

Corollary 5.10. Let ρ : Z2 → Γ be a homomorphism, H its homomorphic exten-
sion to R2 → N and h = logH . When ∂ph3 6= 0 the moduli space Mρ(W )
consists of maps u of the form

HeC0+D

where

(5.11) C0 =
∂qh4 − τ1∂ph4

∂qh1
n2

and D is any element n satisfying [D,h] = 0.

Proof. By Equation (5.9) we know that ifHeC is in the moduli space Mρ(W )
then C must solve

C2∂qh1 − C1∂qh2 = ∂qh4 − τ1∂ph4,

The vector C0 ∈ n given in Equation 5.11 is a particular solution of this in-
homogeneous equation. Therefore D = C − C0 satisfies the corresponding
homogeneous equation,

D2∂qh1 −D1∂qh2 = 0

which is equivalent to [D,h] = 0. Note that ψ and τ are determined by the
homomorphism ρ. �

Lemma 5.12. Suppose ρ : Z2 → Γ is reduced and that (HeC0+D, τ, ψ) ∈ Mρ(W )
as in Corollary 5.10. By reparametrising (p, q) 7→ (p+ δp, q + δq) we can assume
that

D · ∂qha = D · ∂phz = 0.

In particular we can ensure that Dz ⊥ ∂phz and Da = 0.

Proof. The logarithm of HeC0+D is h + C0 + D + 1
2 [h,C0] since [h,D] = 0.

We can absorb the reparametrisation of h by (p, q) 7→ (p + δp, q + δq) into
the constant D, which becomes

D + δp

(

∂ph+
1

2
[∂ph,C0]

)

+ δq

(

∂qh+
1

2
[∂qh,C0]

)

First pick δq to solve the equation

δq

(

∂qh+
1

2
[∂qh,C0]

)

· ∂qha +D · ∂qha = 0

This is possible since
(

∂qh+ 1
2 [∂qh,C0]

)

·∂qha = ||∂qha||
2 6= 0 and it ensures

that D′ · ∂qha = 0, where D′ is the new constant after the reparametrisation
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by (0, δq). Next, remember that since ρ is reduced ∂pha = 0. Let δp be the
solution of

δq

(

∂ph+
1

2
[∂ph,C0]

)

· ∂phz +D′ · ∂phz = 0

which is possible since
(

∂ph+ 1
2 [∂ph,C0]

)

· ∂phz = ||∂zhz||
2 6= 0. Reparamet-

rising D′ by (δp, 0) gives D′′ satisfying D′′ · ∂phz = 0. Note that D′′ · ∂qha
is still zero because ∂pha = 0 so this condition is not affected by the second
reparametrisation.

Now assume that we have reparametrised and relabelled so thatD satisfies
the equations

D · ∂qha = D · ∂phz = 0.

To see that this gives Da = 0 note that [D,h] = [Da, ha] = [Da, q∂qha] = 0
(because h is reduced). This is a linear equation for a vector Da ∈ a and
dim(a) = 2, so Da is a multiple of ∂qha. But we have just seen that Da ⊥
∂qha. The second equation implies Dz ⊥ ∂phz. �

5.3. Describing M1,1(W,A): fully reduced case. We know by definition
that M1,1(W,A) = M(W,A) ×Aff(T 2) T

2 and M(W,A) =
∐

[ρ]=AMρ(W ).

By Lemma 5.3 we know that if m = A13 6= 0 then there is a unique fully
reduced ρ in the SL(2,Z)-orbit of homomorphisms representing the class
[A] and hence

M1,1(W,A) = Mful(W,A) ×T 2 T 2

=
∐

ρ reduced

Mρ(W )×T 2 T 2

By Lemma 5.12 we know that a local slice of the moduli space Mρ(W )×T 2

T 2 (when ρ is fully reduced) is given by

(HeC0+D(λ), τ, ψ, z)

where z ∈ T 2 is arbitrary and

(5.13) D(λ) = λ









0
0

∂ph4
−∂ph3









for λ ∈ R. In fact this descends to a global description of the moduli space
when we observe that D(λ) is central and hence

HeC0+D(λ) = eD(λ)HeC0

which gives the same pseudoholomorphic torus if and only if eD(λ) ∈ Γ.
This occurs precisely when λ is a multiple of 1

gcd(∂ph3,∂ph4)
.
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Corollary 5.14. If A =
∑

AijEij ∈ H2(K;Z) is a homology class with A13 6= 0
then the moduli space M1,1(W,A) is smooth. It is a union of components la-
belled by fully reduced homomorphisms ρ : Z2 → Γ, each component consisting of
equivalence classes

[(

HeC0+D(λ), z
)]

, λ ∈

[

0,
1

gcd(∂ph3, ∂ph4)

]

, z ∈ T 2

where

• H : R2 → N is the unique homomorphic extension of ρ and h is its loga-
rithm,

• D(λ) is defined by Equation (5.13),

• C0 is defined by Equation (5.11).

• the equivalence relation equates (u, z) with (u ◦ ϕ−1, ϕ(z)) for a transla-
tion ϕ : T 2 → T 2 of the domain such that u ◦ ϕ−1 = u.

In particular, the tangent space at (u, τ, ψ, z) comprises the vectors

(D(λ), V ) ∈ z⊕ TzΣτ , λ ∈ R.

The moduli space has dimension three (the expected dimension).

Arguing as in the proof of Lemma 5.2 we see that if u is a torus and v is the
underlying simple torus, so that u = v ◦ π for some holomorphic covering
map π, then the size of the equivalence class [(u, z)] is the order of the deck
transformation group of this cover.

5.4. Describing M1,1(W,A): the general case. Suppose now that m =
A13 = 0. Since A 6= 0 we know that n 6= 0.

By Lemma 5.3 we know that any ρ with [ρ] = A can be conjugated via
the action of SL(2,Z) to a reduced homomorphism. For a reduced ρ, the
subgroup Stab(ρ) ⊂ Aff(T 2) of affine reparametrisations of R2 fixing ρ is
generated by the subgroup T 2 of translations and the group isomorphic to
Z× (Z/2Z) ⊂ SL(2,Z) consisting of matrices

(

±1 ⋆
0 ±1

)

.

Lemma 5.3 can be rephrased as

M1,1(W,A) = Mred(W,A) ×Stab(ρ) T
2

Each component diffeomorphic to

Mρ(W,A) ×T 2 T 2

for some reduced ρ.
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Lemma 5.15. In the case m = 0, n 6= 0 the moduli space is a smooth manifold
of dimension four and the tangent space at (u = HeC , τ, ψ, z) comprises triples
(D3n3, η1, V ) ∈ z⊕ Re(TτH)⊕ TzΣτ .

Proof. Once again we letC0 =
∂qh4−τ1∂ph4

∂qh1
but remember that in this moduli

space τ1 is allowed to vary so C0 is arbitrary. As in the proof of Lemma
5.12 we may still reparametrise so that Da = 0 and Dz · ∂phz = 0. Since
m = 0, ∂ph3 = 0 and hence D = D3n3. Therefore τ1, D3, p and q are local
coordinates on the moduli space. �

6. AUTOMORPHISMS

We observed in Lemma 5.2 that a holomorphic map u from a torus with
one marked point z has no nontrivial holomorphic automorphisms. If we
consider only unmarked curves then the automorphism group, Aut(u), of a
multiply-covered curve u = v◦π is precisely the deck transformation group
of the holomorphic covering π. For the one-point moduli space the size of
this automorphism group becomes the size of the equivalence classes in
Corollary 5.14. Therefore we must now compute |Aut(u)|.

Lemma 6.1. If A = [m,m,n, n] ∈ H2(K;Z) is a non-zero homology class and
u = eheC0+D is a holomorphic torus as in Corollary 5.10, where h : R2 → n is a
Lie algebra homomorphism of the form given in Equation (4.18) then

|Aut(u)| = gcd(gcd(m,n), (mk + nℓ)/d)

where k = ∂qh4 +
∂qh1∂qh2

2 gcd(∂qh1,∂qh2)
and ℓ = ∂qh3.

Proof. Suppose that π1(u) : Z
2 → Γ is the (reduced) homomorphism on fun-

damental groups. We will write π : Γ → Γ/Z(Γ) ∼= Z2 for the projection and

π1(u)(1, 0) =





1 b1 d1
0 1 a1
0 0 1



⊕ c1, π1(u)(0, 1) =





1 b2 d2
0 1 a2
0 0 1



⊕ c2.

Since π1(u) is reduced a1 = b1 = 0 and a2 6= 0 which implies that π ◦ π1(u)
lands in the cyclic subgroup ι : Z →֒ Z2 generated by (b̄2, ā2), where

ā2 =
a2

gcd(a2, b2)
and b̄2 =

b2
gcd(a2, b2)

.

If v is the simple torus underlying u then π ◦ π1(v) also lands in this sub-
group and hence the image of π1(v) is contained in the preimage π−1ι(Z).
We have

π−1(ι(Z)) =











1 qb̄2 Z

0 1 qā2
0 0 1



⊕ Z

∣

∣

∣

∣

∣

∣

q ∈ Z







∼= Z3
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The isomorphism with Z3 is

(q, r, s) 7→





1 qb̄2 s+ q(q−1)ā2 b̄2
2

0 1 qā2
0 0 1



⊕ r

Since π1(u) : Z
2 → π−1(ι(Z)) ∼= Z3 is given by the matrix




0 gcd(a2, b2)
c1 c2
d1 d2 −

gcd(a2,b2)(gcd(a2,b2)−1)
2 ā2b̄2





the maximal sublattice Λ of Z3 (and hence of Γ) containing ι(Z2) as a finite-
index sublattice has

[Λ : ι(Z2)] = gcd(M1,M2,M3)

where M1,M2,M3 are the two-by-two minors of this matrix. One can see
this by putting the matrix into Smith normal form.

In terms of the integer derivatives of the underlying Lie algebra homomor-
phism,

c1 = ∂ph3 d1 = ∂ph4

a2 = ∂qh1 b2 = ∂qh2

c2 = ∂qh3 d2 = ∂qh4 +
1

2
∂qh1∂qh2

so |Aut(u)| is equal to the greatest common divisor of

gcd(∂ph3, ∂ph4) gcd(∂qh1, ∂qh2)

and

∂ph3

(

∂qh4 +
∂qh1∂qh2

2 gcd(∂qh1, ∂qh2)

)

− ∂ph4∂qh3.

When h has the form given in Equation (4.18), this expression reduces to

gcd

(

gcd
(m

d
,
m

d

)

d,
|m|

d
k +

n

sgn(m)d
ℓ

)

= gcd(gcd(m,n), (mk + nℓ)/d)

where k = ∂qh4 +
∂qh1∂qh2

2 gcd(∂qh1,∂qh2)
and ℓ = ∂qh3. �

7. THE LINEARISED CAUCHY-RIEMANN OPERATOR

The aim of this section is to prove the following theorem

Theorem 7.1. If A ∈ H2(K;Z) is a non-zero homology class with A13 = A23,
A14 = A24 then M1,1(W,A) is clean (see Definition 2.14). Moreover if h : R2 →
n is a reduced homomorphism (i.e. ∂pha = 0) with [h] = A and ∂ph3 = 0 (which
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happens if and only ifA13 = 0) then there is a nonvanishing section of the obstruc-
tion bundle over the moduli space M1,1(W, [h]SL) and hence these holomorphic
tori do not contribute to the Gromov-Witten invariant in the class A.

By Lemma 4.17 we may always assume that h is reduced.

7.1. The setup for Fredholm theory. Fix a homomorphism ρ : Z2 → Γ. Let

W 1,ℓ
ρ (R2, n) be the W 1,ℓ-completion of the space of smooth maps w : R2 →

n which are ρ-equivariant in the sense that

exp(w(γ + z)) = ρ(γ) exp(w(z)) for all γ ∈ Z2

Then B :=W ×H×W 1,ℓ
ρ (R2, n) is a Banach manifold whose tangent space

at (ψ, τ, w) is the vector space

TψW ⊕ TτH⊕W 1,ℓ
ρ (R2, w∗Tn)

where the subscript ρ denotes equivariant sections. Define the Banach bun-
dle E over B whose fibre over (ψ, τ, w) is the Lℓ-completion of

Ω0,1
ψ,τ,ρ

(

R2, w∗Tn
)

where Ω
(0,1)
ψ,τ,ρ

(

R2, w∗Tn
)

denotes the space of smooth ρ-equivariant one-

forms on R2 with values in w∗Tn which are anticomplex with respect to

the almost complex structures (jτ , w
∗ψ). The ∂-operator

∂(ψ, τ, w) = ψ

(

∂aw −
1

2
[w, ∂aw]

)

− ∂bw +
1

2
[w, ∂bw]

gives a section of this bundle whose zero-set comprises the logarithms of
tori Z2\R2 → K in the given homotopy class which are (jτ , Jψ)-holomor-
phic for some ψ ∈W and some τ ∈ H.

The first aim is to understand the kernel of the linearised ∂-operator.

Proposition 7.2. The linearised ∂-operator at a pseudoholomorphic torus (ψ, τ, w)
is an operator

D(ψ,τ,w)∂ : TψW ⊕ TτH⊕W 1,ℓ
ρ (R2, w∗Tn) → LℓΩ

(0,1)
ψ,τ,ρ

(

R2, w∗Tn
)

If we define D(α, η, ξ) := D(ψ,τ,w)∂(α, η, ξ)(∂a) (which determines the whole op-

erator D∂ since this takes values in (0, 1)-forms) then D is given by the following
equation

D(α, η, ξ) = ψ∂aξ − ∂bξ + α

(

∂aw −
1

2
[w, ∂aw]

)

+
1

τ2
(η1∂aw + η2∂bw)

(7.3)

−
1

2
ψ ([ξ, ∂aw] + [w, ∂aξ]) +

1

2
([ξ, ∂bw] + [w, ∂bξ]) .
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Proof. The equation to-be-linearised is

∂(ψ, τ, w) = ψ

(

∂aw −
1

2
[w, ∂aw]

)

− ∂bw +
1

2
[w, ∂bw]

The only nonobvious part of the computation is the effect of an infinitesi-
mal variation η of τ

D(0, η, 0) =
1

τ2
(η1∂aw + η2∂bw)

To see this, recall that in the coordinates (a, b) the complex structure is sim-
ply ji = ΦτjτΦ

−1
τ . If η is an infinitesimal variation of τ then the infinitesimal

variation of ji is computed with respect to the same coordinates (a, b) by

δηji = ΦτδηjτΦ
−1
τ

since Φτ is just a change of coordinate matrix and hence is not affected by
the variation. We compute

δηji = ΦτδηjτΦ
−1
τ =

1

τ2

(

−η1 −η2
−η2 η1

)

.

�

7.2. Equivariance. We now examine more carefully the equivariance con-
dition

exp(w(γ + z)) = ρ(γ) exp(w(z)) for all γ ∈ Z2

and its linearisation. By the Baker-Campbell-Hausdorff formula we have

w(γ + z) = log ρ(γ) + w(z) +
1

2
[log ρ(γ), w(z)]

If ξ is an infinitesimal deformation of w as an equivariant map then

ξ(γ + z) = ξ(z) +
1

2
[log ρ(γ), ξ(z)]

In particular we see that ξa is Z2-invariant and hence bounded. The combi-
nation ξz −

1
2 [w, ξa] is also Z2-invariant:

ξz(γ + z)−
1

2
[w(γ + z), ξa(γ + z)] = ξz(z) +

1

2
[log ρ(γ), ξa(z)]

−
1

2
[log ρ(γ) + w(z), ξa(z)]

= ξz(z) −
1

2
[w(z), ξa(z)].
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7.3. Regularity and obstructions. Remember that w = h + C + 1
2 [h,C]

where h is a Lie algebra homomorphism and C is a constant (in particular,
second derivatives of w vanish). Cross-differentiating

D(α, η, ξ) = 0

using Equation (7.3) we get

0 = ψ∂2aξ − ∂a∂bξ −
1

2
ψ[wa, ∂

2
aξa] +

1

2
([∂[aξa, ∂b]wa] + [wa, ∂a∂bξa])

0 = ψ∂a∂bξ − ∂2b ξ +
1

2
ψ([∂[aξa, ∂b]wa]− [wa, ∂a∂bξa]) +

1

2
[wa, ∂

2
b ξa]

+
1

2
α([∂aw, ∂bw])

Since h is a homomorphism from an abelian Lie algebra

[∂aw, ∂bw] = [∂ah, ∂bh] = 0.

The equations then give

∆ξ −
1

2
[wa,∆ξa]− ψ[∂[aξa, ∂b]wa] = 0

The a- and z-parts of this equation are

∆ξa = ψ[∂aξa, ∂bwa]

∆ξz =
1

2
[wa,∆ξa]

Proposition 7.4. Suppose that ψ ∈ W and that w = h + C + 1
2 [h,C] is the

logarithm of a (jτ , Jψ)-holomorphic curve in K with linearised Cauchy-Riemann

operator D. Then, if D(α, η, ξ) = 0 then ξa and ξz −
1
2 [w, ξa] are constant.

Proof. Split the Lie algebra n as in the proof of Proposition 4.1 into b⊕[n, n]⊕
ψ[n, n]. We see that

∆ξb = 0

and ξb, being periodic, is constant. Next

∆ξq = ψ[∂aξq, ∂bwb]

which is a linear elliptic equation with constant coefficients for the single
bounded quantity ξq, which is therefore constant. Finally

∆ξp =
1

2
[wb,∆ξq] = 0

and so ξp −
1
2 [w, ξa] is harmonic and bounded. �

To prove Theorem 7.1 we compute the kernel of D and then compare with
the computation of the tangent spaces of the moduli space in Corollary 5.14.
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By Lemma 4.17, we assume without loss of generality that ∂pha = 0. Taking
the a-part of the linearised equation and using the facts that

α(z) ⊂ a α(a) ⊂ z

∂aξa = 0 ∂bξa = 0

∂aξz =
1

2
([∂awa, ξa] + [wa, ∂aξa]) ∂bξz =

1

2
([∂bwa, ξa] + [wa, ∂bξa])

= 0 =
1

2
[∂bha, ξa]

we get

0 = α(∂ahz) +
η2
τ2
∂bha

and for the z-part we get

0 = −∂bξz +
1

2
[ξa, ∂bha] +

1

τ2
(η1∂ahz + η2(∂bw)z)

= [ξa, ∂bha] +
1

τ2
(η1∂ahz + η2(∂bw)z)

Lemma 7.5. We describe the kernel of D. If D(α, η, ξ) = 0 then the vector ξz −
1
2 [w, ξa] is arbitrary, η2 = 0 and α = 0. Moreover:

• If ∂ph3 6= 0 then η1 = 0 and ξ ∈ ker[∂bha, ·].

• If ∂ph3 = 0 then η1 is arbitrary and ξa satisfies

[ξa, ∂qha] + η1∂ahz = 0.

Proof. To see η2 = 0, recall from Equation (5.5) that ψ∂ahz = ∂bha so, if

α = r

(

− sin θ − cos θ
cos θ − sin θ

)

∈ TW

then

r

(

− sin θ − cos θ
cos θ − sin θ

)(

∂ph3
∂ph4

)

= −
η2
τ2
r

(

cos θ − sin θ
sin θ cos θ

)(

∂ph3
∂ph4

)

Multiplying by Ψ−1
θ on the left tells us that

(

∂ph3
∂ph4

)

is a real eigenvector

of

(

0 −1
1 0

)

unless r = η2 = 0. Since this matrix has only imaginary

eigenvalues this is impossible.

The z-part of the equation now becomes

[ξa, ∂bha] +
η1
τ2
∂ahz = 0.

Recall from Lemma 5.4 that ∂bhz = [Ca, ∂bha] so that ∂bh3 = 0 (the t-
direction is orthogonal to the commutator). Since w3 = h3 + C3 and n3 ⊥
[n, n] we see that if ∂ph3 6= 0 then η1 = 0. The rest is now clear by inspec-
tion. �
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By comparing with Corollary 5.14 and Lemma 5.15 we see that the kernel of
D is equal to the tangent space of the moduli space, proving the cleanliness
claimed in Theorem 7.1.

From the expected and actual dimension formulae for the moduli spaces
we see that the moduli spaces of pseudoholomorphic tori are regular if
and only if ∂ph3 6= 0. We will now write down sections of the obstruction
bundles for each moduli space which is not regular. Since a fibre of the
obstruction bundle is a space of (0, 1)-forms, it suffices to specify the value
of a section σ on the vector ∂a.

Lemma 7.6. The section σ(∂a) = n3 is a nowhere-vanishing section of the ob-
struction bundle over moduli spaces h1 6≡ 0, ∂ph3 = 0.

Proof. Since ∂ph3 = 0 and ∂qh3−τ1∂ph3 = 0 we see that in this case ∂qh3 = 0
also. If (α, η, ξ) is an infinitesimal variation then we show that

∫

D(ψ,τ,w)∂(α, η, ξ)(∂a) · σ(∂a)dvol = 0

by examining the contributions from the three parts separately.

First, since α(∂ahz) ∈ a it is obviously orthogonal to n3 so this term van-
ishes. Next, the integrand contribution from η is

1

τ2

(

η1∂ahz + η2

(

∂bha + ∂bhz +
1

2
[∂bha, Ca]

))

· n3

Since ∂ph3 = ∂qh3 = 0 this vanishes. Finally the contribution from ξ is

∫
(

ψ∂aξ − ∂bξ −
1

2
ψ[wa, ∂aξa] +

1

2
([ξa, ∂bha] + [wa, ∂bξa])

)

· n3dvol

The first two terms vanish by integrating-by-parts (using Γ-equivariance of
ξ3, see Section 7.2) since n3 is constant. The other three vanish because n3

is orthogonal to ψ[n, n] and to [n, n]. �

This completes the proof of Theorem 7.1. �

7.4. Orientations. To determine the orientations on our moduli spaces we

need to write down a homotopy from the linearised ∂-operator to its com-
plex-linear part DC. By this we mean the part which is complex-linear in ξ.
Namely, define

S(ξ) =
1

2
([ξ, ∂bw] + [w, ∂bξ]− ψ[ξ, ∂aw]− ψ[w, ∂aξ])
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and set

Dǫ(α, η, ξ)(∂a) = ψ∂aξ − ∂bξ + α

(

∂aw −
1

2
[w, ∂aw]

)

+
1

τ2
(η1∂aw + η2∂bw)

(7.7)

+ S(ξ)−
ǫ

2
(S(ξ)− ψS(ψξ)).

This is D when ǫ = 0 and DC when ǫ = 1. We obtain (after cross-differen-
tiating)

∆ξ = ψ[∂[aξ, ∂b]w] +
1

2
[w,∆ξ]−

−
ǫ

2

(

ψ[∂[aξ, ∂b]w] + [ψ∂[aξ, ∂b]w]
)

+
ǫ

4
(ψ[w,ψ∆ξ] − [w,∆ξ])

This gives a and z parts

∆ξa −
(

1−
ǫ

2

)

ψ[∂[aξa, ∂b]wa] =
ǫ

4
ψ[wa, ψ∆ξz](7.8)

∆ξz +
ǫ

2
[ψ∂[aξz, ∂b]wa] =

2− ǫ

4
[w,∆ξa](7.9)

If we define Q = ξz −
1
2 [w, ξa] then

∂Q = ∂ξz −
1

2
[∂w, ξa]−

1

2
[w, ∂ξa]

∆Q = ∆ξz − [∂awa, ∂aξa]− [∂bwa, ∂bξa]−
1

2
[wa,∆ξa]

The left-hand side of Equation (7.8) is bounded. The right-hand side can be
rewritten as

ǫ

4
ψ

[

wa, ψ

(

∆Q+ [∂awa, ∂aξa] + [∂bwa, ∂bξa] +
1

2
[wa,∆ξa]

)]

which is a sum of terms which are linear or quadratic in a and b, in par-
ticular it is unbounded unless the coefficients vanish and hence the whole
right-hand side is zero. Equation (7.8) therefore reduces to a linear elliptic
equation which (up to the factor of 1 − ǫ

2 ) we have dealt with before. In
particular we deduce ξa is constant. Equation (7.9) now reduces to a lin-
ear elliptic equation we have dealt with before and we deduce that Q is
constant.

Returning to the original equation (7.7), and bearing in mind that ξa and
ξz −

1
2 [w, ξa] are constant, we have a- and z-components

0 = α(∂ahz) +
η2
τ2
∂bha +

ǫ

4
ψ

[

ψ

(

ξz −
1

2
[w, ξa]

)

, ∂bw

]

0 =
(

1−
ǫ

4

)

[ξa, ∂bw] +
1

τ2
(η1∂ahz + η2(∂bw)z)



40 JONATHAN DAVID EVANS AND JAREK KĘDRA

Lemma 7.10. When ∂ph3 6= 0 the space of solutions to this equation is 3-dimen-

sional. Explicitly, if we write α = r

(

− sin θ − cos θ
cos θ − sin θ

)

, the solutions are:

ξa = 0, Q = ∂ahz, r = 0, η = 0(S1)

ξa = ∂bha, Q = 0, r = 0, η = 0(S2)

and

ξa = −
∂ph4C[2∂bh1]

2
(

1− ǫ
4

)

|∂bha|2

(

−∂bh2
∂bh1

)

, r = ∂ph3,(S3)

Q =
4

ǫ

(

cos θ − sin θ
sin θ cos θ

)(

∂qh4
−∂qh3

)

, η = i∂ph4τ2.

Proof. The second solution is obvious; the first follows from Equations (5.5)
and (7.8); the third follows from Equations (5.6) and (7.9) and the fact that

[−∂bh2n1 + ∂bh1n2, ∂bh1n1 + ∂bh2n2] = |∂bha|
2n4.

�

The canonical orientation is now given by picking the oriented basis (S1),
(S2) (which are related by ψ, thanks to Equation (5.5)) and (S3) in that order.
When we enumerate the tori we will be able to assume after an SL(2,Z)-
transformation that ∂ph3 > 0 so (S3) is positively oriented relative to the
base W . We rescale (S3) by ǫ and let ǫ tend to zero. Solution (S3) becomes

ξa = 0, Q = 4

(

cos θ − sin θ
sin θ cos θ

)(

∂qh4
−∂qh3

)

, r = 0, η = 0.

Note that by (5.5),
(

cos θ − sin θ
sin θ cos θ

)(

∂qh4
−∂qh3

)

=

(

∂ph4
−∂ph3

)

.

By Corollary 5.14 and Lemma 5.12 we know that the unparametrised mod-
uli space M(W,A), consisting of curves HeC0+D, admits a reparametrisa-
tion action which one can use to ensure that the (S1) and (S2) components
of D vanish so that

D = λ









0
0

∂ph4
−∂ph3









.

The moduli space M1,1(W,A) therefore consists of triples (HeC0+D(λ), p, q)
with (p, q) ∈ T 2. We have shown that the orientation on the moduli space
is precisely the one given by the three-form dλ ∧ dp ∧ dq.
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8. ENUMERATION OF TORI IN K

The aim of this section is to compute the Gromov-Witten invariant in a non-
zero homology class A =

∑

AijEij . By Lemma 4.14 we can transform this
homology class by an automorphism ϕ of Γ to a class ϕ∗A = [m,m,n, n]
where m = gcd(A13, A23) and n = gcd(A14, A24). Equation (4.6) implies
that

ϕ∗ GW1,1(W,A) = GW1,1(W,ϕ∗A)

so without loss of generality we can therefore assume that A = [m,m,n, n]
for the sake of computing its Gromov-Witten invariants.

For such a class, Theorem 7.1 tells us that

• if m = 0 then the Gromov-Witten invariant vanishes,

• if m 6= 0 then the moduli space M1,1(W,A) is regular.

We therefore restrict to the case m 6= 0. By Lemma 5.3,

M1,1(W,A) = Mful(W,A) ×T 2 T 2

which is a union over all fully reduced homomorphisms ρ with [ρ] = A of

Mρ(W )×T 2 T 2

In terms of the Lie algebra homomorphism h : R2 → n (the logarithm of
the unique homomorphic extension H : R2 → N of ρ), the fully reduced
homomorphisms have the matrix form









∂ph1 ∂qh1
∂ph2 ∂qh2
∂ph3 ∂qh3
∂ph4 ∂qh4









=









0 −sgn(m)d
0 −sgn(m)d
|m|
d ∂qh3

− n
sgn(m)d ∂qh4









.

where d is a positive divisor of gcd(m,n), ∂qh3 ∈ Z, 0 ≤ ∂qh3 <
|m|
d and

∂qh4 +
1
2∂qh1∂qh2 ∈ Z.

We can now use the concrete description of the moduli space given in
Corollary 5.14 and its orientation as given in Section 7.4 to describe the

evaluation cycle. The moduli space consists of maps HeC0+D(λ) where
H = exp(h) and

D(λ) = λ









0
0

∂ph4
−∂ph3









, C0 =









0
∂qh4−τ1∂ph4

∂qh1

0
0









, λ ∈

[

0,
1

gcd (∂ph3, ∂ph4)

]

.

Note that h determines τ1 and hence also C0. For a Lie algebra homomor-
phism h and a real number λ we denote by u(λ, h) : T 2 → K the curve
represented by

HeC0+D(λ) : R2 → N.
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Lemma 8.1. Let k ∈ Z and let ρ : Z2 → Γ be a reduced homomorphism with un-
derlying Lie algebra homomorphism h. Consider ρ′, the modified homomorphism
whose underlying Lie algebra map h′ has the same derivatives as h except that

∂qh
′
4 = ∂qh4 + k.

Then the tori u(λ, h) and u(λ, h′) are equal if and only if k ∈ (∂qh1)Z = dZ.

Proof. Under this change, C0 changes to C ′
0 = C0 +

k
∂qh1

n2. We have

exp(h′) exp(C ′
0 +D(λ)) = exp (h+ qkn4) exp

(

k

∂qh1
n2

)

exp(C0 +D(λ))

and

exp (h+ qkn4) exp

(

k

∂qh1
n2

)

= exp

(

h+ qkn4 +
k

∂qh1
n2 −

1

2
qkn4

)

= exp

(

h+
k

∂qh1
n2 +

1

2
qkn4

)

= exp

(

k

∂qh1
n2

)

exp(h)

and this agrees with exp(h) modulo the right action of Γ if and only if ∂qh1
divides k. �

Corollary 8.2. Let A = [m,m,n, n] ∈ H2(K;Z) be a homology class with
m 6= 0. For each divisor d of gcd(m,n) there are |m|/d values of ∂qh3 and d
values of ∂qh4 giving distinct tori and hence M1,1(W,A) has |m|σ0(gcd(m,n))
components. �

We need to calculate the homology class of the evaluation cycle for each of
these components. For simplicity, we first ignore the equivalence relation
(u, z) ∼ (u ◦ ϕ−1, ϕ(z)) for ϕ ∈ Aut(u) mentioned in Corollary 5.14; this
means we are passing to an |Aut(u)|-sheeted cover of the moduli space
which we write M′

1,1(W,A). We will later divide out by the size of the
automorphism group to compensate for this.

Using the coordinates (λ, p, q) 7→
(

HeC0+D(λ), p+ iq
)

on M′
1,1(W,A), the

evaluation map sends (λ, p, q) to
















1 q∂qh2 +
∂qh4−τ1∂ph4

∂qh1

R 0

0 1 q∂qh1 0
0 0 1 0
0 0 0 λ∂ph4 + p∂ph3 + q∂qh3









, ψ









∈ K ×W

where ψ is the unique complex structure for which HeC0+D(λ) is (jτ , Jψ)-
holomorphic,

R = −λ∂ph3 + p∂ph4 + q∂qh4 +
1

2
q2∂qh1∂qh2
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and λ ∈
[

0, d
gcd(m,n)

]

. Since ψ is determined by the derivatives of the Lie

algebra homomorphism h, see Equation (5.8), it is constant over each com-
ponent of the moduli space and the evaluation map can be thought of as a
3-cycle in K . This cycle represents the three-dimensional homology class

−(∂qh1E134 + ∂qh2E234)
|∂phz|

2

gcd(∂ph3, ∂ph4)

= sgn(m)
m2 + n2

gcd(m,n)
(E134 + E234)

as we can see by integrating the forms eijk pulled back along the map

exp
(

h+ C + 1
2 [h,C]

)

.

As we remarked above, we are currently overcounting because we have
not divided out by the equivalence relation (u, z) ∼ (u ◦ ϕ−1, ϕ(z)) for ϕ ∈

Aut(u). By Lemma 6.1, if we write k = ∂qh4 +
∂qh1∂qh2

2 gcd(∂qh1,∂qh2)
and ℓ = ∂qh3

then the torus corresponding to the choice of d dividing gcd(m,n), 0 < k ≤
d and 0 < ℓ ≤ |m|/d contributes

1

gcd(gcd(m,n),mk + nℓ)

This gives an factor of

(†) =
∑

d| gcd(m,n)

d
∑

k=1

|m|/d
∑

ℓ=1

1

gcd(gcd(m,n), (mk + nℓ)/d)
.

Lemma 8.3.

∑

d| gcd(m,n)

d
∑

k=1

|m|/d
∑

ℓ=1

1

gcd(gcd(m,n), (mk + nℓ)/d)
=

|m|

gcd(m,n)2

∑

d| gcd(m,n)

d2.

Before we prove this lemma we give the formula for the 1-point Gromov-
Witten invariant GW1,1(W,A) when A = [m,m,n, n]:

m(m2 + n2)σ2(gcd(m,n))

gcd(m,n)3
(E134 + E234)⊗ [⋆] ∈ H3(K ×W ;Z)

We now ignore the [⋆] factor. Pushing this result forward using Equation
(4.6) allows us to compute the Gromov-Witten invariant GW1,1(W,A) for
A = [ma,mb, na, nb] where gcd(a, b) = 1:

(8.4) GW1,1(W,A) =
(m2 + n2)σ2(gcd(m,n))

gcd(m,n)3
(maE134 +mbE234).

which proves Theorem 1.2. �
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Proof of Lemma 8.3. For convenience, define µ = gcd(m,n), m̄ = |m|/µ, n̄ =
n/µ and λ = m̄k + n̄ℓ. We have:

1

gcd (gcd(m,n), (mk + nℓ)/d)
=

d/µ

gcd(d, sgn(m)m̄k + n̄ℓ)

We convert the sum over k into a sum over λ:

d
∑

k=1

1

gcd (d, sgn(m)m̄k + n̄ℓ)
=

d
∑

λ=1

#{k : sgn(m)m̄k + n̄ℓ ≡ λ mod d}

gcd(d, λ)

=

d
∑

λ=1

gcd(m̄, d)

gcd(d, λ)
if (gcd(m̄, d)|λ − n̄ℓ)

where if(X) is the Boolean function taking the value 1 if X is true and 0
otherwise. To get this line we use the fact that a linear congruence ax = y
mod d has gcd(a, d) solutions modulo d if gcd(a, d)|y and none otherwise.
Now perform the sum over ℓ:

|m|/d
∑

ℓ=1

if (gcd(m̄, d)|λ− n̄ℓ) =
|m|

d gcd(m̄, d)

=
m̄

gcd(m̄, d)

µ

d

since λ − n̄ℓ ≡ 0 mod gcd(m̄, d) has a unique solution modulo gcd(m̄, d),
since gcd(m̄, n̄) = 1, and hence |m|/d gcd(m̄, d) solutions in {1, . . . , |m|/d}.
Substituting this back into the full formula gives

(†) =
∑

d|µ

d
∑

λ=1

gcd(m̄, d)

gcd(d, λ)

d

µ

m̄

gcd(m̄, d)

µ

d

=
∑

d|µ

d
∑

λ=1

m̄

gcd(d, λ)

=
|m|

gcd(m,n)2

∑

d| gcd(m,n)

d2

where in the last line we have used Cesàro’s formula

∑

d|n

d
∑

i=1

f(gcd(i, d)) =
∑

d|n

f
(n

d

)

d,

valid for any arithmetic function f : this follows from [7, page 129] and the
elementary properties of Dirichlet convolutions. �
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[18] J. Lee and T. Parker, ‘ Symplectic gluing and family Gromov-Witten invariants’, in
Geometry and Toplogy of Manifolds, 147 – 172, Fields Institute Communications, Volume
47 (2005).

[19] P. Lu, ‘A rigorous definition of fiberwise quantum cohomology and equivariant quan-
tum cohomology’, Communications in Analysis and Geometry, Volume 6 (1998) 511–588.

[20] D. Maulik and R. Pandharipande, ‘Gromov-Witten theory and Noether-Lefschetz the-
ory’, preprint (2007) arXiv:0705.1653.

[21] D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, AMS Col-
loquium Publications, Volume 52 (2004) American Mathematical Society, Providence,
Rhode Island.

[22] Y. Ruan and G. Tian, ‘A mathematical theory of quantum cohomology’, Journal of Dif-
ferential Geometry, Volume 42, Number 2 (1995) 259–367.

[23] Y. Ruan and G. Tian, ‘Higher genus symplectic invariants and sigma models coupled
with gravity’, Inventiones Mathematicae, Volume 130, Number 3 (1997) 455–516.

[24] P. Seidel, ‘On the group of symplectic automorphisms of CP
m
×CP

n’, American Math-
ematical Society Translations, Series 2, Volume 196 (1999) 237–250.

[25] W. Thurston, ‘Some simple examples of symplectic manifolds’, Proceedings of the Amer-
ican Mathematical Society, Volume 55, Number 2 (1976) 467–468.

[26] E. B. Vinberg, V. V. Gorbatsevich and O. V. Shvartsman, ‘Discrete subgroups of Lie
groups’, in Lie Groups and Lie Algebras II, Encyclopædia of Mathematical Sciences, Vol-
ume 21 (2000) Springer.

[27] E. Witten, ‘Topological sigma models’, Communications in Mathematical Physics, Volume
118, Number 3 (1988) 411–449.

[28] A. Zinger, ‘The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersur-
faces’, Journal of the American Mathematical Society, Volume 22, Number 3 (2009) 691–737.

E-mail address: j.d.evans@ucl.ac.uk

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE LONDON, GOWER STREET, LON-
DON, WC1E 6BT

E-mail address: kedra@abdn.ac.uk

UNIVERSITY OF ABERDEEN AND UNIVERSITY OF SZCZECIN

http://arxiv.org/abs/0705.1653

	1. Introduction
	2. Background
	3. Two-step nilpotent Lie groups
	4. The Kodaira-Thurston manifold, K
	5. Pseudoholomorphic tori in K
	6. Automorphisms
	7. The linearised Cauchy-Riemann operator
	8. Enumeration of tori in K
	9. Acknowledgements
	References

