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 The present study focuses on evaluation of corrosion behaviour of uncoated and 

biopolymer coated commercially pure (CP) Ti.  

 

 Three biopolymers, i.e., Chitosan, Gelatin B and Sodium Alginate were coated via. spin 

coating technique. 

 

 Open Circuit Potential (OCP) and Electrochemical Impedance spectroscopy (EIS) studies 

were carried out for corrosion evaluation. 

  

 Artificial Neural Network (ANN) modeling is carried out to predict OCP values and 

Nyquist plots. 

 

 Sodium Alginate coated Ti substrates shows the highest corrosion resistance among all 

three biopolymers. 

 

 The present ANN model can be used to predict OCP values and Nyquist plots accurately. 
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Abstract 

The present study focuses on biopolymer surface modification of cp-Titanium with Chitosan, 

Gelatin, and Sodium Alginate. The biopolymers were spin coated onto a cp-Titanium 

substrate and further subjected to Electrochemical Impedance Spectroscopic (EIS) 

characterization. Artificial Neural Network (ANN) was developed to predict the Open Circuit 

Potential (OCP) values and Nyquist plot for bare and biopolymer coated cp-Titanium 

substrate. The experimental data obtained was utilized for ANN training. Two input 

parameters, i.e., substrate condition (coated or uncoated) and time period were considered to 

predict the OCP values. Backpropagation Levenberg-Marquardt training algorithm was 

utilized in order to train ANN and to fit the model. For Nyquist plot, the network was trained 

to predict the imaginary impedance based on real impedance as a function of immersion 

periods using the Back Propagation Bayesian algorithm. The biopolymer coated cp-Titanium 

substrate shows the enhanced corrosion resistance compared to uncoated substrates. The 

ANN model exhibits excellent comparison with the experimental results in both the cases 

indicating that the developed model is very accurate and efficiently predicts the OCP values 

and Nyquist plot. 

Keywords: cp-Ti, Chitosan, Gelatin, Sodium Alginate, Electrochemical Impedance 

Spectroscopy (EIS), Artificial Neural Network (ANN). 
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1. Introduction 

 Metallic materials continue to dominate the biomedical industry, especially for hard tissue 

replacement (orthopaedic, dental) and cardiac implants[1]
,
[2]

,
[3]. A broad range of metals are 

known to mankind, but among them only a few are suitable for using inside the human body. 

The main factors contributing towards the selection of a metal for the orthopaedic implants 

are biocompatibility, should have adequate mechanical properties and must be corrosion 

resistant[4]. Titanium and Titanium alloys have emerged as materials of choice for 

biomedical implant applications [5]
,
[6]

,
[7]

,
[8]

,
[9]

,
[10]

,
[11]. CP-Ti (Commercially pure 

Titanium) and Ti-6Al-4V (ELI) Titanium-6 Vanadium-4 Aluminum (Extra Low Interstitial) 

are the two most common base implant materials[12]
,
[13]

,
[14]

,
[15]. However, these alloys 

have certain disadvantages such as poor osseointegration properties and low corrosive-wear 

resistance[10]
,
[16]. The surface coating of implant with organic polymer is an effective and 

inexpensive strategy to improve the corrosion behaviour and biocompatibility of the substrate 

surface[17]. Numerous biopolymers have been coated to evaluate the surface response of the 

substrate. Corrosion is an important aspect for a biomaterial due to extreme corrosive nature 

of the human body fluids[18]. The corrosion deterioration can reduce the lifespan of implant 

leading to need to revision surgery[19]. The Ti and Ti alloys are characterized by 

instantaneously formed stable oxide layer which is responsible for their exceptional corrosion 

resistance[20]. But once the stable TiO2 is broken down or removed, it is unable to reform on 

parts of surface. Thus, making Ti implants susceptible to corrosion. The studies have also 

suggested that cp-Ti undergoes stress corrosion cracking (SCC) , severe form of corrosion, in 

the presence of fluoride ions[21].  Many surface modification has been used to modify the 

surface to enhance corrosion resistance of the implants. In this regard, surface coatings with 

biopolymer is an easy and inexpensive technique[18]. 
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A considerable amount of research has been focussed towards functionalization of the 

implant with Chitosan(CS)[22]. CS is a cationic polysaccharide and deacetylated derivative 

of Chitin[23]
,
[24]

, 
[25]

,
[26].[27] CS is a nontoxic polymer which assists in wound healing 

and promotes osteogenesis[28]. CS is used for biomedical applications in many forms, such 

as scaffolds[29]
,
[30]

,
[31]

 
and as hydrogels[32]

,
[33]

,
[34] Sodium Alginate (SA) is another 

natural biodegradable polysaccharide[35]
,
[36], exhibiting biocompatibility, bio-functionality, 

non-toxicity and low cost[35]. SA, as a component of multilayer assembly, is being coated on 

a number of substrates[37]
,
[38]

,
[39]. On the other hand, Gelatin (Gel) is a water-soluble, 

biodegradable polypeptide, derived from collagen by partial synthesis  [40]. Collagen is one 

of the key structural protein found in the extracellular matrix of many connective tissues. 

Over the years, Gel is utilized for many applications ranging from the food industry to 

pharmaceuticals[41]. Gel coated Titanium substrate showed the enhanced cell 

biocompatibility and cell adhesion and growth[42]. 

Artificial Neural Network (ANN) is a computational tool based on biological neural network 

system[43]. ANN is a powerful mathematical tool to simulate a wide variety of complex 

scientific and engineering problems ANN prediction is useful in many applications in 

engineering and  applied sciences like biomedical applications[44],food science [45],solar 

cell systems [46],[47],energy systems[48],communication systems [49],nuclear materials[50]. 

Many attempts have been made in order to imply ANN in different fields for a number of 

applications, like speech recognition[51]
,
[52], prediction of coating thickness[53], prediction 

of mechanical properties[54]
,
[55], weather prediction[56], pharmaceutical research[57], 

identification of cell behaviour[58], medical imaging[59], predicting corrosion 

behaviour[60]
,
[61]

,
[62] etc. 

In the present work, uncoated and biopolymer coated cp-Ti are characterized for evaluation 
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of their corrosion behaviour. Evaluation and quantification of corrosion process are time-

consuming and in case of the implant materials, it is difficult to monitor the corrosion process 

on a real-time basis. In this regard, ANN is a potential technique which can be used to predict 

the corrosion rate in presence of corrosive human body fluids. Further, the implant failure can 

be estimated based on corrosion behaviour. 

The OCP (Open Circuit Potential) studies were carried out on uncoated and coated substrates. 

EIS studies were also performed to obtain Nyquist plots to determine corrosion behaviour. 

The input database was prepared based on experimental studies[63]
,
[64]. Artificial Neural 

Network (ANN) was trained to utilize the experimental database for predicting the corrosion 

behaviour of coated and uncoated Ti substrate with Open Circuit Potential (OCP) values and 

Nyquist plot. 

 

2. Experimental Procedure 

2.1. Materials and Methods 

CP-Ti foil with thickness 0.125 mm was procured (Goodfellow UK). The samples with the 

dimension 1 cm X 1 cm were cut and further polished with SiC paper (up to 1200 grade) to 

remove the native oxide. The polished samples were cleaned ultrasonically in acetone 

followed by ethanol for 15 mins respctively. CS (DA 75%-85%), Gel B and SA were 

purchased from Sigma Aldrich. Analytical grade reagents were used without further 

purification. Phosphate Buffered Saline (PBS) was prepared by dissolving PBS tablet in 

Deionized water (dissolving one PBS tablet in 200 mL of DI water resulted in 0.01M PBS 

solution). 
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2.2. Biopolymer coating 

The polished and cleaned samples were subjected to spin coating. 1 wt% CS solution, 10 

wt% Gel (Type B) and 3 wt% SA were prepared by dissolving in deionized water. The 

samples were spin coated at 4000 rpm with 2500 rpm/s acceleration for a time period of 60 

seconds. 

 

2.3. Attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy 

analysis 

ATR-FTIR spectroscopy analysis of the substrates  were performed to identify the presence 

of all three biopolymers onto the surface before and after incubation for 24 hours in PBS by 

Perkin-Elmer IR spectrophotometer with a Golden Gate attenuated total reflection (ATR) 

attachment with a diamond crystal. The spectra were accumulated within 16 scans at a 

resolution of 4 cm
-1

 within a range of 4000 cm
1 

 to 650 cm
-1

. The background air spectrum 

was subtracted before each measurement. 

2.4. Surface characterization 

The surface morphology of the coated samples after incubation for 24 hours was examined 

with Scanning electron microscope (FEI Quanta 200 3D). 

2.5. Electrochemical characterization 

Electrochemical experiments were performed with a conventional three-electrode 

configuration (Solartron 1287 Electrochemical interface with a Gamry 600™ 

potentiostat/galvanostat) with substrate as working electrode, Platinum as counter electrode 

and SCE (Saturated Calomel Electrode) as reference electrode.  All experiments were carried 

out at room temperature. The test specimens were fixed in a PTFE holder exposing 1 cm
2
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area to the electrolyte. The prepared PBS solution was used as electrolyte for all 

measurements. 

 

2.6. Artificial Neural Network (ANN) Modelling 

2.6.1. OCP Prediction 

To develop the ANN model, the experimental data was randomly divided into three parts, 

training dataset (70%), testing dataset (15%) and validation dataset (15%). Back Propagation 

Levenberg-Marquardt (BPLM) training algorithm, supervised learning technique, was 

utilised in order to train the ANN and fit the model. The BPLM algorithm calculates the root 

mean square error (RMSE) with theoretical values and network prediction. NN linear transfer 

function was used for transforming neuron input value into the output values. The transfer 

function for the hidden layers was sigmoidal. Two inputs, i.e., condition of the substrate 

(uncoated or coated) and different time period, were taken into consideration. Thus, the 

architecture of ANN becomes 2-20-1. One hidden layer with 20 neurons was found to be 

optimum. The NN presented for the given problem was created using MATLAB r2016a. 

Parameters affecting the OCP values were considered as inputs, i.e., sample condition and 

immersion time. The network was then trained to predict the OCP values. The input dataset 

was normalised (unity based normalization) to obtain the values ranging from 0 to 1 

(equation 10).  

                           (10) 

2.6.2. Nyquist plot prediction 

The experimental database was divided randomly into training data set (80%) and testing 

dataset (20%).  Backpropagation Bayesian (BPB) algorithm updates the weight and bias 

values according to the Levenberg-Marquardt optimization. Bayesian regularization 
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minimizes the initial combination of squared errors and weights and then determines the 

correct combination so as to produce a network that generalizes well[65]. The real and 

imaginary impedance values were the inputs for ANN. Based on these two inputs, the 

imaginary impedance values for uncoated and biopolymer coated Ti are predicted. The ANN 

architecture is 2-20-1, with optimum results showing for one hidden layer with 20 neurons. 

The pseudo code for prediction of corrosion parameters for the Nyquist plot is shown in 

Figure 1. 

 

3. Results and Discussion 

3.1. ATR-FTIR measurements 

FTIR spectra of CS coated Ti are shown in Figure 2. The characteristic absorption peak at 

wavelength 3309 cm
-1 

is vibration of O-H (3000 cm
-1

-3750 cm
-1

)
 
 and N-H (3000 cm

-1
-3750 

cm
-1

)
 
 bands[66]. The peaks at 2901 and 1416 are the vibration of C-H bond in CH2 and CH3 

and methylene and methyl group having characteristic peaks in the range (2875 cm
-1

 - 2920 

cm
-1

) and (1375 cm
-1 

- 1426 cm
-
1) respectively. The peak at 1639 corresponds to the C=O 

vibration (1680 cm
-1

-1480 cm
-1

). The FTIR peaks at 1073 and 802 is vibration of C-O-H 

group (1000 cm
-1

- 1160 cm
-1

) and wagging of  saccharide respectively[66].  

Figure3 shows the FTIR absorption spectra for Gel coated Ti substrate. The absorption peak 

at wavelength 3331 cm
-1 

corresponds to the presence of secondary amine group (3500 cm
1 

- 

3310 cm
-1

) and the peak at 2916 cm
-1 

corresponds to the C-H stretching of alkanes (2962 cm
-1 

to 2853 cm
-1

). The  peak at 1647 cm
-1 

is due to amide C=O stretching which has a 

characteristic peak in the wavelength range of 1620 cm
-1 

to 1710 cm
-1

[67]. The N-H bending 

peak (1650-1500 is shown at 1552 cm
-1

. N-H out of plane wagging presents at 608 cm
-1

[67].  

FTIR spectrum for SA coated Ti substrate is shown in the Figure4. The broad peak at 3247 
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cm
-1 

is due to overlapping of C-H and O-H peaks. The sharp peaks at 1405 and 1596 are 

assigned to the presence of symmetric and asymmetric vibration of carboxylate ions (1460 

cm
-
1- 1649 cm

-1
). The peaks at 1107 and 935 are due to vibration of C-O pyra-nosyl ring and 

C-O contribution from C-C-H and C-O-H group respectively[68]. 

FIGURE 2. 

FIGURE 3. 

FIGURE 4. 

3.2. Open circuit potential (OCP) 

OCP indicates the thermodynamic tendency of material during the electrochemical oxidation 

process. It is an important parameter in order to predict the corrosion behaviour of a material 

in the absence of induced corrosion effect. The potential varies with time, which is attributed 

to the changes taking place at the surface of the substrate and stabilizes after a certain period 

of time. The stabilization nature of potential was observed to be same for all the samples. The 

potential first shifted to active direction, i.e., becoming more negative, then stabilized 

eventually. 

OCP values of Ti and CS, Gel, and SA coated Ti substrates OCP measurements curves for 

the Cp-Ti substrate for the different lengths of time, i.e., 1 hour, 3 hours, 6 hours, 12 hours 

and 24 hours in PBS is shown in the Figure5. The OCP value after 1 hour is observed to be -

376.2 mV at zero time which decreases further to a value of -498.4 mV at a time period of 

3.6k seconds. In electrolyte. the naturally developed oxide film may grow and dissolve 

simultaneously[69]. The decrease in the OCP value is associated with the dissolution of the 

oxide film present on the surface. OCP value after the 3 hours of immersion was -536.3 mV 

at zero and -542.7 mV at 3.6k seconds respectively. The same trend is observed for the 6 

hours, 12 hours and 24 hours immersion time. This indicates relatively shorter period to 



 
 

10 
 

achieve thermodynamic equilibrium with an increase in the immersion period.  The OCP 

values decrease further with an increase in immersion time. This decrease in the value is due 

to increase in corrosion rate with increase in the immersion time period. 

The OCP curves for the CS coated Ti are shown in the Figure5. The OCP value for the CS 

coated Ti is -201.3 mV at zero time period and stabilizes at -258.2 mV for 1 hour immersion 

time period, which is much lower than the OCP value for the bare Ti substrate (-375.2 mV). 

This decrease in OCP value indicates the presence of CS layer on the surface. The increase in 

the immersion time results in increased corrosion rate. The OCP curves for Gel coated Ti are 

shown in Figure 5. The OCP values for Gel coated substrates were lower than for the Ti 

substrate but were highest among all biopolymer coated Ti substrates which indicates the 

least corrosion provided for Gel coated substrate. SA coated Ti substrates exhibit the lowest 

OCP values, thus the better corrosion protection. 

FIGURE 5. 

3.3. Electrochemical Impedance Spectroscopy (EIS) Measurements 

The EIS results are presented through the Nyquist plot after 24 hours of immersion in PBS 

solution at ambient temperature. Nyquist plot reflects directly the corrosion resistance of a 

substrate as diameter of circle indicating the polarization resistance (RP)[70]. Figure6 

presents the Nyquist plot for the uncoated Ti for a time period of 1 hr, 3 hrs, 6 hrs, 12 hrs and 

24 hours. Nyquist plot for time period of 1 hour exhibits a inductive loop followed by 

capacitive loops at higher immersion time period. The presence of inductive loop is attributed 

to the surface relaxation of species in the oxide layer[71]. The capacitive arc corresponds to 

the combined effect of double layer and metal dissolution and its diameter is related to charge 

transfer resistance at metal/electrolyte interface[72]. The Nyquist plots show the depressed 

semicircles representing the corrosion of Ti which is mainly controlled by charge transfer 
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process[73]. Critical behaviour was observed for immersion time period of 6 hours, 12 hours 

and 24 hours, where the substrate resistance increases which may be due to presence of 

thicker oxide layer. The data were fitted using two different circuit diagrams. Circuit diagram 

shown in Figure 6(a) was used for fitting the impedance data corresponding to 1 hour 

immersion in PBS solution. Figure 6(b) was utilised to fit the Nyquist plot for 3 hours, 6 

hours 12 hours and 24 hours PBS incubation. The EIS fitted parameters are shown in the 

Table 1. 

 

FIGURE 6. 

TABLE 1. 

 

Figure7 shows the Nyquist plot for CS coated Ti substrates for immersion time period of 1 

hour shows a semicircle followed by a straight line. The highest value for the semicircle 

diameter is observed for the immersion time period of 3 hours showing the highest corrosion 

resistance. Further increase in the immersion time shows the decreased corrosion resistance 

value with little deviation for 6 hours, 12 hours and 24 hours. The circuit is shown in Figure 

7(a) was used for fitting the date for 1 hour and 6 hours incubation in PBS solution with 

double capacitive behaviour while Figure 7(b) circuit was used for fitting the data for 3 hours, 

12 hours and 24 hours (single capacitive arc). The circuit shown in Figure 7 was used for 

fitting the data. 

 

FIGURE 7. 

TABLE 2. 
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The Nyquist curve for the Gel coated Ti substrate is shown in Figure 8. The Nyquist curve for 

the immersion period of 1 hour exhibits the highest arc with an inductive loop which is due to 

the adsorbed intermediates on the surface[74]. The Nyquist data was utilized for fitting the 

circuit which is shown in Figure 8 (a). The arc diameter decreases with time, i.e., for 3 hours, 

6 hours and 12 hours which is due to increase in corrosion rate with increased immersion 

time period. The sudden increase in diameter is observed for the time period of 24 hours may 

be due to thickening of the oxide film. Data were fitted using the circuit shown in Figure 

8(b), and fitting parameters shown in Table 3. 

FIGURE 8. 

TABLE 3. 

The Nyquist curve for the SA coated Ti substrate (Figure 9) shows the largest diameter 

among all the biopolymers which indicates better corrosion resistance. The diameter of the 

arc first decreases with increased immersion time, i.e., for 1 hour and 3 hours, but then 

increased with the highest value observed for 24 hours. For all the Nyquist curves, Warburg 

impedance is seen which shows the resistance to mass transfer indicating the corrosion 

process under diffusion controlled. The circuit shown in Figure 9 was used for fitting Nyquist 

data for SA coated Ti substrate and fitting parameters shown in Table 4. 

 

FIGURE 9. 

TABLE 4 

3.5. ATR-FTIR characterization after incubation in PBS 

FTIR spectra after PBS incubation for 24 hours  are shown in the Figure10 which shows the 

presence of adsorbed carbonate (CO3
2-

). The vibration at about 1547 cm
-1

, 1440 cm
-1

, and 
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840 cm
-1 

are due to the formation of apatite. The peaks at 1049 cm
-1

, 1049 cm
-1

, 1033 cm
-1 

confirms the presence of ionically bonded PO4
3-

 groups.  

PBS incubation of biopolymer coated Titanium substrates significantly alters the FTIR 

spectra showing the dominant presence of adsorbed carbonate (CO3
2-

)  related vibration as 

directly adsorbed (2000-2300 cm
-1 

region) or arising from formed apatite (being approved by 

bands at about 1547 cm
-1

, 1440 cm
-1

, and 840 cm
-1

), being ionically bonded to -PO4
3-

 groups 

(bands at about 1049 cm
-1

, 1049 cm
-1

, 1033 cm
-1

)[75].  

FIGURE 10. 

3.6. SEM characterization after PBS incubation 

Scanning Electron Microscope characterization was carried out for the coated substrate after 

24 hours incubation in PBS solution. Figure 11 (a) and (b) shows the micrographs for 

Chitosan coated substrate at different magnifications. SEM studies show the presence of 

cracks and deposition (carbonate and phosphate groups confirmed by FTIR). SEM 

micrographs of Gelatin coated Titanium substrate are shown in Figure 12. The surface shows 

the formation of pits and cracks on the substrate surface. Sodium Alginate coated Titanium 

substrate shows fewer pits compared to Gelatin coated substrate (Figure 13). 

Figure 11 

Figure 12 

Figure 13 

4. Artificial Neural Network prediction for OCP values and Nyquist plots 

4.1. Artificial Neural Network Modelling for Prediction of OCP values 

The input parameters and NN predicted OCP values are shown in Table 5. The use of NN 

exhibits excellent accuracy in predicting the OCP values outputs. The input dataset consists 

of substrate condition normalized values and Time period normalized values. While the 

normalized OCP values are the target dataset and predicted OCP values is ANN output 
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dataset. A network with three layers, two neurons for input layer, 10 neurons for hidden layer 

and one neuron for output layer was designed. The input variables for establishing NN were 

sample condition and the immersion time. The BPLM trained network was then used to 

compare the predicted and measured values. Figure 14 represents the comparison between the 

experimental and predicted OCP values. The R values for training dataset, validation dataset, 

and test dataset are 0.99999, 1 and 0.99972 respectively, yielding an overall R-value of 

0.99813. This clearly indicates the accuracy of ANN in predicting OCP values. The 

developed model can be used to simulate and predict the OCP values. 

FIGURE 14. 

4.2. Artificial Neural Network for Prediction of Nyquist plots 

The input dataset was randomly divided into training and testing dataset. Back Propagation 

Bayesian algorithm was used for training and fitting the model. Figures 15, 16, 17 and 18 

represents the Nyquist plot for base cp-Titanium, Chitosan coated Titanium, Gelatin coated 

Titanium and Alginate coated Titanium at different immersion periods respectively. The 

three-layer network with two neurons for input, twenty neurons for hidden layer and one 

neuron for output was used. Immersion time period and real part of frequency were the input 

dataset with the imaginary part of frequency as target dataset. During ANN training the 

output of the network was measured against the target values. The regression coefficient of 

R=0.98772 was achieved for bare Titanium substrate (Figure 15(f)). The regression 

coefficient for Chitosan coated Ti substrate was 0.98821 as shown in Figure 16(f). The 

Gelatin coated Titanium substrate  shows a regression value of 0.94083 (Figure 17(f)). Figure 

18(f) shows the regression value of Alginate coated Titanium substrate which is 0.99994. All 

these regression values indicate the high precision for corrosion modeling and prediction of 

Nyquist plots. 
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FIGURE 15.  

FIGURE 16. 

FIGURE 17. 

FIGURE 18 

Conclusions 

Commercially pure (CP) Titanium substrate was coated with Chitosan, Gelatin B, and 

Sodium Alginate biopolymers via spin coating technique and corrosion behaviour of the 

uncoated and coated substrate were studied. All coated cp-Ti substrates showed better 

corrosion behaviour compared to the uncoated cp-Ti substrate. Sodium Alginate coated Ti 

substrates shows the highest corrosion resistance among all three biopolymers followed by 

Gelatin and Chitosan coated cp-Ti substrates. An artificial neural network was developed to 

model and predict the OCP values for the bare and biopolymer coated Titanium substrates. 

The values predicted by the present model are in good agreement with the obtained 

experimental values. Similarly, ANN was also trained in order to predict the Nyquist plot. 

Therefore, the present ANN model can be used to predict accurately the OCP values for the 

uncoated and coated substrates.  
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Figure 1. Pseudocode for prediction of Nyquist plot 
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Figure 2. ATR-FTIR curve for Chitosan coated cp-Titanium substrate 
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Figure 3. ATR-FTIR curve for Gelatin coated cp-Titanium substrate 
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Figure 4. ATR-FTIR curve for Sodium Alginate coated cp-Titanium substrate 
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Figure 5. Open Circuit Potential for all uncoated and biopolymer coated Titanium substrate at 

different time intervals in PBS 
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Figure 6. Nyquist plot for uncoated Titanium substrate, (a) circuit used for fitting Nyquist 

data for 1 hour of PBS immersion, (b) circuit used for fitting Nyquist data for 3 hours, 6 

hours, 12 hours and 24 hours of PBS immersion 
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Figure 7. Nyquist plot for Chitosan coated Titanium substrate, (a) circuit used for fitting 

Nyquist data for 1 hour and 6 hours immersion, (b) circuit used for fitting Nyquist data for 3 

hours, 12 hours and 24 hours of PBS immersion 
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Figure 8. Nyquist plot for Gelatin coated Titanium substrate, (a) circuit used for fitting 

Nyquist data for 1 hour immersion, (b) circuit used for fitting the data for 3 hours, 6 hours, 12 

hours and 24 hours PBS immersion 
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Figure 9. Nyquist plot for Sodium Alginate coated Titanium substrate (a) circuit used for 

fitting the Nyquist data 
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Figure 10. FTIR spectra for biopolymer coated Titanium after PBS incubation for 24 hours 
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(a) 

 

(b) 

Figure 11. SEM micrographs for Chitosan coated Titanium after PBS incubation 
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(a) 

 

(b) 

Figure 12. SEM micrographs for Gelatin coated Titanium after PBS incubation 
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(a) 

 

(b) 

Figure 13. SEM micrographs for Sodium Alginate coated Titanium after PBS incubation 
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Figure 14. Regression values for the training, validation and test dataset for OCP prediction 
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Figure 15. Nyquist plots obtained bare cp-Titanium (experimental and ANN predicted) for 

immersion periods; (a) 1 hour; (b) 3 hours; (c) 6 hours; (d) 12 hours; (e) 24 hours; (f) 

Regression values obtained for the network for Nyquist plot of cp-Titanium 
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Figure 16. Nyquist plots obtained Chitosan coated cp-Titanium (experimental and ANN 

predicted) the immersion periods; (a) 1 hour; (b) 3 hours; (c) 6 hours; (d) 12 hours; (e) 24 

hours; (f) Regression values obtained for the network for Nyquist plot of Chitosan coated cp-

Titanium 
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Figure 17. Nyquist plots obtained Gelatin coated cp-Titanium (experimental and ANN 

predicted) the immersion periods; (a) 1 hour; (b) 3 hours; (c) 6 hours; (d) 12 hours; (e) 24 

hours; (f) Regression values obtained for the network for Nyquist plot of Gelatin coated cp-

Titanium 
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Figure 18. Nyquist plots obtained Alginate coated cp-Titanium (experimental and ANN 

predicted) the immersion periods; (a) 1 hour; (b) 3 hours; (c) 6 hours; (d) 12 hours; (e) 24 

hours; (f) Regression values obtained for the network for Nyquist plot of Alginate coated cp-

Titanium 
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Table 1.EIS fitting parameters of uncoated Ti substrates for Nyquist plot 

Time 

period 

Rpo (Ω) Rf  

(Ω) 

Cc (F) (e
-6

) Ru (Ω) L Yo6 (e
-6

) a7 (e
-3

) 

1 hour 537.6 70.41 ------ 2.818 5.982e
3
 695.5 839.3 

3 hours 3.795 550.8 181.1 2.876 ------ 473.6 789.6 

6 hours 9.648 550.8 221.2 1.791 ------ 444.3 766.4 

12 hours 21.20 556.0 252.0 972.2e
-3

 ------ 408.1 741.1 

24 hours 505.1 80.83 712.8 998.2e
-3

 ------ 645.5 897.6 

 

Table 2. EIS fitting parameters of Chitosan coated Ti substrates for Nyquist plot 

Time 

Period 

Rpo (Ω) Cc (F) Rf  

(Ω) 

Ru (Ω) Yo6  a7 (e
-3

) 

1 hour 5.097 71.28e
-6

 33.18e
3 

3.106 225.4e
-6 

831.5 

3 hours 3.534 447.8e
-9

 57.23e
3
 11.57e

-6
 280.3e

-6 
876.0 

6 hours 3.566 420.7e
-9

 19.72e
3
 24.10e

-6
 318.5e

-6 
856.4 

12 hours 3.660 522.9e
-9

 18.13e
3
 18.43e

-6
 291.6e

-6
 868.2 

24 hours 3.672 459.8e
-9

 17.01e
3
 39.97e

-6
 303.2e

-6 
860.7 

 

Table 3. EIS fitting parameters of Gelatin coated substrates for Nyquist plot 

Time  

Period 

Rpo (Ω) Cc (F) Rf  

(Ω) 

Ru  

(Ω) 

L Yo6 a7 

1 hour 1.696e
3
 ------ 397.0 4.338 11.69e

3
 559.1e

-6
 860.7e

-3
 

3 hours 1.007e
3
 356.2e

-6
 160.7 4.611 ------ 66.03e

-3
 853.7e

-3
 

6 hours 3.408 102.7e
-6

 1.199e
3
 4.327 ------ 486.0e

-6
 807.6e

-3
 

12 hours 3.021 99.36e
-6

 1.127e
3
 4.051 ------ 529.8e

-6
 792.0e

-3
 

24 hours 2.645 399.3e
-9

 1.3e
3
 1.488 ------ 614.3e

-6
 834.6e

-3
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Table 4. EIS fitting parameters of Sodium Alginate Ti substrates for Nyquist plot 

Time 

Period 

Ru  

(Ω) 

Yo6 Alpha WD Rpo (Ω) 

1 hour 5.255 195.4E-6 917.8E-3 15.35E-6 18.85E-3 

3 hours 5.310 183.7E-6 923.9E-3 30.87E-6 9.743E-3 

6 hours 5.328 169.2E-6 925.4E-3 19.70E-6 33.80E-3 

12 hours 5.322 164.1.E-6 922.7E-3 11.546E-6 109.7E-3 

24 hours 5.354 157.4E-6 933.0E-3 9.053E-6 27.24E-3 

 

Table 5. Experimental and ANN predicted values for Open Circuit Potential for uncoated Ti 

and Biopolymer coated Titanium 

Substrate 

condition 

Substrate 

condition 

(Norm. 

value) 

 

Time 

period 

(Hours) 

 

 

Normalised 

value for 

time period 

 

 

OCP 

values 

(Volts) 

 

 

Normalised 

value for 

OCP 

 

 

Predicted 

OCP 

values 

 

 

Error 

 

 

 

Uncoate

d Ti 

1 0 1 0 -498.2 0.16179 0.16012 0.001664 

1 0 3 0.08696 -544.2 0.07002 0.07087 -0.00084 

1 0 6 0.21739 -579.3 0 0.01455 -0.01455 

1 0 12 0.47826 -551.4 0.05566 0.05567 -1.06E-05 

1 0 24 1 -557.3 0.04389 0.0451 -0.00121 

Chitosan 

coated 

Titanium 

2 0.3333 1 0 -258.2 0.64057 0.63479 0.005785 

2 0.3333 3 0.08696 -271 0.61504 0.56007 0.054963 

2 0.3333 6 0.21739 -322.1 0.5131 0.51361 -0.00051 

2 0.3333 12 0.47826 -329 0.49933 0.4994 -6.84E-05 

2 0.3333 24 1 -334.2 0.48896 0.48886 9.41E-05 

Gelatin 

coated 

Titanium 

3 0.6666 1 0 -415.9 0.32597 0.25842 0.067554 

3 0.6666 3 0.08696 -493.4 0.17136 0.18553 -0.01417 

3 0.6666 6 0.21739 -507.8 0.14264 0.1445 -0.00186 

3 0.6666 12 0.47826 -511.5 0.13526 0.13541 -0.00015 

3 0.6666 24 1 -513 0.13226 0.13245 -0.00018 

Alginate 

coated 

Titanium 

4 1 1 0 -78.03 1 1.02958 -0.02958 

4 1 3 0.08696 -80.94 0.95973 0.95815 0.00158 

4 1 6 0.21739 -115.6 0.92505 0.91156 0.013489 

4 1 12 0.47826 -137.5 0.88136 0.88073 0.00063 

4 1 24 1 -150.9 0.85463 0.85477 -0.00014 

 


