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Reducing the Effects of Vegetation Phenology on Change Detection in 24 

Tropical Seasonal Biomes 25 

Tropical seasonal biomes (TSBs), such as the savannas (Cerrado) and semi-arid 26 

woodlands (Caatinga) of Brazil, are vulnerable ecosystems to human-induced 27 

disturbances. Remote sensing can detect disturbances such as deforestation and 28 

fires, but the analysis of change detection in TSBs is affected by seasonal 29 

modifications in vegetation indices due to phenology. To reduce the effects of 30 

vegetation phenology on changes caused by deforestation and fires, we 31 

developed a novel object-based change detection method. The approach 32 

combines both the spatial and spectral domains of the normalized difference 33 

vegetation index (NDVI), using a pair of Operational Land Imager 34 

(OLI)/Landsat-8 images acquired in 2015 and 2016. We used semivariogram 35 

indices (SIs) as spatial features and descriptive statistics as spectral features 36 

(SFs). We tested the performance of the method using three machine-learning 37 

algorithms: support vector machine (SVM), artificial neural network (ANN) and 38 

random forest (RF). The results showed that the combination of spatial and 39 

spectral information improved change detection by correctly classifying areas 40 

with seasonal changes in NDVI caused by vegetation phenology and areas with 41 

NDVI changes caused by human-induced disturbances. The use of 42 

semivariogram indices reduced the effects of vegetation phenology on change 43 

detection. The performance of the classifiers was generally comparable, but the 44 

SVM presented the highest overall classification accuracy (92.27%) when using 45 

the hybrid set of NDVI-derived spectral-spatial features. From the vegetated 46 

areas, 18.71% of changes were caused by human-induced disturbances between 47 

2015 and 2016. The method is particularly useful for TSBs where vegetation 48 

exhibits strong seasonality and regularly spaced time series of satellite images are 49 

difficult to obtain due to persistent cloud cover. 50 
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1. Introduction 52 

Tropical seasonal biomes (TSBs), such as savannas (also known as Cerrado) and semi-53 

arid woodlands (also known as Caatinga), cover 35% of Brazil and consist of several 54 

vegetation types ranging from grasslands to forests (Silveira et al. 2018a). However, 55 



human-induced disturbances, such as deforestation and fires, are threatening these 56 

ecosystems (Silva et al. 2006; Hansen et al. 2013). In addition, because most of the 57 

conservation plans focus on moist evergreen tropical forests (Hoekstra et al. 2005), less 58 

attention has been dedicated to TSB areas (Beuchle et al. 2015). 59 

TSBs experience seasonal changes in hydrological and nutrient conditions that 60 

affect the spectral signature of vegetation measured by satellites (Zhang, Ross, and 61 

Gann 2016). For instance, leaf area index (LAI) varies seasonally, having a maximum 62 

value during the rainy season and a minimum value during the dry season. Therefore, a 63 

seasonal fluctuation in the Normalized Difference Vegetation Index (NDVI) is 64 

generally observed over TSBs due to leaf shedding and increasing amounts of 65 

nonphotosynthetic vegetation during the dry season (Lagomasino et al. 2014). This 66 

NDVI behavior represents a challenge for land use and land cover change (LULCC) 67 

detection when multi-temporal images are used in the analysis. 68 

Bi-temporal remote sensing images can be used to monitor vegetation and to 69 

detect changes caused by human and natural processes (Verbesselt et al. 2010; Zhu, 70 

Woodcock, and Olofsson 2012). However, in TSBs, phenology produces significant 71 

changes in vegetation conditions affecting the spectral response of vegetation (Wright 72 

and Schaik 1994). Even fixing a single period for image acquisition (rainy or dry 73 

season), the effects of vegetation phenology on LULCC detection are still significant 74 

due to the large seasonal and interannual variability in precipitation observed in TSBs. 75 

Several methods have been proposed to reduce the effects of vegetation 76 

phenology on LULCC detection using time series of satellite images. Examples are the 77 

Breaks For Additive Seasonal and Trend algorithm (BFAST) (Verbesselt et al. 2010); 78 

Continuous Change Detection and Classification (CCDC) (Zhu and Woodcock 2014); 79 

Vegetation Change Tracker (VCT) (Huang et al. 2010); LandTrend (Kennedy, Yang, 80 



and Cohen 2010); Vegetation Regeneration and Disturbance Estimates through Time 81 

(VerDET) (Hughes, Kaylor, and Hayes 2017); and the Residual Trend Analysis 82 

(RESTREND) (Evans and Geerken 2004; Ibrahim et al. 2015). These methods usually 83 

require high-quality time series, which are not generally available over TSBs due to 84 

persistent cloud cover. Therefore, LULCC detection in complex landscapes, like those 85 

found in TSBs, still present a significant challenge (Healey et al. 2018).   86 

Previous studies have shown that pixel-based change detection approaches can 87 

benefit from including information on spatial context (G. Chen et al. 2012; Hamunyela, 88 

Verbesselt, and Herold 2016). The neighborhood used to extract the spatial information 89 

is often defined by a square window that is easy to implement, however, they are 90 

computationally demanding (Zhu 2017), biased along their diagonals, and can straddle 91 

the boundary between two landscape features, especially when a large window size is 92 

used (Laliberte, Rango, and Laliberte A. 2009).  Using OBIA these problems are 93 

eliminated, allowing the inclusion of additional spatial information to improve remote 94 

sensing applications (G. Chen et al. 2018). For example, semivariograms of geostatistics 95 

have been widely used in image classification analyses (Balaguer et al. 2010; Silveira et 96 

al. 2017; Wu et al. 2015) and change detection studies (Gil-Yepes et al. 2016; 97 

Hamunyela et al. 2017; Silveira et al. 2018b). Thus, object-based methods that require 98 

only a few satellite images to reduce the effects of vegetation phenology on LULCC 99 

detection are needed to monitor TSB areas with persistent cloud cover and strong 100 

seasonality. 101 

Here, to evaluate whether we can differentiate seasonal variations in NDVI 102 

values due to vegetation phenology from spectral variations associated with human-103 

induced disturbances, we developed a novel object-based change detection (OBCD) 104 

approach. The objective was to reduce the effects of vegetation phenology on LULCC 105 



detection by combining spatial (i.e. semivariogram indices - SIs) and spectral 106 

information (i.e. spectral features - SFs). Our method does not require time series of 107 

satellite images because it exploits the spatial and spectral domains of NDVI, calculated 108 

from a pair of Operational Land Imager (OLI)/Landsat-8 images. Specifically, we tested 109 

the approach with three machine learning algorithms (MLAs), including support vector 110 

machine (SVM), artificial neural network (ANN) and random forest (RF) algorithms, to 111 

classify areas that experienced changes caused by vegetation phenology and human-112 

induced disturbances 113 

2. Study Area 114 

The study area is located in the north of Minas Gerais (MG) state, Brazil (Figure 1).  In 115 

this area, the TSBs include Brazilian savannas (Cerrado) and semi-arid woodlands 116 

(Caatinga) (Figure 1a) (Scolforo et al. 2015). The study area is covered by the path 219 117 

and row 71 of the Worldwide Reference System version 2 (WRS-2) (Figure 1b). From a 118 

total of 32,000 km², 50% of the area is covered by native vegetation (Figure 1c) 119 

(Carvalho et al. 2006). 120 

[Figure 1 near here] 121 

The diversity of vegetation types in the study area is well documented, ranging 122 

from savanna grasslands and woodland savannas to semideciduous and deciduous 123 

forests (Ferreira et al. 2004). Low shrubs to small patches of tall dry forests are 124 

therefore observed (Figure 2) (Santos et al. 2012). The study area has experienced 125 

extensive land-cover change (Espírito-Santo et al. 2016), resulting from the 126 

implementation of cattle grazing and establishment of pastures. In general, the native 127 

vegetation has been converted into areas of pasture or croplands (Sano et al. 2010). 128 

The climate is tropical with rainfall concentrated in October to May. The peak of 129 

the dry season in August has close to zero rainfall and air humidity less than 20% with 130 



high seasonality (Peel, Finlayson, and McMahon 2006). Rainfall in this region is 131 

extremely irregular over space and time. More than 75% of the total annual rainfall 132 

occurs within three months, but interannual variation in precipitation is large and 133 

droughts can last for years in areas of Caatinga (Leal et al. 2005). 134 

 [Figure 2 near here] 135 

3. Methodology 136 

We developed a new OBCD method to detect human-induced changes in TSBs by 137 

reducing the effects of vegetation phenology on change detection, combining both the 138 

spatial and spectral domains of bi-temporal NDVI images. We used semivariogram 139 

indices (SIs) as spatial features (Balaguer et al. 2010), as described below (see Table 1). 140 

Descriptive statistics for NDVI imagery was used to represent spectral features (SFs), as 141 

detailed below (see section 3.4.).  142 

By training MLAs using the difference between the two NDVI images in terms 143 

of spatial and spectral features, we were able to classify changes caused by phenology 144 

and those caused by human-induced disturbances. The method is summarized in six 145 

steps (Figure 3), which are described in detail in the following sections. 146 

[Figure 3 near here] 147 

3.1. Image acquisition 148 

We used two cloud-free OLI/Landsat-8 images to calculate NDVI and test our method: 149 

one image was obtained on June 19th, 2015 (Figure 4a), and the other was obtained on 150 

Oct. 27th, 2016 (Figure 4b). They were selected from the dry and rainy seasons to 151 

maximize the effects of vegetation seasonality. We used the image acquired in June 152 

2015 as representative of the end of the rainy season with high NDVI values. On the 153 

other hand, the image acquired in October 2016 was used as representative of the end of 154 



the dry season with comparatively lower NDVI values due to water stress (Figure 4c). 155 

The images were downloaded from the United States Geological Survey (USGS) with 156 

geometric and atmospheric corrections. We used NDVI (Rouse et al. 1973) because the 157 

spatial domain of this index has been explored in several LULCC studies (Hamunyela et 158 

al., 2016; Silveira et al. 2018a, 2018b). However, the proposed approach may be applied 159 

to any index.   160 

[Figure 4 near here] 161 

3.2. Image segmentation 162 

The first procedure in the OBCD method was image segmentation. We applied the 163 

multiresolution segmentation algorithm (Baatz and Schäpe 2000) from the eCognition 164 

software (Definies 2009) selecting the original bands of the OLI/Landsat-8 images 165 

acquired in 2015 and 2016 (years 1 and 2). This approach has the distinct advantage of 166 

considering all images during object formation, thus minimizing sliver errors and 167 

potentially honoring key multi-temporal boundaries (Desclée, Bogaert, and Defourny 168 

2006; Tewkesbury et al. 2015). We used the following parameters: 0.1 for shape and 0.5 169 

for compactness. The most critical step is the selection of the scale parameter (SP), 170 

which controls the size of the image objects. The SP sets a homogeneity threshold that 171 

determines the number of neighboring pixels that can be merged together to form an 172 

image object (Benz et al. 2004). The SP directly influences the size of the objects which 173 

are related to the predefined semivariogram criteria (lag distance) and the minimum 174 

number of pixels inside each object necessary to generate the semivariogram. We 175 

adopted a trial and error approach (Duro, Franklin, and Dube 2012) to find an 176 

appropriate value for SP (X. Chen et al. 2015). We ensured a minimum number of 177 

samples (25 pixels) inside the objects and an adequate size to allow calculation of the 178 

semivariogram. The SP (set to 250) and image segmentation results were assessed based 179 



on visual inspection of the delineated polygons (Figure 5). The objects generated were 180 

overlapped with the NDVI images from 2015 and 2016 to extract the input data for the 181 

OBCD method. 182 

[Figure 5 near here] 183 

3.3. Class definition for change detection 184 

This study focused on two broad classes: (i) vegetation covers with seasonal 185 

changes in NDVI caused by phenology (Figure 6a); and (ii) vegetation covers with 186 

changes caused by disturbances, especially human-induced deforestation/clearing 187 

(Figure 6b) and fires (Figure 6c). Historically, most of the fires detected in the area have 188 

been considered human-induced events. Therefore, we did not evaluate events of natural 189 

occurrence. 190 

Representative areas of these two classes were identified from visual inspection 191 

of the images and from available land-cover maps. Randomly stratified design was used 192 

to sample these areas (Olofsson et al. 2014). We first used a land-cover map (Carvalho 193 

et al. 2006) showing the native vegetation for the 2006-2008 period to mask out the 194 

non-vegetated areas. Subsequently, we performed post-classification and image edition 195 

using a skilled human interpreter to update the available map to 2015 (Figure 1c). Thus, 196 

a dataset of 300 objects (well-distributed polygons over the vegetated areas; 150 per 197 

class) was obtained. The samples were randomly divided into training (50%) and 198 

validation (50%) datasets (Figure 6).  199 

[Figure 6 near here] 200 

3.4. Feature extraction 201 

We extracted spatial and spectral features based on the NDVI values inside the objects. 202 

The spatial information was obtained from experimental semivariograms (Equation 1), 203 



where (h) is the estimator of the semivariance for each distance h, N (h) is the number 204 

of pairs of points (pixels) separated by distance h, Z(x) is the value of the regionalized 205 

variable at point x, and Z(x+h) is the value at point (x+h): 206 

                                (h)= (
1

2N(h)
) ∑ (Z(x)-Z(x+h))

2N(h)

i=1                                        (1) 207 

Semivariance functions are characterized by three parameters: sill (σ²), range (φ) 208 

and nugget effect (τ²). The sill is the plateau reached by the semivariance values, 209 

measuring the variance explained by the spatial structure of the data. The range is the 210 

distance until the semivariogram reaches the sill, reflecting the distance at which the 211 

data become correlated. The nugget effect is the non-spatial component of the variance 212 

composed of random sensor noise or sampling errors (Curran 1988). We attempted to 213 

find an optimal lag distance to ensure that sill values would provide a concise 214 

description of data variability. We fixed the number of lags as 30 pixels and the lag size 215 

equivalent to the image spatial resolution (30 m), resulting in a lag distance of 900 m. 216 

We extracted a set of semivariogram indices (SIs) (Balaguer et al. 2010) using 217 

the feature extraction software FETEX 2.0 for object-based image analysis (Ruiz et al. 218 

2011) (Table 1). These indices describe the shape of the experimental semivariograms 219 

and, therefore, the properties that characterize the spatial patterns of the image objects. 220 

They have been categorized according to the position of the lags used in their definition: 221 

(i) near the origin and (ii) up to the first maximum.  222 

As described by Balaguer et al. (2010), the ratio between the values of the total 223 

variance and the semivariance at first lag (RVF) is an indicator of the relationship 224 

between the spatial correlation at long and short distances. The first derivative near the 225 

origin (FDO) represents the slope of the semivariogram at the first two lags. The second 226 

derivative semivariogram at the third lag (SDT) quantifies the concavity or convexity 227 



level of the semivariogram at short distances, representing the heterogeneity of the 228 

objects in the image. The mean of the semivariogram values up to the first maximum 229 

(MFM) is an indicator of the average of the semivariogram values between the first lag 230 

and the first maximum. It provides information about the changes in the data variability 231 

and is related to the concavity or convexity of the semivariogram in that interval. The 232 

difference between the mean of the semivariogram values up to the first maximum 233 

(MFM) and the semivariance at first lag shows the decreasing rate of the spatial 234 

correlation in the image up to the lags where the semivariogram theoretically tends to be 235 

stabilized. Finally, the area between the semivariogram value in the first lag and the 236 

semivariogram function until the first maximum (AFM) provides information about the 237 

semivariogram curvature, which is also related to the variability of the data. 238 

[Table 1 near here] 239 

To explore the spectral information of the satellite images, we used the 240 

minimum (MIN), mean (MEAN), maximum (MAX) and standard deviation (STDEV) 241 

of the NDVI values inside each object. This allowed the performance of spatial and 242 

spectral features to be compared and combined. 243 

3.5. Change Detection using MLAs 244 

After extracting the spatial and spectral features for each object, the differences in 245 

NDVI values for each feature between years 1 (2015) and 2 (2016) were calculated and 246 

used as input data to train the MLAs. The samples were randomly divided into training 247 

(50%) and validation (50%) datasets. We used three MLAs implemented in the Waikato 248 

Environment for Knowledge Analysis (WEKA 3.8 software): SVM, ANN and RF.  249 

SVM has the ability to handle small training datasets, often producing higher 250 

classification accuracies than traditional methods (Bovolo, Camps-Valls, and Bruzzone 251 

2010; Mantero, Moser, and Serpico 2005; Wylie et al. 2018). For SVM, we used the 252 



radial basis function (RBF) kernel, as this is known to be effective and accurate (Pereira 253 

et al. 2017; Shao and Lunetta 2012; Zuo, John, and Carranza 2011; Wu et al. 2015). To 254 

train the SVM classifier, an error parameter C (10) and a kernel parameter γ (0.1) were 255 

set after a series of tests and analyses of the outputs.  256 

There are many different types of ANN, but the multilayer perceptron (MLP) is 257 

most commonly used in remote sensing (Berberoglu et al. 2000; Vafaei et al. 2018; 258 

Zhang et al. 2018). We used the ANN obtained by running the MLP function with the 259 

back-propagation algorithm (Pham, Yoshino, and Bui 2017).  The main challenge 260 

associated with MLP is the adjustment of network parameters (Shao and Lunetta 2012). 261 

The learning rate, the momentum term, and iteration numbers were fixed at 0.3, 0.2 and 262 

500, respectively (Tien Bui et al. 2016). 263 

We also tested the non-parametric RF algorithm (Breiman 2001) because it has 264 

the ability to accommodate many predictor variables with accuracy and efficiency 265 

(Breiman 2001; DeVries et al. 2016; Ghimire, Rogan, and Miller 2010; Silveira et al. 266 

2018a; Zhu et al. 2016). We set the number of decision trees (Ntree), to 500 (Lawrence, 267 

Wood, and Sheley 2006) and the number of variables for the best split when growing 268 

the trees (Mtry) to the default value (log of the number of features + 1) (Millard and 269 

Richardson 2015). 270 

3.6. Change Detection Evaluation 271 

To evaluate our change detection using the three MLAs, we tested: (i) the spatial 272 

domain of the NDVI images using the SIs; (ii) the spectral domain of the NDVI images 273 

using the SFs; and (iii) the combination of the spatial-spectral attributes (SIs plus SFs). 274 

We obtained a confusion matrix to evaluate classification accuracy for the two classes 275 

under analysis: (a) vegetation covers with seasonal changes in NDVI caused by 276 

phenology; and (b) vegetation covers with NDVI changes caused by human-induced 277 



disturbances. We evaluated the overall, producer’s and user’s accuracies.  278 

4. Results  279 

4.1. Semivariogram analysis 280 

From the use of semivariograms to quantify the spatial variability of the NDVI pixels 281 

inside the objects, we found the maximum level of semivariance (sill – σ² 282 

semivariogram parameter) at around 900 m. This indicated that at least 30 pixels and a 283 

lag size equivalent to the image spatial resolution (30 m) were necessary to quantify 284 

spatial variability of the OLI/Landsat-8 images. We detected two distinct patterns in the 285 

semivariograms: (i) the shape and the overall data variability (sill – σ²) remained 286 

constant over time with seasonal changes in NDVI caused by phenology (Figure 7a); 287 

and (ii) the shape and sill increased in areas that experienced human-induced 288 

disturbances between 2015 and 2016 (Figure 7b). These results indicated that the spatial 289 

variability of NDVI quantified by semivariograms was very sensitive to changes in 290 

vegetation cover caused by deforestation or fires. On the other hand, seasonal changes 291 

in NDVI caused by vegetation phenology did not modify the shape and overall 292 

variability of the semivariograms.  293 

[Figure 7 near here] 294 

4.2. Change Detection Evaluation   295 

When we used the MLAs to classify areas with seasonal NDVI variations caused by 296 

vegetation phenology and areas with NDVI variations caused by human-induced 297 

disturbances, our results showed overall classification accuracies higher than 80% for 298 

SVM, ANN and RF considering the spectral features and semivariogram indices (Table 299 

2). Therefore, these classifiers and features were generally efficient to discriminate 300 



areas of vegetation covers with seasonal changes in NDVI caused by phenology from 301 

other disturbance-affected areas.  302 

The classification results using SFs (MIN, MEAN, MAX and STDEV) produced 303 

the lowest accuracies, reaching values of 85.02%, 82.60% and 84.05% for SVM, ANN 304 

and RF, respectively. The lowest user’s and producer’s accuracies were obtained using 305 

this group of features (Table 2). In contrast, the overall classification accuracies slightly 306 

improved when the semivariogram indices (RVF, FDO, SDT, MFM, DMF and AFM) 307 

were included in the analysis, producing values of 87.43%, 83.09% and 85.99% for 308 

SVM, ANN and RF, respectively. Thus, the semivariogram indices performance 309 

slightly better than the spectral features, because they are related to the structured 310 

variance of the NDVI pixel values.  311 

A substantial gain in classification accuracy, reducing confusion between 312 

vegetation phenological changes and human-induced disturbances, was obtained from 313 

the combination of the SIs and the SFs (Table 2). The accuracies increased from 85.02 314 

to 92.27%, 82.60 to 90.82% and 84.05 to 91.30% for SVM, ANN and RF, respectively. 315 

The highest user's accuracy, considering both groups of features and all MLAs, was 316 

observed for the class with changes controlled by vegetation phenology (95.33%). The 317 

user's accuracies for this class improved significantly from 90.65 to 95.33% (SVM), 318 

89.72 to 94.39 (ANN) and from 85.98 to 92.52% (RF). This was highly significant 319 

because the objects with seasonal changes in NDVI presented low commission errors. 320 

On the other hand, the highest producer's accuracy was observed for the class with 321 

changes caused by human-induced disturbances having 94.68% for the SVM classifier.  322 

[Table 2 near here] 323 

 The classification performance of the MLAs was generally comparable, but the 324 

SVM algorithm was the most effective classifier in our TSBs. In Table 2, the SVM 325 



presented the highest overall classification accuracy (92.27%). Using SFs or SIs as well 326 

as the combination of these features, the accuracies were slightly superior for SVM than 327 

for ANN and RF. The differences in performance are probably due to the difficulties of 328 

parameterization between the MLAs (García-Gutiérrez et al. 2015). SVM have been 329 

frequently cited as a group of theoretically superior machine learning algorithms for 330 

image classification and have been shown to perform well (Foody and Mathur 2004). 331 

They appear to be especially advantageous in the presence of heterogeneous classes for 332 

which only a few training samples are available (Li, Im, and Beier 2013; Wu et al. 2015). 333 

The resultant SVM classification map, using the hybrid set of spatial and spectral features 334 

from the OLI/Landsat-8 data, is shown in Figure 8. From the vegetated areas, 18.71% of 335 

changes (331,830 ha) were caused by human-induced disturbances between 2015 and 336 

2016. 337 

[Figure 8 near here] 338 

5. Discussion 339 

5.1. Remote sensing change detection in TSBs 340 

We proposed a new object-based method to detect changes caused by either vegetation 341 

phenology or human-induced disturbances in TSBs, based on the differences over time 342 

in spatial (semivariogram indices) and spectral features (descriptive statistics for 343 

NDVI). Spatial and spectral features were used to train MLAs (SVM, ANN and RF). 344 

Our results showed that the combination of both group of features produced the highest 345 

overall classification, producer’s and user’s accuracies. 346 

The method is an alternative to detect changes in TSBs, because it does not 347 

require high-quality time series, which are sometimes difficult to obtain due to cloud 348 

cover. This method could be used to improve the accuracy of LULCC maps, thus 349 



providing better inputs for the assessment of atmospheric emissions derived from 350 

deforestation and fires (Mouillot et al. 2014). TSBs present a conspicuous seasonal 351 

contrast between the rainy and dry seasons (Ferreira and Huete 2004), which is 352 

challenging for change detection. The seasonality of TSBs makes the use of optical 353 

remote sensing difficult in some periods of the years due to cloud-cover and vegetation 354 

phenology. Most of the change detection algorithms that are based on two dates of 355 

Landsat images may reduce the influence of vegetation phenology on the analysis by 356 

fixing data acquisition to a given period (Lu et al. 2004; Zhu, Woodcock, and Olofsson 357 

2012). However, in TSBs in eastern Brazil, even fixing a pair of dates to the rainy or 358 

dry season, the confounding effects of vegetation phenology on change detection persist 359 

because of the irregular patterns of precipitation observed over space and time.  360 

Some remote sensing studies have mapped deforestation and fire in TSBs 361 

(Achard et al. 2014; Beuchle et al. 2015; Libonati et al. 2015; Hansen et al. 2013). For 362 

example, Beuchle et al. (2015) provided information on historical and recent vegetation 363 

cover changes in the Cerrado from central Brazil and the Caatinga from northeastern 364 

Brazil based on the analysis of Landsat images from 1990 to 2010. For the Cerrado, 365 

they estimated that 117,870 km2 of vegetation was lost during the studied period, while 366 

for the Caatinga they reported a loss of 25,335 km2. When these results were compared 367 

to LULCC estimates provided by other projects, such as the Conservation and 368 

Sustainable Use of Brazilian Biological Diversity Project (PROBIO) and Deforestation 369 

Monitoring in Brazilian Biomes Project (PMDBBS), some divergences were observed 370 

(Beuchle et al. 2015). Although there were several factors that could introduce 371 

differences in these estimates (e.g., spatial resolution, class definition), our findings 372 

showed that the confounding effects of vegetation phenology on change detection 373 



should be further considered as an important factor to avoid overestimation of human-374 

induced disturbances. 375 

5.2. Classification and change detection using the spatial-spectral domains of 376 

NDVI 377 

The spatial domain has been recently used to detect changes in tropical regions. The 378 

phenological influence on data analysis is reduced when NDVI values are spatially 379 

normalized in a pixel-based change detection approach (Hamunyela, Verbesselt, and 380 

Herold 2016). The influence is also reduced when geostatistical features (spatial 381 

domain) are incorporated into the analysis of bi-temporal NDVI images in an object-382 

based change detection approach (Silveira et al. 2018b). Although the integration 383 

between remote sensing and geostatistical theory was consolidated in the late 1980s, 384 

only recent studies have demonstrated that the semivariogram (a geostatistical tool) has 385 

strong potential for LULCC detection (Acerbi Junior et al. 2015; Gil-Yepes et al. 2016; 386 

Silveira et al. 2018a, 2018b).  387 

Our study has demonstrated that the combination of spectral features and 388 

semivariogram indices derived from bi-temporal NDVI images reduced the effects of 389 

vegetation phenology on vegetation change detection. Misclassifications of seasonal 390 

NDVI changes caused by vegetation phenology as those caused by human-induced 391 

disturbances were therefore reduced. We found that LULCC areas caused by 392 

deforestation or fires provided singular semivariograms with higher values for the sill 393 

parameter than ones associated with vegetation phenology in savannas and semi-arid 394 

woodlands. These results are in agreement with several previous studies that used 395 

spatial information to detect changes (e.g. Acerbi Junior et al. 2015; Sertel, Kaya, and 396 

Curran 2007; Silveira et al. 2018a, 2018b). 397 



Acerbi Junior et al. (2015) analyzed the potential of semivariograms generated 398 

from NDVI values to detect changes in Brazilian savannas. Their results showed a very 399 

clear trend, where the shape of semivariograms, and the sill and range parameters were 400 

different when deforestation occurred and were similar when there was no change in 401 

land cover, which was consistent with our findings. Silveira et al. (2018a, 2018b) 402 

highlight the importance of considering spatial information for change detection in 403 

Brazilian savannas in the absence of a dense time series of remote-sensing images. 404 

When using individual spatial features (e.g. sill parameter and the AFM index) the 405 

change detection results were improved considerably compared with the spectral 406 

features and image differencing technique. These results demonstrated that the 407 

semivariograms derived from NDVI images are not affected by phenological changes.   408 

Here, by including SIs that provided information near the origin (RVF, FDO and 409 

SDT) and up to the first maximum (MFM, DMF and AFM), we obtained sufficient 410 

separability between the classes of vegetation changes caused by phenology and human-411 

induced disturbances. By combining SIs with SFs, the misclassification of these two 412 

classes was reduced, as expressed by overall classification accuracies close to 90% for 413 

the three classifiers (SVM, ANN and RF) (Table 2).  414 

6. Conclusions 415 

 We have proposed a new OBCD method to detect and distinguish vegetation 416 

changes caused by phenology from those caused by human-induced disturbances in 417 

Brazilian TSBs with pronounced seasonality. We reduced the effects of vegetation 418 

phenology on change detection by combining features from both the spatial and spectral 419 

domains of NDVI satellite images. The spatial variability of NDVI is not affect by 420 

vegetation seasonality, favoring the addition of semivariogram indices to reduce the 421 

impact of seasonality for detecting deforestation or fires using bi-temporal Landsat 422 



images. 423 

 Compared with the other classifiers tested with this method, SVM presented a 424 

slightly higher overall classification accuracy (92.27%) when using the hybrid set of 425 

NDVI-derived spectral and spatial features. Finally, our study highlights that the 426 

combination of the spatial and spectral attributes reduces the requirement for dense time 427 

series of satellite imagery throughout multiple phenological cycles to detect LULCC in 428 

TSBs. In these areas, vegetation exhibits strong seasonality and regularly-spaced 429 

satellite images are difficult to obtain due to persistent cloud-cover. Future studies 430 

should aim to evaluate further the proposed method, including its sensitivity to class and 431 

intensity of disturbance, and its applicability to other TSBs.  432 
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Table 1. Semivariogram indices (SIs) calculated from the NDVI values inside the 714 

objects near the origin (*) or up to the first maximum (**). The semivariogram features 715 

{(h1, γ1), (h2, γ2) … (hn, γn)} are the points of the experimental semivariogram, as 716 

described by Balaguer et al. (2010). The lags {hi, h2 … hn} are equally spaced. 717 

Variance is the value of the total variance of the pixels belonging to the object. hmax_1 718 

represents the location of the first local maximum, while γ(hmax_1) is the first local 719 

maximum semivariance. 720 

Description Formula 

*Ratio between the values of the 

total variance and the 

semivariance at first lag 

RVF=
Variance

γ1
 

*First derivative near the origin FDO=
γ2- γ1

h
 

*Second derivative at third lag SDT=
γ4- 2γ3+ γ2 

h
2

 

**Mean of the semivariogram 

values up to the first maximum 
MFM=

1

Max_1
∑γi 

**Difference between the mean 

of the semivariogram 

values up to the first maximum 

and the semivariance at first lag 

DMF=MFM- γi 

**Semivariance curvature AFM=
h

2
(γ1+2 ( ∑ γ1

max_1-1

i=2

) +γ
max_1

) - (γ1(hmax_1-h1)) 
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Table 2. Confusion matrix from the classification of areas with seasonal NDVI changes 733 

caused by vegetation phenology and those due to human-induced disturbances. Spectral 734 

features (SFs), semivariogram indices (SIs) and their combination (SFs + SIs) were 735 

used for change detection. The Producer's (PA), User's (UA) and overall (OA) 736 

classification accuracies are shown for support vector machine (SVM), artificial neural 737 

network (ANN) and random forest (RF). 738 

 Vegetation change class 

SF SI SF + SI 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

SVM 

Change caused by 

disturbance 
88.76 79.00 94.05 79.00 94.68 90 

Change caused by 

phenology 
82.20 90.65 82.93 95.33 90.27 95.33 

OA (%) 85.02 87.43 92.27 

ANN 

Change caused by 

disturbance 
87.21 75.00 88.24 75.00 93.55 87.00 

Change caused by 

phenology 
79.34 89.72 79.51 90.65 88.60 94.39 

OA (%) 82.6 83.09 90.82 

RF 

Change caused by 

disturbance 
84.54 82.00 87.37 83.00 91.84 90.00 

Change caused by 

phenology 
83.64 85.98 84.82 88.79 90.83 92.52 

OA (%) 84.05 85.99 91.3 
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Figure 1. (a) Location of the study area in the state of Minas Gerais (MG), southeastern 751 

Brazil. The area is covered by savannas and semi-arid woodlands; (b) False color 752 

composite from an OLI/Landsat-8 image from 27 October 2016; (c) Land-cover map 753 

showing vegetated and non-vegetated surfaces. 754 

Figure 2. OLI/Landsat-8 false color composite (bands 5, 4 and 3 in RGB) from year 1 755 

(19 June 2015) and year 2 (27 October 2016) showing examples of vegetation types 756 

found in the study area. (a) grassland (open grassland); (b) shrub savanna (open 757 

grassland with sparse shrubs); (c) woodland savanna (mixed grassland, shrublands and 758 

trees up to seven meters in height); (d) palm swaps (riparian vegetation); (e) 759 

semideciduous forest (semideciduous canopy foliage); and (f) deciduous forest 760 

(predominance of deciduous trees whose loss of foliage reaches more than 50%). 761 

Figure 3. The six main steps in the methodology used to reduce the effects of seasonal 762 

NDVI changes caused by vegetation phenology on the detection of changes caused by 763 

human-induced disturbances in tropical seasonal biomes (TSBs) in Brazil. 764 

Figure 4. (a) NDVI OLI/Landsat-8 image from June 19th, 2015; (b) NDVI OLI/Landsat-765 

8 image from Oct. 27th, 2016; (c) monthly precipitation pattern from years 2015, 2016 766 

and historical series of precipitation from year 1952 to 2018. 767 

Figure 5. Image segmentation results using 0.1 for shape, 0.5 for compactness and 250 768 

for the scale parameter (SP). 769 

Figure 6. The location of the training and validation samples is shown at the top of the 770 

figure. The OLI/Landsat-8 false color composites (bands 5, 4 and 3 in RGB) show 771 

examples of the classes defined for change detection analysis between the rainy and dry 772 

seasons of 2015 (year 1) and 2016 (year 2). Seasonal variations caused by vegetation 773 

phenology are shown in (a), while human-induced changes caused by deforestation and 774 

fires are illustrated in (b) and (c), respectively. 775 

Figure 7. Patterns of semivariograms generated from the NDVI values inside the objects 776 

for years 1 (2015) and 2 (2016): (a) NDVI changes caused by vegetation phenology – 777 

the shape and sill (σ²) parameters remained constant; (b) NDVI changes caused by 778 

human-induced disturbances – the shape and sill (σ²) parameters increased.  779 



Figure 8. Support vector machine (SVM) classification using spectral features (SFs) and 780 

semivariogram indices (SIs), showing changes caused by vegetation phenology and 781 

human-induced disturbance between 2015 and 2016. 782 


