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ABSTRACT 

 

Wildfires produce substantial CO2 emissions in the humid tropics during El Niño-

mediated extreme droughts, and these emissions are expected to increase in 

coming decades. Immediate carbon emissions from uncontrolled wildfires in 

human-modified tropical forests can be considerable owing to high necromass fuel 

loads. Yet, data on necromass combustion during wildfires are severely lacking. 

The present study evaluated necromass carbon stocks before and after the 2015–

2016 El Niño in Amazonian forests distributed along a gradient of prior human 

disturbance. Landsat-derived burn scars were used to extrapolate regional 

immediate wildfire CO2 emissions during the 2015–2016 El Niño. Before the El 

Niño, necromass stocks varied significantly with respect to prior disturbance and 

were largest in undisturbed primary forests (30.2 ± 2.1 Mg ha-1, mean ± s.e.) and 

smallest in secondary forests (15.6 ± 3.0 Mg ha-1). However, neither prior 

disturbance nor a proxy of fire intensity (median char height) explained necromass 

losses due to wildfires. In the 6.5 million hectare (6.5 Mha) study region, almost 1 

Mha of primary (disturbed and undisturbed) and 20,000 ha of secondary forest 

burned during the 2015–2016 El Niño. Covering less than 0.2% of Brazilian 

Amazonia, these wildfires resulted in expected immediate CO2 emissions of 

approximately 30 Tg, three to four times greater than comparable estimates from 

global fire emissions databases. Uncontrolled understorey wildfires in humid 

tropical forests during extreme droughts are a large and poorly quantified source 

of CO2 emissions. 
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1 INTRODUCTION 

1.1 Background 

 

 There is widespread consensus among the scientific community that 

climate change is already underway and will result in changes to the Earth system 

that will pose significant challenges to societies across the globe (Crowley, 2000; 

Pachauri et al., 2014). Contemporary climate change is principally the result of 

anthropogenically driven changes in climate forcing agents, with increases in 

atmospheric concentrations of greenhouse gases (GHGs), such as carbon-dioxide 

(CO2) and methane (CH4) being responsible for the largest increases in positive 

forcing (Hansen & Sato, 2001; Pachauri et al., 2014). Atmospheric concentrations 

of CO2 are currently the highest they have been for over 800,000 years (Lüthi et al., 

2008) and the iconic level of 400 ppm of CO2 was first exceeded in May 2013 (Le 

Quéré et al., 2016). This is a >40% increase from the 277 ppm estimated for the 

start of the industrial era (c. 1750 A.D.) (Joos & Spahni, 2008).  

 

 Observed changes in contemporary climate due to increases in GHGs are 

expected to continue to impact profoundly natural and human systems (Crowley, 

2000; Thornton et al., 2014). For example, the global mean temperature rose by 

0.85°C during the period from 1880 to 2012 (Pachauri et al., 2014). Furthermore, 

1983–2012 was likely the warmest 30-year period in the northern hemisphere for 

at least the last 1,400 years. In addition, the period from 1901 to 2010 saw 
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precipitation increase over mid-latitude areas of the northern hemisphere and 

global mean sea level rose by 0.19 m (Pachauri et al., 2014). Future climate change 

scenarios suggest a further substantial warming of 0.3–0.7°C for the coming 

decades (2016–2035) and a warming of 0.3–4.8°C for the end of the 21st century 

(2081–2100), relative to the 1986–2005 global mean (Pachauri et al., 2014). 

Projections of future precipitation patterns are more heterogenous across the 

globe. In general, mid-latitude wet regions will very likely see increases in 

precipitation, while decreases are likely in many mid-latitude and subtropical dry 

regions (Pachauri et al., 2014). Wet tropical regions will very likely see increases in 

the intensity and frequency of extreme precipitation events (i.e. droughts and 

floods) (Pachauri et al., 2014). The severity of changes to the Earth’s climate 

system will depend to a great extent on the future behaviour of different 

components of the Earth system, such as the carbon cycle. 

 

 The global carbon cycle has played a fundamental role in ameliorating the 

effects of past and current anthropogenic emissions of CO2 (Ciais et al., 2013; 

Keenan et al., 2016). Atmospheric concentrations of CO2 are currently growing 

more slowly than anthropogenic emissions, due to the compensatory effects from 

within the global carbon cycle. There has been a strengthening of the global (land 

and ocean) carbon sink over the past five decades and this is estimated to absorb c. 

50% of anthropogenic CO2 emissions (Ballantyne et al., 2012; Barlow et al., 2015). 

Nonetheless, the sign and strength of carbon uptake across the globe is poorly 

quantified and understood, leading to one of the largest sources of uncertainty in 

future climate predictions (Le Quéré et al., 2016).  

 

 Tropical forests play a key role in the carbon cycle and have been 

considered a net CO2 sink, helping to reduce the atmospheric concentration of CO2 

(Houghton, Baccini, & Walker, 2018). The future strength and sign of this critical 

component of the carbon cycle is unclear (Mitchard, 2018) and the CO2-

fertilisation effect may be reaching a physiological ceiling in tropical forests due to 

contemporary climatic conditions (Brienen et al., 2015; Liu et al., 2017). For 

example, droughts in tropical forests—such as those seen during El Niño–Southern 

Oscillation events—have been responsible for turning this important sink into a 
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source of CO2 (e.g. Phillips et al. 2009; Lewis et al. 2005; Baccini et al. 2017; Gatti et 

al. 2014; Cox et al. 2013; Yang et al. 2018). Furthermore, Brienen et al. (2015) have 

reported a long-term decline in the Amazon carbon sink, suggesting  we may be 

approaching a tipping point (Malhi et al., 2009; Nepstad et al., 2008; Nobre & 

Borma, 2009). 

 

 Correlation between measurements of atmospheric CO2 concentrations 

and tropical temperatures suggested that one of the strongest sources of 

interannual variability of CO2 is El Niño—Southern Oscillation (ENSO) (Jones et al., 

2001; Wang et al., 2013), with much of this variability being attributed to tropical 

forests (Wang et al. 2013). ENSO is an atmospheric and oceanographic 

phenomenon originating in the tropical latitudes of the Pacific Ocean which has 

been present in the Earth system for at least the past 130,000 years (Tudhope et 

al., 2001) and has been strengthening for at least 200 years (Schöngart et al., 

2004), with further increases in its strength predicted (Cai et al., 2014; 

Timmermann et al., 1999). El Niño—the positive up cycle of ENSO—sees a pool of 

warm surface water migrate east from the western Pacific to the central and 

eastern Pacific, which results in the disturbance of the Walker circulation and 

global atmospheric circulation, ultimately leading to a warming and increases in 

dry season length across much of the humid lowland tropics (Malhi et al., 2018), 

including across the Amazon (Marengo & Espinoza, 2016) 
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1.2 Study system / focus 

  

 The Amazon forest is the world’s largest tropical rainforest, playing a 

multifaceted role in the Earth system. It holds ≥86 Pg C, or c. 40% of the biomass 

held in tropical forests globally (Malhi et al., 2006; Saatchi et al., 2011;  Saatchi et 

al., 2007). Beyond simply storing a vast amount of carbon, Amazonian forests are 

the most species-rich ecosystems on the globe (Hoorn et al., 2010). The tree flora 

alone harbours c. 16,000 species—or 30–50% of all tropical tree species (Slik et al., 

2015). The Amazon is also home to a diversity of human cultures and societies 

(Little, 2005; Roosevelt, 2013). The ecosystem services offered by Amazonian 

forests—such as water cycling, food production, and the provision of raw 

materials—benefit societies, both locally and globally (Boers et al., 2017; Khanna 

et al., 2017; Kunert et al., 2017; Strand et al., 2018). Moreover, the Amazon 

currently serves as a carbon sink, helping to remove and store part of the 

anthropogenically released CO2 emissions (Pan et al., 2011). 

 

 Despite its local, regional, and global importance, the Amazon has faced 

numerous threats, which have been on the increase in recent decades (Davidson et 

al., 2012). Deforestation, resulting in the most part from agricultural expansion, is 

the most recognisable risk to the Amazon’s biodiversity and ecosystem services 

(Ferreira et al., 2012; Spracklen & Garcia-Carreras, 2015). Conversion of forest for 

other land-uses is responsible for a myriad of negative impacts on biodiversity, 

ecosystem properties, and global climate (Davidson et al., 2012; Spracklen & 

Garcia-Carreras, 2015). Deforestation rates declined 76% from 2004 to 2017, 

decreasing from nearly 28,000 km2 y-1 in 2004 to less than 7,000 km2 y-1 in 2017, 

which is widely thought to be a result of concerted efforts from governmental and 

non-governmental agencies (Aragão et al., 2018). 

  

 While there have been consistent reductions in deforestation/clear-

cutting over the past decade, these have not been sufficient to preserve forest 
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quality as more cryptic human-induced disturbances have emerged, such as 

selective-logging, hunting, and wildfires, that are often much harder to detect at 

larger spatial scales (Peres et al., 2006; Barlow et al. 2016) and have significant 

ecological impacts while maintaining certain forest attributes (Ghazoul & Chazdon, 

2017). These human-modified forests—forests that have been structurally altered 

by anthropogenic disturbance, such as selective logging and fires, and those 

regenerating following deforestation (commonly called secondary forests)—then 

become more susceptible to wildfires in the future and large-scale understorey 

wildfires, which were unprecedented in recent millennia (Bush et al., 2007; 

Kauffman & Uhl, 1990; Turcq et al., 1998), are being seen with increased 

frequencies (Aragão et al., 2018). 

 

 Although droughts have been recorded in the Amazon for millennia, fires 

are unlikely to have been regular occurrences, with return intervals on the order of 

centuries or millennia since the end of the last ice-age (McMichael et al., 2012; 

Power et al., 2008). Forest fires in humid tropical forest such as the Amazon can 

start naturally by means of lightning strikes, but lightning strikes  are generally 

followed by rainfall; thus such fires would likely have been short-lived and would 

have affected only very small areas of the Amazon (Pivello, 2011). Anthropogenic 

ignitions are by far the most common proximate cause of forest fires in Amazonia. 

During pre-Colombian times, indigenous peoples would carry out prescribed burns 

as part of shifting cultivation practices, only after strict planning in accordance 

with land-use histories and weather conditions (Pivello, 2011).   

 

 Pervasive human modification of tropical forest landscapes, through, for 

example, road building, cattle ranching and timber exploitation, combined with 

severe drought events and the widespread use of fire as a land management tool, 

has fundamentally altered Amazonian fire regimes. Uncontrolled large-scale 

wildfires have become increasingly common over recent decades (Jolly et al., 

2015) and are witnessed with sub-decadal frequency (Chen et al., 2011). Such 

wildfires result in high rates of tree mortality (Barlow and Peres 2004; Brando et 

al. 2016), shifts in forest structure (Barlow and Peres 2004; Brando et al. 2016) 

and drier microclimatic conditions (Cochrane & Schulze, 1999), ultimately leading 
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to increased susceptibility to future wildfires (Alencar et al., 2011; Cochrane et al., 

1999; Cochrane & Schulze, 1999). The CO2 emissions from such wildfires are 

expected to grow further (Aragão et al., 2018), as fire-conducive weather 

patterns—such as increasing temperatures and more intense droughts—increase 

across the humid tropics, particularly in South America (Jolly et al., 2015).  

 

 Carbon emissions from understorey wildfires can be split into committed 

and immediate emissions. Committed emissions result from the complex interplay 

between delayed tree mortality and decomposition, and are dependent on future 

climatic conditions and human influences (Goetz et al., 2015). Recent research has 

shown that the long-term storage of carbon in wildfire-affected Amazonian forests 

can be compromised for decades: even 31 years after a wildfire event, burned 

forests store approximately 25% less carbon than unburned control sites due to 

high levels of tree mortality that are not compensated by regrowth (Silva et al., 

2018). Immediate emissions are those that occur during wildfires and, in contrast 

to committed emissions, are relatively simple to estimate. Biome- and continent-

wide analyses that rely on satellite observations (known as top-down studies) 

suggest that these immediate emissions from tropical forests can be substantial 

(Liu et al., 2017; van der Laan-Luijkx et al., 2015), and, for example, can transform 

the Amazon basin from a carbon sink to a large carbon source during drought 

years (Gatti et al., 2014).One potentially important source of immediate carbon 

emissions during wildfires is the dead organic matter found on forest floors. This 

necromass, which includes leaf litter and woody debris, is a fundamental 

component of forest structure and dynamics and can account for up to 40% of the 

carbon stored in humid tropical forests (Chao et al., 2009; Palace et al., 2012; Pan 

et al., 2011). During long periods of drought, this large carbon pool can become 

highly flammable (Ray, Nepstad, & Moutinho, 2005). 
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1.3 Knowledge gaps 

 

 Several on-the-ground studies have quantified the necromass stocks 

across a relatively wide area of Amazonia. However, these studies have 

overwhelmingly focused on undisturbed primary forests (Chao et al., 2009); 

studies that estimate necromass in human-modified tropical forests across 

Amazonia are rare (c.f. Keller et al. 2004; Palace et al. 2007). This represents a key 

knowledge gap limiting our understanding of necromass fuel loads across human-

modified Amazonian forests, which are increasingly common (Keenan et al. 2015) 

and are more vulnerable to wildfires (Alencar et al., 2006; Cochrane, 2003; Uhl & 

Kauffman, 1990). In addition, relatively fewer local-scale, bottom-up studies have 

quantified combustion characteristics in humid tropical forests following fires, and 

those which have been carried out have followed fires related to deforestation and 

slash-and-burn practices (see van Leeuwen et al. 2014 for a recent review). To 

date, no study has quantified fuel combustion characteristics after uncontrolled 

wildfires using before and after measurements in Amazonia. These knowledge 

gaps and data shortfalls limit our understanding of the immediate carbon 

emissions from understorey wildfires. Improving such estimates is essential for 

refining Earth Systems models and both national and global estimates of 

greenhouse gas emissions. 
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1.4 Project aims 

 

 The immediate CO2 emissions from wildfires across an almost 1-million-

hectare region of eastern Amazonia (Figure 1) that experienced extreme drought 

conditions during the 2015–16 El Niño (Jiménez-Muñoz et al., 2016) are quantified 

using a hybrid bottom-up/top-down approach. Data were combined from a 

previously published large-scale field assessment of carbon stocks (Berenguer et 

al., 2014) with on-the-ground measurements of woody debris before and after the 

2015–2016 El Niño, proxies of fire intensity and coverage within study plots, and 

remotely sensed analyses of fire extent across the region. More specifically, the 

following objectives are addressed: (a) quantify carbon stocks vulnerable to 

combustion across human-modified tropical forests in central-eastern Amazonia, 

(b) use post-burn measurements to investigate the factors influencing the loss of 

necromass during wildfires, (c) estimate region-wide immediate carbon emissions 

from wildfires, and (d) compare these region-wide emission estimates with those 

derived from widely used global fire emissions databases. 
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2 METHODS 

 

2.1 Study region 

 

 This study focuses on a ~6.5 million ha region of central-eastern Amazonia 

close to the convergence of the Tapajós and Amazon rivers in Pará state, Brazil 

(Figure 4). This region harbours tropical moist broadleaf forest, which is mainly 

composed of dense evergreen terra firme vegetation and to a much lesser extent, 

deciduous vegetation (Costa et al., 2010). The native undisturbed forest has a 

closed canopy with tree heights up to 55 m (Pan, Birdsey, Phillips, & Jackson, 

2013). The climate is seasonal with mean annual temperatures of 25°C and a dry 

season (August–November) with annual precipitation of 1,920 mm and slightly 

higher temperatures than the wet season (December–July) (Costa et al., 2010; 

INMET, 2018). Average precipitation in the driest months is 100 mm per month, 

yet this is rarely below the annual mean evapotranspiration (3.4 mm d-1) (Costa et 

al., 2010; INMET 2018). Soils are predominantly nutrient-poor clay-rich oxisols (c. 

60% clay) with some sandy utisols (Rice et al., 2004). 
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2.2 Estimation of necromass carbon stocks 

 

 In 2010, 107 plots (0.25 ha) were established in a human-modified region 

of central-eastern Amazonia. Plots were located in the municipalities of Santarém, 

Belterra, and Mojuí dos Campos in the state of Pará, Brazil, and form part of the 

Sustainable Amazon Network (RAS—Rede Amazônia Sustentável in Portuguese 

(Gardner et al., 2013)). Study plots covered a range of prior human impacts and 

included undisturbed primary forests (n = 17), primary forests selectively logged 

prior to 2010 (n = 26), primary forests burned prior to 2010 (n = 7), primary 

forests logged and burned prior to 2010 (n = 24), and secondary forests that have 

become established following complete removal of vegetation (n = 33; see Table 

1).  

 

 

Table 1. Forest classifications for pre-El Niño forest disturbance classes and the 

number of plots sampled in 2010, 2014-15 and 2017. The 2015-16 sample 

occurred after the extensive wildfires and is a subset of the 2014-15 sample. 

Pre-El Niño 

forest class 
Definition 

Necromass 

assessment 

(2010) 

Monitoring of 

coarse woody 

debris (2014-

2016) 

Fire 

intensity 

and plot 

burned 

area 

(2017) 

Undisturbed 

primary forest 

Primary forest with no 

evidence of human 

disturbance, such as fire 

scars or standing tree 

damage 

17 5 5 

Logged primary 

forest 

Primary forest with 

evidence of logging, such 

as logging debris 

26 5 5 

Burned primary 

forest 

Primary forest with 

evidence of recent fire, 
7 0 0 
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such as fire scars 

Logged-and-

burned primary 

forest 

Primary forest with 

evidence of both logging 

and fire 

24 4 5 

Secondary 

forest 

Forest regenerating after 

complete removal of 

native vegetation 

33 4 2 

 

 

 Summary carbon estimates for aboveground live biomass, dead wood, 

litter, and soil for these 107 plots can be found in Berenguer et al. (2014). Here, 

four components of necromass stocks were estimated: standing-dead tree and 

palm stems, coarse woody debris (CWD; ≥ 10 cm diameter at one extremity), fine 

woody debris (FWD; 2-10 cm diameter at both extremities), and leaf litter 

(including twigs < 2 cm diameter at both extremities, leaves, and fruits and seeds). 

Once biomass estimates were obtained for each necromass component they were 

then standardised to per unit area (hectare), and the carbon content was assumed 

to be 50% of biomass dry weight (Eggleston et al., 2006) 

 

 

2.2.1 Standing-dead stems 

 

 To estimate the necromass stocks of standing-dead stems (trees and 

palms), first the diameter and height of all large (≥10cm DBH) dead-standing trees 

and palms were measured in each plot (0.25 ha). The diameter and height of all 

small (≥2–10cm DBH) dead-standing trees and palms were estimated in five 

subplots of 5 x 20 m in each plot. 

 

  Second, the allometric equations of Hughes, Kauffman, and Jaramillo 

(1999) were used to estimate biomass (B) of small and large standing-dead tree 
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stems. The (B) biomass of large (≥10 cm DBH) dead standing trees was estimated 

using: 

 

(Eq. 1) 

 

where H is tree height in metres a D is DBH in centimetres. 

 

While small standing-dead trees (< 10 cm DBH) were estimated using the 

following equation: 

 

 (Eq. 2) 

 

where D is DBH in centimetres and CF is a correction factor to reduce the bias 

caused by conversion from logarithmic to arithmetic units. The CF value for small 

tree stems is 1.14 (see Hughes, Kauffman, and Jaramillo 1999 for further details). 

 

Third, the allometric equations of Cummings et al. (2002) were used to estimate 

the biomass (B) of standing-dead palms. Large palm stems (≥10 cm) were 

estimated using the following equation: 

 

 (Eq. 3) 

 

where H is palm height in metres, Sg is specific wood gravity (g cm-3), and r is the 

stem’s radius. 

 

While small standing-dead palms (<10 cm) were estimated using the following 

equation: 
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 (Eq. 4) 

 

where D is DBH in cm. 

 

 

2.2.2 Woody Debris 

 

 The five (5 m × 20 m) subplots were also used to estimate the diameters 

and lengths of all pieces of fallen CWD (≥10 cm). To estimate the biomass of each 

piece of CWD, Smalian’s formula (Chao et al., 2009) was first used to estimate its 

volume: 

 

 (Eq. 5) 

 

where Lcwd (m) is the length of the CWD and Di, i ∈ 1,2, is the diameter (m) at either 

extremity. 

 

Next, the biomass of each piece of CWD was estimated using its decomposition 

class which was estimated in the field using the five-point scale and biomass 

density values of Keller et al., (2004). To avoid overestimation, the percentage of 

void space in each piece of CWD (i.e. the percentage of the idealised shape that was 

missing due to damage/void space from decomposition) was estimated visually in 

the field and discounted from each piece. 

To assess FWD stocks, five subplots (2 m × 5 m) were established in each of the 

107 study plots. All FWD was collected from the subplots and weighed in the field.  

A subsample (≤1 kg) from each subplot was oven-dried to a constant weight. The 

wet-to-dry ratios of the FWD samples were used to estimate the total FWD stocks 

per plot. 
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2.2.3 Leaf Litter 

 

 To estimate the biomass of leaf litter, ten 0.5 m × 0.5 m quadrats were 

established in each of the 107 study plots and all leaf litter was removed down to 

the soil organic layer. Leaf litter was oven-dried to constant weight to obtain an 

estimate of leaf litter stocks. 

 

2.3 Data analysis of field-based estimates 

 

 Kruskal-Wallis and Conover-Iman tests with Bonferroni adjustments were 

used to investigate the variations in carbon stocks stored in each necromass 

component (i.e., dead-standing stems, CWD, FWD, and leaf litter) from the 2010 

RAS survey, total and percentage necromass carbon stock losses in the 18 plots 

surveyed between 2014 and 2017, and the proportion / area of plots burned 

during the 2015-16 El Niño, across forest classes of prior human disturbance 

(Table 1). Linear regression was used to investigate the relationship between: 

necromass carbon stocks before and after the 2015-16 El Niño; fire intensity and 

stock losses; and the burned area in each plot and stock losses. 

 

 

2.4 Quantification of region-wide areal extent of 2015-16 

wildfires in central-eastern Amazonia 

 

2.4.1 Overview of approach 

 

 A time-series (2010–2016) of Landsat (5, 7, and 8) imagery was classified 

using a pixel-by-pixel unsupervised k-means classification approach. Following 

visual assessment of the classification and manual correction, the total area of 

primary and secondary forest burned during the 2015–16 El Niño was calculated. 
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2.4.2 Input data 

 

 A time-series (2010–2016) of Landsat 5, 7, and 8 raw imagery and indices 

(Appendix 1) was downloaded from the EROS Science Processing Architecture 

(ESPA)/U.S. Geological Survey (USGS) website (https://espa.cr.usgs.gov). Spectral 

bands including the visible to medium infrared were used in combination with: the 

Normalised Difference Vegetation Index (NDVI); Soil adjusted Vegetation Index 

(SAVI); Enhanced Vegetation Index (EVI), and Normalised Burn Ratio 2 (NBR2; 

USGS 2016; Table 2). Imagery from Landsat 7 and 8 were used in combination with 

the panchromatic band to improve the spatial resolution. 

 

2.4.3 Classification 

 

 Pixel-by-pixel unsupervised k-means classifications (Drake & Hamerly, 

2012; MacQueen et al., 1967) of each Landsat image was performed with 10 

iterations in ERDAS IMAGE v.16 (Hexagon Geospatial, 2016) to classify primary 

forest (undisturbed and disturbed), secondary forest, burned forest (from the 

2015–2016 El Niño-mediated wildfires), deforested areas, water bodies, and other 

(e.g. agricultural lands and urban structures). 

 

2.4.4 Correction of classifier errors 

 

 The classification produced by the unsupervised k-means algorithm were 

then imported and vectorised in ArcGIS v.10.2 (ESRI, 2014). A visual assessment of 

the classifier accuracy was carried out and any errors were manually corrected in 

ArcGIS v.10.2 (ESRI, 2014). The vectorised classification was manually compared 

to each Landsat band and combinations thereof displayed in RGB composites to 

identify misclassification. Any misclassifications were then corrected manually. 
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2.5 Estimation of region-wide immediate CO2 emissions 

 

 First, the following equation was developed to estimate the loss of carbon 

per hectare (NL) from the combustion of necromass:  

 

 (Eq. 6) 

 

where FLCWD is the per ha fuel load of CWD; CCCWD is the combustion completeness 

of CWD; DCWD is the background decomposition rate measured in unburned control 

sites; FLLLCWD is the fuel load of leaf litter and FWD per ha; and, BA is the proportion 

of the plot that burned. 

 

 

Second, given the current limitations of methods to detect necromass stocks and 

their spatial distribution in closed canopy tropical forests and the limited number 

of on-the-ground measures of combustion characteristics, four scenarios were 

constructed—two for primary forest and two for secondary forests (Table 2). 

Primary and secondary forests were treated separately because they had 

significantly different fuel loads and combustion characteristics and were able to 

be mapped separately. The first primary forest scenario (Prim1) used all data from 

all primary classes (disturbed and undisturbed) and is the least conservative in 

that it includes the marginally higher fuel loads found in undisturbed primary 

forests. This scenario seems the most appropriate at first glance as the wildfires in 

this region affected both undisturbed and disturbed areas of forest in this region. 

However, there is evidence to suggest that disturbed primary classes are more 

vulnerable to combustion (Alencar et al., 2011; Cochrane et al., 1999; Cochrane & 

Schulze, 1999). The second primary forest scenario (Prim2) is the more 

conservative scenario of the two as it only includes the lower fuel loads found in 

the disturbed classes of primary forest. The first secondary forest scenario (Sec1) 
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is the least conservative of the two secondary forest scenarios as, in an effort to 

increase decomposition rate and burned area sample sizes, data from all primary 

forest classes were included. The second secondary forest scenario (Sec2) was 

more conservative, including only data from secondary forests on decomposition 

rates and burned area. Due to the lack of data on combustion completeness of CWD 

(CCCWD) in secondary forests, both secondary forest scenarios (Sec1 and Sec2) used 

CCCWD values from primary forests. Finally, to determine the means and standard 

errors of the variables used in Eq. 6 for each scenario described above 1000 

bootstrap with replacement simulations were run. The standard error of Eq. 6 was 

calculated using the variable standard errors, accounting for error propagation, 

and 95% confidence intervals for Eq. 6 were constructed as its mean value ± 1.96 

times the standard error of the mean. 
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Table 2. Forest classes included in each of the four (two for primary forest and 

two for secondary forest) land-use scenarios and their associated sample sizes. 

FLCWD = Coarse Woody Debris (CWD) Fuel Load; CCCWD = CWD Combustion 

Completeness; DCWD = CWD Decomposition rate; FLLLFWD = Fuel Load of leaf litter 

and Fine Woody Debris combined; and BA = Burned Area. Prim1 is the least 

conservative primary forest scenario, including data from all primary classes, 

including undisturbed primary forest that contained high necromass stocks. Prim2 

is more conservative, using only data from the disturbed classes that had lower 

necromass stocks. Sec1, the least conservative of the two secondary forest 

scenarios, using data DCWD and BA data from primary forests to increase sample 

sizes. Sec2 was the most conservative secondary forest scenario using data only 

from secondary forest, except for CCCWD data from primary forest which was used 

by both secondary forest scenarios (Sec1 and Sec2) due to a lack of data in 

secondary forests. 

Scenario FLCWD CCCWD DCWD FLLLFWD BA 

Prim1 
All primary 

classes (n = 74) 

All primary 

classes (n = 7) 

All primary 

classes (n = 

7) 

All primary 

classes (n = 74) 

All primary 

classes (n = 15) 

Prim2 

Disturbed 

primary classes 

only (n = 57) 

Disturbed 

primary classes 

only (n = 5) 

Disturbed 

primary 

classes 

only (n = 4) 

Disturbed 

primary classes 

only (n = 47) 

Disturbed 

primary classes 

only (n = 10) 

Sec1 

Secondary 

forests only 

 (n = 39) 

All primary 

classes (n = 7) 

All classes 

(n = 10) 

Secondary 

forests only 

only (n = 39) 

All classes 

(n = 17) 

Sec2 

Secondary 

forests only 

 (n = 39) 

All primary 

classes (n = 7) 

Secondary 

forests only 

 (n = 3) 

Secondary 

forests only 

 (n = 39 

Secondary 

forests only 

 (n = 2) 
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2.6 Comparison with GFED4.1s and GFAS 1.1 

 

 The region-wide CO2 emission estimates were compared with two fire 

emissions databases frequently used in earth systems models and carbon budgets: 

the Global Fire Emissions Database (GFED) version 4.1s (van der Werf et al., 2017) 

and the Global Fire Assimilation System (GFAS) version 1.1 (Kaiser et al., 2012). 

Both datasets, were obtained for the study period (August 2015–July 2016) and 

cropped to the approximately 6.5 Mha study region, shown in Figure 1. 

 The CO2 emissions estimated here were plotted spatially along with those 

of GFED and GFAS—at 0.25° and 0.1°, respectively—to investigate potential 

sources of discrepancy between the estimates. To map the CO2 emissions 

estimated in the present study it was assumed that the emissions in each pixel 

were proportional to area burn (i.e. assuming the density of carbon and 

combustion and decompositions characteristics were spatially invariable).Finally, 

because GFED also provides estimates of the area burned at 0.25°, the burned area 

map produced for this study was used to estimate burned area at the same 

resolution so they could be compared. 
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3 RESULTS I: PLOT-LEVEL 

ESTIMATES OF FUEL 

COMBUSTION AND BURN 

PATTERNS 

3.1 Necromass stocks across humid tropical forests 

 

 Total necromass and its components measured in 2010 during the RAS 

survey (Berenguer et al., 2014; Gardner et al., 2013), varied significantly by forest 

class (p < 0.05 in all cases; Figure 1). Primary forests contained significantly higher 

total necromass than secondary forests (p < 0.01 for all pairwise comparisons), 

with the highest total found in undisturbed primary forests (30.2 ± 2.1 Mg ha-1, 

mean ± se). In contrast, secondary forests contained only half as much necromass 

as undisturbed primary forests (15.6 ± 3.0 Mg ha-1). Variation in total necromass 

was driven in large part by variation in CWD, which accounted for 61.3 ± 2.7% of 

the total necromass stocks across forest classes. Leaf litter was the next most 

important component of total necromass, with 19.8 ± 2.7% residing in this 

component. Dead standing stems accounted for 14.4 ± 1.8% of total necromass. 

Finally, FWD was by far the smallest necromass component, comprising just 4.6 ± 

0.2% of the total. 
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Figure 1. Necromass carbon stocks in leaf litter (a), fine woody debris (FWD; b), 

coarse woody debris (CWD; c), dead-standing stems (d), and the total across all 

components (e) in human-modified Amazonian forests. Boxes show the 

interquartile range and dots show outliers. Letters above the boxplots show the 

results from multiple pairwise comparisons of forest class medians. Classes that do 

not share a letter have significantly different medians (p < 0.05). 

 

3.2 Impact of El Niño-mediated wildfires on necromass stocks 

 

 On average, 87.1 ± 2.7% of the ground area of the fire-affected study plots 

burned, and there was no significant difference in the total burned area of fire-

affected plots across forest classes (𝜒3
2 = 2.1; p = 0.56). From the 88 CWD pieces 

measured before the fires, 54 completely burned, 32 partially burned, and two 

were untouched by fire. CWD carbon stocks losses from combustion varied from 

38% to 94% (mean = 65.4%, SE = 7.1%) at the plot-level. 
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 Necromass carbon stock losses in the seven burned plots were unrelated 

to median char height (R2 = 0.09; p = 0.51; Figure 2a) and area of plot burned (R2 = 

0.10; p = 0.49; Figure 2b). Forest class did not predict necromass carbon stock 

losses in burned sites when expressed as either percentage (𝜒2
2 = 2.25; p = 0.32) or 

total (𝜒2
2 = 1.12; p = 0.57) loss. Similarly, forest class did not predict necromass 

losses in unburned sites when expressed as either percentage (𝜒3
2 = 1.58; p = 0.66) 

or total (𝜒3
2 = 2.18; p = 0.54) loss. 

 

 

 

Figure 2. (a) Necromass carbon stock losses and fire intensity, as measured by 

median char height. (b) Necromass carbon stock losses and area of plot burned. 

 

 On average, burned sites lost 73.0 ± 4.9% of their pre-El Niño necromass 

stocks (Figure 3), compared to a 26.1 ± 4.8% reduction in unburned sites (from 

decomposition). As expected, pre-El Niño necromass stocks strongly predicted 

post-El Niño necromass in unburned sites (R2 = 0.95; p < 0.001; Figure 3a). This 

relationship disappeared in fire-affected plots (R2 = 0.08; p = 0.54; Figure 3b), 

indicating that combustion completeness was insensitive to initial necromass 

stocks. Despite the small sample sizes, visual inspection suggests that these 

findings were unaffected by forest class. 
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Figure 3. Pre- vs post-El Niño necromass carbon stocks in unburned sites (a) and 

sites burned during 2015-16 (b), and pre-El Niño necromass carbon stocks vs post-

El Niño necromass carbon stock losses in unburned sites (c) and sites burned 

during 2015-16 (d) in human-modified Amazonian forests. In panel (a) the black 

line shows the significant (p < 0.001) relationship between pre- and post-El Niño 

necromass carbon stocks in unburned sites. The equation for this relationship is 

shown in the panel. The grey band represents 1 s.e.m. Note that, due to data 

limitations, pre- and post-El Niño necromass totals are based on coarse and fine 

woody debris and leaf litter only (i.e. standing-dead stems are not included. These, 

however, account for a small (~10–15 %) proportion of necromass stocks (Figure 

1)). 
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4 RESULTS II: REGION-WIDE 

BURNED AREA 

 During the 2015-16 El Niño, 982,276 ha (15.2%) of forest in the study 

region experienced understorey wildfires, which were spread over two states, 

three protected areas, and 14 municipalities. Wildfires were overwhelmingly 

concentrated in primary (including disturbed and undisturbed) forests: <2% 

occurred in secondary forests, despite these accounting for 9% of the forest cover 

in our study region. 
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Figure 4. (a) Map of the area burned during the 2015-16 fires and the 2017 land-

uses across the ~6.5 million ha study region. (b) The land-use map within the RAS 

study area (shown by the white border in (a)). Also shown in this panel are the 

locations of the 107 study plots (black circles). The 18 of these that were used for 

necromass monitoring are shown as orange circles. The inset shows the Santarém 

study region (red circle) within South America, the Brazilian Amazon (green), and 

Pará (white border). 
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5 RESULTS III: REGION-WIDE 

CO2 EMISSIONS AND 

COMPARISON WITH 

GFED4.1S AND GFAS 

 In Scenario a (Figure 5), which considers all primary and secondary 

forests (Prim1 + Sec1; Table 2), necromass carbon stock losses amounted to 10.06 

Tg (95% confidence interval, 5.85-14.27 Tg). Converting to CO2, this is equivalent 

to expected emissions of 33.05 Tg (95% confidence interval, 19.22-46.87 Tg; 

Figure 5). Mean CO2 emission estimates were relatively insensitive to the land-use 

scenarios (Section 2.5; Table 2; Figure 5). However, the 95% confidence interval 

was substantially wider with land-use scenario prim2 (scenarios b & d; Figure 5) 

as the sample size of decomposition rates was substantially smaller when 

restricted to disturbed primary forest only compared with all primary forests 

(prim1)—undisturbed and disturbed—combined. 
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Figure 5. Immediate CO2 emissions for wildfires in central-eastern Amazonian 

human-modified tropical forests. Points show expected emissions for four land-use 

scenarios (see Section 2.5; Table 2): a, Prim1 + Sec1; b, Prim2 + Sec1; c, Prim1 + 

Sec2; d, Prim2 + Sec2. Error bars show 95% confidence intervals. Also shown are 

cumulative CO2 emissions for our study region and period from the Global Fire 

Emissions Database (GFED4.1s; short-dashed line) and the Global Fire Assimilation 

System v. 1.1 (GFAS; long-dashed line). 

 

 GFED4.1s and GFAS 1.1 both vastly underestimated expected wildfire CO2 

emissions for the study region and period. These databases suggest cumulative 

emissions that are 77% and 68%, respectively, lower than the expected value 

found with land-use scenario a (Prim1 + Sec1; Figure 5). Highlighting the 

insensitivity of GFED to understorey wildfires, this database suggested that, 6% of 

any given 0.25° cell across our study region, and approximately 90, 000 ha in total, 

burned during the 2015–2016 El Niño (Figure 6e). By contrast, the present study 

shows that as much as 74% of a cell (Figure 6f) and almost 1 million ha of forest 

was affected by understorey wildfires. 
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Figure 6. Comparison with the Global Fire Assimilation System (GFAS) and the 

Global Fire Emissions Database (GFED). Landsat-based CO2 emissions for the 

region and period of the present study from GFAS (a) and the emissions estimated 

here shown at the same scale (0.1 degrees; (b)). CO2 emissions from GFED (c) and 

the emissions estimated here shown at the same scale (0.25 degrees; (d)). The 

proportion of land burned for the study region and period of the present study 

from GFED (e) and the burned area estimated here shown at the same scale (0.25 

degrees; (f)). In all panels, the Landsat-derived fire map in the present study is 

shown in dark green, deforestation in light grey, and water in blue. 
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6 DISCUSSION, GENERAL 

CONCLUSIONS, AND 

RECOMMENDATIONS 

 

6.1 Interpretation of results 

 

 Mean total necromass (standing-dead stems, CWD, FWD, and leaf litter) 

carbon stocks in undisturbed forests (30.2 ± 2.1 Mg ha-1) found here were  broadly 

consistent with previous estimates for the eastern Amazon. For example, Keller et 

al. (2004) and Palace et al. (2007) found necromass of, respectively, 25.4 and 29.2 

Mg ha-1 in undisturbed primary forests in the Tapajós region of Pará. However, in 

primary forests disturbed by reduced-impact logging, these studies found, 

respectively, 36.4 and 42.7 Mg ha-1 of necromass carbon, while the estimates found 

here for necromass stocks in disturbed primary forests are markedly lower (Figure 

1e). This discrepancy is likely a function of time since disturbance, as Keller et al. 

(2004) and Palace et al. (2007) assessed necromass carbon stocks soon after 

disturbance, when necromass stocks were likely to be higher. In contrast, 

disturbance of RAS sites occurred between 1.5 and 25 years before the 2010 

surveys. Necromass stocks can be highly dynamic, with residence times for most 

coarse woody debris estimated at less than a decade (Palace et al., 2012), 
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especially in the case of small diameter and low wood density tree species 

(Chambers et al., 2000). Thus, necromass stocks in many of the disturbed primary 

forest sites studied here may have had time to decrease to an equilibrium level, 

similar to that of undisturbed forests, where input and decomposition are largely 

balanced 

 

 There were, however, significantly larger necromass stocks in primary 

forests compared to secondary forests. This may be explained by a) pre-

abandonment land-uses removing all fallen biomass in intensive clearance or 

maintenance fires; b) the smaller necromass input pool in secondary forests due to 

lower aboveground live biomass (Berenguer et al., 2014); and c) the lower wood 

density of stems in secondary forests (Berenguer et al., 2018), resulting in more 

rapid coarse woody debris decomposition.  

 

 On average, wildfires burned 87.1 ± 2.7% of the fire-affected necromass 

monitoring plots (Figure 3b). This figure is substantially higher than the 62-75% 

burn coverage measured during experimental fires in previously undisturbed 

transitional Amazonian forests (Brando et al., 2016). The areal extent of these 

wildfires reduced necromass (in CWD, FWD, and leaf litter) carbon stocks by 46.9 

± 6.9%, when gross necromass loss (73.0 ± 4.9%) was corrected for decomposition 

(26.1 ± 4.8%). 

 

 The areal extent of these wildfires at the plot-level was not explained by 

forest disturbance class. This may indicate that the 2015-16 El Niño, which was 

one of strongest on record, with particularly strong drought conditions in eastern 

Amazonia (Jiménez-Muñoz et al., 2016), reduced necromass moisture content 

across all forest classes to a level which permitted combustions and sustained 

wildfires, overriding any pre-existing microclimatic differences that may have 

existed due to the initial disturbance. This is further corroborated by the fact that 

wildfires did not distinguish between largely undisturbed forests (mostly inside 

protected areas) and those that have been modified by humans (mostly outside 

protected areas), burning vast areas of both types of forest (Figure 4). 
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Interestingly, the areal extent of the wildfires at the plot-level also did not explain 

the percentage loss of necromass stocks. Perhaps this was simply due to the small 

sample sizes used, or maybe this was a result of sporadic fuel loads (especially 

CWD). 

 

  The understorey wildfires that affected the burned plots were 

relatively low intensity, with maximum median char height of 20.5 cm. Median 

char-height, taken as a proxy of fire intensity, at the plot level did not explain 

necromass stock losses. Perhaps this was because even the lowest intensity fires 

were sufficient to consume a significant proportion of the necromass stocks they 

came in to contact with. Whatever the causal factors, these findings demonstrate 

that low-intensity wildfires can dramatically diminish necromass stocks in human-

modified tropical forests.  

 

 This novel assessment revealed that expected immediate necromass CO2 

emissions from these wildfires are around 30 Tg (Figure 5). Putting the magnitude 

of this issue into context, the estimated CO2 emissions for the 2015–16 wildfires in 

eastern Amazonia, that affected an area of <0.2% of the Brazilian Amazon, were 

equivalent to those from fossil fuel combustion and the production of cement in 

Denmark, or 6% of such emissions from Brazil, in 2014 (Bank, 2018). 

Consequently, wildfire-mediated immediate carbon emissions, which are not 

currently considered under national greenhouse gas inventories (Bustamante et 

al., 2016), represent a large source of CO2 emissions. Moreover, these immediate 

emissions will be greatly exacerbated by further committed emissions resulting 

from tree mortality, which can be as high as 50% even from low-intensity 

understorey wildfires (Barlow et al. 2003) and may not be balanced by post-fire 

regrowth on decadal time scales (Silva et al., 2018) . 

 

 Both GFED and GFAS estimated substantially lower CO2 emissions for 

wildfires in this region of the Amazon during the 2015–16 El Niño. These 

databases suggest cumulative emissions that are 77% and 68% lower than the 

expected value found with land-use scenario a, respectively (prim1 + sec1; Figure 
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5). These discrepancies are likely the result of underdetection of understorey 

wildfires by both GFED and GFAS algorithms. GFED and GFAS use Moderate 

Resolution Imaging Spectroradiometer (MODIS) products that have a spatial 

resolution of 500 m to 1 km, while the present study uses Landsat imagery and 

derived indices, with a spatial resolution of 15–30 m, which are commonly 

considered reference data for validating global products of burned area (Hantson 

et al., 2013) and Landsat data were indeed used to validate the MCD64A1 MODIS 

data product used by GFED (Giglio et al., 2018). The underdetection of burned area 

by GFED and GFAS can be seen across the whole study region but is particularly 

evident in areas free from historic deforestation (Figure 6). GFED and GFAS 

appeared to be more successful at detecting fires in agricultural areas (Figure 6)—

which have lower fuel loads and were excluded from the present study—perhaps 

due to the lower levels of forest cover (Figure 6).  

 

6.2 Wider implications of results 

 

 On balance, it is likely that the necromass stock loss and carbon emission 

estimates presented here are highly conservative. First, wildfire-induced carbon 

changes in the soil organic layer were not measured, yet research from the same 

region suggests that wildfires significantly reduce soil carbon pools (Durigan et al., 

2017); nor was combustion of dead-standing stems estimated, which accounted 

for ~15% of total necromass (Figure 1). Second, none of the disturbed primary 

forest plots in which necromass changes were monitored were recently disturbed 

prior to the 2015-16 wildfires, allowing time for decomposition to reduce high 

levels of post-disturbance necromass. Had the dataset included recently disturbed 

sites, necromass losses would likely have been greater. Third, detection of low 

intensity understorey wildfires continues to present a remote sensing challenge. 

Although manual correction of our unsupervised land-use classifications revealed 

only a small number of misclassifications (commissions), it is quite possible that 

some wildfire-affected sites were missed, leading to an underestimation of 

regional emissions. 
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 In addition to showing that wildfire carbon emissions can be substantial, 

the present study has also shown that such emissions remain poorly quantified. 

GFED and GFAS, CO2 emission databases that are widely used in Earth Systems 

models and carbon budgets, returned considerably lower emission estimates for 

this study region and period than found here (Figure 5). If this pattern of 

underestimation holds true for the rest of the humid tropics, where dense canopies 

are present, then global estimates of fire-induced CO2 emissions may be vastly 

underestimated. Nevertheless, the scale of the discrepancy between the CO2 

emitted during these wildfires and the estimates of GFED and GFAS may well be 

underestimated for several reasons. First, this study focused solely on necromass 

carbon losses from understory wildfires in extant forests whereas GFED and GFAS 

include emissions from all land use classes combined (Kaiser et al., 2012; van der 

Werf et al., 2017). Both databases therefore account for grassland and agricultural 

fires, which can affect large areas of human-modified tropical landscapes. Second, 

GFED includes both committed and immediate CO2 emissions (van der Werf et al., 

2017). Third, and again with respect to GFED, fuel loads are much high than those 

present in the post-disturbance plots studied here, because they are primarily 

derived from slash-and-burn and deforestation studies (van der Werf et al., 2017). 

Thus, if the degree of underestimation in terms of burned area and CO2 emissions 

is similar across the whole Amazon, not only will the CO2 emissions from low-

intensity understorey wildfires be substantially underestimated and the earth 

system models which rely on them have biased inputs, but broader ecological and 

social issues will also be underestimated. 

 

 The present study adds to work on prescribed burns associated with 

deforestation (van Leeuwen et al., 2014), contributing important information 

about the role of El Niño-mediated wildfires. The scale of the immediate emissions 

we estimated, coupled with future committed emissions, make wildfires 

particularly relevant to climate change mitigation programmes such as REDD+ 

(Aragão and Shimabukuro 2010; Barlow et al. 2012). The results presented here 

show that legally protected areas in the Amazon rainforest can be substantially 

affected by uncontrolled understorey wildfires during extreme drought conditions. 

Thus, for REDD+ to succeed in Amazonia, forests must be protected from wildfires, 
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as agricultural fires quickly become uncontrollable and spread to protected areas 

which have historically served as carbon stores (Soares-Filho et al., 2010), as 

illustrated by the large areas burned in the Tapajós National Forest and the 

Tapajós-Arapiuns Extractive Reserve (Figure 4). Thus, undermining the role of and 

investments in protected areas for climate change mitigation programmes. Even 

the immediate emissions from large-scale wildfires can equal those from whole 

countries. Moreover, the committed emissions from such fires are expected to be 

many times greater due to delayed tree mortality and arrested regrowth/carbon 

sequestration in affected forests (Silva et al., 2018). Future climate change will 

make this only more imperative, with extreme droughts, higher temperatures, and 

reduced rainfall all predicted for the Amazon basin in the near future (Dai, 2013; 

Spracklen & Garcia-Carreras, 2015). 

  

6.3 Future research 

 

6.3.1 Larger datasets 

 

 Although the pre- and post-fire dataset presented here is the first of its 

kind, which allows for the quantification of necromass carbon stocks following 

uncontrolled understorey wildfires in human-modified Amazonian forests, the 

sample sizes were limited, with just 18 necromass monitoring plots, of which 

seven burned during the 2015-16 El Niño. Consequently, these results should be 

treated with a degree of caution. In particular, necromass stock losses were not 

significantly related to the plot-level estimates of burned area, and fire 

susceptibility did not appear to vary across disturbance classes. In both cases, the 

lack of significance may reflect the small sample sizes rather than a genuine lack of 

relationship. Moreover, due to the small sample sizes used to construct the region-

wide CO2 immediate emissions scenarios, the 95% confidence intervals are wide—

ranging from around 8 Tg to almost 48 Tg (Figure 5). Therefore, to better 

constraint these values future research efforts should prioritise necromass 

monitoring in larger plots and numbers of sites, across a range of tropical forests 
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and land-use scenarios, incorporating sites of different ages/times since 

disturbance, canopy thickness, and landscape contexts.  

 

6.3.2 Reduced susceptibility of secondary forests 

 

  The present study has shown that secondary forests exhibit a 

reduced susceptibility to sustained combustion during wildfires mediated by 

severe drought events. This may be due to wildfires spreading less easily through 

secondary forest due to lower (see Figure 1) and more sporadic fuel loads. Another 

influence may be the lower night-time temperatures experienced in secondary 

forests owing to lower density canopies, or complete lack thereof. For example, 

day and night-time temperatures can vary substantially, with open areas 

experiencing surface soil temperatures as high as 42 °C  during the day and as low 

as 25 °C during night-time (Bazzaz & Pickett, 1980). Though this disparity 

diminishes as canopy cover returns (Bazzaz & Pickett, 1980), as it is commonly 

noted that wildfires burn less intensely even in primary forests during night-time 

(De Faria et al., 2017), this reduction in night-time temperatures may be sufficient, 

along with lower fuel loads, to stifle wildfires in secondary forests. Elucidating 

these causal factors will help to improve global fire models and constrain further 

emissions estimates by allowing spatial mapping of emissions and combustion 

characteristics. 

 

6.3.3 Improved detection and mapping of wildfires 

 

 The present study has shown that GFED4.1s and GFAS both significantly 

underestimated the impact of the 2015-16 El Niño-mediated wildfires of the 

central-eastern Amazon. GFED4.1s underestimated burned area in the central-

eastern Amazon by a factor of 10 during the wildfires experienced during the 

2015-16 El Niño-mediated drought. GFED uses the Moderate Resolution Imaging 

Spectroradiometer (MODIS) product MCD64A1 (collection 5.1), which spatially 

maps burned area at a resolution of 500m—much greater than the 30m spatial 
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resolution used in the present study. Earlier versions of the algorithm were 

criticized for underestimating burned area (van der Werf et al., 2017). In an effort 

to reduce this bias, the algorithms of Randerson et al., (2012) for detecting small 

fires using the MODIS 1-km thermal anomalies (active fires) product MOD14A1 

were extended and incorporated into the GFED algorithm (van der Werf et al., 

2017). The incorporation of small fires has significantly boosted the detection of 

burned area globally (van der Werf et al., 2017). Yet in the case of humid tropical 

forests, which generally have dense closed canopies and experience relatively low-

intensity understorey wildfires, burned area is evidently still substantially 

underestimated. GFAS uses empirical relationships between fire radiative power 

(FRP), as measured by the MODIS Aqua and Terra satellites, and dry matter 

combustion rates and gas species emissions rates without estimating burned area 

(Kaiser et al., 2012). This approach is much less demanding computationally and 

for this particular study region and period, has been more successful at capturing 

the CO2 emissions from the understorey wildfires in central-eastern Amazonia. 

However, this approach does not estimate burned area (Kaiser et al., 2012), which 

is essential for estimating committed emission and other ecosystem-level impacts 

because biomass stocks (Marvin et al., 2014; Saatchi et al., 2007) and other 

ecosystem properties (Fyllas et al., 2009; Quesada et al., 2012) vary spatial across 

the Amazon. Future research should prioritise the development of burn area 

products using higher resolution imagery, or active remote sensing systems such 

as synthetic-aperture radar (SAR) (see Lohberger et al., 2018 for recent example) 

to better quantify the extent and impacts of understorey wildfires in humid 

tropical forests. 
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7 CONCLUSION 

 The present study has demonstrated that there was a substantial loss of 

necromass following El Niño-mediated wildfires in the central-eastern Amazon 

during 2015-16. These wildfires burned 982,276 ha (15.2% of the study region) of 

primary and secondary forest, resulting in expected immediate CO2 emissions of 

approximately 30 Tg. A better understanding of this large and poorly quantified 

source of atmospheric carbon is crucial for climate change mitigation efforts, and 

will only become more imperative as extreme droughts, higher temperatures, and 

reduced rainfall create conditions even more conducive to wildfires across the 

Amazon basin in the near future. 
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APPENDIX 1 TABLE OF INPUT DATA USED TO PRODUCE 

LAND-USE AND BURNED AREA MAP 

Table 3. Landsat scenes, dates, and products used as input data to the k-mean 

unsupervised classification used to classify land-uses between 2010 and 2017 in 

central-eastern Amazonia. NDVI = Normalised Difference Vegetation Index; SAVI = 

Soil-Adjusted Vegetation Index; EVI = Enhanced Vegetation Index; NBR2 = 

Normalised Burn Ratio 2 (USGS, 2016). 

Path/Row Sensor/mission Date Products 

227/062 Landsat 5 TM  
31/07/2010 

 

Bands 1-7; NDVI; SAVI; 

EVI; NBR2 

227/062 Landsat 5 TM 
16/06/2011 

 

Bands 1-7; NDVI; SAVI; 

EVI; NBR2 

227/062 Landsat 7 ETM+ 28/07/2012 Bands 1-8 

227/062 Landsat 7 ETM+ 14/09/2012 Bands 1-8 

227/062 Landsat 7 ETM+ 17/11/2012 Bands 1-8 

227/062 Landsat 8 OLI 25/09/2013 
Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/062 Landsat 8 OLI 30/08/2014 
Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/062 Landsat 8 OLI 30/10/2014 
Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/062 Landsat 8 OLI 02/01/2015 
Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/062 Landsat 8 OLI 29/07/2015 
Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/062 Landsat 8 OLI 29/06/2016 
Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/062 Landsat 8 OLI 16/08/2016 Bands 2-8; NDVI; SAVI; 
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EVI; NBR2 

227/063 Landsat 5 TM 31/07/2010 
Bands 1-7; NDVI; SAVI; 

EVI; NBR2 

227/063 Landsat 5 TM 16/06/2011 
Bands 1-7; NDVI; SAVI; 

EVI; NBR2 

227/063 Landsat 7 ETM+ 28/07/2012 Bands 1-8 

227/063 Landsat 7 ETM+ 14/09/2012 Bands 1-8 

227/063 Landsat 7 ETM+ 30/09/2012 Bands 1-8 

227/063 
Landsat 8 OLI 25/09/2013 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/063 
Landsat 8 OLI 10/07/2014 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/063 
Landsat 8 OLI 23/03/2015 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/063 
Landsat 8 OLI 27/06/2015 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/063 
Landsat 8 OLI 29/07/2015 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/063 
Landsat 8 OLI 31/07/2016 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

227/063 
Landsat 8 OLI 16/08/2016 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/062 
Landsat 5 TM 22/07/2010 Bands 1-7; NDVI; SAVI; 

EVI; NBR2 

228/062 
Landsat 5 TM 07/06/2011 Bands 1-7; NDVI; SAVI; 

EVI; NBR2 

228/062 Landsat 7 ETM+ 21/09/2012 Bands 1-8 

228/062 Landsat 7 ETM+ 23/10/2012 Bands 1-8 
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228/062 Landsat 7 ETM+ 24/11/2012 Bands 1-8 

228/062 
Landsat 8 OLI 16/09/2013 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/062 
Landsat 8 OLI 15/08/2013 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/062 
Landsat 8 OLI 15/06/2014 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/062 
Landsat 8 OLI 17/05/2015 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/062 
Landsat 8 OLI 02/06/2015 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/062 
Landsat 8 OLI 18/06/2015 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/062 
Landsat 8 OLI 07/08/2016 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/062 
Landsat 8 OLI 24/09/2016 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/063 
Landsat 5 TM 22/07/2010 Bands 1-7; NDVI; SAVI; 

EVI; NBR2 

228/063 
Landsat 5 TM 10/08/2011 Bands 1-7; NDVI; SAVI; 

EVI; NBR2 

228/063 Landsat 7 ETM+ 20/08/2012 Bands 1-8 

228/063 Landsat 7 ETM+ 23/10/2012 Bands 1-8 

228/063 Landsat 7 ETM+ 10/12/2012 Bands 1-8 

228/063 
Landsat 8 OLI 28/06/2013 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/063 
Landsat 8 OLI 15/06/2014 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 
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228/063 
Landsat 8 OLI 17/05/2015 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/063 
Landsat 8 OLI 20/07/2015 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/063 
Landsat 8 OLI 06/07/2016 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 

228/063 
Landsat 8 OLI 07/08/2016 Bands 2-8; NDVI; SAVI; 

EVI; NBR2 
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APPENDIX 2 PUBLISHED VERSION OF THE MANUSCRIPT 
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