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Abstract—Nowadays, dense network deployment is being
considered as one of the effective strategies to meet capacity
and connectivity demands of the fifth generation (5G) cellular
system. Among several challenges, energy consumption will be a
critical consideration in the 5G era. In this direction, base station
on/off operation, i.e., sleep mode, is an effective technique to
mitigate the excessive energy consumption in ultra-dense cellular
networks. However, current implementation of this technique is
unsuitable for dynamic networks with fluctuating traffic profiles
due to coverage constraints, quality-of-service requirements and
hardware switching latency. In this direction, we propose an
energy/load proportional approach for 5G base stations with
control/data plane separation. The proposed approach depends on
a multi-step sleep mode profiling, and predicts the base station
vacation time in advance. Such a prediction enables selecting
the best sleep mode strategy whilst minimizing the effect of
base station activation/reactivation latency, resulting in significant
energy saving gains.

I. INTRODUCTION

ENERGY saving technologies for cellular communications
system has recently received a lot of attention in the

context of growing energy demand and increasing energy
prices. Many international research projects on energy saving
have sprang up over the past decade, e.g. GreenTouch, Energy
Aware Radio and network technologies (EARTH), mobile VCE
Green-Radio, and have reported some energy savings. Most
of these projects found that radio access network (RAN)
nodes of current systems, such as the long term evolution
(LTE), consume high energy even in low traffic conditions.
In other words, the base stations (BSs) are characterized by
(almost) load-independent power consumption profiles. As an
illustrative example, the EARTH power model shows that the
LTE pico BS without load consumes 92.9% of the power
consumed by a fully loaded pico BS. Such a profile can be
traced to the always-on service approach adopted in traditional
RANs in addition to the BS component design and power
characteristics.

In this direction, more energy can be saved by fully
adapting the energy consumption of BSs to the traffic, as the
state of the art BSs still consume significant amount of power
in low traffic hours and active-idle (sleep) mode. In the sleep
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mode, the BS does not provide data services but consumes less
energy than BSs in the on state. However, energy consumption
in the sleep mode is still significant because the sleeping BSs
has to be quickly activated when needed. The main power
supply, DC-DC power supply and the baseband components,
which have a very long reactivation time, must stay on in
this mode. Consequently, the baseline power consumption of
a small BS in sleep mode remains high and could reach
about 50% of the peak values [1]. In the off state, the BS is
deactivated completely, i.e., almost all of the components in its
circuitry are switched off. Hence, the BS energy consumption
in the off state is negligible. Based on the current technology,
the time to transmission from the off to the on state is non-
negligible, and this may violate the quality of service (QoS)
constraints especially when the traffic increases suddenly. As
a result, the state of the art energy saving schemes only focus
on putting BSs in the sleep mode, which consumes a non-
negligible energy even without any traffic.

Achieving a fully energy proportional network requires
adopting deep sleep modes, i.e., partial deactivation of the
hardware component, and a fast wake-up. The evolution of
the 5G RAN with new concepts, such as the dual connectivity
RAN with control/data plane separation, can be advantageous
in the light of achieving an energy proportional network. In
such architecture, connectivity and data transmission are pro-
vided by separate nodes, macro BS and small BS respectively.
This provides a degree of freedom because the small BSs
can be put in deep sleep modes or completely switched off
without affecting the basic mobility and connectivity services
[2], [3], [4]. As a result, the RAN energy consumption can be
significantly reduced by adopting an on-demand approach with
deep sleep modes in the small BSs. This in turns allows the
small BSs to stay in deep sleep for longer time. Moreover, the
control-data separated architecture (CDSA) has inbuilt support
for a deeper sleep state at data BSs, due to its mobility
management functionality being located at the control plane.

In this paper, we propose an energy/load proportional
approach for BSs of the dual connectivity CDSA. This ar-
chitecture has been adopted in the 5G RAN standard. The
proposed approach depends on estimating vacation period of
the BS in advance in order to optimally match its vacation
time with the sleep depth. The latter compromises of the
deactivation duration, actual sleep duration and reactivation
duration. We demonstrates that the power consumed in the
actual sleep duration is an exponential decaying function of
the deactivation duration. Numerical results demonstrate the
effectiveness of finding the optimal deactivation duration for
each sleep depth resulting in significant level of power saving
gains for 5G networks.
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Figure 1: High Level Overview of Control/Data Separation Architecture [3]

The reminder of this paper is structured as follows. Sec-
tion II provides an overview of the CDSA. Section III presents
the sleep mode strategies and the proposed load/energy pro-
portional approach. Section IV presents and discusses perfor-
mance results, while Section V draws key conclusions.

II. RAN WITH CONTROL/DATA PLANE SEPARATION

BS on/off operation via sleep modes is one of the most
effective techniques to mitigate the excessive energy consump-
tion in ultra-dense cellular network. However, current imple-
mentation of this technique is unsuitable for dynamic networks
with fluctuating traffic patterns [5]. Coverage constraints limit
the achievable gains of BS sleep mode in the conventional
RAN architecture. This can be traced to the coupling between
connectivity and data access points which require an always-on
RAN regardless of the actual traffic profile. Expressed differ-
ently, most of the BS sleep mode challenges and limitations
originate from the control plane (CP) and data plane (DP)
coupling approach adopted in the conventional RAN. In this
direction, separating the connectivity services (provided by the
CP) and the data services (provided by the DP) produces a
framework with relaxed constraints for BS sleep modes.

The basic concept behind the CDSA is the fact that ubiqui-
tous connectivity does not imply high data rate transmission.
The latter is needed on demand which suggests an adaptive
on/off data layer complemented by an always-on coverage
layer. In this direction, the CDSA consists of two layers as
can be seen in Fig. 1.

1) Control base station (CBS) layer: Provides ubiquitous
connectivity, and consists of macro BSs operate in low
frequency bands.

2) Data base station (DBS) layer: Efficient small BSs de-
ployed within the CBS footprint to provide data trans-
mission and on-demand services.

As shown in Fig. 1, idle users are anchored to the CBS
only. On the other hand, active users establish a link with the
DBS (for data transmission) in addition to the connectivity
link with the CBS [3]. In other words, the DBS connection
is only needed for active users as the connectivity services
are provided by the CBS layer. As a result, the DBS can
be dynamically switched on and off depending on the traffic
profile. At the hardware level, the CDSA allows independent
design for the DBS and the CBS components. For instance, the
CBS power amplifier can be independently designed to operate
near the saturation region for low rate coverage services with
low order constant envelope modulations.

In ultra-dense deployment scenarios, the DBS density will
be high while the CBS density could be low to moderate.
Thus the linear relationship between the energy consumption
and the network density suggests focusing on the DBS layer.
Fortunately, most of the network adaptation techniques can
be used with relaxed constraints in the DBSs. The run time
energy saving approaches and the sleep modes could benefit
from the flexible DBS adaptation opportunities when mobility
management and network connectivity are delegated to the
CBS. This in turns increases the energy saving gains [6], [7]
and improves the energy/load scaling profile [8]. In particular,
by using the conventional single-level sleep strategy in [9], the
CDSA can save more than one-third of the overall network
energy consumed in the conventional cellular architecture [8].
Further energy savings can also be achieved with the CDSA
by the utilization of optimized sleep mode techniques to
dynamically change the DBS sleep level. Moreover, the DBS



3

Figure 2: Possible DBS State Transitions for Different Sleep Strategies

also provides one-to-one data transmission with user-specific
signals rather than cell-specific signals [3]. This reduction in
signalling overhead can as well be translated into an increased
energy saving gain.

The CDSA allows network-driven DBS-user equipment
(UE) association strategies. Typically, idle UE request re-
sources from the CBS when they start a data session. The CBS
chooses the best serving DBS, switches it on, and associates
the UE with the chosen DBS. From a delay perspective, [10]
estimates that the dual connection feature allows reducing the
time to use a just turned on DBS from 1100 ms (in the
conventional RAN) to 240 ms (in the CDSA). In addition,
system level simulation results reported in [11] show that the
BS sleep modes provide throughput gains of 10%–20% when
the small BSs are switched on whenever a UE is associated
with them (even if the UE is idle as in the conventional RAN).
When the small BSs are switched on only when there are active
UE (as in the CDSA), the throughput gain reaches 30%–110%.
Thus it can be said that the CDSA has a built in feature to
support the network-driven sleep mode methods with a lower
delay, a lower on/off oscillations, a higher energy efficiency
and a higher QoS.

III. A TRACTABLE AND ANALYTICAL DBS POWER
CONSUMPTION MODEL FOR 5G USER-CENTRIC

NETWORKS

One of the requirements for 5G is the increase in energy
efficiency, i.e., the bit-per-joule capacity by at least 10-100×.
Technologies such as network densification, massive MIMO
and millimeter wave are all aimed towards achieving a high
bit rate in 5G networks. However, network densification in
particular could result in an increase in the networks’ power
consumption and consequently, a reduction in the energy
efficiency if not well managed. Nevertheless, the 5G energy
efficiency target can be achieved by implementing architectures
such as the CDSA, a user-centric network and an efficient BS
switching on and off strategy. In this section, we introduce the

state of the art BS sleep strategy for the CDSA architecture
and we propose an optimized user-centric and multi-level sleep
strategy which can achieve the 5G energy efficiency target.

In this trend, the authors in [5] presented four different
sleep modes1 with each mode achieving different power sav-
ings, which is related to the BS’s hardware capability. The
sleep mode 1 corresponds to the shortest BS sleeping time
which is of the OFDM symbol duration, i.e. 71µs. However,
the BS remains fully operational and is able to receive data.
Hence, the sleep mode 1 can be used when the BS is not
transmitting actively. The sleep mode 2, on the other hand, is
the medium sleep state where more components go into the
sleeping state that corresponds to the LTE subframe duration,
i.e., 1ms. In sleep mode 3, most of the BS’s components are de-
activated and it can be referred to as a slow sleep mode which
corresponds to the duration of 1 LTE radio frame, i.e. 10ms.
The last sleep mode is sleep mode 4, which also corresponds to
the BS standby mode. In this mode, the BS is out of operation
but it can be woken up. The time unit of the sleep mode 4 is
defined by its minimum duration, which is 1s. In [12], using
the four sleep modes defined in [5]1, the authors evaluated the
impact of sleeping BS on the overall BS energy consumption.
Their results showed a gain of about 22% in energy saving
gains. In [13], the authors proposed an advanced sleep modes
(ASMs) where BS are gradually deactivated in order to achieve
a reduction in energy consumption. The proposed scheme
allows for the management of users whose service request
happens when the BS is in sleep mode. In [14], the authors
utilized a curve fitting function to approximate the sleep mode
power consumption as a function of the sleep depth. Their
evaluation allows for selecting the optimal sleep depth for a
given BS idle period while considering the BS deactivation
and reactivation power consumption. In [15], the authors have
formulated the EE resource allocation optimization problem
in the downlink transmission scheme of a sparsely deployed

1 IMEC, “Power model for today’s and future base stations,” Available:
http://www.imec.be/powermodel
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phantom cellular network with non-perfect CSI available at
the BSs transmitters. It is also shown that the achievable EE
deteriorates with an increase in the number of phantom cells.

A. Always Connected DBS Strategy
In the “Always On Always Connected” paradigm as shown

in Fig. 2, it is assumed that the DBSs are always switched on,
i.e., they are either in active or idle state. This kind of paradigm
is more driven towards the QoS or spectral efficiency rather
than the power efficiency or savings as the only possibility for
the power saving occurs if the state transition from an initial
state to a new state results in a lower power consumption. For
example, if the DBS transits from an initial state of active
with the power consumption of PA to a new state idle with
the power consumption PI and stay in this new state for some
duration will result in power saving gains if and only if PA >
PI .

B. Conventional DBS Single-Level Sleep Strategy
It is important to highlight that the DBS in the “Baseline”

paradigm or single-level sleep strategy as shown in Fig. 2 can
operate in three states namely the sleep, idle or active states.
The components of DBSs are considered to be completely
active in both idle and active states whereas in the latter it
is assumed to be receiving or transmitting data and in the idle
state it is waiting for the arrival of the new user requests. If the
DBS does not receive any user request for the hysteresis time
interval T , then it will enter a sleep state and otherwise, it will
immediately start its service remaining in an active state. The
power consumption of a DBS in the sleep state (or unable to
serve the user requests) denoted by PS is lower than the active
or idle states with their respective power levels of PA and
PI . As the power consumption in the active state is far more
than the other two states, the power savings can be achieved
for all the state transitions originating from the active state.
Similarly, the state transition from idle state to the sleep state
will result in power savings gain due to the fact that the power
consumption in the sleep state is always less than PI . This kind
of paradigm is more focused towards the power savings and
can switch off (or switch to sleep state) DBS. The sleep state
consist of the deactivation, actual sleep level and reactivation
phases. After the DBS actual sleep duration expires, it requires
setup time for the wake-up and after that if there is still no
user request then it will enter an idle state.

C. Optimized Multi-Level Sleep Strategy for DBSs
In the proposed multi-level sleep strategy, the vacation

period and operational time of a DBS can be estimated or
predicted in advance using some intelligence in the network
via self-organizing network (SON) concepts by applying the
machine learning techniques such as support vector machine
(SVM) regression model on the historical network traffic
profile. Based on memory and history of the network, a sleep
mode profile is defined for each DBS. This profile captures the
statistics of the idle time duration and defines the DBS sleeping
depth. The DBS-based sleep mode profile is considered as

a location-based approach that implicitly takes into account
the spatial variation of traffic demand and idle time duration.
That’s why a time varying DBS sleep mode profile is suggested
as the pure DBS-based profile does not take into account the
temporal variation of idle time duration.

In contrast to the aforementioned conventional single-level
sleep strategy, the DBS can enter another vacation period if
there is no user request for the DBS after the vacation period
and the DBS vacation period can be rightly matched with the
sleep depth that minimizes the average power consumption of
a DBS. The objective is to provide the optimal matching of the
sleep depth (i.e., optimized deactivation, actual sleep level and
reactivation transition latency) with the DBS vacation period to
maximize the power savings. Firstly, we present a tractable and
analytical power consumption model for the various phases of
the sleep depth of DBS for a given vacation period.

The transition of a DBS in the lth vacation period from the
active state to the sleep state is termed as deactivation phase
with the power level PDl

. In the sleep state, the DBS can
switch off only those components whose transition latency2 is
shorter than its vacation period v which is termed as actual
sleep phase with the power level PSl

. The transition of a
DBS from the sleep state to the active state is defined as
the reactivation phase with the power level PRl

. After the DBS
wake-up, it requires some further reactivation time to warm up
and afterwards it can start serving the user requests. It should
also be noted that the power consumption in this reactivation
time captures the cost for the DBS state transition and is mostly
higher than PIl

. The DBS lth vacation period vl compromises
of the component deactivation latency vDl

, the actual sleep
duration vSl

and the component reactivation latency vRl
as

shown in Fig. 33 . From Fig. 3, we can also observe that the
actual sleep duration for the DBS is less than the DBS vacation
period. Further, the measurements in the EARTH project have
shown that the reactivation transition latency is always higher
than the deactivation transition latency. Similarly, the power
consumed during the deactivation and reactivation phase is
more than the power consumed in the actual sleep state.

The components are deactivated in a manner such that the
components with the shorter deactivation transition latency4

are the first to be deactivated. This process continues until no
further component deactivation effect the power consumption
of the DBS. The power consumption in the actual sleep
duration PS decreases with an increase in the DBS deactivation
transition latency allowing the deactivation of more compo-
nents as shown in Fig. 3. Similarly, for the given DBS vacation
period v, the power consumed in the actual sleep level, PS , is
modelled as an exponential decay function of the component
deactivation latency vD, decay constant ω and idle state power
consumption PI . Since the deactivation phase arises due to the
DBS transition from the idle to the sleep state, the consumed
power is somehow dependent on both PI and PS . Hence, the

2 It comprises the time interval duration for both deactivation and reactiva-
tion phases.
3From now onwards, we have dropped the subscript l for the convenience.
4 It should be noted that each component deactivation latency is matched
to its corresponding reactivation latency.
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Figure 3: Average Power Consumption of DBS in the Sleep Mode

power consumption in the deactivation phase PD is defined
as the linear function of the mean consumed power over the
transition period from idle state till when the actual sleep level
is achieved. PD decreases with an increase in the deactivation
latency vD which will result in decreasing the actual sleep
level (or reduced sleep power consumption) and increasing the
reactivation transition latency (or increasing the reactivation
power consumption) due to the fact that more components
need to be reactivated. Finally, the power consumption in the
reactivation phase PR is interpreted as the function of the
power consumption in the actual sleep level and increases
with an increase in the deactivation transition latency. It is also
assumed that

vR
vD
≥ N , wherein N ≥ 1 and due to this fact

PD, PS and PR can be represented in terms of the deactivation
transition latency vD. Increasing N implies an increase in the
component reactivation latency will also cause a decrease in
the optimal component deactivation latency as more power
is consumed in the reactivation phase in comparison to the
deactivation phase.

D. Discrete Multi-Level Sleep Strategy for DBSs
In this multi-level sleep strategy, the power consumption

for deactivation and reactivation phases are computed in a
similar manner as outlined in Section IV-C. The major differ-
ence is in the computation of the power consumption for the
actual sleep level and different deactivation transition latency
vD dependent on the vacation period v for each discrete sleep

Table I: Discrete Sleep level

v v < 0.5 0.5 < v < 1 1 < v < 2 v > 2

1-Sleep level
vD (s) 0 1

8
1
8

1
8

Power (W) PI PIe
−ω

8 PIe
−ω

8 PIe
−ω

8

2-Sleep levels
vD (s) 0 1

8
1
4

1
4

Power (W) PI PIe
−ω

8 PIe
−ω

4 PIe
−ω

4

3-Sleep levels
vD (s) 0 1

8
1
4

1
2

Power (W) PI PIe
−ω

8 PIe
−ω

4 PIe
−ω

2

level is predefined as shown in Table I. As the deactivation
transition latency is predefined, we can utilize this information
to compute the reactivation transition latency which is usually
a scalar multiplier N times the deactivation transition latency
and also compute the actual sleep duration in terms of the
deactivation transition latency. The component deactivation,
actual sleep level and component reactivation latency for this
strategy are fixed in contrast to the previous strategy wherein
the respective latency of the three phases were computed in
an optimal manner to minimize the total power consumption.

IV. PERFORMANCE EVALUATION

The DBS is made-up of several components/ subcompo-
nents. Each DBS component/ subcomponent is characterized
by its activation and deactivation latency. Let the set B with
cardinality |B| denote the set of all the DBS components/
subcomponents. The reactivation latency viR of the ith DBS
component/subcomponent is the period required for it to go
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Figure 4: Average Power Consumption versus the DBS mean vacation
time v̄

from sleep (OFF) mode to active (ON) mode, while the deac-
tivation latency viD of the ith DBS component/ subcomponent
is the period required for it to go from active to sleep mode.
The sum of the ith DBS component/subcomponent’s activation
and deactivation latency is termed as its transition latency vi.
Each DBS is characterized by Q discrete sleep modes. The
qth sleep mode of a DBS is associated with a given duration
vq , where q ∈ {1, 2, · · · , Q} and v(q+1) > vq . All the DBS
components/subcomponents that can enter and exit a sleep
mode fast enough are considered sleeping in that mode, i.e.,
all DBS components/subcomponents with vi ≥ vq,∀i ∈ B are
consider sleeping in that mode such that

∑
i∈B vi = vq . While

the subcomponents having a longer latency are considered to
be still active, i.e., all DBS components/subcomponents with
vi > vq, i ∈ B are consider active in that mode. Moving to
a higher sleep level i.e. increasing vq leads to deactivating
more DBS components/subcomponents and a reduction in the
sleep-mode power consumption.The system parameters are
as follows: PI = 4 W, ω = 2, vD

max = 2 s, N = 1,
vmax = 2v−vmin, vmin = 71.4µ s and ṽ = 1

2 (2α2 − α1 + 1).

Fig. 4 investigates the average power consumption against
the mean vacation time v̄, while considering a DBS uniformly
distributed vacation time and vR = vD, for both the cases with
the optimized multi-level sleep strategy and the discrete sleep
level schemes as defined in Table I. In each discrete sleep level,
the actual sleep duration of the vacation period can be obtained
as vS , where the discrete vD defined in Table I is dependent
on the vacation period. Hence, increasing the mean vacation
time leads to a reduction in the average power consumption.
Hence, in the optimal case, the DBS continues to operate in
no-load for all vacation time which is less than ṽ since the
cost of deactivation and reactivation (increase power during the
deactivation and reactivation processes) exceeds the gains from
the reduced power consumption due to subcomponent deacti-
vation. For the suboptimal case with 3-sleep levels, we observe
that the average power consumption initially increases with v̄
to its maximum for α1 = 1, α2 = 2 and α1 = 1.5, α2 = 1,
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Figure 5: Power Saving gains due to the optimized deactivation
latency versus the mean DBS vacation time v̄

before decreasing with further increase in v̄. For the suboptimal
case, we observe that the average power consumption could
even be higher than the no-load power consumption for some
mean DBS vacation time.

Fig. 5 depicts the power savings gain versus the mean
vacation time v̄ in order to evaluate the effectiveness of the
optimized multi-level sleep strategy. The power savings gain
can be computed as a ratio of the average power consumption
according to the discrete sleep levels defined in Table I to
the average power consumption based on the optimized multi-
level sleep strategy. In this work, the no-sleeping case is
considered as the benchmark case wherein DBS consumes the
no load power consumption during the vacation period. It is
quite evident from Fig. 5 that the optimized multi-level sleep
strategy always results in power savings gain greater than 1,
∀v̄, showing the effectiveness of the proposed optimized multi-
level sleep strategy.

V. CONCLUSION AND FUTURE DIRECTIONS

In this work, we have integrated hardware (components,
subcomponents and functional unit) dynamic capability analy-
sis considering the CDSA as a base RAN architecture. Using
system level simulations and analytical techniques, the impli-
cation of network architectures on the hardware is investigated.
The transition delay (i.e. deactivation and reactivation delay),
deactivation power consumption and energy consumption at
component, subcomponent and functional unit levels is also
analyzed. Taking input from the hardware dynamic capability
analysis, we have analyzed the deep sleep opportunity and
the potential minimum bound of power consumption for sleep
mode under CDSA configuration. Multiple discretized sleep
levels based on the transition latency are also identified. The
network-driven sleep modes with CBS assistance provide the
highest potential energy saving gains. Thus, we developed
dynamic energy saving techniques with focus on the CDSA,
where the CBS (or a separate entity) assists the DBS sleep
mode and wake-up decisions. The indirect measurement and
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prediction techniques are proposed to avoid the periodic trans-
mission of pilot signals, thus overcoming limitations of the
traditional sleep mechanisms whilst improving the prediction
outcome.

As a future direction of this work, the investigation of the
DBS switching mechanism to improve the energy efficiency in
the context of CDSA and the impact of the DBSs switching off
on the reliability and low latency needed for the future ultra-
reliable low latency communications. In short, there are many
aspects relevant to CDSA that needs further investigation to
evaluate its suitability as a candidate RAN for 5G networks.
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