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Abstract. A spectral synthesis property is obtained for closed shift-invariant subspaces of
vector-valued functions on the lattice Zd. This result generalises Marcel Lefranc’s 1958 theorem
for scalar-valued functions. Applications are given to homogeneous systems of multivariable
vector-valued discrete difference equations and to the first-order flexibility of crystallographic
bar-joint frameworks.

1. Introduction

It is the 60th anniversary of Marcel Lefranc’s proof [21] that the discrete group Zd admits spec-
tral synthesis. Lefranc showed that every proper closed translation invariant space of complex-
valued functions on Zd is the closed linear span of a set of exponential monomials. In this context
an exponential monomial is a multi-sequence of the form

k → h(k)ωk, k ∈ Zd,

where h is a multivariable polynomial in d indeterminates and ω = (ω1, . . . , ωd) belongs to
(C\{0})d. We refer to such a polynomially weighted geometric multi-sequence as a pg-sequence,
and we refer to ω as its multi-factor. The topology for this setting is the topology of coordinate-
wise convergence. Lefranc showed, moreover, that the multi-factors can be chosen from a finite
set.

Such spectral synthesis has been examined more recently, in 2007, for general discrete abelian
groups, and has been shown to hold if and only if the torsion free rank is finite. See Laczkovich
and Székelyhidi [20], [19] for further details.

In the present paper we give a generalisation of Lefranc’s theorem for closed invariant subspaces
of the space C(Zd;Cr) of vector-valued functions on Zd (Theorem 3.10). For the proof we develop
module variants of the original arguments for ideals. Moreover we substantially expand and
clarify Lefranc’s terse arguments which rely in part on some unclear references. We also show
that the vectorial Lefranc theorem has immediate implications for the solution of systems of
homogeneous discrete multivariable difference equations, and that it provides new methods and
results in the analysis of first-order flexibility for crystallographic bar-joint frameworks.

We finish this introduction with some historical remarks. Lefranc’s paper appeared in Comptes
Rendus, having been communicated by Jacques Hadamard, who would have been close to his
93rd birthday. From a retrospective point of view the result can be seen as a highlight. However,
at the time and in the ensuing years it seems to have been overshadowed by the development of
harmonic analysis on general locally compact groups G, and spectral synthesis in the setting of
weak star closed spaces of L∞(G), as expounded in Benedetto [5], for example. The only other
works of Lefranc that we have found are his 1972 doctoral thesis [22] and a short 1972 article [23],
each with the title, Sur certaines algèbres sur un groupe. The short article is a Comptes Rendus
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note on the nature of idempotents in B(G), the algebra of coefficients of unitary representations
of a general group G. The announced result extends a theorem of Paul Cohen in the commutative
case to general groupsG, and is related to work of Walter Rudin, Henry Helson and Lefranc’s PhD
advisor, Pierre Eymard. (Eymard’s earlier 1964 article [14], L’Algebre de Fourier d-un groupe
localement compact, centres on analysis and makes no mention of algebraic spectral synthesis.)

Building on particular classical results of Schwartz, Malgrange, Ehrenpreis and Kahane, in-
dependent determinations of spectral synthesis were obtained in the setting of general locally
compact abelian groups, by Elliott [12], [13], in 1965, and by Gilbert [15], in 1966. However
the former articles have some incorrect claims in the case of infinite discrete rank groups, while
Gilbert examines restricted contexts. It is interesting that these issues were only resolved in 2007
when Laczkovich and Székelyhidi [20] obtained the characterisation mentioned above, the proof
of which makes use of Lefranc’s theorem. The only other presentation of Lefranc’s proof that
we are aware of is in the 2005 article of De Boor and Ron [8], where there are applications to
interpolation by multivariate splines.

We have found few biographical details of Marcel Lefranc beyond the fact that he was a
professor of Mathematics at the University of Montpellier II, and that before this, in 1957, he
was a lecturer there in mathematics and astronomy.

2. Preliminaries

In the main argument it is necessary to move between related modules for several Noetherian
rings, namely the polynomial ring C[z] = C[z1, . . . , zd], the ring of Laurent polynomials C(z) =
C[z1, . . . , zd, z

−1
1 , . . . , z−1d ], and rings of formal power series and Taylor series. We first discuss

these relationships and other preliminaries.

Definition 2.1. Let R be a Noetherian ring, let L be a submodule of an R-module N , and for
p ∈ R, let λp : N/L→ N/L be multiplication by p. Then L is a primary submodule of N if L is
proper and for every p the map λp is either injective or nilpotent. If P = {p ∈ R : λp is nilpotent}
then P is a prime ideal and L is said to be a P -primary submodule of N .

The Lasker-Noether theorem states that every submodule of a finitely generated module over
a Noetherian ring is a finite intersection of primary submodules.

Definition 2.2. Let M = Q1∩· · ·∩Qs be a primary decomposition of the C[z]-module M where
Qi is Pi-primary for distinct primes Pi, 1 ≤ i ≤ s. A root sequence for M is a set ω(1), . . . , ω(s) of
points in Cd where for each 1 ≤ i ≤ s the point ω(i) is a root of Pi in the sense that p(ω(i)) = 0
for all p(z) in Pi.

For more details and discussion see Ash [1], as well as Atiyah and MacDonald [2], Krull
[18] and Rotman [27]. In particular (Chapter 1 of [1]) a strong form of the Lasker-Noether
theorem implies that every finitely generated submodule M of a Noetherian ring over C has a
decomposition as given in Definition 2.2, and this is called a primary decomposition. Moreover
any such decomposition leads to a reduced primary decomposition with distinct primes ideals Pi,
and this set of prime ideals is uniquely determined by M .

2.1. Primary ideals in C[z] and C[[z]]. Let C[[z]] be the ring of formal power series in
z1, . . . , zn. We show that a primary C[z]-module in C[z] ⊗ Cr with root 0 may be recovered
from the C[[z]]-module that it generates in C[[z]]⊗ Cr. We have not found a satisfactory refer-
ence for this and so we give a complete proof of Proposition 2.3. This connection plays a key
role in Section 3.2.

Write C[z](z) for the ring of rational functions in z1, . . . , zd that are continuous on some neigh-
bourhood of 0. The notation reflects the fact that if (z) is the ideal in C[z] generated by z1, ..., zd
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then the set S = C[z]\(z) is multiplicative and C[z](z) is the localization S−1C[z]. Since (z)
is maximal, and therefore prime, C[z](z) is a Noetherian local ring with unique maximal ideal
m(z) = (z)C[z](z). The ring C[[z]] is also a Noetherian local ring, with unique maximal ideal
m[z] = (z)C[[z]]. Thus we have the natural ring inclusions

C[z] ⊂ C[z](z) ⊂ C[[z]].

That these rings are Noetherian is discussed in Atiyah and MacDonald [2], for example.
LetQ be a finitely generated submodule of C[z]⊗Cr, letR[Q] := C[z](z)·Q be the corresponding

C[z](z)-module in C[z](z) ⊗ Cr, and let S[Q] = C[[z]] · Q be the corresponding C[[z]]-module in
C[[z]]⊗ Cr.

Proposition 2.3. Let Q be a primary submodule in C[z] ⊗ Cr with associated root 0. Then
Q = S[Q] ∩ (C[z]⊗ Cr).

For the proof we use a preliminary lemma which depends on the following Krull intersection
theorem [1], [2].

Theorem 2.4. Let R be a Noetherian local ring with maximal ideal m and let N be a finitely
generated R-module. Then

⋂∞
n=1m

nN = {0}.

Lemma 2.5. Let Q be a C[z]-module in C[z](z) ⊗ Cr. Then R[Q] = S[Q] ∩ (C[z](z) ⊗ Cr).

Proof. The inclusion of R[Q] in the intersection is elementary. On the other hand the intersection
is equal to the set {

P =
N∑
i=1

gifi ∈ C[z](z) ⊗ Cr : gi ∈ C[[z]], fi ∈ Q

}
.

Write gi = gi,0 + ri where gi,0 is the partial sum of the series for gi for terms of total degree less
than M . Then the element P0 =

∑
i gi,0fi belongs to R[Q]. Also the element Pr =

∑
i rifi =

P −
∑

i gi,0fi belongs to C[z](z)⊗Cr. Observe that Pr also belongs to mM
[[z]]⊗Cr and so it belongs

to mM
(z) ⊗ Cr. Thus P lies in the intersection

(1)
∞⋂

M=0

(R[Q] +mM
(z) ⊗ Cr).

By the Krull intersection theorem
∞⋂

M=0

mM
(z)((C[z](z) ⊗ Cr)/R[Q]) = {0}

and so the intersection of (1) is equal to R[Q], and the lemma follows. �

Proof of Lemma 2.3. By the previous lemma it suffices to show Q is equal to R[Q]∩ (C[z]⊗Cr),
which is the set {

h =
∑

gifi ∈ C[z]⊗ Cr : gi ∈ C[z](z), fi ∈ Q
}
.

Let h belong to this set. Then h is equal to the finite sum
∑

i
pi
qi
fi =

∑
aifi/

∏
qi, where

pi, qi ∈ C[z] for all i. Thus
∑

i aifi = (
∏
qi)h ∈ Q.

On the other hand, since Q is a primary C[z]-module, the map

λ∏ qi : (C[z]⊗ Cr)/Q→ (C[z]⊗ Cr)/Q

is either nilpotent or injective. Since
∏
qi does not vanish at the origin the map is not nilpotent

and so it follows that h ∈ Q. �
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3. Shift-invariant subspaces of C(Zd;Cr)

Let r ≥ 1 and let C(Zd;Cr) be the topological vector space of vector-valued functions u : Zd →
Cr with the topology of coordinatewise convergence. We also write this space as C(Zd)⊗Cr. Let
e1, . . . , ed be the generators of Zd and let Wi, 1 ≤ i ≤ d, be the forward shift operators, so that
(Wiu)(k) = u(k − ei), for all k and each i. A subspace A of C(Zd;Cr) is said to be an invariant
subspace if it is invariant for the shift operators and their inverses, or equivalently if WiA = A
for each i.

3.1. C(z)-modules and their reflexivity. There is a bilinear pairing 〈p, u〉 : C(z)×C(Zd)→ C
such that, for p(z) =

∑
k akz

k in C(z) and u = (uk)k∈Zd in C(Zd), 〈p, u〉 =
∑

k akuk. Similarly,

considering C(Zd;Cr) as the space C(Zd)⊗Cr, for p = (pi) ∈ C(z)⊗Cr and u = (ui) ∈ C(Zd)⊗Cr
we have the corresponding pairing 〈p, u〉 : C(z)⊗ Cr × C(Zd)⊗ Cr → C, where

〈p, u〉 = 〈(pi), (ui)〉 =
r∑
i=1

〈pi, ui〉.

With this pairing the vector space dual of C(Zd) ⊗ Cr can be identified with C(z) ⊗ Cr.
Also, with the same pairing the dual space of the vector space C(z) ⊗ Cr is identified with
C(Zd)⊗ Cr. Thus both spaces are reflexive, that is, equal to their double dual, in the category
of vector spaces. These dual space identifications also hold in the category of linear topological
spaces when each is endowed with the topology of coordinatewise convergence, since all linear
functionals are automatically continuous with these topologies.

For a subspace A of C(Zd)⊗Cr we write B = A⊥ for the annihilator in C(z)⊗Cr with respect
to the pairing. Thus

B = {p ∈ C(z)⊗ Cr : 〈p, u〉 = 0, for all u ∈ A}.

Similarly for a subspace B of C(z) ⊗ Cr we write B⊥ for the annihilator in C(Zd) ⊗ Cr with
respect to the same pairing.

Lemma 3.1. Let A be a closed subspace of C(Zd) ⊗ Cr and let M be a closed subspace of
C(z)⊗ Cr. Then A = (A⊥)⊥ and M = (M⊥)⊥.

Proof. This follows from the dual space identifications and from the Hahn-Banach theorem for
topological vector spaces ([10], IV. 3.15). �

The following lemma provides a route for the analysis of shift-invariant subspaces A in terms
of the structure of their uniquely associated C(z)-modules B = A⊥. Note that it follows from
the Noetherian property that C(z)-modules in C(Zd)⊗ Cr are necessarily closed.

Lemma 3.2. A closed subspace A in C(Zd) ⊗ Cr is an invariant subspace if and only if A⊥ is
a C(z)-submodule of the module C(z)⊗ Cr.

Proof. For all a ∈ A, b ∈ B = A⊥ and 1 ≤ i ≤ d we have 〈Wia, b〉 = 〈a, z−1i b〉 and the lemma
follows. �

3.2. Primary decompositions of Noetherian modules. The Lasker-Noether theorem for a
nonzero finitely generated module M over a Noetherian ring R ensures that M is an intersection
of a finite sequence of primary modules, Q1, . . . , Qs, where Qi is Pi-primary for distinct prime
ideals P1, . . . , Ps.

Lemma 3.3. The Laurent polynomial ring C(z) is a Noetherian ring.
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Proof. The argument is elementary. (Alternatively, if S is the multiplicative subset {zk : k ∈ Zd+}
then the ring C(z) is isomorphic to the localization S−1C[z], and so is Noetherian by [27],
Corollary 10.20.) �

For the rest of this section we let B be a proper C(z)-module in C(z) ⊗ Cr with primary
decomposition

B = Q1 ∩ · · · ∩Qs
as above, where the C(z)-modules Qi are Pi-primary. Also, we write C∗ for C\{0}.

Lemma 3.4. Fix i, with 1 ≤ i ≤ s. Then there exists a point ω(i) ∈ Cd∗ such that if p(z) is a
polynomial in P ∗i = Pi ∩ C[z] then p(ω(i)) = 0.

Proof. To see this note that the complex variety V (P ∗i ) is nonempty by Hilbert’s Nullstellensatz
[2], since Pi and hence P ∗i is a proper ideal. Moreover, there is a point ω(i) in this variety which
is in Cd∗. Indeed, if this were not the case then the monomial z1 · · · zd would be zero on the
variety of Pi. It then follows from the strong Nullstellensatz ([27], Theorem 5.99) that for some
index ρ the power (z1z2 . . . zd)

ρ is in P ∗i . This implies Pi = C(z) which is a contradiction. �

Write B∗ for the C[z]-module B ∩ (C[z] ⊗ Cr) and note that B is recoverable from B∗ as
the set of elements zkp(z) with p(z) in B∗ and k ∈ Zd. It follows from this that we have the
decomposition

B∗ = Q∗1 ∩ · · · ∩Q∗s
where the implied modules Q∗i (the intersections Qi ∩ C[z] ⊗ Cr) are P ∗i -primary C[z]-modules
with distinct prime ideals P ∗i . Moreover each prime ideal P ∗i has a root ω(i) in Cd∗ (rather than
Cd).

Finally, we obtain a reinterpretation of this primary decomposition for B∗ in terms of modules
for formal Taylor series.

For each i = 1, . . . , s and associated root ω(i) ∈ Cd∗, as above, let Qi
∗b be the “big” Cω(i)[[z]]-

module generated by the module Qi
∗, where Cω(i)[[z]] is the ring of formal Taylor series in the

variables z1 − ω(i)1, z2 − ω(i)2, . . . , zd − ω(i)d. Since Q∗i is a primary module for the polynomial

ring C[z] with root ω(i) it follows from Proposition 2.3 that Q∗i = Qi
∗b ∩ (C[z]⊗ Cr).

Thus B∗ is the set of polynomials p(z) in C[z]⊗ Cr which lie in the big module Qi
∗b for each

i, and so

(2) B∗ = (Q∗b1 ∩ (C[z]⊗ Cr)) ∩ · · · ∩ (Q∗bs ∩ (C[z]⊗ Cr)).

The rationale for considering this form of primary decomposition is that the rings Cω(i)[[z]]
and their finitely generated modules in Cω(i)[[z]] ⊗ Cr have dual spaces consisting of finitely

supported functionals. This follows in the same way as the duality between C(z) and C(Zd). At
the same time these finitely supported functionals may be represented in different ways, as we
see in Proposition 3.6.

3.3. Modules and duality for formal Taylor series. We first recall Lefranc’s differential
operator formalism for scalar-valued trigonometric polynomials, as expressed in the next lemma.

Let si ∈ N and let z
[si]
i = (zi+ 1)(zi+ 2) . . . (zi+ si). A polynomial q(z) ∈ C[z] may be written

uniquely as

q(z) =
∑

βjz
[j]

where [j] = ([j1], . . . , [jd]) and (βj) is a finitely nonzero multi-sequence with support in Zd+.
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Lemma 3.5. Let p(z) =
∑
akz

k ∈ C[z] and let eω,q be a pg-sequence in C(Zd). Then

(3) 〈p(z), eω,q〉 =
∑
k

akq(k)ωk11 · · ·ω
kd
d =

∑
j

βj∂j(p(z)z
j)


z=ω

where ∂j is the partial derivative for the multi-index j ∈ Zd+.

Proof. Note first that for p(z) = zl, a monomial in C[z], we have

∂j(p(z)z
j) = ∂j(z

lzj) =

[
d∏
i=1

(li + ji)(li + ji − 1) · · · (li + 1)

]
zl = l[j]zl.

Thus, for q(z) = z[j] we have

[∂j(p(z)z
j)]z=ω = q(l)ωl = 〈zl, (q(k)ωk)〉 = 〈p(z), eω,q〉.

(The pairing here is for C(z) and its dual space although we are restricting consideration to
polynomials p(z).) Since the partial differential operators are linear on C[z] it follows that the
right hand side of the desired equality is linear in p(z). It then follows, by linearity, that the
equality holds also for general polynomials q(z). �

For ω ∈ Cr∗ and (βj) a finitely nonzero sequence write Lω,β for the differential operator func-
tional on the vector space Cω[[z]] of formal power series in z1 − ω1, . . . , zd − ωd which is given
by

Lω,β : s(z)→
[∑

βj∂j(s(z)z
j)
]
z=ω

.

Proposition 3.6. The vector space dual of the power series ring Cω[[z]] is the space of differential
operator functionals Lω,β.

Proof. The dual space of Cω[[z]] is the space of finite linear combinations of the natural coefficient
functionals. Thus it will be enough to show that for each j the jth-coefficient evaluation functional
Fj , for j ∈ Zd+, is given by a differential operator functional Lω,β. Here Fj is defined by linearity

and the requirement, in multinomial notation, is that Fj((z − ω)k) = δj,k for k ∈ Zd+. Order

Zd+ and the corresponding monomials lexicographically. Evidently for j = (0, . . . , 0) the first
functional Fj is a differential operator functional. We argue by induction on the lexicographic

order. Fix l ∈ Zd+ and let β be the sequence (δl,k)k. Then[∑
βj∂j(s(z)z

j)
]
z=ω

= ∂l(s(z)z
l)z=ω = (∂ls)(ω)ωl + F (s(z))

where F is a linear functional which is in the linear span of the functionals Fj where j < l. Thus

Lω,β(s(z)) = cFl(s(z)) + F (s(z))

where c = ωl is nonzero and it follows from the induction hypothesis that Fl has the desired
form. �

Returning to vector-valued polynomials note that the vector space dual (Cω[[z]] ⊗ Cr)′ is
naturally identifiable with (Cω[[z]]′) ⊗ Cr where Cω[[z]]′ is the dual space of Cω[[z]]. Thus we
can identify (Cω[[z]]⊗ Cr)′ with the space of r-tuples

Lω,β = (Lω,β1 , . . . , Lω,βr)

associated with the set of finite multi-sequences β = (β1, . . . , βr) where each βi = (βik) is a
finitely nonzero multi-sequence. The vector version of equation (3) takes the form

(4) 〈p(z), uω,q〉 = Lω,β(p), p(z) ∈ C[z]⊗ Cr,
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where uω,q is the vectorial pg-sequence

uω,q : k → (eω,q1(k), . . . , eω,qr(k)).

and q = (q1(z), . . . , qr(z)) is the vector of polynomials associated with β. In view of Proposition
3.6 we can extend this pairing to a pairing

〈·, ·〉ω : (Cω[[z]]⊗ Cr)× {uω,q : q(z) ∈ C[z]⊗ Cr} → C

by defining

(5) 〈s(z), uω,q〉ω := Lω,β(s(z))

where s(z) ∈ Cω[[z]]⊗Cr. In this way we describe the dual of the power series space Cω[[z]]⊗Cr
in terms which extend the pairing of the submodule C[z]⊗Cr with vectorial pg-sequences (rather
than in terms of sequences with finite support).

The next lemma follows readily as a corollary of Proposition 3.6 and the previous observa-
tions and is a module variant of a key lemma in Lefranc’s argument [21] for ideals. The term
“orthogonal” is in reference to the extended bilinear pairing above in the case ω = ω(i).

Lemma 3.7. Let ω(i) be a root in Cd∗ for Q∗i , as above. Then a vector-valued polynomial p(z) in
C[z]⊗Cr belongs to Q∗i if and only if it is orthogonal to each vectorial pg-sequence uω(i),h which

is orthogonal to Q∗bi .

Proof. Let p(z) be a polynomial in Cω(i)[[z]]⊗Cr that is orthogonal to all vectorial pg-sequences

that are orthogonal to Q∗bi . Suppose that p(z) is not in Q∗i = Q∗bi ∩ (C[z] ⊗ Cr). Then by
the Hahn-Banach theorem there is a continuous linear functional that separates them, which is
contradiction since all such functionals are given by the differential operator functionals. �

3.4. Shift-invariant subspaces. The next two lemmas enable the transference of orthogonality
and dual space density results between modules in C[z]⊗ Cr and modules in C(z)⊗ Cr.

Lemma 3.8. The vectorial pg-sequence uω,h is orthogonal to the C(z)-module B if and only if
it is orthogonal to the C[z]-module B∗.

Proof. Note that for fixed p(z) = (p1(z), . . . , pr(z)) in B∗ and fixed h(z) = (h1(z), . . . , hr(z)) in
C[z]⊗ Cr we have

〈zip(z), uω,h〉 =
r∑
t=1

〈zipt(z), (ht(k)ωk)k〉 = π(i)ωi.

for some polynomial π(z). This is clear if the polynomials pt, ht are monomials and so it follows
in general by linearity. If these terms are zero for all i ∈ Zd+ then π(i) is zero for all such i and

so π(z) is the zero polynomial, and hence the terms are equal to zero for all i ∈ Zd. Since B is
the union of the spaces ziB∗, for all multi-indices i, the lemma follows. �

Lemma 3.9. Let A be a closed invariant subspace of C(Zd)⊗ Cr and let A+ ⊆ C(Zd+)⊗ Cr be
the set of restrictions of sequences u in A. Also, let P be an invariant linear space of vectorial
pg-sequences in A whose restrictions to Zd+ form a dense set in A+. Then P is dense in A.

Proof. Identify A+ with the corresponding set of Zd-sequences (wk) which are zero if k /∈ Zd+.
Similarly define P+. Since A is shift-invariant, each u ∈ A is the limit of a sequence of elements
of the form (W1 · · ·Wd)

−n(un)+, with un ∈ A. By the hypotheses, each (un)+ is approximable
by elements w+ of P+ where w is a linear combination of pg-sequences in A. It follows that u is
also approximable by the corresponding sequence of elements (W1 · · ·Wd)

−nw in A. Since these
elements are linear combinations of pg-sequences in A the lemma follows. �
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Theorem 3.10. Let A be a closed invariant subspace of C(Zd)⊗ Cr. Then there is a finite set
of geometric indices such that A is the closed linear span of the vectorial pg-sequences in A with
geometric indices in this set.

Proof. Let B be the annihilator of A with associated C[z]-module B∗. By (2) we have the
decomposition

B∗ = (Q∗b1 ∩ (C[z]⊗ Cr)) ∩ · · · ∩ (Q∗bs ∩ (C[z]⊗ Cr))
associated with any choice of roots ω(1), . . . , ω(s) for the associated primary ideals Qi. By
Lemma 3.7 a vector polynomial p(z) lies in B∗ if and only if for each 1 ≤ i ≤ s it is orthogonal
to every vectorial pg-sequence uω(i),h which is orthogonal to Q∗i . It follows that the set of all the
functionals L in (C[z]⊗ Cr)′ of the form

Lω(i),h : p(z)→ 〈p, uω(i),h〉, h ∈ C[z]⊗ Cr, 1 ≤ i ≤ s,

determine membership in B∗. That is, if L(p(z)) = 0 for all such L with L(Q∗bi ) = 0, for all
i ∈ 1, ..., s then p(z) ∈ B∗. By the reflexivity of C[z] ⊗ Cr it also follows that the subset of
functionals which annihilate B∗ has dense linear span in (B∗)⊥. Let us write S+ for this subset
and S for the set of corresponding functionals on C(z)⊗ Cr.

By Lemma 3.8 the set S consists of the differential operator functionals that annihilate B.
In particular S is an invariant set for the shift operators and their inverses. By Lemma 3.9 it
follows that the linear span of this set is dense in A, as desired. �

Remark 3.11. Proposition 3.6, in the scalar case, identifies the dual space of the power series
ring as a space of differential operator functionals. In combination with the dual space identifica-
tions in Section 3.1 and the Hahn-Banach theorem this identification shows that the differential
operator functionals determine ideal membership. The following theorem is a version of this
which depends on a variant differential operator formalism giving constant coefficient differential
operator functionals. (See also the somewhat cryptic indications in Eisenbud [11].) We also
remark that Laczkovich [19] has obtained a generalisation of this for rings with countably many
variables and differential operators which are infinite sums.

Theorem 3.12. Let I be an ideal in the ring C[z] and let p(z) be a polynomial in C[z] which is
not in I. Then there is a constant coefficient linear differential operator D =

∑
k∈Zd ck∂

k and

ω = (ω1, . . . , ωd) ∈ Cd such that Df(ω) = 0 for f ∈ I and Dp(ω) 6= 0.

4. Difference equations and crystal flexibility

Polynomially weighted geometric multi-sequences appear naturally in the classical solution
of finite systems of inhomogeneous difference equations in the discrete setting of multivariable
sequences. See de Boor et. al. [7], for example. Nevertheless the density of their linear span in
the space of all solutions of a homogeneous system is much more subtle and in fact depends on
Lefranc’s theorem. We can obtain now the following vector-valued form of this.

Theorem 4.1. Let A be the space of solutions of a finite homogeneous system of vector-valued
multivariable difference equations. Then the set of vectorial pg-sequences in A has dense linear
span in A.

The proof follows from Theorem 3.10. Indeed let ∆i be the difference operator W−1i − I

where, as before, Wi is the forward shift operator associated with the ith coordinate, with 1 ≤
i ≤ d. Then, for a multivariable vector-valued polynomial p(z), the space of vector-valued
multi-sequence solutions u to the equation p(∆)u = 0 is shift-invariant.

We next recall crystallographic bar-joint frameworks and their flex spaces [3], [9], [24].
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A crystal framework C in Rd is a bar-joint framework (G, p), where G = (V,E) is a countable
simple graph and p : V → Rd is an injective translationally periodic placement of the vertices as
joints p(v). It is assumed, moreover, that the periodicity is determined by a basis of d linearly
independent vectors and that the corresponding translation classes for the joints and bars are
finite in number. The assumption that p : V → Rd is injective is not essential although with this
relaxation one should assume that each bar p(v)p(w) has positive length ‖p(v)− p(w)‖.

The complex infinitesimal flex space F(C;C) is the vector space of Cd-valued functions u on
the set of joints which satisfy the first-order flex conditions

(6) (u(p(v))− u(p(w))) · (p(v)− p(w)) = 0, vw ∈ E.

Also, C is said to be infinitesimally rigid if every infinitesimal flex is a velocity field of rigid
motion type. The rigid motion velocity fields form a subspace Frig(C;C) of F(C;C) spanned by
infinitesimal translations and infinitesimal rotations. These definitions follow the usual definitions
for finite bar-joint frameworks [16].

Coordinates for the space V(C;C) of all velocity fields may be introduced, first, by making
a (possibly different) choice of d linearly independent periodicity vectors for C, which we shall
denote as

a = {a1, . . . , ad},

and, second, by choosing finite sets, Fv and Fe respectively, for the corresponding translation
classes of the joints and the bars. With n = |Fv| we may label the joints of C as pκ,k, where
1 ≤ κ ≤ n and pκ,k is the translate pκ,0 + k1a1 + · · · + kdad. The velocity fields are therefore

functions u ∈ C(Zd;Cdn), where u(0) is the composite velocity vector for the set of joints pκ,0 in
Fv. We say that u is a pg-flex with geometric factor ω if it is a first-order flex of the form uω,h.

Theorem 4.2. Let C be a crystallographic bar-joint framework. Then the vector space of complex
infinitesimal flexes is the closed linear span of the pg-flexes.

Proof. It is sufficient to note that F(C;C) is a translation invariant closed subspace of C(Zd;Cdn)
and to apply Theorem 3.10. �

A velocity field u is geometric if for some ω ∈ Cd we have u(k) = ωku(0), for all k ∈ Zd,
and is a geometric flex if it is also an infinitesimal flex. These are the pg-flexes for which h is a
constant vector-valued polynomial. Also we say that u is a linear (resp. quadratic) pg-flex if the
total degree of h ∈ C[z]⊗Cdn is 1 (resp. 2). Also, when ω = 1 we refer to the flex u = uω,h as a
polynomially weighted periodic flex, and as a strictly periodic flex if, moreover, h is constant.

The geometric flex spectrum of C associated with the periodic structure a is the set Γ(C) of
multi-factors ω ∈ Cd∗ for which there exists a nonzero geometric flex with multi-factor ω. This
generalisation of the rigid unit mode (RUM) spectrum of C is introduced in [4] in connection
with the analysis of localised infinitesimal flexes.

We may now use the previous theorem and the following degree reduction principle to obtain
a characterisation of first-order rigidity.

Consider the ordering on Zd+ for which j < j′ if |j| < |j′|, or |j| = |j′| and j precedes j′ in the

lexicographic order. The monomials zj inherit this total ordering and we define the multi-degree
deg(p) of p ∈ C[z] as the multi-index j of the highest monomial of p(z), and we define the total
degree of p(z) as j1 + · · ·+ jd. Similarly the multi-degree and the total degree of h(z) ∈ C[z]⊗Cr
are defined as the maximum of the corresponding degrees of the coordinate functions of h.

Lemma 4.3. Let u = uω,h be a pg-sequence and let A0 be the (unclosed) linear span of the

Zd-translates of u. If δ(h) ≥ 1 then there is a pg-sequence uω,h′ in A0 with δ(h′) = δ(h)− 1.
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Proof. Let j = (j1, . . . , jd) be the multi-degree deg(h) and let ji be the first nonzero index of j.
Then we may take

h′(z) = h(z1, . . . , zi + 1, . . . , zd)− h(z)

�

Theorem 4.4. A crystallographic bar-joint framework C is first-order rigid if and only if the
following 3 conditions hold.

(a) Γ(C) = {1}.
(b) Each strictly periodic flex and each linearly weighted periodic flex is a rigid motion flex.
(c) There are no quadratically weighted periodic flexes.

Proof. The necessity of the conditions is clear and so we assume that (a), (b) and (c) hold. By
Theorem 4.2 F(C,C) is the span of pg-flexes. Note first that (a) and the degree reduction lemma
imply that there can be no nonzero pg-flex with ω 6= 1. It suffices then to show that every nonzero
pg-flex of the form u = u1,h is of rigid motion type. By (b) and (c) it follows that δ(u) ≥ 3. Now
repeated application of the lemma leads to a pg-flex of total degree 2, contradicting (c). �

We remark that the requirements in (b) are equivalent to flexible lattice periodic rigidity ([9],
[25]), and that (b) and (c) are each equivalent to maximal rank conditions for a finite matrix. In
fact we show elsewhere that further arguments show that condition (c) is redundant.

The proof above also applies, with minor changes, to crystallographic bar-joint frameworks in
the non-Euclidean spaces (Rd, ‖ · ‖q), where ‖ · ‖q is the classical q-norm, for 1 ≤ q < ∞, q 6= 2.
In this setting the space of rigid motion infinitesimal flexes reduces to the d-dimensional space of
infinitesimal translations and we have the following characterisation of first-order rigidity. The
condition on the bars in Theorem 4.5 guarantees the well-definedness of the flex equations which
now take the form

(7) (u(p(v))− u(p(w))) · (p(v)− p(w))(q−1) = 0, vw ∈ E,
where, for a vector x = (x1, . . . , xd) in Rd we write

x(q−1) = (sgnx1|x1|q−1, . . . , sgnxd|xd|q−1).
Further details for such flex equations are given in [17].

Theorem 4.5. Let C be a crystallographic bar-joint framework in the non-Euclidean space
(Rd, ‖ · ‖q), where q 6= 2 and 1 ≤ q < ∞. Suppose moreover that no bar vector p(v) − p(w) of
the framework is orthogonal to a principal axis. Then C is first-order rigid if and only if the
following 3 conditions hold.

(a) Γ(C) = {1}.
(b) Each strictly periodic flex is an infinitesimal translation.
(c) There are no linearly weighted periodic flexes.
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[20] M. Laczkovich and L. Székelyhidi, Spectral synthesis on discrete Abelian groups, Math. Proc. Camb. Phil.

Soc. 143 (2007), 103-120. .
[21] M. Lefranc, Analyse spectrale sur Zn, C. R. Acad. Sci. Paris, 246 (1958), 1951-1953. MR0098951. (The

incorrect title, L’analyse harmonique dans Zn, often appears in references.)
[22] M. Lefranc, Sur certaines algbres sur un groupe, These de Doctorat s’Etat, Univ. Sci. et Techn. du Languedoc

(Montpellier II), 1972.
[23] M. Lefranc, Sur certaines algbres sur un groupe, C. R. Acad. Sci. Paris Ser A 274 (1972), 1882-1883.

MR0316975.
[24] J. C. Owen and S. C. Power, Infinite bar-joint frameworks, crystals and operator theory, New York J. Math.,

17 (2011), 445-490.
[25] S. C. Power, Crystal frameworks, symmetry and affinely periodic flexes, New York J. Math. 20 (2014), 665-693.
[26] A. Ron, Introduction to Shift-Invariant Spaces I: Linear Independence, Multivariate Approximation and

Applications, eds A. Pinkus, D. Leviatan, N. Dyn, and D. Levin, Cambridge University Press, 2001.
[27] J. J. Rotman, Advanced modern algebra (second edition), Amer. Math. Soc., Grad. Stud. in Math. 114,

(2010).
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