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Abstract

A growing literature demonstrates that production function normalization yields
important benefits in both empirical and theoretical macroeconomics. Yet normal-
ization has remained notably absent from the microeconomic literature. This paper
introduces the concept of normalization within the microeconomic context, and es-
tablishes that it could provide substantial improvements in the interpretability, the
tractability, and the applicability of a broad class of economic production func-
tions. Since any production function is merely a specialized interpretation of some
decision-maker’s utility function, our analyses also generalize to the wider context
of utility functions. We therefore conclude that the benefits of normalization may

be pervasive.
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2 I. Embrey

1 Introduction

A Production function is normalized by the explicit selection of a basis for its input vector
space. Under the convention that inputs take values in RT, the set of admissible bases
can be written as O1I,,, where O is a normalization point, and I, is the identity matrix of

the appropriate dimension. In practice, normalization is simple to implement: we need

Ty

O;
selecting an appropriate unit of measurement for each input. However, over the last two

only substitute x; — ( ) for each input ¢; and it is simple to understand: we are merely
decades a growing literature has demonstrated that the apparent simplicity of production
function normalization is deceptive. Normalization has enabled important developments
in both theoretical and empirical research.

The normalized CES production function was introduced by De La Grandville (1989),
in order to prove that aggregate growth is both more rapid and more sustainable when
the elasticity of substitution between labour and capital inputs is greater. Normalization
now underpins a body of related contributions to the theory of growth (Klump & De La
Grandville 2000, Papageorgiou & Saam 2008, Irmen & Klump 2009, Willman & McAdam
2013, Xue & Yip 2013), and it has also been shown to resolve a long-standing contention
between the Real Business-Cycle model and the New Keynesian model (Cantore et al.
2014). In empirical macroeconomics, normalization has been shown to improve model
convergence (Klump & Saam 2008), and robustness to misspecification (Klump, McAdam
& Willman 2007, Ledn-ledesma et al. 2010, Leén-Ledesma, Mcadam & Willman 2015).
In light of the increasing recognition of production function normalization in key areas of
macroeconomics, it is remarkable that normalization appears to be entirely absent from
the microeconomic literature.

This paper establishes that the field of microeconomics could also benefit substantially
from production function normalization. In Section 2 we show that, without normaliza-
tion, CES share parameters are meaningless: they can vary across (0,1) as a function of
the measurement units of each input. In Section 3 we derive analytic expressions for these
and other CES parameters, and observe that their interpretability is entirely dependent
upon normalization. We also outline some important challenges for the estimation of
those parameters in the absence of normalization. In the appendices we confirm that
these results for CES production functions equally apply to linear, Cobb-Douglas and
Leontief forms, by extending the familiar derivations of those forms as special cases of
the CES production function to allow for normalization and for nesting. We also provide
a new derivation of the translog form as a second-order approximation to the CES func-
tion around its normalization point, which is substantially more useful than its familiar
derivation as an approximation around the Cobb-Douglas special case, because the nor-
malization point may be chosen freely. In Section 4 we compare the normalized form to

its alternatives in the literature, to find (almost paradoxically) that the former is both



Normalization in Production Functions 3

more general and more tractable than those alternatives.

Our analyses are complementary to those of Klump, Mcadam & Willman (2012),
who present a holistic survey of production function normalization in the macroeconomic
context. In addition to recommending that normalized production functions should be
used as a matter of course, those authors provide a theoretical foundation for the nor-
malization terms {©;}: they arise as constants of integration within the derivation of
a CES production function. As a corollary to that derivation, we may observe that all
CES production functions are normalized, if not explicitly then implicitly at @ = 1.!
That observation demonstrates the important truth that normalization does not impose
any additional assumptions. In fact normalization relaxes the implicit restriction ® = 1,
which is always present but seldom acknowledged in papers that use ‘non-normalized’

production functions.

2 An Illustration of the Problem

Constrained optimization is fundamental to microeconomic analysis. Indeed, economic
science is often defined as the allocation of scarce resources to maximise a decision-
maker’s utility. Our analyses are relevant to any context in which constrained utility
maximization is applied, however for specificity we will focus on the production problem
of a firm.

For a simple illustration of the problem, suppose that a firm’s objective is to

1
max A.(yxf + (1—7)x§)$ ‘ P11 + paxe < R. (1)
Here R can be interpreted as the total available resource (net of fixed costs), in terms of
money, time, energy, or human capital, and p; represents the price of one unit of input z;
in terms of that resource. We shall derive precise interpretations for A and 7 in Section
3, but for now let us follow the modal approach in the literature and interpret them
loosely by A & total-factor productivity, and - = the relative value, or ‘share’ of input
1. We therefore assume with minimal loss of generality that zq, 2o, p1, p2, R, A € RT and
v € [0,1].

This firm’s CES production function is broadly applicable, since it nests linear, Cobb-
Douglas, and Leontief forms as special cases (respectively at ¢ — 1; 0; —oc0). We will
now illustrate that, in general, the common practice of interpreting v as the share of
input 1 can be meaningfully misleading.

Let us suppose that the firm maximizes its profits at some point where the ratio of

inputs x1 : x9 and the ratio of prices p; : py are given by

Tt is trivial to extend this observation to any arbitrary production function, by noting that any
vector-space must have a basis, and that no basis is inherently superior to any other.
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T1 1 Ty pP1 P2

100 grams : 1 unit $40 /g - $4, 000 /unit (2)

Given the price ratio from (2) we can solve (1) for the optimal input ratio z; : x5 in
terms of 7, and so given the input ratio from (2) we can re-arrange to find the parameter
v. The first column of Table 1 calculates these values for a range of possible ¢. Given
(2) we can also find the true factor share of input 1, which is

1
share; = S (3)

p1z1 + paxy 2

As expected, the first column of Table 1 shows that the parameter v in system (1)
returns the true factor share of input 1 in the Cobb-Douglas special case. However, away
from ¢ = 0, we can see that v gives no directly interpretable indication as to that factor
share.

This example is not contrived. Any set of values where the ratio 1 : x5 is not precisely
1:1 will produce the undesirable results shown in Table 1.2 Of course, given full knowledge
of ¢ and the input ratio it would be possible to recover the price ratio from 7 (equation
(6) is useful here), and hence to calculate the true factor share, however it would be
desirable for v itself to admit some consistent interpretation across the range of possible
¢. Column 1 shows that v alone does not even allow us to interpret the sign of the

comparison share; cf. share,.

Table 1: The effect of measurement units and of ¢ on the‘share’ parameter v in (1).

Complementarity Using Grams Using Tonnes
p=1 Linear v = 1—(1)1 v = }8:882
o=} = -
=0 Cobb-Douglas v = % v = %
6=~} =1 7= 1ot
¢=—1 v=10 Y = Togor
¢ — —oo Leontief ~v meaningless; always optimal to use:
lgram : lunit ltonne : lunit

The value of the ‘share’ parameter -y in (1), for the exemplar optimal interior allocation ratios given in
(2) — column 2, and (2a) — column 3. Note that in all cases the true share of input 1 is  (from equation
3), but that the v parameter is substantially contingent upon the elasticity of substitution ¢ (compare
rows), and upon the arbitrary measurement units of the inputs (compare columns).

2Qur particular example models a goldsmith’s production problem, with input 1 being gold and input
2 being one month’s skilled labor.
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The second column of Table 1 illustrates a yet more troubling result. Its values
are determined by the same problem (1), now with the ratios given in (2a). However, a
cursory inspection reveals that (2a) is precisely equivalent to (2) — only now the price and
quantity of input 1 are measured in tonnes rather than in grams. It is reasonable to insist
that v should be unaffected by our choice of measurement units for the inputs. However,
by comparing the first and second columns of Table 1 we see that this is manifestly not
the case. In fact, we prove in Appendix A that, outside of the Cobb-Douglas special case,
~ could be manipulated to any point in the open interval (0,1) by simply redefining the

measurement units of one input.

T1 X9 b1t P2

1074 tonnes : 1 unit $4x 107 /tonne $4, 000 /unit (2&)

Normalization resolves these problems. If the CES production function in (1) were
normalized by the appropriate input ratio, then v would accurately give the factor share of
input 1 at that input ratio, for any choice of units and for any degree of complementarity
¢. In this example, Table 1 would be populated entirely by the value v = % until the
final row. Empirically, it is not difficult to select an appropriate normalization vector:
for example a policy-relevant input ratio could be given by an observed current or sample
average input ratio as befits the situation. The estimated v could then be explicitly and
correctly interpreted as a factor share at that input ratio.

The final row of Table 1 deserves particular comment. It shows that the implicitly
normalized production function (1) is arbitrarily misspecified in the limit ¢ — —oo.
In this Leontief case, every undergraduate economics course teaches the importance of
normalizing inputs (Appendix 2.2 shows that the required input ratio of (4) at ¢ — —o0
is precisely that of its normalization point), however it is currently common practice to
overlook normalization whenever the elasticity of technical substitution exceeds zero by

any arbitrarily small amount.

3 Normalization in the CES Production Function

In this Section we will analyse the general (normalized) CES production function

n ¢ % n
fx.crs = A. (Z% [%} ) ,  where ¢p€[—o00, 1]; Zvizl; 1% >0Vi. (4)
i=1 !

=1

Here r > 0 parametrizes returns-to-scale, A >0 parametrizes total-factor-productivity, and
O, can be consistently interpreted as the relative quantity requirement for x;. In effect,
O, allows us to rescale x; from its pre-existing measurement units, which are defined in

an entirely arbitrary manner, to a policy-relevant measurement unit. Our goal in this
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section is to establish whether an imposition of the implicit normalization ® =1 might
be restrictive.

In considering (4) our analyses encompass a broad class of production functions.
We observe that Linear, Cobb-Douglas, and Leontief production functions are strictly
nested within (4), and that the translog function can be recovered as a second order
approximation to (4) around its normalization point. The first three of these observations
are standard results which we extend to arbitrarily nested and normalized CES functions
in Appendix 2.2. The fourth result is new, and it represents a substantial improvement
over the standard derivation of the translog function as a CES approximation in the
neighbourhood of ¢ = 0, because our result can be applied in the neighbourhood of any
®c (RMH)™

We begin our analysis by noting that (4) is homogeneous of degree r under any choice
of normalization, implicit or otherwise. Thus the implicit normalization ® =1 restricts
neither the interpretation nor the value of the returns-to-scale parameter r. Implicit
normalization is similarly benign with regard to the complementarity parameter ¢, since

under any choice of © the elasticity of substitution between any two inputs remains

€ij = ﬁ (5)

We therefore turn our attention to the total-factor-productivity parameter A. It is
immediate from (4) that A can be interpreted as the quantity of output produced at the
normalization point. Under implicit normalization, that normalization point is entirely
arbitrary because it is dictated by the measurement units of each input. Thus, under
implicit normalization, the relevance of A will be lost whenever the point = 1 happens
to lie outside of the consideration set of the producer. To see that A is, in general, a
complex function of {x,~, and ¢} we need only re-arrange (4).

In an empirical context, this problem of interpretability also impedes tractability,
because there may be no relevant data with which to generate an initial value for A. By
contrast, if ©® were explicitly selected as, say, the average observed input level, then a
sensible initial value for A would be provided by the average observed output level. In an
empirical context, it is not possible to simply substitute known values into the production
function to infer an appropriate value for A at * = 1, because the parameters r and ¢ will
not be recoverable from the data until the production function itself has been estimated.

The imposition of implicit normalization poses similar challenges for the interpretation
and estimation of the {v;}. These parameters are often of research interest, because they
are frequently interpreted as the share of total resource that should optimally be spent on
each input z;. However it is not commonly acknowledged that the share interpretation of
these parameters is typically only valid for the special Cobb-Douglas case where ¢ — 0

(as illustrated in Section 2). In general, an accurate interpretation of ~; is given by
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equation (6). This is derived in Appendix 2.1 by maximising equation (4) subject to the
constraint » . px; < R.

z; =9
Dix; (e_z)
— (6)
Zj:l PiT; (%)

Yi =

Equation (6) shows that the share of total resource that should optimally be spent
on z; is generally a complex function that not only depends upon the parameter ~;, but
also upon a chosen point @ in the production space, and the complementarity parameter
¢. From equation (6) we can see that v; can only be interpreted as a universal share
parameter in the Cobb-Douglas case, that is when ¢ happens to be precisely 0. However,
in all cases ~; also represents the share of input z; along the specific ray in the production
space where = k.© for some scalar k € RT, since here the () terms in (6) ‘cancel
out’. Thus implicitly imposing that ® =1 will generally restrict the interpretability of
the share parameters {v;} to an arbitrary ray defined by the measurement units of the
T;.

Explicit normalization is therefore essential whenever the v; are of research interest,
because it allows the researcher to define ® at a policy-relevant point in the production
space, and thereby to interpret the 7; as share parameters at that point. Moreover,
explicit normalization affords the researcher with an opportunity to compare the share
parameters experienced by specific subgroups of an empirical sample — for example
between producers in developed cf. developing nations — by estimating the production
function at alternative choices of ©.3

Through its interpretation as a share parameter at the normalization point, v; captures
something of the intuitive ‘value’ of input x;. We can make that intuition precise by
calculating the output elasticity €; of (4) with respect to x;. Equation (7) shows that
normalization yields the intuitive interpretation of ; as the relative output elasticity of z;
at the normalization point, net of total-factor productivity A (since at the normalisation
point both bracketed terms reduce to unity). However, equation (7) also shows that the
relationship between ~; and ¢; away from the normalization point is somewhat opaque,
which further demonstrates that the implicit normalization ® =1 meaningfully restricts

the interpretability of the model parameters.

-1

A A — A, f keRY. (7

€ = ;. A. ol Z% o ; €|, o = Vi-A, forany ke R™. (7)
i=1

3 An analysis of this type is undertaken in Embrey (in prep.), where it provides a valuable comparison
between the technologies of childhood skill formation experienced by privileged and under-privileged
children respectively.
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4 Discussion of alternative CES Production Forms

Since Dickinson (1954) first presented a production function that parametrized a con-
stant elasticity of substitution, at least nine variants of CES production functions have
been proposed in the literature. Table 2 lists each form, together the minimal parameter
restrictions that it implicitly imposes upon the normalized form (3a). Whilst restrictions
upon total-factor-productivity could be trivially resolved by the inclusion of a A coeffi-
cient,? any relationships imposed between the normalization parameters © and the share
parameters « are fundamentally restrictive. We have already seen that this is the case for
the implicit normalization ® =1, and this section demonstrates that no restricted rela-
tionship between ® and ~ can hold in general, because the properties of those parameters

are orthogonal.

Table 2: Alternative CES Production Forms

Origin Form Restrictions cf. (3a)

@ ¢ \¢
De La Grandville A<7[Z)ﬂ +(1—7) [g—ﬂ ) (3a) —
(1989)
a

Dickinson (1954) ( [9121)% + [Do25]” + A9 ) y=1 A= 27; additional A

1

Pitchpord (1960) (&:‘f +(1-0)2g )5 ©1=0,=1, A=1
Arrow et al. (1961) A(dxf+(1f§ﬁ§ )5 0,=0,=1
David & van de ¢ ¢ g 1

9121)% + [0 14—
Klundert (1965) (Bra]? + pazal” ) V= A=
Ventura (1997) (az‘f + [9222])? )g O1=1; y=13; A= 2%

. I 19 %
Senhadji (1997) A<5 (517 + (1-0) | ] ) O =7=1-6,
Barro & Sala-i ¢ 6 V¢ - _
A( 8191217 + (1-8) [(1-9 1_1 @t

Martin (2004) ( Whaa]” + (1=0) [(1=vh)s] ) 0, =1-6;

s 6 \# ) ) »
Thoni (2015) 5% (62 [%V + (1-6)? {leé} > 01 =7v2; O3=(1-7v)2; A= 5%

Alternative CES production forms proposed in the literature. For uniformity these are presented with
two inputs, with unit returns-to-scale, and with elasticity of substitution 1/(1 — ¢). Other parameters

are the ‘share’ of z1: v, 4 € [0, 1], normalization parameters: ©;,79; € RT, and total-factor-productivity:
A A eRT.

Let us first observe that the concepts represented by v and © are distinct. In Section
2 we understood ©; as the relative resource requirement for input z;. This is typically
determined in advance: either theoretically, by an exogenous production process; or
empirically, by observed resource utilization. In Section 3 we established that ; represents

the relative marginal ‘value’ of input z;: equivalently thought of as the share of total

4Note that any restrictions upon A would nevertheless distort the interpretability of any such coeffi-
cient.
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resource expenditure optimally allocated to good z; along the normalization ray, or the
relative output elasticity with respect to x; along that normalization ray. The clear
distinction between these concepts suggests intuitively that neither can be subsumed
into the other.

This conclusion is straightforward to demonstrate mathematically. For example, in
order for v or ©; to be redundant we would require respectively:

d = @l(f; or V= %, (8)
and neither of these can be consistently true across any range of elasticities ¢. Thus
no functional form which imposes additional restrictions between ® and -« can admit
the consistent parameter interpretations derived in sections 2 and 3 across any range of
elasticities.

Each of the alternative forms listed in Table 2 therefore imposes meaningful restric-
tions upon the general, normalized form. The idiosyncratic limitations of many of these
sets of restrictions have been discussed in detail by Klump & Preissler (2000) and by
Klump, Mcadam & Willman (2012), however the latest contribution by Théni (2015)
deserves additional comment.

Thoni’s CES variant has several desirable properties. Its parameter 0 represents at
once: (i) the relative resource requirement for x; across all ¢, (ii) the relative marginal
product of z; in the linear case, and (iii) the share of z; in the Cobb-Douglas case. This is
remarkable, because § therefore arguably represents the most appropriate concept for the
‘importance’ of z; in all three special cases ¢ — {1;0; —oc}. Sadly, the form also has two
overriding limitations. Firstly, 6 represents neither the marginal product of z;, nor the
factor share of x;, except in the aforementioned special cases (or in the highly improbable
case that x; = §). Secondly, in reality there is no reason that the resource requirements
for the inputs x; should sum to unity. This would only be the case if the units of the {z;}
were appropriately scaled in advance, which brings us back to the normalized functional
form. The underlying problem with the Thoni variant is that it attempts to conflate two
intuitively and mathematically distinct constructs into a single parameter.

This discussion has made plain the essential distinction between the share param-
eters {7;} and the normalization parameters {©;} within the general CES production
function (4). We have further established that those parameters admit a consistent inter-
pretation across the range of possible elasticities of substitution, but that this would be
lost under the imposition of any additional restrictions between those parameters. The
alternative functional forms proposed in Table 2 impose restrictions of this type. It is
important to note that, despite restricting the freedom of the model, those additional
assumptions yield no improvement in either empirical or theoretic tractability. In fact

the opposite is demonstrably true in both cases (Klump & Saam 2008, Klump, Mcadam
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& Willman 2012). This is because the parameters {©;} are generally fixed a priori: in
empirical applications, the normalization point is fixed prior to estimation by observed
input and output levels, and in theoretical analysis the normalization point is analogously

determined a priori by (algebraically) specified production and input levels.

5 Conclusion

Production function normalization has been accepted as an important tool in certain fields
of macroeconomics, but it appears to have been overlooked by the existing microeconomic
literature. Nevertheless we have shown that, in the absence of explicit normalization,
key production function parameters are typically meaningless. But we have also seen
that all production functions are normalized, if not explicitly then implicitly by the
arbitrary measurement units of each input. The latter observation is important because it
demonstrates that production function normalization imposes no additional assumptions
— rather it makes an arbitrary implicit assumption both explicit and manipulable.

Explicit normalization is straightforward to implement. In some microeconomic ap-
plications, inputs are required in a ratio fixed by the production technology. In such
situations it is natural to normalize production inputs in line with those relative re-
quirements. Outside of such situations, estimated production parameters are typically
of research interest in the neighbourhood of currently observed quantities of inputs and
outputs; and so in practice those quantities can be used as normalization values.

The most pressing case for production function normalization arises when one consid-
ers the interpretation of share and total-factor-productivity parameters. We have seen
that, outside of the Cobb-Douglas special case, those parameters admit their familiar
interpretations only along the normalization ray through the production space. When
normalization is implicit, that ray is arbitrary and may lie far from the producer’s con-
sideration set. In such situations, we have shown that implicit normalization can distort
CES ‘share’ parameters to the extent that their oft-asserted interpretation is entirely lost.

Without normalization, estimated v can be made to vary across the open interval (0, 1)
simply by selecting alternative measurement units for the inputs. Normalization solves
this problem, which leads us to conclude that it could be an important technique within
any production context. One specialized example might be an international comparison
of production with capital input, since in this situation estimated parameters will be
affected by the choice of currency unit. However, nothing in our analyses is specific to
that application or even to the domain of economic production. Normalization could
therefore be equally important across the much broader domain of constrained utility
maximization.

It is rare for existing microeconomic research to acknowledge the limitations posed by

implicit normalization (one notable exception being Arrow et al. 1961). It is therefore
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possible that even well-established results could be misleading. For example, Embrey (in
prep.) shows that implicit normalization meaningfully distorts our present understanding
of the technology of childhood skill formation. In contrast, this paper has shown that
explicitly normalized utility functions are at once: less restrictive, more tractable, and
more interpretable than the alternative formulations proposed in the literature. We have
also seen that normalization is straightforward to implement in practice. It therefore
seems appropriate to suggest that normalized forms should be used as a matter of course.
Certainly, where an implicit normalization is imposed, the validity of that assumption

should be explicitly considered.
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A Proof that the value of CES share parameters without
normalization can be arbitrarily determined by a choice of

measurement units

From equation (6), which is derived in Appendix 2.1, we have that, for an interior optimal

allocation under monotonic preferences and with positive prices:

. —¢
biZ; <9—i>

N\ ¢
Z?:1 Di; (%Z)

(6)

Yi =
We can specialize this result to the implicit normalization ® = 1 and the two-input case
of Section 2 to give:

mayzy?
L 0
P1T1T1 " + Palialy

’}/:

Now any change in the measurement units for input ¢ can be written as x; — 7, for some
k € RT. Note that any such change leaves the term p;z; unaffected, as it will also have

the countervailing effect of mapping the unit prices p; — k.p;.
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We proceed by fixing any production complementarity parameter ¢, and any current
input and price ratios xo/x; =: r, and py/p; =: p. Finally, fix any desired ¥ € (0,1).
Then the share parameter would be equal to 4 under the change in measurement units

given by x; — =L, where

= () "

(10) is a well-defined function for any ¢ € (—o0,1] \0; 7,p € R*. Thus, outside of the
Cobb-Douglas case, the share parameter of any two-input CES function can be made to
vary arbitrarily across (0,1) merely by redefining the measurement units of input 1. O

This result generalizes to n inputs, although the closed-form solution for k& would
require solving n nonlinear equations in n—1 unknowns, so its calculation could quickly

become computationally challenging.

B Standard Results for the CES Production Function
Extended to its Nested and Normalized Form

2.1 Derivation of the economic interpretation of the +; in a nested and nor-
malized CES function

Consider again the normalized n-factor CES production function

n ¢ % n
T .
fn.crs = A. (Z% {51 ) ,  where ¢ € [—00, 1]; Z%:l; v>0Vi. (4)
i=1 ¢

i=1
We first prove Lemma 1:

Lemma 1 Under monotonic preferences and with positive prices, the parameters ~y; in
the normalized n-factor CES production function (4) represent the share of resources

optimally dedicated to input x; at any point along the ray in the production space that

contains the normalization point.

Proof:

We maximize (4) subject to the resource constraint

> pii <R (11)
=1

This holds with equality when preferences are monotonic and prices p; are positive. The

first order condition of this system under Lagrangian maximization is therefore given by
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the set of n equations:

o—1
i T r=¢ ‘
50,7 [@} JOT =

where )\ is the Lagrangian multiplier. By forming the ratio of any two of these equations
we obtain the well-known relationship between the optimal marginal rate of substitution
between two goods and their price ratio, specifically:

0. [2:/0,° Pi

0i [2;/0;1°" s

)

which implies that
[2:/0:])° TP
Tipi [x;/0,)°

We now sum these equations across all j # i to obtain

=7 Vi #1.

7.

19.1? D
Vi 7:/9] Z P :Z'szl—%'

ZiPi i [iﬂj/@j](b i

rearranging gives
[2:/0i]" <~ ;p;

vipi o [2;/0;)”

XT; _¢
Dil; (e—i)

n T 7¢
Zj:l PiT; <@_2>

g

(6)

Yi =

Equation (6) was discussed in Section 3, where we noted that, at any point « along the
ray containing ® we will have that = k.© for some scalar k£ € R. Hence, along that

ray, equation (6) reduces to give

TiDi  TiDi

Yi = - )
>oxip; R

(12)

which specializes to (3) in the two-input case. Thus we have demonstrated that ~; can
be interpreted along the ray containing © as the share of total resources which should
optimally be allocated to x;. U

For our main theorem we show that Lemma 1 generalizes to an arbitrary nested CES

production function.

Theorem 1 Under monotonic preferences, with positive prices, and at any point along
the ray in the production space that contains the normalization point: the share of total

resources optimally allocated to input x; within an arbitrary nested and normalized CES
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production function is obtained by multiplying its coefficient v; with the v coefficients on

all nested levels that contain x;.

Proof:
We proceed by induction over the number of nesting levels in an arbitrary nested and
normalised CES production function g(y). The induction step in the construction of g is

to substitute the term

¢ o ¢
x x T
f(®) =] (7{ [6_1{] +7 {@—2] +od {G)_fl] )

within the existing ¢g(y). Let us first fix some notation for this procedure. Denote the

S

N\ ¥
for some term 7 <%)

composite, post-substitution, production function as G := go f. Denote by m the number
of factors in the initial production function g, and let @9 € R™ be its normalization point.
Fix any point y = k.©9 along the ray in the production space containing ®9. Denote by
O the normalization point of the CES function f that is to be substituted for 7;, and
denote by denote by x the point k.©F. Then denote by ®% the concatenation of the
first i—1 elements of ®9, followed by the n elements of @7, followed by the final m—i
elements of ®9, and similarly denote by Y the concatenation of the first i —1 elements
of y, followed by the n elements of x, followed by the final m—1 elements of y.

Now, Lemma 1 provides the desired result for nesting level 0, and so to prove Theorem
1 it suffices to show the induction step.

By the induction assumption, the share of total resource optimally dedicated to each
input y; within g is given by the product of its coefficient 7/ with the outer ¥ coefficients
for all nesting levels that contain y;. Denote that product as Hj for each input y;.
We must show that, along the ray from the origin containing the normalization point,
the share of resources optimally allocated to each input y;, j # 7 is unchanged by the
substitution y;/0; — f(x), and that the share of resources optimally allocated to each
additional input zj is given by 7}: 1L

For the former, consider the term that has been substituted out. This had the form
vi [yi/©4]7, which evaluates to 7Y [k]” at y = k£.©9. But the substituted term

NI NES R NI Fo\ e _ are
Yol M @_1 + 73 @_2 + T @_ =% (71 [kf] + 73 [k] +'Yn[k]) =% [k]

is therefore equivalent because Y ,_, 'y,{ =1

Given that the share of resources optimally allocated to each input y;, j # ¢ is
unchanged by the substitution of f for y;/©;, and since the fyif sum to unity, we have that
the share of the total resources R available for the composite function that is optimally

allocated to the newly nested function f remains [], .R%. We may therefore apply Lemma
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1 to f with the total resources R := R = IL .RY to see immediately that

f _ Tipi
i Hz — RG>

namely that the product of the coefficient on each newly nested input x; with all coeffi-
cients on its nesting levels [ [, gives the share of total resources that should optimally be
allocated to that input at any point along the ray from the origin that contains ©¢. 0O

Note that Theorem 1 could equivalently be rewritten as Corollary 1:

Corollary 1 If the normalized CES function f represents the production of an interme-
diate good y;/©; which is an input to normalized CES production function g, and each
function is normalized so that its share parameters are interpretable along a ray-of-interest
within its respective production space, then the compound production function G := go f,
15 normalized so that its share parameters are interpretable along the corresponding ray

within its production space.

2.2 Derivation of limiting production functions for the general normalized
and nested CES form as {¢} — {1,0, —occ}

One should first note that, in any limit where all nested complementarity parameters
converge, all nested levels are raised to the power 1, and so any nested form becomes
equivalent to some non-nested form (4). It therefore suffices to consider the above limits
as applied to (4).

It is trivial to see that in the limit ¢ — 1, (4) becomes a linear, perfect-substitutes,

production function, with total-factor-productivity A and returns-to-scale r:

lim /(@) = A (Z " [g—}) (13

To find the limit of f as ¢ — —oo, first observe that the set of values

s},

is finite, and so it obtains its infimum: let us denote this by [é—ﬂ} . Since we are considering
J
the limit as @ — —oo we can safely restrict our attention to the domain where ¢ < 0. On

19 @
that domain, [g—]} is the largest element of { [g—} } , and so, since the ~; are positive
J z .

and sum to unity, we have that '

Ha)- Gl =) - (002l < ()
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1

It is therefore clear that (%) " is sandwiched between

A Z;
M {eﬂ and {@—J’

= o { 5]}

which is the Leontief, perfect-complements, production function, with total-factor-

and so we have that

productivity A and returns-to-scale 7. U
To find the limit of f as ¢ — 0, we begin by define h(¢) as the inner sum within (4)

o= [ 2] (15

i=1

We then apply the Taylor expansion (17) to h(¢) around the point ¢ to obtain

h(cﬁ—l—l—gbZ%ln{ ]+¢2Z%m{ ]+0(¢3)

which we can substitute back into (4) to obtain

jor= (103 2] v m 2 ]Wg))?

By comparing this expression with the definition of the exponential function
. TN\ . 1
e’ = lim <1+—> = lim (1 +max)™
n—o00 n m—0

we see that

flx) =

wxp(;:%m{ }+¢Zmn[ !+ (¢)>]r,

which simplifies as ¢ — 0 to (the normalization of) the familiar Cobb-Douglas form, with

total-factor-productivity A and returns-to-scale r:

-11 {é_} o (16)
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2.3 Derivation of the translog production function as a 2nd order Taylor

expansion of the CES form around its normalization point

Consider again the normalized n-factor CES production function given in (4). We

first prove Lemma 2:

Lemma 2 The second order Taylor expansion of the normalized n-factor CES production

function (4) around its normalization point has a saturated Translog form.

Proof:
The (multinomial) Taylor series representation of a function f(x) around the point

©® is given by

f@)=f(©)+ ) f:.(©).Az; + %Z fra(©). A2+ " frn)(©).Aui Az + O(Az?),
=1 =1

i=1 j=i+1

(17)

where Ax .= x — ©.
We begin by taking logs both sides of equation (4), to obtain

¢ ¢ ¢ n
r 1 To Tn r ¢1H[ﬁ.]
1 =nA+-1 — = " —nA _12:2. F
nf(x)=mnA+ P n <71 {@1} + 72 {@J + [@J ) nA+ P ni:176

We then consider In f as a function of (In [Z]), and expand around the point In [Z] =0
which is equivalent to the point £ = ©. The necessary terms for that Taylor expansion

are:

Inf(0)=InA
Oln f o
9n [g—i] (0) =rv;
TS (0) = o1 -2
dln [@—]
0?In f L .
910 [ ] 910 [ ] (0) = .0V (18)

Substituting these into the 2" order Taylor series (17) yields:

S £ ST 1 ) 8 Y 3 I E

=1 j=i+1

(19)

which has the saturated (normalized) Translog form. U
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We now show that Lemma 2 generalizes to an arbitrary nested CES production func-

tion.

Theorem 2 The second order Taylor expansion of an arbitrary nested and normalized

CES production function around its normalization point has a saturated Translog form.

Proof:

As per the proof of Theorem 1, we proceed by induction over the number of nesting
levels in an arbitrary nested and normalised log CES production function Ing(y). Any
Such a function with nesting level k+1 is constructed by the substitution of a log-CES

form (20) for some term ¢ In [g—’;} within the appropriate function In g(y) of nesting level
k.

¢ ¢
i f(a) = Zn (% a1 2] vt [2] ) wanvf 8] (o)
We denote the resultant compound production function as G := go f, and use again the
other notation defined in Appendix 2.1.

Since Lemma 2 provides the result for nesting level 0, it suffices to show that result
survives the induction step described above.

Note first that each of the terms given in (18) is unaffected by the substitution when-

O;
(20) evaluated at In [£] = 0 is also zero. By the induction assumption it is therefore

ever i,j # k, since the differential of (20) with respect to any In [y—} is zero, and since

possible to write these as:

InG(0) =InA
onlg] "
s

dln [;h;i 2] (0) = (i j),

fori, j # k, (21)

where a, b, and ¢ are functions of the parameters of g. The additional terms relevant to
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the 2°¢ order Taylor expansion of the compound function G are:

olnG
m(o) =l a(k)

PG B 2
0 () 0+l (1-f)
9?InG .
am[ ]mn[ }0):7f-0(k,J),
9?InG

o [ ] o [ } (0) = /7] (b(k) — ¢.a(k)),
forj # k,

Substituting (21) and (22) into the Taylor series (17) we obtain:

lnf(:c)%lnA—l—%nd(i,k)ln[g]—0—;n+zmb(zk( [D +n+zmn+zm &i, j, k

I. Embrey

(22)

i=1 v i=1 i=1 j=i+1 J
(23)
where:
.
a(i), i<kori>k+n
a(i, k) :=
va(k), k<i<k+n
:
B b(i), i <kori>k+n
bi, k) := )
(%f) bk) + o] (1 - %f) ak), k<i<k+n
;
(i, j), i,j <kor >k+n
c(i, j, k) == v e(k, 5), k<i<k+n, and{j <kor >k+n}
Al (b(k) = p.a(k)), k<ij<k+n
which is again of the saturated Translog form. U
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