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Abstract

This thesis presents new methodology in the field of quantifying and reducing input mod-

elling error in computer simulation. Input modelling error is the uncertainty in the output

of a simulation that propagates from the errors in the input models used to drive it. When

the input models are estimated from observations of the real-world system input modelling

error will always arise as only a finite number of observations can ever be collected. Input

modelling error can be broken down into two components: variance, known in the litera-

ture as input uncertainty; and bias. In this thesis new methodology is contributed for the

quantification of both of these sources of error.

To date research into input modelling error has been focused on quantifying the input

uncertainty (IU) variance. In this thesis current IU quantification techniques for simula-

tion models with time homogeneous inputs are extended to simulation models with non-

stationary input processes. Unlike the IU variance, the bias caused by input modelling has,

until now, been virtually ignored. This thesis provides the first method for quantifying bias

caused by input modelling. Also presented is a bias detection test for identifying, with

controlled power, a bias due to input modelling of a size that would be concerning to a

practitioner. The final contribution of this thesis is a spline-based arrival process model. By

utilising a highly flexible spline representation, the error in the input model is reduced; it

is believed that this will also reduce the input modelling error that passes to the simulation

output. The methods described in this thesis are not available in the current literature and

can be used in a wide range of simulation contexts for quantifying input modelling error

and modelling input processes.
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Introduction

1.1 Motivation

Stochastic simulation is a tool used to aid decision making. It allows practitioners to analyse

and experiment with systems that are driven by random processes. For systems where the

performance measures of interest are mathematically intractable, stochastic simulation is a

natural choice. In practice simulation is used in many industries to study complex systems,

examples include: healthcare (Brailsford, 2007), aviation modelling and analysis (Rhodes-

Leader et al., 2018) and manufacturing (Law, 1988).

The conclusions drawn from simulation experiments are conditional on the input mod-

els that drive them. Typically these input models, represented by probability distributions or

processes, are estimated using observations collected from the real-world system using sta-

tistical methods such as maximum likelihood estimation. When this is the case uncertainty

arises in the estimated input models due to the fact that only a finite number of observations

can be collected from the system of interest. As the amount of input data increases the error

in the input models decreases, but they are never perfectly correct. In experiments where

constraints on time and money have limited the number of observations collected from a

system, the error in the input models can be substantial. For example, in a manufacturing

1
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context the pressure to make a timely decision about whether to switch to a new method

of production may limit the time available to observe and model the various manufacturing

processes.

In this thesis the error that propagates through a simulation model, from the estimated

input models to the performance measures under study, is referred to as the error caused

by input modelling. In practice ignoring error caused by input modelling can lead to over-

confidence in the decisions supported by the simulation. The problem of quantifying and

reducing the error in the output of a simulation caused by error in the input models therefore

motivates this thesis.

In recent years there has been substantial interest in quantifying the variance caused

by input modelling in a simulation response. In the simulation community this variance is

known as input uncertainty. Unlike stochastic uncertainty, which can be reduced by per-

forming additional replications of the simulation, input uncertainty can only be reduced

by collecting further observations of the system to gain better estimates of the input mod-

els. Methods for input uncertainty quantification for simulation models with homogeneous

inputs exist, and one such method, proposed by Song and Nelson (2015), has been imple-

mented in the commercial software Simio (2015). Despite nonhomogeneous input models

commonly being used in simulation experiments, input uncertainty quantification for non-

homogeneous input models is yet to be addressed. One focus of this thesis is therefore the

quantification of input uncertainty for simulation models with non-homogeneous Poisson

processes.

Interest in error caused by input modelling has, until now, been focused on input uncer-

tainty quantification, but estimating the input models that drive the simulation also causes

bias in the simulation response. Bias caused by input modelling arises when the simulation

response is a non-linear function of its inputs, which is usually the case in the complex

systems for which simulation is used. As the number of observations available to estimate

an input model tends to infinity, bias caused by input modelling is known to decrease faster

than input uncertainty. This knowledge has previously been used to justify ignoring bias
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caused by input modelling, but when the number of observations is finite nothing can be

said about the relative size of bias and input uncertainty and it therefore should not be

ignored.

In simulation in practice a common way of representing a nonhomogeneous arrival

process is to use a nonhomogeneous Poisson process (NHPP). Substantial research has

been carried out into fitting the arrival rate function, λ (t), and integrated rate function,

Λ(t), of a NHPP to observed data, and for simulating arrivals from these representations

using techniques such as thinning and inversion. The common use of NHPPs in practice has

also led to their availability in commercial simulation software. Given the value of NHPPs

as input models to simulation there is a motivation to create an input modelling method

that recovers the true arrival rate function of a NHPP “better” than existing methods. By

reducing the error between the true input model and the fitted model a reduction in the error

caused by input modelling should be seen in the simulation output. Providing practitioners

with the tools to quantify and reduce the error in the simulation output caused by input

modelling would improve their ability to make decisions with the support of simulation.

The outputs of this thesis are threefold. First, new methodology for the quantification

of input uncertainty in simulation models with non-stationary input processes is presented.

Second, new methodology for detecting the bias caused by input modelling on the output of

simulation is presented. Finally, a new spline-based input modelling method for the arrival

rate of a NHPP is developed.

1.2 Contributions

We now outline for the reader the main contributions of this thesis.

We first contribute two methods for quantifying input uncertainty for simulation models

with nonhomogeneous inputs. These methods extend the techniques of Cheng and Holland

(1997) and Song and Nelson (2013) for quantifying input uncertainty in systems with time

homogeneous inputs. Specifically we focus on simulation models with piecewise-constant
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non-stationary Poisson arrival processes. In practice arrival processes to simulation models

are often nonhomogeneous with respect to time. Numerical evaluation and illustrations of

the methods are provided and indicate that the methods perform well.

Our second contribution is to provide the first method for quantifying bias caused by

input modelling. This also provides the first way to summarise the mean squared error

caused by input modelling for a simulation performance measure by bringing together the

input uncertainty variance and the squared bias. As the key to this contribution a bias

detection test is also presented with controlled power for detecting bias of a size that exceeds

a threshold deemed to be concerning by a practitioner. We numerically evaluate the bias

detection test and demonstrate its use in a realistic case study concerning a healthcare call

centre.

The final contribution of this thesis is a spline-based arrival process modelling method.

Specifically we develop a new method for representing the arrival rate function of a NHPP

and a simple method for simulating arrivals from it. By using a spline function represen-

tation with a large number of knots we reduce the bias, with respect to the true arrival

rate, in the model. The more knots used to build the spline function the more flexible it

can become, we therefore control over fitting, and thus variability, by penalising the NHPP

log-likelihood when fitting the spline function. By aiming to reduce the error in the arrival

process model, we also reduce the input modelling error passed to the simulation output.

To evaluate this model we compare it to the methods of Zheng and Glynn (2017) and Chen

and Schmeiser (2017), from the arrival process modelling literature, and demonstrate the

use of the spline-based input model using observations from a real-world A&E department

with a cyclic arrival rate function.

1.3 Outline of Thesis

The thesis is now outlined for the reader. In Chapter 2 the key concepts, terminology and

methodology required within this thesis are introduced. In Chapter 3 we present two new
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methods for input uncertainty quantification in simulation models with piecewise-constant

nonhomogeneous Poisson arrival processes. In Chapter 4 we approach the issue of detecting

bias due to input modelling in stochastic computer simulation. In Chapter 5 we present a

spline-based input model of the arrival rate function of a NHPP and a simple method for

simulating arrivals from it. Finally, in Chapter 6 the thesis is concluded with a summary of

contributions and some ideas for further work in the area of quantifying and reducing error

caused by input modelling.



Background Material

In this chapter the reader is provided with the necessary background material, including

references to useful sources, to aid the understanding of this thesis. Firstly the concept

of nonhomogeneous Poisson processes (NHPPs), how to check real-world data follows a

NHPP and techniques for simulating data from a NHPP are introduced. Secondly, input

modelling is discussed with specific detail on modelling the arrival rate and integrated rate

functions of a NHPP. The idea of error caused by input modelling is then introduced along-

side definitions of input uncertainty and bias caused by input modelling. Finally spline

functions and B-spline basis functions are introduced.

2.1 Nonhomogeneous Poisson processes

The focus of this thesis is on the simulation of systems with input processes that can be

appropriately described by non-homogeneous Poisson processes (NHPPs). In reality, ar-

rivals to a system are often known to be non-stationary; NHPPs are a common model used

to describe the arrival process when this is the case. For example, Pritsker et al. (1996)

used NHPPs for fitting donor and patient arrivals within a large scale simulation model de-

veloped for the United Network of Organ Sharing (UNOS). NHPPs can be used to model

many types of non-stationary arrival process and are therefore appropriate for use in many

6
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application areas including: manufacturing (Viswanadham and Narahari, 1992), healthcare

(Green, 2006), and call centres (Kim and Whitt, 2014).

A NHPP is a generalisation of a homogeneous Poisson process. For a homogeneous

Poisson process events are said to occur at a constant rate λ per unit time. In a NHPP this

rate, or intensity, λ (t), is allowed to change through time and is assumed non-negative,

λ (t) ≥ 0, for all t (Kingman, 1992). Given two points a and b, where a ≤ b, let N be a

NHPP and N(a,b) denote the number of events on interval (a,b]. By definition of a NHPP,

the number of observations in interval (a,b], N(a,b), follows a Poisson distribution

N(a,b)∼ Pois(Λ(a,b))

where the probability of s events occurring on interval (a,b] is

P(N(a,b) = s) =
exp{−Λ(a,b)}Λ(a,b)s

s!
. (2.1.1)

Here Λ(a,b) is known as the integrated rate, or cumulative intensity function and is defined

by

Λ(a,b) =
∫ b

a
λ (t)dt.

Within interval (a,b], Λ(a,b) can be interpreted as the expected number of observations

Λ(a,b) = E [N(a,b)]. When considering the expected number of observations up to time t,

Λ(0, t) =
∫ t

0 λ (s)ds let the integrated rate function be denoted by Λ(t).

Another property of a NHPP is that the sum of q independent NHPPs is also a NHPP,

N = N1 +N2 + · · ·+Nq,

where Ni for i = 1,2, . . . ,q are NHPPs, see Blumenfeld (2009). When this is the case

the rate, or intensity, function of N can also be decomposed into the sum of the intensity

functions of its q components

λ
c(t) = λ

c
1 (t)+λ

c
2 (t)+ · · ·+λ

c
q (t),

where λ c
i (t) is the rate function from NHPP Ni for i = 1,2, . . . ,q. This decomposition is

used in Chapter 5 to aid generation of arrivals from a spline function.
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In simulation it is important to model an input process as nonhomogeneous if it is so.

Arrivals to systems in the real-world are often seen to vary through time. Estimating the

distribution of these arrivals using a homogeneous distribution would remove any fluctu-

ations in the arrival process; this may have a large impact on the output measures of the

simulation. For example, in a call centre there are usually times of the day where the arrival

rate of calls peaks and troughs. A constant arrival rate would therefore not represent the

true arrival rate to this system well; and would lead to over or under staffing, see Whitt

(2007). In Chapter 3 the arrival rate to a healthcare call centre is used to guide the number

of staff to have on duty. This can be seen to have a large effect on the expected waiting time

of callers when comparing the use of homogeneous and nonhomogeneous arrival processes

as inputs to the simulation.

2.1.1 Real-world observations

For a NHPP, denoted N, the number of arrivals during interval (a,b], denoted N(a,b), fol-

lows a Poisson distribution. Therefore the dispersion, or variance-to-mean ratio, of the

number of arrivals during an interval, ω = E [N(a,b)]/Var [N(a,b)], should equal 1. This is

not guaranteed given real-world data, even when the underlying process is a NHPP. Arrival

processes in practice can be both under (ω < 1) or over (ω > 1) dispersed in comparison to

a NHPP. It is therefore sensible to perform checks on the real-world observations to confirm

the appropriateness of modelling an input as an NHPP.

One way to check whether the observed data within an interval, (a,b], follow a NHPP

is to record the arrival counts to the interval multiple times and use a chi-square goodness-

of-fit test to check whether this data comes from a Poisson distribution. The chi-square

test for supposedly Poisson data compares the observed counts over an interval, Oi, to the

expected count, Ei, assuming the data came from a Poisson distribution. For example, given

observations of arrivals to an A&E department on Mondays over w weeks the following

hypothesis

H0 : The total number of arrivals on Monday is Poisson
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would be tested against

H1 : The total number of arrivals on Monday is not Poisson.

with test statistic, T ,

T =
w

∑
i=1

(Oi−Ei)
2

Ei
.

Note that the expected number of arrivals on a Monday can be estimated by the mean of the

observed counts Ei = Ō = 1
w ∑

w
i=1 Oi. In comparing the test statistic, T , to the critical value

ψ , of the chi-squared distribution with w− 1 degrees of freedom at the α% significance

level, if T <ψ there is not significant evidence to reject the null hypothesis that the observed

counts are from a Poisson distribution. Of course the chi-square goodness-of-fit test is not

a guarantee that the observed data is Poisson but, when the null hypothesis is rejected, this

indicates that the data is not Poisson; the test is therefore a good warning tool. Another

consideration in using the Chi-squared test is that the number and location of the intervals

may not be known. In practice they may have to be chosen by the practitioner which

introduces subjectivity into the approach.

2.1.2 Generating arrivals

Simulating a homogeneous Poisson process is relatively simple. The inter-arrival time be-

tween consecutive customers is known to be an exponential random variable with cumu-

lative density function (cdf) F(t) = 1− exp{−λ t}, t ≥ 0. Simulation of the ith customers

arrival time is therefore simply

yi = yi−1 +F−1(s) = yi−1−
ln(1−ui)

λ

where ui is a random variable generated from the Uniform(0,1) distribution, ui∼Uniform(0,1).

Simulation of arrivals from a NHPP is not as easy due to the varying arrival rate func-

tion, λ (t). Two methods for simulating arrivals from NHPPs are inversion and thinning.
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Inversion

Inversion is so called due to its dependence on the the inverse of the integrated rate function,

Λ−1(t). Cinlar (2013) proves that random variables Ti, i = 1,2, . . . are arrival times from a

NHPP N with integrated rate function Λ(t) if and only if Λ(T1),Λ(T2), . . . are event times

from a stationary Poisson process with rate one. This holds for all t ≥ 0 when Λ(t) is

a positive-valued, continuous, non-decreasing function. Inversion therefore requires the

integrated rate function Λ(t) to be invertible. When it is possible to calculate this inverse,

the method proceeds as follows:

1. Generate random variable ui ∼ Uniform(0,1).

2. Generate Poisson arrival times with rate λ = 1 using y0 = 0, yi = yi−1− ln(1−ui).

3. Calculate the ith arrival time from the NHPP, ti, by ti = Λ−1(yi).

One problem with inversion is that the integrated rate function, Λ(t), will not always have

a tractable inverse. Although there may be no tractable functional form for Λ−1(t), the

integrated rate function will always be numerically invertible. Numerical inversion in this

case is equivalent to a one-dimensional search. To account for possible flat regions of the

integrated rate function a generalised definition of the inverse integrated rate function is

used,

Λ
−1(t) = inf{x ∈ R : Λ(x)≥ t}.

For generating a single arrival the numerical search for the inverse should be reasonably

quick but, within a simulation model, it is quite possible that thousands of arrivals will

be required in which case completing a search for each arrival will add up. A common

approach to improve efficiency in this case is to numerically evaluate Λ−1(t) over a grid of

points and linearly interpolate between these.

When Λ(t) is easily invertible, inversion is a simple efficient way of generating arrivals

from a NHPP. An example of this is presented by Klein and Roberts (1984) who show that

for a NHPP with a piecewise-linear rate function, λ (t), the integrated rate function, Λ(t),
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is piecewise-quadratic within each interval and thus a tractable inverse function exists from

which to generate arrivals from the underlying NHPP.

Thinning

Thinning is an arrival generation method for NHPPs that works directly with the rate func-

tion, λ (t). The key idea is to generate arrivals from an alternative function that is both

simpler to generate arrivals from and that majorises the original function of interest λ (t).

The arrivals generated from the alternative function are then ‘thinned’, some are thrown

out, according to the probability that they came from the NHPP with arrival rate λ (t).

Like inversion, thinning traditionally begins with the generation of arrivals from a sta-

tionary Poisson process but in this case the stationary arrival process has arrival rate equal

to the maximum rate, maxt λ (t) = λ ?. Arrivals are discarded according to the probability

of them having come from the NHPP. Specifically an arrival at time t is rejected according

to a Bernoulli trial with success probability λ (t)/λ ?. The probability that a potential arrival

is thinned is thus 1−λ (t)/λ ?. The discrepancy between λ ? and the arrival rate function of

interest λ (t) has a large effect on how many arrivals are rejected and thus the efficiency of

the method. For an algorithm of how to implement thinning see Nelson (2013). A proof that

the thinning method samples from a NHPP with rate λ (t) is omitted here but a sketch proof

can be found in Kuhl and Wilson (2009). One advantage of this approach is that thinning

can be used to generate arrivals from any bounded arrival rate function λ (t); complexity

is not an issue. Although, it may be said that thinning is a wasteful method. For example,

if the rate function of interest has a high peak with short duration and the rest of the pro-

cess is a much lower rate then thinning using λ ? = maxt λ (t) could be highly inefficient,

discarding a high proportion of simulated points.

By using the inversion method of Klein and Roberts (1984) to generate arrivals effi-

ciently from a piecewise-linear rate function thinning can, in some cases, be made much

more efficient. A piecewise-linear function, in most cases, can create a much tighter ma-

jorising function than a constant function. Also arrivals generated from a piecewise-linear
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majorising function can be thinned in the same way as the arrivals from a constant majoris-

ing function. Let λ̃ (t) denote the piecewise-linear majorising function, then the probability

of thinning a potential arrival is 1−λ (t)/λ̃ (t). As before, thinning arrivals generated from

λ̃ (t) gives arrivals from the arrival process with arrival rate λ (t).

The methods of thinning and inversion both lead to an arrival process with the specified

arrival rate λ (t), but this does not mean that the arrivals generated using the methods will be

the same. This is due to the stochastic variability in how the arrivals are generated between

the two methods. Methods for modelling the rate, λ (t), or integrated rate, Λ(t), function of

a NHPP will now be discussed.

2.2 Input Modelling

In this thesis “input modelling” refers to the method of forming a representation of an

input to a simulation model from which event times can be generated. The focus of this

thesis is on the estimation of input models using data. Sometimes data are unavailable and

subjective decisions have to be made about certain inputs; from here on in inputs created in

this way are not considered and focus lies on input models that have been estimated using

observations from the system of interest.

This section reviews relevant methods within the input modelling literature with spe-

cific focus on methods for modelling and generation of NHPPs, as introduced in §2.1. For

a more general discussion of input modelling techniques for use in discrete event simula-

tion see Leemis (2001) and Cheng (2017), see also Cheng (1994) for a discussion of how

to select appropriate input distributions. When arrival observations are over or under dis-

persed compared to a Poisson process, Gerhardt and Nelson (2009) present methodology

for modelling non-stationary non-Poisson arrival processes and Nelson and Gerhardt (2011)

consider the modelling and simulation of non-stationary, non-renewal processes. For a dis-

cussion of input modelling for complex problems see Nelson and Yamnitsky (1998).

Since the probabilistic behaviour of a NHPP can be completely characterised by its
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rate function, λ (t), or integrated rate function, Λ(t) (Kuhl and Wilson, 2009), any input

modelling approach for a NHPP aims to estimate one of these functions. The existing input

modelling literature will now be summarised.

2.2.1 Estimating the rate function, λ (t)

A common, early, approach to estimating the intensity function, λ (t), of a NHPP was to

use an exponential form. Exponentiating the rate function ensures it is always non-negative,

λ (t)≥ 0. This idea was first considered by Cox and A. W. Lewis (1966) who stated that a

continuous rate function for a NHPP can be estimated arbitrarily closely with an exponential

polynomial function. This idea was built upon by Lewis (1971), Lewis and Shedler (1976),

Lee et al. (1991) and Kuhl et al. (1997). The key idea is to model the intensity function

by fitting an exponential function with some additional components to reflect knowledge

about the underlying process. For example, Kuhl et al. (1997) present the exponential-

polynomial-trigonometric rate function with multiple periodicities (EPTMP)

λ (t) = exp

(
l

∑
j=0

α jt j +
p

∑
k=1

γk sin(ωkt +φk)

)
, (2.2.1)

which can handle NHPPs where the arrival rate exhibits trends and multiple-periodicities.

All exponential forms of the rate function are parametric and require the estimation of

parameters when being fit to data. For example, for the EPTMP rate function (2.2.1), esti-

mation of the parameters {α0,α1, . . . ,αl, γ1,γ2, . . . ,γp,ω1,ω2, . . . ,ωp,φ1,φ2, . . . ,φp} would

be required to fit the rate function. Numerically optimising these parameters is computa-

tionally expensive and often requires a good starting point.

Another common approach to modelling both the rate function, λ (t), and the integrated

rate function, Λ(t), is to assume they take a piecewise form. Henderson (2003) considered

piecewise-constant estimators of the rate function and showed that, when the intervals are

chosen to be of equal length, this estimator is consistent as the number of intervals increases

provided the length of the intervals shrink at an appropriate rate. In practice piecewise-

constant estimators are popular, amongst the many examples of their use are Brown et al.
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(2005) and Avramidis et al. (2004) who both use a piecewise-constant arrival rate in a call

centre setting.

Massey et al. (1996) present a piecewise-linear representation of the arrival rate function

given arrival count data. They fit the rate function using ordinary least squares (OLS),

iterative weighted least squares (IWLS) and maximum likelihood (ML) where all methods

are constrained to yield a non-negative rate function. More recently, Nicol and Leemis

(2014) used count observations to provide a piecewise-linear estimator of the rate function,

λ (t). This method was formulated as a constrained quadratic programming problem with

constraints on the continuity of the estimator, the estimator’s mean value within an interval

and optional constraints on the interval end points for cyclic contexts.

Chen and Schmeiser (2013) present an iterative algorithm for smoothing a piecewise-

constant representation of the intensity function. Within each iteration they run their algo-

rithm, Smoothing via Mean-constrained Optimized-Objective Time Halving (SMOOTH),

which takes a piecewise constant arrival rate function and yields a ‘smoother’ represen-

tation with double the number of intervals, each with half the length. Here smoothness

is measured in terms of the integrated squared second derivatives. The resulting repre-

sentation is non-negative and maintains the integral of the original function and thus the

expected number of arrivals in each interval. Iteration of the SMOOTH algorithm gives the

proposed, I-SMOOTH method which returns a sequence of sequentially smoother arrival

rate functions. The method is aimed to be automatic, but the user is required to set how

many iterations to let I-SMOOTH carry out.

Note that the I-SMOOTH method requires the user to have a well chosen initial piecewise-

constant representation of the arrival rate function. Chen and Schmeiser (2018) present a

simple method for creating a piecewise-constant arrival rate function with an optimal num-

ber of equal length intervals given arrival observations by minimising an unbiased estimator

of the mean integrated squared error (MISE). They show that the optimal number of inter-
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vals ι given a total of a arrival times is

ι̂ ≡ argminι=1,2,...ι(2a−
ι

∑
j=1

(C j(ι)
2))

where C j(ι) is the number of arrivals in the jth interval when there are ι intervals. This

method could act as a pre-processing step for input modelling modelling methods, like I-

SMOOTH, that assume the underlying NHPP has a piecewise form and that the number of

intervals and interval locations are known.

As for higher order polynomial representations. Kao and Chang (1988) present a piece-

wise polynomial representation by ‘grafting’ polynomials of different degrees together

whilst constraining the continuity of the resulting representation. The method is subjec-

tive in the choice of polynomial degree in each interval, and the break points at which the

function changes.

In Chapter 5 a spline-based method for modelling and generating NHPPs is developed

and compared to two recent methods in the literature: a piecewise-linear representation by

Zheng and Glynn (2017) and a piecewise-quadratic representation by Chen and Schmeiser

(2017). Both competing methods allow estimation of a NHPP intensity function from ar-

rival time observations and both can be used alongside the pre-processing method of Chen

and Schmeiser (2018).

Zheng and Glynn (2017) assume the underlying rate function of the NHPP is piecewise-

linear and that the placement and number of intervals is known. They provide two methods

for fitting the intensity function, one using maximum likelihood estimation, and one using

ordinary least squares (OLS) methods. Given the assumed piecewise-linear form of the

rate function they reduce the problem of estimating λ (t) to estimating the arrival rate at the

interval boundaries. This estimation is formulated as a convex, highly tractable optimisation

problem which, provided there is at least one arrival in each interval, can be shown to

have a unique solution. Both maximum likelihood and OLS methods are presented for

observations in the form of arrival times and interval count data, and both formulations

can handle cyclic rate functions. In the cyclic case for a rate function with p intervals the
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maximum likelihood optimisation problem is given by

max
y0,y1,...,yp

Lm(y0,y1, . . . ,yp)

s.t. y0 = yp

yi ≥ 0, 0≤ i≤ p

where y0,y1, . . . ,yp are the arrival rates at the interval boundaries and Lm(·) is the likelihood

given m observations of the NHPP. The structure of this problem means that even for large

m and moderate p the problem is computationally tractable.

Chen and Schmeiser (2017) present the Max Nonnegativity Ordering Piecewise-Quadratic

Rate Smoothing (MNO-PQRS) algorithm, for general input processes, which takes a piecewise-

constant representation of the rate function and returns a smoother, piecewise-quadratic

function. The algorithm is not specific to NHPPs and requires no user specified parame-

ters. It smooths the arrival rate function whilst maintaining the expected number of arrivals

in each interval. MNO-PQRS has two components: first, the Piecewise-Quadratic Rate

Smoothing (PQRS) algorithm smooths the initial piecewise-constant representation return-

ing a continuous, differentiable rate function. Then, if PQRS returns any negative sections

of the rate function, the Max Nonnegativity Algorithm (MNO) returns the maximum of

zero and the PQRS representation. Like the I-SMOOTH method by Chen and Schmeiser

(2013) the method requires an initial piecewise-constant representation to be known; this

could be provided by the pre-processing method of Chen and Schmeiser (2018).

Another approach for fitting a NHPP rate function was presented by Kuhl and Bhair-

gond (2000) who construct a highly flexible NHPP rate function representation using wavelets.

Their method has the advantage of requiring no prior knowledge or assumptions to be made

about the behaviour of the process.

Channouf (2008) use a smoothing spline approach to represent the arrival rate of both

a NHPP and a doubly stochastic Poisson process. The B-spline composition of a spline

function is introduced in §2.4; Channouf (2008) use an alternative spline function compo-

sition where each component of the spline is represented by a polynomial of degree d. In
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fitting their spline function they use a recurrence relation to reduce their problem to a linear

system of equations which they solve by Gaussian elimination.

2.2.2 Estimating the integrated rate function, Λ(t)

An alternative to estimating the rate function, λ (t), of a NHPP is estimation of the cumu-

lative rate function, Λ(t). For the cumulative rate function there is a natural estimator, cal-

culated from the observed data, known as the empirical cumulative rate function (ECRF).

There is no counterpart of the ECRF for the rate function. The ECRF is a step function

with each step corresponding to either an arrival to the system or a count of arrivals in an

interval given observations of the input process. This method of modelling the cumulative

rate function may be thought of as crude, but as the number of observations increases the

bias reduces. The ECRF also has no dependency on the input process following Poisson

assumptions.

When the input process is a NHPP, Leemis (1991) presents a non-parametric piecewise-

linear estimator of the cumulative intensity function, Λ(t). The method essentially linearly

interpolates the ECRF function between ordered event times. Generation of event times

from the NHPP given the piecewise-linear representation using inversion is also discussed.

Arkin and Leemis (2000) extend this method to include overlapping realisations, the key to

their method being to partition the observation interval into the smallest number of regions

so that, within each region, there are a constant number of realisations observed.

Given observations of event counts Leemis (2004) presents a maximum likelihood esti-

mator of the cumulative intensity function,

Λ̂(t) =

(
i−1

∑
j=1

n j

k

)
+

ni (t−ai)

k (ai−ai−1)
for ai−1 < t ≤ ai.

where (a0,a1],(a1,a2], . . . ,(a f−1,a f ] are the f subintervals that partition the interval of

observation and ni denotes the number of observations over k realisations in interval i.

In this method caution should be taken in the choice of the subinterval placement. If the

subinterval lengths are too small, very few observations will be seen in each interval leading
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to large variability in the estimator. If the subinterval lengths are too large, interesting

features, for example trends and cycles, in the data may be missed.

Kuhl and Wilson (2000) investigate least squares methods for fitting the integrate rate

function, Λ(t), with rate function of the EPTMP form, as in Equation (2.2.1).

The idea of quantifying the error caused by input modelling that propagates through a

simulation model to the simulation output performance measures is now introduced.

2.3 Error Caused by Input Modelling

The “stochastic” in stochastic simulation is a reflection of the input models that are used

to drive a simulation through time. Input modelling, as discussed in Chapter 2.2, allows

us to form representations of the inputs to a simulation model; this may, for example, be

in the form of a statistical distribution, empirical distribution or statistical process. These

representations are formed using observations of the system of interest and thus, since only

a finite number of observations can ever be collected, contain error. In this thesis the error

that propagates to the simulation output due to there being error in the input distributions

that drive the simulation is referred to as the error caused by input modelling.

Types of error within simulation include; stochastic estimation error (SEE), the error

arising from the generation of random variates during the simulation and model error,

caused by differences between the real-world system and the simulation model of it. Here

model error includes input modelling error which is caused by having only a finite number

of observations to build the input models that drive the simulation. Validation is the process

of checking that a simulation model truthfully represents the system it is mimicing. It is not

the topic of this thesis, but for more information on validation and verification techniques

in simulation see Banks et al. (2013) and references therein. Quantification and reduction

of SEE has been well studied, see Nelson (2013) and references therein. Whilst estimating

SEE is not the main focus of this thesis it will be discussed when necessary in the following

chapters. SEE is known to decrease as the number of replications of a simulation model is
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increased; error caused by input modelling does not.

In practice, quantification of the error in simulation responses has mainly been restricted

to quantifying the SEE. Barton (2012) warns of the danger of not considering error caused

by input modelling and Lin et al. (2015) show that error caused by input modelling can be

many orders of magnitude larger than SEE. Ignoring error caused by input modelling can

lead to over-confidence in the output of the simulation especially when there is little data

from which to estimate the input distributions and a large amount of simulation effort has

been spent on reducing the SEE.

The mean squared error (MSE) error caused by input modelling can be broken down

into variance, known in the literature as input uncertainty (IU), and the squared bias caused

by input modelling

MSE = Input Uncertainty+Bias2.

The methodology behind input uncertainty quantification and bias caused by input mod-

elling shall now be considered.

2.3.1 Input Uncertainty

First let us formally introduce and define input uncertainty. For simplicity, consider a

simulation model with a single input, with true distribution Fc, from which i.i.d data

X1,X2, . . . ,Xm has been sampled. The true distribution, Fc, from which these values were

sampled is unknown, it is therefore estimated by fitting distribution F̂ , a function of the

observed data. In practice F̂ is used to drive the simulation model; let the observed output

of the simulation in replication j be denoted

Yj(F̂) = η(F̂)+ ε j(F̂)

where η(F̂) is the expected simulation response dependent on the estimated distribution F̂

and ε1(F̂),ε2(F̂), . . . ,εn(F̂) are i.i.d random variables representing the noise from replica-

tion to replication of the simulation with mean 0 and variance σ2. In practice this noise is

a consequence of the input distributions, caused by the use of random numbers within the
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simulation to, for example, generate event times. In running the simulation, our interest is

in estimating the expected simulation response, η(F̂), which may be estimated by taking

the average of the simulation output over n replications

Ȳ (F̂) =
1
n

n

∑
j=1

Yj =
1
n

n

∑
j=1

(
η(F̂)+ ε j(F̂)

)
= η(F̂)+

1
n

n

∑
j=1

ε j(F̂).

As the number of replications, n, gets large the noise in the simulation is driven down to 0.

The variability in Ȳ (F̂) can be broken down, using the total law of variance, into input

uncertainty and stochastic estimation error as follows

Var(Ȳ (F̂)) = Var [E(Ȳ (F̂)|F̂)]+E [Var(Ȳ (F̂)|F̂)]. (2.3.1)

Input uncertainty, the first term in Equation (2.3.1), is the variability in Ȳ (F̂) that comes

from having estimated the input distributions. Since the fitted distribution, F̂ , is based on

real-world data it is independent of the noise in the simulation and thus IU reduces to

IU = Var [η(F̂)]. (2.3.2)

The second term in Equation (2.3.1) represents the SEE that arises in the simulation model,

it can be estimated using the sample variance of the simulation response, S2/n.

There exist both parametric and non-parametric IU quantification techniques. Non-

parametric methods focus on the statistical technique of bootstrap resampling and para-

metric techniques can be split into frequentist and Bayesian methodologies. The different

approaches to IU quantification will now be discussed alongside the current literature in this

area. Note that the techniques presented here only consider IU quantification in simulation

models with homogeneous input distributions. In this thesis when we say homogeneous

we mean homogeneous with respect to time. In Chapter 3 new methodology for input

uncertainty quantification in simulation models with nonhomogeneous inputs is presented.

Barton and Schruben (1993, 2001) consider three approaches to input uncertainty quan-

tification. The first is known as direct resampling and is based on the variability in the mean

simulation response having used a different sample of data in each replication. In reality

it is not guaranteed that multiple real-world samples will be available; a solution to this is
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to use bootstrapping, see Efron and Tibshirani (1986), which is the basis for their second

approach. Bootstrapping mimics the effect of having multiple real-world samples by either

sampling from the original data with replacement or generating new samples from the esti-

mate fitted input distribution. Barton and Schruben (2001) present a bootstrap resampling

method for IU quantification working from empirical input distributions. They also present

a third approach of IU quantification based on randomly changing the increments of the

empirical distribution function within each replication.

Ankenman and Nelson (2012) provide a quick method for assessing the impact of input

uncertainty on simulation performance which requires relatively little additional simulation

effort having run the simulation to gain the output of interest. This method is based on

a random-effects model. The random effects model assumes multiple samples of size m

have been observed and thus there are multiple estimates of the input model F̂i, for i =

1,2, . . . ,b. In reality it may not be the case that multiple samples have been observed,

bootstrapping is therefore utilised to mimic having observed the additional samples of size

m. Their estimator is a measure of the difference between an estimate of the total variability

of the simulation output and the SEE as, intuitively, the difference can be attributed to

input uncertainty. This estimator may be crude but Ankenman and Nelson (2012) also

provide a method for assessing which inputs to the simulation are the largest contributors to

input uncertainty which can be a good source of information for follow up data collection.

One drawback of the proposed follow up experiment is its complexity. Song and Nelson

(2013) provide a follow-up analysis that requires no additional simulation experiments and

provides more information than the method of Ankenman and Nelson (2012).

Barton et al. (2013) present a metamodel assisted bootstrapping method for construct-

ing a confidence interval about the mean response of a system that, unlike traditional sim-

ulation confidence intervals, takes into account both SEE and IU. The metamodel of the

mean response is built using experimental design and leads to computational savings as

input uncertainty can be propagated through the metamodel to the response without sim-

ulating. Similarly, Barton et al. (2010) and Xie et al. (2014b, 2016) present meta-model
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assisted bootstrapping frameworks for IU quantification in stochastic simulation models

with dependent input models where IU also arises in the estimation of the correlation ma-

trix. Within the proposed methods a stochastic kriging meta-model is used to propagate IU

to the mean response.

Song and Nelson (2015) also adopt a meta-model approach within their IU quantifica-

tion method by introducing a mean-variance effects model. This treats the mean response

as a function of the means and variances of the input distributions. For a simulation model

with a single input distribution this is

η(F̂) = β0 +β1µ(F̂)+νσ
2(F̂), (2.3.3)

where µ(F̂) and σ2(F̂) represent the mean and variance of the input distribution F̂ , and β0,

β1 and ν are constant coefficients to be estimated via least squares regression. Given Model

(2.3.3) input uncertainty is approximated by

Var [η(F̂)] = β
2
1 Var [µ(F̂)]+ν

2Var [σ2(F̂)]+2β1νCov[µ(F̂),σ2(F̂))].

Bootstrap sampling is utilised to fit the mean-variance effects model. The method allows

consideration of both parametric and empirical inputs to the simulation model, see Song

et al. (2014) for further details. In Chapter 3 more detail is provided and this method is

extended to simulation models with piecewise-constant NHPP arrival processes.

In Chapter 3 the method of Cheng and Holland (1998) is also extended. They use

a Taylor series approach to enable input uncertainty quantification in simulation models

with parametric input distributions. Note that, by only considering parametric distributions,

input uncertainty is just parameter uncertainty. Their method takes a first-order Taylor series

approximation of the expected simulation response

η(θ̂θθ)≈ η(θθθ c)+∇η(θθθ c)(θ̂θθ −θθθ
c)T , (2.3.4)

where θθθ c denotes the vector of true input parameters and θ̂θθ is the vector of maximum

likelihood estimators (MLEs) of the input parameters given the observed data. Taking the



CHAPTER 2. BACKGROUND MATERIAL 23

variance of (2.3.4) gives the estimate of IU,

Var [η(θ̂θθ)]≈ ∇η(θθθ c)Var(θ̂θθ)∇η(θθθ c)T ,

which is asymptotically correct as the amount of input data goes to infinity. Within this

Taylor series approach the gradient term, ∇η(θθθ c), must be estimated as θθθ c is unknown. Lin

et al. (2015) present the internal gradient estimator of Wieland and Schmeiser (2006) which

allows calculation of ∇η(θθθ c) with no additional simulation effort. Cheng and Holland

(2004) use a Taylor series approach to provide a confidence interval that takes into account

both SEE and parameter uncertainty.

Turning now to the Bayesian approaches for input uncertainty quantification, Biller and

Corlu (2011) also focus on the construction of confidence intervals that take into account pa-

rameter uncertainty, with specific focus on the parameters of correlated normal-to-anything

(NORTA) distributions within large-scale stochastic simulations. Bayesian approaches to

IU quantification usually aim to quantify the uncertainty in the choice of distributional fam-

ily used to represent an input in addition to the uncertainty arising in estimating its param-

eters. Chick (1997) proposes a Bayesian framework for analysing the output of a simulated

system that infers the full distribution of the simulation output including uncertainty from

parameter estimates. Chick (2001) presents a Bayesian model averaging approach to input

uncertainty quantification which randomly samples an input model and its parameters for

use in each replication. Zouaoui and Wilson (2003, 2004) take a similar approach sampling

the input parameters from their posterior distributions and estimating the model uncertainty

by weighting the simulation results using the posterior model probabilities. Ng and Chick

(2001, 2006) suggest sampling plans for reducing parameter uncertainty and thus uncer-

tainty about the expected simulation response.

Xie et al. (2014a) present a fully Bayesian method for measuring the overall uncer-

tainty in the mean response while simultaneously reducing SEE. They use the posterior

distribution of the mean simulation response to quantify the overall uncertainty in the mean

response and suggest summarising the uncertainty using a credible interval for the expected

simulation response. This credible interval can easily be broken down into SEE and IU.
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2.3.2 Bias caused by input modelling

Bias caused by input modelling, denoted b, describes how far, on average, the simulation

response is from the real-world performance given the error that arises when estimating the

input models. In this thesis bias caused by input modelling is considered for simulation

models with parametric inputs where the true input parameters, θθθ c, are estimated by the

maximum likelihood estimators (MLEs), θθθ mle. There is currently no literature on quantify-

ing the bias caused by input modelling for simulation models with non-parametric inputs.

Here the output of the simulation in replication j is

Yj(θθθ
mle) = η(θθθ mle)+ ε j(θθθ

mle).

Bias caused by input modelling arises within the mean simulation response, η(θθθ mle), it is

defined by

b = E [η(θθθ mle)]−η(θθθ c),

where expectation is taken with respect to the sampling distribution of θθθ mle. This form

of bias arises when the response of interest is a non-linear function of its inputs, as is

commonly the case in the complex systems for which simulation is used.

When one refers to quantifying the ‘bias’ it is typically the bias of an estimator of a

population parameter given a sample of data, averaged over the distribution of possible

samples. In our computer-simulation context this bias is also averaged over the natural

noise due to generating samples of the stochastic inputs. Stated differently, our estimator

is a function of both real-world and simulated sampling. In Chapter 4 we present new

methodology for the estimation of bias caused by input modelling is presented along with

a bias detection test for assessing when this error is relevant in terms of the total mean

squared error (MSE) caused by input modelling.

Standard methods used to estimate bias are the jackknife and the bootstrap method.

The jackknife is often considered the go-to choice for bias reduction. Given k independent

observations used to estimate population parameter θ̂ ; the jackknife estimate of the bias of
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estimator θ̂ , b̂JK , is

b̂JK = (n−1)

(
1
n

n

∑
i=1

θ̂i− θ̂

)
where θ̂i is the estimator calculated from all but the ith data point, referred to as the ith

“leave-one-out” estimator. In words, the jackknife is the average of the deviations of each

leave-one-out subsample estimator from θ̂ . This bias estimate is correct up to second-order;

see Efron (1982). The jackknife estimate of bias can also be used to give a bias-corrected

estimator

θ̂JK = θ̂ − b̂JK = nθ̂ − (n−1)
n

n

∑
i=1

θ̂i.

The bootstrap estimator of bias, b̂BS, mimics the collection of repeated samples of data

by sampling from the original data with replacement to gain a bootstrap sample of the same

length. Lets say b bootstrap samples are collected from the original data, of length n, then

the bootstrap estimator of bias is

b̂BS =
1
b

b

∑
i=1

θ̂
?
i − θ̂

where θ̂ ?
i is the estimator calculated from the ith bootstrap sample. In words, the boot-

strap estimator of bias measures how far the bootstrap estimators deviate from the original

estimator on average, see Efron and Tibshirani (1994). Like the jackknife, the bootstrap

estimator of bias can be used to provide a bias correction

θ̂BS = θ̂ − b̂BS.

Both the jackknife and bootstrap estimators of bias are widely used non-parametric tech-

niques for bias estimation and reduction. However, neither method is appropriate in the

presence of noise due to the amount of simulation effort required to drive the error to zero,

see Chapter 4. In Chapter 4, in the presence of noise, a delta approximation of bias, based

on a second-order Taylor series expansion, is used for estimation of bias caused by input

modelling. The delta method is introduced and utilised in Chapter 4.
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2.4 Spline Functions

In this thesis a piecewise polynomial function that is, by construction, continuous and e

times continuously differentiable will be referred to as an e degree spline function. Known

uses for spline functions include: interpolation of data, solving differential equations and

curve approximation (de Boor, 1978).

In this thesis the interest in spline functions comes from an input modelling perspective.

In Chapter 5 a spline-based input model is presented that uses a spline function to represent

the arrival rate function of a NHPP.

Interpolation of observations using splines in the presence of exact data, data without

noise, has been studied extensively, see de Boor (1978), Shikin and Plis (1995) and refer-

ences therein. Of course, in the context of simulation and simulating real-world systems, in

reality, exact data is rarely available; instead observations are collected from an underlying

process in the presence of noise. Here interpolation would model the noise in the model

instead of the underlying process of interest, thus some compromise between staying close

to the observed data and obtaining a smooth representation must be reached. Smoothing

splines were designed for this problem, see Whittaker (1922), Schoenberg (1964), Rein-

sch (1967) and Eliers and Marx (1996) for the foundations of work in this area. Smoothing

splines use least squares methodology to fit the spline in the presence of some penalty on the

smoothness of the resulting function. More recently penalised likelihood approaches have

also been used as a tool to give a smooth spline representation (Gray, 1992); this approach

is built upon in Chapter 5. The composition of spline functions as a linear combination of

B-spline basis functions is now discussed.

2.4.1 Basis functions and spline functions

A e-degree spline function can be described as a linear combination of n, e-degree ba-

sis splines, otherwise known as B-splines. Let the kth e-degree B-spline be denoted by

Bk,e,sssk(·), k = 1,2, . . . ,n, where sssk = {sk−(e+1),sk−e, . . . ,sk} is the knot sequence over which
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the B-spline is defined. A spline function is therefore denoted by

λ (t) =
n

∑
k=1

ckBk,e,sssk(t), (2.4.1)

where ck is the kth spline function coefficient, k = 1,2, . . . ,n. All B-splines are defined over

knot sequences. Given sssk, the kth B-spline has the following properties:

• Local support; Bk,e,sssk(t)> 0 for t ∈ (sk−(e+1),sk) only.

• Positivity; Be(t)≥ 0 for all t.

For e > 1, B-splines can be composed recursively from lower degree B-splines using the

following recurrence relation

Bk,e,sssk(t) =
t− sk−(e+1)

sk−1− sk−(e+1)
Bk,e−1,sssk(t)+

sk− t
sk− sk−e

Bk+1,e−1,sssk+1(t), (2.4.2)

for t ∈ [sk−(e+1),sk); at the lowest level this is

Bk,0,sss(x) =
{ 1 if sk−1 ≤ x < sk

0 otherwise,

see de Boor (1978) for the proof. Figure 2.4.1 demonstrates this recursion by illustrating

the lower degree component splines that make up a cubic B-spline. For clarity, the four

zero degree, B-splines from which the linear B-splines are composed were omitted from

the figure.

To compose a spline function from n B-splines the n local knot vectors sssk, k = 1,2, . . . ,n

are combined. The resulting knot sequence of the spline function, sss= {s−e,s−e+1, . . . ,s0,s1,

. . . ,sn+1}, has length n+ e+ 1. Within this thesis the first knot in the knot sequence will

consistently be denoted by s−e, when there is interest in the spline function on the interval

[0,T ] by setting s0 = 0 and sn−e = T this means e+1 B-splines are non-zero for all t ∈ [0,T ].

Figure 2.4.2 illustrates this when the interval of interest is [0,3]. It shows the support of 7

B-splines on uniform knot vector sss = {−3,−2, . . . ,7}. Spline functions constructed from

B-splines on uniform knot sequences are known as cardinal splines. In general, the knots

of a spline function need not be uniformly spaced; other common knot vectors space the
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Figure 2.4.1: A single cubic B-spline (blue) and the lower degree, quadratic (dark grey) and

linear (light grey), B-splines from which it is composed.

knots such that around the same number of observations fall between each knot, see Gray

(1992). But cardinal splines come with certain advantages since there is essentially a single

B-spline in use and all other B-splines are horizontal translations of the first.

The definition of a spline function of degree d with knot sequence sss is any linear com-

bination of B-splines of order e for the knot sequence sss. Let the collection of all such

functions be denoted by fe,sss where,

fe,sss =

{
∑
k

ckBk,e,sss(t) : ck ∈ R ∀ k

}
.

Note that, by construction using recurrence relation (2.4.2), as presented by de Boor (1978),

a spline function is continuous and e times continuously differentiable. Once the n+ e+1

knots have been placed the value of the n B-splines is fixed for all t. The shape of the spline

function λ (t;ccc) is therefore controlled by the value of the spline coefficients ccc = (ck)
n
k=1.

Figure 2.4.3 illustrates two cubic spline functions on the same knot vector with differ-

ent spline coefficients, ccc = (ck)
n
k=1, along with the B-spline basis functions used in their

composition and markers to show the interval, [0,3], in which e+ 1 B-splines are active.

As the number of knots, n, is increased the number of B-splines used to compose the spline

function, gets larger. This gives increasing flexibility of the shape of the spline function.
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Figure 2.4.2: The support of n = 7 B-splines over the interval [0,3) given uniform knot

vector sss = {−3,−2,−1,0,1,2,3,4,5,6,7}

Figure 2.4.4 illustrates two spline functions with double the number of knots as those in

Figure 2.4.3; it is clear that these spline functions are more flexible.

The topic of spline functions is returned to in Chapter 5 where a spline function is used

to estimate, and generate event times from, the arrival rate function of a NHPP.
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Figure 2.4.3: Two cubic spline functions (green and blue) on knot vector sss = {−3, −2, −1, 0,

1, 2, 3, 4, 5, 6, 7} with spline coefficients ccc1 = {9.02,7.46,6.04,2.04,5.34,8.13,7.61} (blue) and

ccc2 = {4.57,0.69,2.80,0.70,9.45,2.80,1.94} (green) along with the B-spline basis functions from

which they were composed (grey).
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Figure 2.4.4: Two spline functions (green and blue) on knot vector sss = {−2.0, −1.5, −1.0, −0.5,

0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,5.5, 6.0, 6.5, 7.0, 7.5, 8.0} along with the B-spline

basis functions from which they were composed (grey).



Input Uncertainty Quantification for Sim-

ulation Models with Piecewise-constant Non-

stationary Poisson Arrival Processes

3.1 Introduction

Within simulation models, more often than not, the true input models used to drive the

system are unknown. When observations are available from the system of interest the

input models can be estimated, and this causes uncertainty to arise within the simulation

output. This error is known as input uncertainty (IU). Overlooking IU is still a common

error in the simulation community where practitioners treat the estimated input models as

correct. This can be risky, particularly if the sample of real-world data is small, and could

result in misleading outputs. The survey by Barton (2012) showed that in some cases input

uncertainty overwhelms stochastic estimation error, the error arising from the generation of

random variates during the simulation; it should, therefore, not be ignored.

Recently input uncertainty techniques have been implemented in the commercial soft-

ware Simio (Simio LLC) making it easier for simulation users to quantify the effect of

31
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input uncertainty without having to manually implement a complex statistical procedure.

However, this software is limited to i.i.d processes. For a review of input uncertainty quan-

tification techniques see the survey papers by Barton (2012) or Song et al. (2014).

In operational research most simulation models have some form of arrival process. Ex-

amples include call centers, supply chains or accident and emergency departments where

customers or demand can occur according to either a stationary or non-stationary arrival

process. Input uncertainty for nonhomogeneous arrival processes is yet to be addressed.

This chapter aims to fill this gap by quantifying input uncertainty in simulation models with

piecewise-constant, nonhomogeneous Poisson arrival processes. Piecewise-constant arrival

rate functions are often used in practice in simulation studies as they provide flexibility and

are conveniently fit to count data. They are included in many software packages such as

Simio (Simio LLC), SIMUL8 (Simul8 Corporation) and Arena (Rockwell Automation). It

is therefore a natural step to want to quantify the uncertainty propagated to the simulation

output due to the estimation of nonhomogeneous arrival processes. We extend two existing

methods for quantifying IU due to i.i.d. input processes to cover nonhomogeneous Poisson

processes with piecewise-constant arrival rates estimated from count data. Further, we im-

prove one method by exploiting the knowledge that the process is Poisson allowing it to

handle arrival processes with many rate changes. We also demonstrate how change-point

analysis can be used to obtain a parsimonious representation of the piecewise-constant ar-

rival rate function.

The chapter is organised as follows. In §3.2 we present background on current IU quan-

tification techniques and discuss methods for modelling nonhomogeneous Poisson arrival

processes. In §3.3 new methods, building on the work of Cheng and Holland (1997) and

Song and Nelson (2015) are presented. This is followed by an empirical evaluation and

realistic illustration of the methods in §3.4. We finish with conclusions and suggestions for

further work in §3.5.
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3.2 Background

An early contribution to the IU literature came from Cheng and Holland (1997) who mod-

elled IU using a Taylor series expansion of the mean response as a function of the input

distribution parameters. An adaptation of this method was later given by Lin et al. (2015)

making use of internal gradient estimation, derived by Wieland and Schmeiser (2006), to

reduce quantification of input uncertainty to a single experiment. An alternative approach

was given by Song and Nelson (2015) who present a mean-variance effects model for quan-

tifying IU. This method, although not asymptotically justified, makes intuitive sense as the

performance measures are likely to depend greatly on the mean and variance of the input

distributions.

There are also Bayesian techniques that can be implemented to assist in quantifying

uncertainty. Chick (2001) first employed Bayesian techniques enabling the incorporation

of prior knowledge of input distributions into simulation modelling. In this method prior

information is used for the selection of the input distributions only and input uncertainty

is still calculated using the frequentist approach of finding and subtracting the simulation

estimation error from the total uncertainty. Zouaoui and Wilson (2010) extended this tech-

nique using the posterior probability of the candidate distributions to weight the simulation

response but again use frequentist techniques for IU quantification. Recently Xie et al.

(2014a) developed a fully Bayesian approach for quantifying uncertainty using Gaussian

processes to find the posterior distribution of the simulation performance measure of inter-

est. This is then summarized by a credible interval which can easily be dissected to find an

estimate for the input uncertainty.

Modelling nonhomogeneous Poisson arrival processes (NHPPs) is also key to our prob-

lem. Using Poisson processes has its advantages: they have good properties that make

them easy to simulate using thinning or inversion. Kuhl and Wilson (2009) consider both

parametric and non-parametric input model approximations, with respect to NHPPs.

Our focus in this chapter is on count data and we model the rate function, λ (t), as a
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piecewise-constant function over q intervals. The intervals, (0, t1],(t1, t2], . . . ,(tq−1, tq], will

represent the intervals over which the rate is unchanged. Chen and Gupta (2011) give a way

to identify, from count data, where change points in the rate function occur using hypothesis

testing. This technique will be utilised in §3.4 as a pre-processing tool to reduce the number

of parameters in our model. Employing piecewise-constant λ (t) is justified by Henderson

(2003) who showed that asymptotically, increasing the number of observations of a process

whilst simultaneously decreasing the interval size leads to the true arrival rate function of

interest under mild conditions.

3.3 Methods

Before considering IU quantification for piecewise-constant NHPPs we set up our approach

by reviewing two existing techniques for quantifying input uncertainty in simulation models

with stationary arrival processes.

For ease of explanation consider the simulation of a single queue with two driving pro-

cesses. Let the true input distributions be denoted by FFFc; in reality these distributions are

unknown and therefore estimated distributions F̂FF will be used to drive the simulation. We

will assume the arrivals follow a Poisson process, with true rate parameter λ c, denote this

by Fλ . The service distribution, depending on the situation, may be estimated by a para-

metric or non-parametric distribution but for ease of exposition we treat it as a parametric

distribution with true parameter/s θθθ c; denote this Fθθθ . Note that the form of Fθθθ will have an

effect on the approach we will take. This gives the parameter space (λ c,θθθ c) where θθθ c is a

row vector of parameters from the service distribution, and here FFFc = (Fλ ,Fθθθ ).

Given real-world data we have independent counts, N1,N2, . . . ,Nmλ
of the arrival pro-

cess, observed mλ times over the interval [0,T ), and observations X1,X2, . . . ,Xmθθθ
of the

service process. Therefore (λ c,θθθ c) can be estimated by their maximum likelihood esti-

mators (MLEs) (λ̂ ,θ̂θθ). For example assuming the arrivals follow a Poisson process im-

plies that the arrival counts can be represented by a Poisson distribution, N1,N2, . . . ,Nmλ
∼
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Poisson(λ c T), and the MLE of the arrival rate is therefore

λ̂ =
Σ

mλ

i=1Ni

mλ T
.

This gives the estimated distributions F
λ̂

and F
θ̂θθ

used to drive the simulation. The simula-

tion goal is to estimate η(λ c,θθθ c), the expected value of the output of the simulation given

the true input parameters. We describe the output from replication j of the simulation by

Yj(λ ,θθθ) = η(λ ,θθθ)+ ε j(λ ,θθθ) j = 1,2, . . . ,r

where ε represents stochastic noise and has mean 0 and variance σ2(λ ,θθθ), and r is the total

number of replications. Given the MLEs (λ̂ ,θ̂θθ ) a nominal performance measure estimate

of η(λ c,θθθ c) is

Ȳ (λ̂ ,θ̂θθ) =
Σr

j=1Yj(λ̂ ,θ̂θθ)

r
.

This has variance Var[Ȳ (λ̂ ,θ̂θθ)] which breaks down into input uncertainty and simulation

estimation error. Note that most simulation studies ignore input uncertainty because it is

believed to be difficult to quantify. In reality input uncertainty is just the variance of the

expected value of the output of the simulation with respect to the estimated parameters

(λ̂ ,θ̂θθ); this can be denoted by

σ
2
I = Var[η(λ̂ ,θ̂θθ)] = Var[E(Y (λ̂ ,θ̂θθ)|λ̂ ,θ̂θθ)].

See Chapter 2 for the full derivation. The other contribution to uncertainty in the output of

the simulation comes from simulation estimation error caused by the generation of random

variates during the simulation. Simulation estimation error is denoted by σ2(λ̂ ,θ̂θθ)/r which

can be estimated using the sample variance S2/r.

3.3.1 Cheng and Holland

Cheng and Holland (1997) consider only parametric distributions as inputs to the simu-

lation model. This simplifies input uncertainty to parameter uncertainty. Using a Taylor
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Series approximation, if η(λ ,θθθ) is continuously differentiable then to first order it can be

expressed as

η(λ̂ ,θ̂θθ)≈ η(λ c,θθθ c)+∇η(λ c,θθθ c)((λ̂ ,θ̂θθ)− (λ c,θθθ c))T

where ∇η(λ c,θθθ c) is the gradient of the expected value of the performance measure with

respect to the input parameters λ and θθθ . Input uncertainty, Var[η(λ̂ ,θ̂θθ)], can then be ap-

proximated by

Var[η(λ̂ ,θ̂θθ)]≈ ∇η(λ c,θθθ c)Var(λ̂ ,θ̂θθ)∇η(λ c,θθθ c)T . (3.3.1)

In reality, none of the terms on the right-hand side of Equation (3.3.1) are known and so

must be estimated.

If the two input distributions are assumed independent, then Var(λ̂ ,θ̂θθ) can be denoted

by

Var(λ̂ ,θ̂θθ) =

 Var(λ̂ ) 000

000 Var(θ̂θθ)

 .

This can be estimated by V̂ar(λ̂ ,θ̂θθ) = I−1(λ̂ ,θ̂θθ), the inverse Fisher information matrix of

the MLEs evaluated at (λ̂ ,θ̂θθ).

Estimation of the gradient is critical. One method is to use the internal gradient estima-

tor of Wieland and Schmeiser (2006), as seen in Lin et al. (2015). This enables ∇η(λ̂ ,θ̂θθ)

to be evaluated using no additional simulation effort. We specialise this gradient estimation

method to our situation below. Although based on similar ideas, the gradient estimation

described here is distinct from the Taylor series expansion of η(λ̂ ,θ̂θθ) employed by Cheng

and Holland (1997).

To ease understanding of how we estimate the gradient, consider a simulation model

with a single input distribution. Let this describe arrivals to a system and be approximated

by real-world data where arrival count observations N1,N2, . . . ,Nmλ
∼ Poisson(λ cT). We

assume arrivals are simulated over the full interval [0,T ). From these observations λ̂ can be

found, this is then, for the purpose of the internal gradient estimation method, considered

to be the true arrival rate λ c. In replication j, the rate λ̂ is used to drive the simulation and

the count of the number of simulated arrivals in the interval is recorded. Denote this by d j
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for replication j. This count can then be used to re-estimate the arrival rate; we call this

estimate λ̄ j where λ̄ j = d j/T . Note that we assume E[λ̄ j] = λ̂ since the parameter λ̂ was

used to run the simulation over j replications. This results in pairs of observations (Yj, λ̄ j).

Assuming the output of the simulation depends on the input models, as is most likely the

case, then (Y j, λ̄ j) are expected to be dependent. Moreover, if their joint distribution is

assumed to be approximately bivariate normal then

E[Y j(λ̂ )|λ̄ j] = η(λ̂ )+ΣY λ̄
Σ
−1
λ̄ λ̄

(λ̄ j− λ̂ ) = δ0 +δ1λ̄ j

where ΣY λ̄
is the covariance between Yj and λ̄ j and Σ

λ̄ λ̄
is the variance of λ̄ j. Here the

derivative of the expected response with respect to λ , the gradient, estimated at λ̂ equals

δ1 = ΣY λ̄
Σ
−1
λ̄ λ̄

which can easily be estimated using least squares regression.

This method can be extended when there are multiple input distributions, which is often

the case in simulation models. Recall in our simulation model there is an arrival and service

distribution. To find θ̄θθ , for the service distribution, this method is just repeated with respect

to θθθ . This gives r independent and identically distributed (i.i.d) vectors (Yj,(λ̄ j,θ̄θθ j)), j =

1,2, . . . ,r.

Lin et al. (2015) suggest the joint distribution of (Yj,(λ̄ j,θ̄θθ j)) should now be considered

multivariate normal, a natural extension of the previous approach, which gives

E[Yj(λ̂ ,θ̂θθ)|(λ̄ j,θ̄θθ j)]=η(λ̂ ,θ̂θθ)+ΣY (λ̄ ,θ̄θθ)Σ
−1
(λ̄ ,θ̄θθ)(λ̄ ,θ̄θθ)

(
(λ̄ j,θ̄θθ j)− (λ̂ ,θ̂θθ)

)T
= δ0+δδδ 1(λ̄ j,θ̄θθ j)

T .

The gradient of ∇η(λ̂ ,θ̂θθ) is δδδ 1 which, again, can be obtained by least squares regression.

We now have estimates of both Var(λ̂ ,θ̂θθ) and ∇η(λ c,θθθ c) and can therefore quantify IU

using Equation (3.3.1).

3.3.2 Song and Nelson

Song and Nelson (2015) suggest a different approximation of the mean function. Their

approach is applicable to both parametric and non-parametric distributions, unlike the ap-

proach of Cheng and Holland (1997). We therefore let the output of the jth replication
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of the simulation, given the collection of input distributions F̂FF, be denoted by Yj(F̂FF) =

E[Y (F̂FF)|F̂FF]+ ε j, where the distribution of ε j could depend on F̂FF.

They assume that the output mean E[Y (F̂FF)|F̂FF] can be represented as a function of the

mean, µ(F̂FF), and variance, σ2(F̂FF), of the input distributions alone. Since E[Y (F̂FF)|F̂FF] is a

random variable dependent on F̂FF it can be thought of as a function, η(F̂FF), which, in the case

of our queueing illustration, Song and Nelson (2015) approximate as

η(F̂FF)≈ β0 +βλ µ(F̂
λ
)+ vλ σ

2(F̂
λ
)+βθθθ µ(F

θ̂θθ
)+ vθθθ σ

2(F
θ̂θθ
).

This is called a mean-variance effects model, and it can be extended to any number of

stationary input distributions.

Song and Nelson (2015) fit this model by generating B bootstrap samples from F̂FF, then

using the empirical distribution of these bootstrap samples, F̂FF
?
, to drive B simulations. Em-

pirical distributions are used to obviate the need to refit a parametric distribution to each

bootstrap sample from F̂FF, and because it makes certain variance and covariance terms (see

below) easier to compute.

Consider our assumption that the observed arrival counts follow a Poisson process with

true rate λT. Here the mean and variance of the observed counts, µ(F̂λ ) and σ2(F̂λ ), both

equal λ̂T, simplifying the mean-variance model. Note that Song and Nelson (2015) did

not consider the use of counts to estimate the arrival rate, as we do here. Now only one

regression coefficient is needed to represent the arrival process

η(F̂FF)≈ β0 +βλ µ(F̂
λ
)+βθθθ µ(F

θ̂θθ
)+ vθθθ σ

2(F
θ̂θθ
). (3.3.2)

In addition, in this case the bootstrap samples are easy to fit to a Poisson process using the

MLE, λ̂ . Therefore, the bootstrap simulations can be driven by Poisson processes rather

than empirical distributions; this makes the method more accurate. These two insights are

key to our approach.
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From Equation (3.3.2) we derive input uncertainty, σ2
I ,

Var[η(F̂FF)] = Var[β0 +βλ µ(F̂
λ
)+βθθθ µ(F̂θθθ )+ vθ σ

2(F̂θθθ )],

= β
2
λ

Var[µ(F̂
λ
)]+β

2
θθθ

Var[µ(F̂θθθ )]+ v2
θθθ

Var[σ2(F̂θθθ )]+2vθθθ βθθθ Cov[µ(F̂θθθ ),σ
2(F̂θθθ )],

(3.3.3)

assuming independence among the input distributions. Expression (3.3.3) can be approxi-

mated, through the use of bootstrap sampling, by

Var[η(F̂FF)] = Var[η(F̂FF)|FFFc]≈ Var[η(F̂FF
?
)|F̂FF],

where

Var[η(F̂FF
?
)|F̂FF] = β

2
λ

Var[µ(F?
λ̂
)|F̂

λ
]+β

2
θθθ

Var[µ(F̂?
θθθ
)|F̂θθθ ]+ v2

θθθ
Var[σ2(F̂?

θθθ
)|F̂θθθ ]

+2vθθθ βθθθ Cov[µ(F̂?
θθθ
),σ2(F̂?

θθθ
)|F̂θθθ ].

Firstly looking at the arrival distribution, if we let F?
λ̂

denote the Possion distribu-

tion fitted by the parametric bootstrap sample of arrival counts, then Var[µ(F?
λ̂
)|F̂

λ
] =

Var[λ̂ ?|F̂
λ
] = λ̂/mλ T. For the service process, which we will assume to be non-parametric,

F̂?
θθθ

, µ(F̂?
θθθ
) and σ2(F̂?

θθθ
) are given by the mean and second sample central moment of the

bootstrapped sample X?
1 ,X

?
2 , . . .X

?
mθθθ

. As the number of observations increases this approx-

imation is asymptotically justified and expressions for the variance and covariance can be

found by

Var[µ(F̂∗
θθθ
)|F̂θθθ ] =

M2
θθθ

mθθθ

Var[σ2(F̂∗
θθθ
)|F̂θθθ ]≈

M4
θθθ
− (M2

θθθ
)2

mθθθ

Cov[µ(F̂θθθ ),σ
2(F̂∗

θθθ
)|F̂θθθ ]≈

M3
θθθ

mθθθ

where Mk
θθθ

is the kth central moment of F̂θθθ , and since F̂θθθ is an empirical distribution Mk
θθθ
=

Σ
mθθθ

i=1(Xθθθ i− X̄θθθ )
k/mθθθ .

To find the coefficients of the mean-variance meta-model the bootstrap experiments are

used to fit a regression model which can be used to evaluate β0,βλ ,βθθθ and vθθθ . This gives

all components needed to calculate input uncertainty using Equation (3.3.3).
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When deciding which method to use in practice, the form of the input distributions is

key, as is the amount of data available. Cheng and Holland (1997) require all input dis-

tributions to be parametric and therefore the method could be said to have less flexibility.

Conversely, Song and Nelson (2015) can handle both parametric and non-parametric dis-

tributions but difficulty arises in computing the variance and covariance terms needed to

quantify IU for some parametric distributions. Note that in our case we exploit the fact that

for Poisson distributions this is easy.

The use of bootstrapping by Song and Nelson (2015) means given any sized sample

of observations of either process we should be able to obtain the same approximation of

IU. Although be warned that the validity of bootstrapping does come into question for

extremely small samples, see Chernick (2008) for a discussion. Unlike the method by

Cheng and Holland (1997) which relies on asymptotic theory, and therefore may not give

a good approximation of input uncertainty when the number of observations is small. But

being asymptotically justified could be seen as an advantage, Song and Nelson (2015) rely

on their intuitive model which may not perform well in situations where the output of the

simulation cannot be described well by the first two moments of the input distributions.

It will be of interest to see if the strengths and weaknesses of either method translate to

cases where nonhomogeneous arrival processes are included in the simulation model; this

will be covered in §3.4.

3.3.3 Nonhomogeneous Arrival Processes

We now present two methods for quantifying input uncertainty in simulation models driven

using at least one piecewise-constant, nonhomogeneous Poisson arrival process. These

methods build upon the work of Cheng and Holland (1997) and Song and Nelson (2015)

but introduce the idea of modelling the input arrival distributions using arrival count obser-

vations instead of inter-arrival time observations. The assumption that these arrival counts

follow a Poisson distribution is key to our new methods and leads to a useful simplification

in both cases.
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Consider a piecewise-constant NHPP with q distinct arrival rates over the intervals

[0, t1), [t1, t2), . . . , [tq−1,T ). Each interval can be considered as a single input distribution

to the simulation with the observation interval matching the simulation interval. Again

let us consider a simple queueing model with a stationary service distribution and an

arrival process described by a piecewise-constant NHPP. The parameter space is now

(λ1,λ2, . . . ,λq,θθθ) where θθθ is a row vector describing the parameters of the service process.

We start by describing the Taylor series approximation method for quantifying input un-

certainty in this situation. Observed arrival counts in each interval are independent implying

no dependence between F̂λ1, F̂λ2, . . . , F̂λq . Equation (3.3.1) therefore becomes

σ
2
I = Var[η(λ̂λλ ,θ̂θθ)]≈ ∇η(λλλ c,θθθ c)Var(λ̂λλ ,θ̂θθ)∇η(λλλ c,θθθ c)T .

This requires estimation of the gradient, ∇η(λλλ c,θθθ c), and variance matrix, Var(λ̂λλ ,θ̂θθ). The

independence of the q arrival processes gives the following diagonal variance matrix

Var(λ̂1) 0 . . . 000

0 Var(λ̂2)

...

Var(λ̂q) 000

0 0 Var(θ̂θθ)


.

Since the arrival counts are assumed to be Poisson, closed form-equations exist for each

Var(λ̂i), i = 1,2, . . . ,q. Gradient estimation is also no harder in the nonhomogeneous case

using the internal gradient estimation method of Lin et al. (2015). This requires evaluation

of λ̄i, for i= 1,2, . . . ,q and least squares regression of Yj with respect to the parameter space

(λ̄λλ j,θ̄θθ j). One concern with this approach is the validity of the first-order approximation

if q becomes large over many short intervals. A possible way around this would be to

merge small intervals with similar arrival rates using change-point analysis within the pre-

processing stage of the experiment; this idea is explored further in §3.4.

Our second method, to be referred to as the mean-variance approximation, makes use

of a mean-variance effects model in the same way as Song and Nelson (2015) but uses
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arrival counts to model the input arrival distribution instead of inter-arrival times. Again

we consider each interval of the arrival process as a distinct distribution, each with ar-

rival rate λi, for i = 1,2, . . . ,q. Assuming the arrival counts follow a Poisson process means

µ(F̂
λi
) = σ2(F̂

λi
) for i = 1,2, . . . ,q, as seen in §3.3.2, allowing a simplification of the mean-

variance effects model. The arrival process therefore only contributes q elements, µ(F̂
λi
) for

i = 1,2, . . . ,q, to the mean-variance effects model, rather than 2q. This is a significant sim-

plification when there are many intervals. Formulae exist for both µ(F̂
λi
) and Var[µ(F̂

λi
)]

making the method simple to implement.

We have presented two techniques for approximately quantifying input uncertainty

in simulation models with piecewise-constant nonhomogeneous Poisson input processes.

However, it may also be of interest to determine the overall contribution of the arrival pro-

cess to IU to evaluate whether it overwhelms the uncertainty contribution from other input

distributions or whether there is a specific interval that contributes substantially to the total

IU. Similarly in a simulation model with L input distributions it would be useful to establish

the relative contribution of the lth input distribution to input uncertainty as this can be used

to indicate where more data should be collected if follow-up analysis were to be carried

out.

When the input distribution is stationary, Lin et al. (2015) and Song and Nelson (2015)

give ways to approximate the contribution of the lth input model. These techniques can

also be used alongside our two new methods for finding the contribution to IU of the arrival

process. Consider the ith interval of the arrival process, F
λ̂i

. Using a Taylor series expansion

its contribution c
λ̂i
(m

λ̂i
), is given by

c
λ̂i
(m

λ̂i
) = ∇η(λ̂i)V̂ar(λ̂i)∇η(λ̂i)

T ,

and when the mean-variance approximation method is used this translates to

c
λ̂i
(m

λ̂i
) = β

2
λ̂i

Var[µ(F
λ̂i
)].

Now if we were interested in finding the total contribution of the arrival process this is just
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the sum of the contributions of the q individual intervals

cλλλ (mλλλ ) = cλ1(mλ1)+ cλ2(mλ2)+ · · ·+ cλq(mλq).

Whichever approach is used to quantify input uncertainty, an approximation of the con-

tribution of the lth input model to input uncertainty can be found. From here quantifying

the relative contribution of the lth input distribution, Rl(ml), is simply Rl(ml) = cl(ml)/σ2
I .

This indicates which input distribution contributes the most to IU and therefore where fur-

ther input data collection may be required.

3.4 Empirical Evaluation

In this section we empirically evaluate and compare our methods using a tractable

M(t)/M/∞ queueing model. An illustration of using the methods to quantify IU in a re-

alistic call center setting is also presented to highlight the need for IU quantification in

simulation models with nonhomogeneous input processes.

3.4.1 M(t)/M/∞ Queueing Model

We firstly evaluate our methods by considering the M(t)/M/∞ queueing model since it

has well-known behaviour and calculation of the contribution of the ith input distribution,

Var[E(Ȳ (F̂i))|F̂i] for i = 1,2, . . . , p, is analytically possible. We can therefore assess the

quality of the proposed methods from §3.3 against the true values and compare their re-

spective performance.

We investigated the effect of the size of the observed samples of arrival counts and the

speed of convergence to steady state within each interval on the performance of our meth-

ods. Notice that fast convergence to steady state is analogous to having q distinct M/M/∞

queues and for stationary input distributions we know the mean-variance (M-V) and Taylor

series approximation (TSA) methods both perform well. The system performance measure

we selected was the expected number in the system over the whole period, E(N̄), which for
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an infinite server system is also the expected number of busy servers. This measure is linear

in λi for i = 1,2, . . . ,q and we therefore expected the approximations to be good.

The experiment is as follows. We considered an M(t)/M/∞ queueing system over a

T = 4 hour period. The arrival rate was assumed to change hourly according to a piecewise-

constant function with rates λ (t) = (λ1,λ2,λ3,λ4); the service distribution was assumed to

be stationary with service rate ψ . To mimic the effect of input uncertainty, the system was

“observed” for mλ days, recording the arrival counts in each interval, and approximately

mθθθ = mλ ×60×(λ1+λ2+λ3+λ4) service times were observed, one service time for each

arrival. These provided the data for the fitted input models.

The experiment was split into two sub-experiments with different arrival processes and

service rates reflecting “quick” and “slow” speeds of convergence to steady state. Within

each sub-experiment we tested different values of mλ to see if the number of observations

of the arrival counts has an effect on the performance of either method. To enable com-

parability between the two sets of experiments, mλ and mθθθ are chosen such that the total

number of arrivals is the same for each level of sample size. The square root of the true

analytical contribution from each parameter was recorded, for compatibility with the perfor-

mance measure estimate, along with the percentage relative error of both methods in each

scenario. In the M-V method B = 40 bootstrap samples each of r = 500 replications of the

simulation were run. The entire experiment was repeated for h = 1000 macro-replications.

The averaged results can be found in Tables 3.4.1 and 3.4.2.

When calculating the analytical values there is no formula for calculating

Var[E(Ȳ (F̂ψ))|F̂ψ ], although for large enough ψ a very close approximation exists. This

approximation was used in Experiment 1 but for Experiment 2, where ψ = 0.05, it leads to

over-estimation. We therefore simulated 1000 values of ψ̂ and calculated E(N̄) using the

parameter space (λ1,λ2,λ3,λ4, ψ̂). The “analytical” values for Var[E(Ȳ (F̂ψ))|F̂ψ ] reported

in Table 3.4.2 are therefore the standard deviation of the 1000 observations of E(N̄).

Notice that the analytically calculated contributions for λ4 and ψ are smaller in Exper-

iment 2 compared to Experiment 1. When convergence to steady state is slow more work
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is carried out outside of our window of observation and therefore more service times are

truncated by the end of the time period. This causes a reduction in variance which explains

the discrepancy between the contributions for λ4 and ψ across the two experiments. All

other values match very closely between the experiments because virtually all the work

originating in the first three intervals is completed by the end time, 240 minutes, even in the

system that settles to steady state more slowly.

From Tables 3.4.1 and 3.4.2 it is clear that as the amount of input data increases the

contributions decrease, as they should. However, our interest here is in the relative errors of

contribution estimation for the M-V and TSA methods. When the contributions are small,

precise estimation of them is harder. However, the TSA method is asymptotically valid

as the number of observations tends to infinity so it tends to hold its relative error level

across sample sizes. The M-V approach, on the other hand, has relative errors smaller than

Table 3.4.1: Experiment 1(i): The analytical contribution of the ith input distribution and

the percentage relative errors of the M-V and TSA methods when the arrival process is

λ (t) =
(1

3 ,
1
2 ,

5
12 ,

1
3

)
and service rate ψ = 0.2. Here E(N̄) = 1.94.

√
Var[E(Ȳ (F̂i))|F̂i]

Sample Size Method λ1 λ2 λ3 λ4 ψ Total Magnitude

mλ = 2 Analytical 6.59 8.07 7.37 6.04 14.4 20.1 ×10−2

mθθθ = 190 M-V (RE%) 0.41 0.30 -0.12 0.22 -3.22 -1.53

TSA (RE%) 0.22 0.79 0.62 0.46 -5.93 -2.69

mλ = 20 Analytical 2.08 2.55 2.33 1.91 4.54 6.37 ×10−2

mθθθ = 1900 M-V (RE%) 0.79 0.29 0.28 0.67 -3.31 -1.44

TSA (RE%) -0.09 2.52 -0.18 0.53 -3.73 -1.45

mλ = 100 Analytical 0.93 1.14 1.04 0.85 2.03 2.85 ×10−2

mθθθ = 9500 M-V (RE%) 3.65 2.06 1.91 3.17 -1.78 0.38

TSA (RE%) 1.67 3.25 0.56 1.32 -3.54 -0.86
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Table 3.4.2: Experiment 1(ii): The analytical contribution of the ith input distribution and

the percentage relative errors of the M-V and TSA methods when the arrival process is

λ (t) =
( 1

12 ,
1
8 ,

5
48 ,

1
12

)
and service rate is ψ = 0.05. Here E(N̄) = 1.84.

√
Var[E(Ȳ (F̂i))|F̂i]

Sample Size Method λ1 λ2 λ3 λ4 ψ Total Magnitude

mλ = 8 Analytical 6.59 8.06 7.25 4.50 12.6 18.4 ×10−2

mθθθ = 190 M-V (RE%) -0.46 -0.34 -0.03 -0.11 -2.87 -1.20

TSA (RE%) -1.02 -0.57 -0.69 -0.16 -5.76 -2.28

mλ = 80 Analytical 2.08 2.55 2.29 1.42 4.00 5.84 ×10−2

mθθθ = 1900 M-V (RE%) -2.39 -1.27 -2.06 -4.19 -2.27 0.07

TSA (RE%) -1.27 -2.53 -0.93 -1.87 -3.62 -0.77

mλ = 400 Analytical 0.93 1.14 1.03 0.64 1.80 2.62 ×10−2

mθθθ = 9500 M-V (RE%) -5.50 -3.96 -4.67 -10.02 -0.3 2.66

TSA (RE%) -1.49 -3.24 -2.79 -2.64 -1.41 0.74

TSA when mλ is small, but as mλ increases the approximate nature of the mean-variance

effects model causes the relative errors to increase somewhat. Overall, the M-V method

seems to be better when mλ is small, and TSA is better as mλ becomes larger. The speed

of convergence of the queue to steady state does not seem to affect the performance of our

methods for our chosen performance measure. Overall both methods can be said to perform

well with most approximations having relative error less than 5%.

3.4.2 Healthcare Call Centre

We will now illustrate the impact of IU quantification in the simulation of a real-world

system with a nonhomogeneous input process. We have data from an NHS 111 healthcare

call centre. In the UK these call centres are used to advise people who have symptoms of

an illness but are unsure where to get treatment. The aim is to reduce congestion in hospital
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Arrival Rate of Calls on Wednesdays

Time, Steps are 15 minute intervals from 0:00−23:45
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Figure 3.4.1: Change point analysis on the arrival rate of calls on Wednesdays.

EDs or doctors surgeries caused by minor complaints.

The data was split into 96, 15-minute intervals spanning 24 hours. Of the 6 months of

data we decided to consider Wednesdays only as public holidays are unlikely to fall mid-

week and therefore we would expect no spikes in the arrival rate. Having 6 months worth

of data meant we had mλ = 26 Wednesdays to consider and these were averaged to find the

mean arrival rate within each interval which became our initial piecewise-constant arrival

rate function. While it is clear from the mean arrivals in each time interval that the process

is not stationary, extended periods of time where the rate was approximately constant could

also be observed. Further, it will be difficult to estimate, and not very meaningful to mea-

sure, contributions from 96 tiny intervals. Therefore, rather using a large number of small

intervals, or choosing arbitrary large intervals, change-point analysis from Chen and Gupta

(2011) was applied to let the data guide when to merge periods where the arrival rates were

not significantly different. This resulted in 8 periods of differing length as seen in Figure

3.4.1. We would argue that this approach should be used routinely. For the purposes of this

analysis, we assume there is no uncertainty in the location of these change points.

In a realistic call centre not only does the arrival rate change with time but so too does

the number of servers. Therefore, we simulated the 111 call centre as an M(t)/G/s(t)

queue. From two months of service time-data the mean service time was 8.00 minutes and

the standard deviation was 4.33 minutes. A moment matching approach was used to fit
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a Gamma distribution with shape parameter ψ1 = 3.408 and scale parameter ψ2 = 2.347.

For the simulation itself, since we wanted to mimic having observed a service time for

each arrival, we generated a synthetic “observed” service-data set from the fitted service

distribution. The synthetic data set was of size mθθθ = 52,711 corresponding to the expected

number of arrivals, and was treated as the real-world data during the simulation.

The call centre’s target level of service is P(Wait > 1min) ≤ 0.05 for each caller. Ap-

proximately proportional staffing was applied to each time interval and it was found that

the waiting time target was met at a level equivalent to 60% utilisation. This is our base

case in the experiment as it is likely to be close to the true staffing level the call centre used.

We also simulated the system with constant staff size tuned to the expected arrival rate over

the whole day (Case 1) and to 1.5 times this expected arrival rate (Case 2). These staffing

patterns are chosen as they highlight the danger of using stationary approximations of input

distributions. In practice someone may use the expected arrival rate over the whole day to

set a staffing schedule, ignoring the possibility of fluctuation in the arrival rate.

We investigated performance measures such as the probability of waiting more than 1

minute to be served P(Wait > 1min), the expected number of people in the queue, E(N̄),

and the expected waiting time of customers, E(WTime) over the whole day. The results for

the last of these, E(WTime), can be seen in Table 3.4.3. We used B = 40 bootstrap samples,

for which r = 100 replications of the simulation were carried out for the M-V method. This

process was repeated for h = 1000 macro-replications of the entire experiment.

Notice first that M-V and TSA give similar, but not identical results. However, they

agree on which intervals are the highest and lowest contributors. In Case 1 the contribution

of interval 6, Var[E(Ȳ (F̂λ6
))|F̂λ6

], is much larger than the contribution of any of the other

intervals. This coincides with the spike in arrival rate in Figure 3.4.1. At this point the

queue would be experiencing very high levels of congestion, the number of servers equates

to a utilisation of 112.3% which means all servers are always busy. This also seems to have

a knock on effect into the next interval, where the contribution of λ7 is much higher than the

contribution of λ5 even though they have a similar arrival rate. This may be explained by



CHAPTER 3. INPUT UNCERTAINTY QUANTIFICATION 49

Table 3.4.3: The effect of different staffing schemes on the parameter contribution for input

distributions, Var[E(Ȳ (F̂i))|F̂i], i = 1,2, . . . , p.

Var[E(Ȳ (F̂i))|F̂i]

Case λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 ψψψ Mag E(WTime)

Base
M-V 1.27 9.47 1.31 2.31 0.53 0.51 0.60 0.66 2.41 ×10−6 0.0674

TSA 1.04 9.37 1.12 2.10 0.34 0.32 0.41 0.45 2.45 ×10−6 0.0674

1
M-V 2.11 2.24 2.22 2.34 2.41 165.53 8.03 2.17 17.55 ×10−3 5.17

TSA 0.51 0.54 0.57 0.64 0.55 162.16 6.26 0.56 15.57 ×10−3 5.17

2
M-V 3.29 3.27 3.31 3.36 3.28 86.64 3.12 3.15 11.32 ×10−7 0.026

TSA 2.19 1.99 1.91 2.11 2.09 85.45 1.87 2.09 10.88 ×10−7 0.026

both the backlog of customers and the arrival rate being above average in the 7th interval.

Although the queue is trying to empty, congestion is still high leading to higher uncertainty.

By the final interval the system has recovered from the high congestion levels and the

contribution of λ8 is relatively small.

We see a similar but less pronounced effect in Case 2 where again the contribution of λ6

is larger than the others. This illustrates the importance of understanding the dynamics of IU

as the results show how sensitive the overall estimate of performance is to the correct value

of arrival rate during the short 6th interval. In the base case we do not see these patterns, the

arrival distribution contributions appear to be similar in all but the second interval. When

considering E(WTime) the second interval is the most influential; due to the low number

of servers this higher contribution was therefore expected.

3.5 Conclusion

This chapter presents two methods for quantifying input uncertainty in simulation models

with NHPP input processes. The key is the use of count observations to model the arrival

processes, meaning each interval of the piecewise-constant rate function can be treated as a
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distinct, stationary input distribution. From this it is simple to calculate the total contribu-

tion to IU of each process and therefore the overall IU. Exploiting the fact that the arrivals

are Poisson also allowed us to greatly streamline the method based on a mean-variance

effects model.

An evaluation of the performance of the methods was presented using the tractable

M(t)/M/∞ model; both methods were seen to perform well. An illustration of a realistic

call centre scenario was also used to show how input uncertainty quantification in arrival

processes may be applied in practice, including the use of change-point analysis to allow

the arrival data to guide the choice of time-interval sizes. An open question remains as to

the IU that arises from the location of these change points and whether this should be taken

into account within the analysis.



Detecting Bias due to Input Modelling in

Computer Simulation

4.1 Introduction

In stochastic simulation the “stochastic” element of the simulation comes from the input

models that drive it. In this chapter we focus on parametric input models, probability dis-

tributions or stochastic processes, that are estimated from observations of the real-world

system of interest. Since we can only ever collect a finite number of observations, error,

with respect to what the simulation says about the real-world system performance, is in-

evitable.

Error caused by input modelling can be broken down as MSE = Variance + Bias2; that

is, the mean squared error (MSE) due to input modelling is made up of the variability of the

simulation response caused by input modelling, known in the literature as input uncertainty

(IU=Variance), and bias due to input modelling squared. Barton (2012) explains that, even

in very reasonable simulation scenarios, analysis of the response of interest can be very

different when error due to input modelling is included. Barton (2012) was referring to

IU, but the same idea holds for bias due to input modelling. In simulation models where

51
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a large number of replications of the simulation are completed, effectively driving out the

inherent simulation noise caused by random-variate generation, ignoring input modelling

uncertainty can lead to over-confidence in the simulation results. Underestimating the error

of the simulation response is dangerous, especially when this output may be used to guide

important decisions about the real-world system.

To date the main focus of research in this area has been on input uncertainty quantifica-

tion. Bias due to input modelling has been virtually ignored. This was partially justified by

the knowledge that as the number of real-world observations of the input models increases,

the bias due to input modelling decreases faster than input uncertainty: given m observa-

tions from an input model, it is known that IU is O(1/m), whereas bias squared due to input

modelling is typically O(1/m2) (Nelson, 2013). Despite this, bias can still be substantial

for finite m, and should not be ignored.

To facilitate understanding, we consider the simulation of a healthcare call centre. More

specifically, we look at the UK National Health Service (NHS) 111 system. NHS 111

was designed to take some of the strain from healthcare systems in the UK, for example,

emergency departments and doctors’ surgeries. Ringing NHS 111 allows a caller to talk

to a healthcare professional who can advise them on what care they need. The NHS 111

call centre can be represented as a stochastic queueing model driven by a non-stationary

arrival process and a stationary service distribution. Since we only have a finite number

of observations from which to estimate these input models, they are not correct; this error

propagates through the NHS 111 simulation model to the performance measures of interest

that might be used for staffing.

This chapter presents a delta method approach to estimating bias caused by input mod-

elling in stochastic simulation models. The delta method is based on a second-order Taylor

series approximation and therefore requires the quantification of the second-order partial

derivatives of the response surface. In simulation, the response of interest is most often an

unknown function of its input models which means we cannot directly evaluate its deriva-

tives. We therefore propose use of an experiment design to fit a response surface model
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from which the second-order partial derivatives can be estimated.

As a key feature of this chapter, we also present a bias detection test with controlled

power for detecting bias due to input modelling greater than a pre-chosen threshold value,

γ , considered to be the smallest bias of a relevant size. Note that throughout this chapter

when we refer to ‘a bias of a relevant size’ we mean a bias that is of a size that would

concern a practitioner. In this way when bias is small, and therefore not of concern to us,

we require less computational effort to conclude that bias is not significantly different from

zero than to accurately estimate it. Also, when bias is large, i.e., greater than γ , we have a

high probability of detecting it. In §4.3.1 we describe the novel way in which we construct

the experiment design used to estimate the response surface, which allows a practitioner to

easily control the power of the bias detection test.

The bias detection test also hinges on our choice of a “bias of relevant size.” When

there is no clear choice for γ from the problem context, we propose using the estimated

value of IU as a benchmark value: if bias is small fraction of IU, then it contributes little to

the overall MSE, while if it is large fraction of IU then it should not be ignored. In §4.4.4

IU is used to guide the choice of relevant bias, γ , for the NHS 111 system.

We begin this chapter with a discussion of current literature in §4.2. In §4.3 we present

our delta method approach to bias estimation and the diagnostic test along with an algorithm

to aid implementation. In §4.4 we evaluate the performance of the bias diagnostic test

including completing a controlled experiment to evaluate the diagnostic test for response

functions with different forms, under varying numbers of observations and replications in

§4.4.3. In §4.4.4 a realistic application of the method in the NHS 111 healthcare call centre

setting is given. We conclude in §4.5. All proofs are left to the appendix.

4.2 Background

To date estimating IU has been the main focus of research in the area of quantifying error

caused by input modelling. See Song et al. (2014) for a careful definition and discussion
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of IU quantification techniques. A number of methods for quantifying input uncertainty

in simulation models exist covering both frequentist and Bayesian methodologies (Barton,

2012). Of these, Cheng and Holland (1997) present a delta-method approach for quanti-

fying IU in simulation models with time homogeneous parametric input distributions; in

Chapter 3 we extended this method to piecewise-constant non-stationary Poisson arrival

processes. In §4.4 this IU quantification method will be used to estimate IU and thus guide

our choice of relevant bias.

When one refers to quantifying the ‘bias’ it is typically the bias of an estimator of a pop-

ulation parameter given a sample of data, averaged over the distribution of possible samples.

In our computer-simulation context this bias is also averaged over the natural noise due to

generating samples of the stochastic inputs. Stated differently, our estimator is a function

of both real-world and simulated sampling. Standard methods for bias quantification are

the jackknife and the bootstrap (Efron, 1982), with the jackknife often considered the go-

to choice. However, for bias estimation without simulation noise, Withers and Nadarajah

(2014) found both the jackknife and the bootstrap inferior to the delta method in terms of

computational efficiency in all but a few special cases where it could be said the jackknife

method was comparable. When there is simulation noise the number of simulation repli-

cations required to mitigate it grows as O(m2), meaning that the simulation effort could

become prohibitive or the estimate of bias could be obscured by the simulation noise when

m is large; for a proof of this result see Appendix A.1. For a review of the conditions under

which the delta method approximation is accurate see Oehlert (1992).

The delta method requires the second-order partial derivatives of the expected value of

the simulation response. Since the expected value of the simulation response is not known,

we propose using an experimental design to fit a response surface model of it. To allow es-

timation of the derivatives of the response surface, we require a Resolution V, or higher, ex-

perimental design to ensure no confounding of the second-order interactions (Montgomery,

2013). We therefore propose to use a central composite design (CCD) to fit a quadratic re-

sponse surface model. The CCD is easy to understand and meets the design resolution
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requirement, but does suffer in terms of scalability requiring an exponentially increasing

number of design points as the number of input parameters increases. Fractional factorial

designs are one way of reducing the number of design points required to fit a response sur-

face. However, few efficient generators exist for creating Resolution V fractional factorial

designs with a large number of inputs. We use the method of Sanchez and Sanchez (2005)

to reduce the number of design points needed to support the quadratic response surface.

This method can generate designs with over 120 inputs. Methods for creating Resolution

V fractional designs are also discussed by Montgomery (2013) and Box (1978) but the

allowable number of inputs within these designs is limited.

Neither quantification nor detection of bias due to input modelling have previously been

considered. In the following section we present the methodology behind our delta method

estimate of bias and our bias detection test.

4.3 Detecting bias of a relevant size

Let there be L parametric input distributions that drive the simulation with, k≥ L, true input

parameters, θθθ c = {θ c
1 ,θ

c
2 , . . . ,θ

c
k }. Within the NHS 111 healthcare call centre system, θθθ c

are the unknown parameters describing the true arrival process and service distribution. For

any set of parameters θθθ = {θ1,θ2, . . . ,θk}, we denote the output of the j th replication of

the simulation as Yj(θθθ) = η(θθθ)+ ε j, where η(θθθ) is the expected value of the simulation

response of interest; this could be, for example, the expected waiting time of callers which

is our performance measure of interest in §4.4.4. Here we assume ε j, for j = 1,2, . . . ,r,

are i.i.d random variables, with mean zero and variance σ2, that represent the stochastic

estimation error arising within each replication of the simulation, ε j ∼ i.i.d (0,σ2).

For each of the l = 1,2, . . . ,L input distributions we have ml real-world observations

from which we can find the maximum likelihood estimators (MLEs) of the input param-

eters, θθθ mle = {θ mle
1 ,θ mle

2 . . . ,θ mle
k }. By averaging over r replications of the simulation,

driven by θθθ mle, we gain an estimate of the performance measure of interest. We call this the
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nominal experiment. This experiment can reduce the stochastic estimation error about our

response of interest through replication of the simulation but it has no effect on the error

due to input modelling which is only affected by m1,m2, . . . ,mL.

Bias due to input modelling arises because we only have a finite number of observations

of the real-world system from which to estimate θθθ c. This type of bias describes how far,

on average, our simulation response is from the real-world performance given the error that

arises from estimating the input models. Specifically

b = E [η(θθθ mle)]−η(θθθ c) (4.3.1)

where the expectation is with respect to the sampling distribution of θθθ mle. In the NHS

111 system this is the expected value of the difference between the performance of the

simulation (e.g., fraction of cases waiting more than 1 minute) and the true underlying

performance of the real system. When the simulation response is non-linear in θθθ , as is

usually the case, this bias will always arise; we approximate it using the delta method in an

innovative way.

Assuming the expected simulation response, η(·), is at least twice continuously differ-

entiable about θθθ c it can be expanded as a Taylor series to second-order

η(θθθ mle)≈ η(θθθ c)+d(θθθ mle)T
∇η(θθθ c)+

1
2!

d(θθθ mle)T H(θθθ c)d(θθθ mle), (4.3.2)

where d(θθθ mle) = (θθθ mle−θθθ c) is the difference between the MLEs and the true parameters,

∇η(θθθ c) is the (k× 1) gradient vector of the response function, and H(θθθ c) is the (k× k)

Hessian matrix of second-order partial derivatives with respect to the k input parameters

which approximates the curvature of the response surface. To ease explanation, let there

be m observations collected from each of the L input models. But note that, the following

results hold in slightly modified form for m1 6= m2 6= · · · 6= mL, provided mi/∑
L
j=1 m j →

ci > 0 for some fixed value ci as m→ ∞. Taking the expectation of (4.3.2), whilst noting

that, under mild conditions, E [d(θθθ mle)] = E [(θθθ mle−θθθ c)]→ 0 as m→ ∞, we get the delta

approximation of bias,

b≈ 1
2

E [d(θθθ mle)T H(θθθ c)d(θθθ mle)] = bapprox,
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which, after some matrix manipulation, simplifies to

bapprox =
1
2

tr(Ω H(θθθ c)). (4.3.3)

Here tr() denotes the trace of a matrix and Ω = Var(θθθ mle) denotes the variance-covariance

matrix of the MLEs. For a proof of the of the asymptotic equivalence of b and bapprox as

m→ ∞ see Appendix A.2.

As previously noted θθθ c is unknown; if it were known then there would be no error due to

input modelling. In simulation studies it is most often the case that the systems we simulate

are complex and no tractable form of our response of interest exists; we will therefore also

treat the response function, η(·), as unknown. This means the delta approximation of bias,

bapprox, cannot be evaluated directly; we therefore estimate it by

b̂ =
1
2

tr(Ω̂ Ĥ(θθθ mle)). (4.3.4)

Evaluation of b̂ requires estimates of both the variance-covariance matrix of the input pa-

rameters and the Hessian matrix of second-order partial derivatives. In practice we estimate

Ω using Ω̂= I0(θθθ
mle)−1/m the inverse Fisher information evaluated at θθθ mle. From this point

on, Ω̂ will refer to this plug-in estimate for Var(θθθ mle). This introduces additional error into

b̂, but we show this error to be insignificant in §4.4.1 of our experimental evaluation. In

the experiment a truly quadratic response was considered, such that bapprox = b, and the

relative error of b̂ to b using the plug-in Ω̂ was found to be less than 1%.

Estimating the Hessian is more difficult. For this we choose a response surface mod-

elling approach, quantifying the non-linearity of the response surface by investigating the

behaviour of η(·) close to θθθ mle, our estimate of θθθ c. See §4.3.1 below.

Based on our estimate of bias, we present a bias detection test with high power for

detection when |b| ≥ γ . In the following sections we illustrate the use of experimental

design for estimating the Hessian, and therefore the bias. We also present a novel way to

construct this experimental design that allows a practitioner to control of the power of our

bias detection test.
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4.3.1 Estimating the Hessian

To estimate the Hessian we make the further assumption that our response surface is locally

quadratic; that is, near to θθθ c

η(θθθ) = β0 +θθθ
T

βββ +
1
2

θθθ
TBBBθθθ , (4.3.5)

where βββ is the vector of coefficients belonging to the linear terms, BBB is the (k×k) matrix of

coefficients belonging to the interaction and quadratic terms and θθθ is some vector of input

parameter values. Note that, if η(·) is twice continuously differentiable at θθθ c, as assumed

for result (4.3.2), then this is approximately true using Taylor series. In §4.3.3 we suggest

a test for lack-of-fit of the quadratic response surface, but for now we will assume (4.3.5)

holds; then in §4.4.3 we evaluate this assumption by considering responses with different

functional forms.

By fitting this model we can estimate the Hessian matrix of second-order partial deriva-

tives, allowing the evaluation of b̂. It is clear that taking the second-order partial derivatives

of (4.3.5), with respect to θθθ , equates to estimating BBB. As θθθ c is unknown, we will use a

central composite design (CCD), centred at θθθ mle, to fit this model. The CCD is well known

and has Resolution V, allowing the estimation of quadratic and interaction effects without

confounding. Figure 4.3.1 illustrates a CCD design in k = 2 dimensions; factorial (purple)

and axial (yellow) design points are positioned relative to θθθ mle, the central (red) design

point.

To fit model (4.3.5), we complete r replications of the simulation model at each design

point. Let nF denote the number of factorial design points and nA the number of axial

design points. As suggested by Montgomery (2013), we will carry out more replications of

the experiment at the centre point allowing more information collection at θθθ mle, the point

at which we wish to estimate the Hessian. We let this number be a multiple of r, which

allows us to treat the multiple replications at centre point as nC > 1 design points. The total

number of design points n is therefore n = nF +nA +nC = 2k +2k+nC, which depends on

the number of input parameters, k. The total number of replications is n× r.
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Figure 4.3.1: A CCD design with dimension k = 2.

Clearly, the total number of design points, n, grows exponentially with the number of

input parameters, k. For k = 10, the number of factorial design points is nF = 210 = 1024,

even without considering the axial and centre points of the design. We therefore propose the

use of fractional factorial designs, with the addition of axial and centre points, to reduce the

size of the design. The key to this is to select a Resolution V, or higher, fractional factorial

design to ensure no main effects or two-factor interactions are confounded (Montgomery,

2013).

Sanchez and Sanchez (2005) provide an efficient algorithm for generating Resolution

V CCDs with a greatly reduced number of design points using discrete-valued Hadamard-

Walsh functions to describe and generate the design. Their method focuses on specifying

highly-fractionated Resolution V fractional factorial designs. After the fractional-factorial

design has been generated the centre and axial points can then be added just as in the full

CCD. When k = 10, Sanchez and Sanchez (2005) recommend nF = 128 factorial design

points, resulting in n = 148 + nC design points in total without specifying nC. This is

computationally much cheaper than the nF = 1024 factorial design points, in total n =
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1044+nC points, needed in the full CCD experiment. In §4.4.4 we implement these reduced

designs alongside the full-factorial CCDs in the NHS 111 healthcare call centre setting.

In Figure 4.3.1, we position the factorial and axial points relative to the centre point,

θθθ mle. Let ∆i be the distance to a factorial point from the centre point in the ith direction,

i = 1,2, . . . ,k, and similarly let τi be the distance to the axial points. Experimental designs

are often used to investigate the operational range of systems. It is therefore common

to work with standardised variables, transforming the original quantitative factors to the

values +1 and -1, representing the high and low levels of each factor at the edge of the

operational space. We use experimental design quite differently. We are not interested in

looking at the behaviour of η(·) over the entire range of each input variable. Instead, we are

interested in assessing the Hessian of the response surface at the unknown θθθ c. By using the

standard deviation of the MLEs,
√

Var(θ mle
i ) for i = 1,2, . . . ,k, to scale the experimental

design in each direction, we have a reasonable chance of covering θθθ c without having to

stretch our design points so wide that we risk violating the quadratic assumption over our

design space. Note that, giving similar reasoning we might have chosen to use the variance-

covariance matrix of the MLEs, Var(θθθ mle), to scale the design. This would take into account

dependencies among the input paramters, but would have introduced substantial additional

complexity to the method. Given that we cannot prove that either method leads to the

optimal design scaling we opt for the simpler option. That is, we set ∆i = a
√

Var(θ mle
i )

and τi = ω∆i = aω

√
Var(θ mle

i ) where a is the number of standard deviations the factorial

points are from the centre point in the ith direction. Here ω is the scaled distance from

the centre to the axial points; we set ω =
√

(
√

nFn−nF)/2 as suggested by Dean and

Voss (1999) for creating orthogonal designs, although we note here that due to the assumed

quadratic nature of the response surface, orthogonality does not hold.

At the ith design point we run r replications of the simulation returning the averaged

output of the simulation, Ȳ (θθθ i) for i = 1,2, . . . ,n. Given these outputs we use least-squares
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regression to fit the response surface model and therefore evaluate the Hessian,

Ĥ(θθθ mle) =


2B̂11 B̂12 . . . B̂1k

B̂21 2B̂22
... . . .

B̂k1 2B̂kk


.

Given Ω̂ and Ĥ(θθθ mle) we now can estimate the bias, using b̂, as in Equation (4.3.4).

We can also estimate Var(b̂). Conditional on the value of Ω̂, the plug-in estimate of

Var(θθθ mle); Var(b̂) below accounts for the variability of the Hessian,

Var(b̂) =Var
[

1
2

tr(Ω̂ Ĥ(θθθ mle))

]
=

1
4

Var

[
2

k

∑
i=1

B̂iiΩ̂ii +
k

∑
j=1

k

∑
i=1,i6= j

B̂i jΩ̂i j

]

=
k

∑
i=1

k

∑
i≤ j

Var(B̂i j)Ω̂
2
i j +2

k

∑
i≤ j

k

∑
p≤q, i j<pq

Cov(B̂i j, B̂pq)Ω̂i jΩ̂pq.

This requires the calculation of Var(B̂BB), the variance-covariance matrix of regression coef-

ficients belonging to the interaction and quadratic terms. Given we estimated B̂BB by least-

squares regression Var(B̂BB) is easily obtained using standard regression analysis. In fact, we

derived that Var(B̂BB) has special form

Var(B̂ii) =
σ2s

ra4Ω̂2
ii

, Var(B̂i j) =
σ2 f

ra4Ω̂iiΩ̂ j j
and Cov(B̂ii, B̂ j j) =

σ2g

ra4Ω̂iiΩ̂ j j
,

where, s, f and g are constants independent of the scaling factor a and Ω̂. We shall exploit

the common ra4 scaling in §4.3.2 when it comes to setting the width of the CCD in our

hypothesis test.

Application of our method will always follow a nominal experiment run at θθθ mle; there-

fore, we have a natural estimator σ̂2 of the simulation noise σ2 from that experiment. In

practice we will use this as a plug-in estimator in the expressions for Var(B̂ii),Var(B̂i j) and

Cov(B̂ii, B̂ j j).
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We derived that, when using a CCD, Cov(B̂i j, B̂lm) = 0 when i 6= j or l 6= m, and there-

fore, after some simplification, our estimate of Var(b̂) has the form

V̂ar(b̂) =
σ̂2

ra4

[
sk+ f

k

∑
i=1

k

∑
j>i

Ω̂2
i j

Ω̂iiΩ̂ j j
+gk(k−1)

]
. (4.3.6)

Accounting for the variability of σ̂2 within Var(b̂) would have made little difference to

(4.3.6): the Var(b̂) would be multiplied by a factor of (nr− k)/nr, reflecting the degrees

of freedom in the estimate of σ̂2, which we would expect to be very close to one since the

total number of design points, n× r, is usually much larger than the number of parameters

to be estimated, k.

At this point we have presented a method for estimating the bias of the simulation

response caused by input modelling and have also provided a variance estimate associated

with it. However, in some cases bias will be small and therefore hard to accurately estimate.

When bias is small, we are not interested in getting an accurate estimate of b̂. A bias

detection test could therefore save us computational effort since we do not require as much

accuracy to be able to assess whether to reject a hypothesis as we perhaps would want if

we were to use b̂ within the summary of the error about our performance measure. Let γ

denote the size of bias due to input modelling that would concern us. We will now present

our key idea, a diagnostic test for detecting bias, with controlled power of rejecting the null

when |b| ≥ γ .

4.3.2 A bias detection test

We begin by considering the following hypothesis test

H0 : b = 0 vs. H1 : b 6= 0

with test statistic T = b̂/
√

Var(b̂). Let the size of the test be denoted by α1 and the power

by 1−α2. We shall assume that

b̂−b√
Var(b̂)

∼ N(0,1) = Z, (4.3.7)
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which is a reasonable approximation since b̂ is a linear combination of asymptotically nor-

mally distributed least-squares regression estimators. The key to this test is in controlling

the power at a pre-specified level 1−α2 so that, when the absolute bias is truly greater than

or equal to γ , we have a high probability of rejecting the null hypothesis. We therefore re-

quire an experimental design where the following significance and power constraints hold

given γ ,

P[T < Zα1/2,T > Z1−α1/2 | b = 0 ] = α1 (4.3.8)

P[T < Zα1/2,T > Z1−α1/2 | |b| ≥ γ ]≥ 1−α2. (4.3.9)

Let the true IU of the response of interest be denoted κ = Var(η(θθθ mle)). Using IU

quantification techniques we can estimate κ by κ̂ . We propose that, when the practitioner

does not have an obvious value in mind for γ , κ̂ can be used to guide this choice. This

is a natural suggestion as it looks at bias within the context of the total MSE due to input

modelling. If bias is very small compared to κ̂ it may not be worth taking into account.

Whereas if bias is large compared to κ̂ it would be important, and using κ̂ to guide our

choice of γ will give us high power of rejecting the null.

We know that Equation (4.3.8) is guaranteed by (4.3.7). Constraint (4.3.9) holds when√
Var(b̂)≤ γ

Z1−α2−Zα1/2
. (4.3.10)

This says that the variance of our bias estimator, Var(b̂), can be used to control the power of

our test. From Equation (4.3.6) it can be seen that, of the components that make up V̂ar(b̂),

only the width of the CCD, controlled via a, and the number of replications at each design

point, controlled via r, can be influenced by the practitioner. In many simulation scenarios

we are constrained by some fixed simulation budget. When this is the case, and we have a

set total budget n× r that we are willing to spend, we can set a, the scaling parameter of the

experimental design, to the smallest value such that

a≥

[
σ̂2t2

rγ2

(
sk+ f

k

∑
i=1

k

∑
j>i

Ω̂2
i j

Ω̂iiΩ̂ j j
+gk(k−1)

)] 1
4

, (4.3.11)
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where t = Z1−α2−Zα1/2 is the difference of the Z-scores given our size and power require-

ments. Alternatively, we may wish to choose a just large enough so that we can be confident

that θθθ c has been covered within the CCD design space and set r appropriate to it; recall that

a was defined in units of the standard deviation of the MLEs. Notice that we can easily

rewrite (4.3.11) to yield the number of replications as a function of a. Some caution is

advised as r = O(1/a4), which means that a small decrease in the width of the design leads

to a great increase in the number of replications required at each design point to control the

power.

Due to the limitations on how far we can spread our design before the quadratic assump-

tion breaks down, we propose fixing an appropriately large r and letting (4.3.11) guide our

choice of a. In §4.3.3 we describe a lack-of-fit test that can be used to test the quadratic

assumption.

Given a and r that satisfy (4.3.11), we are able to set up the CCD to ensure that power

holds at the pre-set level, 1−α2, within the hypothesis test. We can now carry out the

bias detection test knowing that if bias is truly greater than or equal to γ we have a high

probability of rejecting the null.

On completion of the test, even if we reject H0, we cannot say anything about the size

of the bias. We have sufficient evidence to suggest that the bias is non-zero at the α1%

level, and therefore is worth considering within the error about our response, but we cannot

be sure that it is greater than or equal to our relevant value of bias γ . At this point the

practitioner may wish to collect further observations of the real system to reduce error due

to input modelling. Another option might be to spend further simulation effort on improving

the precision of the estimate b̂ so it can be included in a summary of the total error of the

response. Whichever choice is made we have presented a novel method for detecting bias

due to input modelling, a source of error that, before this contribution, had been ignored.

An algorithm for the bias diagnostic test is summarised below.

0. Preliminary Step. From the real-world observations estimate θθθ c and Ω by θθθ mle and

Ω̂. From the nominal experiment estimate σ2 by σ̂2. Set γ , a bias we wish to detect,
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α1 the size, and 1−α2 the power, of the test.

1. To ensure the power holds: initially let a = 1, noting that any positive value will

suffice; create the
(

n ×
(

1+2k+ k(k−1)
2

))
design matrix X, centred at (0,0, . . . ,0)

with ∆i = a
√

Var(θ mle
i ) and τi = ω∆i, for i = 1,2, . . . ,k. Given X , evaluate s, f and

g as follows

s = (XTX)−1
[
(k+1)(k+2)

2 ,
(k+1)(k+2)

2 ]
∆

4
k , f = (XTX)−1

[k+2,k+2]∆
2
1 ∆

2
2,

g = (XTX)−1
[
(k+1)(k+2)

2 −1, (k+1)(k+2)
2 ]

∆
2
k−1 ∆

2
k

where the subscript [i, j] denotes the element in the ith row and jth column of a

matrix. Now use (4.3.11) to set a and r, to ensure power holds.

2. Re-build the design matrix X , centred at (θ mle
1 ,θ mle

2 , . . . ,θ mle
k ), given a.

3. For each design point i = 1,2, . . . ,n, run r replications of the simulation at θθθ i, corre-

sponding to row i of the design matrix; average over the r replications to find Ȳ (θθθ i).

4. Using the simulation output from each design point Ȳ (θθθ i), for i = 1,2, . . . ,n, es-

timate the regression coefficients (β̂0, β̂1, β̂2, . . . , β̂k, B̂11, B̂12, . . . , B̂(k−1)k, B̂kk)
T =

(XT X)−1XTȲYY (θθθ), giving B̂11, B̂12, . . . , B̂(k−1)k, B̂kk.

5. Evaluate Ĥ(θθθ mle); thus, estimate b and Var(b̂) by b̂ and V̂ar(b̂).

6. Calculate the test statistic, T = b̂/
√

V̂ar(b̂). If |T| ≥ Z1−α1/2 reject the null hypothe-

sis.

4.3.3 Validating the bias test

Up to this point we made the assumption that our response surface, η(·), is truly quadratic

near θθθ c. In reality we know this does not hold in all cases. For example in §4.4.2 we explore

the detection of bias caused by input modelling in a single-server Markovian queue with

capacity, C. For this system the expected number of customers in the system in steady state

is not quadratic.
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In reality the expected response surface is unlikely to be truly quadratic, but as long as

the quadratic assumption holds locally within our CCD, we will get a good approximation

of the non-linearity of the response surface at θθθ mle. We therefore propose using a lack-of-fit

test to check the quadratic assumption on the response surface by comparing the fit of the

assumed quadratic model to the fit of a saturated model with as many coefficients as design

points (Montgomery, 2013). That is, comparing the fit of (4.3.5), with 1
2(k + 1)(k + 2)

coefficients, to the saturated model, with 1+2k+2k, coefficients. In the k = 2 dimensional

case the saturated model would be,

η(θθθ) = λ0 +λ1z1 +λ2z2 +λ3z3 +λ4z4 +λ5z5 +λ6z6 +λ7z7 +λ8z8 + ε (4.3.12)

where, to identify from which design point each response was measured, indicator variable

zi is equal to 1 at design point i and 0 otherwise. Note that we can take into account the

final design point without assigning it an indicator variable by setting zi = 0 for all i. Fitting

(4.3.12) requires r replications at each design point.

Testing for lack of fit by comparing the quadratic model to a saturated model comes with

certain advantages. Firstly, we do not have to assume any functional form for our response

surface; we could have compared the quadratic model to a cubic model for example but

there is no guarantee that the cubic part of the model would be the problem in all cases.

Also, the saturated model does not require any additional simulation effort to incorporate

within our method; we already carry out the r replications required at each design point to

fit it.

Running the lack-of-fit test prior to our bias detection test enables us to examine the

quadratic assumption. Of course, a hypothesis is just an assessment of evidence: accepting

the null hypothesis does not prove that the approximation of a quadratic surface near θθθ mle is

good enough to provide a trustworthy estimate of bias. However, rejecting the quadratic fit

is a useful warning that the resulting bias estimate might not be trustworthy. By the nature

of Taylor series approximation, a smaller-width CCD will tend to imply better conformance

to a quadratic approximation. Therefore, one way to react to a significant lack of fit is to

increase r, the number of replications at each design point, which leads to shrinking the
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width-scaling parameter a while preserving the power of the bias test at 1−α2 (see §4.3.2

and in particular Equation (4.3.11)). That said, repeated application of the lack-of-fit test

with different sample sizes, the unknown effect of the experiment design used to fit the

quadratic model, and the power of the lack-of-fit test muddies the overall inference. Thus,

while we recommend the lack-of-fit test its conclusions are at best advisory, and standard

regression diagnostics applied to the quadratic model will also be helpful.

Running the lack-of-fit test prior to our bias detection test enables us to assess the

quadratic assumption. If the test is passed, we can be confident that the quadratic assump-

tion is acceptable. On the other hand, on failing the lack-of-fit test, our estimate of bias,

b̂, and thus the conclusion of the bias detection test comes into question. By the nature

of Taylor series approximation, the smaller the width of the CCD, the smaller the error in

our quadratic assumption. Therefore, one way to remedy the rejection of the quadratic as-

sumption by the lack-of-fit test is to repeat the experiment with increased r, the number of

replications at each design point. As discussed in §4.3.2, increasing r in Constraint (4.3.11)

shrinks a, the scaling parameter for the width of our CCD, making the quadratic assumption

hold more closely whilst holding the power at the pre-specified value 1−α2. In the follow-

ing section, where we empirically evaluate our methods, we incorporate the lack-of-fit test

into our bias detection test.

4.4 Empirical Evaluation

In this section we evaluate the diagnostic test presented in §4.3 by considering how well the

power holds: firstly in a system where the simulation response surface is truly quadratic, and

then for a tractable M/M/1/C queueing model. In §4.4.3 we then complete a controlled

study considering four tractable response surfaces with different functional forms whilst

controlling the number of input observations, m, and the number of simulation replications

at each design point, r. We then demonstrate the use of the bias detection test in the NHS

111 call centre setting in §4.4.4.
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4.4.1 A Truly Quadratic Model

Consider a quadratic response function. As an example, when k = 2 let the response func-

tion be given by

η(θθθ) = 2+3θ1 +θ2 +4θ1θ2 +θ
2
1 +2θ

2
2 . (4.4.1)

Here we let θ c
1 and θ c

2 be the true mean parameters from the following bivariate normal

distribution

X1,X2 ∼N

(θ c
1 ,θ

c
2)

T ,

 ξ 2
1 0

0 ξ 2
2


with Cov(θ mle

1 ,θ mle
2 ) = 0 and Var(θ mle

i ) = ξ 2
i /m. Given this response function we know the

Hessian matrix exactly, therefore the delta approximation of bias gives bapprox = ξ 2
1 /m+

2ξ 2
2 /m which is exact, bapprox = b, since (4.4.1) is quadratic.

Let us now assume that the response function, η(θθθ), is unknown to us. We wish to

evaluate the performance of the diagnostic test when the underlying response surface is

truly quadratic. To do this we investigate how well the power holds when the relevant bias,

γ , is set equal to bapprox, the true bias in this quadratic case. For this experiment let the

power be set to 1−α2 = 0.8. We therefore wish to illustrate our diagnostic test having

probability 0.8 of rejecting the null hypothesis when γ = bapprox.

To show our diagnostic test attains this desired power we run a macro-experiment, re-

peating the diagnostic test G = 1000 times. An estimate of power will be given by the

proportion of times the null hypothesis is rejected; we denote this estimate p̂. In Table 4.4.1

p̂ is recorded along with ¯̂b and V̂ar(b̂), the sample mean and variance of the bias estimates

recorded over the G = 1000 macro-replications. Also reported is bapprox, the true bias in

this quadratic example, which we set equal to γ , the relevant bias.

To complete the diagnostic test we use the methods presented in §4.3. Given true input

parameters θ c
1 = 5 and θ c

2 = 2 with ξ 2
1 = 2 and ξ 2

2 = 1.5, m = 40 observations of X1 and X2

were generated from the bivariate normal distribution and used to estimate the MLEs, θθθ mle,

and Ω̂. We set the number of replications to be run at each design point to r = 1000 then
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Table 4.4.1: How power holds when γ = bapprox given a truly quadratic response function.

θ c
1 θ c

2 r m bapprox (= γ)
¯̂b V̂ar(b̂) p̂

5 2 1000 40 0.2125 0.2111 4.52×10−3 0.79

built a response surface model using a CCD centred at θθθ mle with width a = 0.283 selected

to ensure a power of 1−α2 = 0.8. In each replication we ran the simulation by adding

N (0,0.01) noise to (4.4.1). Given the response surface model the bias estimator, b̂, and

its variance, Var(b̂), could be evaluated enabling the calculation of the test statistic, T, and

the conclusion of the diagnostic test. This process was repeated G = 1000 times to gain the

results shown in Table 4.4.1.

In Table 4.4.1 we see that when the response function is truly quadratic, the diagnostic

test holds power very close to 1−α2 = 0.8 as desired. We also see that the average of the

bias estimates, ¯̂b, is very close to the true bias.

4.4.2 M/M/1/C Queueing Model

Consider an M/M/1/C queueing model with true arrival rate θ c
1 , service rate θ c

2 and finite

capacity C. Here inter-arrival times of customers, Ai, follow an exponential distribution

Ai ∼ Exp(θ c
1), as do the service times, Si ∼ Exp(θ c

2), for i = 1,2, . . . ,m observations. For

this queueing model the expected number of customers in the system, E[Y |θθθ ], can be ex-

pressed in closed form

η(θθθ) = E[Y |θθθ ] = θ1

θ2−θ1
−

(C+1)θC+1
1

θ
C+1
2 −θ

C+1
1

. (4.4.2)

It is therefore possible to derive the second-order partial derivatives yielding H(θθθ c); this

allows the evaluation of bapprox, the delta method approximation of bias.

We shall now, for the purpose of the experiment, assume that the true response function,

Equation (4.4.2), is unknown. We want to evaluate the quality of our diagnostic test for

detecting a relevant bias when the response function is not truly quadratic. To do this
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we will look at both the M/M/1/10 and M/M/1/100 queueing models over a number

of parameter settings to see how well the power, set at 1−α2 = 0.8, holds when relevant

bias, γ , is set equal to the delta approximation of bias bapprox. As before, to measure the

power we record the proportion of times the null hypothesis was rejected over G = 1000

macro-replications of the diagnostic test, p̂. The results of the experiments are given in

Table 4.4.2.

The diagnostic test was completed as follows. Instead of running a nominal experiment

we used the true input distributions to generate m observations from the arrival and service

distributions, Ai,Si for i = 1,2, . . . ,m, then estimated the MLEs, θθθ mle, and the covariance

matrix, Ω̂; we know that Cov(θ mle
1 ,θ mle

2 ) = 0. Also, rather than directly simulating the

M/M/1/C queue we add N (0,0.05) noise to (4.4.2) for each replication. The number of

replications to be run at each design point was set to r = 500 allowing the identification

of the value of a required for the power to hold at 1−α2 = 0.8. A CCD design, centred

at θθθ mle, was then created using a to set the distance to the design points. Replications

of the simulation were run at each design point and the response surface fitted allowing

evaluation of Ĥ(θθθ mle), the estimated Hessian matrix. We were therefore able to estimate

the delta approximation of bias, b̂, and its variance, Var(b̂), allowing us to calculate the

test statistic and conclude the hypothesis test. This process was repeated over G = 1000

macro-replications giving p̂ and ¯̂b, the average of the bias estimates, both are recorded in

Table 4.4.2.

In Table 4.4.2, we see that across all experiments, whether C = 10 or 100, as the amount

of input data is increased p̂ gets closer to the desired power 1−α2 = 0.8 and the average

bias estimate ¯̂b gets closer to the delta approximation bapprox. Both parameter estimates

improve due to the the increase in information which sees θθθ mle get closer to θθθ c, the true

input parameters. This is important in our method as, ideally, we would centre our CCD at

θθθ c to find the curvature of the response function at that point, H(θθθ c).

Experiments 6, 7 and 8 look at the system under high traffic intensity, ρ = θ c
1/θ c

2 =

0.833. In Experiment 6, where m = 40, we saw a reasonably high proportion of instances
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Table 4.4.2: How power holds when γ = bapprox given an M/M/1/C queueing model.

M/M/1/10 M/M/1/100

Exp θ c
1

θ c
2

m bapprox ¯̂b p̂ bapprox ¯̂b p̂

1 0.25 40 0.019 0.024 (4.98×10−4) 0.766 0.019 0.025 (6.26×10−4) 0.787

2 0.25 100 0.007 0.008 (1.25×10−4) 0.79 0.007 0.009 (1.30×10−4) 0.789

3 0.50 40 0.134 0.174 (3.86×10−3) 0.704 0.150 0.855 (1.73×10−1) 0.659

4 0.50 100 0.053 0.063 (1.07×10−3) 0.775 0.060 0.085 (2.98×10−3) 0.741

5 0.50 1000 0.005 0.006 (6.77×10−5) 0.818 0.006 0.007 (7.80×10−5) 0.822

6 0.83 100 0.164 0.114 (3.09×10−3) 0.611 3.300 6.623 (1.24×10) 0.611

7 0.83 1000 0.016 0.015 (1.98×10−4) 0.712 0.330 0.570 (2.64×10−2) 0.713

8 0.83 5000 0.003 0.003 (3.82×10−5) 0.777 0.066 0.071 (1.08×10−3) 0.765

(≈ 10%) where the estimated traffic intensity exceeded 1, i.e. ρ = θ mle
1 /θ mle

2 > 1. When

this occurs the number of people in the queue will increase up to capacity and remain

around that level. The behaviour of the response surface in these cases is not quadratic

and therefore the delta method does not perform well which is reflected in the average bias

estimate, ¯̂b, and power, p̂. One way to fix this problem is to collect more data, m, until

θ mle
1 /θ mle

2 < 1 consistently, as we did in Experiments 7 and 8 where the bias estimate ¯̂b

gets closer to the delta approximation.

This problem is not unique to bias estimation: it will occur in any simulation model

with finite capacity and traffic intensity close to 1. If the amount of data available is small

and we cannot accurately estimate the input parameters it is easy to conclude that a system

will become saturated when in reality it might not.

In experiments 6, 7 and 8, where a high traffic intensity was investigated, we see the

effect of the shape of the true response surface on how well the power holds. The shape of

the response surface is driven by the capacity, C. This directly links to how closely θθθ c can

be estimated by θθθ mle. In Figure 4.4.2 we see that for the M/M/1/100 queue, with higher

capacity, there is a more dramatic change in the response surface for small changes of θ1
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Figure 4.4.1: M/M/1/10 Figure 4.4.2: M/M/1/100

and θ2 than there is for the lower capacity, M/M/1/10, queue seen in Figure 4.4.1. Close

to ρ = 1, where the response surface changes more dramatically, more observations, m, are

needed to ensure we are estimating the Hessian, H(θθθ c), close enough to θθθ c to capture the

true curvature at that point. This could also be affected by the variability of the MLEs;

when the variance is large even if we have θθθ mle close to θθθ c on average, we could see large

variability in the response from replication to replication. In the higher capacity system

small changes in the inputs have a larger effect on the simulation output which is used to fit

the response surface and therefore estimate the Hessian. For the lower capacity queueing

model the distance between θθθ mle and θθθ c has a less pronounced effect on the simulation

response as the response surface changes.

We also note that for the M/M/1/100 queueing model, in Experiments 3, 6 and 7 p̂ is

lower than the desired power of 0.8 but the average of the bias estimates in these cases, ¯̂b,

is higher than bapprox. Intuitively, this seems contradictory as we would expect to reject the

null hypothesis more often if bias is much more extreme than γ = bapprox. In these cases we

also see ¯̂b has large standard error. Investigating the test statistics over the G = 1000 macro

replications, using Q-Q plots, illustrated that these were the cases where the distribution of

the test statistics was far from the assumed normal distribution. In Experiments 4, 5 and 8

given more input data the normality assumption was more reasonable. For the M/M/1/10

queueing model the normality assumption held well in all cases. This again illustrates the

importance of centring the CCD close to θθθ c, especially when there is a sharp change in the

shape of the response surface.
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As an aside we also considered the trade off between the variables a and r, used to set

the width of the experimental design. To improve the quadratic assumption it is tempting

to shrink a and increase the number of replications at each design point to ensure the power

still holds. This is very expensive computationally; to halve a, and thus the width of the

design, in the experiments above we would have had to increase the number of replications

at each design point to r = 8000. Looking at the experiments above we saw little improve-

ment on the estimated power p̂ from halving a. This is because shrinking the width of the

design would only be helpful if the CCD was centred very close to θθθ c; no amount of com-

putational effort will improve our estimate of Ĥ(θθθ mle) if the design is centred at θθθ mle far

from θθθ c.

4.4.3 Evaluation of the method given linear, quadratic and cubic re-

sponse surfaces

Recall that bias due to input modelling is caused when error in the estimation of the input

models that drive the simulation is passed through a non-linear response function. We

therefore evaluate how well our bias detection test works when there is no bias due to input

modelling i.e., the response is linear; when the response surface is truly quadratic; and

finally when the underlying quadratic assumption does not hold.

We consider a stochastic simulation model with two unknown input parameters, θθθ c =

{θ c
1 ,θ

c
2}= {3,2}. These input parameters are the means of two independent exponentially

distributed random variables, W1 ∼ Exp(1/θ c
1), W2 ∼ Exp(1/θ c

2).

Within this setting we consider the following functional forms for the response sur-

face η(θθθ): linear, Equation (4.4.3); quadratic, Equation (4.4.4); and two cubic functions,
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Equations (4.4.5) and (4.4.6), as displayed in Figure 4.4.3,

η(θθθ) =3−10θ1 +4θ2 (4.4.3)

η(θθθ) =3−10θ1 +4θ2 +8θ1θ2 +2.5θ
2
1 −2.5θ

2
2 (4.4.4)

η(θθθ) =3−10θ1 +4θ2 +8θ1θ2 +2.5θ
2
1 −2.5θ

2
2 +0.4θ

3
1 −0.8θ

3
2 (4.4.5)

η(θθθ) =3−10θ1 +4θ2 +8θ1θ2 +2.5θ
2
1 −2.5θ

2
2 +0.8θ

3
1 −3θ

3
2 . (4.4.6)

Figure 4.4.3: The true response surfaces plotted over the CCD design space. Top left:

linear, Equation (4.4.3); top right: quadratic, Equation (4.4.4); bottom left: cubic, Equation

(4.4.5); and bottom right: cubic, Equation (4.4.6). The point(θ c
1 ,θ

c
2) is marked in blue.

In this carefully constructed experiment the input parameters and the response functions

are known. We also chose our input distributions so that the third moment of the MLE could

be calculated exactly and were therefore able to quantify, b, the bias due to input modelling

in each system as well as the delta approximation of bias, bapprox; see Table 4.4.3. We set



CHAPTER 4. DETECTING BIAS DUE TO INPUT MODELLING 75

the size of the bias detection test to α1 = 0.05 and the power to 1−α2 = 0.8; the size for

the lack-of-fit test is also 0.05.

To evaluate the bias detection test the value of relevant bias γ is set equal to the delta

approximation of bias bapprox in both the quadratic and cubic scenarios. In setting γ =

bapprox we expect the power to hold at the pre-set value 1−α2. In the linear experiment

b = bapprox = 0, so we use κ̂ , the estimate of IU, found using the method of Cheng and

Holland (1997), to guide the choice of γ where γ =
√

0.3κ̂ .

Since the true bias, b, is known in these examples we set σ2/r to be 5 times larger than

b in the quadratic and cubic experiments, implying that there is still signficant simulation

noise in the evaluation of each design point. In all of the linear experiments σ2 was set

to 0.1. Given σ2 and the response functions, we simulated by adding normally distributed

noise, N(0,σ2), to Equations (4.4.3), (4.4.4), (4.4.5) and (4.4.6). From here on we assume

the response functions are unknown and require estimation for the bias detection test.

We complete G = 1000 macro-replications of the bias detection test. To do this

we collect m observations from each input distribution by generating observations,

{w11,w12, . . . ,w1m} and {w21,w22, . . . ,w2m} from the true input distributions. This is our

“real-world” data from which we estimate the input parameters using maximum likelihood.

Given these estimates we run the nominal experiment and, in the linear case, estimate the

IU in the model. We then apply the bias detection test.

To quantify how well the bias detection test performs we estimate the power of the test

by recording the empirical power, the proportion of times we reject the null hypotheses

over G = 1000 macro-replications; we call this estimate p̂. We then observe how close the

empirical estimate p̂ gets to the nominal power, 1−α2 = 0.8, for γ = bapprox, given the

functional form of η(·), m and r. We also record the average of the estimates of bias due

to input modelling, b̂, over the G replications, ¯̂b, for comparison with the true bias, b. The

results are presented in Table 4.4.3.

In the linear system, Equation (4.4.3), there is no bias. In Table 4.4.3 it can be seen that

we reject the null hypothesis of no bias and the of lack of fit test in approximately 5% of all
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Table 4.4.3: Bias test results varying the form of η(·), the amount of input data, m, and number of

replications, r. Here p̂ and LOF are the fraction out of G = 1000 macroreplications that the bias test

and lack-of-fit test, respectively, rejected their null hypothesis, and ¯̂b is the average bias estimate.

m r b bapprox ¯̂b p̂ LOF

Linear (4.4.3)

10 50 0.00 0.00 -0.01 0.06 0.04

100 50 0.00 0.00 0.00 0.05 0.05

1000 50 0.00 0.00 0.00 0.04 0.06

10 500 0.00 0.00 0.00 0.05 0.05

100 500 0.00 0.00 0.00 0.05 0.05

1000 500 0.00 0.00 0.00 0.04 0.05

Quadratic (4.4.4)

10 50 1.25 1.25 1.36 0.64 0.05

100 50 0.13 0.13 0.13 0.71 0.06

1000 50 0.01 0.01 0.01 0.80 0.05

10 500 1.25 1.25 1.42 0.63 0.06

100 500 0.13 0.13 0.13 0.72 0.05

1000 500 0.01 0.01 0.01 0.80 0.06

Cubic 1 (4.4.5)

10 50 2.66 2.57 3.01 0.70 0.06

100 50 0.26 0.26 0.26 0.65 0.06

1000 50 0.03 0.03 0.03 0.75 0.05

10 500 2.66 2.57 3.33 0.69 0.06

100 500 0.23 0.26 0.27 0.70 0.06

1000 500 0.03 0.03 0.03 0.78 0.06

Cubic 2 (4.4.6)

10 50 0.48 0.53 0.08 0.96 0.62

100 50 0.05 0.05 0.05 0.92 0.22

1000 50 0.01 0.01 0.01 0.74 0.09

10 500 0.48 0.53 0.90 0.97 0.36

100 500 0.05 0.05 0.06 0.92 0.10

1000 500 0.01 0.01 0.01 0.78 0.07
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the linear cases corresponding to the pre-set size of the tests, 0.05, as required.

In the quadratic system, Equation (4.4.4), the delta approximation of bias is exact, so

bapprox = b, and since the response is globally quadratic centring the CCD at θθθ mle rather

the θθθ c does not matter. Therefore, we would expect the power hold at 1−α2 plus or minus

sampling error. In Table 4.4.3 we see this for m = 1000 and it is close for m = 500 where

the error in p̂ is roughly±0.04. When m= 10 however, we see a lower power than expected

and a discrepancy between b = bapprox and ¯̂b. When the quantity of real-world input data is

so exceptionally small, use of the plug-in estimate Ω̂ without accounting for its variance is

likely the reason.

Two cubic functions were also considered. When the response surface is cubic the

locally quadratic assumption of our response surface not strictly correct, but it may be

reasonable depending on the cubic function. Here b, the true bias due to input modelling,

contains the third moment of the MLEs of the input distributions, E [(θθθ mle)3]; these can be

calculated using the skewness of the MLEs: Skew(θ mle
i ) = 2/

√
m, for i = 1,2. The delta

approximation of bias due to input modelling, bapprox, is a second-order approximation and

therefore does not take the higher moments into account. However, in Table 4.4.3 it can be

seen that as m increases bapprox→ b since 2/
√

m→ 0 as m→ ∞.

The first cubic function considered, Equation (4.4.5), was selected such that the

quadratic approximation is reasonable over the space covered by the CCD design. In Ta-

ble 4.4.3 we see that, when the smallest values of m and r were used, the lack-of-fit test

is passed approximately the same proportion of times as the quadratic function, and we

see similar results to the quadratic experiment. As m and r increase we see the power get

increasingly close to 0.8 and the delta approximation, bapprox, converges to b. Overall our

method works well for this example.

The second cubic function, Equation (4.4.6), was chosen so the quadratic assumption

was a poor approximation over the CCD space for the smallest values of m and r con-

sidered. When m = 10 and r = 50 the lack-of-fit test rejected the the quadratic model in

approximately 60% of the G = 1000 macro replications; this was the best case, but overall
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this test was not very sensitive to the lack of fit. In Table 4.4.3 we see that the power of

the bias test is often higher than our nominal value of 0.8 for small values of m and r even

when the average estimated bias, ¯̂b, differs substantially from b and bapprox; this is good,

but we should not expect it to be a general phenomenon. Increasing m or r has the effect

of shrinking the width of the CCD making the quadratic assumption over our CCD space a

better approximation.

This experiment shows the importance of the locally quadratic assumption over the

CCD space. When the quadratic assumption does not hold our estimate of bias, b̂, can be

quite different from b when m is small. Using the lack-of-fit test to validate the quadratic

assumption is therefore advised, but is not a panacea; recall this requires no additional

simulation effort. Another problem is that, for small m, the distance between θθθ mle and θθθ c

may be quite large, implying that we estimate the Hessian of the response surface at the

wrong point which could impact both the estimate of bias and the power of the test.

4.4.4 A realistic example - NHS 111 healthcare call centre

We now illustrate our bias detection diagnostic on the simulation of a real-world system

with a non-stationary input process. The nominal experiment is based on observations of

arrival counts over 96, 15-minute intervals, from an NHS 111 healthcare call centre in

the UK. This system was introduced in Chapter 3 of this thesis. As previously described,

the NHS 111 healthcare call centre system was designed to remove some of the strain

from other healthcare services, for example emergency departments, by advising callers on

which service they should access. Of the 6 months of data we had we decided to consider

Wednesdays only as UK public holidays mid-week are rare and therefore we would expect

no outliers in the arrival rates.

After checking the Poisson assumptions were satisfied by the arrival data, this system

was simulated as an M(t)/G/S(t) queueing model with a piecewise-constant Poisson arrival

process. Based on data from the NHS 111 healthcare call centre system we conducted two

experiments with different levels of input data. Let md denote the number of days the system
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was observed observed, and m denote the total number of arrivals over the md days. Figures

4.4.4a and 4.4.4b show the average rates over md =10 and md =26 days of arrival count

data, respectively. In both scenarios change-point analysis for Poisson data, as discussed

in Chen and Gupta (2011), was used to distinguish between intervals with significantly

different arrival counts. This pre-processing technique was used because the IU in each

small interval may be large, especially in intervals with low arrival rates where we would

not expect to observe many arrivals. The change-point analysis reduced the arrival process

to 7 and 8 intervals of varied length for the two scenarios; see the blue intervals in Figures

4.4.4a and 4.4.4b. Using the methods discussed in Chapter 3 we were then able to estimate

the total IU, κ̂ , of the expected waiting time of callers, E(WTime), in both cases.

From two months of service-time data the mean service time was 8.00 minutes and

the standard deviation was 4.33 minutes. A moment matching approach was used to fit

a Gamma distribution with shape parameter φ1 = 3.408 and scale parameter φ2 = 2.347.

Since we wanted to mimic having observed a service time for each arrival, we created a

synthetic “observed” data set of service-time observations of size m corresponding to the

expected number of arrivals in each scenario, and treated this as the real-world data.

To generate a realistic scenario we used approximately proportional staffing to meet

the NHS target level of service, P(WTime > 1 min) < 0.05. This corresponded to server

utilisation of 62% in the model with 10 days of arrival data and 65% in the system with 26

days of arrival data. In the nominal experiment estimates of the expected waiting time of

callers were found to be E(WTime) = 0.0756 minutes and E(WTime) = 0.0674 minutes

respectively; this is our performance measure of interest.

In the experiments we carry out the bias diagnostic test, as described in §4.3, and within

this we run the lack-of-fit diagnostic test to validate our quadratic approximation. An esti-

mate κ̂ of IU variance is used to guide our choice of the relevant bias, γ . Note that, γ will

therefore reduce with m, the number of arrival observations, because IU is also reduced.

We want high power of rejecting the null if the true bias is larger than γ =
√

υ× κ̂ where

0 < υ < 1. This gives us a threshold of bias deemed to have an important effect on the
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(a) The arrival count function given md = 10 days of observations.

(b) The arrival count function given md = 26 days of observations.

Figure 4.4.4: The average arrival counts over 96, 15 minute, intervals given md days of

arrival data. Intervals post pre-processing of the data using change-point analysis are shown

in blue.
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MSE. Estimates of θθθ c and Ω were obtained from the input data, and σ2 from the nominal

experiment.

The desired power of the bias detection test was set equal to 1−α2 = 0.8 and the size

to α1 = 0.05; the size for the lack-of-fit test is also 0.05. For these experiments the relevant

bias, γ , was set using υ = 0.3, meaning we consider bias squared higher than 30% of the

value of IU to be relevant.

For these two scenarios the number of input parameters driving the simulations are k = 9

and k = 10, respectively. This comes from the piecewise-constant arrival process having

7 or 8 distinct intervals, which are treated as independent input distributions; the final two

parameters describe the service-time distribution. We conducted experiments employing

both the full-factorial CCD and the reduced fraction CCD design proposed by Sanchez and

Sanchez (2005). The latter design reduced the number of factorial points in both experi-

ments to nF = 128 from nF = 512 and nF = 1024 respectively. Note that in all experiments

we repeat the centre point nC = 20 times. The results of the bias detection test are displayed

in Table 4.4.4.

Table 4.4.4: The bias detection test in a NHS 111 healthcare call centre scenario considering

the expected waiting time of callers, E(WTime), with md = 10 and md = 26 days of arrival

data. Results for both the bias and the lack-of-fit tests are presented.

Design Exp md m n r γ a b̂ Bias LOF

Full 1 10 20068 550 500 0.0035 0.577 0.0014 Accept Reject

550 1000 0.0035 0.485 0.0019 Accept Accept

Frac 2 10 20068 166 500 0.0035 0.603 0.0013 Accept Reject

166 1000 0.0035 0.507 0.0005 Accept Accept

Full 3 26 52711 1064 500 0.0024 0.699 0.015 Reject Reject

1064 1000 0.0024 0.588 0.011 Reject Reject

Frac 4 26 52711 168 500 0.0024 0.737 0.005 Reject Accept

Before we analyse the results of our bias detection test note that in Table 4.4.4 for



CHAPTER 4. DETECTING BIAS DUE TO INPUT MODELLING 82

experiments 1, 2 and 3 the result of the lack-of-fit test in the initial experiment with r = 500

replications at each design point was to reject the quadratic model. For this reason we

repeated these experiments, increasing the number of replications at each design point from

r = 500 to r = 1000. This did not change the conclusion of the bias detection test, but did

result in experiments 1 and 2 passing the lack-of-fit test. Thus, in these two experiments

with r = 1000 we have no strong evidence that our quadratic approximation is inadequate.

In experiment 3, even with r = 1000, the lack-of-fit test rejects the null, suggesting a more

complicated model is required to describe the response surface. Note that, although we

doubled the number of replications at each design point the scaling factor of the design,

a, only decreased by a small amount. Acquiring a scaling factor small enough for the

quadratic approximation to hold may take a much larger number of replications; recall that

r = O(1/a4).

In experiments 1 and 3 we use the full-factorial CCD and in experiments 2 and 4 we

use the reduced fractional CCD by Sanchez and Sanchez (2005). In Table 4.4.4 we see

that the conclusion of the bias detection test given the full CCD agrees with the conclusion

when the reduced fractional design is used for both levels of arrival data. The scalability of

our method was an issue of concern to us. Here we see a great reduction in the number of

design points, n, and thus computational effort, required to estimate the bias due to input

modelling when using the reduced experimental design, yet we are still able to gain an

estimate b̂ close to the estimate from the full CCD and make the same conclusion.

In Table 4.4.4 we also see that, given a larger number of days of observations of the

NHS 111 system γ , our relevant value of bias, decreases from γ = 0.0034 to γ = 0.0024.

This is because we used IU to guide our value of γ and the estimate of IU, κ̂ , is smaller

in the system with more days of input data. Our bias detection test is set up so that when

|b| ≥ γ we have high power of detecting bias. Since γ is higher in experiments 1 and 2

with md = 10 days of observations we require a larger departure from H0 than we do in the

experiments where md = 26 to have a high probability of rejecting the null. Further, given

a large amount of input data the variability of the MLE’s will be small. With our method
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this causes a smaller variance about the bias due to input modelling, Var(b̂), which in turn

increases the power of our bias detection test.

Turning our attention to the conclusions of the bias detection tests in Table 4.4.4, we

see that in experiments 1 and 2, with md = 10 days of arrival data, we accept the null

hypothesis, so there is insufficient evidence to suggest b 6= 0 in these experiments. Since

we set our threshold for relevant b2 to 30% of the input uncertainty variance, and controlled

the power to detect bias larger than this size, our conclusion is more practically stated as

that bias is making a small contribution to overall MSE due to input modeling.

In experiments 3 and 4, with md = 26 days of observations, we reject the null hypoth-

esis; that is, we have sufficient evidence to suggest that b 6= 0. At this point we may wish

to spend additional computational effort on estimating b̂, to get a more accurate estimate of

the bias due to input modelling about our performance measure estimate. Alternatively, at

this point the practitioner may wish to reduce bias to a level that does not concern them by

collecting more input data and repeating the bias detection test.

We have now illustrated our bias detection test on a realistic example. This example had

a non-stationary piecewise-constant Poisson arrival process that we pre-processed using

change-point analysis. Note that the location of the change-points will have had an effect

on the bias due to input modelling. Change-point analysis aids the choice of arrival intervals

but does not guarantee an arrival function that represents the true arrival process perfectly

or that it propagates minimal error due to input modelling to our simulation output.

4.5 Conclusion

This chapter presents a test with controlled power for detecting bias due to input modelling

of a relevant size in simulation models. Previously this form of error has been ignored.

The test is built on the assumption that close to θθθ c the true response can be approximated

by a quadratic. We fit the quadratic response surface using a CCD experimental design,

which is constructed in a novel way allowing the practitioner to control the power of the
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bias detection test through the scaling of CCD width or the number of replications at each

design point.

We explored and evaluated the bias detection test using a controlled experiment investi-

gating the functional form of the response surface, the amount of input data and the number

of replications completed at each design point. This experiment highlighted the importance

of the validity of our quadratic assumption over the CCD space for our power to hold and we

were able to show that by increasing the number of replications of the experiment at each

design point or the number of observations used to estimate our input models we achieved

our target power. Also of influence was the distance between the estimated input model

parameters, θθθ mle, and the true input model parameters, θθθ c, which was seen to affect both

the estimate of power and average bias estimate. We also demonstrated the bias detection

test in a NHS 111 healthcare call centre example. This included the use of IU to guide our

choice of the relevant value of bias.

From our exploration of quantifying and detecting bias due to input modelling there

still remain open questions that may be of interest. One of these is how we might optimally

set nC the number of centre points in our model? Currently nC is set in an ad hoc manner

dependent on the number of factorial and axial points in the CCD. Also of interest is how

we might optimally set r, the number of replications of the simulation at each design point.

We need r large enough to ensure our quadratic assumption holds sufficiently closely but

do not wish to waste unnecessary simulation budget. In the experiments in this chapter we

chose r to be suitably large to satisfy our quadratic assumption. But another possibility

could be to use the estimate of simulation noise, σ2, from the nominal experiment to guide

this choice.

In the NHS 111 example we used change-point analysis to form the arrival-process input

model, which introduces its own error, but more generally input model misspecification is

a source of model risk not captured here (e.g., if the arrival process is not actually Poisson).

Similarly, we found that the lack-of-quadratic-fit test was not as strong an indicator as one

might like of approximation error; this is an important problem for future study.
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Note that our method can be used alongside current IU quantification techniques, al-

lowing us to express the total error due to input modelling of our performance mea-

sures of interest. Current techniques allow IU quantification for simulation models with

time-homogeneous arrival distributions and piecewise-constant non-stationary Poisson pro-

cesses. Estimation and detection of error due to input modelling in simulation models with

more complex arrival processes is something we leave for future work.

In conclusion, this chapter offers the first method for estimation and detection of bias

due to input modelling. In doing so it allows a practitioner to consider the total error due to

input modelling that may impact their performance measures of interest.



A Spline Function Method for Modelling

and Generating a Nonhomogeneous Pois-

son Process

5.1 Introduction

Simulation models aim to mimic real-world systems and should therefore be driven by

input models that represent well the behaviour of the system of interest. In this chapter we

present a spline-based input modelling method with the aim of recovering the arrival rate

of a nonhomogeneous Poisson process (NHPP) better than existing techniques in terms of

both bias and variability; in doing so, we also reduce the input modelling error passed to

the simulation output. Quantifying the error propagated to the simulation output caused

by input modelling has been an active area of research in recent years, see Morgan et al.

(2016), Morgan et al. (2017) and references therein.

In reality, many systems exhibit non-stationary behaviour, an example being arrivals to

emergency departments which are known to be affected by the time of day and day of the

week; see §5.5.2. A natural way to represent such behaviour is to use a NHPP. For a NHPP

86
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the rate, or intensity, λ (t), is non-negative, λ (t) ≥ 0, for all t, and is allowed to change

through time. Given two points a and b, with a≤ b, let N(a,b) denote the number of arrivals

on the interval (a,b]. Note that, for a Poisson process the number of arrivals that occur in

disjoint intervals are independent of one another. By the definition of a Poisson process

N(a,b) follows a Poisson distribution, N(a,b) ∼ Pois(Λ(a,b)), where Λ(a,b) is known as

the integrated rate, or cumulative intensity, function defined by Λ(a,b) =
∫ b

a λ (t)dt. The

probability of s arrivals occurring on interval (a,b] from a NHPP with arrival rate function

λ (t) is P(N(a,b) = s) = exp{−Λ(a,b)} Λ(a,b)s/s!. Since the probabilistic behaviour of a

NHPP can be completely characterised by its rate function, λ (t), or integrated rate function,

Λ(t), any input modelling approach for a NHPP therefore aims to estimate one of these

functions. In this contribution we focus on estimation of the rate function λ (t). For methods

to estimate the integrated rate function see Leemis (1991) and Arkin and Leemis (2000) and

references therein.

There are existing approaches for estimating the intensity function of NHPPs. Some

of these make assumptions about the structure of the underlying rate function which limits

their usefulness for modelling general processes. As an alternative, we propose a spline

function arrival rate model. Spline functions are piecewise polynomials that are, by design,

smooth and satisfy continuity constraints at the knots joining their pieces. In addition spline

functions are flexible, becoming more so as the number of knots is increased. In this chapter

we propose using a large number of knots allowing the resulting model to be very flexible.

The flexibility of the spline function enables a reduction in the bias between the input

model and the true rate function, but flexibility can also lead to overfitting of the observed

data. To control overfitting, and thus reduce the variability of the representation, we work

with the penalised log-likelihood, adding a penalty parameter to the NHPP log-likelihood.

For a fixed penalty value, we maximise the penalised log-likelihood of the NHPP using

a trust region optimisation approach. Our method then selects the combination of spline

coefficients and penalty by minimising a modified AIC score, known as the regularised

information criterion (RIC), which accounts for the penalty in our penalised log-likelihood,
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see (Dixon and Ward, 2018) and references therein. The combination with the lowest RIC

score is chosen.

Using the definition of a spline function as a linear combination of n B-spline basis

functions we present a simple method for the simulation of arrivals from the NHPP via

thinning. Using the decomposition property of a NHPP, the arrivals from the NHPP with

arrival rate function represented by the spline-based model are the superposition of the

arrivals simulated from the n spline components.

The chapter is organised as follows. In §5.2 we discuss the current literature for mod-

elling the rate function of a NHPP. In §5.3 the spline-based input model is presented, and

in §5.4 we introduce a thinning-based method for simulating arrivals from it. In §5.5 we

evaluate our method in comparison to relevant competitors, present a realistic example of

fitting a NHPP arrival rate function to arrivals from a real-world emergency department and

consider how robust the spline-based method is to departures from Poisson data in terms

over under- and overdispersion. In §5.6 we conclude.

5.2 Background

There are a number of NHPP input modelling techniques that utlise observed arrival times.

The alternative for input modelling is to work with the counts of arrivals over intervals, see

Nicol and Leemis (2014) and references therein. Note that, arrival-time observations can

easily be transformed to arrival counts but counts cannot be transformed into arrival times.

In this chapter we focus on arrival-time observations. A common approach to modelling

arrival-time observations is to use an exponential form, λ (t) = exp{g(t)}, where g(t) is

composed of additional polynomial or trigonometric components, as the exponential form

ensures the rate function is always non-negative. This idea was adopted by Lewis and

Shedler (1976), Lewis (1971), Kuhl et al. (1995), Kuhl et al. (1997), Lee et al. (1991) and

others. Note that numerically optimising the parameters in these methods is computation-

ally expensive and often requires a good starting point.
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Other approaches assume the rate function is a piecewise polynomial of some degree.

For example, Chen and Schmeiser (2013) present the iterative mean-constrained algorithm

I-SMOOTH that returns a smoother piecewise-constant estimator of the arrival rate func-

tion given an initial piecewise-constant representation. Henderson (2003) shows that, when

the intervals are of equal length, piecewise-constant estimators of the rate function are con-

sistent as the number of arriavls increases, provided the length of the intervals shrink at

an appropriate rate. Zheng and Glynn (2017) assume that the true intensity is piecewise-

linear over known intervals and develop a convex programming formulation to estimate

the intensity at the interval boundaries given arrival times or counts. Alternatively, Chen

and Schmeiser (2017) present the Max Nonnegativity Ordering–Piecewise-Quadratic Rate

Smoothing (MNO-PQRS) algorithm that produces a piecewise-quadratic representation of

general input processes, not restricted to Poisson, over known intervals. Like I-SMOOTH,

the MNO-PQRS algorithm is initialised with a piecewise-constant rate function. Kao and

Chang (1988) present a piecewise polynomial representation given either arrival times or

counts, where the breakpoints and polynomial degree in each interval are selected subjec-

tively.

We now present a spline-based input modelling method for estimating the arrival rate

function of a NHPP given arrival-time observations. Known uses for spline functions in-

clude: interpolation of data, approximate solutions of differential equations, curve approxi-

mation and image processing. Channouf (2008) uses a spline function to represent the rate

function of both NHPPs and doubly stochastic Poisson processes. Unlike our approach,

they do not make use of the B-spline composition of a spline function.

5.3 Fitting a spline function via penalised log-likelihood

Suppose we observe a NHPP with true rate function λ c(t), on the interval [0,T ], md times.

In this chapter we let md be a number of days, but note in practice md could also repre-

sent other units such as minutes or hours or months. For flexibility we represent the rate



CHAPTER 5. A SPLINE-BASED INPUT MODEL 90

function using a cubic, degree e = 3, spline function. A cubic spline function is a linear

combination of n cubic basis functions, otherwise known as cubic B-splines. B-splines are

locally defined functions. Let Bk,sssk(t) denote the kth cubic B-spline at time t defined over

the ordered knot sequence sssk = {sk−(e+1),sk−e, . . . ,sk}. For t ∈ {sk−(e+1),sk}, a cubic B-

spline is nonnegative and twice continuously differentiable; otherwise it is equal to 0. For

e > 1, B-splines are composed recursively from lower degree B-splines using the following

recurrence relation

Bk,e,sssk(t) =
t− sk−(e+1)

sk−1− sk−(e+1)
Bk,e−1,sssk(t)+

sk− t
sk− sk−e

Bk+1,e−1,sssk+1(t), (5.3.1)

for t ∈ [sk−(e+1),sk), where e denotes the degree of the B-spline. At the lowest level, e = 0,

this is

Bk,0,sss(x) =
{ 1 if sk−1 ≤ x < sk

0 otherwise.

Given the definition of a B-spline, the spline rate function is defined by

λ (t;ccc) =
n

∑
k=1

ckBk,sssk(t), (5.3.2)

where ck ∈ R is the spline coefficient of the kth B-spline and ccc = {c1,c2, . . . ,cn}. Note

that, as n gets larger there are more B-splines, and thus more knots, resulting in increased

flexibility of the shape of the spline function. Spline function (5.3.2) combines the n local

knot vectors of its component B-splines. Let the knot sequence of the spline function be

denoted sss, where sss = {s−e,s−e+1, . . . ,s0,s1, . . . , . . . ,sn+1}. It may seem unconventional to

start knot sequence sss with knot s−e but, if we are interested in estimating an arrival rate

function on the interval [0,T ], by setting s0 = 0 and sn−e = T we ensure that for all t ∈

[0,T ], e+ 1 B-splines are non-zero. In general, the knots of a spline function need not

be uniformly spaced but we will focus on uniformly spaced knot vectors, also known as

cardinal B-splines. Cardinal B-splines are horizontal translates of each other; in §5.4 we

will discuss how this can be advantageous for arrival generation. From herein, we drop

the knot sequence subscript on the B-spline and let Bk(t) denote the kth B-spline unless

necessary.
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Note that once the knots of the spline function have been placed the value of each B-

spline is fixed for all t. The resulting spline rate function is completely determined by the

spline coefficients, ccc = {c1,c2, . . . ,cn}. In fitting the spline function it is therefore the spline

coefficients we wish to optimise.

5.3.1 The penalised log-likelihood

We chose to fit the spline function given a large number of knots. This allows flexibility

of the resulting spline function, but may lead to a representation, λ (t;ccc), that over fits the

observed data. To control this, when fitting λ (t;ccc) we use a penalised log-likelihood. The

likelihood of a NHPP conditional on md days of observations over the interval [0,T ] is

L(λ (t;ccc)) ∝

md

∏
i=1

ai

∏
j=1

(λ (ti j;ccc))exp
{
−
∫ T

0
λ (y;ccc)dy

}m

d

where ai denotes the number of arrivals observed on the ith day, and 0 ≤ ti1 < ti2 < · · · <

tiai ≤ T , i = 1,2, . . . ,md denote the observed arrival times. This gives us the log-likelihood

l(λ (t;ccc)) ∝

md

∑
i=1

ai

∑
j=1

log(λ (ti j;ccc))−md

∫ T

0
λ (y;ccc)dy.

We chose to penalise the log-likelihood using a measure of the curvature of the fitted rate

function: the integrated second derivative of the spline function

1
2

∫ T

0
{λ ′′(u;ccc)}2du. (5.3.3)

This is a standard penalty for cubic splines within the smoothing spline literature (de Boor,

1978). The penalised log-likelihood is thus

lp(λ (t;ccc)) ∝

md

∑
i=1

ai

∑
j=1

log
(
λ (ti j;ccc)

)
−md

∫ T

0
λ (y;ccc)dy− 1

2
θ

∫ T

0
{λ ′′(u;ccc)}2du

∝

md

∑
i=1

ai

∑
j=1

log

(
n

∑
k=1

ckBk(ti j)

)
−md

n

∑
k=1

ck

∫ T

0
Bk(y)dy− 1

2
θ

n

∑
k=1

n

∑
h=1

ckch

∫ T

0
B′′k (u)B

′′
h(u)du.

(5.3.4)

where θ ∈ [0,∞) is a penalty parameter. When θ = 0 we return to the un-penalised log-

likelihood of the NHPP. When θ is large it drives the penalty (5.3.3) down forcing the
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spline function λ (t;ccc) to be smoother; in the limit as θ → ∞ the rate function becomes

linear. Recall that, when the knots have been placed the value of Bk(u) is fixed for all u,

thus
∫ T

0 {B′′k (u)}2du is fixed for k = 1,2, . . . ,n.

For a fixed penalty θ , we optimise ccc, by maximising the penalised log-likelihood using

a trust region approach. We denote the optimised spline coefficients for a given penalty, θ ,

by ĉccθ . Later we will use an information criterion to select θ .

5.3.2 Trust region optimisation

Trust region optimisation, see Conn et al. (2000), makes use of a local model, τ(·), of the

function to be optimised, here the penalised log-likelihood, and iteratively steps closer to

the optimal solution by taking steps within a region where τ(·) is trusted. By convention the

trust region approach is a minimisation algorithm, we therefore minimise the negative pe-

nalised log-likelihood as an equivalent to our problem. This requires a local approximation

of the negative penalised log-likelihood, −lp(·). As is typical in the trust region approach,

we use a second-order Taylor series to describe the local model. In each iteration of the

algorithm we centre the model on the current, fixed, estimate of our spline coefficients, ccch

τ(ppph) =−(lp(ccch)+gp(ccch)
T ppph +

1
2

pppT
h Hp(ccch)ppph)

where ppph is the proposed vector of parameter values, gp is the (1× n) gradient vector and

Hp is the (n×n) Hessian matrix of lp(·), which can be calculated exactly.

Within the trust region algorithm we iteratively step towards the optimum within a re-

gion in which we believe model τ(·) to be a good approximation of −lp(·). For this reason

the trust region approach imposes an upper limit on how large of a step we can take in each

iteration. The area in which the algorithm is allowed to move is call the ‘trust region’. Let

us denote the radius of this ‘trust region’, centred at ccch, as ∆.

At each iteration, h, of the trust region algorithm we solve the trust region sub-problem:

min τ(ppph) subject to: ||ppph|| ≤ ∆ and ccc≥ 000, (5.3.5)
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where || · || denotes Euclidean distance. The constraint ccc≥000 is used to ensure nonnegativity

of the resulting rate function. Note that this constraint is stronger than necessary since

negative spline coefficients are possible whilst still maintaining a positive rate function. But

the constraint leads to a simple way to force the rate function, λ (t;ccc), to stay nonnegative.

The trust region subproblem (5.3.5) is a convex, quadratic program and thus has a unique

solution. To solve it in practice we used the Gurobi Optimization (2018) quadratic solver.

Note that if the true rate function, λ c(t), is known to have a cyclic structure, we can

impose this structure upon our spline function by adding constraints of the form

λ (0;ccc) = λ (T ;ccc), λ
′(0;ccc) = λ

′(T ;ccc), λ
′′(0;ccc) = λ

′′(T ;ccc),

to the trust region subproblem. Such constraints can easily be incorporated.

Given a proposed step ppph from the trust region subproblem, we decide whether to accept

or reject the step according to the ratio

ρh =
lp(λ (t;ccch))− lp(λ (t;ccch + ppph))

τ(000)− τ(ppph)
. (5.3.6)

This ratio compares the actual reduction in the penalised log-likelihood to the predicted

reduction from the model. A value of ρh close to 1 says that there is good agreement

between model τ(·) and −lp(·). We accept ppph if ρh > α , where α is set by the practitioner.

If ppph is accepted our new position is ccch+1 = ccch + ppph.

Note that the radius of the trust region ∆ is adaptive throughout the algorithm. If ρh is

close to 1 and ||ppph|| = ∆, then ∆ is restricting our step, and we would increase the radius

of the trust region. Alternatively, if there is not a good agreement between τ(·) and −lp(·),

we restrict the model to the region where the Taylor series approximation is better. Rules

on when to change the trust region radius are set using thresholds. For example, we might

change ∆ when ρh < γ = 0.25 or ρh > β = 0.75. As we get closer to the optimum, ĉccθ , the

size of the trust region shrinks. We stop the algorithm when ||ppph||< ε where ε is a stopping

value set by the user. Within the trust region approach α , β , γ and ε are decided by the

practitioner; sensible values are suggested by Wright and Nocedal (1999).
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The trust region algorithm is used within the spline-based method to minimise the neg-

ative penalised log-likelihood, and thus optimise the spline-coefficients for a fixed penalty,

θ . One drawback of the trust region algorithm is that it may struggle to converge to the true

optimal spline coefficient values or even stall when the number of knots grows too large.

The dimension of the optimisation problem increases with the number of knots used to build

the spline function, and thus finding the optimum is harder as the number of knots grows.

We must also take into account that model τ(·) is a second-order approximation, whereas

the spline function is a cubic polynomial. As the number of knots increases the spline func-

tion becomes more and more flexible on smaller and smaller intervals. This means that to

ensure model τ(·) is a valid approximation at the point ccch we must take smaller steps, ppph.

The smaller the step we take in each iteration the slower the convergence and in some cases

the algorithm may even stop before the optimum has been reached. Note that this is a prob-

lem in the trust region algorithm; if the spline coefficients do not converge to their optimal

value for a chosen number of knots this does not mean that a spline function cannot be fit

with that number of knots. It may be possible to adaptively change the parameters of the

trust region algorithm, in the same way that the size of the trust region radius, ∆, changes, to

ensure convergence occurs. Another possibility is to use a different optimisation approach

to find the optimal spline coefficients, we leave this as suggested future work.

5.3.3 Selecting {θ ,ĉccθ}

To choose the combination of penalty parameter and spline coefficients, {θ ,ĉccθ}, we use a

modification of the AIC score of Cavanaugh and Neath (2011), known as the regularisation

information criterion (RIC); see Dixon and Ward (2018) and Shibata (1989). As with most

information criteria, this score is based on Kullback-Leibler (KL) information, a measure

of the distance between two distributions (Kullback, 1997). Both the AIC and RIC trade off

the goodness-of-fit of a proposed model, in this case a spline function, and its complexity.

If we selected the combination {θ ,ĉccθ} by maximising the penalised log-likelihood alone

we would always choose the unpenalised spline function, where θ = 0, as it is more able to
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adapt the characteristics in the observed data. A penalty is therefore added to the penalised

log-likelihood to control overfitting. Where degrees of freedom is used in traditional AIC,

RIC uses the effective degrees of freedom, e, defined as follows

RIC =−2 l(λ (ttt; ĉccθ ))+2 e,

=−2 l(λ (ttt; ĉccθ ))+2 tr(Ip(ĉccθ )Jp(ĉccθ )
−1).

Within the effective degrees of freedom, Ip(ĉccθ ) is the observed Fisher information and

Jp(ĉccθ ) is the negative Hessian matrix of the penalised log-likelihood,

Ip(ĉccθ ) =
1

md

md

∑
i=1

∂

∂ccc

[
l(λ (ttt i; ĉccθ ))−θ

Ω

2md

]
∂

∂ccc′

[
l(λ (ttt i; ĉccθ ))−θ

Ω

2md

]
Jp(ĉccθ ) =−

1
md

md

∑
i=1

∂ 2

∂ccc∂ccc′

[
l(ttt i; ĉccθ )−θ

Ω

2md

]
=−Hp(ĉccθ ),

where ttt i are the arrivals observed on the ith day and Ω is the matrix of partial second deriva-

tives of the penalty function, (5.3.3), Ωi j =
∫ T

0 B′′i (u)B
′′
j (u)du. The chosen combination,

{θ ,ĉccθ}, is composed of the values of the penalty parameter and spline coefficients that

minimise the RIC. Given the penalty value θ , the optimal spline coefficients, ĉccθ , can be

found using trust region optimisation as discussed in §5.3.2. This reduces the search for the

combination {θ ,ĉccθ} to finding the penalty value, θ ∈ [0,∞) that minimises the RIC. This

is a one-dimensional search: at each step we

1. Fix θ ,

2. maximise the penalised log-likelihood to find ĉccθ ,

3. then evaluate the RIC at {θ , ĉccθ}.

For speed, we propose a simple search to narrow down the interval in which to select θ .

We suggest starting with a high penalty value η and jumping backwards towards 0 by

halving the penalty at each step, θ = {η , 1
2η , 1

4η , 1
8η , . . .}; this allows us to take larger

steps initially. Note that, if in the first jump RICη <RIC 1
2 η

then we would restart the

algorithm from a higher starting point as we are moving in the wrong direction to find
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the minimum RIC. Let us say that in the qth step we observe RIC 1
2q η

<RIC 1
2q+1 ,η

for the

first time, then we know that the minimum must lie within the interval O = { 1
2q+1 η , 1

2q η}.

We have therefore narrowed the search for the penalty to a one-dimensional search within

interval O. In practice we completed the one-dimensional search for θ in O using the

R function optimise (R Core Team, 2018), which combines a golden section search and

successive parabolic interpolation.

At this point we have provided a method to construct a spline-based input model,

λ (t; ĉccθ ), for the arrival rate of a NHPP. Although not the topic of this chapter, it may also be

of interest to consider the pointwise variability in the spline-based representation, λ (t; ĉccθ ).

This could, for example, be used in the construction of pointwise confidence intervals. For

some t ∈ [0,T ] the variance of the spline function λ (t; ĉccθ ), is

Var [λ (t; ĉccθ )] = Var [ ĉccθBBB(t)] =BBB(t)T Cov[ ĉccθ ]BBB(t) (5.3.7)

where BBB(t) = {B1(t),B2(t), . . . ,Bn(t)} is the vector containing the value of each B-spline at

time t. When the penalty function induces little bias on the estimates, Gray (1992) justifies

estimating the variance-covariance matrix of the spline coefficients, ĉccθ , by

Cov[ ĉccθ ] = mdHp(ĉccθ ,θ
(m))−1I( ĉccθ )Hp(ĉccθ ,θ

(m))−1,

as md → ∞, where I( ĉccθ ) denotes the observed information matrix of the unpenalised log-

likelihood and θ (md) is a sequence of penalty values such that θ
(md)
j /md → Q j, where 0 ≤

Q j < ∞, as md → ∞. This sequence is used to achieve the same degree of smoothing as md

increases since the contribution of the log-likelihood to the total penalised log-likelihood

increases with md . When the bias induced on the estimates of the spline coefficients by

the penalty is large, formal inference about the error in ĉccθ is not advised (Gray, 1992). In

§5.5.2, under the additional approximation of normality, we use (5.3.7) to estimate a 95%

pointwise confidence interval around the spline-based model.
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5.4 Generating arrivals from the spline function

At this point we have presented a spline function method for fitting the rate function of a

NHPP. In practice we wish to be able to generate arrivals from this function to drive our

simulation models. Given we directly model the rate function, thinning is arguably the

most appropriate method for arrival generation in this context. To generate arrivals using

the thinning method, the maximum of the intensity function, or at least some majorising

function, is required. For the spline function representation, Equation (5.3.2), the maximum

is not straightforward to calculate, but we do know the maximum of each B-spline function.

The composition of the spline function representation is advantageous for arrival gen-

eration. By the superposition property of NHPPs (Kingman, 1992), it is known that

the sum of n independent NHPPs is also a NHPP. When this is the case, the inten-

sity function of the process is the sum of the intensity functions of its n components,

λ c(t) = λ c
1 (t)+λ c

2 (t)+ · · ·+λ c
n (t). Given the form of (5.3.2), it would therefore be natu-

ral to treat each component of the spline function as the intensity of an individual NHPP,

λk(t) = ckBk(t), for k = 1,2, . . . ,n. The key advantage being that the maximum of the

B-spline basis functions are known.

Each cubic B-spline is built on a local knot sequence of 5 knots, for the kth B-spline

this is {sk−4,sk−3,sk−2,sk−1,sk}. The maximum of each cubic B-spline function is known

to fall at the centre of its local knot sequence, Bk(sk−2) for the kth B-spline. Since this max-

imum is known, we can also calculate the maximum of λk(t) = ckBk(t), for k = 1,2, . . . ,n.

Using thinning we can generate arrivals from each component NHPP; the superposition of

these arrival times are the arrivals from the NHPP with intensity λ (t;ccc) as required. When

cardinal B-splines are used as the basis for the spline function, arrival generation simplifies

even further as all spline components, λk(t;ccc), are simply a scaled translation of the first

B-spline, λk(t;ccc) = ckB1(t), with maximum at knot s−1.

When generating arrivals from each spline component, we also propose using the

knowledge of the maxima of each component to create a tight, piecewise-linear majoris-
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Figure 5.4.1: The kth spine function component plus, a piecewise-constant majorising func-

tion (red) and an example of a piecewise-linear majorising function (blue) that could be used

to generate arrivals via inversion using the method of Klein and Roberts (1984).

ing functions for use within the thinning algorithm. Klein and Roberts (1984) propose a

simple method for generating arrivals from a piecewise-linear function. When the arrival

rate is piecewise-linear, the integrated rate function is piecewise-quadratic, and Klein and

Roberts (1984) provide a tractable form for the inverse of the integrated rate function and an

algorithm for efficient arrival generation via inversion. Figure 5.4.1 illustrates the constant

majorising function and an example piecewise-linear majorising function for the kth spline

component, λk(t;ccc) = ckBk(t), where ck = 1. The tighter the fit of the majorising function

the more efficient thinning will be. It is clear from Figure 5.4.1 that the piecewise-linear

majorising function provides a tighter fit than the constant function. An indicator of how

tight the fit of the majorising function is, is the ratio of the area under the B-spline to the

area under the majorising function, where 1 is perfect agreement. For the constant majoris-

ing function this ratio is 2.67, and for the piecewise-linear majorising function it is 1.14. Of

course we could reduce this ratio further by more careful selection of the piecewise-linear

majorising function, but we leave this to further work. In terms of efficiency, the more

arrivals that need generating within a simulation the more important it will be to reduce the

gap between the spline component and its majorising function.



CHAPTER 5. A SPLINE-BASED INPUT MODEL 99

5.5 Evaluation

In this section we evaluate our spline function input modelling method by comparing it

to two input modelling methods that have recently been presented in the literature. We

also illustrate the use of fitting a spline function to observations of arrivals of a real-world

accident and emergency (A&E) department and investigate the robustness of the spline-

based method for fitting the arrival rate function of an input process when the observations

are under- or overdispersed in comparison to a Poisson process.

5.5.1 Computational Comparison

We start the evaluation by comparing our spline-based method to two appropriate com-

petitors in the existing literature, the piecewise-quadratic input model presented by Chen

and Schmeiser (2017), known as MNO-PQRS, and the piecewise linear approach by Zheng

and Glynn (2017). Here, by an “appropriate” method we mean methods that are able to

take arrival-time observations from a NHPP and fit the rate function whilst making no prior

assumptions about the trends of the underlying rate function.

In the following experiments the true rate function, λ c(t), on the interval [0,24], is

made up of two components: a sinusoidal function that affects the whole interval and a

peak, constructed using the density function of a normal distribution, which only affects

part of the interval. Constructing the peak using a normal density allows manipulation of

the height and the length of effect of the peak on the arrival rate. In this way we are able

to test how well each of the methods estimate both abrupt and slow changes to the rate

function over time. Let κ denote the how many times higher the peak is at its mid-point

than the underlying sinusoidal function at that point, and ξ denote the approximate duration

of the peak. We consider values of κ = 1, 3 and 5 and ξ = 1, 5 and 10 and the mid-point of

the peak is always at t = 15. Also of interest is the number of observations of the system.

We will consider having md = 15, 30 and 100 sets of observations over the interval [0,24]

from which to fit the arrival rate.
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In each experiment G = 500 sets of md observations are simulated from each rate func-

tion given κ and ξ ; this leads to G = 500 representations of the rate function for each

method. To compare the methods on the interval [0,T ] we observe the integrated absolute

difference, δ , and the maximum absolute difference, ζ ,

δ =
∫ T

0
|λ̂ (q)−λ

c(q)| dq

ζ = max
0≤q≤T

|λ̂ (q)−λ
c(q)|.

in each replication. These metrics are indicators of how well the estimated rate function

recovers the truth, λ c(t). We record the average integrated absolute difference and average

maximum absolute gap over the G = 500 replications denoted δ̄ and ζ̄ respectively. We

also record the coefficient of variation of the integrated absolute difference, denoted ι , as

an indicator of the dispersion of the fit of each method. This allows us to comment on the

variability, or stability, of the methods.

Both competing methods are piecewise, and assume the number and position of the in-

tervals are known. In this experiment the true functions are not piecewise, this information

is therefore unknown; we choose to pre-process the simulated data in each of the G = 500

replications using the method presented by Chen and Schmeiser (2018). This method is

data driven, using the mean integrated squared error (MISE) to choose an optimal number

of equal-length intervals. The interval placement was therefore the same for the piecewise-

linear and piecewise-quadratic methods in each replication. For the spline-based method,

50 equally spaced knots were used.

In total 9 arrival rate functions were considered for three levels of input data totalling 27

experiments for each modelling method. The methods are denoted “SPL”, “PQ” and “PL”,

respectively.

In all 27 experiments the spline-based method out-performed the piecewise-quadratic

and piecewise-linear approaches by attaining the lowest average integrated absolute dif-

ference and the lowest average maximum absolute difference. In all but a small number

of experiments the spline-based method also attained the lowest coefficient of variation of
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the integrated absolute difference indicating a higher level of stability than the competing

methods. Given the promising results from all 27 experiments we chose two extreme cases

to present, one rate function with a short duration but a high peak and one with a long dura-

tion and low peak. In Table 5.5.1 we see that for both experiments the spline-based method

has an average integrated absolute difference considerably lower than its competitors. It

also has a lower dispersion index, ι , which indicates that the spline fit is more stable than

the other methods and that the integrated absolute difference does not stray far from the

average over the G = 500 replications; this indicates that the penalisation of the likelihood

works as intended.

For both experiments presented in Table 5.5.1, we also plotted a single fit of the arrival

rate function using the three input modelling methods; to be specific the chosen fitted arrival

rate functions were from the replication where the spline function achieved its maximum

maximum absolute gap, minimum maximum absolute gap, maximum absolute integrated

difference and minimum absolute integrated difference. The arrival rate functions are pre-

sented in Figures 5.5.1 and 5.5.2. In plotting these figures we see how the spline function

competitors perform when the spline function performs best and worst. In Figure 5.5.1

we see the fit of the three methods to the arrival rate function of an NHPP with an abrupt,

ξ = 1, high magnitude, κ = 5, peak given md = 15 sets of observations. Due to the abrupt

peak all three methods struggle to fit this function. It is clear that when the spline-based

Table 5.5.1: The average maximum absolute difference, ζ̄ , the average integrated absolute

difference, δ̄ , and the coefficient of variation of the integrated absolute difference, ι , for the

fit of two arrival rate functions given md , κ and ξ .

md = 15, κ = 5, ξ = 1 md = 100, κ = 1, ξ = 10

ζ̄ (se) δ̄ (se) ι ζ̄ (se) δ̄ (se) ι

SPL 3.78 (1.92×10−2) 7.71 (8.99×10−2) 0.26 0.30 (3.66×10−3) 2.54 (2.92×10−2) 0.26

PQ 4.15 (2.40×10−2) 11.30 (1.79×10−2) 0.35 1.74 (1.35×10−2) 3.74 (5.56×10−2) 0.31

PL 4.11 (3.99×10−2) 18.62 (3.65×10−1) 0.44 1.04 (1.80×10−2) 7.17 (1.24×10−1) 0.39
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method estimates the peak well it becomes erratic elsewhere and when it fits the underlying

sinusoid well it smooths over the peak completely. In this case the two metrics, maximum

gap and integrated absolute difference, oppose each other; the spline-based method with the

smallest maximum gap occurs when the spline estimates the peak well but the smallest in-

tegrated absolute difference occurs when the peak is ignored completely. When md is small

there appears to be no pattern between the arrival rate fit by the spline function and the other

two methods. In most cases, it appears that the piecewise-quadratic and piecewise-linear

methods have been fit given a small number of intervals from the pre-processing algorithm.

It is clear that the flexibility of both methods is greatly affected by the choice of the number

of intervals. This indicates that prior knowledge of the number and placement of intervals

is important to both methods. The spline function, on the other hand, was given 50 equally

spaced knots in all replications.

In Figure 5.5.2 we see the fit of the three methods to the arrival rate function of an NHPP

with a long, ξ = 10, small magnitude, κ = 1, peak given md = 100 sets of observations.

In this example the behaviour of all three methods is similar; note, the number of pieces

suggested by the preprocessing technique was higher. The fit of the rate function is good

in all cases, but when the spline performs less well, for example in the case of the maxi-

mum maximum absolute gap and maximum integrated absolute difference, the PQ and PL

methods also perform less well.

In addition to Figures 5.5.1 and 5.5.2, for the same two experiments we also plotted pair-

wise comparisons of the methods for both metrics over the full G = 500 fits, see Figures

5.5.3-5.5.6. These plots allow us to see any pairwise-correlation in performance between

the methods over all replications. In Figures 5.5.3 and 5.5.4 we consider the arrival rate with

an abrupt peak given md = 15 days of observations. For both metrics we can see that, in the

majority of replications, the spline-based method is more stable and performs better than

both of its competitors. This is more pronounced in comparison to the piecewise-linear ap-

proach. In comparing the piecewise-linear and piecewise-quadratic methods, the piecewise-

quadratic method appears to perform better in terms of the integrated absolute difference
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in most cases; both methods perform similarly in terms of the maximum absolute gap. In

Figures 5.5.5 and 5.5.6 we consider the arrival rate with a long duration, short peak given

md = 100 days of observations. It is clear that the spline-based method performs best in the

majority of experiments when considering the integrated absolute difference and in all ex-

periments when considering the maximum absolute gap. Again the spline-based method is

more stable than its competitors in terms of both metrics. In this experiment when compar-

ing the piecewise-quadratic and piecewise-linear methods the piecewise-quadratic method

appears to perform best in terms of the integrated absolute difference, and the opposite ap-

pears to be true for the maximum absolute gap. The conclusion from Figures 5.5.3-5.5.6 is

that it does not appear that the methods perform their best or worst at the same time, and

it is clear that the spline based method is out-performing its competitors in the majority

of experiments in terms of our chosen metrics. In Table B.1 in Appendix B we report the

proportion of times the spline-based input model attained the smallest maximum gap and

smallest integrated absolute difference over the G = 500 fits of the arrival rate function for

all 27 experiments. In all cases the proportion of times the spline does better than its com-

petitors in terms of the two metrics is over a half, and in many cases this proportion is equal

to, or very close to, 1.

Reflecting on the experiment as a whole, as the number of sets of observations, md ,

increases all methods improved for both metrics. Given more data the optimal number

of intervals, set using the Chen and Schmeiser (2018) pre-processing method, increases

allowing the piecewise-linear and piecewise-quadratic methods to attain a better fit as seen

from Figure 5.5.1 to Figure 5.5.2. Another observation made was that for fixed md and peak

duration ξ , as the peak height, κ , increases both average metrics increase. This indicates

that all the methods found abrupt peaks in the arrival rate challenging to estimate. This

effect was reflected in Figure 5.5.1 and the location of the maximum absolute difference in

the arrival rates; for arrival rate functions with sharp peaks the maximum difference often

fell close to the centre of the peak.
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Figure 5.5.1: md = 15, κ = 5, ξ = 1 - SPL (blue), PQ (green) and PL (red)
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Figure 5.5.2: md = 100, κ = 1, ξ = 10 - SPL (blue), PQ (green) and PL (red)
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Figure 5.5.3: Pairwise comparison of the three methods using scatter plots of the integrated abso-

lute difference, δ , over G = 500 replications of the NHPP fit. Here md = 15, κ = 5 and ξ = 1.

Figure 5.5.4: Pairwise comparison of the three methods using scatter plots of the maximum abso-

lute difference, ζ , over G = 500 replications of the NHPP fit. Here md = 15, κ = 5 and ξ = 1.
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Figure 5.5.5: Pairwise comparison of the three methods using scatter plots of the integrated abso-

lute difference, δ , over G = 500 replications of the NHPP fit. Here md = 100, κ = 1 and ξ = 10.

Figure 5.5.6: Pairwise comparison of the three methods using scatter plots of the maximum abso-

lute difference, ζ , over G = 500 replications of the NHPP fit. Here md = 100, κ = 1 and ξ = 10.
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5.5.2 Realistic Example

Using the methodology outlined in §5.3 we fit a spline function given arrival-time observa-

tions from a real-world A&E department. The arrival rate to A&E is believed to follow a

cyclic pattern over a week long period. We focus on observations over the summer months:

June, July and August, from the years 2011/12 as we believe the weekly arrival behaviour

in this period to be similar. Summer is also the season with the lowest number of public

holidays which are believed to cause fluctuations to arrivals to A&E. We therefore have

md = 24 observed weeks of the A&E department.

Before fitting the spline function we considered the assumption that the arrivals follow

a NHPP. Using a chi-square goodness-of-fit test we checked whether the total number of

arrivals on each day of the week could be said to be Poisson. In conclusion we had sig-

nificant evidence to reject that the arrival counts on Wednesdays, Thursdays and Fridays

were Poisson; the counts on these days were particularly overdispersed in comparison to a

Poisson distribution. Despite this, in reality, NHPPs are often used as input models with-

out checking such assumptions. We will therefore proceed to fit the arrival data using our

spline-based method but we will also fit the arrival rate using the MNO-PQRS method as

it has no dependency on the input process being Poisson. The spline fit, constructed from

56 uniformly spaced knot points, can be seen in Figure 5.5.7 along with a 95% pointwise

confidence interval. The choice of 56 knots corresponds to a knot every 3 hours with knots

at the same time each day; note that, although placement of the knots at the same time is

not necessary, it seemed natural in this cyclic context. The MNO-PQRS fit can be seen in

Figure 5.5.8. Note that prior to running MNO-PQRS the pre-processing method of Chen

and Schmeiser (2018) was used and split the week into 88 intervals of equal length.

The resulting representations in Figures 5.5.7 and 5.5.8 exhibit very similar behaviour.

On Thursday and Friday, the 4th and 5th cycles in the arrival rate, where the p-value of

the goodness-of-fit test was particularly significant (< 1×10−6) we appear to see the most

discrepancy between the fits but even there the difference is not great. Of course, since this
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Figure 5.5.7: Spline-based fit to A&E weekly observations with a 95% pointwise confi-

dence interval.

Figure 5.5.8: MNO-PQRS fit to A&E weekly observations.
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is real-world example we do not know the true underlying arrival rate, and therefore which

method is closer to the truth, but the similarity between the representations indicates that

the spline method is not greatly sensitive to data which diverges from Poisson assumptions.

5.5.3 Under- and Overdispersed Data

Motivated by the real-world experiment in §5.5.2, we tested the robustness of the meth-

ods to non-Poisson observations using simulated data from nonhomogeneous non-Poisson

processes with arrival rate functions as described in the controlled experiment in §5.5.1.

Specifically, we considered both underdispersed and overdispersed data. Oreshkin et al.

(2016) discuss modelling the arrival rate in call centre systems where the variance of daily

arrival counts is typically larger than the mean, causing overdispersed arrivals. Sellers and

Morris (2017) discuss causes of underdispersion in data and possible models to account for

it. To test the robustness of the methods to under- and overdispersed data, arrival times were

generated from a Markov-MECO process using the Markov-MECO-based tool for gener-

ating nonhomogeneous non-renewal arrival processes presented by Nelson and Gerhardt

(2011). Note that, we are interested in the robustness of the method to non-Poisson data

and the tool presented by Nelson and Gerhardt (2011) also allows incorporation of corre-

lation between arrivals. As this is a separate issue, possibly for future consideration, we

set correlation in the Markov-MECO process to 0. The Markov-MECO-based tool allows

the user to select a target squared coefficient of variation, cv2, of the process. For Poisson

distributed data the squared coefficient of variation, cv2, equals 1, by definition of a Poisson

process. In this experiment we consider both underdispersed, cv2 = 0.5, and overdispersed,

cv2 = 1.5 data; the averaged metrics from fitting G = 500 rate functions given under- and

overdispersed data are presented in Tables 5.5.2 and 5.5.3 respectively.

In Tables 5.5.2 and 5.5.3 we see that the spline-based method gives the smallest aver-

age integrated absolute difference and smallest average maximum gap in all experiments.

This held for all 27 arrival rate functions using both under- and overdispersed data. In Ta-

bles B.2 and B.3 in Appendix B we report the proportion of times the spline-based input
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model attained the smallest maximum gap and smallest integrated absolute difference over

the G = 500 fits of the arrival rate function for all 27 experiments given under- and overdis-

persed observations. The results reflect those from our first experiment, in §5.5.1, where the

observations were Poisson; in all cases the proportion of times the spline does better than

its competitors in terms of the two metrics is over a half, and in many cases this proportion

is equal to, or very close to, 1.

By considering the same arrival rate functions presented in §5.5.1 we can directly com-

pare the results of the fit of the arrival rate function for underdispersed, Poisson and overdis-

persed data. From results Tables 5.5.1, 5.5.2 and 5.5.3, it is clear that all methods do worse

when the arrivals are overdispersed; this held for all experiments. It also appears that the

spline-based method performed similarly for underdispersed and Poisson arrivals for all

levels of data, md . Note that, although the coefficient of variation, ι , remained small for all

experiments, the spline-based function no longer consistently achieved the smallest value

given under- and overdispersed data.

Within the parameters of this experiment we have demonstrated that when the arrival

data departs from Poisson, by being over- or underdispersed, the spline-based method still

performs the best in terms of the metrics of average integrated absolute difference and

Table 5.5.2: The average maximum absolute difference, ζ̄ , the average integrated absolute

difference, δ̄ , and the coefficient of variation of the integrated absolute difference, ι , for the

fit of two arrival rate functions given different settings of md , κ and ξ for underdispersed

data.

cv2=0.5 md = 15, κ = 5, ξ = 1 md = 100, κ = 1, ξ = 10

ζ̄ (se) δ̄ (se) ι ζ̄ (se) δ̄ (se) ι

SPL 3.42 (3.27×10−2) 7.37 (7.81×10−2) 0.24 0.34 (4.75×10−3) 2.97 (5.38×10−2) 0.19

PQ 4.08 (1.09×10−2) 7.60 (9.40×10−2) 0.28 1.78 (9.58×10−3) 3.34 (5.03×10−2) 0.20

PL 4.25 (2.94×10−2) 13.66 (2.61×10−1) 0.43 0.89 (1.29×10−2) 6.50 (1.03×10−1) 0.35
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Table 5.5.3: The average maximum absolute difference, ζ̄ , the average integrated absolute

difference, δ̄ , and the coefficient of variation of the integrated absolute difference, ι , for

the fit of two arrival rate functions given different settings of md , κ and ξ for overdispersed

data.

cv2=1.5 md = 15, κ = 5, ξ = 1 md = 100, κ = 1, ξ = 10

ζ̄ (se) δ̄ (se) ι ζ̄ (se) δ̄ (se) ι

SPL 3.74 (2.64×10−2) 10.05 (1.52×10−1) 0.34 0.47 (7.50×10−3) 5.21 (1.25×10−1) 0.53

PQ 4.26 (3.32×10−2) 15.65 (2.16×10−1) 0.31 1.71 (1.56×10−3) 6.62 (1.19×10−1) 0.40

PL 4.86 (5.89×10−2 ) 27.15 (4.59×10−1) 0.37 1.77 (4.37×10−2) 11.52 (2.47×10−1) 0.48

average maximum absolute gap compared to the piecewise-quadratic and piecewise-linear

methods. This indicates that the spline-based input modelling approach is robust to arrivals

that are under- or overdispersed in comparison to a Poisson distribution.

5.6 Conclusion

We have provided a spline function input modelling method based on the penalised log-

likelihood for fitting the rate function of a NHPP given arrival-time observations. In com-

parison to two recent methods in the literature, the spline-based method was seen to perform

best in terms of the average integrated absolute difference and average maximum absolute

gap in all experiments, including experiments in which the provided observations were

non-Poisson. The chosen metrics are indicators of how well a method recovers the true ar-

rival rate function of a NHPP. We have therefore presented a spline-based input modelling

method that has been shown in our experiments to consistently recover the arrival rate func-

tion of a NHPP better than appropriate competitors in the literature and is robust to under-

and overdispersed observations.

A realistic input modelling situation, given observations from an A&E department, was

also presented. We showed that, even when the observations departed from Poisson as-
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sumptions, the spline-based technique returned a similar rate function to the one produced

by MNO-PQRS, which was designed to fit the rate functions of general input processes.

Although not the main topic of this chapter in practice given real-world data we could test

the quality of the fit of our spline-based model by splitting our data into a test and training

set. Fitting the spline-based model using the training set would then allow us to check the

model fit using real-world data from the test set.

We also presented a simple thinning-based method for simulating arrivals from the re-

sulting spline arrival rate function. This took advantage of the composition of the spline

function as a linear combination of B-spline basis functions with known maximums.

In practice, arrival counts are sometimes recorded instead of arrival times. This method

could be extended to work for arrival count data through a simple modification of the log-

likelihood. In the same way, provided an appropriate likelihood can be derived, the penalise

log-likelihood method could be extended for use with other non-stationary non-Poisson

arrival processes. We leave these extensions for future work.

Another area of further work would be a study of how to choose a suitably large num-

ber of knots from which to build the spline function. The spline-based model will lack

flexibility if the number of knots is too small, but too many knots can lead to a discrep-

ancy between the second-order approximation used in the trust region algorithm and the

objective function. Choosing a “large enough” number of knots is therefore a question of

interest.



Conclusions

In this chapter the thesis is concluded by reflecting on the contributions made to the areas

of input modelling and input modelling error quantification. Proposals of how the method-

ology might be extended are also presented.

6.1 Summary of Contributions

In this section a summary of the main findings of this thesis are presented. Contributions

have been made to the areas of input modelling and quantification of error caused by input

modelling in simulation. A particular focus was on the development of new methodology

for the quantification of input modelling errors in simulation models with nonhomogenous

input models, specifically nonhomogenous Poisson arrival processes (NHPPs). As previ-

ously discussed, ignoring error caused by input modelling can lead to over-confidence in the

output of a simulation and therefore the decisions made using it. The methods presented in

this thesis are therefore beneficial in practice due to our focus on quantifying and reducing

the error caused by input modelling in simulation.

The first contribution of this thesis, presented in Chapter 3, was the development of two

techniques for the quantification of input uncertainty in simulation models with piecewise-

constant non-stationary Poisson arrival processes. These methods are the first to tackle

114
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input uncertainty quantification for simulation models with nonhomogeneous arrival pro-

cesses. This is a natural step to take in the input uncertainty quantification literature as

many systems exhibit nonhomogeneous behaviour in the real-world. This being a first step

the methods we produced still had some disadvantages. For instance it is known that, in

reality, it is unrealistic to assume that the rate of a NHPP changes instantaneously in time;

modelling the arrival process using a piecewise-constant function is therefore something

that could be improved upon. That said, the piecewise-constant representation was key to

the extension of the methods by Cheng and Holland (1997) and Song and Nelson (2013)

for simulation models with time homogeneous input models. Piecewise-constant arrival

processes are also often used by practitioners due to their flexibility and ease to use/ under-

stand, this methodology therefore has a good chance of being translated into practice.

In Chapter 4 multiple contributions were presented. The key contribution was a bias

detection test with controlled power for detecting bias of a concerning size. Within this

the first approach to quantifying bias caused by input modelling was provided, this, again

for the first time, allowed a summary of the mean squared error caused by input modelling

to be made. Previously bias caused by input modelling had been virtually ignored in the

input modelling error literature. The proposed approach to tackling bias caused by input

modelling was not to aim straight at gaining an accurate estimate of bias, instead it tested

whether bias was relevant. The bias detection test presented in Chapter 4 tests for non-zero

bias. Developing the bias detection test in this way is advantageous as when bias is small,

and therefore not of much interest, detecting that is not significantly different to zero is

computationally much cheaper than trying to accurately estimate it. Also, by controlling

the power of the test, there is a high probability of rejecting the null hypothesis when bias

is higher than a threshold value deemed by the practitioner to be the smallest value of bias

of concern to them. One downside of the method is its scalability to the number of input

models. Simulation models often have many inputs so this is an issue of some concern.

To try and tackle this issue the method of Sanchez and Sanchez (2005) for Resolution V

experimental designs was utilised to reduce the number of design points used to fit the
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response surface model within the bias detection test. The result of using this method was

promising; for a fraction of the computational effort the same conclusions were reached

from the bias detection test using a greatly reduced number of design points.

The final contribution of the thesis was a spline-based arrival process modelling method

for representing the arrival rate function of a NHPP. The spline-based method, presented

in Chapter 5, also led to a simple way to generate arrival observations for use within a

simulation experiment. The aim of developing the spline-based model was to create an in-

put modelling method that could recover the underlying arrival rate of a NHPP better than

its competitors; in doing so it would pass less input modelling error to the output of the

simulation. The spline-based method achieved promising results. In a controlled experi-

ment, compared to two recent methods in the literature, a piecewise-linear approach and a

piecewise-quadratic approach, the spline-based model was shown to attain lower integrated

absolute difference and maximum absolute difference on average. The spline-based model

was also shown to have more stability than its piecewise-linear and piecewise-quadratic

competitors. Another consideration was the robustness of the spline-based method to over-

or underdispersed data. By repeating the controlled experiment with both over- and under-

dispersed observations, it was found that the spline-based method performed better than its

competitors even though the piecewise-quadratic model made no assumption that the input

process had to be Poisson. In practice, due to the flexibility of spline functions, the spline-

based method could be used to model a wide variety of arrival rate functions. In the next

section possible future steps as discussed for the spline-based input model, amongst other

possible research directions.

6.2 Further Work

In this section possible extensions to the methodology described in this thesis and ideas

of how these extensions might be achieved are presented. First a comparison of the input

modelling techniques discussed in Chapter 5 in terms of the variability they pass to the
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output of a simulation is proposed. It is believed this will show that on average the spline-

based input modelling method passes less error to the output of a simulation. Further work

in input uncertainty quantification for simulation models with smoother than piecewise-

constant input processes is also considered.

6.2.1 A Controlled Comparison of Input Modelling Methods in Terms

of the Error Passed to the Simulation Response

In Chapter 5 the spline-based input model was shown to perform better than its competitors

in terms of recovering the true arrival rate function of a NHPP. A natural extension to

this would therefore be to show that, in comparison to other input modelling techniques,

the spline-based input model also propagates less input modelling error to the output of a

simulation model.

As a direct follow up to the controlled experiment in Chapter 5 a comparison of the

spline-based method and the methods of Chen and Schmeiser (2017) and Zheng and Glynn

(2017) in terms of the input modelling error passed to the output of interest of a simulation

is proposed. This experiment is designed to show, in a controlled experiment where all

other factors, such as arrival rate, observed data and random seed, are kept constant, that

the variability in the simulation response is smaller when the spline-based input model is

used. Using the same seed and observed data in the comparison means all three input

modelling methods are treated equally; this allows any difference in the variation of the

methods to be attributed the input modelling technique.

Given a NHPP with known arrival rate function, λ c(t), any number of sets of obser-

vations can be generated from the true arrival process. Let an observation of the arrival

process, XXX j, correspond to all of the arrivals in that time unit, where for example a j arrivals

occur on the jth day of observation, XXX j = {X j1,X j2, . . . ,X ja j}. A set of m observations is

therefore denoted {XXX1,XXX2, . . . ,XXXm}. For a set of m observations each input modelling tech-

nique can be used to fit an estimate arrival rate, λ̂ (t). Let the spline-based input model

be denoted λ̂SPL(t), the piecewise-quadratic input model of Chen and Schmeiser (2017)
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λ̂PQ(t), and the piecewise-linear model of Zheng and Glynn (2017) λ̂PL(t). Repeating this

process many, say G, times allows many arrival rate representations to be fitted; in Chap-

ter 5 at this point the input modelling methods were compared by considering metrics that

indicated how well the input modelling methods recovered the true arrival rate function,

λ c(t). To take the next step and consider error caused by input modelling in simulation,

the true arrival rate and each fit of the arrival rate would be used to drive a large number of

replications, r, of a given simulation model. In replicating each simulation a large number

of times times the stochastic estimation error in the simulation response is driven down.

The experiment to compare the amount of error passed to the simulation response from

the three NHPP input modelling techniques would proceed as follows:

1. Given a NHPP with true arrival rate function λ c(t)

2. For i from 1 to G

(a) Simulate m observations, {XXX i1,XXX i2, . . . ,XXX im}, from the true arrival rate function,

λ c(t).

(b) Given {XXX i1,XXX i2, . . . ,XXX im}, fit the NHPP arrival rate function using:

i. the spline-based model to get the estimate λ̂ i
SPL(t),

ii. the piecewise-quadratic model to get the estimate λ̂ i
PQ(t),

iii. and the piecewise-linear model to get the estimate λ̂ i
PL(t).

(c) Given the true input model and each fitted input model, starting from the same

seed, run r replications of the simulation to attain:

i. Yj(λ
ci(t)), for j = 1,2, . . . ,r,

ii. Yj(λ̂
i
SPL(t)), for j = 1,2, . . . ,r,

iii. Yj(λ̂
i
PQ(t)), for j = 1,2, . . . ,r,

iv. Yj(λ̂
i
PL(t)), for j = 1,2, . . . ,r.

where Yj(·) denotes the output of the jth simulation replication.
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(d) Calculate the average simulation response over the r replications, Ȳ (λ ci(t)),

Ȳ (λ̂ i
SPL(t)), Ȳ (λ̂ i

PQ(t)) and Ȳ (λ̂ i
PL(t)).

3. Given the average simulation responses from the three methods using G sets of input

data, report the variability of the average simulation response for each input mod-

elling method. Also report the difference between the average simulation response

for the true input model, i.e the simulation response when there is no input modelling

error, and the average simulation response for each of the input modelling methods.

Comparing the variability in the average simulation response, Ȳ (λ̂ (t)), given a large

number of sets of m observations will highlight which input modelling technique passes the

most input uncertainty to the simulation response. Also, comparing the difference between

the simulation response driven by the true input model, λ c(t), and the fitted input models,

λ̂SPL(t), λ̂PQ(t) and λ̂PL(t), will highlight which input modelling technique passes the most

bias caused by input modelling to the simulation response.

In this experiment, interest is in the effect of the choice of input modelling technique

on the amount of IU passed to the output. Consideration of the amount of input data, the

shape of the arrival rate function and the shape of the simulation response surface given a

fixed input modelling method may also be of interest to consider. In Chapter 5 the amount

of input data and the shape of the arrival rate function were considered and on average

the spline-based input model was able to recover the true NHPP arrival rate better than its

competitors in terms of integrated absolute difference and maximum absolute difference;

this is a promising indication that the error passed to the output of the simulation will also

be lower. The experiment proposed in this section will allow a conclusion of whether this

is the case.
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6.2.2 Quantifying Input Uncertainty for Smoother than Piecewise-

Constant Input Models

In this thesis new methodology for input uncertainty quantification in simulation models

with inputs having piecewise-constant nonhomogeneous arrival processes was provided

in Chapter 3. Input uncertainty quantification for simulation models with smoother (than

piecewise-constant) arrival rate functions was not considered. This is partly due to the lack

of a definition for input uncertainty in this context. The extension to NHPPs with piecewise-

constant rate functions meant input uncertainty could easily be broken down; the total input

uncertainty of the arrival process was equal to the contribution of each independent interval

of the arrival process. This has its advantages as it allows a practitioner to see the intervals

in which follow up data collection would be needed most according to which interval was

contributing most to the overall input uncertainty. For smoother than piecewise-constant

functions the definition of IU is a little harder to determine. Deciding whether IU should

be defined at a point in time or over an interval is a question of interest and may depend on

the simulation performance measure under study.

A natural step forward following this thesis would be to develop methodology for the

quantification of input modelling error in simulation models with smoother (than piecewise-

constant) arrival processes. Throughout this thesis the importance of taking input modelling

error into account in the summary of error in the simulation response has been argued

repeatedly. There is therefore a strong motivation to continue research in this area.

One proposed approach to give a quick estimate of the total IU contribution of an arrival

process, and that could be used with any nonhomogeneous input model would be to use

bootstrapping, see Ankenman and Nelson (2012). The intuition behind bootstrapping is

that as the amount of real-world observations increases the estimated arrival rate, λ̂ (t), will

get closer to the true, unknown, arrival rate function λ c(t). Generating new samples using

λ̂ (t) mimics having collected further real-world samples, and these samples become more

like samples from λ c(t) as the number of real-world observations available to estimate λ̂ (t)
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increases. Quantifying IU using bootstrapping would first mean fitting an estimate arrival

rate, λ̂ (t), to the observed real-world data, {XXX1,XXX2, . . . ,XXXm}, then, treating λ̂ (t) as if it were

the true arrival rate, and applying bootstrapping to generate further samples of data. Let

us denote the ith set of bootstrap observations by {XXX?
i1,XXX

?
i2, . . . ,XXX

?
im}. Given observations

{XXX1,XXX2, . . . ,XXXm} from the true arrival process, input uncertainty can be estimated using

bootstrapping as follows:

1. Given real-world observations {XXX1,XXX2, . . . ,XXXm}, fit the estimate arrival rate function,

λ̂ (t).

2. For i from 1 to b:

(a) Given λ̂ (t), simulate m bootstrap observations, {XXX?
i1,XXX

?
i2, . . . ,XXX

?
im}.

(b) Using bootstrap observations {XXX?
i1,XXX

?
i2, . . . ,XXX

?
im}, fit the bootstrap input model

λ̂ ?
i (t) .

(c) Complete r replications of the simulation Yj(λ̂
?
i (t)), j = 1,2, . . . ,r, driven using

bootstrap input model λ̂ ?
i (t), to attain Ȳ (λ̂ ?

i (t)).

3. Estimate the input uncertainty in the output of the simulation.

In the final step input uncertainty in the simulation response would be estimated using the

same approach as Ankenman and Nelson (2012). They proposed to approximate input

uncertainty, σ̂2
I , by estimating the total simulation variance, σ̂2

T , and then removing from it

the simulation estimation error σ̂2
S as follows

σ̂
2
I =

σ̂2
T − σ̂2

S
r

,

where

σ̂
2
T =

r
(b−1)

b

∑
i=1

(Ȳi.− Ȳ..)2,

σ̂
2
S =

1
b(r−1)

b

∑
i=1

r

∑
j=1

(Yi j− Ȳi.)
2.
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Here ‘.’ denotes averaging over an index, for example Ȳi. means averaging over the r simu-

lation replications, Yj(λ̂
?
i (t)) for j = 1,2, . . . ,r. The intuition behind this approximation is

that the total simulation variance, σ2
T , measures both stochastic estimation error and input

uncertainty and thus by removing the stochastic estimation error an estimate of the input

uncertainty in the simulation response remains.

This method will allow a practitioner to estimate the input uncertainty contributions

from any input processes used to drive the simulation, but it does have some problems. One

drawback is that bootstrap estimators can be inaccurate, for example when input uncertainty

is small, it is possible to return a negative estimate of it using this approach since σ̂2
T and

σ̂2
S are both estimates. There is also the issue that bootstrapping can be computationally

expensive. To get a good approximation of IU many bootstrap samples may be required,

and each bootstrap input model may require a considerable number of replications of the

simulation to drive down the stochastic estimation error.

Another approach to quantifying IU in simulation models with nonhomogeneous in-

put processes would be to focus on nonhomogeneous Poisson processes and work towards

quantifying the input modelling error passed to the simulation output given a certain input

modelling technique. In Chapter 5 a spline-based input model for the arrival rate function

of a NHPP was proposed. The bootstrap approach outlined above could be used to estimate

the input uncertainty passed from the spline-based model to the simulation response, but,

given the drawbacks of the bootstrap approach, an open question remains as to whether new

methodology could be developed to quantify the input uncertainty contribution of this input

model.

Recall that in the piecewise-constant case, to avoid the need for bootstrapping, asymp-

totic approximations of the MLE distributions were used. Within the spline-based input

modelling method n spline coefficients, ccc = {c1,c2, . . . ,cn}, control the shape of the result-

ing arrival rate model. These spline coefficients are estimated by maximising the penalised

log-likelihood of a NHPP for a fixed penalty parameter, θ . Recall that the penalty param-

eter is selected by finding the combination {ĉccθ ,θ} that attains the minimum RIC score.
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The estimation of the spline coefficients is therefore directly affected by the observed data

and the choice of θ . Thus error in either the spline coefficients or the penalty will pass in-

put modelling error to the simulation response. There are therefore n+1 input parameters

to consider in this problem. Note that there already exist approximations for the variance

of the spline coefficients, ĉccθ , in the context of penalised likelihood estimation, but these

approximations do not take into account the error in the choice of the penalty parameter, θ .

The main complication in quantifying the input uncertainty contribution of the spline-

based input model is how to consider the penalty parameter, θ . One option would be to fix

the penalty. This would reduce quantifying the input uncertainty contribution of the arrival

process to considering the error passed to the simulation response from the estimation of

the spline coefficients. But this approach ignores the possible variability in θ over different

fits of the arrival rate function. Note that many input uncertainty quantification techniques,

including those of Cheng and Holland (1998) and Song and Nelson (2015) as discussed

in Chapter 3, require repeatedly re-estimating the parameters of the input model. For the

spline-based model this would mean maximising the penalised log-likelihood for the given

fixed penalty many times.

In Chapter 5 a controlled experiment was conducted in which the spline-based model

was used to fit G = 500 arrival rate functions given 500 sets of m days of observations,

where all observations were simulated from the same, known, arrival rate function. In

this experiment the penalty was not fixed; for each fit of the arrival rate the penalty was

chosen by finding the combination {ĉccθ ,θ} that minimised the RIC score. This resulted

in a considerable amount of variability in the value of the penalty, although, as m was

increased the penalty could be seen to become more stable as it was pushed down to 0.

The variability observed in θ in this controlled experiment indicates that by fixing θ in the

consideration of input uncertainty, the combination {ĉccθ ,θ} may not attain an RIC score

close to the minimum. This could lead to under- or over smoothing of the arrival rate model

which may impact the input uncertainty passed to the simulation response. The key here is

to identify whether the variability of the spline-based model for a fixed penalty, Cov[ ĉccθ ],
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is much smaller than the variability of the spline-based model when θ is re-estimated for

each fit, Cov[ ĉcc
θ̂
]. If this is the case ignoring the error in the penalty parameter will lead

to underestimating the input uncertainty passed to the simulation response. This requires

further investigation.

In this chapter we summarised the main contributions of the thesis and presented, with

some detail, future research directions that may be of interest to us going forward.
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Appendix

A Proof of Results - Detecting Bias due to Input Modelling

in Computer Simulation
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A.1 Variability of the Jackknife Estimator of Bias

The jackknife method is an alternative to the delta method that can be used for bias estima-

tion. Usually when quantifying bias we refer to the bias of a statistic of interest, for example

a population parameter given a sample of data; in this case let us denote the jackknife es-

timator of bias b̂JK . In stochastic simulation the statistic we would like to examine is the

expected value of the simulation response, η(θθθ mle). However, we can only observe this in

the presence of simulation noise. In this appendix we investigate the effect of simulation

noise on the variability of the jackknife estimator of bias.

Consider a stochastic simulation model with a single input parameter, θ c from a single

input model. Let θ mle be the maximum likelihood estimator (MLE) of θ c based on m

observations of the input distribution and θ mle
(i) is the “reduced information” MLE based on

all but the ith observation. The desired jackknife estimate of bias is

b̂JK = (m−1)

[
1
m

m

∑
i=1

η(θθθ mle
(i) )−η(θθθ mle)

]
.

Since we cannot evaluate η(·) directly, the natural extension to simulation output is,

b̂JK+noise =(m−1)

[
1
m

m

∑
i=1

1
r

r

∑
j=1

Yj(θ
mle
(i) )− 1

r

r

∑
k=1

Yk(θ
mle)

]
(A.1)

which requires r independent replications of the simulation at each reduced information

MLE, θ mle
(i) , and, independent of this, r replications of the simulation at the MLE, θ mle.

Within (A.1) the output of a replication of the simulation can be decomposed into the ex-

pected simulation response plus simulation noise

b̂JK+noise =(m−1)

[
1
m

m

∑
i=1

1
r

r

∑
j=1

(η(θ mle
(i) )+ εi j)−

1
r

r

∑
k=1

(η(θ mle)+ εk)

]

=(m−1)

[
1

rm

r

∑
j=1

m

∑
i=1

η(θ mle
(i) ) − 1

r

r

∑
k=1

η(θ mle) +
1

rm

r

∑
j=1

m

∑
i=1

εi j −
1
r

r

∑
k=1

εk

]
,

(A.2)

where εi j ∼ i.i.d(0,σ2
i ) and εk ∼ i.i.d (0,σ2

k ). Here (A.2) can be thought of as breaking

b̂JK+noise into b̂JK , the jackknife estimator of bias without simulation noise, and b̂noise, the

additional variability in the estimator of bias caused by simulation noise.
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The key to this investigation is the variance of b̂noise

Var(b̂noise) = Var

(
(m−1)

[
1

rm

r

∑
j=1

m

∑
i=1

εi j −
1
r

r

∑
k=1

εk

])

= (m−1)2

[
1

r2m2

r

∑
j=1

m

∑
i=1

Var(εi j)+
1
r2

r

∑
k=1

Var(εk)

]

= (m−1)2
[

σ2

rm
+

σ2

r

]
= (m−1)2 (m+1)σ2

rm
(A.3)

which is, for large m, is approximately equal to m2σ2/r. This says that, in the presence of

simulation noise, the number of simulation replications per reduced information MLE, r,

required to maintain a constant level of error as m grows is r = O(m2), and the total number

of simulation replications to compute the jackknife with constant error grows as O(m3).

Thus, it is clear that significant simulation effort may be required; otherwise the jackknife

estimate of this bias could be obscured by the presence of simulation noise.

A.2 Asymptotics of b and bapprox

Using Taylor series we show that, under certain assumptions, as m → ∞ the bias, b =

E [η(θθθ mle)]−η(θθθ c), coincides with the delta approximation of bias, bapprox.

ASSUMPTION A.1: Let the expected simulation response, η : Rk→ R,

1. Be three times continuously differentiable in a closed ball G centred at θθθ c.

2. Have bounded from above, third-order partial derivatives in the closed ball G, there

exists some M > 0 such that, for all sss ∈ G, ∂ 3η(sss)
∂θi∂θ j∂θp

≤M for i, j, p = 1,2, . . . ,k.

ASSUMPTION A.2: Let the simulation be driven by L independent, parametric input

distributions, with k ≥ L input parameters. Assume we have m observations for each of the

L distributions. Now let θθθ mle ∈Rk be the vector of MLEs given the m observations of each

input distribution. We assume the MLEs satisfy standard conditions implying that

1. The MLEs converge in mean, E(θ mle
i −θ c

i )→ 0 as m→ ∞ for i = 1,2, . . . ,k.
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2. The MLEs are asymptotically normal,
√

m(θθθ mle−θθθ c)
D→MVNk(000, I0(θθθ

c)−1) = ZZZ.

3. For some ε > 0, |θ mle
i − θ c

i |3+ε are uniformly integrable for all m ∈ N, and i =

1,2, . . . ,k.

THEOREM A.1: Let Assumptions A.1 and A.2 hold. Then as m→∞ the scaled bias, mb,

and the scaled delta approximation, mbapprox, both converge to

1
2

tr(I0(θθθ
c)−1H(θθθ c)).

Proof. Convergence of the MLEs implies that for m large enough we will have θθθ mle ∈ G.

Therefore, under Assumption A.1.1, the expected simulation response at θθθ mle ∈ G can be

expanded via a Taylor series as

η(θθθ mle) = η(θθθ c)+∇η(θθθ c)T (θθθ mle−θθθ
c)+

1
2
(θθθ mle−θθθ

c)T H(θθθ c)(θθθ mle−θθθ
c)+ϒ3(θθθ

mle),

(A.4)

where ϒ3(θθθ
mle) is the remainder, made up of higher-order terms of the Taylor series. For

k ≥ 3 there exists ρρρ ∈ G such that

ϒ3(θθθ
mle) =

1
6

k

∑
i=1

(θ mle
i −θ

c
i )

3 ∂ 3η(ρρρ)

∂θi
3 +

1
2

k

∑
i=1

k

∑
j=1, j 6=i

(θ mle
i −θ

c
i )

2(θ mle
j −θ

c
j )

∂ 3η(ρρρ)

∂θi
2
∂θ j

+
1
6

k

∑
i=1

k

∑
j=1, j 6=i

k

∑
p=1,p6=i, j

(θ mle
i −θ

c
i )(θ

mle
j −θ

c
j )(θ

mle
p −θ

c
p)

∂ 3η(ρρρ)

∂θi∂θ j∂θp
.

By taking the expectation of (A.4) we may write bias due to input modelling as

b = E [η(θθθ mle)]−η(θθθ c) = ∇η(θθθ c)T E(θθθ mle−θθθ
c)+

1
2

E
[
(θθθ mle−θθθ

c)T H(θθθ c)(θθθ mle−θθθ
c)
]

+E [ϒ3(θθθ
mle)].

Note that, the delta approximation of bias only takes into account the second-order term in

this expansion

bapprox =
1
2

E
[
(θθθ mle−θθθ

c)T H(θθθ c)(θθθ mle−θθθ
c)
]
=

1
2

tr(ΩH(θθθ c))

where Ω = Var(θθθ mle) and, under Assumption A.2.2, lim
m→∞

mΩ = I0(θθθ
c)−1 the inverse Fisher

information matrix. We can therefore write b = bapprox + c(θθθ mle); that is, the bias due



129

to input modelling is equal to the delta approximation of bias, bapprox, plus a function c(·)

containing the expectation of the additional terms of the Taylor expansion evaluated at θθθ mle.

Clearly mbapprox→ tr(I0(θθθ
c)−1H(θθθ c))/2; we will show that mc(θθθ mle)→ 0.

Consider the expectation of the first order term of the Taylor series expansion. By

Assumption A.2.1, E(θθθ mle−θθθ c)→ 0 as m→ ∞ and therefore ∇η(θθθ c)E(θθθ mle−θθθ c)→ 0

as m→ ∞.

Next consider the expectation of the remainder term, E [ϒ3(θθθ
mle)]. Under Assumption

A.1.2 the third-order partial derivatives are bounded above at ρρρ ∈ G by M > 0 for i, j, p =

1,2, . . . ,k. Thus by linearity of expectation we have,

E
[
ϒ3(θθθ

mle)
]
≤ 1

6

k

∑
i=1

E [(θ mle
i −θ

c
i )

3]M+
1
2

k

∑
i=1

k

∑
j=1, j 6=i

E [(θ mle
i −θ

c
i )

2(θ mle
j −θ

c
j )]M

+
1
6

k

∑
i=1

k

∑
j=1, j 6=i

k

∑
p=1,p6=i, j

E [(θ mle
i −θ

c
i )(θ

mle
j −θ

c
j )(θ

mle
p −θ

c
p)]M.

(A.5)

We will now show that m× (A.5) converges to 0 as m→ ∞ and thus, by sandwich rule, the

scaled expectation of the remainder, mE
[
ϒ3(θθθ

mle)
]
, converges to 0. Here the behaviour

of the RHS of (A.5) depends on the behaviour of E [(θ mle
i − θ c

i )(θ
mle
j − θ c

j )(θ
mle
p − θ c

p)]

for i, j, p = 1,2, . . . ,k. Taking the modulus of this expectation and applying Holder’s in-

equality, (Hardy et al., 1952), followed by the arithmetic mean - geometric mean inequality

(Abramowitz and Stegun, 1964), we have

|E [(θ mle
i −θ

c
i )(θ

mle
j −θ

c
j )(θ

mle
p −θ

c
p)]| (A.6)

≤E
[
|(θ mle

i −θ
c
i )||(θ mle

j −θ
c
j )||(θ mle

p −θ
c
p)|
]

=E
[

3
√
|(θ mle

i −θ c
i )|3|(θ mle

j −θ c
j )|3|(θ mle

p −θ c
p)|3

]
≤1

3
E [|(θ mle

i −θ
c
i )|3]+

1
3

E [|(θ mle
j −θ

c
j )|3]+

1
3

E [|(θ mle
p −θ

c
p)|3].

(A.7)

By Assumption A.2.2 and A.2.3,
√

m E [|(θθθ mle−θθθ c)|3]→ E [|ZZZ|3]; that is, the third absolute

moment of the MLE converges to the third absolute moment of the multivariate normally



130

distributed random variable ZZZ (Osius, 1989). Thus,

m
3
2 E [|(θ mle

i −θ
c
i )|3]→

1√
π

(
2 I0(θθθ

c)−1
ii
) 3

2 ,

as m→∞ for i = 1,2, . . . ,k, (Winkelbauer, 2012). Here I0(θθθ
c)−1

ii is the ith diagonal element

of the Fisher information matrix of the joint distribution of the k input parameters. This says

that as m→∞, mE [|(θ mle
i −θ c

i )|3]→ 0 for i = 1,2, . . . ,k and therefore m×(A.7) converges

to 0 as well.

By applying the sandwich rule we have m|E [(θ mle
i −θ c

i )(θ
mle
j −θ c

j )(θ
mle
p −θ c

p)]|→ 0 as

m→∞ for i, j, p = 1,2, . . . ,k. Thus, mE [(θ mle
i −θ c

i )(θ
mle
j −θ c

j )(θ
mle
p −θ c

p)]→ 0 as m→∞

for i, j, p = 1,2, . . . ,k. Therefore m× (A.5) converges to 0 and thus the scaled remainder

mE [ϒ3(θθθ
mle)]→ 0 as m→ ∞. All components of mc(θθθ mle) converge to 0 as m→ ∞ as

required.

A.3 Asymptotics of b̂

Our delta approximation of bias is bapprox = 1
2 tr(ΩH(θθθ c)), where H(θθθ c) is the Hessian

matrix of second-order partial derivatives of η(·) evaluated at θθθ c and Ω = Var(θθθ mle), the

variance-covariance matrix of the MLEs. Due to the unknowns in bapprox we estimate it

by b̂ = 1
2 tr(Ω̂Ĥ(θθθ mle)). We now show that, under certain assumptions, mb̂ converges to

mbapprox = 1
2 tr(I0(θθθ

c)−1H(θθθ c)).

ASSUMPTION A.3: The expected simulation response, η : Rk→ R, is quadratic; i.e.,

η(θθθ) = β0 +θθθ
T

βββ +θθθ
TBBBθθθ . (A.8)

ASSUMPTION A.4: Except for the point at which it is centered, the CCD is fixed and

sufficient to support Model (A.8) such that B̂i j ∈ R, the least squares estimator of Bi j is a

consistent estimator for i, j = 1,2, . . . ,k. That is, B̂i j
P→ Bi j as r→ ∞ for i, j = 1,2, . . . ,k.

ASSUMPTION A.5: Let the simulation be driven by L independent parametric input dis-

tributions, with k ≥ L input parameters. Assume we have m observations from each of the
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L distributions. Now let θθθ mle ∈Rk be the vector of MLEs given the m observations of each

input distribution. We assume that

1. The MLEs are consistent, θ mle
i

P→ θ c
i as m→ ∞ for i = 1,2, . . . ,k.

2. The scaled variance of the MLEs mΩ tends to the inverse Fisher information at θθθ c,

I0(θθθ
c)−1, as m→ ∞, mΩ→ I0(θθθ

c)−1 as m→ ∞.

3. The inverse Fisher information, I0(·)−1, is continuous.

THEOREM A.2: Let Assumptions A.3, A.4 and A.5 hold. Then the scaled estimate of the

delta approximation of bias, mb̂, converges to the scaled delta approximation of bias; that

is, as m,r→ ∞

mb̂ P→ 1
2

tr(I0(θθθ
c)−1H(θθθ c)).

Proof. First consider the Hessian. Under Assumption A.3 the expected simulation response

is globally quadratic; therefore the Hessian does not depend on where we evaluate it since

H(θθθ) =


2B11 B12 . . . B1k

B21 2B22
... . . .

Bk1 2Bkk


.

Thus b̂ = 1
2 tr(Ω̂H(θθθ mle)) and this proof is equivalent to showing that mΩ̂H(θθθ mle)

P→

I0(θθθ
c)−1H(θθθ c).

Further, the least-squares estimators of the second-order terms are unchanged by shift-

ing the center point of the design. Thus, under Assumption A.4, by completing r repli-

cations of the simulation at each of the design points of the CCD we gain the consistent

estimators of the second-order partial derivatives, B̂i j
P→ Bi j for i, j = 1,2, . . . ,k, such that

H(θθθ)
P→ H(θθθ c) as r→ ∞ for any θθθ . Therefore, H(θθθ mle)

P→ H(θθθ c) as r→ ∞.

Now consider Ω̂ = V̂ar(θθθ mle). In practice we use the plug in estimator Ω̂ =

I0(θθθ
mle)−1/m. Under Assumption A.5.1 and A.5.3, using continuous mapping theorem,

I0(θθθ
mle)−1 P→ I0(θθθ

c)−1 as m→ ∞ thus mΩ̂
P→ I0(θθθ

c)−1 as m→ ∞
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Finally, by applying Slutsky’s theorem we have mΩ̂H(θθθ mle)
P→ I0(θθθ

c)−1H(θθθ c) as

m,r→ ∞ as required.

REMARK 1: The results of Theorem A.1 and Theorem A.2 can be extended to the case

where m1 6= m2 6= · · · 6= mL provided that mi/∑
L
j=1 m j→ ci > 0, for some fixed values ci.
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Appendix

B Results Tables - A Spline Function Method for Mod-

elling and Generating a Nonhomogeneous Poisson Pro-

cess
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Table B.1: In G = 500 fits of the arrival rate function, the proportion of times the spline-based input

model, “SPL”, achieved the smallest maximum gap, ζ , or integrated absolute gap, δ , compared to

the piecewise-linear, “PL”, and piecewise-quadratic, “PQ”, input models.

md κ ξ ζ δ

PQ/SPL PL/SPL PQ/SPL PL/SPL

15 1 1 0.996 0.968 0.670 0.980

15 3 1 0.618 0.708 0.702 0.978

15 5 1 0.688 0.624 0.774 0.976

15 1 5 0.998 0.984 0.716 0.984

15 3 5 1.000 0.966 0.818 1.000

15 5 5 1.000 0.984 0.786 0.996

15 1 10 1.000 0.986 0.734 0.982

15 3 10 1.000 0.990 0.730 0.990

15 5 10 1.000 0.980 0.798 0.990

30 1 1 1.000 0.934 0.794 0.988

30 3 1 0.692 0.660 0.800 0.996

30 5 1 0.760 0.662 0.860 0.992

30 1 5 1.000 0.996 0.762 0.998

30 3 5 0.998 0.978 0.772 0.994

30 5 5 1.000 0.992 0.784 0.998

30 1 10 1.000 0.982 0.772 0.978

30 3 10 1.000 0.994 0.794 0.998

30 5 10 0.998 0.994 0.824 0.992

100 1 1 0.992 0.896 0.868 0.998

100 3 1 0.832 0.732 0.850 0.998

100 5 1 0.992 0.990 0.808 1.000

100 1 5 1.000 0.994 0.802 0.994

100 3 5 0.996 1.000 0.832 0.998

100 5 5 0.988 0.996 0.852 0.996

100 1 10 1.000 0.998 0.822 0.998

100 3 10 1.000 0.996 0.856 1.000

100 5 10 0.998 0.994 0.888 1.000
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Table B.2: Given underdispersed observations with target cv = 0.52. In G = 500 fits of the arrival

rate function, the proportion of times the spline-based input model, “SPL”, achieved the small-

est maximum gap, ζ , or integrated absolute gap, δ , compared to the piecewise-linear, “PL”, and

piecewise-quadratic, “PQ”, input models.

md κ ξ ζ δ

PQ/SPL PL/SPL PQ/SPL PL/SPL

15 1 1 0.996 0.962 0.620 0.972

15 3 1 0.566 0.746 0.642 0.990

15 5 1 0.870 0.882 0.578 0.972

15 1 5 1.000 1.000 0.768 0.998

15 3 5 1.000 1.000 0.922 1.000

15 5 5 1.000 0.998 0.718 0.998

15 1 10 1.000 0.986 0.746 0.994

15 3 10 1.000 0.998 0.828 0.994

15 5 10 1.000 0.998 0.796 0.996

30 1 1 1.000 0.918 0.796 0.996

30 3 1 0.702 0.780 0.760 0.998

30 5 1 0.978 0.934 0.710 0.992

30 1 5 1.000 0.996 0.800 0.994

30 3 5 1.000 0.998 0.798 0.998

30 5 5 1.000 0.994 0.698 1.000

30 1 10 1.000 0.986 0.790 0.992

30 3 10 1.000 0.996 0.818 1.000

30 5 10 1.000 0.992 0.808 0.994

100 1 1 1.000 0.862 0.86 0.988

100 3 1 0.996 0.966 0.766 0.998

100 5 1 1.000 1.000 0.938 1.000

100 1 5 1.000 0.994 0.824 0.994

100 3 5 0.996 0.988 0.708 0.998

100 5 5 0.956 0.986 0.756 0.992

100 1 10 1.000 0.984 0.824 0.994

100 3 10 1.000 0.986 0.808 1.000

100 5 10 0.990 0.988 0.878 0.998
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Table B.3: Given overdispersed observations with target cv = 1.52. In G = 500 fits of the arrival

rate function, the proportion of times the spline-based input model, “SPL”, achieved the small-

est maximum gap, ζ , or integrated absolute gap, δ , compared to the piecewise-linear, “PL”, and

piecewise-quadratic, “PQ”, input models.

md κ ξ ζ δ

PQ/SPL PL/SPL PQ/SPL PL/SPL

15 1 1 1.000 0.996 0.836 0.990

15 3 1 0.662 0.826 0.854 0.964

15 5 1 0.662 0.762 0.930 0.986

15 1 5 1.000 0.988 0.878 0.990

15 3 5 0.994 0.978 0.924 0.992

15 5 5 1.000 0.978 0.926 0.996

15 1 10 1.000 0.994 0.888 0.988

15 3 10 1.000 0.998 0.886 0.990

15 5 10 1.000 0.998 0.934 1.000

30 1 1 0.998 0.974 0.902 0.988

30 3 1 0.662 0.792 0.922 0.988

30 5 1 0.722 0.784 0.964 1.000

30 1 5 1.000 0.986 0.892 0.986

30 3 5 1.000 0.984 0.886 0.990

30 5 5 0.998 0.992 0.944 1.000

30 1 10 1.000 0.992 0.868 0.990

30 3 10 1.000 0.990 0.930 0.996

30 5 10 1.000 0.998 0.952 0.998

100 1 1 0.994 0.960 0.950 0.996

100 3 1 0.698 0.854 0.966 0.998

100 5 1 0.984 0.990 0.960 1.000

100 1 5 0.998 0.994 0.908 0.998

100 3 5 0.996 0.998 0.942 1.000

100 5 5 0.992 0.998 0.954 1.000

100 1 10 1.000 0.998 0.93 0.996

100 3 10 1.000 1.000 0.956 1.000

100 5 10 1.000 1.000 0.980 0.998
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