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Abstract
cellular networks is to use unmanned aerial vehicles (UAVs),
augmented with the functionalities of terrestrial base stations
(BSs). This paper investigates the coverage probability in multi-
tier Aerial-Terrestrial HetNets, where in addition to the ground
BSs (G-BSs), UAV-mounted BSs (U-BS) are also introduced across
tiers to improve the coverage performance. We then model the
Ground-to-Ground (G2G) and Air-to-Ground (A2G) links incor-
porating the impact of Line-of-Sight (LOS) and non-LOS (NLOS)
path-loss attenuations in various wireless environments including
sub-urban, urban, dense-urban, and high-rise. Using tools of
stochastic geometry, we then obtain the coverage probability in
such a setting and its upper-bound as a function of the percentage
of U-BSs in each tier, as well as other system parameters. We

investigate the impact of various system parameters on the
coverage probability. The thus-obtained upper-bound provides
important quantitative insights on the network coverage design

analysis also shows that in some communication environments,
e.g., high-rise and dense urban, introducing U-BSs can degrade
the coverage probability. Nevertheless, our analysis suggests that
to minimize the coverage cost, one may consider turning off a
given percentage of G-BSs. In urban and sub-urban areas, one
can also adjust the altitude of U-BSs in order to improve the
coverage probability. Such a strategy, however, is shown to be
ineffective in dense-urban and high-rise environments.

I. INTRODUCTION

Achieving universal connectivity via currently deployed

attenuation, excessive inter-cell interference, and mismatch be-

The use of Unmanned Areal Vehicles (UAV) has recently
been proposed to enhance the coverage of Heterogenous
cellular Networks (HetNets) [1, 2]. In such a network, a robust
communication link is established between the base station
installed in the UAV (also referred to as U-BSs) and the

Ground (G2G) link—the link between the ground BSs and
the EUs—it is more likely for the link between the U-BS
and the UE (Air-to-Ground (A2G)) to experience line-of-
sight(LOS) propagation. Lower attenuation of LOS links en-

interference for other users. Especially, use of U-BSs has been
suggested to support UEs that experience severe shadowing
and/or receive high interference. In such cases, the location
of U-BSs becomes very important and a given coverage

performance could be achieved by adjusting the density of
U-BSs. The oOptimal altitude of the U-BSs for the maximum
coverage has also been studied in [4]. An algorithm is also
proposed in [5] for the optimal 3-D placement of U-BSs to
maximize the coverage in cellular networks.
Using tools of stochastic geometry, [6] also provides prac-

tical insights on the coverage probability in the downlink of
a single-tier UAV network without G-BSs. They further show
that by raising the altitude of UAVs, both the coverage proba-

is the communication between the G-BS and the UAVs. The
coverage probability of the communication between the G-BS
and UAVs is investigated in [7], incorporating the characteris-
tics of an urban communication environment and considering
the G-BSs’ antenna tilt. The authors of [8] investigated a
scenario in which a combination of drone UEs and ground
UEs are served in a single-tier cellular networks. Their results
show that the ground-to-air (G2A) communication link is
prone to a high level of interference. The authors of [9]
studied the coverage performance of on-demand UAV-assisted
cellular networks and showed that the coverage performance is
severely reduced for cases where the UAVs’ altitude is higher
than a threshold. In a UAV-enables LTE macro-cell system,
the measurements reported in [10] also shows that for a U-BS
with altitude of 150 m the link between U-BSs and ground
UEs can suffer up to 7 dB SINR degradation compared to
an equivalent ground communication link, due mainly to the
interference. These results show the importance of interference
which is directly related to the LOS/NLOS properties of the
wireless link between/from the U-BSs.
In this paper, we investigate multi-tier aerial HetNet (A-

HetNet) co-existing with traditional multi-tier terrestrial Het-
Nets (T-HetNet). Multi-tier drone cellular networks are pro-
posed in [2] as an effective way to guarantee the universal
coverage and high transmission capacity. The authors of [11]

over a single-tier network. The results in [11] are, however,
based on the standard-path-loss model, which is not accurate
for A2G and G2A links, see, [12, 13]. The coverage perfor-
mance results in [2, 11] are also limited to simulations and
lack a rigorous analytical framework.
Building upon analytical tools of stochastic geometry, and

assuming Max-SIR cell association, we provide numerically
tractable expressions for the coverage probability of the Aerial-
Terrestrial HetNet (AT-HetNet). Our analysis shows that by



increasing the density of U-BSs, the coverage probability
declines; for the dense deployed networks the measured loss is
substantially large. Our analysis also shows that the sub-urban
environments suffer more severely than a high-rise setting,
since the former is more susceptible to excessive LOS inter-
ference created by the U-BSs. One can moderately enhance
the coverage probability of AT-HetNets by properly adjusting
the altitude of U-BSs in sub-urban and urban environments.
Our system model is presented in Secion II, followed by

coverage performance analysis in Section III. Section IV
provides simulation and numerical results, and conclusions are
drawn in Section V.

II. SYSTEM MODEL

We focus on the downlink communication in an Aerial-
Terrestrial Heterogeneous Cellular Network (AT-HetNet),
comprising several classes/tiers of G-BSs and U-BSs. In this
model, network consists of tiers of BSs (e.g., macro-cells,
pico-cells, femto-cells, etc.), and each tier , ,
is characterized by , where indicates BS’s
spatial density, is the BSs’ transmission power, is the
prescribed SIR threshold, and is the percentage of
BSs in tier that are aerial (U-BS). Note that for all
the BSs in tier are G-BSs, and the system is reduced to the
traditional HetNet system (T-HetNet). For , the BSs in
the system are all aerial, namely Areal HetNet (A-HetNet),
i.e., the terrestrial infrastructure does not exist or fails, for
example, due to natural disasters. The system designer can
then adjusts to achieve a given performance metric, e.g.,
coverage probability.
BSs at tier are spatially distributed via a homogenous

Poisson point process (PPP) with given spatial density
. Assuming that each BS randomly chooses its status

where and stand for aerial and ground,
respectively, we have , where represents
G-BSs of tier that is a PPP with density ;
comprises U-BSs that is a PPP with density ; and
and are independent for all . UEs are single-antenna
and distributed through a homogenous PPP , independent
of sets , with given spatial density . Using Slyvniak’s
theorem and network stationarity, one can evaluate the network
performance for a given UE located at the origin, known as a
typical UE.
In each tier, for simplicity we assume that the U-BSs

also utilize the designated terrestrial spectrum band in the
corresponding tier. Although there might be better spectrum
allocation strategies, reusing the same spectrum band does

tiers, thus facilitating deployment of the U-BSs.
Similar to [3, 10, 14] where off-the-shelf LTE/LTE-A radio

U-BSs, we assume that U-BSs are the exact replicas of G-BSs.
Such an assumption also represents the trend in the wireless
industry, see, e.g., [3, 14], and standardization activities in
the 3rd Generation Partnership Project (3GPP) [15]. Using

the above model, we investigate whether or not the network

A. Channel Model

Suppose U-BSs of tier are located at the same height, ,
above the ground. To distinguish between G-BSs and U-BSs,
we also assume that is usually larger than the antenna
height in macro BSs, which is roughly m.

TABLE I

A2G PARAMETERS IN DIFFERENT WIRELESS ENVIRONMENTS [4].

High-Rise Dense-Urban Urban Sub-Urban

27.23 12.08 9.61 4.88
0.08 0.11 0.16 0.43

The received signal at the typical UE originated from BS
travels through LOS or NLOS channels, depending on its rela-
tive distance to the UE, density of buildings, environment, etc.
For T-HetNets, several analytical models have been developed
[12, 13, 16]. Regarding the A2G links, recent measurements
also corroborate the existence of LOS/NLOS propagation
modes [4, 10]. As a generic model, to include LOS/NLOS
effects, we adopt the path-loss model recommended in the
3GPP [12, 13, 16], where for , the path-loss
attenuation in tier is

(1)

For the G2G link, i.e., with ,
, where (resp. ) is

the path-loss exponent associated with the LOS (resp. NLOS)
link, (resp. ) is a constant, characterizing the LOS
(NLOS) wireless propagation environment, and is related to
various factors, e.g., the height of transceivers, antenna’s beam
width, weather, etc.
For the U-BSs, the path-loss function can be written as

, which depends
on the height of BS , , and its distance to the origin,

.
In (1), for a BS located at position the probability of

LOS mode is , where .

In this paper, for G2G communications we adopt the ITU-R
UMi model [12, 16]

(2)

where parameters and

if , BS is in the LOS mode.
Fig. 1-a shows the probability of LOS mode versus the

distance for . The probability of LOS mode is
shown to decrease exponentially as the distance between the
BS and the typical user increases.



The probability of a LOS channel between the U-BS
, and the typical receiver is [17]:

(3)

where and depend on the environment, e.g., height and
density of buildings, urban or sub-urban areas, etc., see Table I.

is the elevation angel between the typical UE
and the U-BS . Increasing is shown to increase the
probability of LOS mode, which is also shown in Fig. 1-a.
Although increasing the altitude of the U-BSs improves the
chance of LOS communication, it may increase the path-loss
attenuation, thus reducing the received power at the typical
user. Therefore, a higher LOS probability needs to be carefully
balanced with an increase of path-loss attenuation [5].
In Fig. 1-a the LOS probabilities of G2G and A2G links are

also compared. As expected A2G links provide a much higher
LOS probability, particularly when the altitude of UAV gets
higher. For a large enough distance between the transmitted
and the typical user, we further note that the probability of
LOS communication is close to 0, while for the A2G links
(especially when is large enough), the LOS probability
is much higher. Unlike the G2G links, the A2G links can,
therefore, convey a much higher portion of the transmitted
power to the receiver, almost independently of the distance.

B. Inter-Cell Interference

The model we consider permits universal frequency reuse
across all tiers. To model the interference, we assume that the
typical UE is associated with BS . In the next section, we
further elaborate on the rules that associate UEs with BSs. The
interference imposed by tier , , to the typical user is a shot
noise:

(4)

where is channel fading. In practice, the distribution of
small-scale fading depends heavily on whether the link is LOS
or NLOS. Note that the existence of fading in A2G links
has been shown through measurements and simulations, e.g.,

caused by various objects in the environment. Here, we
consider the following generic model to represent fading in
our analysis:

(5)

where is normalized gamma distribution with param-
eter . For and , becomes Rayleigh,
and non-fading, respectively. We further assume that

. In fact, for an LOS channel, the received signal power

will be smaller. In an NLOS channel, however, the received

also higher.

Figs. 1-b and 1-c show the complementary cumulative
distribution function (CCDF) of interference for several values
of . , Increasing
increase the the probability that the typical UE receives a much
higher level of interference. This is consistent with the results
in Fig. 1-a which shows a higher chance of being a LOS link in

increases the aggregated interference in A2G transmission.
Therefore, although A2G links may result in higher power of
the received signal, their impact might be canceled out as the
receiver is likely to receive a very high aggregated interference
thorough LOS links with the interferers.

III. COVERAGE PROBABILITY

The typical UE successfully receives the signal transmitted
by BS , provided the corresponding SIR is larger than the
prescribed signal-to-interference ratio (SIR) threshold, .
The coverage probability is then equal to the CCDF of the SIR.
Assuming that the typical UE is served by BS , the
SIR is

(6)

In this paper, we consider Max-SIR cell association, where
for each user, the BS (either U-BS or G-BS) providing the
maximum SIR across all BSs is considered as the supporting
BS. If there is at least one BS for which the typical UE can be
successfully—with respect to the SIR threshold—associated
with, i.e.,

(7)

the typical UE is considered in the coverage area of the
network. The probability of the typical UE, , being
associated with BS is

(8)

In what follows, we derive an expression for as a
function of system parameters.
Using the same line of argument as in our previous work

[18], it is easy to show that the coverage probability, , is
upper-bounded as:

(9)

where in the second step we use the Campbell-Mecke Theorem
[19]. We also note that . We
then write:



(10)
To evaluate the inner probability in (10), we adopt the Alzer’s
Lemma [20]:

(11)
where . Using (4), the Laplace
transform of interference is

(12)
where

(13)

Substituting (13) in (12), and the result into (11), we get:

(14)

Finally, substituting (14) into (9)

The coverage probability can then be evaluated using (8).
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Fig. 2. Coverage probability vs. , where , m.

IV. NUMERICAL AND SIMULATION RESULTS

For ease of exposition, we consider a single-tier scenario,
, and drop tier index. The BSs are randomly distributed

within a disk with radius units according to the
corresponding tier densities (number of BSs per ). The BS
transmit power, W, and the LOS (resp. NLOS) path-
loss exponent is ( =4), the path-loss
intercept parameters are set to 1, m, m, and

. We adopt the Monte Carlo technique and the presented
results are based on analyzing simulation snapshots.
Fig. 2 shows the accuracy of our analysis and plots the

obtained upper-bound and the simulation results vs. in dif-
ferent wireless environments. The thus-obtained upper-bound
is shown to follow closely the simulations in all four simulated
environments. Increasing , i.e., increasing the percentage of
U-BSs, is also shown to decrease the coverage probability.
Using UAV-mounted BSs is shown to not necessarily improve
the coverage probability.
For the case where all BSs are U-BS, , the coverage

probability is decreased by , where the decrease in the
coverage probability is lowest (highest) in a high-rise (sub-
urban) environment compared to other environments mainly
because, in the high-rise environments, the existence of high
density of blockages leads to dominant NLOS interfering
links. In the case of sub-urban environment, many adjacent
interfering U-BSs pose as LOS interfering links, substantially
increasing interference.

coverage probability for various values of in several promi-
nent communication environments. In all cases, introducing
U-BSs decreases the coverage probability. Especially in dense
networks, , using only U-BSs, i.e.,
cantly reduces the network coverage performance regardless
of the communication environment. This highlights the severe
effect of aggressive interference in the UAV communication,
and calls for sophisticated interference management in AT-



HetNets.
Fig. 3-a also suggests that be carefully chosen to minimize

the reduction in the coverage probability. For instance, in
Fig. 3-a, by choosing , the coverage probability
is slightly reduced for any . For density ,
one can turn off of all BSs randomly to reach density

. Furthermore, depending on feasibility, it is
required to turn off of G-BSs and include U-BSs,

straightforward procedure may be appealing as it may reduce
the energy cost of cellular networks, particularly when it is

The impact of U-BSs’ altitude on the coverage probability
is investigated in Fig. 4. Figs. 4-a and 4-b suggest that for sub-
urban and urban environments, one can increase the coverage
probability by adjusting the U-BSs’ altitude. The optimal value
of altitude yielding the highest coverage probability is shown

. In fact, one should reduce the
altitude by increasing in order to preserve the coverage gain.
Figs. 4-a and 4-b further show that the gain made by optimally
choosing the altitude of UAVs is higher in sub-urban environ-
ments. Nevertheless, in dense-urban environments, adjusting
the altitude does not affect the coverage probability.

V. CONCLUSIONS

works is to use unmanned aerial vehicles (UAVs), augmented
with the functionalities of terrestrial base stations (BSs) in an
Aerial-Terrestrial setting. In this paper, we have investigated
the coverage probability in multi-tier Aerial-Terrestrial Het-
Nets, where besides the ground BSs (G-BSs), UAV-mounted
BSs (U-BS) are introduced across tiers to improve the cov-
erage performance. We then modeled the Ground-to-Ground
(G2G) and Air-to-Ground (A2G) links incorporating the im-
pact of Line-of-Sight (LOS) and non-LOS (NLOS) path-loss
attenuations in various wireless environments including sub-
urban, urban, dense-urban, and high-rise. Adopting tools of
stochastic geometry, we then derived the coverage probability
in such a setting and its upper-bound as a function of the
percentage of U-BSs in each tier, as well as other system

racy of our analysis and investigated the impact of various
system parameters on the coverage probability. The thus-
obtained upper-bound provides important quantitative insights

of different system parameters. Our analysis has also shown
that in some communication environments, such as high-rise
and dense urban, introducing U-BSs can be detrimental to the
coverage probability. Nevertheless, our analysis suggests that
one may consider turning off a given percentage of G-BSs
to minimize the coverage cost. Interestingly, for urban and

sub-urban areas, one can further adjust the altitude of U-BSs
in order to increase the coverage probability. Such a strategy,
however, was shown ineffective in dense-urban and high-rise
environments.
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