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Abstract—Caching the content closer to the user equipments
(UEs) in heterogenous cellular networks (HetNets) improves
user-perceived Quality-of-Service (QoS) while lowering the op-
erators backhaul usage/costs. Nevertheless, under the current

is unclear whether cache-enabled HetNets preserve the claimed

the collective cost of caching which may inevitably exceed the
expensive cost of backhaul in a dense HetNet, and 2) the excessive
interference which affects the signal reception irrespective of

it simultaneously reduces cache-hit probability and increases the

only about of the content library size in the cache of small-
cell base stations. Furthermore, we show that range expansion,
which is known to be of substantial value in wireless networks,

from macro cells to small cells, in cache-enabled HetNets, it is

do the opposite.

I. INTRODUCTION

Heterogeneous cellular networks (HetNets) are one of the
key enablers for emerging cellular network systems to meet

substantially densifying the network, in particular in lower

munication distances between base stations (BSs) and user
equipments (UEs), enhancing the coverage performance and

backhaul links between BSs and the core network (and/or
among BSs), which may increase the total communication
costs. Caching popular contents at the small-cell BSs has been
suggested to reduce the reliance on backhaul [3]. Caching
also improves the Quality-of-Service/Experience (QoS/QoE)
for the UEs as the high-demand contents are placed near the
UEs and thus accessible with a lower latency [4].
Content placement is, therefore, important and has been

studied extensively for cellular networks. For a given topology
of small-cells, the authors of [4] introduced the idea of
substituting backhaul with caching in the BSs to reduce the
network delay. They then developed an optimal femto-caching
scheme for both uncoded and coded caching. Caching is

optimized coded caching to minimize the energy consumption

of backhaul and storage. Furthermore, [6] investigated the

demand applications. Utilizing caching in fog radio access
networks (F-RANs) was also shown in [7] to improve D2D

cache-hit probability (also referred to as hit ratio or hit rate).

content is successfully found/delivered from a cache, not the
backhaul. The broadcast nature of wireless communications is
exploited in [8] to introduce the optimal randomized caching
in small-cell networks. It is shown in [8] that in many practical
cases the hit ratio of randomized contents placement is much
higher than that of the intuitive caching of the most popular
contents everywhere. This is due mainly to the diversity of
wireless medium and the fact that in HetNets each UE is
likely to be located in the coverage area of multiple BSs [5].
The method in [8] is extended further in [9] to investigate
the impact of content retransmission in small-cell networks
on the hit ratio in both high and low mobility scenarios. For a
given number of retransmission attempts, [8] then optimized
the content placement to maximized the hit ratio.
Randomized content placement is extended further in [10],

[11] to -tier HetNets, where the probability of content
placement stays the same across the BSs in each tier. The
optimal probabilistic content placement is shown in [10], [11]

Nevertheless, the above studies fail to incorporate the
following two important practical aspects of the HetNets
in caching performance analysis: (i) Although the cost of
installing caching equipments (memory and the corresponding
hardware) is much lower than that of the backhaul’s for
a dense/ultra-dense network, such as in 5G [1], the aggre-
gated cost of caching may exceed the backhaul’s cost; (ii)

interference as many UEs might receive interferences from a
large number of BSs through a line-of-sight (LOS) channel
[12], [13].
Analysis in [12] shows that by increasing the density of BSs,

the coverage probability in cellular network reduces to zero,
far lower than what the ideal standard-path-loss model [14]

placement, the UE cannot receive the content due to the low
SIR. In such a case, the results of the current cellular network
caching with a standard path-loss model, such as [6], [7], [8],



[10], [11] are not directly applicable to dense HetNets.

address the above two important aspects of HetNets. We adopt
stochastic geometry as an analytical tool to investigate whether

of our knowledge, this has not been investigated before. Our
model incorporates the actual traits of signal propagation in
modern cellular networks, i.e., LOS/NLOS path-loss model

tions. We also account for the costs of backhaul and caching,
and analytically derive coverage probability, backhaul usage

provide quantitative insights on the impact of various system
and design parameters.

reducing the backhaul-usage probability and increasing ASE,
it reduces cache-hit probability and increases the network
cost. To provide a comprehensive performance evaluation of

per cost. Our analysis indicates that in general caching is
. We further observe that

it is enough to cache only about of the global content
library size in lower tiers. Furthermore, a common networking
mechanism such as range expansion, which is shown to be
of substantial value in conventional (no caching) networking
via off-loading, could not alter this phenomenon. In a sharp
contrast with the conventional HetNets in which off-loading to
the small cells is suggested [1], [2], our analysis shows that in

cells to the micro cells improves the caching performance.

II. SYSTEM MODEL

A. Network Model

We consider a dense HetNets with universal frequency
reuse, complying with the interference-limited regime. Our
focus is on the downlink of a cache-enabled -tier HetNet,
where tiers (classes/technologies) of BSs are randomly
located in a 2-D plane [14], [10]. Tier
tuple, , where is the BSs’ spatial
density, is their maximum transmission power, is the
prescribed SIR threshold, is each BS’s maximum cache
storage, and is an indicator of the adopted caching
strategy (which will be elaborated further in Section IV).
In tier , the spatial distribution of the BSs is modeled

with a homogenous Poisson point process (HPPP), ,
with a spatial density of , where and are
mutually independent, for . In our model, the UEs
are single-antenna and distributed according to a HPPP, ,
independent of , with a spatial density of . We further
assume that , i.e., all the BSs are assumed to be
active. Without loss of generality we investigate a typical UE,
which is positioned at the origin and associated with BS .
This model can be easily extended to the users with multiple
antennas as in [13].

B. Caching Strategy

We consider a content library, with
the size of
based on their popularity, e.g., is the

same size. BSs in tier are able to cache distinctive

, or randomly
most popular contents (MPCs) are cached. In the latter case, or
random content selection (RCS), each BS randomly draws an
index , with probability and caches
contents with indices in . We further assume that
BSs of tier randomly and independently choose their caching
strategies , where .

is the hit ratio, or the probability that the requested content
is available in the cache and successfully delivered. Note
that RCS may seem counterproductive since one expects the
contents with higher popularity to be requested more often.
It is, however, shown in [8], [11] that in order to maximize
the hit ratio, it is not necessarily optimal to adopt the MPC
scheme, particularly in HetNets that the typical UE is likely
to be located in the coverage of several adjacent BSs.
The set of BSs in tier which cache , , is also a

HPPP with density , where is the probability that
is cached at each BS in tier :

(1)

The content popularity is characterized with a Zipf distribution
as in [9]. So, the probability of being requested, is

where is the shape parameter of the distribution, also
referred to as the popularity exponent. For , the content
popularity reduces to the uniform distribution. For a large ,
however, the most popular contents have much higher chance
to be requested.

C. Channel Model

We consider a narrow-band, block-fading channel in which

tribution at the start of each frame and remains unchanged
throughout the frame transmission. The channel model com-
prises of a large-scale path-loss and a small-scale fading
component. The received signal at the typical UE originated
from BS undergoes LOS or NLOS path-loss attenuation,
depending on its relative distance to the UE, density of



buildings, etc. To model the path-loss environment, we adopt
the 3GPP path-loss model [15], [13]:

(2)

where is the probability that the link
between BS and the typical UE is in NLOS mode. Here,
we assume that LOS probabilities are independent across BSs.
We consider the ITU-R UMi model in [15], where the LOS

(3)

and and

, then BS is in LOS mode. For ,
the probability of LOS mode declines exponentially with the
distance, and for , it converges to 0.
In (2), for , (resp. ) is the path-

loss exponent associated with the LOS (resp. NLOS) link
where , (resp. ) is a constant,
characterizing the LOS (resp. NLOS) wireless propagation
environment, and is related to various factors, such as the
height of transceivers, antenna’s beam-width, weather, etc.
Small-scale fading is modeled using normalized Nakagami
fading:

(4)

where is normalized Nakagami distribution with
parameter . Depending on whether the link is LOS or NLOS,
different parameters are considered for the Nakagami fading.
In general, we expect , as the LOS links often

D. Simulation Model and Parameters

We adopt the Monte Carlo technique for the simulation and
numerical study. We consider a 2-tier HetNet, , where

tiers are W, and W, respectively. The LOS
(resp. NLOS) path-loss exponent is (

=4). The path-loss intercept parameters are set to 1. Also,
we set m, m, m, and m.
The SIR thresholds are and .
The size of content library is set to

and

distributed within a disk with radius units according
to the corresponding tier densities, where BSs per
square kilometers. The presented results are based on analysis
of simulation snapshots. The other parameters not

each particular experiment.

III. CONTENT-AWARE MAX-SIR CELL ASSOCIATION

Suppose the typical UE requests content , the signal-to-
interference ratio (SIR) experienced at the typical UE served
by BS is

(5)

where the interference of tier , , is a shot noise process,

(6)

successfully receives the data transmitted by BS , if the
corresponding SIR is larger than the SIR threshold, .
The coverage probability is then equal to the complementary
cumulative distribution function (CCDF) of the SIR.
The UE requesting should be associated with a cell with
cached in its corresponding BSs. Such an association can be

made based on different criteria. We consider Max-SIR cell
association (CA) which is shown to provide the maximum
coverage performance, see, e.g., [14], [16], [13]. Without
considering the availability of , Max-SIR CA associates the
typical UE with the BS that provides the highest SIR, regard-
less of whether is cached, or retrieved via the backhaul.
To extend Max-SIR CA incorporating the availability of the
content,

(7)

as the set of BSs with in their cache providing acceptable
level of SIR for the UE. There is a BS in the network to
be associated with the UE if . Content-aware cell
association is expected to be effective in reducing the backhaul
usage [3].
Using the same line of argument as in [14], the correspond-

ing coverage probability, , is upper-bounded as

(8)

where d and the equality

holds for . Using (5), we write



(9)

where the inequality is due to Alzer’s Lemma [17] and
.

Noting that the fading is normalized Nakagami, it is straight-
forward to show

independent across the BSs and the fading power gains are
i.i.d. In the next step we use the Laplace generation functional
of HPPP [17]. Substituting the above into (9) and setting

,

(10)

Inserting (10) into (8) and obtaining the summation over the
content request probability, we obtain the coverage probability
as

(11)

which is a function of system parameters including the density
of the BSs, the library and cache size, popularity exponent, and
the SIR thresholds.
Fig. 1 shows the accuracy of the derived upper-bound while

comparing our simulation results with the coverage probability
in (11). The simulation parameters are given in Section II.D.
In practical cases for high-capacity HetNets, where

[14], the upper-bound becomes very tight. Even for ,
the upper-bound closely follows the simulation. Furthermore,
as shown in both plots, increasing reduces the coverage
probability. Fig. 1-a also indicates that by increasing the LOS
path-loss exponent, the coverage probability is slightly re-
duced. Fig. 1-b, shows that for
the coverage performance, whereas for , increasing
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Fig. 1. Coverage probability versus the SIR threshold of tier 2 . Simulation
parameters are given in Section II.D.

detrimental to the coverage performance. This phenomenon
has been explored extensively in the literature of HetNets, see,
e.g., [12], [13], and has been attributed to the LOS component
of interfering signals.
In fact, for the dense networks, there is always an un-

vanishing interference which is at least as large as the attending
signal. Therefore, in some cases, regardless of the distance
between the associated BS and the typical UE, the SIR could
not improve further. In what follows, we show that this
phenomenon remains harmful in cache-enabled HetNets. This
has not been discussed before in the related literature.

IV. CACHING PERFORMANCE

A. Cache Hit vs. Backhaul Usage

of a caching system is to evaluate the cache-hit probability
(or hit ratio/rate) and backhaul-usage probability. The cache-

content is found in the cache of a BS and successfully
delivered. The backhaul-usage probability is the probability
that the requested data is obtained from the core network via
the backhaul. In cache-enabled HetNets, a reasonable design
objective is to minimize the latter and maximize the former
[3]. We dissect the coverage probability in (11) as

in which is the cache-hit prob-
ability, and is the backhaul-
usage probability. Therefore,

as is either cached or retrieved from the core via the
backhaul.
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Fig. 2. (a) Backhaul-usage probability, , versus Tier 2 BSs’ density, ; (b) Caching-hit probability, , versus ; (c) ASE versus ; (d) Network
cost, , versus , versus .

Fig. (2)-a plots the backhaul-usage probability versus for
different values of the popularity exponent, . The backhaul-
usage probability is shown to be improved (reduced) by in-

We further look at the caching performance from the hit-

not consistently improve the hit ratio. In fact, for a sparse
( ) to a moderately dense ( )
tier 2, the hit ratio improves as the UEs expect to receive
their requested content successfully from the cache. Here,

SIR) that also has the requested content. For —
, however, reduces the hit

ratio due mainly to excessive LOS interference. In this case,
regardless of how close the contents are located to the UEs,

of the interference dominates the hit ratio. This shows that
many previous studies of cache-enabled systems (e.g., [4], [8],
[10]) are only applicable to moderately dense networks, where
standard path-loss model is still valid.

Another crucial performance metric in HetNets is ASE [14],
[17]. ASE measures the average aggregate data rate provided
per unit area (bps/Hz/m ):

(12)

attributed to the caching and backhaul performance, respec-
tively.
Fig. (2)-c plots ASE vs.

substantially increase ASE (almost linearly). Further, ASE is
increased by increasing the popularity exponent.

C. Cost Per Unit Area

In a cache-enabled dense HetNet, content delivery needs to
be planned carefully to keep the costs at an acceptable level.

Backhaul connectivity is often provided through a network of

tenance costs of such networks are very high. Furthermore,
there is an extra cost associated of caching. In what follows,
we formulate the cost per unit area.
Let , and denote the generic costs of the backhaul

and caching, respectively, including installation, maintenance,
operational costs, etc. Due to the nature of the technology, it is
reasonable to assume that . The aggregated caching
cost per unit area of coverage in a dense HetNet, , is

(13)

depends on the backhaul usage (represented by the backhaul-
usage probability), and the second term is the aggregated cost
of caching (represented by the caching storage capacity).

coverage per unit area. Fig. (2)-d plots vs. , where
we assume . By increasing
tier 2), the cost is shown to monotonically increase despite
the fact that the backhaul-usage probability, , becomes
considerably smaller (Fig. (2)-a). In this case, although the
usage of backhaul is reduced with an effective caching strat-
egy, the cost kept on increasing because in dense networks,
the accumulative cost of caching eventually dominates the
backhaul cost. From (2)-b one can also see that for such a
high cost, the hit ratio is also low. Therefore, caching in a

the high cost of the backhaul.

V. CACHING IN DENSE HETNETS

negative impact on the performance of the dense HetNets,
in terms of coverage probability, hit rate, and the network
cost. So, to provide a clear picture of the impact of caching
in the dense HetNets, we incorporate the above performance

, which
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indicates the ASE per cost:

(14)

where is the ASE as in (12), and is the cost per unit
area as in (13). An ideal design is to maximize the spectral

.
1) :

Fig. (2)-e plots vs. for several values of content popularity
exponent, . For

tion of a sparse network (from to )

compensates for the negative impact of the high caching cost
and low hit ratio.
2) Caching Contents across Tiers: The best caching strat-

egy is obtained via the following optimization:

Note that if , then BSs of tier only cache the most
popular contents, while means the BSs cache randomly.
Fig. 3 plots for different content popularity exponent and

while Fig. 3 shows that MPC always outperforms RCS,
suggesting use of MPC across all tiers.

3) Impact of Cache Size: Fig. 4 plots vs.

for several values of . For cases of moderately
, there is an optimal caching

, the optimal cache size is fairly small compared to
the library size. In fact, Fig. 4-a shows that the optimal cache
size is only 3 of the most popular contents.
Figs. 4-b-d also indicate that the optimal cache size is

independent of the popularity exponent . For a small ,
Fig. 4-a further suggests that increasing the cache size in tier
2 improves . However, one can afford increasing the cache
size in tier 1, and the cache size of tier 2 can then be reduced
to 3 of the size of the content library.
We further oberve that the cache size in tier 1 has a

, where increasing to up to 80 of the content library

larger
10 of most popular contents in tier 1. In either case, Fig. 4
suggests that for a given
carefully selecting the caching size.
In a dense HetNet where , the optimal cache

size in tier 2 is almost 3 of the size of the content library,
regardless of the parameter
related to the cache size in tier 1 either. This is in sharp contrast
with the case of moderately dense HetNets, while the caching
performance is also substantially lower than that of moderately
dense HetNets.

4) : In our analysis, we
adopted content-aware Max-SIR CA rule as it is shown to be
effective in reducing the backhaul usage as one of the main
objectives of caching [3]. The above results, however, suggest

there seems to be a gap in the literature on how to enhance

We investigate this important issue by introducing range
expansion into our analysis. We consider the range expansion
parameters, , where . We then substitute
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Fig. 5. Impact of range expansion parameter ( ) on .

the SIR thresholds, , with their scaled versions,
. Using a smaller value of , a user is less likely to be

associated with tier
the CA, for the typical UE associated with a tier BS, the data
transmission rate is not affected and is equal to
To investigate the impact of range expansion on the

as the caching

( ). In our formulation, is the

icy as in (7).
To study the impact of range expansion on the caching

vs. , for ,
where . Fig. 5 shows that for a sparse to
moderately dense HetNet, i.e., , one can choose a

,

, see, Figs. 5-c—5-d. Fig. 5 further indicates that for
dense HetNets, i.e., , range expansion does not improve

VI. CONCLUSIONS

In this paper we have studied the caching performance in
dense HetNets. Our analysis incorporated the actual traits of
dense cellular networks including the LOS/NLOS path-loss
model, backhaul and caching costs, and provided performance
metrics such as coverage probability, backhaul-usage prob-
ability, caching-hit probability, ASE, and the network cost.

reducing the backhaul-usage probability and increasing ASE,
it reduces cache-hit probability and increases the network
cost. To provide a comprehensive performance evaluation of

incorporating the above-mentioned performance metrics. Our
analysis showed that caching is, in general,

. We further observed that it is enough to
cache only about of the library size in tier 2. Furthermore,
a common networking mechanism such as range expansion,
which is shown to be of substantial value in conventional
(no caching) networking, could not alter this phenomenon.
We also showed that in sharp contrast with the conventional

investigation of the impact of content placement as well as
interference management.
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